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The role of references and the elusive nature of the
chemical bond
Ángel Martín Pendás 1✉ & Evelio Francisco1

Chemical bonding theory is of utmost importance to chemistry, and a standard paradigm in

which quantum mechanical interference drives the kinetic energy lowering of two

approaching fragments has emerged. Here we report that both internal and external refer-

ence biases remain in this model, leaving plenty of unexplored territory. We show how the

former biases affect the notion of wavefunction interference, which is purportedly recognized

as the most basic bonding mechanism. The latter influence how bonding models are chosen.

We demonstrate that the use of real space analyses are as reference-less as possible,

advocating for their use. Delocalisation emerges as the reference-less equivalent to inter-

ference and the ultimate root of bonding. Atoms (or fragments) in molecules should be

understood as a statistical mixture of components differing in electron number, spin, etc.
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Coinciding with the centennial commemoration of the
electron-pair bond proposed by Gilbert Newton Lewis in
19161, a considerable number of research papers2,3, per-

spective articles4–6 and books7,8, all revisiting the nature of the
chemical bond, have appeared in the literature, showing
the vitality of the field. Most of these recent accounts4 agree upon
the framework forged by K. Ruedenberg and coworkers in the
early 1960s. Following Hellmann’s suggestion9,10, this standard
model identifies the kinetic energy lowering suffered by the
interacting moieties, triggered by constructive interference of
their wavefunctions, with the driving force behind bond forma-
tion. This view opposes that of Slater11, who used the virial
theorem to vindicate the role of the potential energy and the
accumulation of electron density in the internuclear region upon
bonding, and also in part that of Feynman12, who developed an
image of bonding in terms of electrostatic forces. As Frenking and
coworkers have emphasized4, it is essential that on top of this well
accepted physical image we build chemical bonding models that
translate the physical language into the fuzzy, but predictive,
chemical concepts. Although different schools still diverge on
how fine details are interpreted and, for instance, valence bond
(VB) advocates frequently collide with pure molecular orbital
(MO) practitioners (see, e.g., refs. 13–16 for recent controversies),
a minimal set of points, that include Hellmann’s and Ruedenberg
quantum mechanical interference, seems to have been agreed
upon. According to this view, it is the interference among the
different wavefunctions of the fragments which are forming a
chemical bond that leads to a general decrease in the kinetic
energy of the system, driving it towards equilibrium.

Here we show that even these accepted points necessarily imply
the choice of both internal (state) or external (energetic) refer-
ences which bias interpretations. We examine the nature and
consequences of those biases and show how the consideration of
interacting atoms or molecules as objects in real space minimizes
the reference bias as much as possible. By introducing this real
space picture we show that it is electron delocalization that
underpins chemical bonding.

Results and discussions
Ruedenberg and coworkers7,17,18 have pointed out that building a
theory of chemical bonding requires as a first, absolutely neces-
sary prerequisite to postulate that atoms, or larger entities if
necessary, are somehow preserved in molecules. Chemical bonds
occur among interacting moieties that we must single out from
the final stable or metastable molecular arrangements. Since
quantum mechanics is an intrinsically non-separable theory, how
these atoms are introduced and manipulated provides a very first
source of bias.

The wavefunction reference bias in the Hþ
2 molecular ion. Take

the simplest one electron Hþ
2 ion, described under the clamped-

nuclei approximation by a wavefunction Ψ19. Figure 1 shows a
potential energy curve with several energetic decompositions that
will be used in the following. Ruedenberg’s variational reasoning
is relentless. To lower its energy, the electron thrives to balance
the opposing kinetic and potential energy demands. The first is
lowered with electron delocalization or dilution, while the latter
becomes more negative with localization around the nuclei. The
electron is thus pulled towards the nuclei as much as the kinetic
resistance (also called kinetic pressure) allows. Kinetic (T) and
potential energy (V) lowering dominate the long-range and short-
range behavior, respectively, and at equilibrium, the variational
balance leads to fullfilment of the virial theorem, and E=−T.

Further chemical analysis requires establishing a reference,
which is standardly taken as the H atom and its exact one-

electron states (Supplementary Note 1), and the molecular
wavefunction is recast in terms of a set of so-called quasi-atomic
orbitals (QUAOs, ϕa,b), which are then compared to the isolated
ϕ1s function and used to provide an exact energy and density
decomposition. Squaring the Ψ amplitude leads to a sum of the
squares of the quasi-atomic densities and to an interference term:
ρ ¼ ϕ2a þ ϕ2b þ ρI . It is found that the QUAOs pass from slight
expansion at large R to significant contraction at equilibrium, and
that it is only the interference TI lowering which drives the system
to an equilibrium geometry, the accumulation of density in the
internuclear region being also entirely caused by interference. In
this standard model, it is the constructive interference of the
atomic functions that allow the electron to dilute or delocalize.
Many researchers have contributed to the details of this image
over the years20–25.

