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RESUMEN (en español) 

 
La regulación de tensión es una de las preocupaciones más importantes a tener en cuenta en 
el diseño y operación de redes eléctricas. Por esta razón, los transformadores con cambiador 
de tomas son un activo clave en la adecuada regulación tanto de la magnitud como de la fase 
de la tensión en los sistemas de potencia. Este trabajo de doctorado surge del hallazgo y la 
demostración de que dos de los modelos de transformador de cambio de toma más 
ampliamente utilizados son inconsistentes entre sí, ya que generan resultados discrepantes 
dependiendo de la toma seleccionada y del punto de operación. Así, esta investigación ha 
propuesto un nuevo modelo de transformador con cambiador de tomas que abarca tanto a los 
transformadores reguladores de tensión como a los transformadores desfasadores. Este 
modelo, conocido como modelo consistente, tiene en cuenta, de forma explícita, la contribución 
diferenciada de ambos devanados del transformador a la impedancia de cortocircuito. El nuevo 
modelo ha demostrado su capacidad para reconciliar el debate existente al respecto. Además, 
de cara a clarificar cualquier ambigüedad en el modelado del transformador con tomas, este 
trabajo desarrolla y presenta diferentes variaciones de los modelos convencionales y del nuevo 
modelo propuesto, abordando todo tipo de situaciones operativas, cualquier tipo de elección de 
bases de referencia y sentando los fundamentos de los modelos multifásicos.  
El modelo consistente propuesto en este trabajo introduce un nuevo parámetro, la ratio de 
impedancia de cortocircuito, que representa la relación entre la impedancia de cortocircuito en 
p.u. del devanado nominal y la del devanado con tomas. Sin embargo, este parámetro no es, 
en general, proporcionado por el fabricante, y no puede obtenerse mediante cálculo directo a 
partir de las hojas de características de la máquina. Para superar este problema, en este 
trabajo se ha desarrollado un método de estimación de parámetros fuera de línea con vectores 
de estado aumentados capaz de proporcionar una estimación precisa de su valor. Se ha 
demostrado, además, que la precisa estimación de este parámetro da lugar a que los 
estimadores de estado que operan en línea conduzcan a mejores estimaciones de los estados 
del sistema. 
A continuación, esta tesis doctoral se extiende hacia el modelado de reguladores de tensión 
con tomas en redes desequilibradas. Significativamente, de cara a facilitar la aplicación de 
algoritmos de flujo de cargas trifásicos, este trabajo presenta modelos precisos basados en 
ecuaciones matriciales de tipo general capaces de representar de forma adecuada este tipo de 
dispositivos, independientemente de su tipo y configuración. A continuación, estos modelos son 
adaptados para su utilización en redes desequilibradas mediante el empleo de un sistema de 
referencia estacionaria, αβ0. Todos los modelos son validados mediante un estudio de flujo de 
cargas desequilibrado en una red de prueba de 4 nudos derivada de un estándar existente 
propuesto por Kersting. A continuación, para varios escenarios y distintas configuraciones de 
los reguladores de tensión, se realizan estudios de flujo de cargas trifásicos en los que se 
pueden observar los efectos de la optimización de tomas en entornos desequilibrados. La 
publicidad dada a estos resultados y el hecho que éstos incluyan todas las posibles 
configuraciones de los reguladores, permiten convertir a este sistema de 4 nudos modificado 
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en un nuevo estándar para la evaluación y verificación de este tipo de modelos en aplicaciones 
de software y futuros desarrollos científicos.  
Por último, este trabajo aporta un método original para integrar los transformadores 
desfasadores en el algoritmo de cálculo de flujo de cargas de aproximación directa (DA). El 
método DA es un algoritmo de cálculo de flujo de cargas extremadamente eficiente utilizado en 
redes radiales o débilmente malladas. Sin embargo, el uso de transformadores desfasadores 
no era, hasta la fecha, soportado por este método, debido al hecho de que su matriz de 
admitancia es inherentemente asimétrica. Para resolver este problema, en esta tesis se han 
extendido, tanto los modelos convencionales de transformador desfasador como el nuevo 
modelo consistente propuesto, de tal forma que el método DA puede ser ahora aplicado a 
redes que incluyen este tipo de dispositivos. 
Para ilustrar todos estos desarrollos y garantizar la validez de las propuestas, el trabajo incluye 
un completo conjunto de casos prácticos basados en redes estandarizadas. En conjunto, este 
trabajo doctoral contribuye de forma significativa a la modelización consistente de los 
transformadores con cambiadores de tomas y, con ello, a la mejora de los métodos de análisis 
de los sistemas eléctricos. 

 
RESUMEN (en inglés) 

 
Voltage regulation is a most important concern for the design and operation of power grids. 
Therefore, voltage-regulating transformers are a key asset in regulating voltage magnitude and 
phase in power systems. This doctoral work has burgeoned with the finding and demonstration 
that the two widely used formulations of the tap-changing transformer model are inconsistent 
with each other, as they generate different results depending on the selected tap and operating 
point. Thereby, this research has proposed a novel class of single-phase and multi-phase 
transformer models that can consider a share of short-circuit impedance on both sides of their 
winding and demonstrated the consistency of this way of modeling to reconcile this debate for 
tap-changing and phase-shifting transformer modeling. Furthermore, shedding light on the 
ambiguity in tap-changing transformer’s modeling, different variations of the conventional and 
consistent models are derived and presented for different cases of off-nominal or nominal 
operations, chosen bases, and number of phases. 
The aforementioned consistent models introduce a parameter, per-unit (p.u.) impedance ratio, 
which stands for the ratio between the p.u. impedance of the nominal and tapped winding of the 
transformer. However, this impedance ratio parameter is not provided and cannot be obtained 
by straightforward calculation from standard datasheets. To overcome this problem, this work 
has established an offline state-vector-augmented parameter estimation method capable of 
providing an accurate estimate of this novel parameter. It has been demonstrated that this 
estimation can effectively lead power system state estimators to better estimates of system 
states. 
Then this doctoral thesis extends toward the modeling of step-voltage regulators (SVRs) in 
unbalanced grids. Significantly, for a suitable three-phase power flow method, exact and 
general matrix-based equation models for three-phase step-voltage regulators (SVR) with all 
possible configurations are developed. After that, those models are incorporated in the complex 
vector-based model of the unbalanced distribution system in αβ0 stationary reference frame. 
After incorporation, all the models are validated by an unbalanced power flow study in a 
proposed 4-node test feeder with regulators in terms of Kersting’s models. Then, importantly, for 
various scenarios and SVR configuration cases, three-phase power flow studies are conducted 
where effects of tap optimization can be observed in balanced and unbalanced loading with 
respect to their operation at central tap positions. Consequently, an extensive 4-node test 
system for testing and evaluation of three-phase SVR connections is established through this 
work. 
Finally, a method for integrating phase-shifting transformers in the Direct Approach (DA) power 
flow method has been developed. DA is an extremely efficient power flow algorithm used in 
radial and weakly meshed grids. However, the use of phase-shifting transformers in a network 
to be solved by the DA method was unresolved before due to their inherent non-symmetrical 
admittance matrix. Thus, both the conventional and the proposed consistent model for phase-
shifting transformers have been extended in this dissertation, which allows the use of the DA 
method in grids that include such devices. 



                                                                 
For all the developments, a set of case studies has been conducted in the context of standard 
test-beds to demonstrate the validity of the proposals. Altogether, this doctoral work contributes 
highly to the consistent modeling of voltage regulating transformers and consequent 
improvement in power system studies. 
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Abstract

Voltage regulation is a most important concern for the design and operation of power grids.
Therefore, voltage-regulating transformers are a key asset in regulating voltage magnitude
and phase in power systems. This doctoral work has burgeoned with the finding and
demonstration that the two widely used formulations of the tap-changing transformer
model are inconsistent with each other, as they generate different results depending on
the selected tap and operating point. Thereby, this research has proposed a novel class of
single-phase and multi-phase transformer models that can consider a share of short-circuit
impedance on both sides of their winding and demonstrated the consistency of this way of
modeling to reconcile this debate for tap-changing and phase-shifting transformer modeling.
Furthermore, shedding light on the ambiguity in tap-changing transformer’s modeling,
different variations of the conventional and consistent models are derived and presented for
different cases of off-nominal or nominal operation, chosen bases, and number of phases.

The aforementioned consistent models introduce a parameter, per-unit (p.u.) impedance
ratio, which stands for the ratio between the p.u. impedance of the nominal and tapped
winding of the transformer. However, this impedance ratio parameter is not provided and
cannot be obtained by straightforward calculation from standard datasheets. To overcome
this problem, this work has established an offline state-vector-augmented parameter
estimation method capable of providing an accurate estimate of this novel parameter.
It has been demonstrated that this estimation can effectively lead power system state
estimators to better estimates of system states.

Then this doctoral thesis extends toward the modeling of step-voltage regulators (SVRs)
in unbalanced grids. Significantly, for a suitable three-phase power flow method, exact and
general matrix-based equation models for three-phase step-voltage regulators (SVR) with
all possible configurations are developed. After that, those models are incorporated in
the complex vector-based model of the unbalanced distribution system in αβ0 stationary
reference frame. After incorporation, all the models are validated by an unbalanced
power flow study in a proposed 4-node test feeder with regulators in terms of Kersting’s
models. Then, importantly, for various scenarios and SVR configuration cases, three-phase
power flow studies are conducted where effects of tap optimization can be observed in
balanced and unbalanced loading with respect to their operation at central tap positions.
Consequently, an extensive 4-node test system for testing and evaluation of three-phase
SVR connections is established through this work.
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Finally, a method for integrating phase-shifting transformers in the Direct Approach
(DA) power flow method has been developed. DA is an extremely efficient power flow
algorithm used in radial and weakly meshed grids. However, the use of phase-shifting
transformers in a network to be solved by the DA method was unresolved before due
to their inherent non-symmetrical admittance matrix. Thus, both the conventional and
the proposed consistent model for phase-shifting transformers have been extended in this
dissertation, which allows the use of the DA method in grids that include such devices.

For all the developments, a set of case studies has been conducted in the contexts of
standard test-beds to demonstrate the validity of the proposals. Altogether, this doctoral
work contributes highly to the consistent modeling of voltage regulating transformers and
consequent improvement in power system studies.



Resumen

La regulación de tensión es una de las preocupaciones más importantes en el diseño y
operación de redes eléctricas. Por esta razón, los transformadores con tomas son un
activo clave en los sistemas de potencia. Este trabajo surge del hallazgo de que dos de
los modelos de transformador de cambio de toma más utilizados son inconsistentes entre
sí, generando resultados discrepantes según la toma seleccionada y el punto de operación.
Esta investigación propone un nuevo modelo que abarca tanto a los transformadores
reguladores de tensión como a los transformadores desfasadores. Este modelo, conocido
como modelo consistente, tiene en cuenta la contribución diferenciada de ambos devanados
del transformador a la impedancia de cortocircuito. El nuevo modelo ha demostrado su
capacidad para reconciliar el debate existente al respecto. De cara a clarificar cualquier
ambigüedad en el modelado del transformador con tomas, este trabajo desarrolla diferentes
variaciones de los modelos convencionales y del nuevo modelo propuesto, abordando
distintas situaciones operativas, cualquier tipo de elección de bases de referencia y sentando
los fundamentos de los modelos multifásicos.

El modelo propuesto en este trabajo introduce un nuevo parámetro, que representa la
relación entre la impedancia de cortocircuito del devanado nominal y del devanado con
tomas. Sin embargo, este parámetro no es proporcionado por el fabricante y no puede
obtenerse mediante cálculo directo a partir de las hojas de características. Para superar
este problema, este trabajo desarrolla un método de estimación de parámetros off-line
con vectores de estado aumentados capaz de proporcionar una estimación precisa de su
valor. La estimación de este parámetro da lugar a una mejora de los resultados de los
estimadores de estado que operan en línea.

Este trabajo aborda también el modelado de reguladores de tensión con tomas en
redes desequilibradas. De cara a facilitar la aplicación de algoritmos de flujo de cargas
trifásicos, este trabajo presenta modelos precisos basados en ecuaciones matriciales de tipo
general que resultan ser independientes de su configuración. Además, estos modelos son
adaptados para su utilización en redes desequilibradas mediante el empleo de un sistema
de referencia estacionario, αβ0. Todos los modelos son validados mediante un estudio de
flujo de cargas desequilibrado en una red de prueba de 4 nudos derivada de un estándar
existente propuesto por Kersting. A continuación, se realizan estudios de flujo de cargas
trifásicos en los que se pueden observar los efectos de la optimización de tomas en entornos
desequilibrados. La publicidad dada a estos resultados y el hecho que éstos incluyan todas
las posibles configuraciones de los reguladores, permite convertir a este sistema de 4 nudos
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modificado en un nuevo estándar para la evaluación y verificación de este tipo de modelos
en aplicaciones de software.

Por último, este trabajo aporta un método original para integrar transformadores
desfasadores en el algoritmo de cálculo de flujo de cargas de aproximación directa (DA). El
método DA es extremadamente eficiente, siendo utilizado en redes radiales o débilmente
malladas. Sin embargo, el uso de transformadores desfasadores no era, hasta la fecha,
soportado por este método, debido al hecho de que su matriz de admitancia es inherente-
mente asimétrica. Para resolver este problema, en esta tesis se han extendido los modelos
de transformador desfasador, de tal forma que el método DA puede ser ahora aplicado a
redes que incluyen este tipo de dispositivos.

Para ilustrar todos estos desarrollos y garantizar la validez de las propuestas, el
trabajo incluye un completo conjunto de casos prácticos basados en redes estandarizadas.
En conjunto, este trabajo doctoral contribuye de forma significativa a la modelización
consistente de los transformadores reguladores de tensión, y con ello, a la mejora de los
métodos de análisis de los sistemas eléctricos.



Thesis Contributions

Altogether, this doctoral work contributes to the consistent modeling of various voltage
regulating transformers, i.e. tap-changing transformers, phase-shifting transformers, and
step-voltage regulators. Major contributions can be listed as follows:

• This work demonstrates the inconsistency in voltage magnitude, phase angle, and
voltage stability studies caused by the use of two alternative models of tap-changing
and asymmetrical phase-shifting transformers operating in off-nominal tap positions.

• This work reconciles this inconsistency by establishing the consistent models of
tap-changing and phase-shifting transformers for both single-phase and multi-phase
studies. These models are consistent in both nominal and off-nominal tap positions.

• This work proposes a novel parameter called transformer p.u. impedance ratio, k,
which enables assigning definite shares of transformer short-circuit impedance on
both windings. With elaborate studies, this dissertation demonstrates that, even
with a fair assumption of providing an equal share of short-circuit impedance on
each winding, the new transformer models deliver reconciled results between two
extreme alternatives of conventional transformer models.

• This work presents different variations of tap-changing transformer models for the
cases of off-nominal or nominal operation, chosen bases, and number of phases.

• This work proposes a multi-snapshot-based parameter estimation method to de-
termine the novel parameter, transformer p.u. impedance ratio, k. Through this
determination, highly accurate transformer models can be reached.

• This work demonstrates that with the estimation of k, the online state estimators
can provide better estimates of the system.

• This work delivers the derivatives of the different measurement functions in terms of
the impedance ratios, which would be essential for any linearized state estimator
while using the proposed consistent models of transformers.

• This work develops and validates the unbalanced SVR models considering all possible
configurations. Furthermore, for various scenarios and SVR configuration cases,
three-phase power flow studies are conducted where effects of tap optimization can
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be observed in balanced and unbalanced loading with respect to their operation at
central tap positions. Consequently, an extensive 4-node test system for testing and
evaluation of three-phase SVR connections is established through this work.

• This work extends both the conventional and consistent models for phase-shifting
transformers into pseudo π-equivalent forms to be embedded into the DA power flow
method.



Document Structure

In the first chapter, the foundation, background literature, and reasoning for new contribu-
tions of this dissertation have been introduced. In chapter 2, the consistent tap-changing
transformer model, and thereby, the emergence of the impedance ratio parameter is
presented. Also, further case studies have been presented illustrating the advantages of
the proposed consistent model over the conventional tap-changing transformer models.
Chapter 3 derives variations of transformer models, both conventional and consistent,
according to operational setup, chosen bases, and the number of phases. Then, chapter
4 similarly establishes the consistent models for phase-shifting transformers. Thereafter,
chapter 5 presents a multi-snapshot-based equality-constrained state estimation method
to accurately estimate p.u. transformer impedance ratios. Models for all configurations of
three-phase SVRs are presented in chapter 6 with a 4-node test feeder to validate SVR
models. Then, chapter 7 presents the modification of conventional and consistent phase-
shifting transformer models for integration into the DA power flow method. Thereafter,
chapter 8 summarizes this doctoral work, its contribution, findings, and the plan for future
extension. Appendix A presents all the resulted tables for the case studies of chapter
6. Finally, a list of related works published through this doctoral work is included in
appendix B.
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Chapter 1

Foundation of the Dissertation

In this chapter, the foundation of this dissertation is laid by presenting the
necessary review, theory, background, reasoning, and outline of this work.
Necessarily, the conventional modeling of the tap-changing transformer, phase-
shifting transformer, and auto-transformers are discussed. Consequently, the
problems with the existing models are pointed out, and thereafter the contribu-
tions of this doctoral work are outlined.

1.1 Background and Context

The voltage regulating transformers, the tap-changing, and phase-shifting transformers as
well as step-voltage regulators (SVRs) play a vital role in the power systems by regulating
voltage magnitude and phasor angle as contributions towards controlling power quality
and power transfer in the system. In this context, voltage-regulating transformers serve
as the vanguard for voltage regulation in power systems. Moreover, the majority of the
power systems consist of them, therefore, models of these devices are intensively used in
the different fields of electric energy systems analysis and operation. Evidently, accurate
and consistent modeling of these voltage regulating transformers for steady-state power
system studies is a crucial issue.

Nonetheless, the limited amount of information generally available about voltage
regulating transformers leads to the fact that a quite simplified model of these devices
is used in such usual tasks as load flow analysis or state estimation (SE). The data is
obtained from the nameplate of the device and comprises the rated power and voltage
values, short-circuit impedance, and tap positions. Only transformers with a tapping
range exceeding ±5% are obliged by standards to provide further information about the
short-circuit impedance (at least, values for the extreme tappings are required in that
case) [3].

Consequently, the models of the voltage regulating transformers conventionally used in
steady-state balanced studies, such as the ones conducted during power flow calculations or
voltage stability analyses, have been burdened with a long-standing controversy [4]. Indeed,
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two alternative tap-changing transformer models can be found in the description of these
devices in different books and simulation software packages [5–8]. Similarly, phase-shifting
transformers also have two alternative models and they follow similar principles as the
two alternative models of tap-changing transformers. The differences in these models arise
from the fact that they consider the short-circuit impedance either provided exclusively
by the nominal or off-nominal turns side winding of the device. Under specific operating
conditions, using one of these models or another can lead to results with significant
differences, which produces a serious lack of consistency in reporting the outcome of the
analysis of electric grids with embedded regulating transformers.

Thereby, to reconcile this dispute, this doctoral work introduces the consistent model
for tap-changing transformer through [9, 10] and for phase-shifting transformer in [11]
which reflect that the short-circuit impedance is in fact shared by both sides of a voltage
regulating transformer. In this dissertation, it is also shown that the models of the
tap-changing transformers, both the conventional and consistent ones, vary due to the
operational setup, chosen references for base quantities and number of phases to be
considered. These model variations, for both the conventional and consistent alternatives
are derived and presented in this work.

It is noteworthy that, particularly the new consistent models introduce a parameter, k,
which stands for the per-unit (p.u.) impedance ratio between the nominal winding and
tapped winding of the tap-changing transformer. By the introduction of this parameter,
assigned shares of the short-circuit impedance can be attributed to both sides of the
transformers. However, admittedly, during the initial proposals, the user could not obtain
the value of this parameter k, from standard transformer datasheets or even through
straightforward calculations. In response to that, this work argued and demonstrated that
if this parameter is not available, assuming k = 1, i.e. considering an equal share of the
impedance at both sides of the transformer produces results that minimize the maximum
expected errors. Nonetheless, it was pointed out that, to achieve accurate results, the
p.u. impedance ratio could be obtained in real scenarios from the application of state
estimation (SE) techniques.

To overcome this problem of estimation of k for particular power systems, this doctoral
work later proposed and established through [12] - an offline state-vector-augmented
parameter estimation method capable of providing accurate estimates of transformer
impedance ratios. It is demonstrated that their use can effectively lead state estimators to
better estimates of system states. That work also contributes with the derivatives of the
different measurement functions in terms of the impedance ratios, which are essential for
this or any other linearized state estimator.

Then this doctoral thesis plunge into three-phase step voltage regulator (SVR) modeling.
SVRs are key assets and have been employed in power feeders for many decades [13–16].
Their modeling possesses particular importance in power flow studies of unbalanced
distribution networks [17–19] and is gaining even more importance in distribution feeders
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with the proliferation of Distributed Generation (DG) [20]. Type A or Type B - there are
two types of single-phase SVRs, both of which can be configured to raise position or lower
position. Then six configurations of three-phase SVRs are implemented in practice - Wye
Type A, Wye Type B, Close Delta Type A, Close Delta Type B, Open Delta Type A, Open
Delta Type B, all of which are built from single phase SVRs and can operate in either raise
position or lower position. Models of these three-phase SVRs for all these configurations
were not available in the literature but they are essential for any unbalanced power flow
calculations which have SVRs embedded in their network. Therefore this doctoral work
comes up with two major contributions: First, the development of three-phase SVR models
considering all possible configurations and second, the proposal of a 4-node test system
for testing and evaluation of three-phase SVR connections.

Finally, this work extends the consistent models for phase-shifting transformers into a
suitable form to be embedded into the Direct Approach (DA) power flow method. The DA
method is a very efficient formulation that was proposed in [21]. The DA method avoids
the time-consuming tasks of LU factorization and forward and backward substitution of
the Jacobian or admittance matrices, which are commonplace in conventional formulations.
The characteristics of the DA method make it ideal for real-time applications in the smart
grid context. Then, modeling of phase-shifting transformers in any power flow studies is
a non-trivial problem, as they cannot be represented by a π-equivalent component due
to their inherent asymmetric admittance matrix [22]. A set of different phase-shifting
transformer models is available for application in various fields of study, to both steady-
state [23–27] and transient simulation [28]. In [29], a survey on phase-shifting transformer
models for steady-state analysis is presented; however, none of them are expressed in a
suitable form to be embedded in the DA solver. Therefore, in this work, importantly, the
earlier established consistent models for phase-shifting transformers are extended into a
suitable form to overcome this limitation.

Altogether this doctoral work contributes highly to the consistent modeling of various
voltage regulating transformers, i.e. tap-changing transformers, phase-shifting transformers,
and step-voltage regulators. The reasoning, theories, background, and outline of this work
are discussed in the following sections.

1.2 Tap-changing Transformer Defining Equations

In this section, the tap-changing transformer equivalent circuit and equations explaining
the relationship between the voltage, current, and impedance of both winding are discussed.

1.2.1 In Physical Quantities

The equivalent circuit of an ideal transformer, as shown in Fig. 1.1, is well known.
Here, primary and secondary side of the transformer are denoted with subscript i and j,
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respectively, and thereby, Ri, Xli, vi, ii, ei and Ni are the primary-side resistance, leakage
reactance, terminal voltage, current, induced electromotive force and turns ratio, whereas
Rj , Xlj , vj , ij , ej and Nj are the similar entities at the secondary-side. Moreover, Rc, Xm

and iφ denote the magnetizing resistance, reactance and current accordingly. Definitions,
description, relationships between these components are described in detail at [1]. However,
for the background of this dissertation, two key points from transformer literature are
necessary to recall: (a) the very basic relationships of voltage, current, and impedance
between primary and secondary sides of the transformer, and (b) method of deriving
short-circuit impedance of a transformer.

Ideal

Fig. 1.1 Equivalent circuit of an ideal transformer [1]

The basic relationship for tap-changing transformer voltage, current, and turns ratio is

vi

vj

= Ni

Nj

= ij

ii

(1.1)

Therefore, the secondary side transformer impedance Zj = Rj + jXlj transferred to the
primary side is

Z
′

j =
(

Ni

Nj

)2

Zj. (1.2)

Similarly, the primary side impedance Zi transferred to the secondary side is

Z
′

i =
(

Nj

Ni

)2
Zi. (1.3)

1.2.2 In the Per-Unit System

In general, a large number of transformers are embedded in any typical power system, and
therefore, power systems are represented in the per-unit system so that quantities expressed
as per-unit would not change when they are referred from one side of a transformer to
the other side. Therefore, the use of per-unit (p.u.) system for the development of power
system studies is universal. In fact, it is so widespread that a detailed explanation would
be out of context in this work. However, just to mention, in p.u. system, every electrical
quantity such as voltage, current, power, impedance, admittance, turns ratio, etc. are
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calculated in their p.u. quantities where

At p.u. Quantity = Physical Quantity
Base Quantity . (1.4)

As most of the power flow studies are conducted in p.u. system, it is also important to
note how the transformer relationship equations work thereby. In p.u. system, transformer
turns ratio is also taken into p.u. in terms of the nominal turns ratios. So, if a transformer
is operating at nominal turns ratio, the transformer ratio at p.u. system will be 1 : 1.
However, in practical cases for voltage regulation, one side of the transformer, generally
the primary side, is operated at taps other than the nominal to obtain the desired voltage
magnitude at the secondary side. There, the off-nominal to nominal side transformer
turns ratio is denoted as a : 1, where practically |a| is operated within the limits of
0.9 ≤ |a| ≤ 1.1. So, in mathematical terms, the p.u. turns ratio is

Ni

Nnom
i

Nj

Nnom
j

∣∣∣∣∣∣∣
where Nj=Nnom

j

= a

1 . (1.5)

If, voltage and current quantities are also expressed in p.u. quantities, we can state

a = vi

vj

= ij

ii

. (1.6)

Therefore, in p.u. system, considering impedance, admittance and turns ratio are expressed
in p.u., the equations(1.1) to (1.3) can be transferred as

Z
′

j = a2Zj (1.7)

Z
′

i = 1
a2 Zi (1.8)

As admittance is reciprocal to transformer impedance, we can state for tap-changing
transformer

Y
′

j = 1
a2 Yj (1.9)

Y
′

i = a2Yi. (1.10)

1.3 Phase-shifting Transformer Defining Equations

Phase-shifting transformers can regulate phase angle between off-nominal and nominal
sides whereas, depending on their type, they may or may not regulate p.u. voltages between
their sides. There are various types of phase-shifting transformers such as symmetric,
asymmetric, direct, or indirect, which will be discussed in the relevant chapter. However,
in general, at p.u. entities, the basic relationships for phase-shifting transformer voltage,
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current, and turns ratio are

vi

vj

= a = |a| ejθ (1.11)

ii

ij

= 1
a∗ = 1

|a|
ejθ. (1.12)

Therefore, the secondary side phase-shifting transformer impedance Zj = Rj + jXlj

transferred to the primary side is
Z

′

j = |a|2 Zj. (1.13)

Similarly, the primary side impedance Zi transferred to the secondary side is

Z
′

i = 1
|a|2

Zi. (1.14)

Again, as admittance is reciprocal to transformer impedance, we can state for phase-shifting
transformer

Y
′

j = 1
|a|2

Yj (1.15)

Y
′

i = |a|2 Yi. (1.16)

1.4 Transformer Short-circuit Impedance

In this section, approximation for the derivation of transformer short-circuit impedance is
discussed. For the sake of discussion, let us continue to focus on the tap-changing trans-
formers. However, similar takeaways will also be applicable for phase-shifting transformers.

(a) (b)

Fig. 1.2 Equivalent circuit with short-circuited secondary. (a) Complete equivalent circuit. (b) Cantilever
equivalent circuit with the exciting branch at the transformer secondary [1]

The transformer model illustrated in Fig. 1.1 is extensive, a detail-oriented model.
However, static power flow studies need to use a much simpler transformer model to be
able to include it in their equation system. To do so, simply the short-circuit impedance
of transformer obtained from short-circuit test [1] is used as total transformer impedance.
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For short-circuit test, any arbitrary side of the transformer is shorted and a rated current is
applied to the other side. For the sake of discussion, let’s consider that the secondary side
is shorted and voltage is applied to the primary. Then Fig. 1.2 (a) illustrates this set-up
of transformer short-circuit test. Here, the short circuit impedance of the transformer by
looking into the primary side is

Zsc = Ri + jXli +
Zφ(R′

j + jXl
′

i)
Zφ + R

′
j + jXl

′

i

. (1.17)

At this point, short-circuit test follows an approximation. Due to the fact that the
impedance Zφ of the excitation branch is much larger than that of the secondary leakage
impedance transferred to the primary side (considering excessive voltage is not applied
during short-circuit test, i.e. the transformer core is not heavily saturated), the short-circuit
impedance is approximated as

Zsc ≈ Ri + jXli + R
′

j + jXl
′

j = Req + jXeq. (1.18)

This approximation can be further perceived by relating it to the approximation made in
reducing towards the cantilever equivalent [1], as shown in Fig. 1.2 (b) where the excitation
branch is directly shorted out by the short-circuit on the secondary side.

1.5 Transformers as Passive Two-Port Networks

iij iji

vi vj

+

-

+

-

Fig. 1.3 Two-port electrical network

Voltage regulating transformers fall in the class of linear electrical network that has two
terminal pairs. Moreover, they are passive elements so that there is no output without
some input and there are no dependent sources involved. Fig. 1.3 illustrates such a
two-port network. A good description of how to define two-port networks are given in [30].
Accordingly, this network can be defined in two ways - a) admittance parameter point of
view or, conversely, b) impedance parameter point of view. The admittance parameter
point of view defines the network by the currents at its terminals in terms of the voltages.
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For the Fig. 1.3, this would describe the network as [30]:
iij

iji

 =
Yii Yij

Yji Yjj

vi

vj

 , (1.19)

where v, i, and Y , stands for voltage, current, and elements of admittance matrix respec-
tively in p.u. quantities and subscript i or j stands for the numbering of the corresponding
port or node of the network. Here the elements of the admittance matrix are defined as:

Yii = iij

vi

∣∣∣
while vj=0

(1.20)

Yij = iij

vj

∣∣∣
while vi=0

(1.21)

Yji = iji

vi

∣∣∣
while vj=0

(1.22)

Yjj = iji

vj

∣∣∣
while vi=0

(1.23)

On the other hand, the impedance parameter point of view defines the network by the
voltages in terms of the currents at the terminals, such as [30]:

vi

vj

 =
Zii Zij

Zji Zjj

iij

iji

 , (1.24)

where Z, stands for elements of impedance matrix at p.u. quantities. Here the elements of
the impedance matrix are defined as:

Zii = vi

iij

∣∣∣
while iji=0

(1.25)

Zij = vi

iji

∣∣∣
while iij=0

(1.26)

Zji = vj

iij

∣∣∣
while iji=0

(1.27)

Zjj = vj

iji

∣∣∣
while iij=0

(1.28)

These two points of view and their relationships are, of course, the inverse of each
other, that is: Yii Yij

Yji Yjj

 =
Zii Zij

Zji Zjj

−1

(1.29)

Then, out of these two points of view, admittance-based representation is most fre-
quently used in the power flow and state estimation methods of power systems. Naturally,
this representation is used in the derivations and development of this work. It is often useful
to express this admittance-based two-port network representation in terms of π-equivalent
circuits as in Fig. 1.4 and develop voltage regulating transformer models accordingly. The
relationships between the elements of the admittance matrix in (1.19) and π-equivalent
circuits in Fig. 1.4 can be straightforwardly found using Kirchhoff’s current law (KCL)
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ijiiij
yij

i

yji

ysi
ysjvi

vj

j

Fig. 1.4 The π-equivalent circuit of admittance based two-port representation

and Ohm’s law. Using KCL we have

iij = viysi + (vi − vj)yij = vi(ysi + yij) − vjyij, (1.30)

iji = vjysj + (vj − vi)yji = −viyji + vj(ysj + yji). (1.31)

Comparing (1.30) and (1.31) to (1.19), it can be seen that
iij

iji

 =
Yii Yij

Yji Yjj

vi

vj

 =
ysi + yij −yij

−yji ysj + ysj

vi

vj

 . (1.32)

So, the relationships between the elements of admittance matrix in (1.19) and π-equivalent
circuits in Fig. 1.4 are

yij = −Yij, (1.33)
yji = −Yji, (1.34)
ysi = Yii + Yij, (1.35)
ysj = Yjj + Yji. (1.36)

These relationships will be used while presenting conventional models and deriving rather
consistent voltage regulating transformer models in the later sections and chapters.

1.6 Conventional Models of Transformers

The two-port conventional models of voltage regulating transformer are developed with
the focus of integrating them into the conventional power flow methods which are mostly
admittance matrix based. However, the elements of the two-port admittance bus matrix
of transformer models need to be formulated from the transformer short-circuit impedance
found from short-circuit test. In this section, the conventional models for voltage-regulating
transformers, i.e. both tap-changing transformers and phase-shifting transformers are
discussed where elements of admittance matrix are formed in terms of the transformer
short-circuit admittance, ysc from the short-circuit test.
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1.6.1 Models of Tap-changing Transformers

Two different tap-changing transformer models can be found today in both the literature
and practical software implementations [31, 7, 8]. At the first alternative among two
models, as shown in Fig. 1.5, the total of the transformer short-circuit admittance, ysc is
considered on the off-nominal side of the transformer.

Fig. 1.5 Tap-changing transformer with short-circuit impedance at the off-nominal side

Then, let’s consider a point p on the off-nominal side of the transformer. We can
express, according to Ohm’s lawiij

ipi

 =
 ysc −ysc

−ysc ysc

vi

vp

 . (1.37)

However, according to tap-changing transformer relationships in (1.6)
iij

iji

a

 =
 ysc −ysc

−ysc ysc

  vi

avj

 . (1.38)

Therefore: iij

iji

 =
 ysc −aysc

−aysc a2ysc

vi

vj

 . (1.39)

Hence, according to (1.33) - (1.36), this first alternative among conventional π-
equivalent models of tap-changing transformer is shown in Fig. 1.7 (a).

