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Fall detection is a very challenging task that has a clear impact in the autonomous living of the elderly
individuals: suffering a fall with no support increases the fears of the elderly population to continue living
by themselves. This study proposes the use of a non-invasive tri-axial accelerometer device placed on a
wrist to measure the movements of the participant. The novelty of this study is two fold: on the one hand,
the use of a Long-Short Term Memory Neural Network (LSTM) for classification of the Time Series and, on
the other hand, the proposal of a novel data augmentation stage that introduces variability in the training
by merging the Time Series gathered from both human activities of daily living. The experimentation
shows that the combination of a LSTM model together with the data augmentation produces more robust
and accurate models that perfectly cope with the validation stage; the high impact fall event detection
can be considered solved.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Falls are accepted as an illness for the elderly population coded
as E880-E888 in International Classification of Disease-9 (ICD-9),
and as W00-W19 in ICD-10 [1]. The number of falls increments
with the age and frailty and people living in nursing homes fall
more than people living by their own. The percentage of elderly liv-
ing in long-term care institutions is approximately the 30%-50%
and about the 40% experience recurrent falls [1]. Whenever a
senior suffers a fall, the faster the assistance the better [2]. There-
fore, developing devices and models able to detect the falls may
help in i) extending the autonomous living of the elderly and ii)
notifying the caring staff about a fall of an inhabitant of the nursing
home or caring institution. Nevertheless, a solution with the suit-
able accuracy is still a focus of research [3,4].

In spite of the effort made in research, the performance of the
Fall Detection (FD) methods is still far from being acceptable [5]:
the data sets used in learning the models do not represent the high
variability of possible scenarios, decreasing the obtained general-
ization. In addition, the capability of the models must match the
mentioned variability in the fall scenarios and cases. Finally,
ubiquity is one of the requirements that are requested to FD, so
people can be monitored everywhere without constraints and
restrictions.

This study focuses on wearable FD using a tri-axial accelerom-
eter (3DACC) placed on a wrist together with Deep Learning (DL)
neural network (NN) models. On the one hand, a 3DACC placed
on a wrist allows the user to perform his/her Activities of Daily Life
(ADL) without extra requirements apart from using a smartband or
a smartwatch. On the other hand, DL has become one of the leading
paradigms for Machine Learning that has provided improvements
in different domains of application from computer vision [6], to
disease recognition [7], including body activity monitoring [8].
More interestingly, the capacity and the generalization capabilities
of DL NN are well known in the literature [9]. In this study we focus
on Long-Short Term Memory (LSTM) models, which have been
found suitable for modelling Time Series (TS) [10]. To tackle the
problem of generalization, this research proposes a Data Augmen-
tation (DA) technique that merges TS from ADL and Fall, with the
aim of providing a wider scenario of fall events in the training of
the models.

The main contributions of this study are i) a novel DA method
that will allow to enrich and obtain a more realistic and balanced
training data set by merging TS from an ADL into a FALL TS, ii)
the use of a LSTM to classify the TS and iii) a complete experimen-
tation is designed, providing an in-depth glance of the state-of-the-
art solutions in FD. The structure of the paper is as follows. The
related work follows next, while Section 3 includes a detailed
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description of the novel DA proposal and the different DL models
developed for this research. In Section 4 the data sets and the
experimentation set up are completely detailed. The results and
the discussion on them are depicted in Section 5. Finally, the paper
ends with the conclusions drawn from the study.
2. Related work

FD has been studied using many different technologies: video
monitoring [11], motion sensors [12] or floor and sound sensory
systems [13]. Wearable devices have been widely used due to
the unobtrusiveness and ubiquitous character: 3DACC [14], barom-
eter and gyroscope [15], electromyography [16] or angle [17]. Con-
cerning with the FD intelligent decision making, we can mention
the use of predefined thresholds [18], Support Vector Machines
(SVM)[19,20], dictionaries and TS representation [21], clustering
[22], NN [23], Random Forests (RF) [24], Hidden Markov Models
[25–27], ensemble of classifiers [24], among others.