What is not usually contemplated in general treatments is: (i)
that the correct R→∞ asymptotic reference of Hþ

2 is a spatially
entangled state and not the broken symmetry H+ H+ one, (ii) that
the analysis of the effect of interference depends on spatially
separated basis functions, introducing completely spurious two-
center terms in an otherwise one-particle problem. As the first
point is regarded, it is all but clear that the infinite distance
asymptotic wavefunction Ψ ¼ 1=

ffiffiffi
2

p ðϕ1sa þ ϕ1sbÞ describes an
entangled electron with a 50% probability of being found around
each nucleus, p(na= 1, nb= 0)= p(na= 0, nb= 1)= 1/2, and not a
H atom and a proton, p(na= 1, nb= 0)= 1, p(na= 0, nb= 1)= 0.
This takes us to R. Feynman26, who interpreted the Hþ

2 system in
terms of the dynamic flip–flop jump of the electron between the
two atomic regions (Fig. 1, right panel). In the long distance limit a
state that is initially described by the localized ϕa function will
tunnel to ϕb with a rate τ= (πℏ)/ΔE, where ΔE is the system’s first
excitation energy. As distance increases and ΔE tends to zero, the
tunneling time grows indefinitely. This dynamic picture has been
exploited over the years by Nordhom and Backsay27,28, among
others.

As it stands out, interference is an a posteriori result of the
wavefunction decomposition, not an intrinsic feature of the
system. Hþ

2 is a problem of a particle moving in a potential V(r).
Isolating two wells (the two nuclei) is necessary for chemical
analyses, but alien to the physics of the problem. Let us consider a
textbook one-dimensional particle moving in a box of length L
resulting from the interpenetration of two smaller left and right
boxes of length 2/3L, which we label a and b (see Fig. 2). After
eliminating the right-a and left-b constraining walls (dashed lines
at 2L/3 and L/3, respectively), we build an approximation to the
solutions of the larger box in terms of those of the original a and
b problems. With the sinusoidal ground states ϕa, ϕb of the initial
boxes we can approximate the ground state of the final system as
Ψ=N(ϕa+ ϕb). The ground state of the large box can be recast as
the constructive combination of two symmetric, deformed
solutions of the a, b boxes. For an observer unaware of our
gedanken small boxes, using the solutions of these two hidden
ancillary systems is a completely arbitrary process, as it is
assigning any physical sense to the constructive interference of ϕa
and ϕb. This internal bias soaks the standard model of chemical
bonding. As V= 0 inside the box, E= T, and it suffices to
consider T̂ ¼ �ð1=2Þd2=dx2. All the following considerations
apply also to V when it is non-vanishing. Recall that (in atomic
units) the energy of the ground state of an electron in a box of size
L is π2/(2L2). By releasing the right-wall constraint at 2L/3 of an
electron initially confined in the left a box and letting it occupy
the a ∪ b larger box, E= T decreases. The role of the release of
spatial constraints in chemical bonding has been put forward
several times28, and in our opinion is the true core upon which all
chemical bonding treatments rest. In terms of interference,
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T= Ta+ Tb+ TI where TI ¼ �ð1=2Þ R L
0 ϕaðxÞðd2ϕbðxÞ=dx2Þdx.

Notice that in Hþ
2 TI is interpreted as an interatomic term. This

is an artifact coming from the mixing of ϕa and ϕb. T is a one-
particle, thus one-center observable. For the final ground state,
T ¼ ð�1=2Þ R L

0 ΨðxÞðd2ΨðxÞ=dx2Þ dx, and no two-center contri-
butions arise. It is only when we decompose Ψ(x) at point x into
two contributions assigned to two different centers that an inter-
center interference term appears. We conclude that two-center
contributions for one-particle operators should be avoided to by-
pass internal or state reference biases. They should only be
present when considering the interelectron repulsion, a true two-
particle operator that can display two-center behavior. Figure 2
helps us envisage how we can still associate the particle to two
centers (boxes) without invoking any internal reference or
interference term. Since the initial limits of the boxes disappear
when the wall constraints are released, a reasonable assumption
follows: if the electron is in the left/right region of the final box we

associate it to the remnants of the left/right initial boxes.
Symmetry arguments put the separation of the in-the-molecule
left and right regions at the short-dash orange line in the figure. A
natural spatial partitioning that divides space into (chemically)
relevant regions appears.

No internal reference or arbitrary choice remains at all. In
more general cases, a choice about how the spatial partitioning is
performed is needed, but the number of degrees of freedom for
this decision is much smaller than in other cases. The spatial
partition leads to a probability of finding the electron in each of
the boxes-in-the-box equal to 1/2, and to a regional kinetic energy
Ta,b= T/2. We can still use the original a, b boxes as references,
and compute the changes in Ta on going from the isolated a box
to the a box-in-the-box situation. This is the basis of real space
bonding analyses. In this view, an electron found in a given
(chemical) region is never considered part of another one, as
when interpenetration is allowed.