At the second alternative among two models, all of the transformer short-circuit
admittance, ysc is considered on the nominal side of the transformer. From (1.9) it can be
seen how this nominal side admittance can be referred to the off-nominal side. Accordingly,
in Fig. 1.6, yoff

sc = 1
a2 ysc is shown in the off-nominal side. Now, the same derivation

as through (1.37)-(1.39) can be carried for this model, and ultimately the elements of
admittance matrix will be multiplied by 1

a2 and it will be
iij

iji

 =
 ysc

a2 −ysc

a

−ysc

a
ysc

vi

vj

 . (1.40)

Fig. 1.6 Tap-changing transformer with short-circuit impedance at the nominal side
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ysc ji iij iji

vi vj
ysc

1–a
a2 ysc

a–1
a

1
a

b)

a ysc ji iij iji

vi vj
ysc(1–a) ysc(a2–a)

a)

Fig. 1.7 The π equivalent conventional models of tap-changing transformers. (a) ysc considered on
off-nominal side, and (b) ysc considered on nominal side

Again, according to (1.33) - (1.36), this second alternative among conventional π-equivalent
models of tap-changing transformer is shown in Fig. 1.7 (b).

1.6.2 Models of Phase-shifting Transformers

Similar to tap-changing transformers, two alternative models of the phase-shifting trans-
former are found in literature [32, 6, 33, 8]. For one alternative among two models, as
shown in Fig. 1.8, all of the short-circuit admittance, ysc is considered on the off-nominal
side of the transformer.

Fig. 1.8 Phase-shifting transformer with short-circuit impedance at the off-nominal side

Then again, let us consider a point p on the off-nominal side of the transformer. So,
we can express, according to Ohm’s lawiij

ipi

 =
 ysc −ysc

−ysc ysc

vi

vp

 . (1.41)

However, according to phase-shifting transformer relationships in (1.11) - (1.12)
iij

iji

a∗

 =
 ysc −ysc

−ysc ysc

  vi

avj

 . (1.42)
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Fig. 1.9 Phase-shifting transformer with short-circuit impedance at the nominal side

Therefore: iij

iji

 =
 ysc −aysc

−a∗ysc |a|2 ysc

vi

vj

 . (1.43)

Hence, according to (1.33) - (1.36), this first alternative among conventional π-
equivalent models of phase-shifting transformer is shown in Fig. 1.10 (a). Here an
important observation emerges that for phase-shifting transformer’s two-port network,
Yij ̸= Yji so that the series branch of its π-equivalent model has two different admittance
depending on the flow of current, which is shown in the 1.10 with the help of two opposite
direction of arrows in the series branch. This is further discussed in subsection 1.8.3. In
fact, this asymmetry of the phase-shifting transformer’s two-port network makes it very
challenging to be integrated into power flow methods like Direct Approach (DA) method.
In chapter 7, the solution to this problem has been presented in detail.

Similarly, at the second alternative among two models, all of the transformer short-
circuit admittance, ysc is considered on the nominal side of the transformer. From (1.15)
it can be seen how this nominal side admittance can be referred to the off-nominal side.
Accordingly, in Fig. 1.9, yoff

sc = 1
|a|2 ysc is shown in the off-nominal side. Once again, the

same derivation as through (1.41)-(1.43) can be carried for this model, and ultimately the
elements of admittance matrix will be multiplied by 1

|a|2 and it will be

iij

iji

 =
 ysc

|a|2 −ysc

a∗

−ysc

a
ysc

vi

vj

 . (1.44)

Again, according to (1.33) - (1.36), this second alternative among conventional π-equivalent
models of phase-shifting transformer is shown in Fig. 1.10 (b). It is noteworthy that, for
this alternate model’s two-port network also, Yij ̸= Yji.
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ijiiij aysci

(1-a)yscvi
vj

j

ijiiij
i

vi
vj

j

a)

b)

Fig. 1.10 The π equivalent conventional models of phase-shifting transformers. (a) ysc considered on
off-nominal side, and (b) ysc considered on nominal side

1.7 Power Flow Methods

Any power flow method is basically a method of solving a set of nonlinear equations which
describe the quasi-static relationship of a power network in terms of the bus voltages
(phasor), complex power injection, and admittances (or impedance) between buses. There
are many power flow methods discussed in the literature with their merits and demerits
and that is an extensive area of study. Detailed discussion about power flow methods
is, however, out of the scope of this dissertation. This dissertation does not propose
any new power flow method; however, it uses such methods for case studies and also,
significantly, proposes a phase-shifting transformer model which can be integrated into a
very useful power flow method for distribution system study - the direct approach (DA).
In this section, just the very basics of two power flow methods are presented for the sake
of highlighting the need for a new phase-shifting transformer model to be integrated into
the DA power flow method.

1.7.1 Admittance Matrix Based Power Flow Methods

Admittance-based power flow method is the most conventional method which is widely
used for power flow studies of the balanced transmission grids. In principal, as detailed
in [22], this method is similar to the two-port networks discussed in section 1.5, however,
for a power system, there will be many ports instead of two. Fundamentally, this method
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holds all the network equations in a matrix formation like

Ii=1

Ii=2

Ii=3
...

Ii=N


=



Yij=11 Yij=12 Yij=13 · · · Yij=1N

Yij=21 Yij=22 Yij=23 · · · Yij=2N

Yij=31 Yij=32 Yij=33 · · · Yij=3N

... ... ... . . . ...
Yij=N1 Yij=N2 Yij=N3 · · · Yij=NN





Vj=1

Vj=2

Vj=3
...

Vj=N


, (1.45)

or in short form
I = Y V, (1.46)

where N is the number of buses in the network, I is the vector of bus phasor current
injections, V is the vector of bus phasor voltages and Y is the bus admittance matrix.
Similar to the two-port network, the elements of the bus admittance matrix are obtained
as

Yij = iij

vj

∣∣∣
while other bus voltages = 0

. (1.47)

From (1.45), any bus current injection can be calculated as

Ii =
N∑

j=1
YijVj. (1.48)

And any bus complex power injection can be obtained as

Si = Vi

N∑
j=1

Yij
∗V ∗

j . (1.49)

When this equation is set for a given network with the necessary amount of data available
to have a solvable system (i.e. number of unknowns becomes less or equal to the number
to node equations), it can be solved iteratively by methods such as Newton-Raphson.

From (1.32), it is easy to notice that the two-port models of the transformer are
developed in the manner so that they can be integrated into this bus admittance matrix.
Even for the two-port models of phase-shifting transformers where yij ̸= yji, the bus
impedance matrix can easily integrate them. However, this is not the case for other
important power flow methods such as DA.

1.7.2 The Direct Approach Method for Power Flow

The Direct Approach (DA) method, as detailed in [21], is a very robust and time-efficient
method for radial power networks which is very popular in distribution system applications.
DA method does not use admittance matrix-based formulation to avoid the time-consuming
LU decomposition and forward/backward substitution of the Jacobian matrix required
in the conventional admittance matrix-based power flow methods. Rather, it uses two
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developed matrices, namely, the bus-injection to branch-current matrix and the branch-
current to bus-voltage matrix to obtain load flow solutions directly. For example, let us
consider a simple radial distribution grid as shown in Fig. 1.11.

Bus 1 Bus 2 Bus 3

Bus 4 Bus 5

Bus 6

Equivalent Current

Injection

Fig. 1.11 A radial distribution system

Steps to solve power flow through the DA method are described below with respect to
this simple grid.

• At each iteration k, current injection at each bus is calculated by

Ik
i =

(
Pi + jQi

V k
i

)∗

, (1.50)

where Pi, Qi, Ik
i , V k

i are measured active power injection at bus i of current solution
(for all iterations), measured reactive power injection at bus i of current solution (for
all iterations), calculated current injection at bus i and iteration k and calculated
bus voltage of bus i and iteration k, respectively.

• Then, at each iteration k, the output vector for voltage differences between each bus
and the slack bus in the network, ∆V k+1, are calculated from the vector of injection
currents of the network buses,

[
Ik
]
, as below

[
∆V k+1

]
= [DLF ]

[
Ik
]

. (1.51)

Here, the development of [DLF ], the load flow matrix is the most interesting
contribution of this power flow method which enables it to avoid time-consuming
LU factorization operation. [DLF ] matrix is indeed obtained as the product of two
other matrices, [BCBV ] and [BIBC], as below

[DLF ] = [BCBV ] [BIBC] . (1.52)

Here, the bus injection to branch current (BIBC) matrix is a network-specific matrix
that follows Kirchhoff’s Current Law (KCL) to derive the branch current vector of
the network from the bus injection vector of the network. From the example grid of
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Fig. 1.11, formation of [BIBC] can be seen as below,


B1

B2

B3

B4

B5


=



1 1 1 1 1
0 1 1 1 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1





I2

I3

I4

I5

I6


. (1.53)

In general form, it can be stated that

[B] = [BIBC] [I] . (1.54)

Similarly, the branch-current to bus-voltage (BCBV) matrix is also a network-specific
matrix that follows Kirchhoff’s Voltage Law (KVL) to derive the output vector for
voltage differences between each bus and the slack bus in the network from the bus
injection vector of the network. From the example grid of Fig. 1.11, formation of
[BCBV ] can be seen as below,



V1

V1

V1

V1

V1


−



V2

V3

V4

V5

V6


=



Z12 0 0 0 0
Z12 Z23 0 0 0
Z12 Z23 Z34 0 0
Z12 Z23 Z34 Z45 0
Z12 Z23 0 0 Z36





B1

B2

B3

B4

B5


. (1.55)

Or, in general form
[∆V ] = [BCBV ] [B] . (1.56)

• At final step of each iteration k, the vector of bus voltages for the network,
[
V k+1

]
is calculated simply by [

V k+1
]

=
[
V 0
]
+
[
∆V k+1

]
. (1.57)

Subsequently, changes in the bus voltages are monitored and if the highest change
(compared to the previous iteration) in any bus voltage is lower than a preselected
threshold, it is assumed that the power flow has converged. Otherwise, the power
flow proceeds to the same steps described here for the next iteration.

1.8 Inconsistencies and Deficiencies in Transformer
Modeling

After laying out the foundation in transformer modeling and significant power flow methods,
importantly, some inconsistencies and deficiencies in transformer modeling are outlined in
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this section. Based on these key findings, this dissertation becomes a requisite for power
system modeling.

1.8.1 Transformers Operating at Off-nominal Turn-ratios

The conventional models for both tap-changing and phase shifting transformers work
perfectly for transformers operating at nominal turn-ratios. In fact, it is a remarkable
that at nominal operation the two alternative π-equivalent models of transformers (phase-
shifting or voltage regulating) becomes equal. According to Fig. 1.7, if a = 1 at both
π-equivalent models both model (a) and (b) become exactly the same. Similarly, both
π-equivalent models of phase-shifting transformer becomes exactly the same if |a| = 1 at
the Fig.1.10 (a) and (b).

However, for voltage regulation purposes, tap-changing and phase-shifting transformers
most often operate at off-nominal turn-ratios and the conventional system for transformer
modeling is inaccurate for such off-nominal operations. In fact, the problem for transformer
modeling operating at off-nominal turn-ratios is two-fold. The first problem is of practical
nature: in the majority of cases, the transformer short-circuit impedance at different
off-nominal ratios cannot be obtained from the datasheet of the machine. Theoretically,
the derivation and approximations for the short-circuit impedance calculation, as discussed
in 1.4, are acceptable. However, in most of the cases, the datasheet of the transformer
provides short-circuit impedance only at the nominal tap position, i.e a = 1. Therefore,
from (1.18) we can see that, for most of the cases, the short-circuit impedance provided in
the manufacturer data sheet is indeed

Zsc−test = Zi + Zj, (1.58)

as, at the nominal tap position, the a2 term has no effect as a = 1 (or |a| = 1, for
phase-shifting transformers), and Zsc−test needs no consideration of referring transformer
impedance from one winding to another. However, for the modeling of transformers
operating at off-nominal turn-ratios, the user would require the short-circuit impedance
measured at particular off-nominal tap positions and that would be

Zsc−test = Zi + |a|2 Zj, (1.59)

when referred to primary/off-nominal winding. Most frequently, this data of short-circuit
impedance depending on different taps is unavailable.

The second and critical problem is that the conventional transformer models themselves
are inaccurate for transformers operating at off-nominal turns ratios. Even if a user is
provided with detailed transformer-short circuit data at different tap positions, by means of
conventional transformer models, it is not possible to model such transformers operating at
different off-nominal taps. As shown in section 1.6, for both tap-changing and phase-shifting
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transformers, there are two alternative transformer modeling approaches available in the
literature. One of the modeling approaches considers all of the short-circuit impedance at
the off-nominal side of the transformer and the other approach considers it on the nominal
side. However, a model of a transformer operating at off-nominal taps should have its
short-circuit impedance shared among its winding as discussed in 1.4 and expressed by
(1.18).

Therefore, we can conclude, new models of voltage-regulating transformers, both tap-
changing and phase-shifting, are required to accurately model transformers that operate at
both nominal and off-nominal turns ratios and share their short-circuit impedance between
both of their winding. Also if any novel parameter arises to develop such novel models of
voltage-regulating transformers, methods to derive all practical data from the currently
available transformer data sheets have to be developed. After laying all the foundation
throughout the chapter, it can be ascertained that these necessities of modeling regarding
very fundamental equipment of power system, voltage-regulating transformers, is the key
point to resolve throughout this dissertation.

1.8.2 Model variations Due to Chosen Bases and Number of
Phases

Beyond the ambiguity appearing at off-nominal operation, transformer models, whether
conventional or consistent, can vary depending on the chosen bases and number of phases
to be considered. Firstly, models can be derived in physical quantities instead of being
represented in the per-unit (p.u.) system; which is the approach considered by important
tools such as [34]. While deriving in the per-unit system as well, the transformer’s short-
circuit impedance can be referred to different bases, i.e. the transformer’s own base
quantities, or a different set of system quantities. This fact leads to more complex versions
of the models that should be taken into account.

Most power systems analyses are conducted in balanced conditions. In that case,
single-phase models of transformers are sufficient for steady-state studies. However, these
single-phase models are not applicable to the appropriate analysis of unbalanced power
systems. For such systems, three-phase models of transformers are required for steady-state
studies. Thus, the different variations of conventional and consistent transformer models
require three-phase counterparts to allow the analysis of unbalanced systems. Thereby,
transformer models can have a large number of variations, and there lies a considerable
amount of ambiguity that needs to be addressed.

1.8.3 Integration of Phase-Shifting Transformers into the DA
Method

Conventionally, the two-port network models of transformers were developed to be inte-
grated into admittance matrix-based power flow methods. However, the formulation of
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the DA method is not admittance matrix-based, so the conventional voltage-regulating
transformer models require adaptations to be integrated into the DA method. In fact, the
required adaptation for the case of the tap-changing transformer was already available in
the literature and that will be explained in detail in the relevant chapter of this dissertation.
However, other than the work of this dissertation, there was no resolution on how to adapt
the conventional phase-shifting transformer model (or any two-port model that is not
reciprocal) into the DA method of power flow.

For the tap-changing transformers, as can be seen from (1.39) - (1.40), two-port network
models are reciprocal so that the transfer impedance or transfer admittances of them are
the same in both directions, that is:

Zij = Zji : for tap-changing transformers (1.60)
Yij = Yji. (1.61)

However, it is an important distinction, as can be seen from (1.43) - (1.44), for the
phase-shifting transformers two-port network models, are not reciprocal so that the series
impedance in both of their π-equivalent models are not the same in both directions, that
is:

Zij ̸= Zji : for phase-shifting transformers (1.62)
Yij ̸= Yji. (1.63)

From (1.55), it can be easily seen that the DA method needs a defined series impedance
for its branches which are used in its branch-current to bus-voltage (BCBV) matrix. As
the series impedance changes are not fixed for phase-shifting transformer models, there was
no straightforward method to use the DA method for any network having a phase-shifting
transformer. This dissertation contributes with a resolve for that.

1.9 Single Phase SVRs

Basically, a SVR is an auto-transformer with a load tap-changing mechanism (line drop
compensator) on its series winding [2]. Detailed theories, control mechanism with line
drop compensator and generalized constant matrix models for SVRs are available in [2].
With the basic understanding of how auto-transformer works, for modeling, the next
requirement is to clearly understand the working topology of two available connections of
SVRs denoted as Type A or Type B.

For these Type A or Type B regulators, the function of the reversing switch is to
reverse the direction of the currents in the series and shunt windings so that the regulator
is reversing between raising or lowering the voltage to the secondary side. According to
the dot convention, a dot indicates positive voltage polarity of the coil and the current
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direction to or from a dot is opposite in primary and secondary coil. Due to the reversing
switch, the raising or lowering of voltage in the regulated circuit towards secondary side can
be understood by the application of KVL, or, it is rather easier to understand observing
the current directions and applying KCL in the node.

Below, four topologies of single-phase regulators are presented together with their
corresponding equations.

1.9.1 Type B SVR

Type B regulator connection is the more common in SVRs. As opposed to Type A,
the shunt winding (N1) of the Type B regulator is directly connected to the secondary
regulated circuit of the system whereas one end of the series winding (N2) is connected to
the shunt winding (N1) and other end is connected via taps to the primary circuit of the
system.

1.9.1.1 Defining Equations: Type B in Raise

The detailed and abbreviated equivalent circuit of a Type B SVR in the raise position is
shown in Figure 1.12.

a) b)

Fig. 1.12 Type B SVR in the raise position: a) Detailed b) Concise [2]

Observing Fig. 1.12, the defining voltage and current equations for the Type B voltage
regulator in raise position are explained in Table 1.1:
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Table 1.1 Defining Equations of Type B Raise Position[2]

Voltage Equations Current Equations

Voltage Ratio: E1
N1

= E2
N2

Current Ratio: N1I1 = N2I2

Primary Voltage: VP = E1 − E2 Primary Current: IP = I2

Secondary Voltage: VS = E1 Secondary Current: IS = IP − I1

As: E2 = N2
N1

E1 = N2
N1

VS As: I1 = N2
N1

I2 = N2
N1

IP

So: VP = (1 − N2
N1

)VS So: IS = (1 − N2
N1

)IP

Denote: aR = (1 − N2
N1

) Denote: aR = (1 − N2
N1

)

Finally: VP = aRVS Finally: IS = aRIP

1.9.1.2 Defining Equations: Type B in Lower

Fig. 1.13 shows Type B regulator in lower position. Here, a reversing switch changes the
direction of the currents through the series and shunt windings.

a) b)

Fig. 1.13 Type B SVR in the lower position: a) Detailed b) Concise [2]

Observing Fig. 1.13, the defining voltage and current equations for the Type B voltage
regulator in lower position are explained in Table 1.2:

Table 1.2 Defining Equations of Type B Lower position [2]

Voltage Equations Current Equations

Voltage Ratio: E1
N1

= E2
N2

Current Ratio: N1I1 = N2I2

Primary Voltage: VP = E1 + E2 Primary Current: IP = I2

Secondary Voltage: VS = E1 Secondary Current: IS = IP + I1

As: E2 = N2
N1

E1 = N2
N1

VS As: I1 = N2
N1

I2 = N2
N1

IP

So: VP = (1 + N2
N1

)VS So: IS = (1 + N2
N1

)IP

Denote: aR = (1 + N2
N1

) Denote: aR = (1 + N2
N1

)

Finally: VP = aRVS Finally: IS = aRIP
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1.9.2 Type A SVR

The shunt winding (N1) of the Type A regulator is directly connected to the primary
circuit of the system whereas one end of the series winding (N2) is connected to the shunt
winding (N1) and other end is connected via taps to the regulated secondary circuit.

1.9.2.1 Defining Equations: Type A in Raise

The detailed and abbreviated equivalent circuit of a Type A SVR in the raise position is
shown in Fig. 1.14.

a) b)

Fig. 1.14 Type A SVR in the raise: a) Detailed b) Concise [2]

Observing Fig. 1.14, the defining voltage and current equations for the Type A voltage
regulator in raise position are explained in Table 1.3:

Table 1.3 Defining Equations of Type A Raise Position

Voltage Equations Current Equations

Voltage Ratio: E1
N1

= E2
N2

Current Ratio: N1I1 = N2I2

Primary Voltage: VP = E1 Primary Current: IP = I1 + I2

Secondary Voltage: VS = E1 + E2 Secondary Current: IS = I2

As: E2 = N2
N1

E1 = N2
N1

VP As: I1 = N2
N1

I2 = N2
N1

IS

So: VS = (1 + N2
N1

)VP So: IP = (1 + N2
N1

)IS

Denote: aR = (1 + N2
N1

) Denote: aR = (1 + N2
N1

)

Finally: VS = aRVP Finally: IP = aRIS

1.9.2.2 Defining Equations: Type A in Lower

The detailed and abbreviated equivalent circuit of a Type A SVR in the lower position is
shown in Fig. 1.15.
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a) b)

Fig. 1.15 Type A SVR in the lower: a) Detailed b) Concise [2]

Observing Fig. 1.15, the defining voltage and current equations for the Type A voltage
regulator in lower are explained in Table 1.4:

Table 1.4 Defining Equations of Type A Lower Position

Voltage Equations Current Equations

Voltage Ratio: E1
N1

= E2
N2

Current Ratio: N1I1 = N2I2

Primary Voltage: VP = E1 Primary Current: IP = I2 − I1

Secondary Voltage: VS = E1 − E2 Secondary Current: IS = I2

As: E2 = N2
N1

E1 = N2
N1

VP As: I1 = N2
N1

I2 = N2
N1

IS

So: VS = (1 − N2
N1

)VP So: IP = (1 − N2
N1

)IS

Denote: aR = (1 − N2
N1

) Denote: aR = (1 − N2
N1

)

Finally: VS = aRVP Finally: IP = aRIS

1.9.3 Generalized Equations for Single-Phase Regulators

In the Tables 1.1, 1.2, 1.3, 1.4 and 1.5, the effective regulator ratio is denoted as aR which
is either the ratio or the inverse ratio of the number of effective turns on the secondary
side to the number of effective turns on the primary side of the single phase regulator for
any connection. In all the derivations presented here:

aR = 1 ± N2

N1
(1.64)

In practice, the particular turns of the regulators will be unknown but the tap positions
of each single-phase regulators will be known. Due to the fact that standard step regulators
contain a reversing switch enabling a ±10% regulation range, usually in 32 steps, per step
amounts to a 20/32% = 5/8% or 0.00625 per-unit change [2]. Hence, effective regulator
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ratio can be expressed as a function of the tap position given by:

aR = 1 ± 0.00625 Tap (1.65)

Finally, Table 1.5 summarizes the relationships the relationships between the primary
voltage and current to the secondary voltage and current, for both the Type A and Type
B regulators whether in raise position or lower:

Table 1.5 Generalized Equations for Single-Phase Regulators [2]

Type Voltage Eq Current Eq aR for Raise aR for Lower

A VP = 1
aR

VS IP = aRIS aR = 1 + N2
N1

aR = 1 − N2
N1

B VP = aRVS IP = 1
aR

IS aR = 1 − N2
N1

aR = 1 + N2
N1

1.10 Three-Phase SVRs

Three-phase SVRs can be built by external connection of single-phase regulators with
their own compensation circuits. For externally connected regulators, the taps on each
single-phase regulator are changed separately [2]. Typical connections for externally
connected three-phase regulators are:

• Three regulators connected in grounded wye

• Three regulators connected in closed delta

• Two regulators connected in open delta

Three-phase SVRs are also built through connection between the single-phase windings
internal to the regulator housing. Here, a single phase current and voltage are sampled by
only one compensator circuit and the taps on all windings are gang-operated to the same
change [2].

Possible connections are taken such that each configurations of grounded wye and
closed delta to be built with Type A raise position, Type A lower position, Type B raise
position and Type B lower position regulators so that there are eight configurations. And
for open delta, four possible cases each can have three different phasings between primary
side phases A, B, C with Type A regulators and secondary side phases A, B, C so that
there are total of 12 models. Hence, there are total twenty possible connections of SVRs
that are needed to be considered in this development.

The three-phase SVR models developed here will be same for external or internal
connection of single-phase regulators. But, depending on individual or gang operation of
taps, there will be different control scheme for the regulator models while accommodating
in the power flow model.
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While describing the three-phase SVR models developed in this chapter, the phases
on the primary side of the regulator are denoted by uppercase letters A, B, C and the
secondary side phases are denoted by lowercase letters A, B, C.

For derivation of the voltage equations, phase-to-ground voltages are used for grounded
wye configuration whereas phase-to-phase voltages are used in closed delta and open
delta configurations due to the fact that there is no neutral conductor available in these
configurations.

For all the configurations, ZA, ZB and ZC are the corresponding regulator winding
impedances referenced to the primary side to consider the effect of the regulator winding
impedances. However, the regulator winding impedances can be considered as equal in
each phase so that, in a matrix form, they can be denoted as:

Zreg =


ZA 0 0
0 ZB 0
0 0 ZC

 = Z


1 0 0
0 1 0
0 0 1

 (1.66)



Chapter 2

Consistent Tap-changing Transformer
Modeling and Impacts

The tap-changing transformer models used in steady-state power system studies
have been recognized as controversial for a long period. Indeed, discrepant
versions arise depending on different underlying assumptions. As a conse-
quence, two alternative models are conventionally implemented in power system
simulation software packages. In this chapter, several case studies are intro-
duced in order to highlight the important inconsistencies which can be drawn
from the use of the conventional versions. A new model is proposed here to
reconcile those versions, leading the way in removing the ensuing ambiguity.
Moreover, a consistent model that fully explains those differences is proposed.
The new model allows to adopt a third alternative that, without requiring further
data than those used by conventional formulations, leads to highly improved
results. Altogether, this chapter demonstrates that the adoption of the new
model solves the aforementioned ambiguity, thus being a valuable tool to provide
consistent results in power system studies on grids with embedded tap-changing
transformers.

2.1 Introduction

TAP-changing transformers are a key asset in the regulation of voltage in power
systems. Thus, models of these devices are intensively used in the different fields

of electric energy systems analysis and operation. Nonetheless, the models of the tap-
changing transformer conventionally used in steady-state balanced studies, such as the ones
conducted during power flow calculations or voltage stability analyses, have been burdened
with a long-standing controversy [4]. As described in 1.6.1, two alternative tap-changing
transformer models can be found in the description of these devices in different books and
simulation software packages [5–8]. Under specific operating conditions, using one model
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or the other can lead to results with significant differences, which produces a serious lack
of consistency in reporting the outcome of the analysis of electric grids with embedded
tap-changing transformers. This fact was previously observed by other authors in [4] but,
they chose one of the alternatives and focused their efforts on the manipulation of the
other model to reach the same results. On the contrary, this chapter explains the causes
of those discrepancies and proposes a reconciled solution.

The limited amount of information generally available about transformers, and specif-
ically about tap-changing transformers, leads to the practice of using highly simplified
models of these devices in load flow analysis or state estimation. The data is obtained from
the nameplate of the device and comprises the rated power and voltage values, short-circuit
impedance and tap positions. Only transformers with a tapping range exceeding ±5% are
obliged by standards to provide further information about the short-circuit impedance (at
least, values for the extreme tappings are required in that case) [3].

In [9, 10] as well as in this chapter, a consistent model is proposed with the aim of
solving the aforementioned controversy. Here, the theoretical background that explains
the differences caused by conventional models is presented. Moreover, by introducing
an additional parameter, the new model allows to produce consistent results free of any
ambiguity. This chapter tries to highlight the importance of adopting the new model by
state-of-the-art software packages. With this aim, the discrepancies between conventional
models are theoretically assessed and the benefits of the consensus model are clearly
displayed. Furthermore, a couple of case studies, based on a classical IEEE test bus system
are introduced, in order to demonstrate that the differences in the outcomes offered by
the conventional models cannot be neglected even in normal operating conditions.

In section 2.2, the two conventional models, previously pointed out in chapter 1, are
presented with detail. Then in section 2.3, a new model for the tap-changing transformer
is proposed, which opens the door to a much more accurate description of the device.
Section 2.4 uses the new model to clearly explain the reasons for the aforementioned
discrepancies. An assessment of the errors caused by conventional models is also presented
therein. Section 2.5 describes three case studies to highlight the importance of the new
proposal. Finally, the conclusions of this study are drawn in section 2.6.

2.2 Conventional Tap-Changing Transformer Models

As pointed out in subsection 1.6.1, the most widely used conventional tap-changing
transformer models are derived from two different (and not easy to justify) alternatives:
either considering that all the short-circuit impedance of the transformer, zsc, is provided
by the winding at the off-nominal side (Type 1) or by the one at the nominal side (Type
2). Both extreme assumptions are shown in Fig. 2.1 for a transformer with an off-nominal
turns ratio a : 1, where ysc is the short-circuit admittance of the transformer (typically
provided by the manufacturer as the short-circuit impedance at the principal tap position
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Fig. 2.1 Alternative assumptions made in conventional tap-changing transformer models. (a) Type 1, and
(b) Type 2
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Fig. 2.2 The π-equivalent circuit of conventional tap-changing transformer models. (a) Type 1, and (b)
Type 2

and shown in the nameplate of the device). In this figure, the short-circuit admittance has
been referred in both cases to the off-nominal side, and thus designated as yoff

sc .
The well-known relations that apply to ideal transformers, together with Kirchhoff’s

Laws yield
vi = iij

yoff
sc

+ avj, (2.1)

iij = −iji

a
, (2.2)

and thus, the nodal equations of the device can be written in a compact form as iij

iji

 =
 Yii Yij

Yji Yjj

 vi

vj

 . (2.3)

The elements of the bus-admittance matrix, Ybus, are discussed in chapter 1 and also
shown in Table 2.1 for the Type 1 and Type 2 models, according to the value of yoff

sc

used in each case. From those values, as discussed in chapter 1, the parameters of the
π-equivalent circuit of both transformer models can be straightforwardly derived. They
have been explicitly shown in Fig. 2.2.
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2.3 Description of the Consistent Model

Power system studies do not normally require the shunt branch of the equivalent model of
the transformer to be taken into account. Thus, when dealing with nominal turns ratios,
the use of the detailed or simplified model of the transformer makes no difference, as in
both cases the device is reduced to a series impedance. However, this is no longer true
when the transformer is using an off-nominal turns ratio. As it is demonstrated in this
chapter, the simplified model of the transformer can lead to important errors.

Thus a new model, presented in [9] and also in this chapter, was proposed in order
to remove any ambiguity from the results of power system studies with embedded tap-
changing transformers. This model, designated in the following as Type 3, includes a new
parameter in order to account for the contribution of each of the transformer windings to
the short-circuit impedance. This parameter, k, is defined as the ratio between the p.u.
impedance of the winding at the nominal turns side, zj and the p.u. impedance of the
tapped winding (i.e. the one at the off-nominal turns side), zi. Thus, from the off-nominal
side, the series admittance can then be calculated as

yoff
sc = 1

zi + a2zj

= 1
zi(1 + ka2) (2.4)

As discussed in 1.4 and 1.8.1, ysc, the short-circuit admittances obtained during the
short-circuit test and shown at the nameplate are most commonly obtained at the principal
tap (a = 1). So the short-circuit admittance is

ysc = 1
zi + zj

= 1
zi(1 + k) . (2.5)

Therefore:
zi = 1

ysc(1 + k) . (2.6)

From 2.4 and 2.6, we can deduce

yoff
sc = 1

zi + a2zj

= 1
zi(1 + ka2) = 1 + k

1 + ka2 ysc. (2.7)

By applying (2.1) and (2.2) to the new value of yoff
sc , the parameters of the Ybus matrix in

(2.3) can be immediately determined for the Type 3 model. They have also been shown in
Table 2.1.

Yii = 1 + k

1 + ka2 ysc, (2.8)

Yij = Yji = −a (1 + k)
1 + ka2 ysc, (2.9)

Yjj = a2 (1 + k)
1 + ka2 ysc. (2.10)
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ji iij iji

vi vjysc

ysc
2a

1+a2
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yij ji iij iji

vi vjysi ysj

a)

2(1–a)
1+a2 ysc1+a2

2a(a–1)

Fig. 2.3 Consensus model of the tap-changing transformer. (a) General model, and (b) Recommended
set-up

Table 2.1 Ybus Matrix for the Different Tap-changing Transformer Models

Ybus Type 1 Type 2 Type 3 Type 3 (k = 1)

Yii ysc
1
a2 ysc

1+k
1+ka2 ysc

2
1+a2 ysc

Yij = Yji −aysc −1
aysc −a(1+k)

1+ka2 ysc − 2a
1+a2 ysc

Yjj a2ysc ysc
a2(1+k)
1+ka2 ysc

2a2

1+a2 ysc

From those values, the different admittances of the corresponding π-equivalent circuit, as
depicted in Fig. 2.3(a), can be directly obtained as

yij = −Yij = a (1 + k)
1 + ka2 ysc, (2.11)

ysi = Yii + Yij = (1 − a) (1 + k)
1 + ka2 ysc, (2.12)

ysj = Yjj + Yij = a (a − 1) (1 + k)
1 + ka2 ysc. (2.13)

It is important to notice that the conventional models, Type 1 and Type 2, are just
particular cases of the proposed general model, Type 3. Indeed, assigning the values 0
and ∞ to parameter k in (2.11)–(2.13) yields to the well-known values already presented
in Fig. 2.2.
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2.4 Error Assessment and Reconciliation of Conven-
tional Models

The practical use of the new model should take into account that, usually, the data
provided to the engineering practitioner in order to model the different components of the
power system, and specifically, tap-changing transformers, is quite limited. The particular
contribution of each transformer winding to the short-circuit impedance is not a nameplate
value and, since this specification is not required by standards [35], it is seldom provided
by the manufacturer. Thus, setting up the value of the new parameter, k, turns to be
challenging.

The discrepancy of conventional models with respect to the consensus model, assessed
using the differences that arise in the voltage of the nominal winding, vj, when the off-
nominal turns side is fed at a fixed voltage, vi, and a fixed current, iij , can be obtained, as
a function of k, according to

∆v0
j = v0

j − vk
j = k (a2 − 1)

a (1 + k)
iij

ysc

, (2.14)

∆v∞
j = v∞

j − vk
j = 1 − a2

a (1 + k)
iij

ysc

, (2.15)

where v0
j , v∞

j and vk
j stand for the values obtained with Type 1, Type 2 and Type 3 models,

respectively.
From (2.14) and (2.15), it can be concluded that the discrepancies in vj between the

different models grow with the loading of the transformer as well as with the tap position
(extreme tap positions, i.e. those further from the central tap, exacerbate the differences).
Due to the mainly inductive behavior of transformer short-circuit impedances, the effect
of those discrepancies mostly affects the magnitude of voltage when feeding reactive loads
(e.g., in that case, ∆v0

j is close to aligned with v0
j and vk

j ). Conversely, resistive loads tend
to magnify the differences in voltage phase angle. A detailed analysis of these facts can be
found in [9].