Nonetheless, the generalization capabilities of the different
solutions are far to cope with the real task of FD [5]. Besides, DL
has attracted the attention of the research community due to its
capacity and generalization capabilities and has been already
applied to FD and Human Activity Recognition (HAR) as well [3].
Basically, there are three different approaches: i) Convolutional
Neural Networks (CNN), ii) Temporal and Recurrent Neural Net-
works (RNN) and iii) Auto-Encoders (AE) and Generational Adver-
sarial Neural Networks (GANN); as mentioned before, this study
focuses on supervised solutions and this latter case is not analyzed.
Concerning with CNN applied to FD, the studies presented in [28–
32] showed different architectures in their studies. A sequence of 2
stages followed by a final dense layer and an output neuron was
proposed in [28], each stage including a CNN layer plus a max-
pooling for subsampling. In [32], 4 blocks were sequenced, each
block containing several layers: a CNN followed by a batch normal-
ization, a ReLU and a max-pooling layers. The CNN layers decreases
in dimension (128, 64, 32 and 16 nodes). A batch size of 64 TS, L2
regularization, dropout and a Data Augmentation (DA) consisting
in a random rotation of the TS were also included in the training
of the model.

Furthermore, an interesting comparison between CNN, K-
Nearest Neighbours, SVM and threshold-based solutions for fall
detection was published in [29]. In this case, the authors proposed
two convolutional layers of 30 and 15 nodes with a filter size of 4
for both and with pool size of 2. Finally, a dense layer of 6 nodes
and a soft-max classification layer completed the CNNmodel. Win-
dows of 1 s long of the acceleration magnitude were feed to the
network. Finally, the studies in [30,31] compared CNN and LSTM
models finding better performance on the latter. CNN has also been
employed in HAR [33–38]. Each of these studies prepared their
own model description, including 1D-CNN [37], input dimension
in terms of a different sliding window configuration and parameter
set. In the comparison found in [36], different models were com-
pared: CNN, LSTM, CNN + LSTM, XGBoost, AE + RF and Multi-
layer Perceptron (MLP); surprisingly, MLP beating all the models
in this comparison.

Long-Short Term Memory Neural Networks (LSTM) is the most
widely used RNN in FD [39–43,30,31]. One of the simplest architec-
tures is shown in [39], including a 3-neuron input layer followed
by two Gate Recurrent Unit (GRU) layers of 20 neurons each and
a final stage of 2 neurons Soft-Max layer. Similarly but using LSTM,
the study in [41] included an input window of 30 samples corre-
sponding to 1 s, two LSTM layers followed by a feed-forward NN
of 200 neurons each and a feed-forward NN of 2 neurons were used
to classify as Fall or Not Fall inputting 1-s windows of the acceler-
ation’s magnitude. A sliding window of 1.28 s (at 32 Hz of sampling
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rate) is normalized and one or two LSTM (or GRU) layers (3 neu-
rons each) followed by a dropout, a dense layer and a Soft-Max
output neuron. Moreover, [40] proposed a window size set to
w ¼ 256 samples corresponding to 1.28 s and 50% of overlapping.
The model’s architecture included an input layer (w� 3) followed
by a Dense layer (w� 3 to w� 32) plus a batch normalization and
dropout, two LSTM layers (w� 32 nodes each) implementing drop-
out and finishing with a Dense layer (w� 32 to 1� 32) and a Soft-
Max final neuron. Actually, the proposal in [41] seems similar to
the approach in [40] but using the magnitude of the acceleration
instead of the three components.

In addition, 3DACC has been used together with gyroscope in
[43], including a windowing of 51 values from the 6 channels.
Then, an LSTM with 100 nodes followed by a Dense layer and a
Soft-Max unit is proposed to classify the TS sequences. Finally,
[30] proposed a combination of CNN and LSTM as follows: 3 CNN
layers of 128 nodes each, followed by 2 CNN layers of 96 nodes
each, a LSTM of 128 nodes and a Dense layer of 2 nodes. This pro-
posal was also analysed in [31], including a rotation-based DA in
the training of the models. In addition, there are studies of RNN
used in HAR [44,36,45], which perform similarly with their own
network architecture.