A spatial partitioning of the entangled ground state of Hþ
2 leads

to a 50% probability of the electron being found in any of the two
atomic regions (i.e., basins), at any distance: p(na= 1, nb= 0)=
p(na= 0, nb= 1)= 1/2= ∫aρ(r)dr. All kinetic and electron-
nuclear potential energy terms can be decomposed into basin
contributions: T= Ta+ Tb, Ven ¼ Vaa

en þ Vba
en þ Vab

en þ Vbb
en, with

Vab
en being, for instance, the electron–nucleus (en) attraction

between the electron, when it is contained in region a, and nucleus
b. There are powerful reasons to choose the atomic basins provided
by the quantum theory of atoms in molecules (QTAIM)29, a
standard which we will follow. The sum of Ta þ Vaa

ne corresponds
to the energy of the electron residing in atom a, that is usually
called its self-energy, Ea

self . In polyelectronic cases it also includes
the interelectron repulsion of the electrons located in a, Vaa

ee .
Similarly, the sum Eab

int ¼ Vab
en þ Vba

en þ 1=Rab (with an additional
polyelectronic Vab

ee repulsion if needed) is the interaction of the
electron when residing in a basin with the other nucleus and vice
versa, plus the internuclear repulsion Vab

nn ¼ 1=Rab. It is called the
interatomic interaction energy. Adding up, E ¼ Ea

self þ Eb
self þ Eab

int.
This is the so-called interacting quantum atoms (IQA) energy
decomposition30–32. All of these components can be found in
Fig. 1 (see also Supplementary Notes 2, 3), where Vaa

en þ Vbb
en

is called Ven0 . Ea
self tends to −1/4 a.u. at dissociation, which

is obviously equal to p(1, 0) × E(H)+ p(0, 1) × E(H+). Ea
self is

Fig. 1 Bonding in Hþ
2 . a FCI cc-pVTZ potential energy curve of Hþ

2 along with several of the energetic descriptors obtained by decomposing the space in
two symmetric regions associated to the a and b nuclei. All energies referred to their infinite distance limit, in a.u. E (purple), T (green), and V (cyan), stand
for the full system's total, kinetic, and potential, energies, respectively. Eint (orange) is the sum of the internuclear repulsion energy and the attraction
energy of the electron density contained in the a region with the b nucleus, and vice versa. Similarly, Ven0 (yellow) is the sum of the attraction energy
between the electron density in a with nucleus a and its b equivalent. Finally, Eself (red) is the sum of the self-energies of the two regions, see the text,
where it is also explained that in the broken symmetry spatial interpretation, Ven0 and Eself can also be interpreted as those of a non-entangled H atom
interacting with a proton. b Illustration of Feynman's dynamic picture of the 2c,1e bond. τ and ΔE are the inter-well tunneling rate and the system's first
excitation energy, respectively.

Fig. 2 A model for the wavefunction reference bias. A one-electron one-
dimensional box of length L built from the interpenetration of two smaller
left (a, blue) and right (b, green) boxes of length 2/3L. The interpenetration
region is depicted in yellow. The ground states of an electron initially
confined in either the a or b boxes, ϕa, ϕb are shown as the purple and green
solid curves. If the impermeable walls (dashed black lines) are released,
the electron delocalizes, and its ground state, Ψ is depicted in cyan.
When Ψ is approximated by the gerade linear combination of ϕa and ϕb,
Ψ= N(ϕa+ ϕb), in orange, Sab≈ 0.2153. The spatial partitioning of the large
box into two equivalent non-interpenetrating regions of length L/2 is
depicted by the short-dashed orange line.
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stabilized as R decreases, contrarily to its equivalent Eintra in
Ruedenberg’s analysis, since the strongly stabilizing interference
kinetic energy TI of the latter is now an intra-basin phenomenon.
Interestingly, even though no atomic functions are used in this real
space analysis, orbital-like expansion and contraction can be easily
recognized from how Vaa

en (or Ven0 in the figure) changes with
respect to their values at dissociation. This change is initially
positive to become negative as R decreases. The contrary is true for
ΔTa. Notice also how V differs only slightly from Ven0 for a wide
range of distances. The real space viewpoint unveils the release of
constraints, thus delocalization, as the ultimate root of chemical
binding. If we confine the electron to either the left or right basins,
variational reasoning leads to Ea

self > EðHÞ at any distance. Once
electron delocalization (basin hopping á la Feynman) is allowed,
chemical bonding sets in. The real space analysis also permits a
broken symmetry perspective (Supplementary Notes 2 and 3).

The evolution of one-electron bonds towards polarity can be
followed in the alkali dimer cations, AB+, which are well modeled
by a 2c, 1e paradigm. A single reference (SR) wavefunction for
LiNa+ leads to p(nLi= 3, nNa= 10)= 0.748, p(2, 11)= 0.251,
with a residual contribution for other electron counts: a polar
2c,1e bond where the electron has 25% probability of being found
in the Na atom. Manipulating the difference of electronegativities
between the atoms induces a shift from the (close to) perfect non-
polar 2c,1e bond in Liþ2 with p= 1/2, passing through p ≈ 0.75 in
LiNa+, towards p ≈ 1 in LiCs+.

The H2 molecule. Adding a second electron to the Hþ
2 system

leads to the electron-pair bond. As in Hþ
2 , it is the kinetic energy

interference term, TI, which drives bonding in the standard
model. Nevertheless, a couple of new insights, which are usually
hidden or not fully considered, stand out: (i) An important
contribution to the interatomic potential, the so-called coulombic
sharing33 term appears because of the existence of intra-atomic
electron–electron repulsion. (ii) The electron-pair bond is not a
result of electron spin pairing. Actually, the binding energy of
dihydrogen is smaller than twice that of Hþ

2 (109.5 versus
64.4 kcal mol−1),34 and H2 should be viewed as two independent
two-center one-electron bonds, slightly weakened by the inter-
electron repulsion that is absent in Hþ

2
4. According to Rueden-

berg and coworkers, this picture is general, and kinetic
interference is the root of all bonding. Head-Gordon et al. 35–37

have questioned this view, pointing to electron delocalization as
the most general bonding driver. Care has to be taken, anyway,
since some of these arguments were based on using the triplet
state of the H2 molecule as a reference.