Another interesting conclusion that can be drawn from (2.14) and (2.15) is that
the particular case k = 1 is the midpoint between the extreme assumptions implied by
conventional models. Certainly, for k = 1, it can be followed that ∆v0

j = −∆v∞
j . Thus,

using k = 1 guarantees the minimization of the maximum error caused by the lack of
precise knowledge of the contribution of each transformer winding to the short-circuit
impedance. The Ybus elements of this recommended set-up are shown in Table 2.1 and
the corresponding π-equivalent circuit is depicted in Fig. 2.3(b). Specifically, using k = 1
assures that the error is limited to

∆vmax
j = ±a2 − 1

2a

iij

ysc

. (2.16)
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The use of k = 1 implies the assumption of an equal contribution of both transformer
windings (expressed in per-unit values) to the short-circuit impedance. In fact, this is a
conventional engineering practice used in detailed transformer modeling [36–38], which
reinforces the recommendation to use this set-up when no further data is available.

Undoubtedly, the use of parameter estimation techniques may allow to improve the
quality of the set-up of tap-changing transformer models in real scenarios by obtaining
accurate values of k for each specific device from the off-line analysis of field measurements.
This issue is discussed in detail and a resolution is presented in chapter 5. However, it
should be highlighted that, regardless of the accuracy of the model, which is dependent
on the quality of the estimation of k, the consensus model puts an end to the lack of
consistency in communicating the results of power system studies, provided that the set-up
of this parameter is included in the data set.

2.5 Case Studies

The discrepancies in the results provided by the conventional tap-changing transformer
models are not trivial. A set of case studies are provided in this section in order to highlight
this fact, and thus, to urge the adoption of the new model by power system software
packages. As it is demonstrated in this section, the use of the new model can guarantee
the consistency of the results obtained in such common power system studies as power
flow or voltage stability analysis.

2.5.1 Analysis of the Discrepancies in a Single Tap-changing
Transformer

The first case study is performed on a very basic test-bed with just one tap-changing
transformer in it, as the one represented in Fig. 2.1. Let us consider an 80 MVA, 50 Hz,
220/132 kV ±10% transformer with a nameplate short-circuit impedance, zsc, of 0.01+0.12j

and a tap changer, located on the highest voltage side, with 21 positions and a tapping
step of 1%. If further data about the short-circuit impedance at extreme tap positions
were available, as it should be according to [3], a different value of zsc could be calculated
by linear interpolation for any tap position. In any case, this straightforward task will not
be used in this case study not to obscure the core of the proposal.

Fig. 2.4 shows the voltage of the transformer at the nominal turns side when fed by a
constant voltage of 1 pu at the off-nominal turns side for each tap position available. In
each case, the transformer is delivering the rated current at the off-nominal turns side.
Two different power factors are considered by selecting the phase angle between vi and
iij, which is called θ in the following: (a) a unity power factor, θ = 0◦, and (b) a pure
capacitive case, θ = 90◦. The voltage is calculated both for the conventional models (k = 0
and k = ∞) and for the proposed model, assuming a fair contribution of both windings



2.5 Case Studies 33

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

M
a
g
n
it
u
d
e,

p
u

-10 -8 -6 -4 -2 0  2  4  6  8  10 
Tap position

-8
-7
-6
-5
-4
-3
-2
-1
0

P
h
a
se

a
n
g
le
,
d
eg
.

a)

b)

k =∞

k = 0

θ = 0°

θ =9 0°

k = 1

k =∞ k = 1 k = 0
θ = 0°

θ =9 0°

Fig. 2.4 Nominal-turns side voltage for the different tap positions. Transformer at rated current with two
different power factors: unity (θ = 0◦) and pure capacitive (θ = 90◦). (a) Voltage magnitude, and (b)
Voltage phase angle

to the short-circuit impedance, i.e. k = 1. Although this assumption is probably not
exact (this data is seldom provided by the manufacturer), as discussed in 2.4, it is for
sure a better estimate in line with accepted engineering practices. In Fig. 2.4.(a) the
module of the voltage at the off-nominal turns side is shown. At high power factors,
the differences between the alternative transformer models can be ignored. However,
important discrepancies arise at poor power factors. On the other hand, Fig. 2.4.(b) shows
the phase angle of the voltage at the off-nominal turns side. The differences between
the different models result evident now at high power factors. The new model offers a
consensus estimate even if k is not accurately known.

The errors arisen from the use of conventional models, calculated by taking the new
model as a reference (with k = 1), were obtained at rated current for every tap position
and power factor (including reverse power flow). In Fig. 2.5.(a) the maximum deviation
of the voltage at the nominal turns side, |v0

j | − |v1
j | and |v∞

j | − |v1
j |, is depicted for each

power factor. This graph proves that the error in the calculation of the voltage can rise to
near 1.3% in extreme positions of the tap changer when dealing with poor power factors.
Notice that the same result can be obtain from (2.14) and (2.15). Fig. 2.5.(b) shows the
maximum deviation of the phase angle of the voltage at the nominal turns side. Noticeably,
this error evolves in the opposite direction, being maximum for high power factors, when
it reaches values as high as 0.8◦, and negligible for reactive power flows. In a symmetrical
tap changer, as the one considered in this chapter, the maximum errors are found at the
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highest position of the tap (and not at the lowest), as can be easily proved from (2.14)
and (2.15).

2.5.2 Power Flow Analysis

For this case study, the IEEE 57-bus system, which is shown in Fig. 2.6, has been adopted
as a test case [39]. It represents a simple approximation of the American Electric power
system in the U.S. Midwest as it was in the early 1960s which has been extensively used
as a test system by the power community. The IEEE 57-bus system comprises 57 buses,
7 generators, 42 loads and 17 transformers. It is important to note that 15 of these
transformers are set out of the principal tap at the operating point defined by the test case.
This fact makes the system especially suitable to test the new tap-changing transformer
model. Table 2.2 shows the parameters and set-up of those transformers as described in
the IEEE 57-bus system data files.

The state variables of the IEEE 57-bus system have been calculated by using a
Newton-based power flow method for the different tap-changing transformer models under
evaluation. MATPOWER [40] was used to conduct this implementation. It is important
to note that this open-source electric power system simulation tool assumes one of the
conventional tap-changing transformer models commented in this chapter. Specifically,
MATPOWER considers all the short-circuit impedance of the tap-changing transformer
as being provided by the winding at the nominal turns side (i.e. k = ∞) [41]. The
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Table 2.2 Transformers Set Out of the Principal Tap in the IEEE 57-bus System

From bus To bus R, p.u X, p.u Tap, a
4 18 0 0.5550 0.970
4 18 0 0.4300 0.978

21 20 0 0.7767 1.043
24 26 0 0.0473 1.043
7 29 0 0.0648 0.967

34 32 0 0.9530 0.975
11 41 0 0.7490 0.955
11 45 0 0.1042 0.955
14 46 0 0.0735 0.900
10 51 0 0.0712 0.930
13 49 0 0.1910 0.895
11 43 0 0.1530 0.958
40 56 0 1.1950 0.958
39 57 0 1.3550 0.980
9 55 0 0.1205 0.940
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modification of those functions of the software devoted to the construction of the bus
admittance matrix, has allowed to test also the other alternatives (i.e, the conventional
model which considers all the short-circuit impedance as provided by the off-nominal turns
side, k = 0, and the new proposal, in which a balanced contribution is considered, k = 1).
Those alternative transformer models can be directly implemented in MATPOWER by
considering equations (2.11)–(2.13). Fig. 2.7 shows the resulting voltage profile of the
IEEE 57-bus system according to the different tap-changing transformer models. The
detailed results, for those buses showing the highest inconsistencies, are reported in Table
2.3.

Table 2.3 Bus Voltages Showing the Highest Discrepancies

Tap-changing transformer model
Type 1 (k = 0) Type 2 (k = ∞) Type 3 (k = 1)

Bus Magnitude Phase angle Magnitude Phase angle Magnitude Phase angle
(p.u.) (deg.) (p.u.) (deg.) (p.u.) (deg.)

33 0.941 −19.081 0.948 −18.552 0.944 −18.819
49 1.029 −13.336 1.036 −12.936 1.032 −13.141
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As it is shown in Table 2.3 and is also highlighted in Fig. 2.7, the maximum discrepancy
in the calculation of voltage magnitudes between the two conventional models (i.e. k = ∞
and k = 0) takes place at bus 49. This discrepancy reaches a value of 7.63 × 10−3 p.u. (i.e.
0.763%), which can be considered a significant amount even though the transformers of
the IEEE 57-bus system are not set at particularly extreme tap positions. In the same
vein, the maximum discrepancy in the calculation of voltage phase angle arises at bus 33
with a value of 0.529 deg. Obviously, those differences in the state variables spread to the
post-calculation of other magnitudes with an important impact on active and reactive
power flows, currents, etc.

This test clearly reinforces the conclusion of the present contribution. Indeed, it confirms
that the use of different tap-changing transformer models, such as the widely adopted
k = 0 (Type 1) and k = ∞ (Type 2) versions, leads to different and thus, inconsistent
results. Conversely, the adoption of the new model by software packages for power system
analysis can solve the problem, just by allowing the user to fix and report the specific value
of k utilized in the study. If further information is not available to precisely determine this
parameter, selecting it as k = 1 provides a sensible estimation that leads to results that
lie between the two conventional solutions and, what is more, minimizes the maximum
expected error.

2.5.3 Voltage Stability Analysis

Taking again the IEEE 57-bus system as a basis, voltage stability has been tested by
gradually increasing the active power demand at bus 49. Notice that this bus was selected
for the study in view of the results of the power flow analysis shown in subsection 2.5.2.
Indeed, these results demonstrate that the voltage magnitude at bus 49 show the highest
discrepancy when calculated using different conventional tap-changing transformer models.

According to [39], the active power demand at bus 49 in the IEEE 57-bus system is
18 MW. This active power was increased in steps of 1 MW and, in each case, the power
flow analysis of the system was repeated for the conventional tap-changing transformer
models and for the new proposed model with the recommended set-up of k = 1. The
results, in the form of the power-voltage curve (also known as “nose” curve or P-V curve),
are depicted in Fig. 2.8.

Notice that voltage collapse is reached at quite different values of the active power
demand at bus 49. While stability is lost at 364 MW in the case of k = 0, collapse is not
reached until 404 MW if the model with k = ∞ is considered. The first case may be a
too conservative approach while the second is certainly underestimating the voltage drop.
On the contrary, the use of the new model with k = 1 estimates that the voltage collapse
would take place at 382 MW which is certainly a sensible compromise.

Once more, this voltage stability analysis comes to emphasize the important differ-
ences that may arise from the use of the different versions of conventional tap-changing
transformers. Security constraints may be compromised by using simplified assumptions,
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Fig. 2.8 Power-voltage curves at bus 49 for the conventional tap-changing transformer models (k = ∞ and
k = 0) and for the new proposed model (k = 1).

such as the ones implied in conventional models. What is more, even if k = 1 is a sensible
estimation in a context of scarce data, a precise knowledge of this parameter could add
certainty to the results obtained in this type of power system studies.

2.6 Conclusion

The use of the simplified equivalent model of the transformer is universally admitted when
conducting power system studies, due to the low impact of the magnetizing branch and the
inherent benefit of removing a useless bus from the problem. However, neglecting the fact
that the short-circuit impedance is the result of contributions from two different windings
can lead to unacceptable discrepancies in the formulation of the tap-changing transformer
model. This chapter proposes a new general model which includes the contribution of each
winding to the short-circuit impedance. Although this data is not generally available, the
new model allows to consider a fair contribution (50/50) of both windings to this parameter,
which is an accepted practice in engineering. The new model can be tuned to match
the results from conventional alternatives, which consider the short-circuit impedance as
caused by only one of the transformer windings, either the off-nominal or nominal turns
side. This fact makes the new model useful to understand the basis of each formulation,
providing a clear perspective on the influence of the underlying assumptions. The chapter
demonstrates that the discrepancies caused by conventional models can be unacceptable at
extreme tap positions and are greatly influenced by the operating point of the transformer.
The studies conducted here demonstrate that those discrepancies can be significant even
in the case of a well-known standard grid, which is illustrated by a power flow analysis
and a stability analysis. The inclusion of the proposed tap-changing transformer model
in power system software packages, tuned with the recommended values shown in this
chapter, can significantly help to improve the consistency of power system studies without
the need to provide additional data.



Chapter 3

Tap-changing Transformer Modeling
Variations

Models of the tap-changing transformers, both the conventional and consistent
ones, vary due to the operational setup, chosen references for base quantities
and number of phases to be considered. For instance, these models will differ
depending on whether tap-changing transformers are operating at nominal or off-
nominal turn-ratios. Models can be formed in physical quantities; however, most
frequently they are expressed in the per-unit system. Even when the model is
expressed in the per-unit system, it varies depending on chosen bases. Moreover,
distribution systems are often unbalanced, so, they cannot be accurately modeled
through single-phase equivalents. Therefore, to model unbalanced distribution
systems for static power system studies, three-phase models of transformers
are required. In this chapter, shedding light on the ambiguity in tap-changing
transformer’s modeling, different variations of the models are derived and
presented for different cases of off-nominal or nominal operation, chosen bases,
and number of phases.

3.1 Introduction

Modeling voltage-regulating transformers, i.e., tap-changing transformers is a complex task.
There are various ambiguities in forming the π-equivalent models for such transformers.
In chapter 1 and 2, it was shown that while two conventional models work properly at
the central tap, they differ in results while operating in off-nominal turn-ratios. Hence, a
consistent model is established in chapter 2.

In this chapter, it will be shown that tap-changing transformer models, operating
at both nominal and off-nominal turn-ratios also varies depending on the chosen base
for referring to the per-unit system. In this regard, the established consistent model is
further extended in this chapter for the variation of chosen bases. For both nominal and
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off-nominal operation, tap-changing transformer models expressed in physical quantities
are also derived and presented here. Then, importantly, three-phase models of tap-changing
transformers both in nominal and off-nominal operation are derived in this chapter. In
this regard, the established consistent model in chapter 2 is also extended for three-phase
steady-stated power system studies.

3.2 Single-phase Transformer Model at Nominal Turn-
ratios

In this section, a π-equivalent model for the tap-changing transformer operating at the
nominal (central) tap is derived. Although the model of the tap-changing transformer at
the central tap is well-known (turns out to be the same as the model of a fixed turn-ratio
transformer, it is included here to establish a methodology that is extended later in this
chapter to the model at other taps and, subsequently, to the three-phase transformer.

3.2.1 In Physical Quantities

In this sub-section, three models of the single-phase transformer in physical quantities are
derived, corresponding to the traditional ones and the consensus model. The results will
confirm that the resulting models become identical when operating at nominal turn-ratios.

3.2.1.1 Short-circuit Impedance at the Nominal Side

As described in chapter 1, one of the traditional models of the tap-changing transformer
considers that all the short-circuit impedance of the device is provided by the nominal
side. See Fig. 3.1.

Fig. 3.1 Tap-changing transformer with short-circuit impedance at the nominal side

Let zscT be the impedance of the transformer expressed in p.u. at its own bases (i.e.
vT H , the base voltage at the primary side, vT L, the base voltage at the secondary side, and
ST , the base power of the transformer). So if it is assumed that the impedance is entirely
provided by the nominal side, the impedance in ohms, zL

sc, is calculated as

zL
sc = v2

T L

ST

zscT . (3.1)
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Let rt be the transformation ratio in physical quantities of the transformer. Therefore,
as in (1.40), the nodal equations are

iH

iL

 =
 1

r2
t zL

sc

−1
rtzL

sc

−1
rtzL

sc

1
zL

sc

 vH

vL

 . (3.2)

The components of the π-equivalent model can then be expressed as

yij = 1
rtzL

sc

, (3.3)

ysi = 1
rtzL

sc

( 1
rt

− 1
)

, (3.4)

ysj = 1
zL

sc

(
1 − 1

rt

)
. (3.5)

By definition of transformation ratio,

rtvT L = vT H . (3.6)

If the impedance value of the transformer in p.u., zscT , is used with the bases of own
transformer, from (3.1), (3.2), and (3.6), the nodal equations can be expressed as

iH

iL

 =
 ST

v2
T HzscT

−ST

vT HvT LzscT

−ST

vT HvT LzscT

ST

v2
T LzscT

 vH

vL

 . (3.7)

And the components of the π-equivalent model are

yij = ST

vT HvT LzscT

, (3.8)

ysi = ST

vT HzscT

( 1
vT H

− 1
vT L

), (3.9)

ysj = ST

vT LzscT

( 1
vT L

− 1
vT H

). (3.10)

3.2.1.2 Short-circuit Impedance at the Off-nominal Side

The second type of the traditional models of the tap-changing transformer, as described in
chapter 1, considers that all the short-circuit impedance of the device is provided by the
off-nominal side. See Fig. 3.2. Thus, the impedance (expressed in ohms) at this side, zH

sc ,
can be calculated as from the nameplate values of the transformer as:

Fig. 3.2 Tap-changing transformer with short-circuit impedance at the off-nominal side
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zH
sc = v2

T H

ST

zscT . (3.11)

Applying the nodal equations, as in (1.39), the following expression is obtained
iH

iL

 =
 1

zH
sc

−rt

zH
sc

−rt

zH
sc

r2
t

zH
sc

vH

vL

 . (3.12)

The π-equivalent model can then be expressed as

yij = rt

zH
sc

, (3.13)

ysi = 1
zH

sc

(1 − rt), (3.14)

ysj = rt

zH
sc

(rt − 1). (3.15)

And by using the short-circuit impedance of the transformer in p.u. (in the transformer
bases), i.e. zscT , the nodal equations and the components of the π-equivalent model turn
out to be the same as the ones in the previous case, (3.7) - (3.10). Indeed, it follows that

iH

iL

 =
 ST

v2
T HzscT

−ST

vT HvT LzscT

−ST

vT HvT LzscT

ST

v2
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 vH

vL

 . (3.16)

And the components of the π-equivalent model are

yij = ST

vT HvT LzscT

, (3.17)

ysi = ST

vT HzscT

( 1
vT H

− 1
vT L

), (3.18)

ysj = ST

vT LzscT

( 1
vT L

− 1
vT H

). (3.19)

3.2.1.3 Short-circuit Impedance Distributed at Both Sides

Fig. 3.3 Tap-changing transformer with short-circuit impedance at both sides

Now suppose that the short-circuit impedance of the transformer, expressed in p.u . in its
own bases, is distributed between off-nominal and nominal, in such a way that

zscT = zH
scT + zL

scT . (3.20)



3.2 Single-phase Transformer Model at Nominal Turn-ratios 43

Then, as it can be seen from chapter 2, k, the p.u. impedance ratio is

k = zL
scT

zH
scT

. (3.21)

And the impedances to each side, in physical values can be calculated as

ZH
sc = ZH

scT

v2
T H

ST

, (3.22)

ZL
sc = ZL

scT

v2
T L

ST

. (3.23)

This concept of consistent transformer model is shown in Fig. 3.3. The nodal equations
can thus be expresses as
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So, the components of the π-equivalent model are

yij = rt

r2
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. (3.27)

Substituting the physical quantities, zL
sc and zH

sc in (3.24), by their corresponding p.u.
quantities (at the transformer base), zL

scT and zH
scT , which are in fact the two components

of total p.u. impedance zscT , it follows that
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So again, the components of the π-equivalent model are

yij = ST

vT HvT LzscT

, (3.29)

ysi = ST
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( 1
vT H

− 1
vT L

), (3.30)
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( 1
vT L

− 1
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). (3.31)

Thus, it can be concluded that if the short-circuit impedance is expressed in p.u. values
in terms of transformer bases, zscT , and while the transformer operates at the nominal
turn-ratio, the nodal equations, and the components of the π-equivalent model are the
same in all three forms of the tap-changing transformer model.
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3.2.2 In the Per-Unit System

In this subsection, the form of transformer model as in (3.28) - (3.31) will be extended
into p.u. systems. In this case, even if the transformer is still operated at a nominal
turns-ratio, the model varies depending on the values of the quantities selected as system
bases (which are not forced here to be the same as the transformer bases).

Let the chosen bases for the study of the system be vBH , vBL, and SB. Note that these
bases may not respond to the transformation ratio, hence, in general

rt = vT H

vT L

̸= vBH

vBL

. (3.32)

So the nodal equations can be expressed asiHpu

iLpu

 =
YHH YHL
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 vHpu
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 , (3.33)

where
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1
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, (3.34)
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vT HvT L

ST
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1
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, (3.35)

YLL =
(
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vT L

)2 ST

SB

1
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. (3.36)

If the short-circuit impedance of the transformer is expressed in the bases of the system,
two possibilities arise: to use the base voltage of the off-nominal side or the base voltage
of the nominal side. In this case, let us opt for the latter case so that

zL
scpu = zscT

(
vT L

vBL

)2 SB

ST

. (3.37)

Let us call the ratio between the voltage bases of the off-nominal and nominal as rB, so
that

rB = vBH

vBL

. (3.38)

With this denotation, it turns out to be
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)2 1
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, (3.39)
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1
rtzL
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YLL = 1
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scpu

. (3.41)
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The components of the corresponding π-equivalent model is
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Notice that in this derivation the transformer bases do not explicitly appear in the model;
however, the model depends on the side of the transformer used to refer the short-circuit
impedance.

If the short-circuit impedance is referred to the nominal side, thus, instead of that of
the secondary, this derivation would become

zH
scpu = zscT

(
vT H

vBH

)2 SB

ST

. (3.45)

Then, again, denoting rB as the ratio between the voltage bases of the off-nominal and
nominal, it follows that

YHH = 1
zH

scpu

, (3.46)

YHL = YLH = −vBL

vBH

rt

zH
scpu

= −rt

rBzH
scpu

, (3.47)

YLL =
(

vBL

vBH

)2 r2
t

zH
scpu

= r2
t

r2
BzH

scpu

. (3.48)

Components of the corresponding π-equivalent model are

yij = vBL

vBH

rt

zH
scpu

= rt

rBzH
scpu

, (3.49)

ysi = 1
zH

scpu

(
1 − vBL

vBH

rt

)
= 1

zH
scpu

(
1 − rt

rB

)
, (3.50)

ysj = vBL

vBH

rt

zH
scpu

(
vBL

vBH

rt − 1
)

= rt

rBzH
scpu

(
rt

rB

− 1
)

. (3.51)

As a convenient strategy, if the short-circuit impedance is defined so as to take into
account both transformer sides as of the transformer at the base of the system in this way

z′
scpu = zscT

vT H

vBH

vT L

vBL

SB

ST

, (3.52)
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a compact alternative model can be derived, where

YHH = rB

rt

1
z′

scpu

, (3.53)

YHL = YLH = −1
z′

scpu

, (3.54)

YLL = rt

rB

1
z′

scpu

. (3.55)

And the well-known π-equivalent model for the transformer with fixed turns-ratio is
obtained

yij = 1
z′

scpu

, (3.56)

ysi = 1
z′

scpu

(
rB

rt

− 1
)

, (3.57)

ysj = 1
z′

scpu

(
rt

rB

− 1
)

. (3.58)

If the chosen base voltages are the same as those of the transformer, there are no more
different cases since zH

scpu = zL
scpu = z′

scpu, which can be designated as zscpu, and the model
then reduces to

YHH = 1
zscpu

, (3.59)

YHL = YLH = −1
zscpu

, (3.60)

YLL = 1
zscpu

. (3.61)

Components of the corresponding π-equivalent model are

yij = 1
zscpu

, (3.62)

ysi = 0, (3.63)
ysj = 0. (3.64)

3.3 Single-phase Transformer Model at Off-nominal
Turn-ratios

In this section, the models of the tap-changing transformer at off-nominal turn-rations is
generalized, including the possibility of using a base for the system different from the one
used for the transformer.
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3.3.1 In Physical Quantities

In this sub-section, the model of the single-phase transformer at off-nominal taps is derived
in physical quantities. As the two traditional models are just particular cases of the
consensus model, only this are taken into account in the following. Nonetheless, the
short-circuit impedance expressed in p.u. in terms of the bases of the transformer, zscT , is
still used as a data.

Let us assume that the short-circuit impedance expressed in p.u. at the bases of the
transformer, zscT , is divided between the off-nominal and nominal sides, in the same way
as in (3.20). Let us also assume that the definition of k, the p.u. impedance ratio is the
same as in (3.21). Let us define the transformer tap as

a = 1
1 + t

100
, (3.65)

where t is the percentage of variation of the secondary voltage in %. In this way, the
off-nominal transformation ratio is

r′
t = vT H

vT L

(
1 + t

100

) = a
vT H

vT L

= art. (3.66)

So the nodal equations become
iH

iL

 =
 1+k

1+ka2
ST

v2
T HzscT

a(1+k)
1+ka2

−ST

vT HvT LzscT

a(1+k)
1+ka2

−ST

vT HvT LzscT

a2(1+k)
1+ka2

ST

v2
T LzscT

vH

vL

 . (3.67)

The components of the π-equivalent model can then be expressed as

yij = a(1 + k)
1 + ka2

ST

vT HvT LzscT

, (3.68)

ysi = 1 + k

1 + ka2
ST

vT HzscT

( 1
vT H

− a

vT L

), (3.69)

ysj = a(1 + k)
1 + ka2

ST

vT LzscT

( a

vT L

− 1
vT H

). (3.70)

3.3.2 In the Per-Unit System

Again, let the bases chosen for the study of the system be vBH , vBL, and SB. Note that
these bases may not respond to the transformation ratio, as previously expressed in (3.32).
Let us call again the voltage ratio between the bases rB as defined in (3.38). Similarly,
the nodal equations can be expressed as in (3.33).

If the voltage bases on the nominal side are used to express the short-circuit impedance,
the following expression is obtained

zL
scpu = zscT

(
vT L

vBL

)2 SB

ST

, (3.71)
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whereas

YHH = 1 + k

1 + ka2

(
rB

rt

)2 1
zL

scpu

, (3.72)

YHL = YLH = −a(1 + k)
1 + ka2

rB

rt

1
zL

scpu

, (3.73)

YLL = a2(1 + k)
1 + ka2

1
zL

scpu

. (3.74)

Thus, the components of the corresponding π-equivalent model are

yij = a(1 + k)
1 + ka2

rB

rt

1
zL

scpu

, (3.75)

ysi = 1 + k

1 + ka2
rB

rt

1
zL

scpu

(
rB

rt

− a
)

, (3.76)

ysj = a(1 + k)
1 + ka2

1
zL

scpu

(
a − rB

rt

)
. (3.77)

Conversely, if the voltage bases on the off-nominal side are used to express the short-
circuit impedance, then

zH
scpu = zscT

(
vT H

vBH

)2 SB

ST

, (3.78)

and the nodal equations turn out to be

YHH = 1 + k

1 + ka2
1

zH
scpu

, (3.79)

YHL = YLH = −a(1 + k)
1 + ka2

rt

rB

1
zH

scpu

, (3.80)

YLL = a2(1 + k)
1 + ka2

(
rt

rB

)2 1
zH

scpu

. (3.81)

Thus, components of the corresponding π-equivalent model are

yij = a(1 + k)
1 + ka2

rt

rB

1
zH

scpu

, (3.82)

ysi = 1 + k

1 + ka2
1

zH
scpu

(
1 − a

rt

rB

)
, (3.83)

ysj = a(1 + k)
1 + ka2

rt

rB

1
zH

scpu

(
a

rt

rB

− 1
)

. (3.84)
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If the impedance of the transformer at the base of the system is defined in the same
way as in (3.52), an alternative model can be derived which would be

YHH = 1 + k

1 + ka2
rB

rt

1
z′

scpu

, (3.85)

YHL = YLH = −a(1 + k)
1 + ka2

1
z′

scpu

, (3.86)

YLL = a2(1 + k)
1 + ka2

rt

rB

1
z′

scpu

. (3.87)

Components of the corresponding π-equivalent model are

yij = a(1 + k)
1 + ka2

1
z′

scpu

, (3.88)

ysi = 1 + k

1 + ka2
1

z′
scpu

(
rB

rt

− a
)

, (3.89)

ysj = a(1 + k)
1 + ka2

1
z′

scpu

(
a

rt

rB

− 1
)

. (3.90)

Although the models that emerge from the 3 cases are all correct, the model from case
3 appears to be less ambiguous, since it eliminates the uncertainty about the validity of
referring to one side or the other.

If the chosen base voltages are the same as those of the transformer, there are no more
different cases since zH

scpu = zL
scpu = z′

scpu, which can be designated as zscpu, and the model
then reduces to

YHH = 1 + k

1 + ka2
1

zscpu

, (3.91)

YHL = YLH = −a(1 + k)
1 + ka2

1
zscpu

, (3.92)

YLL = 1
zscpu

. (3.93)

Components of the corresponding π-equivalent model are

yij = a(1 + k)
1 + ka2

1
zscpu

, (3.94)

ysi = (1 − a)(1 + k)
1 + ka2

1
zscpu

, (3.95)

ysj = a(a − 1)(1 + k)
1 + ka2

1
zscpu

, (3.96)

which turns out to be the single-phase consensus model previously presented in section 2.3
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3.4 Three-phase Transformer Model at Nominal Turn-
ratios

In this section, the tap-changing transformer model is extended to the three-phase case.
The Dyg11 configuration which is one of the most widely used types in distribution grids,
is considered here as a relevant example. Particularly in this section, three-phase models
are developed while transformers are operated at nominal turn-ratios.

Fig. 3.4 Dyg11 transformer in physical quantities

3.4.1 In Physical Quantities

Here for the three-phase transformer (Dyg11) a generic model with a random distribution
of the impedance between the windings is derived. Let zscT be the short-circuit impedance
of the transformer expressed in p.u. at its own bases (i.e. vT H , vT L, and ST , these being
the line voltages in off-nominal and nominal and the apparent power of the machine).
This impedance is related to the single-phase impedances in ohms of the windings, i.e.,
zH

scD, single-phase impedance of the delta on the off-nominal side„ and zL
scy , single-phase

impedance of the wye connection on the nominal side, with the following relation

zscT = zH
scD

3
ST

v2
T H

+ zL
scy

ST

v2
T L

= zH
scY T + zL

scyT . (3.97)

Since vT D is the rated line voltage at the off-nominal side and vT y is the rated phase-to-
ground voltage at the nominal side, the transformation ratio can be obtained as,

rt = vT H

vT L

= vT D√
3vT y

. (3.98)

Assuming that the zscT is entirely provided by the nominal side, the impedance in ohms,
zL

sc , is calculated as

zL
sc = v2

T L

ST

zscT . (3.99)

Applying the KVL voltage equations in the off-nominal and nominal sides and considering
that

rt =
−iL

y√
3iH

D

, (3.100)
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the nodal equations of the three-phase transformer are obtained as


iA

iB

iC
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
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√
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√
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−
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√
3rt 0 3r2
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t 0√
3rt 0 −

√
3rt 0 0 3r2

t


=
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.

(3.101)

3.4.2 In the Per-Unit System

Let the bases chosen for the study of the system be vBH , vBL, and SB. Note that these
bases may not respond to the transformation ratio, that is, in general

rt = vT H

vT L

̸= vBH

vBL

. (3.102)

By expressing the short-circuit impedance of the transformer at the base of the system, as
in (3.52)

z′
scpu = zscT

vT H

vBH

vT L

vBL

SB

ST

, (3.103)

the nodal equations can be expressed as

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
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√
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√
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√
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. (3.104)

And if the chosen base voltages are the same as those of the transformer, the model reduces
to 

iApu

iBpu
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ibpu
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
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. (3.105)
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3.5 Three-phase Transformer Model at Off-nominal
Turn-ratios

In this section, the three-phase transformer model of the Dyg11 connection (as a relevant
example in distribution systems) is extended to the case of off-nominal turns-ratio operation.

3.5.1 In Physical Quantities

Here again, for the three-phase transformer (Dyg11)a generic model with a random
distribution of the impedance between the windings is derived. As before, be the single-
phase impedance of the transformer expressed in p.u. at its own bases (i.e. vT H , vT L, and
ST ). This impedance is related to the impedances in ohms of the windings, zH

scD, single-
phase impedance of the delta on the off-nominal side, and zL

scy , single-phase impedance of
the wye connection on the nominal side. Thus,

zscT = zH
scD

3
ST

v2
T H

+ zL
scy

ST

v2
T L

= zH
scY T + zL

scyT . (3.106)

Since vT D is the rated line voltage at the off-nominal side and vT y is the rated phase-to-
ground voltage at the nominal side, the transformation ratio can be obtained as,

rt = vT H

vT L

= vT D√
3vT y

. (3.107)

Considering off-nominal operation, the transformation ratio turns out to be

r′
t = vtD

vT L

= a
vT D√
3vT y

= art. (3.108)

Assuming that the impedance is entirely provided by the nominal side, the impedance in
ohms, zL

sc , is calculated as

zL
sc = v2

T L

ST

zscT . (3.109)

Then, applying the KVL voltage equations in the off-nominal and nominal sides and
considering that

r′
t = art =

−iL
y√

3iH
D

, (3.110)
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the nodal equations of the three-phase transformer can be derived as

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3.5.2 In the Per-Unit System

Here again, let the bases chosen for the study of the system be vBH , vBL, and SB. Note
that these bases may not respond to the transformation ratio, that is, in general

rt = vT H

vT L

̸= vBH

vBL

. (3.112)

By expressing the short-circuit impedance of the transformer as follows

z′
scpu = zscT

vT H

vBH

vT L

vBL

SB

ST

, (3.113)

the nodal equations can now be expressed as
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(3.114)
And if the chosen base voltages are the same as those of the transformer, the model reduces
to
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(3.115)
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3.6 Conclusion

In this chapter, a powerful methodology for modeling tap-changing transformer is derived
which removes any ambiguity. Thereby, tap-changing transformer models, both conven-
tional and consistent, have been extended to possible variations depending on their mode
of operation, systems of expression, chosen bases, and number of phases to be considered.
Also, this modeling approach has been extended for the three-phase case and can assume
system bases different from the bases of the transformer. In this way, this chapter addresses
and resolves the ambiguity around tap-changing transformer modeling.



