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Abstract –In a recent numerical study, we have analyzed the stochastic entropies and fluctuation
theorems in a 1D KPZ system. Such a study only considered saturated fluctuations around the
spatial mean value of the interface. In this way stationary solutions exist and besides, with some
particular discrete version, those solutions are exactly known. In this paper we extend these
previous results in two ways. On the one hand, the dynamics of the spatial mean value is taken
into account. We then distinguish between the entropies associated with internal fluctuations (of
the interface around the spatial mean), and external fluctuations (of the spatial mean around
the sample mean) dynamics. On the other hand a broader region of parameters is analysed.
Two distinct behaviors appear depending on whether after saturation the system overcomes the
Edward-Wilkinson crossover towards the KPZ regime or not.

Introduction. – One of the most emblematic, and
also non-trivial, model of out of equilibrium extended sys-
tems corresponds to the Kardar-Parisi-Zhang (KPZ) equa-
tion [1]. It was introduced within the description of grow-
ing of rough surfaces [1,2]. In its more generic one dimen-
sional form reads

∂h(x, t)

∂t
= µ∂2

xh(x, t) +
λ

2
(∂xh(x, t))

2 + ξ(x, t), (1)

where h(x, t) is the height of a given interface growing1

under the effect of a combined action of diffusive and2

non-linear forces and simultaneously driven by an un-3

correlated space-time Gaussian noise (⟨ξ(x, t)ξ(x′, t′)⟩ =4

2Dδ(x− x′)δ(t− t′)). Its linear version, i.e. λ = 0, corre-5

sponds to the Edwards-Wilkinson (EW) equation [3].6

Since its introduction [1] it has been the subject of a7

large number of studies, both analytic and numerical, ex-8

ploiting a wide variety of techniques [2–5], even including9

functional approaches [6–8]. More recent interest has fo-10

cused on the possibility of finding some exact results as11

well as exploiting the very rich mathematical connection12

with other far related problems [2,9–12].13

Despite its intrinsic interest, studies of the statistical14

behavior of entropy and entropy production in this sys-15

tem are scarce [13]. Among the few known cases, a de- 16

position model whose dynamics belongs to the KPZ uni- 17

versality class has been analyzed [14], in [15, 16] a field 18

theoretical approach to study thermodynamic uncertainty 19

relations was applied and in [17,18] a direct and tight re- 20

lation among entropy production and the non-equilibrium 21

potential for the KPZ equation is presented. 22

In a recent work [19], and due to the fact that the usual 23

time-independent solution of the associated Fokker-Planck 24

equation is not strictly a stationary probability since it 25

cannot be normalized, we resorted to transform the usual 26

variables to new ones with zero spatial mean. We have 27

exploited discrete representations in order to prove sta- 28

tistical properties of entropies, and have performed direct 29

numerical tests of the fluctuation theorems. But only sat- 30

urated fluctuations around the spatial mean value of the 31

interface were considered. Within this framework, sta- 32

tionary solutions exist and, for particular discrete repre- 33

sentations, those solutions could be exactly known. Here, 34

we have extended those results in a couple of directions. 35

On one hand we considered the dynamics of the spatial 36

mean value, distinguishing between the entropies associ- 37

ated with internal fluctuations of the interface around the 38

spatial mean, and the external fluctuations of the spatial 39
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Fig. 1: PSD of the centre of masses velocity v (a) and entropy
rate (b) fluctuations of an interface in the KPZ regime (µ =
0.1) when the initial condition is an interface with correlation
length lc0. The initial correlation ranges from a flat to a well
saturated interface. We take lc(t) = 3t3/2, L = 256, 1000
samples, and parameters λ = 1,D = 0.01.