In the real space picture of H2
30, the spatial regions associated

to the H atoms are symmetry determined. The self-energy of each
atom Ea;b

self , increases upon molecular formation, so that all
binding comes from Eab

int, which is naturally decomposed into a
repulsive ionic Vab

cl term (net charge dominated) and an attractive
covalent-like Vab

xc (exchange-correlation) one (see Supplementary
Note 2). A vital point stands out: the two electrons can be both
found in one of the two atoms a or b. Atoms in molecules should
not be imagined possessing a fixed number of electrons. If this is
done, we face an electron number bias, for we must choose
arbitrarily the number of electrons of our references. In H2, three
possible electron distributions are possible: (1, 1), (2, 0) and (0, 2),
labeled according to the number of electrons in a and b. The first
is compatible with neutral atomic references, while the other two
correspond to ionic H− and H+ ones. An interacting atom or
fragment a is in a mixed open quantum state, with a probability
p(na) of being found with a given electron count na. In this
view,38,39E=∑ipiEi. In the simplest MO 1σ2g wavefunction of H2,

p(1, 1)= 1/2, and p(2, 0)= p(0, 2)= 1/4 (see Supplementary
Note 2)39. This describes two independent 2c,1e Hþ

2 -like bonds,
each electron ignoring the other, with a 50% probability of being
found in each atom.

The role of correlation is also clear. A multireference (MR)
wavefunction in H2

40 shows that p(1, 1)= 0.584, p(2, 0)= p(0, 2)
= 0.208 at R= 1.4 a.u., corroborating that electron correlation
decreases delocalization and increases the probability of finding
each of the two electrons closer to the (different) nuclei. As R
increases, p(1, 1) tends to 1, and at R= 6.0 a.u., it is equal to 0.988
(full configuration interaction results with larger basis sets38,41 do
not alter this image). The energy of the (1, 1) electron distribution at
R= 1.4 a.u. is −1.260 a.u., with Ea

self ¼ �0:653 and Eab
int ¼ þ0:047

a.u., respectively. These tend to −0.500 and 0.000 a.u. at
dissociation, respectively. As the (2, 0) distribution is regarded, at
R= 1.4 a.u. E=−0.996 a.u., with Ea

self ¼ �0:496; Eb
self ¼ 0, and

Eab
int ¼ �0:500 a.u., respectively. These tend to −0.467 (the energy

of a hydride anion at the single-determinant level with the chosen
basis set) and 0.000 a.u., respectively, at dissociation. These numbers
show how grossly incorrect choosing references with fixed number
of electrons can be. In each of the (1, 1) or (2, 0)≡ (0, 2)
distributions a fixed number of electrons reside in each atomic
region. When strictly one electron is found in each atom, all the
interaction is quasiclassical (although built with the quantum
mechanical density), and an electrostatic theorem42 guarantees that
their interaction is repulsive. In agreement with the standard (i.e.,
Ruedenberg) model, the very negative (1, 1)Eself’s imply a highly
contracted electron density. Contrarily, for the (2, 0) H−–H+

distribution Eint is large and negative, behaving as −1/R
asymptotically, while EH�

self reveals a slightly contracted hydride. If
delocalization is prohibited43, the (1, 1) distribution would lead to a
repulsive potential energy curve, for a minimization of the (1, 1)
energy would lead to Ea

self > EH (and Eab
int > 0).

Summarizing: (i) Associating interference as the driving force
behind chemical bonding is, to a large extent, the result of
assuming a set of internal references. Since it needs not be
imposed, it cannot be taken as the final root of the chemical bond,
which we ascribe to delocalization in its most general sense; (ii)
Even for the simplest dihydrogen case, the consideration of a
neutral reference disregards the fact that at equilibrium about half
the time one of the H atoms bears two electrons.

The energy reference bias. Out of the many energy decomposi-
tions in the literature, Ziegler and Rauk’s EDA44, many times in
combination with the natural orbital for chemical valence
(NOCV) analysis45 has proven useful in building chemical
bonding models. We use it here for illustrative purposes. Its basic
tenet is that building a chemical bonding model needs (at least)
two fragments that interact, from which we measure or compute
changes. These fragments are isolated at the equilibrium geo-
metry of the molecule, and their electronic structure is deter-
mined in electronic states that may not coincide with their
ground state, but that have chemical sense (vide infra). Then,
their interaction energy ΔEint is determined through a sequence
of steps: (i) the classical electrostatic interaction between their
total (nuclear and electronic) interpenetrating charge densities,
ΔEelstat is determined. This is typically stabilizing, and EDA-
NOCV advocates have emphasized the role of these forgotten
quasi-electrostatic terms in bonding5. (ii) The frozen fragments’
wavefunctions are antisymmetrized, and the concomitant rise
in energy is associated to the Pauli repulsion ΔEPauli among
the non-relaxed electrons of the fragments; (iii) Finally, the
antisymmetrized function is orbitally relaxed (i.e., a full calcula-
tion is done in the molecule). The energy drop is the orbital
relaxation energy, ΔEorb, which is linked to covalency. In the end,
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ΔEint= ΔEelstat+ ΔEPauli+ ΔEorb. If needed, a dispersion con-
tribution, ΔEdisp is also added. When the geometries, electronic or
spin states of the fragments do not coincide with those at dis-
sociation, another term, the preparation energy, ΔEprep, is
necessary, so that ΔE=−De= ΔEprep+ ΔEint. The application of
this EDA is not always viable: it requires final single determinant
descriptions (or Kohn–Sham quasi-determinants) that hamper
their application to systems where static correlation is important,
and it sometimes requires tricks to build the appropriate mole-
cular spin state from those of the fragments.