Chapter 4

Reconciling Phase-shifting
Transformer Models

The model of regulating transformers used in classic power system studies,
such as load flow analysis or state estimation, is still debatable. As it is
demonstrated in chapter 2, the two alternative tap-changing transformer models
usually found in the literature and power system simulation software packages
may lead to important discrepancies, especially at extreme tap positions. In the
present chapter, the model developed in chapter 2 is extended to the case of the
phase-shifting transformers (PST). This chapter demonstrates that prevailing
formulations of PST, particularly of the asymmetrical type, may also lead
to important discrepancies when operating far from the nominal tap, with a
different impact depending on the power factor of the power flowing through
the device. Furthermore, a general model for the PST is proposed in this
contribution. The new model uses the same data available in conventional
formulations leading to improved results and avoiding any ambiguity.

4.1 Introduction

With the deregulation of the electricity market, control of power flows over transmission
lines and tie lines has become an important concern. Moreover, uneven loading of parallel
transmission lines is a recurring problem to solve during the transmission of energy. The use
of phase shifting transformers (PST) is a well-established solution to provide control of real
power flows through transmission lines. Several PSTs, as in the case of asymmetrical types,
offer also some control over the magnitude of output voltage, thus providing regulation of
the reactive power flows up to a certain limit [42].

The quality of the results of classic power system studies such as power flow and
optimal power flow analysis, state estimation, etc. are highly dependent on the accuracy of
the models used to describe system components. However, simplified models are typically
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used in these algorithms, due to the complexity and magnitude of the problems and also
because of the scarce information generally available for the engineering practitioner in
charge of these tasks. The nameplate of the transformer is usually the exclusive data
source used in PST modeling.

In literature and practical implementations, as also described in 1.6.2, two alternative
phase-shifting transformer models can be found [32, 6, 33, 8]. Similar to the tap-changing
transformer, the differences in these models arise from the fact that they consider the
short-circuit impedance either provided exclusively by the nominal or off-nominal turns
side winding of the device. These extreme assumptions cause that both models yield
different results and thus, the users can be misled trying to validate their results with
different tools. This fact was originally observed in [43], but the authors chose one of
those models and focused their efforts on the manipulations needed on the other model to
reach the same results. However, in [9] as well as in chapter 2, those discrepancies were
fully explained and a reconciled solution was proposed. Furthermore, [9] and chapter 2
demonstrate that even if the differences between the two models are trivial at the principal
tap, significant mismatches take place at distant tap positions. Similarly, this lack of
consistency also exists in the representation of PST through the two conventional models
typically used in power system studies [44, 45, 38]. The aim of this contribution is to
addressed this problem precisely by extending the applicability of [9] and chapter 2 to
PSTs.

This chapter demonstrates that the two available models also yield different results for
asymmetrical PSTs, which is misleading. Though these discrepancies from two models can
be considered trivial at the principal tap, the inconsistency can lead to huge differences at
distant tappings.

In this chapter, a new model of the PST is proposed in Section 4.2 in order to explain
the causes of the discrepancies between the two existing models and with the aim of
reaching a reconciled solution free of any ambiguity. Furthermore, the new model opens
the door to a more accurate description of the device. Section 4.3 describes the conventional
models and demonstrates that they are degenerate cases of the new proposal. Section
4.4 presents a theoretical assessment of the discrepancies caused by conventional models
and relates them with the solution offered by the new model. A case study is presented
in Section 4.5 in order to highlight the importance of the new proposal. Finally, the
conclusions of this study are drawn in section 4.6.

4.2 Description of the New Model

Neglecting the shunt admittances of the detailed model of PSTs (i.e. those responsible for
the magnetizing current and core losses) is a common practice in power system studies.
This fact, simplifies the analysis, as the internal bus of the detailed model is removed from
the problem. If the PST operates at nominal turns ratios, no further assumption is needed,
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as the specific contribution of each transformer winding to the short-circuit impedance
is irrelevant in that case. However, as is demonstrated in the following, this is far from
being true when the PST works at an off-nominal tap position. Let us consider a PST
with off-nominal turns ratio |a| ejθ as depicted in Fig. 4.1.
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ysc

off

j

vjvi vj
'vi

'

e 
jϴa

Fig. 4.1 Model of the phase shifting transformer with short-circuit impedance at the off-nominal turns side

The fundamental equations of a PST can be formulated as

v
′
i

v
′
j

= a = |a| ejθ, (4.1)

iij

iji

= − 1
a∗ = − 1

|a| e−jθ
. (4.2)

Then, though these parameters are not normally known by the user, let k be the ratio
between the per p.u. impedance in the nominal winding, zj and tapped winding, zi (for
the sake of simplicity, the same ratio is considered for resistance and leakage reactance).
So, from (4.1) and (4.2), zj can be referred to the off-nominal turns side as

zoff
j = v

′
i

v
′
j

−iij

iji

zj = aa∗zj = |a|2 zj. (4.3)

Therefore, considering the new ratio k together with (4.3), the series transformer admit-
tance, as seen from the off-nominal side, can be calculated as

yoff
sc = 1

zi + |a|2 zj

= 1
zi(1 + |a|2 k)

. (4.4)

Typically, the data provided to the engineering practitioner in order to model the PST is
the short-circuit impedance of the transformer, zsc, which is also available at the nameplate
of the device. This data is obtained from the short-circuit test, which is conducted, at
least, at the nominal tap (i.e. |a| = 1). Thus, the rated short-circuit admittance of the
PST, ysc, can be expressed as

ysc = 1
zi + zj

. (4.5)

From (4.5) and the definition of k, the contribution of the winding at the off-nominal side
to the short-circuit impedance, zi, can be calculated as

zi = 1
ysc(1 + k) , (4.6)
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Using this value in (4.4) yields

yoff
sc = 1 + k

1 + k |a|2
ysc. (4.7)

Considering KVL, the nodal equations of the PST can now be written as iij

iji

 =
 Yii Yij

Yji Yjj

 vi

vj

 , (4.8)

where
Yii = yoff

sc = 1 + k

1 + k |a|2
ysc, (4.9)

Yij = −ayoff
sc = − a (1 + k)

1 + k |a|2
ysc, (4.10)

Yji = −a∗yoff
sc = −a∗ (1 + k)

1 + k |a|2
ysc, (4.11)

Yjj = |a|2 yoff
sc = |a|2 (1 + k)

1 + k |a|2
ysc. (4.12)

It is important to note that the Ybus matrix of the nodal equations for PST is not symmet-
rical as Yij ̸= Yji. Therefore forming a π-equivalent model for PST is not straightforward;
rather the model will have two different branch admittances depending on the current
under consideration (iij or iji). Keeping this fact in mind, the parameters of a pseudo
π-equivalent model for the PST, which has been depicted in Fig. 4.2, can be derived from
(4.9)–(4.12), as

yij = −Yij = a (1 + k)
1 + k |a|2

ysc, (4.13)

yji = −Yji = a∗ (1 + k)
1 + k |a|2

ysc, (4.14)

ysi = Yii + Yij = (1 − a) (1 + k)
1 + k |a|2

ysc, (4.15)

ysj = Yjj + Yji = (|a|2 − a∗) (1 + k)
1 + k |a|2

ysc. (4.16)
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Fig. 4.2 A pseudo π-equivalent model of PST
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4.3 Reconciliation of Previous Models

It can be easily derived that the two PST models most extensively used in the literature
and practical implementations, correspond to the particular cases of making the parameter
k equal to 0 and ∞ in (4.7), and thus in (4.9)–(4.16). The version with k = 0 corresponds
to the assumption that all the short-circuit impedance of the PST is provided by the
winding at the off-nominal turns side. In this case, the off-nominal admittance of the PST,
yoff

sc , turns to be the same as the rated short-circuit admittance, ysc, and the parameters
of the pseudo π-equivalent circuit shown in Fig. 4.3(a) are obtained. On the other hand,
considering k = ∞, corresponds to the assumption that all the short-circuit impedance
of the PST is provided by the winding at the nominal turns side. Thus, yoff

sc turns to be
ysc/|a|2, and the set of parameters of the pseudo π-equivalent circuit shown in Fig. 4.3(b)
is reached.
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Fig. 4.3 The π-equivalent conventional models of the phase shifting transformer. (a) k = 0, and (b) k = ∞

It is interesting to note that the lack of consistency between the results offered by the
two conventional alternatives of the PST models was initially identified in [43]. However,
this publication focused on the adjustments needed to make them yield the same results
and, thus, appropriately pointed out that the model in Fig. 4.3(a) turns to be the same as
the one in Fig 4.3(b) if all the admittances are divided by |a|2. The problem of taking
this approach lies on the fact that all the short-circuit impedance of the device is still
being assigned to one specific side of the transformer which, as is demonstrated in this
contribution, can lead to important errors. Conversely, the new model is capable of
describing the cause of the discrepancies and allows for a description of the device free of
any ambiguity, provided that the specific value of k used in the analysis is reported.

It is important to highlight that the new PST model presented here, opens the door to
obtain accurate results if k is known (e.g. being provided by the manufacturer or estimated
from off-line field measurements). But, even if this is not the case, much more realistic
estimates can be obtained if k is set to 1, which stands for an equal contribution of each
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winding of the transformer to the short-circuit impedance. In fact, this is a common
engineering practice, typically used when a detailed model of the transformer is to be used
[38, 37]. While the benefits of using k = 1 in the case of the tap-changing transformer
model was previously discussed in chapter 2, this chapter analyzes the advantage of making
the same assumption for the case of PSTs.

4.4 Error Assessment

By using the new PST model proposed in Section 4.2, the voltage at the nominal turns
side of the PST, vj, can be determined if the variables at the off-nominal turns side, vi

and iij, are provided. Indeed, using the nodal equation of the PST displayed in (4.8), vj

can be calculated as
vj = iij − Yiivi

Yij

. (4.17)

Let us designate the voltage at the nominal turns side for a generic value of k as vk
j .

Thus, the discrepancies between the conventional models and the consensus model, can be
assessed, by just considering the values obtained for k = 0 and k = ∞, i.e. v0

j and v∞
j .

Indeed, using (4.17) according to the values of Yii and Yij in (4.9) and (4.10), yields,

∆v0
j = v0

j − vk
j = k(|a|2 − 1)iij

a(1 + k)ysc

, (4.18)

∆v∞
j = v∞

j − vk
j = (1 − |a|2)iij

a(1 + k)ysc

. (4.19)

As it is immediately derived from (4.18) and (4.19), the discrepancies grow with the
load level of the transformer as well as with the value of the rated short-circuit impedance.
Moreover, those equations imply that the mismatch does not take place when |a| = 1,
which is the case of symmetrical PSTs (i.e. those causing a pure phase-angle shift but
with no effect on voltage magnitudes). In this specific case, the proposed model cannot
contribute to provide better results. In fact, both the conventional and new models turn
to be the same under that particular circumstances.

However, many asymmetrical PSTs are also used in power system applications. The
proposed model can highly contribute to their modeling and simulation. According to [46],
there exist three types of asymmetrical PSTs. For the widely-used quadrature booster,
shown in Fig. 4.4(a), the regulating winding is connected at ±90 deg., whereas for other
asymmetric PSTs, as the one shown in Fig. 4.4(b), the regulating winding can be connected
at different angles, 0 < δ < 180. For the asymmetrical PST with in-phase transformer,
as in Fig. 4.4(c), voltages on both primary and secondary side can be boosted with a
common ratio r while the regulating winding remains connected with same angle, δ. As
|a| ≠ 1 in those cases, conventional models cause inconsistent results and the new model
may effectively solve this problem.
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Fig. 4.4 Phasor diagrams of PSTs. (a) Quadrature booster (b) Asymmetrical PST, (c) In-phase transformer
and asymmetrical PST

Notice that the new model is also useful to account for voltage magnitude tap-changing
transformers provided that their vector group causes a non-zero phase-shift. In those cases,
the discrepancies can be exacerbated by extreme tap positions, due to the high differences
between |a| and 1 that can be found in this type of devices.

4.5 Case Study

The voltage deviations from the different models according to the transformer operating
conditions are assessed in subsections 4.5.1 and 4.5.2. Two case studies are presented here
in order to point out the inconsistencies implied by the use of the conventional PST models
shown in Fig. 4.3. Furthermore, these case studies demonstrate that the new PST model,
proposed in this contribution and depicted in Fig. 4.2, can solve this problem assuring
certainty in reporting results.

From Fig. 4.4, it can be easily seen that, for any of these asymmetric PSTs, there
are general relations between the tap position, n, neutral tap position, n0, phase shift, θ,
magnitude of the off-nominal p.u. turns ratio, |a|, regulating winding connection angle, δ,
and p.u. voltage step increment per tap change of the regulating winding, du. The general
relations, including the effect of r, are well documented in [46, 47]. For the particular case
of the asymmetrical PST, which is considered in the present case study, those relations,
according to Fig. 4.4(b), can be expressed as

θ = − arctan( (n − n0)du sin δ

1 + (n − n0)du cos δ
), (4.20)

|a| = 1√
((n − n0)du sin δ)2 + (1 + (n − n0)du cos δ)2

. (4.21)

Even if the manufacturer can provide different short-circuit impedance values for
different tap positions, this fact is omitted in the following, not to obscure the core of the
proposal.
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Let us consider an 80 MVA, 50 Hz, 220/132 kV, asymmetric PST, with a nameplate
short-circuit impedance, zsc, of 0.01 + 0.12j and a maximum no-load phase shift, θmax, of
-4.715 deg. The regulating winding connection angle, δ, is at 60 deg. and the tap changer,
located on the higher voltage side, has 11 positions (from the neutral tap, n0 = 0, to
n = 10) and a voltage step increment per tap change, du, of 1%.

4.5.1 Voltage Deviations for Different Tap Positions and Power
Factors

The effect of the tap position in the deviations caused by conventional models is studied
in this case. The voltage at the off-nominal turns side of the PST, vi is fixed at 1 p.u. as
well as the current at the same side, iij , which is also forced to supply the rated current of
the transformer. Two different power factors are used in this analysis: (a) a unity power
factor, φ = 0 deg., i.e. iij is in-phase with vi, and (b) a pure capacitive case, φ = 90 deg.
in which iij leads vi in this amount. Thus, the voltage at the nominal turns side of the
transformer, vj, can be calculated using the different models. Fig. 4.5 shows the results
for the conventional versions, i.e. k = 0 and k = ∞, together with those obtained using
the new model and assuming an equal contribution of both windings to the short-circuit
impedance, i.e. k = 1. Although the setting of k in this way is not necessarily exact, it is
according to well-accepted engineering practices, and is a more sensible estimation than
the one derived from the extreme assumptions made in the conventional models.

The discrepancies in the magnitude of voltage at the nominal turns side of the trans-
former can be observed in Fig. 4.5(a). While they can be practically neglected at high
power factors, the inconsistency is exacerbated in the capacitive case. Furthermore, and in
agreement with (4.18) and (4.19), the mismatch grows when moving to distant positions
from the neutral tap. In the same vein, the phase angle of the voltage at the nominal turns
side (the voltage at the off-nominal side is taken as a reference) is depicted in Fig. 4.5(b)
Unlike in the previous case, the discrepancies appear now magnified at high power factors
and tend to be negligible with pure capacitive loads. As it is concluded from Fig. 4.5, the
model proposed in this contribution offers a consensus estimate even if k is not accurately
known and, more importantly, it removes any ambiguity from the results if the value of k

used in the analysis is provided.

4.5.2 Maximum Voltage Deviations

In order to obtain the maximum deviations taking place in using the different models
of the PST under study, the equivalent circuits of the conventional (k = 0 and k = ∞)
and new model (setup with k = 1) were used to calculate the nominal turns side voltage
at every tap position, n, and with every possible power factor (i.e. letting φ vary in the
full range, which includes reverse power flow) while operating the transformer at rated
values on the off-nominal side. The results obtained with the new model, v1

j , were taken
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Fig. 4.5 Nominal-turns side voltage at different tap positions for the different PST models. The PST is
operated at rated values at the off-nominal turns side at two different power factors: unity (φ = 0 deg.)
and pure capacitive (φ = 90 deg.). (a) Voltage magnitude, and (b) Voltage phase angle

as a reference. Thus, Fig. 4.6(a) represents the differences in voltage magnitude between
the conventional models and the present proposal, i.e.

∣∣∣v0
j

∣∣∣ −
∣∣∣v1

j

∣∣∣ and
∣∣∣v∞

j

∣∣∣ −
∣∣∣v1

j

∣∣∣. The
maximum difference reaches a value of 0.63% which is, in fact, a significant discrepancy.
Notice that the mismatch between the conventional models doubles the previous result,
being as high as 1.26%. The same differences are depicted in Fig. 4.6(b) for the case of
the phase angle of the nominal turns side voltage. The mismatch reaches in this case 0.69
deg. between the conventional models, being reduced to 0.35 deg. when compared with
the new model. Noticeably, these inconsistencies in the calculation of voltage phase angle
can have a deep impact in the regulation of power flows by means of PST in real grids.
The same results can be directly obtained from (4.18) and (4.19).
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Fig. 4.6 Maximum deviation in the calculation of the nominal-turns side voltage at rated current. (a)
Voltage magnitude, (b) Voltage phase angle

4.6 Conclusion

The use of simplified single-phase models of PSTs is standard practice in the execution of
steady-state balanced power system studies. Although the specific contribution of each of
the transformer windings to the short-circuit impedance can be completely neglected in
untapped devices or when the operation takes place at the nominal tap, the same does not
hold true at different tap positions. Conventional models of voltage-magnitude regulating
transformers and PSTs are based on the assumption that all the short-circuit impedance
is fully provided either by the winding at the nominal or off-nominal side, leading to two
alternative models that yield different results. This may have strong implications, not
only in the accuracy but also on the consistency of the outcomes from different tools.
Although this problem does not appear in symmetrical PSTs, it can be a serious issue
in asymmetrical PSTs or in voltage-magnitude regulating transformers with a non-zero
vector group. Indeed, this chapter demonstrates that, in those cases, the mismatch of the
results from those conventional models may be relevant, especially at extreme tap positions.
These discrepancies appear both in voltage phase and voltage magnitude, depending on
the power factor of the power flow handled by the device. Furthermore, this contribution
proposes a consensus model of the PST which fully explains the aforementioned differences.
The new model includes a new parameter that takes into account the contribution of each
transformer winding to the short-circuit impedance. The use of this model gets rid of any
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ambiguity provided that the value of this parameter is reported within the data of the
study. Moreover, the new model can boost the accuracy of the results if good estimates
for the new parameter are available. Even if this is not the case, a sensible setup, as the
one derived from the assumption of an equal contribution of each transformer winding to
the short-circuit impedance, provides a more reliable outcome than those obtained from
the extreme assumptions of the conventional models. Thus, the inclusion of the proposed
PST model in power system software packages has the potential to significantly improve
the consistency of power system studies with embedded PSTs.



Chapter 5

Estimation of Impedance Ratio
Parameters for Consistent Modeling

Previous chapters have shown that two widely used formulations of the tap-
changing transformer model are controversial, as they generate dissimilar
results depending on the selected tap and operating point. In those chapters, a
new model was proposed and its consistency was demonstrated to reconcile this
debate. There a novel parameter was introduced that stands for the ratio between
the impedances of the nominal and tapped winding of the transformer. However,
this parameter is not provided with and cannot be obtained from standard
datasheets, which compels the users to rely on rough approximations. To
overcome this problem, an offline state-vector-augmented parameter estimation
method capable of providing accurate estimates of transformer impedance ratios
is proposed in this chapter. Subsequently, this chapter demonstrates that the
use of these precise parameters can effectively lead state estimators to better
estimates of system states. This chapter also contributes with the derivatives of
the different measurement functions in terms of the impedance ratios, which are
essential tools for this or any other linearized state estimator. A multi-snapshot
implementation is used to obtain a twofold advantage — increased measurement
redundancy and improved accuracy of the estimated parameters. A detailed
formulation of the implementation and several case studies are presented to
demonstrate the validity of the proposal.

5.1 Introduction

Several power system studies, such as power flow, optimal power flow or state estimation
(SE), are crucial today to ensure safety and optimality in the operation of modern grids.
In this context, tap-changing transformers serve at the vanguard for voltage regulation
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in power systems, and thus, accurate models of these devices are needed when they are
present in the network under study.

The two most widely spread tap-changing transformer models found both in literature
and software packages [31, 33] have been demonstrated to be inconsistent [43, 9, 10]. One
of the models assumes that the transformer impedance, obtained through the well-known
short-circuit test, is totally provided by the nominal winding, whereas the other model
allocates it exclusively to the off-nominal side. This fact was first reported in [43]; however,
the authors of that work selected one of the alternatives and proposed a method to shape
the other so as to converge into the same results. Later, in [9, 10], it was established that,
while the two models produce similar results near the central tap, they lead to significant
differences at extreme tap positions. The power factor of the power flowing through the
transformer primarily determines whether this divergence appears in voltage magnitude or
phase angle. Analytical formulations and case studies demonstrating this inconsistency
were presented in chapter 2.

To reconcile this dispute, a consistent model of tap-changing transformer was proposed
in chapter 2 which reflects that the short-circuit impedance is in fact shared by both sides
of the transformer [9, 10]. The new model introduces a parameter, k, which stands for
the per-unit (p.u.) impedance ratio between the nominal winding and tapped winding of
the tap-changing transformer. However, admittedly, the user cannot obtain the value of
this parameter from standard transformer data sheets or even through straight-forward
calculations. In response to that, it was argued and demonstrated that if this parameter
is not available, assuming k=1, i.e. considering an equal share of the p.u. impedance at
both sides of the transformer, produces results which minimizes the maximum expected
error. Nonetheless, the accuracy and consistency of the results of power system studies
with embedded tap-changing transformers can be obviously improved if the actual value
of k is determined through a parameter estimation process utilizing historical sets of
measurements. Thus, the estimation of k is pursued in the present chapter.

In a broad classification, SE methods are either recursive or static. However, static
state estimators constitute a comparatively mature technology widely used by utilities
for power system monitoring. While there are other possibilities, most of the static
estimators minimize the weighted least squares (WLS) of residuals from a single snapshot
of measurements to provide estimates of the current states of the system [6, 32]. For static
SE, several alternative formulations are available in literature in order to overcome some
deficiencies of the seminal algorithms, increasing numerical capabilities or adding some
practical advantages. Many of these formulations are well documented in [6, 32]. In the
present proposal, a widely used and suitable WLS-based formulation is extended further
to cope with the objectives of this chapter.

In addition to providing estimates of the state variables, other functions and associated
routines are integral parts of power system state estimators, such as observability analysis,
bad data detection and identification, topology error processing and parameter estimation.
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Among these, the latter can be pointed out as the key tool to address the problem of
estimating the p.u. impedance ratios of tap-changing transformers. Network parameter
estimation methods are broadly classified in two groups—residual sensitivity-based analysis
and state vector augmentation [6]. Residual sensitivity-based analysis is efficient for
parameter error identification which is not required for the purpose of this chapter, as
transformer impedance ratios are objectively included in the suspicious set. As the
name suggests, in state vector augmentation methods, the suspected parameters are
included in the state vector and estimated together with the system state variables [48–53].
Importantly, for the sole purpose of parameter estimation, state vector augmentation
methods are considered to deliver superior performance due to the fact that all the
surrounding measurements get involved in the estimation [54]. Therefore, the state vector
augmentation method has been selected and implemented in this section to provide
accurate estimates of the parameters of interest.

The estimation of transformer tap positions has been a central issue for parameter
estimation methods in power systems [50, 53]. In fact, estimation of unmeasured or
erroneous transformer taps is today a regular or online function of state estimators. On
the contrary, due to the non-varying nature of impedance ratio parameters, which may
change only in the event of a fault or a complete replacement of a transformer, their
estimation is required in very long time intervals. It is not worth including the estimation
of these parameters in an online state estimator, as this may deteriorate the performance
of the algorithm in terms of speed without a practical improvement. Therefore, an offline
parameter estimator, designed to be run periodically, with a low cadence, is proposed in
this chapter. In this concept, the online estimator used in the operation of the grid is in
charge of the estimation of transformer tap positions at each snapshot; then, the offline
parameter estimator, executed in long time periods, uses those tap positions together
with the raw measurements at different snapshots to provide accurate estimates of the
transformer impedance ratios. Certainly, the updated estimates of these parameters can
now be fed into the online state estimator to increase its accuracy, as a consequence of the
improvement of the model.

Finally, it is important to discuss the potential hindrances of assessing the transformer
p.u. impedance ratios through parameter estimation techniques. If a large number of
tap-changing transformers are embedded in the grid under study, the new variables to be
included in the augmented state vector could significantly deteriorate the redundancy of the
measurements. Moreover, as in any other SE application, the noise of field measurements
has an impact on the quality of the estimation of the parameters. However, even more
important for this particular problem is that the sensitivity of the measurement functions
with respect to p.u. impedance ratios are significantly lower than the sensitivities with
respect to the other state variables. As a consequence, measurement noise is likely to
conceal the biases of erroneous estimation of impedance ratios throughout the process.
The above-mentioned difficulties turn the estimation of the desired transformer parameters
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into a challenging task. Nonetheless, one expedient feature of transformer impedance
ratios can help to overcome these obstacles: they can be considered time-invariant, at least
for a reasonable time span. Thus, the method proposed in this chapter can be fed with
multiple snapshots of measurements, i.e. with historical data collected along a reasonable
time period. Multi-snapshots usage has clear advantages in parameter estimation, as
has been previously reported by other authors [6, 51, 49]. Therefore, a multi-snapshot
implementation has been embraced in this proposal.

The consistent tap-changing transformer model, and thereby, the emergence of the
impedance ratio parameter, was introduced in chapter 2. Then, an advantageous equality-
constrained SE method is briefly described in section 5.2. Section 5.3 articulates the
derivation and integration details of the estimation of p.u. impedance ratios. A set of
case studies are included in section 5.4 to validate and demonstrate the advantages of the
proposal. Finally, the conclusions of this study are gathered in section 5.5.

5.2 Equality-constrained SE

The Normal Equations (NE) formulation of WLS SE in its application to power system
studies may lead to some well-known problems, such as ill-conditioning or divergence.
This is especially critical when using zero-injection buses as virtual measurements. There-
fore, several proposals have been made to overcome the shortcomings of the basic NE
formulation [6]. Among these propositions, appear numerical techniques such as the Lower
Upper (LU) factorization and orthogonal (QR) factorization of the gain matrix. More
advantageously, there are some restructured formulations called equality-constrained SE
which take advantage of the Lagrangian of equality-constrained optimization problems
[6, 55]. In the present chapter, an equality-constrained SE algorithm called augmented
matrix method [56, 6] was extended to the particular parameter estimation problem of
interest. In this method, both the virtual and regular measurement equations are taken
as equality constraints in order to improve the condition number of the Hachtel’s matrix.
According to this method, the following set of linearized equations describes the SE problem


R H 0

HT 0 CT

0 C 0




µ

∆x

λ

 =


∆z

0
−c(x)

 , (5.1)

where,

• R is the covariance matrix having variances of regular measurement errors at its
diagonal elements,

• H is the matrix for derivatives of regular measurements,

• C is the matrix for derivatives of virtual measurements,
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• µ is the vector of Lagrange multipliers for regular measurements,

• λ is the vector of Lagrange multipliers for virtual measurements,

• ∆x is the vector for deviations of state variables,

• ∆z is the vector for measurement residuals, i.e., the difference between regular field
measurements and their theoretical values calculated from the current estimation of
state variables,

• and c(x) is the vector for virtual measurement residuals.

5.3 Estimation of Transformer Impedance Ratios

Most SE methods are linearized formulations which require the derivatives of the mea-
surement functions, h, in terms of the state variables. As power system static SE is a
well-developed and mature technique, the derivatives of general measurement functions
in terms of commonly used state variables and parameters are widely used and readily
available in the literature [6]. However, the consistent tap-changing transformer model is
a state-of-the-art concept which has not been implemented before in power system SE
algorithms. Hence, no work has yet introduced the derivatives of measurement functions
in terms of the impedance transformer ratio, k, which are required for the estimation of
these parameters.

In a standard SE formulation, the state vector, x, includes bus voltage magnitudes,
V , and phase angles, θ, except for the phase angle reference, as state variables. In this
proposal, the state vector is augmented by including the k parameters of the tap-changing
transformers embedded in the network under study. Thus, as an important contribution
of this chapter, the derivatives of general field measurement types such as bus voltage
magnitudes, active and reactive bus power injections and active and reactive branch
power flows, in terms of the impedance ratio, are presented. These derivatives are crucial
for the construction of both the H and C matrices included in (5.1). Finally, for the
problem-specific requirements, the present work integrates these new derivatives into a
single snapshot and a multi-snapshot augmented matrix SE algorithm.

5.3.1 Derivatives of Measurement Functions with Respect to k

For aiding in visualization, let us consider a tap-changing transformer with off-nominal
turns ratio a : 1 and again depict it in Fig. 5.1.

5.3.1.1 Bus Voltage Magnitudes

The measurement function of voltage magnitude at bus i reduce itself to its corresponding
voltage magnitude, Vi, which is a state variable on its own. Therefore, these functions are



5.3 Estimation of Transformer Impedance Ratios 71

yof
 

f
i j

ysc
a : 1iij iji

vi vj

Fig. 5.1 Model of the tap-changing transformer with short-circuit impedance at the off-nominal turns side.

independent of tap-changing transformer impedance ratios, k. So, it can be stated that

∂Vi

∂k
= 0. (5.2)

5.3.1.2 Power Injections

The measurement functions for the active and reactive power injections, Pi and Qi, at a
specific bus i, are well-known in power system analysis, being formulated as [6]

Pi = Vi

N∑
n=1

Vn[Gin cos θin + Bin sin θin], (5.3)

Qi = Vi

N∑
n=1

Vn[Gin sin θin − Bin cos θin], (5.4)

where n stands for each of the total number of buses in the network, N . Likewise, Gin,
Bin are the conductance and susceptance of the element Yin of the system bus admittance
matrix. Finally, θin stands for the phase angle between buses i and n.

As it can be immediately concluded from (5.3) and (5.4), if bus i is not directly
connected to a tap-changing transformer, none of the terms of these equations depend
on the impedance ratio of that specific device. Thus, the derivatives of those active and
reactive power injections in terms of the impedance ratio of that transformer equal zero.
On the other hand, if there is a tap-changing transformer located between buses i and j,
with an impedance ratio k, the admittance of the transformer impacts the calculation of
power injections through the addends corresponding to n = i and n = j. Thus, the parts
of Pi and Qi impacted by k, which are the only ones of interest for the calculation of the
derivatives, can be designated as P k

i and Qk
i and may be evaluated as

P k
i = V 2

i Gk
ii + ViVj[Gij cos θij + Bij sin θij], (5.5)

Qk
i = −V 2

i Bk
ii + ViVj[Gij sin θij − Bij cos θij], (5.6)

where, Gk
ii and Bk

ii contain the addends of the diagonal elements of the bus admittance
matrix which are a function of k, i.e. those provided by the series and shunt branch of the
tap-changing transformer model connected at bus i.