Besides, all the DL studies are based on staged fall data sets.
These data sets include a set of participants performing ADL and
mimicking fall events. These data sets are important due to the dif-
ficulty in gathering data from real cases; however, the number of
fall events and how they are mimicked play an important role in
the generalization capabilities of the models. On the one hand,
the balance between Fall and Non Fall TS is usually in compromise;
on the second hand, the fall events start with the subject still; that
is, there is no ADL just before the fall event. To our knowledge, only
a few DA solutions have been proposed in the literature to tackle
this problem using either the rotation of the acceleration axis
[30,32,31,41] or by shifting and scaling the TS [46]. The former is
a 3D linear angular transformation while the latter includes a ran-
dom shifting of the TS in one direction and an independent random
scale of the differences among consecutive values. Clearly, there is
still room for improvement in trying to obtain more balanced data
sets that cover more real fall events.
3. Enriching FD with DL and data augmentation

This study focuses on supervised approaches to classify a TS
window as Fall or Not Fall using DL models and how to enhance
FD to obtain generalized models. To do so, we first propose a novel
DA technique that merges two TS, one from a Fall and one from a
compatible ADL, to produce a new TS that resembles performing an
ADL just before a fall event. Furthermore, we propose the use of
LSTM layers after a convolutional stage followed by a Dense classi-
fier to classify the TS. The following subsections describe these
contributions in the mentioned order.
3.1. A novel TS data augmentation

The proposed DA technique addresses the problem of provid-
ing with enough valid data in order to train DL RNN models, solv-
ing the difficulties detected in [47]. To do so, the DA mixes two
TS: one from a fall event and one from a randomly chosen com-
patible TS. The benefits of this solution is twofold: On the one
hand, mixing two TS enriches the data set with different scenar-
ios where a fall might occur. On the second hand, the increased
number of windows due to the DA helps in balancing the training
data set and, thus, obtaining more robust and generalized models.
So, basically, the DA technique transforms the training data set
from dealing with the staged falls only (which are a sequence
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of stand still, fall onto a mattress and remain still, see the upper
part in Fig. 1) to also include more realistic staged falls (such as
the presented in the bottom part in the same figure, where an
activity was being performed at the moment a fall occurs). In this
Figure, the top row shows the original fall TS, while the second
row depicts the chosen compatible TS; in this case, the square
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Fig. 1. Example of the performance of the Data Augmentation procedure for a fall TS: Fro
TS and the scaled and shifted final outcome of the DA in the two latter rows. For detail
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marks the most similar window to merge with the fall TS. The
third row in Fig. 1 shows the fusion of the two former TS. Finally,
the bottom row depicts the outcome of the process after scaling
and shifting. In all of them, the calculated acceleration magnitude
is shown. The different relevant positions in Algorithm1 are
marked in the TS.
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m the the original fall TS and a compatible TS on the two upper rows to the merged
s, see the text.
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In addition to the compatible ADL TS for each fall type, the num-
ber of augmentations (nDAx, where x is the type of fall) for each fall
type should be given. Interestingly, the DA will produce nDAx þ 1
TS per fall TS: nDAx coming from the DA and the proper fall TS: this
fact makes easier to consider all the fall scenarios in the training.

The design and implementation of the DA considers the magni-
tude of the acceleration (MA) of the TS to merge. Firstly, let us

define what we refer as compatible TS. Given a Fall TS tsi
�!

and its
label li, we define a set of labels being compatible with li, denoted
as Ci, as those labels representing a certain ADL that can be per-
formed just before the type of fall event li. As an example, if we
consider the type of fall lateral falling from a bed, it is not possible
to be walking just before the fall: the subject should be lying on a
surface. In the same way, you can be walking, running or standing
still when you fall forward because you trip; however, you can not
be sitting. Therefore, it is very important to set the compatible ADL
set for each type of fall before performing the DA.