Intrinsic bond strength and metastable bonds. Given that De

includes ΔEprep that can mask bonding effects, it has been suggested2

that it is ΔEint that provides a faithful descriptor of the intrinsic bond
strength, the chemically relevant bond energy. Since this is obviously
a troublesome indicator (e.g., in metastable molecules), many
researchers, pioneered by Cremer and Kraka46, prefer to abandon
energies to measure bond strength and to turn to local measures,
independent of references, such as local force constants. Although
these are not uniquely defined, they have considerable advantages,
and have been recently advocated by Zhao et al. as a solution to the
bond dissociation energy (BDE) conundrum47. It has also been
suggested that reference-less real space Eint’s can be used as in situ
bond strength parameters48. We take as an example the He2þ2 sys-
tem. This is a metastable two-electron ion. A MR calculation yields a
metastable minimum at R= 1.332 a.u., 201.2 kcal mol−1 above the
dissociation limit. The well is about 34 kcal mol−1 deep, with a very
large force constant of 12.51mdynÅ−1, larger than in dihydrogen,
5.55mdynÅ−1.49 A real space partition at the metastable minimum
yields a simple 2c,2e close to that in H2: p(1, 1)= 0.617, with a
covalent bond order of 0.765. Eint=+266.4 kcal mol−1, partitioned
into 462.2 kcal mol−1 electrostatic destablization between the He+

cations (the pure Coulombic repulsion between two unit point
charges at that distance is 471.1 kcal mol−1) and −195.8 kcal mol−1

exchange-correlation stabilization (Supplementary Note 4). The
covalent component in dihydrogen is smaller, around −149 kcal
mol−1. Applying the EDA prescription to a single-determinant
wavefunction obtained at the FCI geometry with He+ references
we obtain (all data in kcal mol−1) ΔEelstat= 474.3, ΔEPauli= 0,
ΔEorb=−229.5. Since in a 2e singlet the EDA Pauli repulsion
vanishes, ΔEorb can be rather safely associated with the onset of
covalency. The reference-less Eab

int together with its ionic and cova-
lent components provide local energetic information about bond
strength that can be used on a par with local force constants.

Chemical bonding models from energy references. Frenking
and coworkers5 have shown how to make the most of the a
priori freedom to choose the electronic/spin states of the
fragments. According to their protocol, different references
correspond to different bonding models, and a variational-like
argument is used to select the most appropriate fragment
choice: the preferred model is that displaying the smallest ΔEorb
step, with fragments as prepared as possible for bonding to take
place. There exist many successful examples of this approach. It
allows to rationalize the planar and trans-bent geometries of
C2H4 and Si2H4, respectively, and of many other E2X4 heavy
molecules (see Fig. 3). The CH2 fragments’ ground state is a 3B1

triplet, with two unpaired electrons perfectly suited to engage in
a double bond. On the contrary, the heavier EH2 fragments are
1A1 ground state singlets, which have to be formally excited to
the triplet to get involved in electron-sharing. Thus they
prefer donor–acceptor interactions that lead to non-planar
geometries2. C2F4 is a mostly interesting case: although the
isolated CF2 fragment is a singlet with a singlet–triplet gap of
about 51.2 kcal mol−1, ΔEorb is considerably smaller if the EDA

fragments are made to interact as triplets50, so that the C2F4
ground state is, as in ethylene, planar and well described by a
double bond. The singlet to triplet excitation cost manifests
in the very small De= 74.4 kcal mol−1, much smaller than
ΔEint ≈−200 kcal mol−1, of a normal C–C double bond.
Association of two 1A1 CF2 moieties proceeds via a dative or
donor–acceptor trans-bent geometry which is progressively
planarized: bonding interactions may change during bond
formation, warning us about using dissociation products as
probes for dative or electron-sharing interactions.