mean around the sample mean dynamics. On the other40

hand, we analysed a broader region of parameters. Our41

results show that two different behaviors could arise de-42

pending on whether after saturation the system overcomes43

the EW crossover towards the KPZ regimen or not. In the44

first case, the behavior of fluctuations is dominated by the45

diffusive term whereas in the second, the behavior corre-46

sponds to a genuine KPZ regime.47

We consider that, from the point of view of growing48

processes, the present study offers a novel perspective for49

the analysis of such phenomena, and particularly for the50

study of the emblematic KPZ dynamics. First steps on51

this direction are the above mentioned connection between52

entropy production and the non-equilibrium potential for53

the KPZ equation [17,18] . We also consider that it opens54

the door for an stochastic thermodynamic analysis of non-55

equilibrium extended systems that present both, internal56

and external fluctuations, helping to understand the role57

that each one could play. The use of a KPZ system to58

check a thermodynamic relation [15,16] is a recent example59

to see the potentiality of this interplay.60

Internal and external fluctuations. – Due to the
non-linearity of the KPZ equation, an interesting fact is
the coupling between the internal fluctuation modes and
the center of mass motion of the interface [5]. Such a cou-
pling arises when the evolution equations of the internal
fluctuations z(x, t) = h(x, t)−h(t) and the center of mass
h(t) are considered:

∂z(x, t)

∂t
= µ∂2

xz(x, t) +
λ

2
(∂xz(x, t))

2

− λ

2
(∂xz(x, t))2 + ξ(x, t) (2)

ḣ(t) =
λ

2
(∂xz(x, t))2 + ξ(x, t). (3)

From now on an overline F (x, t) will indicate spatial aver- 61

age whereas the sample average will be denoted by angular 62

brackets ⟨F (x, t)⟩. Hence, while internal fluctuations are 63

independent of the external ones, fluctuations of the center 64

of mass are completely dependent on the internal fluctua- 65

tions. The internal fluctuation dynamics is described by a 66

well-known dynamical scaling theory, introducing two uni- 67

versal exponents that should be taken into account: the 68

growth of the correlation length lc(t) ∼ t1/z and the inter- 69

face widthW (t) ∼ tβ [3]. In a finite system of size L the in- 70

terface saturates in a time ts such that lc(ts) ∼ L, and the 71

width in the saturation regime scales with the system size 72

according to W (L) ∼ Lα, with α = zβ. Here z is the so 73

called dynamical exponent whereas β is the growth expo- 74

nent. A typical evolution of an interface following the KPZ 75

equation and having a flat initial condition exhibits two 76

growth regimes. The first one, known as the EW regime, 77

is dominated by the linear term of the equation and is 78

characterized by exponents z = 2, β = 1/4, while the 79

second, the genuine KPZ regime, has exponents z = 3/2, 80

β = 1/3. Hence, there should be a crossover time and a 81

crossover length separating both regimes. Thus, a given 82

system with a size smaller than this crossover length only 83

shows diffusive correlations with z = 2, but with a mean 84

velocity typical of a KPZ system. We then say that this is 85

a KPZ finite system in the EW regime. On the contrary, 86

systems with sizes much larger than the crossover length 87

exhibit fluctuations typical of the genuine KPZ regime. 88

Another important feature of the KPZ equation is that
some relevant quantities can be written in terms of the
parameters of the equation. A useful example is, for in-
stance, the crossover time, that in terms of parameters
reads [5]

tcross = 8π−3c−6
2 µ5D−2|λ|−4, (4)

c2 being a universal amplitude with value c2 ≈ 0.40. 89

In addition, the strong dependence of the external fluc-
tuations on the internal modes determines the statistics of
this external process in terms of exponents as well as pa-
rameters. The center of mass moves with a mean velocity

⟨ḣ(t)⟩ = Dλ

4µ

(
1

a
− 1

L

)
+O(1/L2), (5)

a and L being respectively the lattice cut-off and the sys-
tem size [5]. It is worth noting that this explicit depen-
dence on the cut-off means that this velocity is not a uni-
versal coefficient, so it will be dependent on the discrete

version one uses. Fluctuations of the velocity δḣ(t) =

ḣ(t) − ⟨ḣ(t)⟩ follow a stationary process that is uncorre-
lated in the EW regime and correlated in the KPZ regime
[5]. In a finite system, fluctuations become again uncorre-
lated after saturation. The power spectral density (PSD)
of this process in the correlated regime scales with the
system size L and frequency ω as Sv(ω,L) ∼ L−1ω−1/3.
This process was considered an example of the ubiquity of
1/f noise appearing, in this case, in the interface growth
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[20]. Being more precise it is better to use the classifi-
cation introduced in [21] in which it is a stationary cor-
related process with spectral exponent αs = −1/3 and
global exponent αg = 0. The center of mass, h(t), which
is the cumulative process of the velocity, then follows a
self-affine process with the same scaling for the system
size and a Hurst exponent given by H = αs + 1. Then
the variance σ2