Algorithm1 describes the steps followed in the DA task. Any TS
labeled as an ADL is augmented using a random scaling factor and
shift. Scaling is performed as stated in Eq. 1, with q 2 �P;P½ � a ran-
dom scalar that multiplies the differences for all the TS samples.
Shifting represents a random circular shift to the right or the left;
Algorithm1 The Data Augmentation algorithm.
this shift involving at most Sh samples. Both P and Sh are parame-
ters to the method.

aaxis tð Þ ¼ aaxis tð Þ þ q� aaxis tð Þ � aaxis t � 1ð Þð Þ ð1Þ
To augment a Fall TS TSF we use a more complex procedure.

Firstly, a random compatible TS TSC is chosen from the data set.
The selection of this compatible TS is chosen a first instance among
those available for the same participant; if no compatible TS is
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found, then the selection is extended to all the compatible TS in
the data set. Secondly, we compute the MA for both TSF and TSC ,
denoted as MAF and MAC . Thirdly, we find the position i0 of the fall
peak in MAF using the methodology proposed in [48] and reported
in [49,50]. The mean and standard deviation (std) of being standing
still are used to normalize MAF; these values are computed with
the 50 first samples from all the Fall TS and they are similar to
the gravity value and the deviation due to small movements, cor-
respondingly. The threshold for peak discovering is set to 1:5� std.

Next, we denote the point i1 as the sample where the fall event
started, which is 500 ms before i0 [23]. Then we find the point i2 in
MAC with the nearest value to MAF i1½ � such that i2 > i1. The follow-
ing step is merging the two TS; to do so, the samples in TSC from
i2 � i1 to i2 are extracted and introduced into TSF before i1. It is
worth noticing that both TSF and TSC includes 3 variables, one from
each axis. Finally, the obtained TS is shifted and scaled as explained
before. Fig. 1 illustrates the complete procedure.

Finally, it is worth noticing that a Fall TS will produce several
sliding windows; some of them will include the fall event, others
will not; these sliding windows need to be properly labelled. In this
study, every window containing the peak event at point i0 will be
labelled as Fall; otherwise, they are considered Non_Fall.
3.2. LSTM models applied to FD

In this study we have chosen a LSTM approach for FD, which is
based on the proposal of [10]. In this study, a combination of a
CNN together with a LSTM is used to detect traffic anomalies:
the CNN part is in charge of the feature transformation, while
the LSTM part is responsible of extracting the temporal patterns
and relationships. For the sake of simplicity we do not include



Table 1
Compatibility between ADL and fall types for the DA.

Fall type Compatible TS

Front-lying walking-fw, stumble, jogging, limp, trip-over
Front-protecting-lying walking-fw, stumble, jogging, limp, trip-over
Front-knees walking-fw, stumble, limp, trip-over
Front-knees-lying walking-fw, stumble, limp, trip-over
Front-quick-recovery walking-fw, stumble, limp, trip-over
Front-slow-recovery walking-fw, stumble, jogging, limp, trip-over
Front-Right walking-fw, jogging, stumble, limp, trip-over
Front-Left walking-fw, jogging, stumble, limp, trip-over
Back-Sitting walking-bw, squatting-down, limp, sit-chair,

sit-sofa, sit-air
Back-lying walking-bw, squatting-down, limp, sit-chair,

sit-sofa, sit-air, sit-bed
Back-Right walking-bw, squatting-down, limp, sit-chair,

sit-sofa, sit-air, sit-bed
Back-Left walking-bw, squatting-down, limp, sit-chair,

sit-sofa, sit-air, sit-bed
Right-sideway walking-fw, stumble, jogging, limp, trip-over
Right-recovery walking-fw, stumble, jogging, limp, trip-over
Left-sideway walking-fw, stumble, jogging, limp, trip-over
Left-recovery walking-fw, stumble, jogging, limp, trip-over
Rolling-out-bed lying-bed, rising-bed
Podium walking-fw, walking-bw
Syncope walking-fw, walking-bw
Syncope-wall walking-fw, walking-bw
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Fig. 2. The architecture of the LSTMFD model [10]. The constantsw and d refer to the
size of the multivariate TS window and the number of features, correspondingly.