Single reference systems. It is at this point that all our alarms ring
together. In order to appropriately use the energetic promotion of
fragments during bond formation one must consider their mixed
quantum nature and allow for both electron number and elec-
tronic/spin state fluctuations. Moreover, electron reorganizations
along a reaction coordinate more than often require high level
quantum mechanical descriptions beyond single-determinant
(including Kohn–Sham) approximations, where most EDAs
break down. We examine a few illustrative cases. The LiF mole-
cule is a closed-shell system very well described at the
Hartree–Fock level. Even in a simple SR description, Table 1
shows that the chemical bonding protocol selects the ionic
reference if an EDA is performed. If the neutral fragments are
considered to engage in electron sharing, a small stabilizing
electrostatic energy appears, together with a non-negligible Pauli
repulsion caused by the overlap of the Li 2s function with the
bonding 2pz orbital of F and a very large orbital stabilization. This
picture is turned upside down if the ionic reference is used, which
requires an experimental ionization cost of 45.9 kcal mol−1,

Fig. 3 Transition from shared-electron to donor–acceptor chemical
bonding models in E2X4 systems. If fragments interact in their ground
state throughout the full association path, planar or trans-bent geometries
are expected for triplet or singlet EX2's, respectively. In the case of small
singlet–triplet promotion energies, the bonding mode can change along the
association, as in C2F4.
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obtained as the sum of the first ionization energy of Li and the
electron affinity of Fg49. Reference-less IQA data lead to elec-
trostatic Vcl=−173.9 and covalent Vxc=−32.9 kcal mol−1

contributions, respectively, in rather good agreement with their
EDA equivalents for an ionic reference. This accord is easy to
understand if we examine the distribution of electron counts in
the LiF atoms: p(2, 10)= 0.887, p(3, 9)= 0.095, Q(Li)=+0.910.
The distribution is overwhelmingly dominated by one electron
count, and a single (ionic) reference suffices. The EDA protocol
works well in this case, but only if we allow for non-neutral
fragment references, i.e., if we admit the electron count bias.
Dissociation along the 1Σ+ ground state curve leads to neutral
fragments through a very well-studied multireference avoided
crossing, that needs at least a two-determinant wavefunction for
correct modeling. In the LiF case, since the equilibrium and long
distance regimes are dominated by clear electron counts, judi-
cious chemical intuition allows to manually select those states
that provide the best chemical bonding model. In more complex
cases this is not easily done. Even in LiF, EDA cannot be used at
intermediate distances to follow the change of reference, but a
multiconfigurational character poses no problem for real space
analyses. A MR calculation51 shows that a tight avoided crossing
between the S0 11Σ+ and S1 21Σ+ states, which become
<2 kcal mol−1 apart, occurs at R ≈ 6.6Å. As we decrease R and
pass the avoided crossing, all Eself and Eint components jump
suddenly from the values expected for an electron-sharing
interaction between neutral entities to those of an ionic interac-
tion between Li+ and F− ions, the contrary being true on the
21Σ+ curve (see Fig. 4 and Supplementary Note 5). This violent
transition shows how the chemical bonding between two species
can change character abruptly. It is remarkable that from dis-
sociation down to almost the ground state equilibrium geometry
the electron distribution is dominated by just two components,52

p(nLi= 3, nF= 9)= p and p(nLi= 2, nF= 10) ≈ 1−p, and that
their evolution in the S0 state is almost symmetric to that in S1,
with pS0 ≈ 1−pS1. At the crossing, p is 0.5. A crystal clear chemical
bonding model emerges: bonding in LiF is extremely well para-
metrized by a 2c, 1e bond where the probability of the electron
being found in one or the other atom (á la Feynman) changes
from one to almost zero. In this case, the use of a physical
energetic partition applicable during the complete bonding pro-
cess, both in ground and excited states, validates the insights
obtained from the two-point (equilibrium, dissociation) EDA
protocol. In passing, we comment on the reticence extended
among many researchers2,53 about the existence of true ionic
bonding outside ionic crystals, where ions are lattice-stabilized.
This reluctance is not found among molecular physicists, well
acquainted with avoided crossings. A chemical model of how the
ionization barrier is overcome without a total energy barrier is as
follows: two neutral atoms interact, attracting themselves so that
their overall energy decreases. At about the avoided crossing, the
energy of the ionic arrangement competes with the neutral one,
so that the jump occurs in quasi-degeneracy conditions. At
equilibrium, almost only one electron distribution dominates (the
ionic one), and a CCSD/aug-cc-pVTZ calculation yields Li,F
moieties with self-energies just 9 and 25 kcal mol−1 above those
of the Li+ and F− ions48.

Limitations. Let us consider the formation of CH4 from a C atom
and a H4 fragment, all maintaining tetrahedral symmetry. Stan-
dard chemical wisdom proposes to promote the C atom to the
5S–2s12p3 state and then to hybridize in order to form four bonds.
The two steps need about 96.5 and 62 kcal mol−1, respectively48. A
MR calculation48 showed that as RC�H4

decreases, the probability
of finding six electrons in C (and with it the usefulness of a neutral
C reference) also decreases. At equilibrium, p(nC= 6) is about 0.3,
and all p(nC) with nC ranging from 2 to 10 are non-negligible. If
only the nC= 6 components are considered, the weight of a
quintet contribution peaks at a maximum of about 20% at a RC–H
distance of about 1.9Å. This makes just a 6% of all the compo-
nents. Assuming a fixed electron count for atoms is not justified.
At variance with the avoided crossing case, where one distribution
is very quickly changed into another, no abrupt change of any
descriptor is found along the ground state energy curve, since the
weights of all distributions change smoothly. Thus, as the frag-
ments progressively interact and deform, ΔEprep for the statistical
mixture of electron distributions and electronic/spin states evolves
also smoothly. At equilibrium, EC

self is 62 kcal mol−1 above the C
triplet ground state, which is much lower than the expected
158 kcal mol−1 of the EDA promotion+hybridization energies.
Transit from dissociation to equilibrium occurs, thanks to statis-
tical mixing, through C atoms that never exhibit the full pre-
paration energy of the EDA modeling. The usefulness and
predictive ability of the EDA protocol is not challenged with this
discussion: it is simple and easy to use. We just show that
reference-less formalisms uncover a more complex reality, and
that care should be taken in applying EDA blindlessly.