h
= ⟨δh(t)2⟩ follows a diffusive behavior as

σ2
h
(L, t) = Dt/L in the EW regime and it scales as

σ2
h
(L, t) ∼ Lg(t/L3/2) (6)

in the KPZ regime, with g(u) ∼ u4/3 before saturation90

(u ≪ 1) and g(u) ∼ u after saturation (u ≫ 1). It is91

worth remarking that the scaling forms of the external92

fluctuations shown here can be deduced from the scaling93

of the correlation of internal fluctuations in a stationary94

regime [5, 20]. However, nothing is known when the in-95

terface departs from an unsaturated interface where the96

internal modes are still growing. Numerical simulations97

shown in Fig. 1(a) indicate that correlations of the veloc-98

ity are independent of the interface initial degree of corre-99

lation. Only when the initial state is a flat interface one100

observes a small difference in the PSD producing a slight101

increment in the spectral exponent.102

Discrete equations. – Any discrete version of Eqs.
(1,2) can be written as a Langevin equation of the form

ẏi(t) = Yi(y) + ξi(t), (7)

with Yi(y + ku) = Yi(y), k being an arbitrary constant
and u the unit vector, and noise correlations

⟨ξi(t)ξj(s)⟩ =
2D

a
δi,jδ(t− s), (8)

with a, as indicated, being the spatial cutoff, N = L/a
and i ∈ [1, N ]. For equations like (2), with interfaces with
null mean velocity, it is necessary to also add the condition
Y = 0. Such Langevin equations admit a Fokker-Planck
equation for the probability density P (y, t)

∂P (y, t)

∂t
= −

N∑
i=1

∂

∂yi
(YiP (y, t))+

D

a

N∑
i=1

∂2

∂y2i
P (y, t), (9)

and also a functional form of the probability for a given
path [22,23]

P [y(s)|y(ti)] ∼ exp

[
− a

4D

∫ tf

ti

ds

N∑
i=1

(ẏi(s)− Yi(y))
2

]
,

(10)
ti and tf being respectively the initial and final time of
the path. With these elements at hand, one can easily
apply a stochastic thermodynamics theory, defining the
interchange entropy for a trajectory [y(s)] as the logarithm
of the ratio between the probabilities of the forward to

backward trajectories indicated by
←−−
y(s)

∆sm[y(s)] = log

(
P [y(s)|y(ti)]
P [
←−−
y(s)|y(tf )]

)
, (11)

and the total entropy production as

∆stot[y(s)] = ∆sm[y(s)]− log

[
P (y(tf ), tf )

P (y(ti), ti)

]
. (12)

Taking the separation between external and internal pro-
cesses as: y(t) = y(t)u + z(t), where we have used the
unit vector u to keep the vector notation and substitut-
ing in Eqs. (11,12), considering as in [19] the linear and
nonlinear parts of the force Yi = µΓi +

λ
2Φi, integrating

the linear part using Γi = − ∂U
∂yi

, and separating the con-
tributions due to internal and external contributions, we
have

∆sinm[z(s)] =
aλ

2D

∫ tf

ti

ds
∑
i

żi(s)Φi(z(s))

− aµ

D
[U(z(tf ))− U(z(ti))], (13)

∆sexm [y(s), z(s)] =
aλ

2D

∫ tf

ti

ds ẏ(s)
∑
i

Φi(z(s)). (14)

Here we have assumed that
∑

i Γi = 0, Γi(y) = Γi(z) and
Φi(y) = Φi(z). We see how the entropies of the external
process depend on the fluctuations of the internal system,
but not on the contrary. With the total entropy produc-
tion we operate in the same way, taking into account that
P (y, t) = P (z, t)W (y|z, t).