At this point, two cases should be taken into consideration. On the one hand, if
the tapped winding of the transformer is connected to bus i, as shown in Fig. 5.1, (2.8)
and (2.9) allow to express the elements of the bus admittance matrix in (5.5) and (5.6)
as a function of k and the conductance, gsc, and susceptance, bsc, of the short-circuit
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admittance, ysc, of the transformer. Thus,

Gk
ii = 1 + k

1 + ka2 gsc, Bk
ii = 1 + k

1 + ka2 bsc, (5.7)

Gij = −a(1 + k)
1 + ka2 gsc, Bij = −a(1 + k)

1 + ka2 bsc. (5.8)

The substitution of (5.7) and (5.8) in (5.5) and (5.6) leads to

P k
i = 1 + k

1 + ka2

[
V 2

i gsc − aViVj (gsc cos θij + bsc sin θij)
]

, (5.9)

Qk
i = 1 + k

1 + ka2

[
−V 2

i bsc − aViVj (gsc sin θij − bsc cos θij)
]

. (5.10)

By applying the quotient rule to (5.9) and (5.10), the derivatives of Pi and Qi in terms of
k can be obtained as

∂Pi

∂k
=1 + ka2 − a2(1 + k)

(1 + ka2)2 × ...[
V 2

i gsc − aViVj (gsc cos θij + bsc sin θij)
]

, (5.11)

∂Qi

∂k
=1 + ka2 − a2(1 + k)

(1 + ka2)2 × ...[
−V 2

i bsc − aViVj (gsc sin θij − bsc cos θij)
]

. (5.12)

On the other hand, if bus i is connected to the untapped winding of the transformer,
(2.10) should be used instead of (2.8) to formulate the diagonal elements of the bus
admittance matrix impacted by k, Gk

ii and Bk
ii, in (5.5) and (5.6). Thus,

Gk
ii = a2(1 + k)

1 + ka2 gsc, Bk
ii = a2(1 + k)

1 + ka2 bsc. (5.13)

The substitution of (5.8) and (5.13) in (5.5) and (5.6) leads to

P k
i =a(1 + k)

1 + ka2

[
aV 2

i gsc − ViVj (gsc cos θij + bsc sin θij)
]

, (5.14)

Qk
i =a(1 + k)

1 + ka2

[
−aV 2

i bsc − ViVj (gsc sin θij − bsc cos θij)
]
. (5.15)
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And the derivatives of Pi and Qi in terms of k in this second case turn out to be

∂Pi

∂k
=a(1 + ka2) − a3(1 + k)

(1 + ka2)2 × ...[
aV 2

i gsc − ViVj (gsc cos θij + bsc sin θij)
]

, (5.16)

∂Qi

∂k
=a(1 + ka2) − a3(1 + k)

(1 + ka2)2 × ...[
−aV 2

i bsc − ViVj (gsc sin θij − bsc cos θij)
]

. (5.17)

5.3.1.3 Power Flows

Note that the π-equivalent model depicted in Fig. 2.3(a) is not only valid for a tap-changing
transformer but also for a line. Thus, the measurement functions of active and reactive
power, Pij, Qij, flowing from bus i to bus j and measured at the sending end can be
expressed for both types of elements as [6]

Pij = V 2
i (gsi + gij) − ViVj(gij cos θij + bij sin θij), (5.18)

Qij = −V 2
i (bsi + bij) − ViVj(gij sin θij − bij cos θij), (5.19)

where, gsi and bsi are the conductance and susceptance of the shunt leg at bus i, and gij

and bij stand for the conductance and susceptance of the series admittance.
From (5.18) and (5.19), it can be immediately concluded that, if a power flow measure-

ment between the adjacent buses i and j does not flow through a tap-changing transformer,
none of the elements of these equations are affected by the impedance ratio of the device.
Thus, the derivatives of those active or reactive power flows in terms of k equal zero.
However, when a tap-changing transformer connects buses i and j, the admittances in
those equations are a function of the impedance ratio, k. Again, two different cases need
to be addressed. On the one hand, if the measuring location, i.e. bus i, is connected to
the tapped winding, as in Fig. 5.1, the conductances and susceptances can be directly
taken from (2.11) and (2.12). Thus,

gsi + gij = 1 + k

1 + ka2 gsc, bsi + bij = 1 + k

1 + ka2 bsc, (5.20)

gij = a(1 + k)
1 + ka2 gsc, bij = a(1 + k)

1 + ka2 bsc. (5.21)

The substitution of (5.20) and (5.21) in (5.18) and (5.19) leads to

Pij = 1 + k

1 + ka2

[
V 2

i gsc − aViVj (gsc cos θij + bsc sin θij)
]

, (5.22)

Qij = 1 + k

1 + ka2

[
−V 2

i bsc − aViVj (gsc sin θij − bsc cos θij)
]

. (5.23)
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By applying the quotient rule to (5.22) and (5.23), the derivatives of Pij and Qij in terms
of k can be obtained as

∂Pij

∂k
=1 + ka2 − a2(1 + k)

(1 + ka2)2 × ...[
V 2

i gsc − aViVj (gsc cos θij + bsc sin θij)
]

, (5.24)

∂Qij

∂k
=1 + ka2 − a2(1 + k)

(1 + ka2)2 × ...[
−V 2

i bsc − aViVj (gsc sin θij − bsc cos θij)
]

. (5.25)

On the other hand, if the measuring location, i.e. bus i, is connected to the untapped wind-
ing, (2.13) should be used instead of (2.12) to obtain the conductances and susceptances
used in (5.22) and (5.23). Thus,

gsi + gij = a2(1 + k)
1 + ka2 gsc, bsi + bij = a2(1 + k)

1 + ka2 bsc. (5.26)

The substitution of (5.21) and (5.26) in (5.22) and (5.23) leads to

Pij = a(1 + k)
1 + ka2

[
aV 2

i gsc − ViVj (gsc cos θij + bsc sin θij)
]

, (5.27)

Qij = a(1 + k)
1 + ka2

[
−aV 2

i bsc − ViVj (gsc sin θij − bsc cos θij)
]
. (5.28)

And the derivatives of Pij and Qij in terms of k in this second case can be expressed as

∂Pij

∂k
=a(1 + ka2) − a3(1 + k)

(1 + ka2)2 × ...[
aV 2

i gsc − ViVj (gsc cos θij + bsc sin θij)
]

, (5.29)

∂Qij

∂k
=a(1 + ka2) − a3(1 + k)

(1 + ka2)2 × ...[
−aV 2

i bsc − ViVj (gsc sin θij − bsc cos θij)
]

. (5.30)

5.3.2 Formation of Jacobian Matrices for the SE Process

In the formulation of the augmented matrix approach for SE [6, 55], the derivatives of
the hz–functions of a set of L regular measurements, zr, reside in the H matrix, while
the derivatives of the cz–functions of a set of M virtual measurements, zv, reside in the
C matrix shown in (5.1). Both matrices are augmented in this proposal with a new
set of state variables, k, corresponding to the transformer impedance ratios of the T

tapped-transformers embedded in the grid under study.



5.3 Estimation of Transformer Impedance Ratios 75

∂hzr1 ∂hzr1

∂V1...N

∂hzr1

∂k1

∂hzr1

∂k2

∂hzr1

∂kT

∂hzr2

∂θ2...N

∂hzr2

∂V1...N

∂hzr2

∂k1

∂hzr2

∂k2

∂hzr2

∂kT

∂hzrL

∂θ2...N

∂hzrL

∂V1...N

∂hzrL

∂k1

∂hzrL

∂k2

∂hzrL

∂kT

hzr1

hzr2

hzrL

... ... ... ... ......

...

...

...

...

H1 H1k

θ2...N V1...N k1 k2 kT

∂θ2...N

∂czv1 ∂czv1

∂V1...N

∂czv1

∂k1

∂czv1

∂k2

∂czv1

∂kT

∂czv2

∂θ2...N

∂czv2

∂V1...N

∂czv2

∂k1

∂czv2

∂k2

∂czv2

∂kT

∂θ2...N ∂V1...N ∂k1 ∂k2 ∂kT

czv1

czv2

czvM

... ... ... ... ......

...

...

...

...

C1 C1k

θ2...N V1...N k1 k2 kT

∂θ2...N

a)

b)

∂czvM ∂czvM ∂czvM ∂czvM ∂czvM

Fig. 5.2 Formation of the augmented Jacobian matrices for a single snapshot. a) H matrix, and b) C
matrix.

If the estimation of k is carried out considering just a single snapshot of measurements,
the extension of the Jacobian matrices is rather straightforward. In this case, a new
column has to be added, both to the H and C matrices, to account for each of the T

elements of k. Thus, the use of the new derivatives described in Section 5.3.1 together
with the classical set [6], allows to form the augmented H and C matrices as depicted
in Fig. 5.2. Notice that in this figure and w.l.o.g, the phase angle at bus 1, θ1, has been
taken as reference, and thus, excluded from the set of state variables. This is a similar
approach to other augmentation techniques such as those previously presented in [48–53]

According to Fig. 5.2, two parts can be distinguished in the new H and C matrices:
H1 and C1, that account for the derivatives of regular and virtual measurements with
respect to the conventional state variables, and H1k and C1k, that hold the derivatives of
regular and virtual measurements in terms of the transformer impedance ratios, k. The
final H and C matrices are formed by horizontal concatenation of H1, H1k and C1, C1k

respectively.
The difficulties of estimating the p.u. impedance ratios of tap-changing transformers

from a single snapshot of measurements have been previously discussed in section 5.1. As
it was pointed out, an adaptation of a multi-snapshot of measurements is proposed in this
chapter to overcome those obstacles. This is a suitable approach for the estimation of
the parameters under study, which can be considered time-invariant during long periods.
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Indeed, parameter estimation, conducted as an offline task, can sacrifice computation time
in favor of the accuracy of the estimation.

In SE theory, measurement redundancy is defined as the ratio between the number of
measurements and the number of state variables. Hence, as L is the number of regular
measurements and M is the number of virtual measurements, the base case redundancy
of the problem, ε0, i.e., the one in which p.u. impedance ratios are not included as state
variables, can be calculated as

ε0 = L + M

2N − 1 . (5.31)

In a single snapshot or multi-snapshot implementation of the augmented problem, in which
Q snapshots and T time-invariant transformer impedance ratios are included as additional
state variables, the redundancy level is deteriorated according to

εQ = Q(L + M)
Q(2N − 1) + T

= L + M

2N − 1 + T
Q

. (5.32)

From (5.32), it can be concluded that, increasing the number of snapshots in the estimation
process, allows to move the redundancy level of the augmented problem as close as desired
to the redundancy of the base case. Thus, provided that a sufficient number of snapshots
are included into the problem, the application of the augmented approach cannot be
blamed for deteriorating the redundancy level.

The formation of the augmented matrices, H and C, for the case of the multi-snapshot
problem is depicted in Fig. 5.3. Each snapshot q involves a specific set of conventional
state variables, [V θ]q, together with a specific set of h–functions, [hzr]q, and c–functions,
[czv]q, associated with regular and virtual measurements, respectively. Notice that the
conventional state variables change at each snapshot but the augmented ones, k, remain
always the same. Thus, the parts of the Jacobian matrices linked to conventional state
variables are augmented diagonally by means of Hq and Cq, while the parts associated
with the transformer impedance ratios are augmented vertically by means of Hqk and Cqk.

It is worth noting that, in order to apply (5.1) in the multisnapshot context, the
covariance matrix, R, should be formed by diagonal augmentation of the respective
covariance matrices of each snapshot. Likewise, ∆z and ∆x vectors are respectively formed
by vertical concatenation of measurement residuals and state variable deviations from
each snapshot.

Equation (5.1) can now be iteratively solved to provide estimates of the full set of state
variables. Among them, the final values of k constitute the estimated parameters of the
p.u. impedance ratios of the tap-changing transformers.
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Fig. 5.3 Formation of the augmented Jacobian matrices in a multi-snapshot problem. a) H matrix, and b)
C matrix.

5.3.3 Treatment of Bad Data

The treatment of bad data is a crucial concern for any state estimator. However, as it is
pointed out in section 5.1, the parameter estimator proposed in this chapter is designed to
work offline. Thus, it uses historical data comprised of measurement snapshots in which
any possible bad data has been already detected, identified and removed by the online
state estimator used in the operation of the grid. Of course, removal of bad data may
reduce the redundancy of the measurement set. However, as it is shown in the case studies
presented in section 5.4, the proposed algorithm converges to the solution even in low
redundancy scenarios. In summary, as the bad data is pre-treated by the online state
estimator, the proposed offline parameter estimator does not need further filtering of the
input measurements.

Nevertheless, it is interesting to point out that model inaccuracies, such as those that
may appear during the initialization process (i.e. when k=1 is adopted as an educated
guess of the transformer impedance ratios), can lead the online state estimator to an
undesired removal of measurements (erroneously flagged as bad data). The influence of
this aspect on the proper estimation of the parameters is studied in section 5.4.5.

5.3.4 Initialization and Pseudomeasurement Strategy

The initialization of the iterative process presented in (5.1) is conducted considering a flat
profile, i.e. all the bus voltage magnitudes are set to 1 p.u. and all the bus voltage phase
angles are set to 0 deg. For the case of transformer impedance ratios, k, they are set to
1, which is a sensible educated guess according to [9]. Nonetheless, once the algorithm
has been run for the first time in a particular grid, the initialization of the transformer
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impedance ratios can be changed to adopt the estimated parameters provided as an output
by the last execution.

As it is analysed in subsection 5.3.2, adding new elements to the state vector reduces
measurement redundancy. To counteract this fact, a general practice was common in
parameter estimation methods: the inclusion of the last available estimates of the suspicious
parameters as pseudomeasurements in the problem. This practice can be applied to the
case of the estimation of transformer impedance ratios; however, this strategy has been
argued as controversial [6, 54]. Certainly, if the system is not observable without the
pseudomeasurements, then the parameters become critical and their estimates become
equal to the initialization values. On the other hand, if the pseudomeasurements are
not critical, but redundant, the arbitrary weights assigned to them can lead to largely
biased results. For this reason, transformer impedance ratios have not been included as
pseudomeasurements in the present implementation.

It is important to note that, if pseudomeasurements of the estimated parameters are
not used, as in the case of the present proposal, initiating the iterative process from a flat
start leads to the singularity of the Jacobian matrix at the first iteration. Certainly, all
the derivatives with respect to the parameters become zero at this operating point. This
problem can be easily counteracted by including the parameters in the state vector only
after the first iteration [6]. This is the strategy adopted in the present study.

5.4 Case Studies

A well-tested industrial power system, previously used in [57], has been adopted in these
case studies to validate and analyze the proposal. The topology of the network, which
includes four tap-changing transformers, together with the voltage levels are depicted in
Fig. 5.4. The specific data of the lines, transformers and loads are summarized in Table
5.1.

In order to generate data for the multi-snapshot scenario, the tap position of the
transformers and the value of the loads are randomly assigned at each instant. All the
transformers provide a voltage regulating range of ±7%, with a regulating step, ∆U , of
1%. Thus, each p.u. turns ratio is calculated at every snapshot according to

a = 1
1 + ∆U × I

, (5.33)

with I being a random integer which follows a uniform discrete distribution in the range −7
to +7. It is worth mentioning that, according to (2.8)–(2.13), at central taps, i.e. a=1, the
impedance ratio, k, has no effect on the impedance values of the π-equivalent transformer
model. Thus, any snapshot with one or more transformers operating at the central tap
positions does not aid in the estimation of the impedance ratio of those particular machines.
However, provided that there is not a transformer in the grid permanently connected
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Fig. 5.4 9-bus test grid. The specific set of measurements used in the case study shown in section 5.4.4 is
highlighted in this figure.

at the central tap position (i.e. during the T snapshots considered in the problem),
the measurement sets include information on every transformer impedance ratio, and
thus, all those parameters become observable. The diversity of each snapshot is further
guaranteed by assigning random values to each active and reactive power injection. Thus,
a random value from a continuous uniform distribution within the range of −50% to +50%
is added to the mean value of each of the loads shown in Table 5.1. In this way, the case
studies presented in this section incorporate the possible influence of the variation of the
transformer load level in the performance of the parameter estimation algorithm.

With the aim of emulating the measurement acquisition process, the topological
information and assigned values for taps and loads were used to conduct a power flow
of the grid for each snapshot. The system states, which were verified with OpenDSS
[34], were used to calculate the full set of ideal measurements: bus voltages magnitudes,
active and reactive power injections and active and reactive line power flows. Eventually,
Gaussian noise was added to these measurements in order to obtain a set of corrupted
regular measurements which, together with virtual measurements (from zero injection
buses), were included in the SE process. According to [6], sensible values for the standard
deviation of the measurements can be selected as σ = 0.1 · γ · FS for voltage measurements
and as σ = γ · FS for power measurements, where γ stands for the accuracy class of the
measurement device and FS stands for the full scale value in accordance with the largest
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Table 5.1 Parameters of the 9-Bus Test Grid

Line Data
From bus To bus Length [km] Impedance [Ω/km]

1 2 4.7 0.025 + 0.240i
3 4 1.5 0.161 + 0.151i
5 6 0.3 0.568 + 0.133i
8 9 1.8 0.161 + 0.112i

Transformer Data
No. a-range1 [p.u.] Rating2 [MVA] Rsc [%] Xsc [%] k [p.u.]
T23 0.934 : 1.075 2 × 270 0.90 12.97 0.75
T45 0.934 : 1.075 3 × 37.5 0.90 8.95 1.25
T67 0.934 : 1.075 10 0.95 4.76 0.70
T38 0.934 : 1.075 3 × 50 0.92 7.95 1.35

Load Data - Mean values3

Bus P [MW] Q [Mvar] Bus P [MW] Q [Mvar]
3 84.0 26.0 8 52.0 39.0
5 34.0 12.0 9 1.7 1.5
7 7.5 5.0 – – –

1 Taps are randomly selected within this range.
2 Preceded by the number of transformers connected in parallel.
3 Load data are randomly generated around the mean values.

magnitude expected at the respective measurement point. In the present proposal, devices
of accuracy class 0.1 according to [58] were considered and, for the sake of simplicity, the
value of the corresponding ideal measurement was adopted as the full scale value.

5.4.1 Validation of the Proposal

For an initial validation of the proposal, a full redundancy scenario is considered. This
includes measurements for bus voltage magnitudes, sending and receiving branch power
flows, and power injections at each bus (except for bus 1 that is taken as the slack).
According to (5.31), a redundancy of 3.35 corresponds to this base case. However,
considering (5.32), the inclusion of k parameters in a single-snapshot implementation
of the augmented SE problem reduces the redundancy level to 2.71. To recover most
of the redundancy of the base case, 20 snapshots are considered in this initial study,
which, according to (5.32), increases its level to 3.31. In this full redundancy scenario, the
algorithm converges in 7 iterations using a threshold of 1e − 8 for the maximum absolute
value of the state variable deviations, ∆x. The conventional state variables, not shown
here for the sake of clarity, are found to be very close to the actual values, previously
obtained from the power flow analysis. Finally, the estimated values of the transformer
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Table 5.2 Comparison of Actual and Estimated Impedance Ratios - Full Redundancy - 20 Snapshots

Transformer p.u. Impedance Ratios
No. kAC [p.u.] kSE [p.u.] |e| [%]
T23 0.7500 0.7396 1.04
T45 1.2500 1.2471 0.29
T67 0.7000 0.6994 0.06
T38 1.3500 1.3306 1.94

p.u. impedance ratios, kSE, are presented in Table 5.2, together with their actual values,
kAC , and absolute errors, |e|. A maximum absolute error (MAE) of 1.94% and an average
absolute error (AAE) of 0.83% allow to demonstrate the validity of the proposal.

5.4.2 Improvement in SE Results

In [9, 10], through several case studies, the advantages of using the new transformer model
with an educated guess of k=1, was established. However, as the present proposal allows
for the offline estimation of accurate values of transformer p.u. impedance ratios, it is
interesting to assess the expected improvement in the accuracy of SE results, as those
provided by an online state estimator, as a consequence of this refinement. With this aim,
a single snapshot standard WLS augmented matrix state estimator was used to calculate
the state variables of the grid in Fig. 5.4 for the 20 measurement snapshots considered in
the previous case study (i.e. the one shown in subsection 5.4.1). This test was carried out
with two different setups of the transformer impedance ratios: Case A) uses the educated
guess proposed in [4], [5], i.e. all the parameters are assumed as equal to 1; conversely, in
Case B) the estimated parameters shown in the 3rd column of Table 5.2 were used along
the SE process.

As it is highlighted in [9, 10], the errors derived from the use of an inaccurate value of
k become more significant at extreme tap positions and are highly dependent on the power
factor of the power flow. As the case study reported in subsection 5.4.1 uses both load
values and tap positions randomly generated, a diverse influence of the errors caused by k

is assured. Two figures of merit have been used to assess the comparison: (1) the MAE
of bus voltage magnitudes and phase angles with respect to the true state, calculated
considering the full set of buses and snapshots, and (2), the average value of the sum of
variances over Q snapshots, defined as

σ2
av = 1

Q

Q∑
q=1

[
1
S

S∑
s=1

(x̂sq − xsq)2
]

, (5.34)

with x̂sq and xsq being the estimated and true state of the s-th state variable of the system
at snapshot q, which has been used with this aim in similar studies [59]. The true state of
the system was previously obtained for each snapshot by using a power flow algorithm
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Table 5.3 Comparison of Estimation Errors in State Variables - A) Using an Educated Guess, kt=1, B)
Using Estimates of kt

σ2
av MAE(V ), [%] MAE(θ), [deg.]

Case A 1.2776 e-4 0.0438 0.0449
Case B 0.0106 e-4 0.0078 0.0049

with the true values of k, i.e, those shown in the 2nd column of Table 5.2. The results in
Table 5.3 show the values of the aforementioned figures of merit.

From Table 5.3, it becomes evident that the errors in the estimated states are signifi-
cantly reduced with the use of accurate estimates of transformer impedance ratios. This
result ensures the practical usefulness of the proposal.

5.4.3 Influence of the Number of Snapshots

As it is stated in (5.32), using a large number of snapshots should return the redundancy
of the SE problem close to the one from the base case. However, it is still interesting to
analyze if the quality of the estimates of the transformer impedance ratios keeps improving
with the number of snapshots or if, from a certain point, adding more snapshots is not really
worthy. This case study is designed to test this specific feature, and for that, the same
base case of subsection 5.4.1 is used. However, now, the test is repeated with an increasing
number of snapshots, Q, ranging from 1 to 60. The quality of these multi-snapshot
estimates is assessed by using different figures of merit. Thus, Figure 5.5 represents the
value of the MAE, AAE and root mean square error (RMSE). The definitions of these
figures of merit, in the context of this test, are included in the legend of the figure. Note
that kAC

t and kSE
t are the actual and estimated values of p.u. impedance ratios, t, and T

being the particular and the total number of transformer impedance ratios to be estimated.
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Fig. 5.5 Estimation errors of transformer impedance ratios vs. number of snapshots - full redundancy.
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From Fig. 5.5, it can be concluded that using a very low number of snapshots is not
feasible, as Q in ranges from 1 to 11 may lead to gross errors in the estimation of the
parameters. On the other hand, the graph shows that these errors decline very fast as new
information is included into the problem by increasing the number of snapshots. In this
case study, the MAE is always lower than 5% when 12 or more snapshots are included
into the problem, and lower than 3.5% if Q is raised to 17. Regarding the RMSE, it is
always lower than 5% if at least 11 snapshots are used and lower than 3.5% if more than
12 snapshots are included. Similarly, 9 and 11 snapshots are enough to assure an AAE
under 5% and 3.5%, respectively.

It is also interesting to note that, from a certain number of Q, the benefit of adding
new snapshots is only marginally significant. Thus, none of the p.u. impedance ratio
estimation shows an error higher than 5% (compared with the actual values) when the
number of snapshots included in the problem is at least 20. This comparison is presented
in Table 5.4. In any case, a compromise between accuracy and computational burden
should be assumed by the user.

Table 5.4 Comparison of Actual and Estimated Values - Full Redundancy - Different Snapshots

Transformer p.u. Impedance Ratios
Q = 20 Q = 60

No. kAC [p.u.] kSE [p.u.] |e| [%] kSE [p.u.] |e| [%]
T23 0.7500 0.7429 0.71 0.7354 1.46
T45 1.2500 1.2309 1.91 1.2194 3.06
T67 0.7000 0.6812 1.88 0.6889 1.11
T38 1.3500 1.3342 1.57 1.3333 1.67

5.4.4 Influence of the Redundancy Level

An interesting concern related to the utilisation of the proposed methodology, is to analyze
the influence of the redundancy level on its capability to provide accurate estimates of
the transformer impedance ratios. With this aim, the base case used in section 5.4.1 is
downgraded now by removing some of the measurements, down to the point in which
the system is just observable with a single snapshot. In this minimum redundancy case
study, the 17 state variables and 4 parameters to be estimated in the single snapshot
scenario, are obtained from a set of 21 measurements, thus leading, according to (5.32),
to a redundancy level of 1 for a single-snapshot implementation, i.e. ε1=1. Specifically,
all the power flow measurements, less common at certain parts of the grid, have been
completely removed. On the other hand, 5 of the 9 bus voltage magnitudes as well as the
full set of power injection measurements are retained. For the benefit of the reader, the
specific set of measurements considered in the problem is depicted in Fig. 5.4.
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The same multi-snapshot analysis previously conducted in section 5.4.3 for the full
redundancy case, has been carried out here for the new minimum redundancy scenario.
Fig. 5.6 shows the values of the different figures of merit, i.e. MAE, AAE and RMSE for
the different number of snapshots included into the problem, ranging from 1 to 60. Thus,
according to (5.32), the maximum redundancy level considered along the test is limited to
ε60=1.23.
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Fig. 5.6 Estimation errors of transformer impedance ratios vs. number of snapshots - minimum redundancy.

Table 5.5 Comparison of Actual and Estimated Values - Minimum Redundancy - Different Snapshots

Transformer p.u. Impedance Ratios
Q = 30 Q = 60

No. kAC [p.u.] kSE [p.u.] |e| [%] kSE [p.u.] |e| [%]
T23 0.7500 0.7735 2.35 0.7626 1.26
T45 1.2500 1.2220 2.80 1.2052 4.48
T67 0.7000 0.6779 2.21 0.6841 1.59
T38 1.3500 1.3324 1.76 1.3301 1.99

As it can be seen in Fig. 5.6, a similar pattern to the one derived from the full
redundancy scenario is obtained, though slightly higher errors arise in this case. However,
it is important to highlight that the convergence ratio of the problem is not deteriorated
and not more than 8 iterations are needed to solve the SE for any value of Q. This is
an important observation for those parts of the grid where full redundancy is typically
far from the reality of standard infrastructures. Specifically, the MAE needs at least 18
snapshots to drop under 5%. For the case of the RMSE, 11 snapshots are needed to go
under this error threshold. Finally, just 10 snapshots are enough to reduce the AAE under
5%. Estimations from specific snapshots are presented in Table 5.5 for the minimum
redundancy case. This allows to conclude that, in order to achieve similar accuracy levels,
the user should be aware of including a higher number of snapshots when redundancy is
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compromised. Indeed, this observation is aligned with the nature of the problem, as fewer
information about the system is being provided if this compensation is not conducted.

5.4.5 Influence of Bad Data

As it was stated in Section 5.3.3, the proposed parameter estimation algorithm is designed
to work offline, and thus, a conventional online state estimator is responsible for the
detection, identification and removal of bad data. However, using inaccurate values of the
transformer impedance ratios (as during the initialization process in which an educated
guess is used, k=1), can lead the online state estimator to erroneously flag and remove
measurements as bad data. The present case study analyses if the removal of these
measurements from the data set could have a significant influence on the estimation of
transformer impedance ratios by the offline algorithm.

To replicate the performance of an online state estimator, a single snapshot standard
WLS augmented matrix algorithm was applied to the 60 snapshots considered in the full
redundancy case study analysed in Section 5.4.3. A value of k=1 was assigned to the
impedance ratio of each of the four tapped transformers in Fig. 5.4. The normalized
residual test, with a threshold level of 4, was used to detect, identify and remove bad data.
The estimation process and bad data test are sequentially repeated until the complete
filtering of the input data. As a result, bad data was identified in 28 of the 60 snapshots.
Up to a maximum of 4 measurements had to be removed from a single snapshot to reach
a set of fully filtered data.

The parameter estimation algorithm proposed in this chapter was applied to the
filtered set of measurements for an increasing number of snapshots (from 1 to 60). Fig. 5.7
compares the value of the average absolute error of the estimated parameters with those
obtained in section 5.4.3. As can be observed in Fig. 5.7, the removal of measurements can
lead to a slight increase in parameter estimation errors when a low number of snapshots
are used as input data. However, this effect is practically obliterated by the addition of
more snapshots.

It is important to highlight that this situation is only expected during the first execution
of the algorithm in a particular grid. Once a realistic approximation to the values of k is
available for the online estimator, erroneous bad data detections due to transformer model
inaccuracies are not likely to occur. Thus, using a larger number of snapshots during the
initialization can be considered a sensible recommendation.

Finally, in a context of lower redundancy, the same pattern shown in Section 5.4.4
is expected. Notice that if the removal of bad data causes the loss of observability, the
corresponding snapshot would just not be provided by the online estimator, and thus, it
will not have any influence on the parameter estimation algorithm.
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Fig. 5.7 Estimation errors of transformer impedance ratios vs. number of snapshots - influence of bad
data.

5.5 Conclusion

An offline state-vector-augmented parameter estimation method, capable of providing
accurate estimates of transformer impedance ratios, is proposed, validated, and analyzed
in this chapter. Moreover, the derivatives of the different measurement functions in terms
of the new parameter, which are essential tools for this or any other linearized state
estimator, are provided as a contribution. This study, calls attention to the hindrances
found in the estimation of these parameters, such as the significantly lower sensitivity
of the measurement functions with respect to p.u. impedance ratios and the reduction
of redundancy that their inclusion causes in the state estimation problem. To overcome
these difficulties, a method based on the use of a multi-snapshots scenario is proposed
and validated in this chapter. A set of case studies are presented in order to validate
and demonstrate the usefulness of the proposal, including an analysis of the effect of the
number of snapshots and the redundancy level on the accuracy of the estimation. These
case studies allow to conclude that, a lower number of snapshots, in the range 1 to 10, are
not enough to derive accurate results regardless of the redundancy level. However, the
inclusion of a higher number of snapshots always allows to reach acceptable estimates.
Though a low measurement redundancy level requires a higher number of snapshots to
reach the same accuracy, this chapter demonstrates that even those systems close to the
limit of observability can be handled successfully by the proposed algorithm.



Chapter 6

Step Voltage Regulator Modeling and
Standard Test System

This chapter delivers two main contributions; first, the development of a general,
exact and standardized step voltage regulator model considering all possible
configurations, and second, the proposal of a 4-node test system for testing and
evaluating three-phase step voltage regulator connections. Although the 4-node
test feeder for testing three-phase transformer configurations is already available
in the literature, there is no such model for the inclusion, testing, and validation
of Step Voltage Regulators in a test feeder. With the contribution presented
in this chapter, a new test system will be available to evaluate and benchmark
programs or algorithms that attempt to include different configurations of step
voltage regulators. The formulation is stated for all three-phase step voltage
regulators; i.e. wye, close-delta, and open-delta connections, both type A and B
regulators, in raise or lower positions. Subsequently, these models are included
in a 4-node test feeder to obtain several power flow solutions. All obtained
results are presented here to assist power system software developers.

6.1 Introduction

Step Voltage Regulators (SVRs) have been employed in power feeders for many decades
[13–16]. Its modeling posses particular importance in power flow studies of unbalanced
distribution networks [17–19] and is gaining even more importance in distribution feeders
with the proliferation of distributed generation (DG) [20]; several voltage control possi-
bilities can be achieved by coordinating the small generators and storage units installed
near customers and the well-known switched capacitors and step voltage regulators [60].
As an example, the authors in [61] proposed a coordinated control of energy storage
systems with SVRs to mitigate the voltage rise caused for high penetration levels of
photovoltaic systems. Similar applications can be found in [62] or [63]. In both works
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the combination of SVRs, static VAR compensators (SVC) and shunt capacitors (SC) are
applied to achieve voltage control in distribution feeders including DG. In [64] the control
schedules of SVRs are updated according to wind power predictions to compensate voltage
variations derived from high penetration of wind power plants. Many other works related
to coordination of SVRs in distributed systems with DG can be found in the literature
[65–68]. In [65] a voltage estimation is used to control overvoltages in residential networks
with varying PV penetrations. In [66] the authors coordinate the location of reactive
power injections from the PV inverters with transformer tap positions in a distributed
system as a way to constrain voltage variations. In [67] an unbalanced power flow is used
to obtain the influence of SVRs and DG penetration in power losses and voltage profiles.
In [68] an optimal control method of distribution voltage with coordination of distributed
installations, such as on load tap changers (OLTC), SVR, SC, shunt reactor (ShR), and
SVC is proposed.

In [69] a robust, low-cost and high-efficiency voltage regulator is designed for rural
networks with serial voltage compensation. In [70] the authors propose distributed voltage
control for multiple voltage regulation devices: on-load tap changers, step voltage regulators
and switched capacitors in the presence of PV. They tested the scheme in a medium
voltage feeder in California. In [71] detailed models for open-delta connected SVR are
presented. The authors developed a bus admittance model suitable for unbalanced power
flow studies.

Regarding the optimization of tap positions, in [72] an algorithm to set the positions of
regulating transformers is proposed. The algorithm is valid for unbalanced and distributed
systems. In [73], the authors propose a linear power flow formulation to optimally configure
a distribution system using, among other control variables, the tap positions in voltage
regulators. In [74], also the tap positions of transformers are included, among others, as
optimization variables.

Directly related to SVR modeling, a brief description of a SVR model, to be included
in an unbalanced power flow formulation based on the current injection method, can be
found in [75]. In [76] the authors are capable of designing dynamic SVRs, but the model
they considered is single-phase. From their point of view, this model can be used into a
three-phase system taking into account that each phase works independently, so they do
not considered closed delta or open-delta configurations. In [77, 2] Kersting addressed the
modeling of some SVR configurations to study some of their applications. Those works
cover the distribution system modeling in abc reference frame, the SVR control mechanism
by estimating R and X line settings and other applications of SVRs in distribution systems.

Looking at this literature review we can conclude that SVR modeling and testing are
of great importance for distribution systems and power flow studies and are expected to
be even more present with the proliferation of DG. However, although there are many
extensive works dealing with SVR inclusion in power flow studies, there is not any work
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presenting general models and results for all possible configurations. This work might be
also used as a benchmark for other researchers.

Reviewing the IEEE test feeders [78] of the IEEE PES Distribution System Analysis
Subcommittee’s Distribution Test Feeder Working Group, a set of common data for testing
and validating software for distribution systems analysis can be found. More specifically,
the 4-bus test feeder offers a set of comparison results to deal with transformers of various
configurations [79].

In this chapter, the IEEE 4-node test system in [78] will be modified: the transformer
is removed to introduce SVRs instead. Thus, a general model for SVR is proposed together
with a modified 4-node test feeder. These tools are available for designers and power
system software developers as a test standard system with detailed SVR modeling and
results.

The chapter is structured as follows. In section 6.2, advantages of the chosen power flow
method [80] for unbalanced power flow study is discussed. Then, importantly, a general
matrix formulation is stated in section 6.3 for all possible configurations: 2 grounded-wye
connections (type A and B regulators), 2 close-delta connections (type A and B), and 6
open-delta connections depending on the selection of phases (3 cases for type A and 3
other cases for type B). The regulators can be at raise or at lower positions. In section
6.4, all these SVR configurations defined a 4-node test feeder that has been formulated
in the αβ0 frame, following the procedure in [80], but adapted for SVRs. Then, in the
same section, power flow formulation is presented for balanced and unbalanced loading at
different tap positions. In section 6.5, basic data for describing the 4-node test feeder with
SVRs are presented. Finally, the problem is solved and the results are presented through
section 6.6, 6.7 and appendix A with the Backward Forward Sweep (BFS) algorithm in
[81] to obtain the results for all possible configurations. Thereby, section 6.6 describes the
formation of study cases whereas section 6.7 and appendix A respectively analyze and
present all the results. In section 6.8, a summary of the work is drawn.

6.2 Unbalanced Power Flow in Distribution Systems

Distribution systems are generally unbalanced; therefore, multi-phase power flow methods
are required to study such systems. In this dissertation, for validating the SVR models
in unbalanced distribution systems, a suitable unbalanced power flow method using the
complex theory in αβ0 stationary reference frame [80] has been carefully chosen. It is
a formulation which conjugates the use of the αβ0 coordinates and the node incidence
matrix instead of the admittance matrix. This model is very advantageous as it is
ready to incorporate any device. For instance, this model is very adaptive so that the
developed regulator models in this dissertation could be incorporated. Also, any other
device controlled into the same reference frame can be incorporated into the model as
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well. Furthermore, the power flow method used here has three major advantages described
below.