Table 2
Determining the number of TS augmentations per Fall TS. Each TS augmentation of a
Fall TS introduces more Non_Fall windows. Therefore, a compromise is needed. NoW
stands for the Number of sliding Windows.

UCI-FALL

Number of Non_Fall TS 3326
NoW for each Non_Fall TS 14
Number of Fall TS 1843
NoW for each Fall TS including the fall event 4
NoW for each Fall TS not including the fall event 10
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the equations of the model, which are completely describe in the
cited study.

Basically, the model includes two CNN stages followed by an
LSTM and a final Dense layer to detect anomalies; this model is
referred from now on as LSTMFD. The architecture of the network
is shown in Fig. 2, where w is the window size and d is the number
of features (3 when the acceleration components are used, 4 when
the magnitude of the acceleration is included or 1 when just this
latter is used).

Each CNN stage includes a convolutional, an activation layer
and a pooling layers. A convolutional layer includes of 64 nodes
with kernel of size 5 and stride 1, an activation layer includes
hyperbolic tangent activation functions; finally, a pooling layer
includes max kernels of size 2 and stride 2. The aim of these pool-
ing layers is to avoid overfitting as they decrease the spatial size
and, consequently, the number of parameters in the network. As
explained in [10], these layers effectively reduce spatial size by
applying a max operation independently for each depth slice.

The LSTM layer includes 64 nodes and the Dense layers include
32 nodes each. In this study, three different versions of this model
are used. Whenever an univariate TS is used, the CNN becomes 1D-
CNN of 64 filters, just exactly the same approach as in [10].
Established Number of Augmentations 10
4. Materials and methods

4.1. Staged falls data sets

Several staged fall data sets have been published in the litera-
ture [51], each data set include a set of sensors located in one or
more places of a body. From all the data sets in the literature
([52,39] among others), this study choses the UCI-FALL [53], which
gathered data with a 3DACC (sampling frequency of 25 Hz, with a
12 g sensors) placed on a wrist with a sufficient number of partic-
ipants (17, all of them performing the same number of ADL and
staged falls) and TS (1843 staged falls and 3326 ADL recordings).
Up to 20 different staged fall types are considered (Forward, Lateral
and Backwards falls among them), and 16 ADL such as running,
walking, squatting, bending, sitting down, stumbling, lying on
bed, etc.

The configuration of compatible ADL for each fall type was
designed analysing each label and the magnitude of the accelera-
tion for the different TS, but also considering logical and physical
deductions. Table 1 shows the configuration. Besides, the number
of TS augmentations to be performed on each of the ADL and Fall
types must be determined. To do so, the number of sliding win-
dows were estimated for each label, then the number of TS aug-
mentations were proposed based on i) significantly increasing
the number of Fall event windows and ii) balancing the data set.
Apart from that, the remaining DA parameters (scaling factor P
and maximum shifting samples Sh) are set to where 0.3 and 10%,
correspondingly.

In this study we use a 3-s-long sliding windows with an over-
lapping of 2 s (that is, a shift of 1 s) considering the fall dynamics
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and length proposed in [23]: a sliding window can perfectly
include a fall event. With this sliding window configuration, Table 2
shows the number of sliding windows.To setup the number of Fall
TS augmentations we used the ratio of the total number of win-
dows labelled as Non_Fall versus the total number of windows
labelled as Fall (see Fig. 3). In this Figure, the black line represents
the ratio of the total number of windows labelled as Non_Fall ver-
sus those labelled as Fall for each number of TS augmentations,
while the red line represents the variation of the ratio. We have
considered that the variation ratio has stabilized for 10 or more
TS augmentations.

Finally, each TS needs to be scaled to the interval 0:0;1:0½ �. To do
so, each axis component is individually scaled considering the
maximum value admissible for the sensor used in the data set.