∆sintot[z(s)] = ∆sinm − log

[
P (z(tf ), tf )

P (z(ti), ti)

]
, (15)

∆sextot[y(s), z(s)] = ∆sexm − log

[
W (y(tf )|z, tf )
W (y(ti)|z, ti)

]
. (16)

The conditioned probability W (y|z, t) obeys a back-
ward Fokker-Planck equation (see Supplementary Mate-
rial SM1). Note, as seen in [19], that an expression for the
probability P (z, t) of the internal part is only known in the
stationary case and for special discretizations. Even a nu-
merical evaluation is not possible. Therefore, for the com-
putation of total entropies we restrict ourselves to the case
of stationary internal fluctuations, that is, when the inter-
face becomes saturated and then P (z) ∼ exp(−aµ

D U(z)).
If additionally we approximate the conditional probability
W (y(t)|z, t) with a Gaussian distribution of mean ⟨y(t)⟩
and dispersion σy(t), we obtain numerically tractable ex-
pressions for the total entropy production as:

∆sintot[z(s)] = −
aλ

2D

∫ tf

ti

ds
∑
i

żi(s)Φi(z(s)), (17)

∆sextot[y(s), z(s)] =
aλ

2D

∫ tf

ti

ds ẏ(s)
∑
i

Φi(z(s)) (18)

+ log

(
σy(tf )

σy(ti)

)
+

δy(tf )
2

2σ2
y(tf )

− δy(ti)
2

2σ2
y(ti)

.
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Conversely, computation of interchange entropies by103

means of numerical simulations is always possible exploit-104

ing equations (13) and (14). Finally, since we are in-105

terested in the statistics of these entropies, we define in106

each case their probability densities as: P (rin) = ⟨δ(rin −107

∆sinm)⟩, P (rex) = ⟨δ(rex−∆sexm)⟩, P (qin) = ⟨δ(qin−∆sintot)⟩108

P (qex) = ⟨δ(qex −∆sextot)⟩, that can be computed numeri-109

cally as normalized histograms of the above defined func-110

tional.111

Numerical analysis. – As in [19], we simulate the
Langevin equation with periodic boundary conditions and
pre-point time discretization

yi(tj+1) = yi(tj) + νYi(y(tj)) +

√
2Dν

a
ξi,j , (19)

ξi,j being independent normalized Gaussian noises. We112

take ν = 0.01 and a = 1 as time and space steps.113

We have first analysed the role of our discrete versions114

in the calculation of entropies. This is important since115

different discretizations produce distinct results in ampli-116

tudes, but not in exponents. The KPZ equation is a singu-117

lar stochastic partial differential equation that needs some118

kind of regularization. This is an interesting mathemati-119

cal problem [12]. A physically acceptable regularization is120

to use a cutoff in the spatial or spectral scale. In this way121

some results, such as amplitudes of entropies and veloci-122

ties, are explicitly dependent on the value of the cutoff.123

The key point is to find discrete systems with a proba-124

bility density P (z) equal or close to the exact solution of125

the stationary Fokker-Planck equation. Taking for the lin-126

ear term the standard diffusive term, Γi(y) = a−2(yi+1 +127

yi−1 − 2yi), and keeping the condition Γi = −∂U(y)
∂yi

,128

we obtain two possibilities for the potential U±(y) =129

1
2a2

∑
j(yj±1 − yj)

2 that are equivalent assuming cyclic130

boundary conditions. If we want exact solutions of the131

time independent Fokker-Planck equation of the form132

P (y) = exp(−aµ
D U±(y)), we need to use a nonlinear term133

with the condition
∑N

i=1

(
∂Φi

∂yi
+ΦiΓi

)
= 0. The simpler134

case is Φexact
i (y) = 1

3a2 [(yi+1−yi)2+(yi+1−yi)(yi−yi−1)+135

(yi − yi−1)
2] [24]. However we have checked other possi-136

bilities with the conclusion that they are so good approxi-137

mations that become indistinguishable from the exact re-138

sult. This occurs, for instance, for the nonlinear terms139

Φ+
i (y) = 1

a2 (yi+1 − yi)
2, Φ−

i (y) = 1
a2 (yi−1 − yi)