Another example follows the wake of the C2F4 case: the
formation of the triple bond in acetylene from the interaction of
two methylidyne CH radicals, which display 2Π ground states
17.3 kcal mol−1 below 4Σ− quartets. As expected, the EDA ΔEorb is
smaller when the partitioning is performed from two quartet-
prepared CH fragments. Also, and this shows very nicely the
predictivity of the EDA protocol, the minimum energy path for the
association reaction is non-collinear, proceeding via a trans
configuration of the doublet CH moieities until at about a C–C
distance close to 1.35Å an abrupt linearisation of the fragments
occurs (see Fig. 5). A spatial decomposition shows an interesting
story (Supplementary Note 6). At about RC–C= 2.6Å, when the
CH fragments stop their free rotation adopting a clear trans
geometry, ECH

self suffers a rather sudden increase, staying about
24 kcal mol−1 above the isolated CH ground state energy for a wide
range of inter-fragment distances down to linearisation, where it
grows again. This behavior is clearly compatible with a quartet
promotion. The figure also shows the contributions of the doublet
and quartet states for the (7, 7) neutral fragment distribution,
whose weight evolves from 1.0 at dissociation to about 0.4 at
equilibrium. A comparison with dinitrogen, where the atomic
fragments are already in prepared quartets at dissociation, is also
displayed. For acetylene, a sudden increase in the weight of the
quartet is found coupled with the behavior of ECH

self . As the figure
shows, linearisation coincides with coalescence of the electron
distribution probabilities over those of dinitrogen. Thus, physically
rigorous reference-less methods provide bonding models in
agreement with those of successful, yet heuristic approaches. They
also helps us understand when, how, and to what extent the use of
fixed references will succeed or will be doomed to fail.

References and dative bonding. Dative bonds break heterolytically,
being usually weaker than electron-sharing ones, that break
homolytically. However, as the C2F4 and C2H2 examples show,
if the nature of the chemical interactions changes along the dis-
sociation channel, it is in the end a set of EDA calculations with

Table 1 Energetic reference bias in LiF.

Reference ΔEelstat ΔEPauli ΔEorb
LiF −14.26 60.90 −135.85
Li+F− −183.83 33.96 −26.62

HF//def2-SVP EDA analysis with neutral and ionic references. Energies in kcal mol−1.
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different fragment references which are used to decide between
electron-sharing or donor–acceptor models. For instance, in the
case of carbon suboxide, C2O3, the linear CO=C=CO model
implies triplet CO fragments as well as a quintet carbon atom, a
promotion that requires about 375 kcal mol−1, while the angular
CO→C ←CO one needs only exciting the C atom to its intra-
configuration 1D state, with a much lower cost of 29 kcal mol−1.54

This points toward a promising role for reference-less meth-
odologies in establishing the nature of dative bonding, that we
illustrate with two systems. LiBe+ dissociates into 1S Li+ and Be.
In a SR calculation the charge of the Li atom is 0.946 a.u., with
Eint=−30.2 kcal mol−1 dominated by a −21.0 kcal mol−1 charge-
dipole Vcl term. The electron distribution has two main con-
tributions, p(2, 4)= 0.943, p(3, 3)= 0.054, so a bonding model
emerges in which only one of the two valence electrons of Be
delocalizes (Supplementary Note 7). It is important to consider the
two electrons of a seemingly normal 2c, 2e interaction indepen-
dently. Using common spatial orbitals for them, as it is done in
single or pseudo-single determinant approximations (e.g., in
standard DFT) will mask an otherwise simple behavior, which is
only recovered artificially (i.e the so-called left-right correlation)
in multiconfigurational calculations or high-level valence bond
approaches55. A simple solution is to use a (symmetry breaking)
unrestricted single-determinant (UHF) ansatz. Figure 6 shows that
the two 2s electrons of Be in LiBe+ become spatially different at
the UHF level: only one of the spatial orbitals delocalizes. A more
interesting system is 1Σ+ BeO, which dissociates to ground state
Be and 1D excited O. MR data unveils how the interaction evolves
from a donor-acceptor Be→O link to a very clear ionic-like

regime. Since O2− is not stable in vacuo, it is not possible to
perform a standard EDA with charge-transfer Be2+ and O2−

references, a problem that doubtlessly biases interpretations. The
BeO interaction (Supplementary Note 8) starts with an O atom
displaying a kind of σ-hole, visible in the Laplacian of the density,
which allows for a Be to O donor–acceptor σ favorable approach.
The evolution of both the bond order, and particularly, the crystal
clear behavior of EBe

self evidence that as R decreases, a two-step
ionization process occurs. In the first, similarly to what was found
in LiBe+, a Be electron is transferred to the oxygen. This is half
completed at about R= 2.6Å, and at around 2.4Å the second
ionization of Be starts. Simultaneously, already at 2.6Å two back-
bonding π bonds involving the oxygen’s electrons develop (see
Supplementary Note 8 and Supplementary Data 1). Thanks to
back-donation, at equilibrium, Q(Be)= 1.416e, although the
Laplacian, for instance, shows quasi-spherical atomic shells. Also,
p(2, 10) > 0.5. After the second ionization starts, and surely at
equilibrium, a better description of the system is that of an oxide
anion donating rather symmetrically its σ and π electrons to a Be
dication that acts as acceptor. In this regime, a dative,
donor–acceptor bonding model is also admissible, but now the
donor agent is the oxide anion.