6.2.1 Advantage of Node Incidence Matrix

The use of the node incidence matrix, instead of the admittance matrix in the power flow
method used here prevents some serious drawbacks such as [82, 80]:

• When using the admittance matrix, it is not possible to unambiguously go back to
the line and transformer parameters, as the admittance matrix merges together all
parallel lines and shunt devices. However, with the power flow method used, the
information regarding the system parameters and topology is separately organized.

• Any change in the topology of the system or in any parameter requires rebuilding the
whole admittance matrix. However, in the power flow method used here, any system
parameter can be independently modified without restoring the node incidence
matrix.

6.2.2 Advantage of αβ0 Reference over dq0 Reference Frame

In unbalanced systems, currents are unbalanced so that, in three-phase reference frame,
current and voltage quantities are not phase apart at an angle of 120 degrees to each other.
According to Fortescue theorem [83], this three-phase asymmetrical system of phasors will
be decomposed into three symmetrical systems of positive, negative and zero sequence,
respectively.

The application of dq0 reference frame in power flow formulation is not new [84], and
it has been recently used in microgrid steady-state modeling [85], and in unified AC/DC
power flow analysis [86]. However, in those cases, the dq0 reference frame was applied to
balanced systems, so the components are constant in steady-state analysis. This is not a
valid assumption when working with unbalanced systems [80].

In [5], the dq0 reference frame was employed to solve the power flow problem in
unbalanced three-phase power systems containing PWM converters. However, in that
case, the zero and negative sequences caused pulsating terms to appear which causes the
obtained expressions to be quite intricate. Hence, regarding the unbalanced three-phase
power flow problem, the use of the αβ0 reference frame and a complex vector model are
proposed in [80]. The use of this reference frame includes the benefits provided by an
orthogonal reference frame, avoiding the pulsating terms derived from the existence of
sequence components [80].

6.2.3 Advantage in Terms of Network Reconfiguration

In Conventional power flow methods, changes in the location of loads or generators require
the recalculation of big matrices. However, a great advantage of the power flow method
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(a) Single-Phase Type A (b) Single-Phase Type B

Fig. 6.1 SVR: Single-phase connections.
▲ Raise position. ■ Lower position.

Table 6.1 Equations for Ideal Single-phase SVRs.

Type
Operator ⊕

aR
vP ′
vS′

iP
iSLower Raise

A - + 1 ⊕ N2
N1

1
aR

aR

B + - aR
1

aR

used here is that the general matrix M at (6.83) and the grid equation (6.81) depend only
on the grid interconnections (nodes and lines). As it will be explained later, any change in
the location of loads or generators does not modify these matrices [80].

6.3 SVR modeling

6.3.1 Single-Phase Step Voltage Regulator

A model for an ideal single-phase regulator can be derived from [2]. If the series impedance
is to be considered, then, that ideal model needs to be modified. In Fig. 6.1 the single-
phase configurations are displayed. P stands for primary (or source side) and S stands
for secondary (load side). For the sake of simplicity, as it will be justified later, the series
impedance is concentrated at the secondary side for type A configurations and at the
primary side for type B configurations. The relationships between voltages and currents
for the ideal SVR are summarized in Table 6.1, where N1 and N2 are the number of turns
of the shunt and series windings, respectively. aR is the effective turns ratio and is defined
in a different way depending on the type of regulator, as it is shown in the Table. From
Fig. 6.1 it can be deduced that P = P ′ for type A and S = S ′ for type B regulators.
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The relationship between the primary and secondary voltages for type A, single-phase
regulators can then be written as follows

vP ′ = vS′
1

aR

, (6.1)

vP ′ = vP , (6.2)
vS′ = vS + Z iS. (6.3)

Then replacing (6.2) and (6.3) into (6.1) and taking vP apart, it becomes

vP = 1
aR

vS + 1
aR

Z iS. (6.4)

For type A regulators, the primary and secondary currents can be related by

iP = aR iS. (6.5)

The corresponding equations for type B, single-phase regulators, with impedance on
the primary side are stated as

vP ′ = vS′ aR, (6.6)
vS′ = vS, (6.7)
vP = ZiP + vP ′ . (6.8)

Then, replacing (6.6) and (6.7) into (6.8) it is deduced that

vP = aRvS + ZiP . (6.9)

And finally, the primary and secondary currents for type B regulators can be related by

iP = 1
aR

iS. (6.10)

Single-phase equations (6.4),(6.5) for type A regulators and (6.9), (6.10) for type B
regulators are the baseline for the definition of the three-phase configurations.

6.3.2 Three-phase Connections

Three-phase configurations to be considered are wye, close-delta and open-delta. In
following subsections, upper case letters are used for primary (or source) side and lower
case letters represent secondary (or load) side. In the present chapter, type A regulators
have been chosen for three-phase connections. However, the same procedure can be
extended to type B regulators. For the power flow calculations, the mathematical model in
[80] and a BFS algorithm are going to be used. The formulation is valid for any transformer
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connection, and the algorithm in αβ0 frame solves the problems of some transformer
connections including three-wire configurations (∆ and ungrounded wye) in the abc frame;
especially Yg∆ connection. These problems are solved by means of the zero components of
voltages and currents that are always available in αβ0 frame [80].

There are three general equations that represent all three-phase connections, which are
[
V
]P

αβ0
= NIIαβ0

[
V
]S

αβ0
+ Z NIαβ0

[
I
]PS

αβ0
, (6.11)

[
0
]

= −
[
I
]P

αβ0
+ NIVαβ0

[
I
]PS

αβ0
, (6.12)

[
0
]

=
[
I
]S

αβ0
+ NIIIαβ0

[
I
]PS

αβ0
. (6.13)

The sub-index αβ0 are used in the expressions because all the elements in brackets are
three-phase αβ0 components (voltages or currents). The super-indexes P and S stand
for the primary and secondary, respectively. The super-index PS stands for primary or
secondary, depending on the transformer connection. Equations (6.11), (6.12) and (6.13)
comprise an exact model for three-phase transformers, so it can be directly included in the
power flow solver. The matrices NIαβ0 , NIIαβ0 , NIIIαβ0 and NIVαβ0 are different for each
transformer connection. Any transformer connection is defined by these four matrices
and the phase impedance Z. These equations can be also used to model SVRs, as it is
demonstrated in the following.

The meaning of superscript PS changes with the type of regulator. If (6.11) is compared
to (6.4) and (6.9), it seems as in the SVR case, it is easy to consider that PS stands for
secondary in type A regulators and for primary in type B regulators. This fact is proven
for each transformer connection. Z is the transformer impedance, that is supposed to be
the same for all the phases.

In the present chapter, the matrices NIαβ0 , NIIαβ0 , NIIIαβ0 and NIVαβ0 will be defined
to include any type of SVR configuration in the power flow solution. These equations are
firstly obtained in the abc frame and subsequently transformed into the αβ0 frame using
the transformation matrix A, which is

A =
√

2
3


1 0 1√

2

−1
2

√
3

2
1√
2

−1
2 −

√
3

2
1√
2

 . (6.14)

6.3.2.1 Wye-connected Regulators

Three-phase wye-connected regulators are depicted in Fig. 6.2(a) (type A) and Fig. 6.2(b)
(type B). The winding polarities are shown for both raise and lower positions. The
equations that relate the primary and secondary phase-to-neutral voltages are similar to
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Fig. 6.2 SVR: Three-phase connections.
▲ Raise position. ■ Lower position.

those for the single-phase (6.4), but extended to the three-phase wye connection as


vA

vB

vC

 =


1

aRa
0 0

0 1
aRb

0
0 0 1

aRc



va

vb

vc

+ · · ·

+ · · · Z


1

aRa
0 0

0 1
aRb

0
0 0 1

aRc



ia

ib

ic

 . (6.15)

This equation can be expressed in matrix form as
[
V
]P

abc
= NIIabc

[
V
]S

abc
+ Z NIabc

[
I
]S

abc
, (6.16)

where

NIabc
= NIIabc

=


1

aRa
0 0

0 1
aRb

0
0 0 1

aRc

 . (6.17)

Translating (6.16) into the αβ0 frame, the resulting equation is

A
[
V
]P

αβ0
= NIIabc

A
[
V
]S

αβ0
+ Z NIabc

A
[
I
]S

αβ0
, (6.18)
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and taking
[
V
]P

αβ0
apart, the following equation applies

[
V
]P

αβ0
= NIIαβ0

[
V
]S

αβ0
+ Z NIαβ0

[
I
]S

αβ0
, (6.19)

where two of the four generalized matrices are defined as

NIαβ0 = A−1NIabc
A, (6.20)

NIIαβ0 = A−1NIIabc
A. (6.21)

Equation (6.19) is already of the same form as (6.11), proving that [I]PS
αβ0 are secondary

currents for wye type A configurations. For the case of type B regulators, primary currents
are needed instead.

To derive the relationships between the primary and secondary currents, from (6.5)
the resulting three-phase equation is


iA

iB

iC

 =


aRa 0 0
0 aRb

0
0 0 aRc



ia

ib

ic

 . (6.22)

This equation can be rewritten in matrix form as

[
I
]P

abc
= NIVabc

[
I
]S

abc
, (6.23)

where

NIVabc
=


aRa 0 0
0 aRb

0
0 0 aRc

 . (6.24)

Translating this equation into the αβ0 frame and taking all terms to the right, (6.25) can
be reached as

[0] = −
[
I
]P

αβ0
+ NIVαβ0

[
I
]S

αβ0
. (6.25)

Equation (6.25) can be now identified with (6.12), being [I]PS
αβ0 equal to [I]Sαβ0 in this case.

From (6.25) another generalized matrix in the αβ0 frame can be derived as

NIVαβ0 = A−1NIVabc
A. (6.26)

To obtain the last generalized matrix NIIIαβ0 , an equation similar to (6.13) has to be
written. First, it has to be assured that (6.27) is checked as

[0] =
[
I
]S

abc
−
[
I
]S

abc
. (6.27)

Then, introducing matrix NIIIabc
in (6.28)
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NIIIabc
= −


1 0 0
0 1 0
0 0 1

 , (6.28)

(6.27) becomes [
0
]

=
[
I
]S

abc
+ NIIIabc

[
I
]S

abc
. (6.29)

If 6.29 is transformed into the αβ0 reference frame it leads to
[
0
]

=
[
I
]S

αβ0
+ NIIIαβ0

[
I
]S

αβ0
, (6.30)

where
NIIIαβ0 = A−1NIIIabc

A. (6.31)

Considering in this case that [I]PS
αβ0 are secondary currents, (6.30) is of the same form

as (6.13), so the model is feasible to be introduced into the power flow formulation of [80].
The four equations (6.20), (6.21), (6.26) and (6.31) demonstrate that for a generic

matrix in the abc frame, Nabc, the corresponding matrix in the αβ0 frame, Nαβ0, can be
computed as

Nαβ0 = A−1NabcA. (6.32)

The four matrices NIabc
,NIIabc

,NIIIabc
and NIVabc

are presented in Table 6.4 for this
connection and also for subsequent connections. id(3×3) stands for the identity matrix
with dimensions (3 × 3). Because all matrices are defined in terms of effective turns ratio
instead of number of turns, they are valid for both raise and lower positions.

6.3.2.2 Close Delta-connected Regulators

Three single-phase regulators can be connected in close-delta configurations as shown in
Figs. 6.2(c) (type A) and 6.2(d) (type B). Both lower and raise positions give different
polarities in the windings, as it is also depicted in those figures. For close-delta connections
line-to-line voltages have to be considered. The relationship between the primary and
secondary line voltages in type A close-delta case, is given by (refer to Fig. 6.2(c))

vAB + vBb′ + vb′a′ + va′A = 0. (6.33)

So secondary voltage va′b′ can be written as

va′b′ = vAB + vBb′ + va′A. (6.34)

The voltages vAB and va′A are related by the effective turns ratio for the regulator connected
between phases A and B [2]. The same assumption can be made for voltages vBC and vb′B.
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If the shunt winding has a number of turns N1, the series winding has a number of turns
N2 and the raise position is taken in consideration then these can be derived

vAB

va′A
= N1

N2
, (6.35)

vBC

vb′B
= N1

N2
. (6.36)

If vBb′ and va′A are replaced into (6.34) by their relations to vAB and vBC using (6.35) and
(6.36) it is deduced that

va′b′ = vAB(1 + N2

N1
) + vBC(−N2

N1
). (6.37)

If the reversing switches of all regulators are in raise position, this equation can be rewritten
in terms of the effective turns ratios (see Table 6.1); i.e. aRab

(for the regulator between
phases A and B) and aRbc

(for the regulator between phases B and C), as

va′b′ = aRab
vAB + (1 − aRbc

) vBC . (6.38)

If the same procedure is followed for obtaining the voltages vb′c′ and vc′a′ , the resulting
three-phase equation can be expressed as


va′b′

vb′c′

vc′a′

 =


aRab

1 − aRbc
0

0 aRbc
1 − aRca

1 − aRab
0 aRca




vAB

vBC

vCA

 . (6.39)

With a similar reasoning for lower positions in the regulators, the same expression would
be derived, so regardless of whether the regulators are raising or lowering the voltages, the
same (6.39) applies.

If the matrix in the first term of the right-hand side of (6.39) is renamed as ARV

(which is non-singular and invertible) the primary voltages are obtained as
[
V
]S’

abc
= ARV

[
V
]P

abc
. (6.40)

As it was explained in the previous subsection, being the regulators of type A, the
impedances must be considered into the secondary side. Then, the matrix equation that
includes the voltage drop across those impedances is given by


va′a

vb′b

vc′c

 = Z


ia

ib

ic

 . (6.41)
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The line voltages in the secondary side are then computed as

va′b′

vb′c′

vc′a′

 =


vab

vbc

vca

+


1 −1 0
0 1 −1

−1 0 1



va′a

vb′b

vc′c

 . (6.42)

The matrix in the second term of the right-hand side of (6.42), which is singular, can
be labeled as TDY. It is a singular matrix. Substituting (6.41) into (6.42) and it can be
written into matrix form as

[
V
]S’

abc
=
[
V
]S

abc
+ Z TDY

[
I
]S

abc
. (6.43)

Merging equations (6.40) and (6.43) and taking primary voltages apart, the resulting
equation is [

V
]P

abc
= A−1

RV

[
V
]S

abc
+ A−1

RV
Z TDY

[
I
]S

abc
(6.44)

Equation (6.44) might be written in the same form of (6.11). A comparison between both
equations reveals

NIabc
= A−1

RV
TDY, (6.45)

NIIabc
= A−1

RV
. (6.46)

To derive the relationships between the primary and secondary currents, if current
references are taken as shown in Fig. 6.2(c), it can be assured that

iA = iA′ + iAC , (6.47)
iA′ = ia + iAB. (6.48)

Again, the relationship between currents through shunt and series windings can be
computed in terms of the turns ratio

iAC

ic

= −N2

N1
, (6.49)

iAB

ia

= N2

N1
. (6.50)

Merging equations (6.47), (6.48), (6.49) and (6.50) into a single equation, it can be
formulated that

iA = ia (1 + N2

N1
) + ic (−N2

N1
). (6.51)

Because the regulators are in raise position, (6.51) can be written as (see Table 6.1)

iA = aRab
ia + (1 − aRca)ic. (6.52)
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Table 6.2 Terminals Notation for Open Delta Connections.

Case a Case b Case c
Regulators ab & ca bc & ab ca & bc
Type A B A B A B
P1 P2 P3 A B C A B C B C A B C A C A B C A B
P ′

1 P ′
2 P ′

3 – A′ B′ B′ – B′ B′ A′ – B′ A′ B′

s1 s2 s3 a b c a b c b c a b′ c′ a′ c a b c′ a′ b′

s′
1 s′

2 s′
3 a′ b′ c′ – b′ c′ a′ – c′ a′ b′ –

In a similar manner, the primary currents iB and iC can be also expressed in terms of
secondary currents and effective turns ratios. The generalized matrix equation that relates
the primary and secondary currents is finally given by


iA

iB

iC

 =


aRab

0 1 − aRca

1 − aRab
aRbc

0
0 1 − aRbc

0



ia

ib

ic

 . (6.53)

Labeling the matrix of the first term in the right-hand side of (6.53) as ARI
, the expression

becomes [
I
]P

abc
= ARI

[
I
]S

abc
. (6.54)

Equation (6.54) is written in the same form as (6.12) so matrix NIVabc
is already known as

NIVabc
= ARI

. (6.55)

In this case, (6.29) also applies, so matrix NIIIabc
is the same as in (6.28).

The four matrices NIabc
, NIIabc

, NIIIabc
and NIVabc

are included in Table 6.4 for both
close-delta connections (type A and B). All these matrices are defined again in terms of
turns ratios, so they are the same for both raise and lower positions.

6.3.2.3 Open-delta Connections

Two single-phase regulators can be connected giving rise to a three-phase configuration.
This is an open-delta connection. Because there are two regulators to be connected between
three phases, there are three different connections (or cases). In this chapter, the notation
case a, case b and case c is going to be used. All configurations are depicted in Fig. 6.2(c)
for type A regulators and in Fig. 6.2(f) for type B regulators. As in previous connections,
the impedances are considered in the primary side for type B and in the secondary side
for type A regulators.

In Figs. 6.2(c) and 6.2(f), characters P1, P2, P3, P ′
1, P ′

2 and P ′
3 are used in the primary

side and s1, s2, s3, s′
1, s′

2 and s′
3 denote secondary side. The schemes are general for all

open-delta configurations; the meaning of each character in both figures depends on the
considered case, as it is detailed in Table 6.2. For instance, in case b the two regulators
are connected between phases bc and ab. As before, upper case letters are employed for
the terminals at primary side and lower case letters are used for secondary side. The
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meaning of each character P1, P2 and P3 are B, C and A, respectively for both types
of regulators. P ′

1, P ′
2 and P ′

3 stand for B′, C ′ and A′ for type B regulators and has no
meaning for type A because those points do not exist in open-delta connected type A
regulators (see Fig. 6.2(c)).

In this section, the open-delta connection, case a with type A regulators has been
chosen as the case to explain the open-delta general model. The regulators are supposed
to be in raise position. The matrices needed for the power flow problem are going to be
deduced for this specific case, but with the general notation of Figs. 6.2(c) and 6.2(f) and
Table 6.2.The same reasoning may be applied to any other open-delta configuration.

First, it has to be noted for the studied configuration that phase A in the primary
and phase a in the secondary are directly connected, so it can be written A = a′. From
Fig. 6.2(c) the voltages through the first regulator are related by

va′b′ = vAb′ = vAB + vBb′ . (6.56)

Being N1 the turns number for the shunt winding and N2 the turns number for the series
winding (in the regulator connected to phases ab), the voltages vAB and vBb′ can be related
as

vBb′

vAB

= N2

N1
. (6.57)

Merging (6.56) and (6.57) into a single equation, the following expression is obtained

va′b′ = vAB + vAB
N2

N1
= vAB (1 + N2

N1
). (6.58)

Being the type A regulators in raise position and according to Table 6.1, 6.58 becomes

va′b′ = aRab
vAB. (6.59)

For voltage vc′a′ the same procedure can be followed to obtain these expressions

vc′a′ = vc′C + vCA, (6.60)
vc′C

vCA

= N2

N1
, (6.61)

vc′a′ = vCA
N2

N1
+ vCA, (6.62)

vc′a′ = vCA (1 + N2

N1
), (6.63)

vc′a′ = aRca vCA. (6.64)

In matrix form, primary voltages as a function of secondary voltages are now obtained
from the combination of (6.59) and (6.64) and taking into account that for three-phase
three-wire configurations the primary voltages have to satisfy vAB + vBC + vCA = 0, it can
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be derived that


vAB

vBC

vCA

 =


1

aRab

0 0

− 1
aRab

0 − 1
aRca

0 0 1
aRca




va′b′

vb′c′

vc′a′

 . (6.65)

Here, the number of turns have been replaced by the effective turns ratios of the regulators,
as used before with the previous cases.

If the same reasoning is carried out for lower positions, the same matrix appearing
in the first term of the right-hand side of (6.65) is also obtained. If this matrix is called
ARv2 , the equation can be written in compact form as

[
V
]P

abc
= ARv2

[
V
]S’

abc
. (6.66)

For the studied connection, the voltage drops across the secondary side impedances are
given as 

va′a

vb′a

vc′c

 = Z


0 0 0
0 1 0
0 0 1



ia

ib

ic

 . (6.67)

There is no voltage drop due to current ia because of the connection of the regulators
(from Fig. 6.2(c) it easily deduced that A = a = a′).

Equation (6.42) must be also satisfied in this case, so merging equations (6.42) and
(6.67), the secondary voltages can be deduced as


va′b′

vb′c′

vc′a′

 =


vab

vbc

vca

+ Z TDY


0 0 0
0 1 0
0 0 1



ia

ib

ic

 . (6.68)

Substituting (6.68) into (6.65), and writing the new equation in compact form, the following
expression is obtained

[
V
]P

abc
= ARv2

[
V
]S

abc
+ Z ARv2TDYa

[
I
]S

abc
, (6.69)

where

TDYa =


0 −1 0

0 1 −1

0 0 1

 . (6.70)

Matrix TDYa in (6.70) is the same matrix as TDY in (6.43)), except that the first column
is replaced by zeros. For open-delta configurations case b and case c, the matrices TDYb
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and TDYc can be obtained. In the former, the second column in TDY should be replaced
by zeros, and the same should be done in the latter with the third columnTDY has been
replaced by zeros and in the latter the third column in TDY is changed by zeros.

To derive the relationship between the primary and secondary currents in Fig. 6.2(c),
the depicted current references as well as the corresponding phases shown in Table 6.2 are
needed. From the Fig. these can be derived

iB = ib + iBA, (6.71)
iC = ic + iCA. (6.72)

If for both regulators the numbers of turns are N1 and N2 for the shunt and series wingdings,
respectively, and the raise position is considered, then it can be assured that

iBA

ib

= N2

N1
, (6.73)

iCA

ic

= N2

N1
. (6.74)

Merging (6.71)-(6.74), and writing them in terms of turns ratios, it follows that

iB = ib (1 + N2

N1
) = aRab

ib, (6.75)

iC = ic (1 + N2

N1
) = aRca ic. (6.76)

Merging (6.75) and (6.76) and taking into account that for a three-phase three-wire
connection the constraint iA + iB + iC = 0 must be satisfied, a matrix equation is obtained
as 

iA

iB

iC

 =


0 −aRab

−aRca

0 aRab
0

0 0 aRca



ia

ib

ic

 . (6.77)

By assigning the name ARI2 to the first term of the right-hand side of (6.77), this equation
is of [

I
]P

abc
= ARI2

[
I
]S

abc
. (6.78)

Then, matrix NIVabc
can be obtained as

NIVabc
= ARI2 . (6.79)

In this case, (6.29) also applies, so matrix NIIIabc
is the same matrix as in (6.28).

Matrices NIabc
, NIIabc

, NIIIabc
and NIVabc

are included in Table 6.4 for all open-delta
configurations (cases a, b and c, type A and B regulators). They are defined in terms of
effective turns ratios, so they are the same for both raise and lower positions. To obtain
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Fig. 6.3 4-node test feeder system

the corresponding αβ0 frame matrices, the same transformation that was used for previous
connections may be applicable as in (6.32).

With the generalized matrices detailed in Table 6.4, the SVR models are prepared for
the power flow solver. All the configurations in the Table were simulated in the proposed
4-node test feeder, as it is explained in section 6.6.

6.3.3 Comparison to Previous Works

There are several related works in the literature that present similar SVR models, however,
none of them includes all possible configurations. In Table 6.3 a comparison with the
models described in previous works is summarized. It can be seen that the type B regulators
are usually considered due to the fact they are mainly installed in distribution systems.
The present work aims to include not only the most common configurations, but all of
them. Thus, a general model is proposed in this chapter, allowing the inclusion of any
SVR configuration in power flow analysis.

Table 6.3 Comparison to Previous Modeling Works

reference connection type frame
[60] O∆ not specified abc
[62] YY B abc
[67] YY B abc
[71] O∆, case b B abc
[77] YY B abc
[2] YY, ∆∆,O∆, case b B abc

present work all A and B abc / αβ0

6.4 4-node Test Feeder Including SVRs

To introduce SVRs in the 4-node test feeder [78], the transformer is replaced by a SVR.
The power flow problem to be solved is the one in which the transformer matrices NI, NII,
NIII and NIV are taken from Table 6.4 for each specific SVR configuration. The matrices
in this Table are defined in the abc frame, so they need to be transformed into the αβ0
frame by means of (6.32).
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Table 6.4 Matrices for All SVR Configurations.

NIabc
NIIabc

NIIIabc
NIVabc

YY
type A

 1
aRa

0 0
0 1

aRb
0

0 0 1
aRc

  1
aRa

0 0
0 1

aRb
0

0 0 1
aRc

 −Id (3×3)

(
aRa 0 0

0 aRb
0

0 0 aRc

)

YY
type B Id (3×3)

(
aRa 0 0

0 aRb
0

0 0 aRc

)
−

(
aRa 0 0

0 aRb
0

0 0 aRc

)
Id (3×3)

∆∆
type A

(
aRab

1−aRbc
0

0 aRbc
1−aRca

1−aRab
0 aRca

)−1

.TDY

(
aRab

1−aRbc
0

0 aRbc
1−aRca

1−aRab
0 aRca

)−1

−Id (3×3)

(
aRab

0 1−aRca

1−aRab
aRbc

0
0 1−aRbc

aRca

)

∆∆
type B TDY

(
aRab

1−aRbc
0

0 aRbc
1−aRca

1−aRab
0 aRca

)
−

(
aRab

0 1−aRca

1−aRab
aRbc

0
0 1−aRbc

aRca

)
Id (3×3)

O∆
type A
case a


1

aRab
0 0

− 1
aRab

0 − 1
aRca

0 0 1
aRca

.TDYa


1

aRab
0 0

− 1
aRab

0 − 1
aRca

0 0 1
aRca

 −Id (3×3)

(
0 −aRab

−aRca

0 aRab
0

0 0 aRca

)

O∆
type A
case b


1

aRab
0 0

0 1
aRbc

0

− 1
aRab

− 1
aRbc

0

.TDYb


1

aRab
0 0

0 1
aRbc

0

− 1
aRab

− 1
aRbc

0

 −Id (3×3)

(
aRab

0 0
−aRab

0 −aRbc

0 0 aRbc

)

O∆
type A
case c


0 − 1

aRbc
− 1

aRca

0 1
aRbc

0

0 0 1
aRca

.TDYc


0 − 1

aRbc
− 1

aRca

0 1
aRbc

0

0 0 1
aRca

 −Id (3×3)

(
aRbc

0 0
0 aRca 0

−aRbc
−aRca 0

)

O∆
type B
case a

TDYa

(
aRab

0 0
−aRab

0 −aRca

0 0 aRca

)
−


0 − 1

aRab
− 1

aRca

0 1
aRab

0

0 0 1
aRca

 Id (3×3)

O∆
type B
case b

TDYb

(
aRab

0 0
0 aRbc

0
−aRab

−aRbc
0

)
−


1

aRab
0 0

− 1
aRab

0 − 1
aRbc

0 0 1
aRbc

 Id (3×3)

O∆
type B
case c

TDYc

(
0 −aRbc

−aRca

0 aRbc
0

0 0 aRca

)
−


1

aRca
0 0

0 1
aRbc

0

− 1
aRca

− 1
aRbc

0

 Id (3×3)

Where ∆ stands for Delta, Y for wye and O∆ for open-delta.
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Several configurations were solved for defining a benchmark of results. The effective
turns ratios for the different regulators were taken considering that most of the SVRs have
a reversing switch enabling ±10% regulator range in 32 steps (16 in raise and 16 in lower
positions). That means a change of 0.625 per-unit per step. With these numbers, the
effective turns ratio in terms of number of turns might be replaced by expression [2] (see
section 7.4.1.2)

aR = 1 ⊕ 0.00625 Tap, (6.80)

where Tap has a value between 0 and 16, depending on the tap position and where the
operator ⊕ has to be taken from Table 6.1. The model has been defined in such a way
that for wye and close-delta configurations three single-phase regulators are connected
together. That implies that the taps of each regulator can change separately, and thus,
different values for the effective turns ratio per phase can appear. Nevertheless, three-phase
regulators (in which taps are constrained to ganged operation) might be also modeled
by choosing the same values of aR in the three phases. For open-delta connections only
single-phase regulators are used, so the values for the different turns ratio aR can be
different.

The resulting 4-node test feeder including a SVR is depicted in Fig. 6.3. The SVR is
always connected between nodes 2 and 3, while node 1 behaves as an infinite or slack bus
and the load is connected at node 4. Line configurations and load types are inherited from
the conventional test feeder [78]. In this case, since the transformer has been replaced by
a SVR, the rated voltage is the same in the primary and secondary sides of the regulator.
This value has been chosen as 12.47 kV which corresponds to the rated voltage value at
the load side in the original test feeder.

An unbalanced BFS solver is used in this section [2]. The linear equations are defined
in matrix form including all system KVL and KCL relationships as

M zT = 0. (6.81)

The vector z contains all complex, three-phase system voltages and currents as follows

z =
[
I12 I23 I34 ILoad4 IG1 V1 V2 V3 V4

]
αβ0

, (6.82)

where I12 and I34 are the line currents depicted in Fig. 6.3, IG1 are the currents drawn
from the infinite bus (the only generator), ILoad4 are the load currents and I23 are the
SVR primary or secondary currents depending on its configuration. The structure of M is
shown in the following

M =

 Zαβ0 0 0 −Γ

ΓT Id −Id 0

 , (6.83)



6.5 4-node Test Feeder Data 106

where the Γ and ΓT are the modified node incidence matrices in which the SVR matrices
NI, NII, NIII and NIV are included at the corresponding positions. This is the same
procedure that the one for transformers described in [80].

The load adds the following non-linear equations

Pabc = real
(
AVαβ0 ◦ conj

[
AILαβ0

])
, (6.84)

Qabc = imag
(
AVαβ0 ◦ conj

[
AILαβ0

])
, (6.85)

where the operator ◦ is the Hadamard (element-wise) product.
To test the different configurations for the regulators in lower and raise positions, both

types of loads: capacitive and inductive, are considered. A good convergence was shown
by the algorithm in all the analyzed cases.

6.5 4-node Test Feeder Data

The data for describing loads, lines and SVR are inherited from those described in the
4-node test feeder with transformers [78] but with some modifications needed to replace
the transformer by a SVR.

6.5.1 Step Voltage Regulators

The SVR configurations used in this chapter were taken from [2] (see section 7.4.2).
Depending on the way that the single-phase regulators are connected, the resulting
configurations are different. In wye and close-delta there are 3 regulators, but in case
of open-delta there are only 2 regulators. In open-delta, 3 different connections (cases
a, b and c) are defined: In case a, the regulators are connected to phases ab and ca, in
case b to phases ab and ca and finally, in case c to phases ab and ca. There is only a
four-wire configuration: wye-grounded connection. Notice that close-delta and open-delta
are three-wire configurations. That implies that the lines connected to a wye-grounded
SVR have to be four-wire, while they must be three-wire in the other four cases.

The rated values of the 3-phase SVR are: 6 MVA, 12.47 kV, R=1% and X=6%.

6.5.2 Loads

A 3-phase load is connected to node 4. Depending on the SVR connection and the line
configuration between nodes 3 and 4, the load is wye-grounded or delta type. Loads are
given in terms of constant active and reactive power (PQ). Different loading scenarios are
considered trying to achieve different tap positions (both in the raise and lower modes).
The loads are defined in Table 6.5. For each balanced or unbalanced loading scenario two
possibilities are considered: lag and lead power factor. In the Table, there is no reference
to phases a, b and c as the nomenclature phase 1, 2 and 3 is employed instead. This is
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Table 6.5 Loads

Balanced Unbalanced

phase 1
P (kW) 1800 1275

power factor 0.9 lag/lead 0.85 lag/lead

phase 2
P (kW) 1800 1800

power factor 0.9 lag/lead 0.9 lag/lead

phase 3
P (kW) 1800 2375

power factor 0.9 lag/lead 0.95 lag/lead

because the spot loads are not always connected to a given phase: in 3-wire lines loads are
connected line-to-line while in 4-wire lines loads are connected between a phase and the
neutral conductor.

6.5.3 Lines

The lines were chosen to be exactly the same configurations and lengths as in the 4-node
test feeder.

The line corresponds to the exact segment model described in [2]. The matrices derived
from Carson’s equations and Kron’s reduction are always of dimensions 3 × 3 and are
available in the web site [78] for both three-wire and four-wire configurations.

6.6 Study Cases

The cases have been selected in such a way that each SVR configuration (type A and
type B regulators) has been tested under several conditions: balanced and unbalanced,
inductive (lag power factor) and capacitive (lead power factor) loading and two different
cases of before and after optimization. Apart from a neutral central connection, each
regulator has 32 taps: 16 for raise positions and 16 for lower positions. Two scenarios are
considered: in the first one, the SVR is in fixed at the neutral position, while in a second
(optimized state), voltage regulation is conducted in order to achieve the minimum voltage
magnitude in the grid which complies with the voltage constraints.

The load can be inductive or capacitive, so the taps need to be in raise or lower positions
depending on the operating point. The different combinations between connections,
regulator types and loading scenarios, as well as the cases before/after optimization have
given rise to 80 different cases.

For wye and close-delta connections there are 3 taps per regulator, that can be changed
independently, but in case of open-delta there are only 2 tap changers per regulator, which
means one less degree of freedom for optimization.

A per-unit value of 0.95 was selected as a constraint for the minimum voltage of the grid.
That means a minimum line voltage of 11847 V and a minimum phase-to-neutral voltage
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of 6840 V. There was no need to set a maximum voltage value, because the optimization
aims to find the minimum voltage profile that satisfies the constraint.

Since the system is radial, the furthest node from the slack is node 4. As a result, it
happened for all inductive loading scenarios that the minimum voltage magnitudes are
obtained at that node, so if the minimum voltage constraint is satisfied at this location,
it is satisfied at any other. Then, the optimization algorithm is expected to search for a
power flow solution that meets the minimum voltage profile per phase (0.95 pu) at node 4
in inductive cases. For capacitive loading cases the voltage profile changes, and thus, node
4 does not always present the minimum voltage per phase in the network.