4.2. The experimental setup

The classification problem is reduced to a two class problem;
therefore, all the TS are labelled either as FALL (F) or NOT_FALL
(NF). However, the original label of a TS will be used in the poste-
rior analysis with the aim of determining the weakness and
strengths of each configuration.

As mentioned before, a sliding window of 3 s long and a shift of
1 s will be used, thus consecutive windows show a 2 s overlap. The
number of augmented TS has been calculated as explained in the
previous section to balance the number of TS sliding window from
each class. The final obtained numbers for each TS label are shown
in Table 3.
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Table 3
Number of sliding windows for each of the two labels. NoW stands for Number of
sliding Windows, while DA reps refers to the number of augmentations of each Fall
TS. Indexes 0 and DA refer to before and after DA.

FALL NOT_FALL FALL NOT_FALL
Data set NoW0 NoW0 DA reps NoWDA NoWDA

UCI-FALL 239433 1342166 10 2394330 6727145
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The experimentation uses a classical Leave-One Participant-Out
cross validation, where in each fold a participant is chosen for val-
idation (hence, all its TS are kept for validation of the model). A 10-
fold cross validation is performed on data from the remaining par-
ticipants, splitting the TS into 10 different training and testing
folds. Three different scenarios are evaluated: i) using the three
acceleration components as a multivariate TS (denoted as XYZ),
ii) using the magnitude of the acceleration instead (denoted as
M-TS) and iii) using the three acceleration components plus the
magnitude of the acceleration as a fourth variable TS (denoted as
XYZM).

We use the Accuracy (ACC, Eq. 2), the Sensitivity (SENS, Eq. 3)
and Specificity (SPEC, Eq. 4) to measure the performance of the
models while training and testing. To compare the models we cal-
culate these metrics on the validation data set; measuring their
performance with the different unseen participants we can esti-
mate the generalization capabilities of the models. The counters
(TP, TN, FP and FN) reflect the number of TS from each participant
that are correctly or wrongly classified; a TS is classified as a FALL if
any of its sliding windows is labelled as a FALL.

ACC ¼ TP þ TN
TP þ FP þ TN þ FN

ð2Þ

SENS ¼ TP
TP þ FN

ð3Þ

SPEC ¼ TN
TN þ FP

ð4Þ
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Finally, the following enhancements are used in the learning
processes. Both L2 regularization and a 0.5 dropout are used. The
learning rate is fixed according to the values given in the corre-
sponding papers with the logical tuning. The batch size is set to
32, inducing batches of approximately 1121 windows; this batch
size represents a compromise between having enough windows
from the original data set plus extra information due to the DA.
To obtain the learning rate and the number of epochs we per-
formed the training with DA for 6 epochs for each possible value
of this parameter. After these epochs, we decided to use the same
learning rate for all the models (0.001) and 25 epochs.
5. Results and discussion

The obtained results are presented in Table 4 and Table 5.
Table 4 shows the aggregated test results from the 10-fold cross
validation in each experimental scenario. Besides, Table 5 depicts
the performance of the LSTMFD model in the XYZM scenario when
evaluated each of the leave-one-out participant. Both tables
include the values of ACC, SENS and SPEC.

Some important remarks can be extracted from the training and
testing results:

� When no DA is used in the training, the ACC values seems too
high for the poor SENS results. However, this is due to the high
number of NOT_FALL windows, which makes the ACC mask the
real model performance.

� The poor SENS performance when no DA is used is due to, on
the first hand, the reduced rate of fall windows used in training
and, on the second hand, the lack of variability in the FALL TS.

� When using DA, the LSTMFD is able to learn the dynamics that
are coherent with a fall event.

� The DA introduces a variability of fall TS that clearly enhances
the Sensitivity of the model without penalizing the Specificity.

� Comparing the three scenarios, the single magnitude of the
acceleration M-TS is clearly the worst, while the two remaining
scenarios are comparable.



Table 5
Results obtained for each leave-one-out participant for the LSTMFD trained without
DA and with DA in the XYZM scenario. STD stands for standard deviation, while Id
stands for the participant identification number.