2 and140

Φsym
i (y) = 1

4a2 (yi+1 − yi−1)
2. In [19] other possibilities141

for discrete representation with non standard forms of Γ142

were explored. Here, and for the sake of having a broader143

interval of parameters with numerical stability, we avoid144

these type of discrete versions. In fact, the case with the145

nonlinear term Φsym provides the broadest interval of sta-146

bility, which allows to reach the genuine KPZ regime with147

relatively small system sizes. Taking as in [19] two extreme148

values of parameters λ and D, labeled as LD1, λ = 0.1,149

D = 1, and LD2, λ = 1, D = 0.01, we find numerical150

stability for µ > 0.4 in the cases Φ± and for µ > 0.1151
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Fig. 2: Direct checking of the detailed fluctuation theorem.
Upper row: Plot of exp(qin)P (−qin) vs. P (qin) for t = 1 (a)
and t = 10 (b). Lower row: Plot of exp(qex)P (−qex) vs. P (qex)
for t = 1 (c) and t = 10 (d). The model is KPZ with the
symmetric discretization (Φsym) and parameters µ = λ = 1,
D = 0.01.

when using Φsym. Estimating that the system size will 152

allow to overcome the EW regime as Lcross =
√

288µtcross
π , 153

[5, 16] and using (4), we have Lcross ∼ 7.6 for µ = 0.1 and 154

Lcross ∼ 486 for µ = 0.4. Using systems of no more than 155

1024 space points we need values of µ << 0.5 to overcome 156

the EW crossover. Then is clear that the KPZ regime can 157

be well established, Lcoss << L, only with the use of the 158

nonlinear term Φsym. 159

In our numerical simulations, we start with saturated 160

interfaces when calculating total entropies, and with flat 161

interfaces in the case of interchange entropies. This initial 162

interfaces, which have a zero spatial mean y(0) = 0, are 163

evolved using (19) up to a time ti, the initial time of the 164

paths used to compute the entropies. Paths are evaluated 165

in intervals (ti, tf ) using formulas (13,14) for exchange en- 166

tropies and (17,18) for total entropies. All our results 167

will be presented as functions of the path time spanned 168

t = tf − ti, avoiding any explicit mention of ti since it is 169

irrelevant in our discussions. We take in all simulations 170

ti = 2 to avoid divergences that would appear if we took 171

ti = 0 in (18). 172

A direct check of the detailed fluctuation theorem. In 173

general, the detailed fluctuation theorem P (q) = eqP (−q) 174

holds for stationary non-equilibrium systems as is our case 175

of internal fluctuations with P (qin) [13, 19]. For non- 176

stationary systems, as is the case of external fluctuations 177

with P (qex), one would expect the failure of such detailed 178

theorem, mainly due to the asymmetry in the initial and 179

final probability densities (see Supplementary Material 180

SM2). However, as shown in Fig. 2, the detailed fluctua- 181

tion theorem also holds in the case of external fluctuations, 182

the reason being that fluctuations of the external entropy 183

are dominated by the stationary dynamics of the internal 184
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Fig. 3: Dimensionless parameter Cin(ex)(N) in the cases of
internal (a) and external (b) fluctuations for several sets of
system parameters. Cin(ex)(N) depends on the discretization,
reaching a saturation value represented by a dashed line. These
saturation values are (Cex, Cin) = (0.248, 0.216) for the Φ+

discretization and (Cex, Cin) = (0.056, 0.105) for the Φsym dis-
cretization. Note that in the case of symmetrical discrete rep-
resentation, Cin(N) is slightly smaller in the KPZ regime, with
µ = 0.2, 0.4 (dotted line) than in the EW regime with µ > 0.4.

modes given by the first term in Eq. (18). In the cases185

presented in Fig. 2 the second term contributes less than186

0.3 per cent to the total value.187

In Fig. 2 we plot the cases t = 1 and t = 10 using188

histograms with 100 bins and 10000 samples. The figure189

shows how the detailed fluctuation theorem clearly holds190

for the given parameters for both internal and external191

fluctuations. Note that this direct checking is only possi-192

ble for short times and good sample statistics in order to193

keep the statistical errors of the negative part of the his-194

togram small enough. For longer times the stationary dy-195

namics becomes even more dominant since the first term196

of Eq. (18) grows linearly with time whereas the other197

terms only add a logarithmic correction in time. So the198

theorem should also hold for long times. Similar results199

are obtained for any set of parameters belonging to the200

interval of numerical stability.201

Interchange and total entropy productions.. Following
the description given in [19] we first analyze the mean
values of entropies, defined as

Qin(ex)(t) =

∫
qin(ex)P (qin(ex))dqin(ex), (20)