6.7 Results

The results to the 80 cases in 16 scenario are presented in appendix A below and they have
been organized in tables. As each Table presents 5 cases of SVR configurations in one
different scenario, there are 16 tables in total from Table A.1 to A.16. The organization of
scenarios and cases into tables are presented in Table 6.6.

Table 6.6 Structure of Tables in Annex 1

Type Loading Optimization state
TABLE A B Balanc. Unbalanc. Induct. Capacit. Before After

A.1 X X X X

A.2 X X X X

A.3 X X X X

A.4 X X X X

A.5 X X X X

A.6 X X X X

A.7 X X X X

A.8 X X X X

A.9 X X X X

A.10 X X X X

A.11 X X X X

A.12 X X X X

A.13 X X X X

A.14 X X X X

A.15 X X X X

A.16 X X X X

Each of these tables includes three-phase voltages in nodes 2, 3 and 4 and three-phase
currents in lines 1 (from node 1 to 2) and line 2 (from node 3 to 4). Line voltages are
shown for 3-wire nodes while phase-to-neutral voltages are shown for 4-wire nodes. Each
single current or voltage is represented by its magnitude in Amps or Volts and its angle
in degrees. The columns correspond to the different connections: wye grounded (YgYg),
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close delta (∆∆) and open-delta (O∆), respectively. All the results in an individual table
correspond to the defined loading scenario and optimization state.

For each connection, a vector named Taps is included in the second row of the tables.
It represents the tap positions for the different regulators. A zero in Taps means neutral
position. A positive value corresponds to a raise position, varying form 1 to 16, and
a negative value is obtained for lower positions, varying from -1 to -16. As it can be
seen, this vector includes 3 values for wye and close-delta connections (1 regulator per
phase) and 2 values for open-delta configurations (2 regulators for three phases). There
is always an empty position in Taps for the open-delta cases, which corresponds to the
phase without regulator. As an example, consider case a: the 2 regulators are connected
between phases ab and ca (first and third positions), so the corresponding vector Taps is
of the form [0, −, 0]. There is no regulator between phases bc, so the second position of
vector Taps is empty. The same reasoning applies to open-delta cases b and c.

Looking at the tables, a number of analyses can be done. Most importantly, comparing
the voltage profiles for any specific case before and after optimization, it can be seen
that the minimum voltage constraint is met after optimization of taps. For example, in
Table A.1, for YgYg case, the voltage level at node 4 is violating the voltage constraint
(minimum 6840 V) in all the 3 phases, but after optimization, as shown in Table A.2,
the constraint is not violated in any phase. A similar observation can be reached to
closed-delta and open-delta connections. In fact, it can be observed that in all cases of
closed-delta and open-delta connections, the voltage constraint (minimum 11847 V) is
fulfilled in all the phases.

Then, interestingly, in balanced loading cases with wye and close-delta connections, the
tap positions are quiet similar among different phases but not exactly the same because of
the unbalanced nature of the lines. In contrast, open-delta connections give rise to great
differences among taps because the SVR itself is not symmetric (two regulators for three
phases), so even for a balanced loading scenario one regulator can be at raise position
while the other can be at lower position.

Finally, for unbalanced loading cases it can be seen that the SVRs, not only improves
the voltage in magnitude but also leads to a more balanced scenario. This strengthens the
concept that with the optimization of tap positions, SVRs can aid in reducing unbalance
in such cases.

6.8 Conclusion

This chapter provides for the theoretical background, the model description and the
diagrams needed for the inclusion of step voltage regulators into a general, there phase
and unbalanced power flow problem. The general model for three-phase SVRs has been
included in a 4-node test feeder and solved by means of an unbalanced Backward-Forward
Sweep solver. The obtained results are presented as a benchmark. The main contribution
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of this chapter is, besides the guidelines for the SVR model development, the proposal of a
new 4-node test system for testing and evaluation of three-phase SVRs connections. The
software developers will be able to test their software using the model and data presented
in this chapter. All results are included in appendix A.



Chapter 7

Transformer Models and Direct
Approach Method

This chapter is intended to extend the field of application of an extremely
efficient power flow algorithm used in radial and weakly meshed grids, the
so-called Direct Approach (DA) method. With this contribution, the method
is broadened with the possibility of handling shunt admittances, transformers
with taps, and phase-shifting transformers. While the integration of the two
former elements in the DA solver is quite straightforward, the use of phase-
shifting transformers is far from obvious due to their inherent non-symmetrical
admittance matrix. Thus, two new models of phase-shifting transformers, one
extended from its conventional model and another extended from its consistent
model, are proposed in this contribution, which allows the use of the DA method
in grids that include such devices. A set of case studies is conducted in the
context of a balanced industrial grid and a standard test-bed to demonstrate the
validity of the proposal.

7.1 Introduction

Power flow solvers are an essential tool in the operation and planning of power systems.
They allow the assessment of voltage profiles, power flows and losses in the grid, and
thus, they are crucial to detect unacceptable voltage deviations and identify overloaded
components. Furthermore, power flow algorithms are used to conduct reliability studies
and foresee the impact of future demand [22, 87].

The most conventional power flow methods such as Newton-Raphson and Gauss-Seidel,
used widely in transmission systems, do not offer the best performance and robustness
when applied to the distribution level [88]. This is due to the especial nature of the
distribution network, characterized by a radial or weakly meshed topology and a high R/X

ratio. Several approaches have been proposed in order to deal with these particular features,
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such as the implicit Z-bus Gauss method [89] and backward-forward sweep methods [90],
[2]. In the latter group, a very efficient formulation called the direct approach (DA) was
proposed in [21]. The DA method avoids the time-consuming tasks of LU factorization
and forward and backward substitution of the Jacobian or admittance matrices, which are
a commonplace in conventional formulations. The characteristics of DA method make it
ideal for real-time applications in the smart grid context. In [91], the DA solver is used in
the core of an optimal power flow (OPF) algorithm to provide references to a distribution
FACTS in an industrial grid. High update rates are needed in this type of applications
and the DA solver accommodates perfectly to this requirement.

The three-phase approach used in [21] takes series self-impedances and mutual couplings
into consideration; however, shunt admittances are neglected. Even if that assumption can
be enough to run a power flow analysis at the lowest voltage levels of the distribution grid,
characterized by short-length lines and untapped transformers, ignoring shunt admittances
strongly limits the application of the method to higher voltage levels. The extension of
the method to accommodate medium-length lines and transformers with tap changers in a
balanced environment is presented in this chapter. Though no previous references to this
use have been found, its application is fairly straightforward.

In a pure radial grid, a post-processing of the voltage phase angles after the application
of the power flow solver is enough to account for the transformer phase shift. However, if
a weakly meshed grid is to be considered, this method is no longer valid. Thus, a model of
the phase-shifting transformer, both to consider specific devices used to control the active
power flow in the loop and to include the phase shift of common power transformers, is
mandatory. Modeling of phase-shifting transformers in power flow studies is a non-trivial
problem, as they cannot be represented by a π-equivalent component due to their inherent
asymmetric admittance matrix [22]. A set of different phase-shifting transformer models
is available for application in various fields of study, to both steady state [23–27] and
transient simulation [28]. In [29], a survey on phase-shifting transformer models for steady
state analysis is presented; however, none of them are expressed in a suitable form to be
embedded in the DA solver. In this chapter, two new models of phase-shifting transformers,
one extended from its conventional model and another extended from its consistent model,
are proposed to overcome this limitation.

The DA method, as described in [21], is presented in Section 7.2 for the benefit of the
reader. Section 7.3 presents a straightforward method to include shunt admittances in the
DA solver. Thus, those components capable of being represented by π-equivalent models,
such as medium-length lines and transformers with tap changers, can be easily included
in the problem. In Section 7.4, the new phase-shifting transformer models are presented
together with minor modifications to be performed in the DA algorithm. Three case
studies are presented in Section 7.5 in order to illustrate the implementation procedure
and demonstrate the validity of the proposal. Finally, Section 7.6 summarizes the most
important results of this study.
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Fig. 7.1 Scheme used in the DA method

7.2 Direct Approach Power Flow

The method to be proposed in this contribution is based on the DA formulation of the power
flow problem [21]. This is a technique, especially designed for radial networks, inspired
by well-known backward-forward sweep methods such as Ladder Iterative Technique [2].
DA provides a very compact vectorized formulation with excellent computational and
convergence characteristics.

In the application of DA to balanced grids, lines and transformers are modeled as series
impedances, zik, as it is shown in Fig. 7.1. The equivalent bus current injection vector,
Ig, is calculated from the power injection at each bus, i, given the estimation of the bus
voltage vector V at iteration (n) as

I
(n)
gi = Pi − jQi

conj(V (n)
i )

. (7.1)

Assuming a radial grid, the branch current vector can be calculated as

B(n) = BIBC · Ig
(n), (7.2)

where BIBC is the so-called bus-injection to branch-current matrix. The entry BIBCbi

equals 1 if the current injection of node i contributes to the branch current Bb, and equals
0 otherwise. Finally, a better approximation to the voltage profile can be obtained from

∆V (n+1) = BCBV · B(n), (7.3)

where BCBV is the branch-current to bus-voltage matrix. The entry BCBVib equals the
series impedance of branch b if that branch is in the path from node i to the slack bus,
and equals 0 otherwise. ∆V is a vector with the voltage of the slack bus referred to the
different bus voltages. An improved approximation to the state variables is subsequently
obtained by

V (n+1) = Vs − ∆V (n+1), (7.4)

where Vs is a column vector with the slack bus voltage at each entry.
Starting from a flat voltage profile, the solution of the distribution power flow is reached

by solving (7.1)–(7.4) iteratively up to a specified convergence threshold.
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In order to include the treatment of meshes in the network, Teng [21] proposes minor
modifications to be conducted in the definition of BIBC and BCBV and in the solution
technique. A brief summary of these changes can be described as:

• Specific branches are selected to break the meshed grid into a radial network. Then,
new entries are included in the current injection vector to account for the currents
at the selected branches, i.e. [IgB new]T .

• The BIBC matrix is built as in the base case, by considering the currents of the
branches used to break the network as additional current injections. However, entries
with the value −1 appear now to account for the contribution of the receiving node
of the branches used to break the network due to the inverted current reference.
Notice that the double-sided contribution of the sending and receiving nodes of a
branch used to break the network, Bc, to the current of those branches upstream
from the first common parent node, Bb, is null, as they have the same value but
opposite references.

Additionally, new rows are added to the BIBC matrix with a single non-null entry
in order to identify the currents of the branches used to break the network. Taking
all this into account, (7.2) can now be expressed as

 B

B new

(n)

= BIBC ·

 Ig

B new

(n)

. (7.5)

• The BCBV matrix is built as in the base case, but a new row is added for each
loop in the grid to account for KVL. The impedances included in the entries of the
new rows of the matrix are signed positive or negative according to the reference of
the current at the different branches. Then, (7.3) is reformulated as

 ∆V

0

(n+1)

= BCBV ·

 B

B new

(n)

. (7.6)

• By using (7.5) and (7.6) and rewriting the resulting matrix, it follows that

 ∆V

0

(n+1)

= BCBV · BIBC ·

 Ig

B new

(n)

=
 A MT

M N

  Ig

B new

(n)

. (7.7)

The application of Kron reduction to (7.7) leads to

∆V (n+1) = (A − MT N−1M )Ig
(n). (7.8)
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Fig. 7.2 The π-equivalent line model

The iterative use of (7.1), (7.8) and (7.4), in this order, allows the application of the
DA method to weakly meshed grids.

7.3 Including π-equivalent Models

The DA method in [21] models the lines and transformers in balanced systems by simple
series impedances. While this is acceptable for short-length lines and untapped trans-
formers, minor modifications must be included in the method in order to deal with other
common device models.

By considering a π-equivalent model as the one shown in Fig. 7.2, medium-length lines
with series impedance zik and total lumped shunt admittance Yik can be included in the
DA method. In this case, an intermediate variable arises, Bb, which is to be included in
the branch current matrix B. The current injection vector, Ig, is now replaced in (7.2) by
an augmented vector I that includes the currents drawn by the shunt admittances as

I(n) = Ig
(n) + YB ◦ V (n), (7.9)

where ◦ is the Hadamard product and YB is the bus admittance vector. The sending and
receiving end currents, Bin and Bout, do not appear explicitly in the formulation, but can
be subsequently obtained from the state variables by

Bin = Bb + Yik

2 Vi, (7.10)

Bout = Bb − Yik

2 Vk. (7.11)

Once the structure in Fig. 7.3 is adopted, no further modifications are required in the DA
method if zik is used within the BCBV matrix.

Even more important than medium-length lines in radial grids is the inclusion of
tap-changing transformers in the DA solver. The latter devices are massively used along
the power system and are of particular importance in the regulation of voltages in radial
grids, to which the DA method is specifically devoted.

Considering the consistent tap-changing transformer model presented in chapter 2,
which assumes that both nominal and off-nominal side shares the short-circuit impedance
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Fig. 7.3 Modified scheme for the DA method

Fig. 7.4 Equivalent circuit of the consistent tap-changing transformer model

and both shares are referred to off-nominal side as depicted in Fig. 7.4. Here, it is to be
noted from (2.7) that

Y off
sc = 1 + k

1 + k |a|2
Ysc, (7.12)

where k is the p.u. impedance ratio, the new parameter as described in chapter 2. Then
the fundamental equations of such a machine can be written as

Vi = aVp = a

(
Bout

|a|2Y off
sc

+ Vk

)
, (7.13)

Bout = aBin. (7.14)

As it is well established in chapter 2, from (7.13) and (7.14) the tap-changing transformer
can be represented through a π-equivalent model as in Fig. 7.5, which accounts for the
nodal equations of the machine

Bin = Y off
sc Vi − aY off

sc Vk, (7.15)
−Bout = − aY off

sc Vi + |a|2Y off
sc Vk. (7.16)

Fig. 7.5 π-equivalent model of the consistent tap-changing transformer



7.4 Phase-shifting Transformer Model 117

Using the same methodology described for π-equivalent lines, the inclusion of tap-
changing transformers in the DA method is thus achieved. Notice that, in this case, the
input and output currents of the transformer can be derived from the state variables as

Bin = Bb + (1 − a) (1 + k)
1 + ka2 YscVi, (7.17)

Bout = Bb − a (a − 1) (1 + k)
1 + ka2 YscVk. (7.18)

It is noteworthy that, from this π-equivalent model of the consistent tap-changing trans-
former, π-equivalent models of two conventional tap-changing transformer formulations
can also be derived by simply putting, k = 0 or k = ∞, as discussed in chapter 2.

7.4 Phase-shifting Transformer Model

Phase-shifting transformers cannot be represented through a π-equivalent model due to
the asymmetry of its admittance matrix. As a consequence, the methodology described
in Section 7.3 is not valid for the integration of these devices within the DA method.
However, in this section we present alternative pseudo π-equivalent models both for the
conventional and consistent phase-shifting transformer models, which are suitable to be
used with the DA method provided that slight modifications are included.

7.4.1 Pseudo π-equivalent of Conventional Model

Fig. 7.6 Equivalent circuit of the conventional phase-shifting transformer model with all the short-circuit
impedance provided by the nominal side

The equivalent circuit of one of the two alternative conventional phase-shifting transformer
models is depicted in Fig. 7.6 with all the short-circuit impedance provided by the nominal
side, provided that a is now a complex number, i.e. a = |a|ejθ, |a| being the regulation
between the primary and secondary voltage magnitudes and θ being the phase shift. The
fundamental equations of such a machine can be written as

Vi = aVp = a
(

Bout

Ysc

+ Vk

)
, (7.19)

Bout = a∗Bin, (7.20)

where a∗ is the complex conjugate of a.
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The nodal equations of a phase-shifting transformer can be derived from (7.19) and
(7.20) as

Bin = 1
a a∗ YscVi − 1

a∗ YscVk, (7.21)

−Bout = − 1
a

YscVi + YscVk, (7.22)

where the asymmetry of the admittance matrix becomes clear.
In order to comply with the principles of the DA method, a suitable equivalent of the

phase-shifting transformer should maintain the structure of (7.3). From (7.19) and (7.20),
it can be derived that

Vi − Vk = a

Ysc

Bout + aVk − Vk

= a

Ysc

(
Bout + a − 1

a
YscVk

)
= a

Ysc

Bb, (7.23)

where Bb, defined as
Bb = Bout + a − 1

a
YscVk, (7.24)

is an intermediate variable used to calculate the voltage between nodes i and k. Finally,
using (7.19), (7.20) and (7.23), the input current to the transformer can be formulated as

Bin = Ysc

a∗

[1
a

Vi − Vk

]
= Ysc

a∗

[
Vi − Vk + 1 − a

a
Vi

]
= Ysc

a∗

[
a

Ysc

Bb + 1 − a

a
Vi

]
= a

a∗ Bb + 1 − a

|a|2
YscVi

= ej2θBb + 1 − a

|a|2
YscVi. (7.25)

The equivalent circuit shown in Fig. 7.7 meets the set of equations (7.23)–(7.25) and
constitutes the conventional phase-shifting transformer model proposed in this contribution.
It is noteworthy that a third shunt leg is introduced here which compensates for

Bb − ej2θBb = a∗ − a

a∗ Bb. (7.26)

Though it is obviously not a pure π-equivalent circuit, it is especially suited to be embedded
in the DA power flow method, as is demonstrated in section 7.4.3.
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Fig. 7.7 Pseudo π-equivalent model of the phase-shifting transformer’s conventional model

Fig. 7.8 Equivalent circuit for the consistent phase-shifting transformer model

7.4.2 Pseudo π-equivalent of Consistent Model

The equivalent circuit shown in Fig. 7.6 is not valid to represent a consistent phase-shifting
transformer model as all the short-circuit impedance is considered there on one side (the
nominal side). Rather the equivalent circuit for the consistent phase-shifting transformer
model is shown in Fig. 7.8. Here, it is to be noted from (4.7) that

Y off
sc = 1 + k

1 + k |a|2
Ysc, (7.27)

where k is the p.u. impedance ratio, the new parameter as described in chapter 4. Then
the fundamental equations of such a machine can be written as

Vi = aVp = a

(
Bout

|a|2Y off
sc

+ Vk

)
, (7.28)

Bout = a∗Bin, (7.29)

where a∗ is the complex conjugate of a.
The nodal equations of a consistent phase-shifting transformer model can be derived

from (7.28) and (7.29) as

Bin = Y off
sc Vi − aY off

sc Vk, (7.30)
−Bout = − a∗Y off

sc Vi + |a|2Y off
sc Vk, (7.31)

where the asymmetry of the admittance matrix becomes clear.
In order to comply with the principles of the DA method, a suitable equivalent of the

phase-shifting transformer should maintain the structure of (7.3). From (7.28) and (7.29),
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Fig. 7.9 Pseudo π-equivalent model of the phase-shifting transformer’s consistent model

it can be derived that

Vi − Vk = a

|a|2Y off
sc

Bout + aVk − Vk

= a

|a|2Y off
sc

(
Bout + |a|2 (a − 1)

a
Y off

sc Vk

)

= 1
a∗Y off

sc

(
Bout +

(
|a|2 − a∗

)
Y off

sc Vk

)
= 1

a∗Y off
sc

Bb, (7.32)

where Bb, from (7.32) and (7.27), can be defined as

Bb = Bout +
(
|a|2 − a∗

)
Y off

sc Vk = Bout + (|a|2 − a∗) (1 + k)
1 + k |a|2

YscVk, (7.33)

which is an intermediate variable used to calculate the voltage between nodes i and k.
Finally, using (7.27), (7.28), (7.29) and (7.32), the input current to the transformer can
be formulated as

Bin = Y off
sc

[
a
(1

a
Vi − Vk

)]
= aY off

sc

[
Vi − Vk + 1 − a

a
Vi

]
= aY off

sc

[
1

a∗Y off
sc

Bb + 1 − a

a
Vi

]

= a

a∗ Bb + (1 − a) Y off
sc Vi

= ej2θBb + (1 − a) (1 + k)
1 + k |a|2

YscVi. (7.34)

The equivalent circuit shown in Fig. 7.9 meets the set of equations (7.32)–(7.34) and
constitutes the consistent phase-shifting transformer model proposed in this contribution.
Though it is obviously not a pure π-equivalent circuit, it is especially suited to be embedded
in the DA power flow method, as is demonstrated in section 7.4.3.
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7.4.3 Integration of the Model in the DA Method

Slight modifications in the application of the DA method have to be conducted in order
to integrate the pseudo π-equivalent circuis of the phase-shifting transformer into the
DA power flow calculation method. These modifications will be similar for both pseudo
π-equivalent circuits from the conventional and the consistent method. The first two
considerations are in fact extensions from the conclusions drawn in Section 7.3 for the
inclusion of π-equivalent models:

• The series impedance zik shown in Fig. 7.7 and 7.9 is respectively used for the
conventional and the consistent model to represent the impedance between nodes i

and k within the BCBV matrix.

• In the calculation of the current injection augmented vector I according to (7.9),
YB has to include new shunt admittance terms at the sending bus, i, and receiving
bus, k, according to Fig. 7.7 or 7.9 respectively for the conventional and consistent
method.

The third consideration requires the modification of the BIBC matrix and this modification
will be same for both the conventional and consistent models. As is depicted in Fig. 7.10(a),
let i′, k′ and b′ be the sending node, receiving node and branch index of a phase-shifting
transformer. In the same way, let b be the index of a branch located upstream from that
transformer. According to (7.25) and Fig. 7.7 (or (7.34) and Fig. 7.9 for the consensus
model), the effect of all the augmented current injections of the nodes downstream from i′

on the branch current, Bb, can be evaluated as ej2θBb′ . This fact can be easily considered
by modifying the entries BIBCbi of the matrix. If node i is now downstream from the
receiving node of branch b, the following term,

BIBCbi =
∏

t

ej2θt = ej2
∑

t
θt , (7.35)

applies instead of 1, with t being the different phase-shifting transformers between the
receiving node of branch b and node i, and θt being their corresponding phase angle shifts.
Fig. 7.10 illustrates the process for the cases of one phase-shifting transformer, example
(a), and two series connected phase-shifting transformers, example (b).

7.4.4 Dealing with Weakly Meshed Grids

Additional changes, apart from those described in Section 7.2, must be conducted to include
the proposed phase-shifting transformer models, both the conventional and consistent, in
the DA method in the context of weakly meshed topologies. Those modifications can be
summarized in the following aspects:

• The double-sided contribution of the current of a branch used to break the network,
Bc, to a branch current upstream from the first common parent node, Bb, is no
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Fig. 7.10 Building process of the BIBC matrix for grids with embedded phase-shifting transformers. (a)
Example with one phase-shifting transformer, and (b) Example with two phase-shifting transformers

longer canceled in this case, as it is shown in Fig. 7.11. Notice that even if Bc arises
with different current references in each path, both sides can be affected by different
phase angle jumps. As a consequence, a minor modification of the BIBC matrix is
required. For those branches, b, upstream from the first common parent node, the
contribution of a branch used to break the network, c, whose current branch is at
position i in the augmented injection vector [IgB new]T , is evaluated by the term

BIBCbi =
∏
ts

ej2θts −
∏
tr

ej2θtr = e
j2
∑
ts

θts

− e
j2
∑
tr

θtr

. (7.36)

In (7.36) ts stands for the different phase-shifting transformers found in the path
between the receiving node of branch b and the receiving node of branch c that
includes the sending node of branch c. In the same way, tr stands for the different
phase-shifting transformers found in the path between the receiving node of branch
b and the receiving node of branch c that does not include the sending node of
branch c. Finally, θts and θtr account for their corresponding phase angle shifts. The
example shown in Fig. 7.11 illustrates this situation using a simple network. Notice
that, in this example, one phase-shifting transformer exists between node n and
the receiving node k′ of branch c along the path that includes the sending node of
branch c. However, no phase-shifting transformers exist along the alternative path
connecting the same pair of nodes, which obviously leads to −1 in the second addend
of (7.36).
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Fig. 7.11 Example of the building process of the BIBC matrix for weakly meshed grids with embedded
phase-shifting transformers

• From the application of (7.5) and (7.6) to this case, it follows that

 ∆V

0

(n+1)

= BCBV · BIBC ·

 I

B new

(n)

=
 A P

M N

 I

B new

(n)

. (7.37)

Notice that the symmetry found in (7.7) does not appear in (7.37). In any case, the
application of Kron reduction leads to

∆V (n+1) = (A − P N−1M)I(n). (7.38)

The iterative use of (7.1), (7.9), (7.38) and (7.4), in this order, allows the application
of the DA method to weakly meshed grids including phase-shifting transformers.

7.5 Case Studies

To demonstrate the validity of the proposed methodology, three case studies are carried
out in this section. In the first one, the DA method is applied to a radial network in which
the phase shifts associated to the embedded power transformers are considered. In the
second case study, the same radial grid is turned into a weakly meshed grid by using a
phase-shifting transformer. While the first two case studies take advantage of the low
number of nodes of an industrial grid to give insight into the matrices building process,
the third case study is used to demonstrate the good convergence characteristics of the
method in a standard medium-size testbed.
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Fig. 7.12 Industrial installation with a distribution-FACTS-based mesh

7.5.1 Case 1: Radial Network

A simplified version of the customer owned grid of a steelworks in the north of Spain,
already tested in previous works [91], is considered in this case study. The grid is shown
in Fig. 7.12 and the parameters and configuration of the embedded transformers are listed
in Table 7.1. Table 7.2 shows the lengths and per km impedances of the lines according to
Fig. 7.2.

In [91], a proposal aimed to improve the efficiency of the grid and provide dynamic
voltage support to the facility was presented. This objective is conducted through the
application of a distribution FACTS usually known as Loop Power Flow Controller (LPFC).
The real-time optimization of the device is based on a heuristic algorithm out of the scope
of this chapter. However, the proper operation of that heuristic algorithm relies upon the
availability of a fast power flow algorithm, compatible with such a real-time application.
Even if other algorithms were considered, the DA method shows very good performance
in this environment, characterized by a small number of nodes and radial nature. The
controller uses the DA power flow algorithm to analyze the effect of different power
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Table 7.1 Transformer Parameters

Transf. # Sn [MVA] Rsc [%] Xsc [%] a [pu] θ [deg.] k [pu]
t23 2x270 0.90 12.90 1.0125 −30 1
t45 3x37.5 0.90 9.00 0.9875 0 1
t67 10 0.95 4.80 0.9250 30 1
t38 3x50 0.92 8.50 0.9750 30 1

Table 7.2 Branch Parameters

Branch # Length [km] zline [Ω/km] zik [pu]
1 4.7 0.025 + j0.240 2.428e−5 + j2.331e−4
3 1.5 0.161 + j0.151 1.386e−4 + j1.300e−4
5 0.3 0.568 + j0.133 1.893e−3 + j4.433e−4
8 1.8 0.161 + j0.112 1.522e−2 + j1.059e−2

injections at the power converter terminals (i.e. the real power, P , flowing from terminal
A to B in Fig. 7.12, and the decoupled reactive power injections at both terminals, QA

and QB). The addition of these values to the rest of the power injections at buses 7 and 9
turns the power flow problem into a pure radial case, despite of the mesh created by the
distribution FACTS. Table 7.3 shows the specific power injection values considered in this
case study. Note that the negative value of the reactive power injection in bus 9 is due to
the reactive power supply of the LPFC at terminal B for the current operation point. The
voltage at the slack bus is taken as 1.0 pu and as the origin of phase angles.

The use of the phase-shifting model proposed in this contribution for the tapped
transformers in such a radial network is not really mandatory, as it would be in Case 2.
This is due to the fact that, in a radial network, the phase shift of the transformers can
be initially disregarded and later taken into account on a subsequent post-processing of
the results that would correct the phase angle jump in each voltage area. Nevertheless,
the use of the proposed phase-shifting transformer models is applied in this case study in
order to avoid any post-processing of the results. Foremostly, the goal of this case study is

Table 7.3 Power Injections

Bus # Real power, Pi [MW] Reactive power, Qi, [Mvar]
2 0.0 0.0
3 84.0 26.0
4 0.0 0.0
5 34.0 12.0
6 0.0 0.0
7 4.9 12.6
8 52.0 39.0
9 2.7 −3.4
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

1 ej2θ23 ej2θ23 ej2(θ23+θ45) ej2(θ23+θ45) ej2(θ23+θ45+θ67) ej2(θ23+θ38) ej2(θ23+θ38)

0 1 1 ej2θ45 ej2θ45 ej2(θ45+θ67) ej2θ38 ej2θ38

0 0 1 ej2θ45 ej2θ45 ej2(θ45+θ67) 0 0
0 0 0 1 1 ej2θ67 0 0
0 0 0 0 1 ej2θ67 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


(7.39)



z12 0 0 0 0 0 0 0
z12 z23 0 0 0 0 0 0
z12 z23 z34 0 0 0 0 0
z12 z23 z34 z45 0 0 0 0
z12 z23 z34 z45 z56 0 0 0
z12 z23 z34 z45 z56 z67 0 0
z12 z23 0 0 0 0 z38 0
z12 z23 0 0 0 0 z38 z89


(7.40)

to validate the concept of integrating pseudo π-equivalent forms of both conventional and
consistent models of phase-shifting transformer. Hence, in this case study, simulations are
first run with the pseudo π -equivalent form of the conventional phase-shifting transformer
model and, subsequently, the results are compared with those obtained with the pseudo
π -equivalent form of the consistent phase-shifting transformer model. The BIBC and
BCBV matrices are calculated according to the considerations disclosed in sub-section
7.4.3. Their structure is shown in (7.39) and (7.40) for the sake of clarity. A flat voltage
profile is considered for the initial iteration step. The set (7.1)–(7.4) is applied iteratively
together with (7.9) to account for the augmented current injection vector, until a threshold
of 1e − 6 is reached in the maximum absolute deviation of two consecutive entries in
V . The voltages at the different buses, as state variables of the grid, are presented in
Table 7.4 for pseudo π-equivalent form of conventional model and in Table 7.5 for pseudo
π-equivalent form of consistent model. It can be seen from these tables, that, both of the
pseudo π-equivalent forms of phase-shifting transformer is functioning well and resulting
in close results. Finally, the system has also been implemented in the PowerWorldTM

Simulator software to crosscheck and demonstrate the validity of the results. Even if this
tool uses a Newton-Raphson approach and the conventional model of transformer with all
the impedance assigned to the nominal side to solve the system, the results are identical
up to the threshold level. Hence the validity of the concept and pseudo π-equivalent forms
are validated.
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Table 7.4 Case 1 – Results for the Pseudo π-equivalent of the Conventional Model

Bus # |Vi| [pu] θi [deg.] Bus # |Vi| [pu] θi [deg.]
2 0.9972 −0.226 6 0.9419 25.588
3 0.9579 27.278 7 0.9496 −5.097
4 0.9570 27.270 8 0.9574 −4.478
5 0.9436 25.436 9 0.9569 −4.980

Table 7.5 Case 1 – Results for the Pseudo π-equivalent of the Consistent Model

Bus # |Vi| [pu] θi [deg.] Bus # |Vi| [pu] θi [deg.]
2 0.9972 −0.226 6 0.9418 25.596
3 0.9582 27.310 7 0.9432 −5.151
4 0.9573 27.302 8 0.9571 −4.493
5 0.9435 25.444 9 0.9565 −4.995

7.5.2 Case 2: Weakly Meshed Grid

In this case study, the industrial network considered in the previous subsection is used to
verify the correct performance of the DA method with embedded phase-shifting transformers
in the context of a weakly meshed grid. With this aim, a similar role as the one played by
the LPFC in Case 1 is played by a tapped phase-shifting transformer, simulated with its
pseudo π-equivalent model of conventional formulation presented in Fig. 7.7. This device
regulates the power flow between nodes 7 and 9. The new setup is depicted in Fig. 7.13.
The parameters and selected tap of the phase-shifting transformer used to mesh the grid
is shown in Table 7.6 and Table 7.7 displays the series impedance, z79, of the new branch
according to the model shown in Fig. 7.7.

Only the proposal presented in this chapter allows the application of the efficient DA
method to this type of system. Notice that in this case a post-processing of the phase-angle
jumps of the transformers is not possible, due to the coupling between both sides of the
grid downstream from the first common parent node. The new branch, c = 9, is selected to
break the mesh, though any other branch within the loop (i.e. 3 to 8) could be used with
this aim. According to Section 7.2 and Sub-section 7.4.4, once the selection is made, this
branch is treated as an additional source of current injection at nodes 7 and 9. However,
the use of Kron reduction allows a straightforward consideration of the mesh, i.e. no
additional iterative processes are involved. For clarity purposes, the same power injections
considered in Case 1 are adopted here and once again the voltage at the slack bus is taken
as 1.0 pu and as the origin of phase angles.

Table 7.6 Phase-Shifting Transformer Parameters

Transf. # Sn [MVA] Rsc [%] Xsc [%] a [pu] θ [deg.]
t79 10 0.95 4.80 1.0000 5
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Fig. 7.13 Industrial installation meshed through a phase-shifting transformer

In this case study, the pseudo π-equivalent form for the conventional phase-shifting
transformer is used. The BIBC and BCBV matrices are calculated according to the
specific considerations described in sub-section 7.4.4. Their structure is shown in (7.41)
and (7.42). The entries BIBC19 and BIBC29 account for the double contribution of B9

to the branch currents B1 and B2, respectively. Notice, as an example, that for BIBC19

the phase shifts to be considered fit tr = [t23, t45, t67, t79]T and ts = [t23, t38]T . It should
be highlighted that both BIBC19 and BIBC29 would be zero in a meshed network not
including phase-shifting transformers, as the contribution of both sides would be canceled
upstream from the first common parent node in such a case.