XYZM

no DA with DA

Id ACC SENS SPEC ACC SENS SPEC

101 0.9746 0.9500 1.0000 1.0000 1.0000 1.0000
102 0.9835 0.9901 0.9753 1.0000 1.0000 1.0000
103 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
104 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
105 0.9222 1.0000 0.8250 1.0000 1.0000 1.0000
106 0.9780 0.9703 0.9877 1.0000 1.0000 1.0000
107 0.9858 1.0000 0.9684 1.0000 1.0000 1.0000
108 0.9486 0.9160 0.9895 1.0000 1.0000 1.0000
109 0.9721 0.9916 0.9479 1.0000 1.0000 1.0000
110 0.9954 0.9917 1.0000 1.0000 1.0000 1.0000
203 0.9945 0.9901 1.0000 0.9945 1.0000 1.0000
204 0.9945 0.9901 1.0000 1.0000 1.0000 1.0000
205 0.9604 0.9828 0.9302 1.0000 1.0000 1.0000
206 0.9889 0.9900 0.9875 1.0000 1.0000 1.0000
207 0.9780 0.9604 1.0000 1.0000 1.0000 1.0000
208 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
209 0.9587 0.9672 0.9479 1.0000 1.0000 0.9954

Average 0.9785 0.9818 0.9741 0.9997 1.0000 0.9997
Median 0.9835 0.9901 0.9895 1.0000 1.0000 1.0000
STD 0.0005 0.0005 0.0020 0.0000 0.0000 0.0000

Table 4
Aggregation of the train and test results among all the participants, showing the different metrics for each scenario. When no DA is used the SENS values are sensibly worse and
many fall windows are labelled as NOT_FALL.

TRAIN RESULTS

LSTMFD no DA LSTMFD

XYZ MIN AVG MEDIAN MIN AVG MEDIAN

ACC 0.9953 0.9959 0.9958 0.9900 0.9952 0.9954
SENS 0.6643 0.6727 0.6736 0.9101 0.9331 0.9361
SPEC 0.9959 0.9964 0.9964 0.9819 0.9945 0.9957

M-TS MIN AVG MEDIAN MIN AVG MEDIAN

ACC 0.9925 0.9928 0.9926 0.9847 0.9933 0.9930
SENS 0.6421 0.6509 0.6509 0.8697 0.9192 0.9200
SPEC 0.9934 0.9937 0.9937 0.9749 0.9943 0.9956

XYZM MIN AVG MEDIAN MIN AVG MEDIAN

ACC 0.9959 0.9962 0.9962 0.9932 0.9950 0.9950
SENS 0.6691 0.6765 0.6771 0.9047 0.9334 0.9353
SPEC 0.9963 0.9966 0.9965 0.9920 0.9959 0.9968

TEST RESULTS

LSTMFD no DA LSTMFD

XYZ MIN AVG MEDIAN MIN AVG MEDIAN

ACC 0.9950 0.9967 0.9967 0.9900 0.9952 0.9954
SENS 0.7133 0.7447 0.7478 0.9101 0.9331 0.9361
SPEC 0.9871 0.9930 0.9956 0.9819 0.9945 0.9957

M-TS MIN AVG MEDIAN MIN AVG MEDIAN

ACC 0.9919 0.9940 0.9942 0.9847 0.9933 0.9930
SENS 0.6851 0.7213 0.7230 0.8697 0.9192 0.9200
SPEC 0.9849 0.9930 0.9933 0.9748 0.9943 0.9956

XYZM MIN AVG MEDIAN MIN AVG MEDIAN

ACC 0.9952 0.9968 0.9969 0.9932 0.9950 0.9950
SENS 0.7192 0.7448 0.7508 0.9047 0.9334 0.9353
SPEC 0.9864 0.9969 0.9968 0.9920 0.9959 0.9967
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Table 5 compares the performance of LSTMFD trained with and
without DA in the leave-one participant-out cross validation test
results (with the TS from the participant kept for testing) and for
237
the XYZM scenario. It can be seen how an almost ideal model per-
formance is obtained when trained with DA as long as the model
perfectly label the TS for the majority of the participants. In con-
trast, the model trained without DA exhibits a variability in the
ACC and SENS; however, its performance is also good enough for
the main part of the cases.