Rin(ex)(t) =

∫
rin(ex)P (rin(ex))drin(ex). (21)

From (13) and (14) one easily sees that Qin(t) = Rin(t)

and Qex(t) = Rex(t) + log
(

σy(t+ti)
σy(ti)

)
. Numerical simu-

lations of these quantities indicate that the asymptotic
values are reached in a very short time, showing a perfect
linear dependence on time. This fact, together with the
extensive character of entropies, suggest the introduction
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Fig. 4: PSDs of the spatial averaged velocity (a) and the to-
tal entropy rate of internal fluctuations (c) for KPZ systems
with distinct sizes. For the sake of comparison we plot on the
right column the variance of their corresponding cumulative
processes, the spatial averaged height (b) and the total en-
tropy production (d). Parameters of the KPZ equations are
chosen to keep the system in a genuine KPZ regime, namely
λ = 1, D = 0.01, µ = 0.1. Dashed lines are depicted to guide
the eye.

of ρin(ex), the entropy production density rate, as:

Qin(ex) ∼ Rin(ex) = ρin(ex)aNt. (22)

From a numerical analysis we find that:

ρin(ex) = Cin(ex)(N)
Dλ2

a2µ2
. (23)

As shown in Fig. 3 Cin(ex) is a dimensionless parameter 202

that varies with N , the type of discretization and the 203

regime within which the system is evolving. It grows with 204

the size N until reaching a saturated value at relatively 205

small sizes (∼ 30 for Cin and ∼ 5 for Cex). It is smaller 206

for the symmetrical discretization case (Φsym), since it is 207

numerically more stable than the asymmetrical case (Φ+). 208

Finally, a small difference in the asymptotic value can be 209

seen in the figure when the parameters lead the system to 210

a change in the regime. This difference could be due to a 211

systematic numerical error of about 10% that appears in 212

the calculation of entropies as reported in [16]. 213

Variance of entropies. In a finite system it is neces- 214

sary to carefully distinguish between the ensemble average 215

and the spatial average, as shown in [5] for the interface 216

height. This also applies to any other spatially averaged 217

quantities, such as the entropies defined in this paper, or 218

the equivalent non-equilibrium potentials. In fact, fluctu- 219

ations of both the spatially averaged height and the en- 220

tropies, around their ensemble average, behave similarly. 221

In the EW regime both of them present diffusive behavior, 222

while they are super-diffusive in the KPZ regime. Also, 223

both exhibit diffusive behaviour after saturation and the 224

degree of correlation of their initial conditions turns out 225

to be irrelevant in their evolution, as shown in Fig. 1. In 226

Fig. 4 we show the PSD scaling of the fluctuations of the 227
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instantaneous velocity and the entropy production rate.228