Ubiquitous reference biases permeate the theory of chemical
bonding, one of the pillars of modern chemistry. On the one
hand, the internal references needed to interpret molecular
wavefunctions in terms of atomic (i.e., chemical) components,
lead to the interference terms that lie at the root of the standard
model of the chemical bond. On the other, most energy
decomposition analyses, which become essential to discern

Σ

Σ

Σ

Σ

Σ

Σ Σ
Σ

Σ
Σ

Fig. 4 Spatial partitioning in LiF. d-aug-cc-pVDZ MRCI-SD data in both the S0 (11Σ+, dark-blue) and S1 (21Σ+, dark-green) states along the dissociation
curve. a Total energy, showing the avoided crossing (the ≈2 kcal mol−1 gap is barely visible at the scale of the plot), with the Coulombic −1/R tail in red.
b Total self-energy (ELiself þ EFself). The energy reference is set to the neutral reference, while the ionization cost of LiF is 49.5 kcal mol−1. c Total ELiFint ,
together with the Coulombic −1/R contribution, in red. d Probabilities p(nLi, nF) of the main electron distributions. The neutral (3,9) and ionic (2,10)
partitions are plotted in dashed and full lines, respectively.
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among conflicting or alternative bonding images, rest on
choosing external (energetic) references for the set of fragments
that are meant to interact with each other. However, interacting
fragments in-a-molecule are entities in pesudo-mixed quantum
states, with fluctuating (i.e., not fixed) electron populations,
electronic, and spin states. Failing to consider this fact leads to a
variety of electron count or electron spin biases. The historical use
of energy-promoted and/or spin-excited fragments to rationalize
the nature of chemical links finds a rigorous conceptual root in
considering fragments as open quantum systems. We have argued
that real space analyses are as reference-less as possible, needing
only the specification of a chemically sensible atomic partition of
the space. If that ingredient is provided, no biases remain, and all
the electron counts, electronic and spin states of the interacting

fragments are part of the output, not of the input of the
procedure. In this way, the best bonding model for a system is
automatically read from the results of the analysis.

Methods
Electronic structure, QTAIM/IQA, and electron distribution calculations were per-
formed with GAMESS56, PROMOLDEN57, and EDF58, respectively. All atomic
charges and probabilities cited were obtained with QTAIM atoms. Details of calcu-
lations: Hþ

2 , FCI/cc-pVTZ; H2, CAS[2,2]//6-311G(p); LiNa+, HF//6-311G(p,d)
Req= 3.460Å; He2þ2 , FCI//cc-pVTZ, Req= 1.332Å; LiF single reference, HF/def2-
SVP, Req= 1.54Å; LiF multirreference, MRCI-SD/d-aug-cc-pVDZ; CH4, C2H2,
CASSCF/def2-TZVPP; LiBe+, HF//6-311G(p), Req= 2.646Å, UHF also at the same
geometry; BeO, CASSCF[8,8]/6-311G(p), Req= 1.345Å;

Data availability
The data generated in this study are provided in the Supplementary Information.
Supplementary Note 1 contains a summary of the standard model of the chemical bond
in Hþ

2 and H2. Supplementary Note 2, a primer on real space chemical bonding.
Supplementary Notes 3–8 contain the data supporting the claims made for Hþ

2 , the He2þ2
ion, the LiF molecule, the dissociation process of acetylene, LiBe+ and BeO molecules,
respectively. Supplementary Data 1 reports raw IQA and EDF data in BeO.

Code availability
The GAMESS and EDF codes are available from refs. 56[,58. The PROMOLDEN code is
available from the authors upon request at ampendas@uniovi.es.
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Fig. 5 Spatial partitioning in acetylene. CASSCF/def2-TVZPP data along the association process of two ground state 2Π CH fragments to form acetylene.
a Chemical bonding model explaining the trans geometry path. b Edef of the CH fragment. c Probabilities of the (7, 7), (8, 6)= (6, 8), (9, 5)= (5, 9), and
(10, 4)= (4, 10) electron partitions in black, blue, red, and green, respectively. d Normalized probabilities for the 2Π and 4Σ spin states of the (7, 7) CH
fragment neutral distribution (red and blue lines), respectively. The equivalent probabilities for the 2D+ 2S and 4S states obtained for N2 at the same level
of theory are also drawn with the same colors but with dashed lines. The variation of the HCC angle along the process is found in the bottom panel. Vertical
lines are drawn at the equilibrium distance.

Fig. 6 Symmetry broken LiBe+. Be 2s-like orbitals in LiBe+ at the UHF/6-
311G(p) level, computed at RLiBe= 2.6Å. Orbital energies are also depicted.
Only the left function is actively delocalized over the Li moiety. The
isosurfaces shown correspond to ∣ϕ∣= 0.1 a.u.
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