It is worth mentioning that the obtained results are coherent
with what has been already published in the literature [54]
although not comparable; this is so for several reasons.

Firstly, the cited study compare performance of CNN using data
coming from sensors placed on the waist. Furthermore, the major-
ity of studies are focused on using waist sensors, which is not the
main point of the present research. However, this study makes use
of data gathered from a on-wrist 3DACC, which makes the problem
harder. Thus comparisons can not be presented among studies
with sensors located on different body parts.

Secondly, CNN are reported with 95% of ACC in the studies
when using the 3DACC placed on a wrist. Considering that, as
stated in [54,55], the waist is the preferred location where to place
a sensor for FD due to the possibility of fixing one of the accelera-
tion components to the main component of the gravity for the
majority of the cases. This is correct if the focus is to monitor fall
detection on patients but it is not suitable when promoting the
autonomous living of the elder. In this later case, solutions that
do not force the subjects to use specific complements are better,
e.g., a woman with a dress might be forced to use a belt, which
might not make sense.

Finally, the cross-validation method employed for the majority
of the studies makes use of 10-fold cross validation or
similar schemes, where the TS are split into different groups,
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independently of the participant from whom the TS was gathered.
From our point of view, this is not correct because the training and
testing data set becomes dependent. That is, if you introduce TS
from one participant in the training, the testing and the validation,
then it is impossible to evaluate the generalization of the models as
long as the training process has enough information from all the
participants that are going to be used in the validation.

This is why in this study we have focused on leave-one
participant-out: in this way, the validation is conformed with all
the TS from a participant and neither the training nor the testing
has any information regarding this participant. As a consequence,
the validation in this study might have become worst than that
of a method that shuffles all the TS. An in this latter case, the gen-
eralization capabilities are biased.

Independently of all these facts, the expected results when the
sensor is located on the waist should be much better than those
obtained when the user is located on-wrist. Besides, LSTM are
known to extract and learn TS patterns more effectively than
CNN and other DL networks.

Checking the results shown in [54], the results from this
research become more impressive. On the one hand, the testing
results are better for the CNN-LSTM combination than for the DL
models used in [54]. On the second hand, the validation results
are almost ideal for the LSTMFD, outperforming the models used
in the cited research.
6. Conclusions

This study focuses on fall detection through the use of non
intrusive devices, in this case, three axial accelerometers placed
on a wrist. A Deep Learning Recurrent model -more specifically, a
Long-Short Term Memory Neural Network- have been analyzed
for this purpose and referred as LSTMFD (see Section 3. In order
to increase the variability of the patterns shown to the network
training and also to mimic fall events while performing any other
activities of daily living, a data augmentation stage is proposed.
This data augmentation merges the Time Series from the
considered activities and Time Series from a Fall to generate
realistic combinations of an activity followed by a posterior
fall. Three different scenarios are analyzed: using the three
components of the acceleration, using the acceleration magnitude
only or using the three components of the acceleration plus the
magnitude.

The LSTMFD shows interesting and promising results for the
multivariate Time Series cases and not so good performance for
the case of using the magnitude of the acceleration only. The use
of the data augmentation stage in the network training increased
the performance measurements in all the cases, but still the mag-
nitude of the acceleration case results are worse than the other
cases. It is worth noticing that the data augmentation stage can
still be enhanced with i) rotation of the axis and ii) finding the
Time Series gathered from an activity of daily living that is the
closest point to the fall starting event acceleration values for each
component, reducing the gap that might be produced in the
reported method. In any case, although there is still room for
improvement, the combination of the Long-Short Term Memory
network together with the data augmentation shows an
impressive performance and the high impact fall events can be
considered satisfactorily solved.
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