They are stationary correlated processes with spectral ex-229

ponents [21] αs = −1/3 (Fig.4 (a)) and αs = −1/2 (Fig.4230

(c)). In the first column of Fig. 4 we show the same spec-231

tra but now scaled with the system size. The second col-232

umn of the figure shows the scaling of the variance of the233

cumulative processes which are the height and entropy234

fluctuations. The scaling exponents can be corroborated235

against the growth exponent of the variance that is equal236

to 2(αs+1). Note that the change of regime in the analy-237

sis of stationary processes, which goes from a 1/ω2αs+1 to238

a flat spectrum, is more evident than for their cumulative239

processes, that are sometimes difficult to be appreciated.240

Since in this paper we are mainly interested in the statistic241

of entropies, we present our results in terms of the mean242

(last subsection) and the variance of entropies.243

The first analysis deals with the detection of the dis-244

tinct regimes of fluctuation. To this end we show in Fig. 5245

the variances of total entropy production (of both inter-246

nal and external fluctuations) as a function of time and for247

several values of parameters. We see that in some parame-248

ter region entropies exhibit diffusive fluctuations (σ2
q ∼ t),249

which corresponds to the systems evolving in the EW250

regime, while in others they are super-diffusive (σ2
q ∼ tγ1 ,251

γ1 > 1). Before saturation the growth exponent γ1 goes252

continuously form a value ≈ 1.4 for µ = 0.2 to ≈ 1 for253

µ > 1, showing the EW crossover effect, that is, the pass254

of a system with tcross(µ)≪ ts to tcross(µ)≫ ts. In what255

follows we restrict our analysis to the cases with µ = 1256

and µ = 0.1 which represent systems that for L < 1024257

are respectively in the EW and KPZ regimes. In Fig. 6 we258

show the scaling of the variance of total entropies for in-259

ternal and external fluctuations computed from (17) and260

(18). Note that in this case the interface departs from261

a saturated initial condition. In Fig. 7 we show the same262

but for the interchange entropies, computed from (13) and263

(14). In this case the system departs from a flat interface.264

Several conclusions can be extracted from the observation 265

of these figures. 266

i) The most important differences come from the kind 267

of evolution regime. When µ = 1 (EW regime) entropy 268

fluctuations are diffusive in both growing and saturating 269

phases of evolution, in such a way that no crossover be- 270

tween these phases exists. On the contrary, for the KPZ 271

regime (µ = 0.1) there exists a clear crossover between the 272

first phase with super-diffusive entropy fluctuations and 273

the phase of saturation with diffusive behavior. The col- 274

lapse of variances for systems of distinct sizes with t/L3/2
275

is a clear sign of an evolution within the KPZ regime. It 276

is worth remarking that this behavior also occurs in the 277

case of external fluctuations, again due to the strong de- 278

pendence of such fluctuation on the internal modes. 279

ii) Excepting the short time behavior in Fig. 7 (a) and 280

(c), internal and external fluctuations exhibit the same 281

statistical behavior. The difference in this case stems from 282

the potential term in (13) that for µ = 1 is not negligible. 283

The small differences in the scaling exponents seems to 284

be due to the distinct degree of roughness involved in the 285

calculation of entropies of both fluctuations. 286

iii) Although the dynamical scaling observed in the total 287

and interchange entropies is very similar, there are small 288

differences in the value of the exponents. For instance, 289

the variance of the total entropy production in the first 290

phase grows as σ2
qin ∼ t1.26L1.26 whereas for the exchange 291

entropy we have σ2
rin ∼ t1.36L1.2. But note that we have 292

already seen the same discrepancy with the scaling expo- 293

nents in Fig. 1 when comparing cases where the initial 294

interface is flat with others with initially correlated inter- 295

faces. Hence, the discrepancy observed in these exponents 296

is due to the different initial conditions rather than related 297

to the dynamics. 298

Conclusions. – Here, we have continued the numer- 299

ical analysis of stochastic entropies in a one dimensional 300

KPZ model initiated in [19], where only the study of sta- 301

tionary internal fluctuations was performed. Such a study 302

is now extended including the analysis of external fluctu- 303

ations which evolve in a non-stationary state. Moreover, 304

we extend the parameter space studied in [19] to deal with 305

the two possible regimes, EW and KPZ, which appear in 306

finite systems. 307

Our numerical results indicate that the external fluctua- 308

tions follow closely the behavior of the internal ones. This 309

is quite a surprising result, since external fluctuations are 310

intrinsically non-stationary and in this case the detailed 311

fluctuation theorem, does not necessarily hold. However, 312

the results shown in Fig.(2) indicate that for short times 313

the theorem holds. This is because the entropy produc- 314

tion of external fluctuations is dominated by stationary 315

internal fluctuations. Such a dominion grows with time 316

suggesting that the theorem should remain valid also for 317

long times. 318

In our previous work we restricted our analysis to sta- 319

tionary cases where entropy fluctuations are almost dif- 320
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Fig. 6: Scaling of the variance of the total entropies in the EW
regime, with µ = 1 (panels (a) and (c)) and in the KPZ regime
with µ = 0.1, (panels (b) and (d)). In the figure we show
the best collapse of graphs. In panels (a) and (b) we plot the
entropy variance for the internal fluctuations, while in panels
(c) and (d) the entropy variance of the external fluctuations is
shown. Dashed straight lines with the value of the slope are
added as a guide to the eye.

fusive, that is, systems whose evolution follows the EW321

regime. Instead, here we have found the entropy fluc-322

tuations have super-diffusive behavior when the study is323

extended to cases within the KPZ regime. We then focus324

our work on the proper characterization of this behavior,325

showing how the EW to KPZ crossover involves the scaling326

of entropy fluctuations.327
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