Table 7.7 New Branch Parameters

Branch # Length [km] zline [Ω/km] zik [pu]
9 – – 5.280e−3 + j4.865e−2
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

1 ej2θ23 ej2θ23 ej2(θ23+θ45) ej2(θ23+θ45) ej2(θ23+θ45+θ67) ej2(θ23+θ38) ej2(θ23+θ38) ej2(θ23+θ45+θ67+θ79) − ej2(θ23+θ38)

0 1 1 ej2θ45 ej2θ45 ej2(θ45+θ67) ej2θ38 ej2θ38 ej2(θ45+θ67+θ79) − ej2θ38

0 0 1 ej2θ45 ej2θ45 ej2(θ45+θ67) 0 0 ej2(θ45+θ67+θ79)

0 0 0 1 1 ej2θ67 0 0 ej2(θ67+θ79)

0 0 0 0 1 ej2θ67 0 0 ej2(θ67+θ79)

0 0 0 0 0 1 0 0 ej2θ79

0 0 0 0 0 0 1 1 −1
0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 1


(7.41)

z12 0 0 0 0 0 0 0 0
z12 z23 0 0 0 0 0 0 0
z12 z23 z34 0 0 0 0 0 0
z12 z23 z34 z45 0 0 0 0 0
z12 z23 z34 z45 z56 0 0 0 0
z12 z23 z34 z45 z56 z67 0 0 0
z12 z23 0 0 0 0 z38 0 0
z12 z23 0 0 0 0 z38 z89 0

0 0 z34 z45 z56 z67 −z38 −z89 z79


(7.42)

As in the previous case study, a flat voltage profile is considered for the initial iteration
step. The set (7.1), (7.9), (7.38) and (7.4) is applied iteratively in this order until
convergence. With this aim, a threshold of 1e − 6 in the maximum absolute deviation of
two consecutive values in V is considered. The solution of the power flow problem, in the
form of the bus voltages taken as state variables of the system, is presented in Table 7.8.
The new setup was also implemented in the PowerWorldTM Simulator software package to
demonstrate the validity of the results. As in the previous case study, those results are
not showed here, due to a perfect match with the proposed methodology.

7.5.3 Case 3: Standard test grid

The IEEE 33-bus test distribution system [92] is used in this case study to assess the
impact of the inclusion of the proposed phase-shifting transformer model as in Fig. 7.7
on the convergence characteristics of the DA method. This standard testbed describes a
radial grid with 33 buses and 5 tie lines. A modified version of this testbed is presented
in this contribution in order to test the proposed model. The modified version, shown in
Fig. 7.14, uses two of the existing tie lines to mesh the network through phase-shifting

Table 7.8 Case 2 – Results: State Variables

Bus # |Vi| [pu] θi [deg.] Bus # |Vi| [pu] θi [deg.]
2 0.9972 −0.223 6 0.9423 25.955
3 0.9578 27.275 7 0.9485 −2.824
4 0.9569 27.273 8 0.9574 −4.714
5 0.9428 25.766 9 0.9478 −5.775
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Table 7.9 Phase-shifting Transformer Parameters

Transf. # Sn [kVA] Rsc [%] Xsc [%] a [pu] θ [deg.]
t12-34 250 0.95 4.80 1.0000 5
t18-35 400 0.95 4.80 1.0000 −3

transformers. With this aim, two additional buses, 34 and 35, are added to the standard
system. The power injections and line parameters of the IEEE 33-bus test distribution
system can be found in [92]. The parameters of the phase-shifting transformers, which are
the only data of the modified topology not presented in the original testbed, are shown in
Table 7.9.

While the original version is solved using the conventional DA formulation [21], only
the proposal included in this chapter allows the DA method to solve the modified testbed.
In this case study, the pseudo π-equivalent form for the conventional phase-shifting
transformer is used. The results for both cases are shown in Table 7.10 and Table 7.11.
The validity of these results was checked by using PowerWorldTM Simulator software.
System losses are reduced from 211.00 kW to 183.14 kW thanks to the control of the power
flows offered by the use of phase-shifting transformers. Furthermore, the minimum bus
voltage in the grid increases from 0.9038 pu to 0.9203 pu, which illustrates the voltage
support capability of the modified topology. A threshold of 1e−6 in the maximum absolute
deviation of two consecutive values in V was considered and, starting from a flat voltage
profile, only 6 iterations were needed to reach convergence in both topologies. This fact
proves that the excellent convergence characteristics of the DA method persist with the
inclusion of the proposed phase-shifting transformer model.

In order to generalize this result, a set of 10, 000 cases was solved with the aim of putting
additional stress on the convergence test. With this purpose, the power injections of the
33-bus testbed were randomly varied using independent normal distribution functions
for each real power and reactive power. The mean of these distribution functions was
set to their corresponding values in the original testbed, Pi and Qi, and the standard
deviation to 40% of these values, i.e. N(Pi, (0.4Pi)2) and N(Qi, (0.4Qi)2). The set was
solved by applying the conventional DA formulation to the original testbed topology, and
by applying the formulation proposed in this chapter to the modified topology. Table
7.12 shows the key results of this demanding test. The average and maximum number
of iterations were not increased by the use of the phase-shifting transformer model even
when the meshed configuration used in the modified version results in a more complex
topology. In fact, the average number of iterations is slightly reduced, as the voltage
support capability of the phase-shifting transformers leads to solutions closer to the flat
voltage profile used as an initial iteration point. The time required for these calculations
was estimated by averaging the results over the full set of simulation runs, which were
carried out in an Intel Core i5 - 2467M - CPU 1.60 GHz. This time increases from 1.4 ms
to 3.6 ms, which is due to the higher number of buses used in the modified topology, 35
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Table 7.10 Case 3 – IEEE 33-bus System: State Variables

Bus # |Vi| [pu] θi [deg.] Bus # |Vi| [pu] θi [deg.]
2 0.9970 0.015 19 0.9965 0.004
3 0.9829 0.097 20 0.9929 −0.063
4 0.9754 0.163 21 0.9922 −0.083
5 0.9680 0.230 22 0.9916 −0.103
6 0.9495 0.136 23 0.9793 0.066
7 0.9460 −0.096 24 0.9726 −0.023
8 0.9323 −0.249 25 0.9693 −0.067
9 0.9260 −0.324 26 0.9475 0.175

10 0.9201 −0.388 27 0.9450 0.232
11 0.9192 −0.380 28 0.9335 0.315
12 0.9177 −0.368 29 0.9253 0.393
13 0.9115 −0.462 30 0.9218 0.498
14 0.9092 −0.542 31 0.9176 0.413
15 0.9078 −0.580 32 0.9167 0.390
16 0.9064 −0.604 33 0.9164 0.383
17 0.9044 −0.683 34 — —
18 0.9038 −0.693 35 — —

Table 7.11 Case 3 – Modified IEEE 33-bus System: State Variables

Bus # |Vi| [pu] θi [deg.] Bus # |Vi| [pu] θi [deg.]
2 0.9970 0.016 19 0.9959 −0.010
3 0.9845 0.116 20 0.9873 −0.204
4 0.9781 0.196 21 0.9851 −0.275
5 0.9719 0.277 22 0.9819 −0.401
6 0.9562 0.263 23 0.9809 0.085
7 0.9537 0.088 24 0.9742 −0.003
8 0.9445 −0.043 25 0.9709 −0.047
9 0.9409 −0.104 26 0.9544 0.313

10 0.9377 −0.155 27 0.9520 0.384
11 0.9372 −0.154 28 0.9412 0.545
12 0.9365 −0.154 29 0.9334 0.683
13 0.9296 −0.347 30 0.9302 0.815
14 0.9272 −0.480 31 0.9266 0.814
15 0.9255 −0.563 32 0.9258 0.821
16 0.9237 −0.637 33 0.9255 0.853
17 0.9213 −0.847 34 0.9750 −0.605
18 0.9203 −0.909 35 0.9257 0.896
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Table 7.12 Convergence Characteristics: Set of 10, 000 Simulations

Topology Av. iter. # Max. iter. # Av. sim. time [ms]
Base case 6.0244 7 1.4019
Modified version 5.9528 7 3.5503

vs. 33, and particularly, to the additional matrix manipulations involved in the treatment
of meshed grids, according to Subsection 7.4.4. This test clearly demonstrates that the
convergence characteristics of the DA method are not negatively affected by the inclusion
of the phase-shifting model proposed in this contribution.

7.6 Concluding Remarks

This chapter proposes an extension of the well-known DA power flow method applied to
balanced networks in order to allow its use with common grid components not previously
considered in the existing formulation. The inclusion of π-equivalent line models and
transformer tap changers is quite straightforward, and only a formal formulation of the
considerations needed to use these components is stated in this chapter. However, the
inclusion of phase-shifting transformer models in the DA method is far from obvious,
due to the inherent asymmetry of their admittance matrix. Only a custom model of
these devices can allow the application of the DA method in weakly meshed networks,
where the phase angle of transformers cannot be corrected by post-processing. Thus,
this proposal introduces two new models of phase-shifting transformers, one extended
from its conventional model and another extended from its consistent model (proposed
as a contribution of this dissertation), together with a set of slight modifications to be
included in the standard DA power flow formulation. Two case studies in the context of
the application of fast power flow algorithms to industrial networks are presented. Those
cases allow to demonstrate the validity of the proposal both with radial and weakly-meshed
topologies. A third case study is carried out in a medium-size test system in order to
prove that the excellent convergence characteristics of the DA method are not deteriorated
by the inclusion of the new phase-shifting transformer model. In each case, the results
are compared with those obtained from a popular software package that uses a different
approach, leading to a perfect match.



Conclusions and Future Work

Accurate models of power system components are today an essential tool for the operation
and planning of power systems. The new paradigm of smart grids, with an increasing
penetration of distributed generation and electric vehicles, makes the role of voltage
regulating transformers increasingly important at all levels of the electrical infrastructure.

In chapter 2, it has been established that the practice of neglecting the fact that the
short-circuit impedance is the result of contributions from two different windings can lead
to unacceptable discrepancies in the formulation of the tap-changing transformer model.
This doctoral work thereby proposes a new general model which includes the contribution
of each winding to the short-circuit impedance. If data is not available or cannot be
estimated, the new model allows to consider a fair contribution (50/50) of both windings,
which is an accepted practice in engineering.

The new models presented in chapters 2, and 3, can be tuned to match the results
from conventional alternatives, which consider the short-circuit impedance is provided by
only one of the transformer windings, either the off-nominal or nominal turns side. This
fact makes the new model useful to understand the basis of each formulation, providing a
clear perspective on the influence of the underlying assumptions.

In chapters 2, the works demonstrate that the discrepancies caused by conventional
models of tap-changing transformer can be unacceptable at extreme tap positions and
are greatly influenced by the operating point of the transformer. The studies conducted
there demonstrate that those discrepancies can be significant even in the case of a well-
known standard grid, which is illustrated by a power flow analysis and a stability analysis.
The inclusion of the proposed tap-changing transformer model in power system software
packages, tuned with the 50/50 values, can significantly help to improve the consistency
of power system studies without the need to provide additional data.

In chapter 3, several variations of the consistent model of tap-changing transformer
are presented in order to suit different requirements, depending on the operational setup,
chosen bases, and the number of phases to be considered. This way, the ambiguity around
tap-changing transformer modeling has been addressed and resolved.

Also, in chapter 4, consistent models have been developed for asymmetrical phase-
shifting transformers reaching similar conclusions.

In chapter 5, to make the consistent modeling approach more accurate, an offline
state-vector-augmented multi-snapshot-based parameter estimation method, capable of
providing accurate estimates of transformer impedance ratios, was proposed, validated,
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and analyzed. The case studies there, allow to conclude that a lower number of snapshots,
in the range 1 to 10, are not enough to derive accurate results regardless of the redundancy
level. However, the inclusion of a higher number of snapshots always allows to reach
acceptable estimates. Though a low measurement redundancy level requires a higher
number of snapshots to reach the same accuracy, this work demonstrates that even those
systems close to the limit of observability can be handled successfully by the proposed
algorithm. Importantly, the case studies conducted in this work clearly demonstrate that
the procurement of accurate estimates for the transformer short-circuit impedance ratio
can positively impact the accuracy of critical tools such as online power system state
estimators.

Moreover, in chapter 6, this doctoral work extended its contributions by providing the
models needed for the inclusion of step voltage regulators (of all configurations) into a
general, three-phase, and unbalanced power flow problem. The general model for three-
phase step voltage regulators is included in a 4-node test feeder and solved by means
of an unbalanced Backward-Forward Sweep solver. The results obtained are presented
as a benchmark to allow researchers and power system software developers to test their
algorithms in a well-proven environment.

Finally, in chapter 7, this work proposed an extension of the well-known DA power
flow method applied to balanced networks in order to allow its use with common grid
components not previously considered in the existing formulation. It was found that the
inclusion of π-equivalent line models and transformer tap changers is quite straightforward,
and only a formal formulation of the considerations needed to use these components was
included in this work. However, the inclusion of phase-shifting transformer models in the
DA method is far from obvious, due to the inherent asymmetry of their admittance matrix.
Only a custom model of these devices can allow the application of the DA method in
weakly meshed networks, where the phase angle of transformers cannot be corrected by
post-processing. Thus, this work introduces two new models of phase-shifting transformers,
one extended from its conventional model and another extended from the consistent model
introduced in this dissertation, together with a set of slight modifications to be included
in the standard DA power flow formulation. Case studies allowed to demonstrate the
validity of the proposal both with radial and weakly-meshed topologies. It was also tested
that the excellent convergence characteristics of the DA method are not deteriorated by
the inclusion of the new phase-shifting transformer model. This work, therefore, opens
the possibility of using the DA power flow method in grids with embedded phase-shifting
transformers.

The work presented in this dissertation opens the door to a wide range of interesting
research possibilities. Some of these lines correspond to ongoing activities, while others
are just schedule as future work. Among them, it is worth to mention:

• A study of the impact of phasor measurement units (PMU) in the estimation of
transformer impedance ratio is ongoing. As it is discussed in chapter 5, there
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are some hindrances that make the estimation of transformer impedance ratio a
challenging task. Thus, the study of the impact and expected benefit of including
PMU measurements in the parameter estimation algorithm seems promising.

• The development of a Kalman filter-based online parameter estimator for the short-
circuit impedance ratio, as an improvement of the off-line multi-snapshot technique
presented in this work, has been scheduled as future work. Interestingly, Kalman
based estimation methods can include past measurements with varying weights
in the estimation process. Thus a Kalman filter implementation will be able to
overcome the difficulties discussed in chapter 5 and deliver the continuous estimation
of transformer impedance ratio as an online estimator.

• A study of the advantage in bad data detection with the estimated values of
transformer impedance ratio is ongoing. Better models and accurate parameter
always aids in the bad data detection function of state estimation. Thus, it is
interesting to further study how the estimates of transformer impedance ratio within
the context of the consistent transformer model would aid in the improvement of
the bad data detection function.



Conclusiones y Trabajos Futuros

Disponer de modelos precisos de los componentes del sistema eléctrico es hoy en día un
asunto esencial para la correcta operación y planificación de las redes eléctricas. El nuevo
paradigma que constituyen las redes inteligentes, con una creciente penetración de la
generación distribuida y los vehículos eléctricos, hace que el papel de los transformadores
reguladores de tensión sea cada vez más importante en todos los niveles de la infraestructura
eléctrica.

El capítulo 2 de este trabajo demuestra que la práctica de despreciar el hecho de que
la impedancia de cortocircuito es el resultado de las contribuciones de dos devanados
diferentes puede conducir a discrepancias inaceptables en la formulación del modelo del
transformador con tomas. Por ello, este documento propone un nuevo modelo general
que incluye la contribución de cada devanado a la impedancia de cortocircuito. Si no se
dispone de datos específicos sobre este aspecto o tal contribución no se puede estimar, el
nuevo modelo permite considerar una contribución equitativa (50/50) de ambos devanados,
lo que resulta ser una práctica aceptada en ingeniería.

Los nuevos modelos presentados en los capítulos 2 y 3 pueden ajustarse a los resultados
de las alternativas convencionales, que consideran que la impedancia de cortocircuito es
proporcionada por uno solo de los devanados del transformador, ya sea el nominal o el
devanado con tomas. Este hecho hace que el nuevo modelo sea útil para entender la
base de cada formulación, proporcionando una perspectiva clara sobre la influencia de las
suposiciones subyacentes.

En el capítulo 2, el trabajo demuestra que las discrepancias causadas por los modelos
convencionales de transformador con tomas pueden ser inaceptables en las posiciones
extremas del cambiador, y que la forma en que aparecen, es muy influenciada por el punto
de funcionamiento de la máquina. Los estudios realizados en este capítulo demuestran
que esas discrepancias pueden ser significativas incluso en el caso de análisis de redes
estándar bien conocidas, lo que se ilustra con un estudio de flujo de cargas y un análisis
de estabilidad. La inclusión del modelo de transformador con tomas propuesto en este
trabajo en los paquetes de software de análisis de sistemas de potencia, aun simplemente
ajustado con los valores 50/50, puede ayudar significativamente a mejorar la consistencia
de estos estudios sin necesidad de proporcionar datos adicionales.

En el capítulo 3 se presentan distintas variaciones del modelo consistente del transfor-
mador con tomas propuesto en este trabajo con el fin de adaptarse a diferentes requisitos,
dependiendo de la configuración operativa, las bases elegidas y el número de fases a con-



7.6 Concluding Remarks 138

siderar. De este modo, se abordada y resuelve cualquier ambigüedad en torno al modelado
de este dispositivo. En el capítulo 4 el modelo consistente propuesto se extiende al estudio
de los transformadores desfasadores asimétricos, alcanzándose conclusiones similares.

En el capítulo 5, y de cara a aumentar la precisión del modelo consistente presentado
en este trabajo, se ha propuesto, validado y analizado un método de estimación de
parámetros offline basado en vectores de estado aumentados con instantes múltiples, capaz
de proporcionar estimaciones precisas de las ratios de impedancia de cortocircuito de los
transformadores. Los casos estudiados permiten concluir que la inclusión de medidas de
un número bajo de instantes, en el rango de 1 a 10, no es suficiente para dar lugar a
resultados precisos, independientemente del nivel de redundancia del sistema. Sin embargo,
la inclusión de un número mayor de instantes siempre permite alcanzar estimaciones
aceptables. Aunque un bajo nivel de redundancia de las medidas requiere un mayor
número de instantes para alcanzar la misma precisión, este trabajo demuestra que incluso
aquellos sistemas cercanos al límite de observabilidad pueden ser manejados con éxito por
el algoritmo propuesto. Es importante destacar que los casos de estudio analizados en este
trabajo demuestran claramente que la obtención de estimaciones precisas de la ratio de
impedancia de cortocircuito del transformador puede influir positivamente en la precisión
de herramientas críticas como los estimadores de estado online.

Además, en el capítulo 6, este trabajo doctoral amplía sus aportaciones proporcionando
los modelos necesarios para la inclusión de reguladores de tensión en cualquier de sus
configuraciones en el análisis de flujos de carga trifásicos desequilibrados. El modelo general
alcanzado para estos dispositivos se incluye en una red de prueba de 4 nudos que ser
resuelve mediante un algoritmo Backward-Forward Sweep desequilibrado. Los resultados
obtenidos se presentan como referencia para que los investigadores y desarrolladores de
software de sistemas de potencia puedan validar sus algoritmos en un entorno bien probado.

Por último, en el capítulo 7, este trabajo propone una extensión del conocido método de
flujo de cargas de Aproximación Directa (DA) para redes equilibradas, de cara a permitir
su uso con componentes comunes de la red no considerados hasta la fecha en la formulación
existente. Este trabajo demuestra que la extensión del método para la inclusión de modelos
de líneas en π o transformadores con tomas es bastante sencilla, por lo que el documento se
limita a establecer consideraciones formales sobre su aplicación. Sin embargo, la inclusión
en el método DA de los modelos de transformadores desfasadores no es en absoluto trivial
debido a la asimetría inherente a su matriz de admitancias. Sólo un modelo personalizado
de estos dispositivos puede permitir la aplicación del método DA en redes débilmente
malladas, en las que el ángulo de fase de los transformadores no puede corregirse mediante
postprocesamiento. Así, este trabajo introduce dos nuevos modelos de transformadores
desfasadores, uno que surge del modelo convencional y otro del modelo consistente aquí
propuesto. La aplicación de estos modelos junto con una serie de ligeras modificaciones
a incluir en la formulación estándar de flujo de cargas DA permite la aplicación de este
algoritmo a redes que incluyen este tipo de dispositivos. Un conjunto de casos de estudio



7.6 Concluding Remarks 139

permite demostrar la validez de la propuesta tanto con topologías radiales como débilmente
malladas. El trabajo demuestra también que las excelentes características de convergencia
del método DA no se ven deterioradas por la inclusión del nuevo modelo de transformador
desfasador.

El trabajo presentado en esta tesis abre la puerta a un amplio abanico de interesantes
posibilidades de investigación. Algunas de estas líneas corresponden a actividades en
curso, mientras que otras sólo están programadas como trabajos futuros. Entre ellas, cabe
destacar:

• En la actualidad, se está explorando el impacto que los sincrofasores (phasor-
measurement units, PMU) pueden tener en la estimación de la ratio de impedancia
de cortocircuito de los transformadores. Tal como se apunta en el capítulo 5, diversos
obstáculos hacen compleja la estimación precisa de este parámetro. El beneficio es-
perado a partir de la inclusión de las medidas aportadas por estos nuevos dispositivos
resulta prometedor y merece ser explorado en profundidad.

• Se ha dejado como trabajo futuro el desarrollo de un estimador de parámetros online
basado en filtros de Kalman para la determinación de la ratio de impedancia de
cortocircuito. Esta técnica puede aportar mejoras sobre la aproximación offline
basada en instantes múltiples presentada aquí. Resulta interesante que los métodos
de estimación basados en filtros de Kalman puedan incluir mediciones pasadas con
pesos variables en el proceso de estimación. Por lo tanto, una implementación de
este tipo podría superar algunas de las dificultades discutidas en el capítulo 5 y
ofrecer una estimación continua de la ratio de impedancia capaz de ser integrada
directamente en un estimador de estado online.

• En la actualidad, se está estudiando la ventaja que, para la detección de datos
erróneos, puede tener el uso de valores estimados de la ratio de impedancia de
cortocircuito del transformador. El uso de modelos mejorados y parámetros precisos
tiene sin duda un efecto positivo en la función de detección de datos erróneos por
parte de los estimadores de estado. El impacto concreto que las mejoras introducidas
en este trabajo pueden tener en estos aspectos merecen ser estudiadas en profundidad.
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Appendix A

Full Set of Results for the 4-node
Test Feeder

The result Tables as described in Section 6.6 are included here.

Table A.1 Type A Regulators. Inductive Balanced Loading. Before Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [0 0 0] [0 0 0] [0 — 0] [0 0 —] [— 0 0]

N
od

e
2 V1 7125∠ − 0.3◦ 12360∠29.7◦ 12364∠29.7◦ 12365∠29.7◦ 12362∠29.7◦

V2 7145∠ − 120.4◦ 12370∠ − 120.4◦ 12375∠ − 90.4◦ 12376∠ − 90.4◦ 12373∠ − 90.4◦

V3 7136∠119.6◦ 12346∠149.6◦ 12351∠149.6◦ 12353∠149.6◦ 12349∠149.6◦

N
od

e
3 V1 6842∠ − 4◦ 11870∠26.7◦ 12364∠29.7◦ 11951∠28.8◦ 11891∠26.7◦

V2 6863∠ − 123.4◦ 11882∠ − 93.4◦ 12125∠ − 93.0◦ 12194∠ − 89.8◦ 11950∠ − 91.2◦

V3 6854∠116.6◦ 11857∠146.6◦ 11749∠149.4◦ 12330∠148.6◦ 12296∠147.5◦

N
od

e
4 V1 6752∠ − 3.8◦ 11737∠26.3◦ 12231∠29.3◦ 11821∠28.4◦ 11762∠26.3◦

V2 6798∠ − 123.9◦ 11764∠ − 94.0◦ 12012∠ − 93.5◦ 12077∠ − 90.3◦ 11832∠ − 91.8◦

V3 6778∠116.0◦ 11709∠146.0◦ 11601∠148.9◦ 12187∠148.0◦ 12150∠147.0◦

Li
ne

12 Ia 296.2∠ − 29.7◦ 295.2∠ − 29.7◦ 290.3∠ − 27.6◦ 288.1∠ − 27.1◦ 290.9∠ − 28.7◦

Ib 294.2∠ − 149.7◦ 295.2∠ − 149.7◦ 289.8∠ − 147.7◦ 288.0∠ − 147.1◦ 290.7∠ − 148.7◦

Ic 295.1∠90.2◦ 295.2∠90.3◦ 290.0∠92.4◦ 288.0∠92.9◦ 290.8∠91.4◦

Li
ne

34 Ia 296.2∠ − 29.7◦ 295.2∠ − 29.7◦ 290.3∠ − 27.6◦ 288.1∠ − 27.1◦ 290.9∠ − 28.7◦

Ib 294.2∠ − 149.7◦ 295.2∠ − 149.7◦ 289.8∠ − 147.7◦ 288.0∠ − 147.1◦ 290.7∠ − 148.7◦

Ic 295.1∠90.2◦ 295.2∠90.3◦ 290.0∠92.4◦ 288.0∠92.9◦ 290.8∠91.4◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.
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Table A.2 Type A Regulators. Inductive Balanced Loading. After Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [2 1 2] [2 1 2] [-5 — 4] [1 -3 —] [— 1 2]

N
od

e
2 V1 7125∠ − 0.3◦ 12360∠29.7◦ 12365∠29.7◦ 12363∠29.7◦ 12362∠29.7◦

V2 7145∠ − 120.3◦ 12371∠ − 90.4◦ 12377∠ − 90.4◦ 12377∠ − 90.4◦ 12373∠ − 90.4◦

V3 7136∠119.6◦ 12346∠149.6◦ 12347∠149.6◦ 12354∠149.6◦ 12349∠149.6◦

N
od

e
3 V1 6936∠ − 3.3◦ 12075∠27.1◦ 11979∠29.7◦ 12025∠28.8◦ 12015∠26.4◦

V2 6910∠ − 123.3◦ 12046∠ − 92.7◦ 12070∠ − 90.2◦ 11965∠ − 89.8◦ 12031∠ − 91.2◦

V3 6947∠116.7◦ 12098∠147.3◦ 12040∠149.4◦ 12253∠149.8◦ 12450∠147.6◦

N
od

e
4 V1 6847∠ − 3.7◦ 11944∠26.7◦ 11847∠29.3◦ 11895∠28.4◦ 11887∠26.0◦

V2 6845∠ − 123.8◦ 11930∠ − 93.2◦ 11953∠ − 90.7◦ 11848∠ − 90.3◦ 11914∠ − 91.7◦

V3 6873∠116.1◦ 11952∠146.8◦ 11894∠148.9◦ 12107∠149.2◦ 12305∠147.0◦

Li
ne

12 Ia 295.8∠ − 29.6◦ 295.5∠ − 29.7◦ 290.6∠ − 29.5◦ 291.7∠ − 26.7◦ 289.8∠ − 28.8◦

Ib 294.0∠ − 149.7◦ 293.7∠ − 149.7◦ 282.1∠ − 146.7◦ 288.1∠ − 148.0◦ 291.3∠ − 148.7◦

Ic 294.6∠90.3◦ 294.6∠90.6◦ 298.4∠93.3◦ 284.5∠93.3◦ 290.6∠91.0◦

Li
ne

34 Ia 292.1∠ − 29.6◦ 290.1∠ − 29.1◦ 291.1∠ − 29.7◦ 289.9∠ − 26.7◦ 288.0∠ − 28.8◦

Ib 292.2∠ − 149.7◦ 290.1∠ − 149.1◦ 291.2∠ − 146.7◦ 289.9∠ − 146.7◦ 287.7∠ − 148.7◦

Ic 291.0∠90.3◦ 290.1∠90.9◦ 291.1∠93.3◦ 289.9∠93.3◦ 288.0∠91.3◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.

Table A.3 Type A Regulators. Capacitive Balanced Loading. Before Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [0 0 0] [0 0 0] [0 — 0] [0 0 —] [— 0 0]

N
od

e
2 V1 7184∠ − 0.6◦ 12451∠29.5◦ 12454∠29.5◦ 12455∠29.5◦ 12453∠29.5◦

V2 7199∠ − 120.5◦ 12473∠ − 90.6◦ 12477∠ − 90.6◦ 12478∠ − 90.6◦ 12475∠ − 90.6◦

V3 7198∠119.4◦ 12457∠149.4◦ 12461∠149.4◦ 12463∠149.4◦ 12460∠149.4◦

N
od

e
3 V1 7289∠ − 3.9◦ 12631∠26.1◦ 12454∠29.5◦ 12346∠27.5◦ 12648∠26.2◦

V2 7304∠ − 123.8◦ 12654∠ − 93.9◦ 12733∠ − 92.9◦ 12265∠ − 90.8◦ 12358∠ − 92.5◦

V3 7303∠116.1◦ 12639∠146.1◦ 12138∠147.1◦ 12619∠148.6◦ 12762∠148.0◦

N
od

e
4 V1 7277∠ − 4.7◦ 12617∠25.5◦ 12436∠28.8◦ 12334∠26.8◦ 12637∠25.5◦

V2 7309∠ − 124.5◦ 12667∠ − 94.6◦ 12749∠ − 93.6◦ 12277∠ − 91.5◦ 12371∠ − 93.2◦

V3 7308∠115.4◦ 12636∠145.3◦ 12136∠146.3◦ 12614∠147.8◦ 12756∠147.2◦

Li
ne

12 Ia 274.9∠21.1◦ 274.1∠21.2◦ 278.4∠22.9◦ 279.2∠23.5◦ 275.1∠22.3◦

Ib 273.7∠ − 98.6◦ 274.1∠ − 98.8◦ 278.4∠ − 97.0◦ 279.1∠ − 96.5◦ 275.2∠ − 97.7◦

Ic 273.7∠141.2◦ 274.1∠141.2◦ 278.7∠143.0◦ 279.3∠143.6◦ 275.3∠142.3◦

Li
ne

34 Ia 274.9∠21.1◦ 274.1∠21.2◦ 278.4∠22.9◦ 279.2∠23.5◦ 275.1∠22.3◦

Ib 273.7∠ − 98.6◦ 274.1∠ − 98.8◦ 278.4∠ − 97.0◦ 279.1∠ − 96.5◦ 275.2∠ − 97.7◦

Ic 273.7∠141.2◦ 274.1∠141.2◦ 278.7∠143.0◦ 279.3∠143.6◦ 275.3∠142.3◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.



148

Table A.4 Type A Regulators. Capacitive Balanced Loading. After Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [-9 -10 -10] [-6 -6 -6] [-7 — -3] [-6 -5 —] [— -6 -11]

N
od

e
2 V1 7184∠ − 0.6◦ 12450∠29.5◦ 12453∠29.5◦ 12455∠29.5◦ 12452∠29.5◦

V2 7198∠ − 120.5◦ 12472∠ − 90.6◦ 12478∠ − 90.6◦ 12478∠ − 90.6◦ 12478∠ − 90.6◦

V3 7198∠119.4◦ 12456∠149.4◦ 12460∠149.4◦ 12462∠149.4◦ 12463∠149.4◦

N
od

e
3 V1 6888∠ − 4.4◦ 11943∠23.8◦ 11908∠29.5◦ 11873∠27.3◦ 11986∠27.4◦

V2 6858∠ − 124.3◦ 11964∠ − 96.2◦ 12346∠ − 91.9◦ 11865∠ − 90.9◦ 11889∠ − 92.7◦

V3 6856∠115.7◦ 11952∠143.7◦ 11889∠147.0◦ 12195∠148.3◦ 11927∠147.8◦

N
od

e
4 V1 6875∠ − 5.2◦ 11928∠23.0◦ 11890∠28.7◦ 11861∠26.6◦ 11971∠26.7◦

V2 6863∠ − 125.0◦ 11979∠ − 97.0◦ 12360∠ − 92.6◦ 11877∠ − 91.6◦ 11904∠ − 93.4◦

V3 6862∠114.8◦ 11948∠142.8◦ 11889∠146.1◦ 12190∠147.4◦ 11922∠146.9◦

Li
ne

12 Ia 274.5∠20.6◦ 273.7∠20.8◦ 278.5∠22.0◦ 278.5∠23.3◦ 279.4∠22.5◦

Ib 273.2∠ − 99.2◦ 273.7∠ − 99.2◦ 275.1∠ − 96.7◦ 279.2∠ − 96.4◦ 270.4∠ − 97.5◦

Ic 273.3∠140.7◦ 273.7∠140.8◦ 282.3∠143.2◦ 280.3∠143.3◦ 275.0∠144.2◦

Li
ne

34 Ia 290.9∠20.6◦ 289.8∠18.8◦ 287.4∠23.2◦ 289.3∠23.3◦ 290.3∠22.5◦

Ib 291.4∠ − 99.2◦ 289.8∠ − 101.2◦ 287.7∠ − 96.7◦ 289.2∠ − 96.7◦ 290.3∠ − 97.5◦

Ic 291.5∠140.7◦ 289.9∠138.8◦ 287.7∠143.2◦ 289.3∠143.3◦ 290.3∠142.5◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.

Table A.5 Type A Regulators. Inductive Unbalanced Loading. Before Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [0 0 0] [0 0 0] [0 — 0] [0 0 —] [— 0 0]

N
od

e
2 V1 7161∠ − 0.1◦ 12361∠29.8◦ 12364∠29.8◦ 12366∠29.8◦ 12364∠29.8◦

V2 7119∠ − 120.3◦ 12391∠ − 90.5◦ 12396∠ − 90.5◦ 12397∠ − 90.5◦ 12394∠ − 90.5◦

V3 7125∠119.3◦ 12332∠150.0◦ 12338∠149.5◦ 12340∠149.5◦ 12337∠149.5◦

N
od

e
3 V1 6929∠ − 2.2◦ 11846∠27.3◦ 12364∠29.8◦ 11907∠29.0◦ 11873∠27.2◦

V2 6836∠ − 123.3◦ 12040∠ − 93.6◦ 12247∠ − 93.2◦ 12217∠ − 89.7◦ 12042∠ − 91.2◦

V3 6826∠115.1◦ 11793∠146.0◦ 11759∠148.8◦ 12294∠148.4◦ 12236∠147.3◦

N
od

e
4 V1 6881∠ − 2.3◦ 11713∠26.9◦ 12232∠29.5◦ 11779∠28.7◦ 11744∠26.9◦

V2 6739∠ − 123.7◦ 11949∠ − 94.2◦ 12161∠ − 93.8◦ 12125∠ − 90.3◦ 11949∠ − 91.8◦

V3 6744∠114.1◦ 11630∠145.4◦ 11597∠148.2◦ 12135∠147.9◦ 12076∠146.7◦

Li
ne

12 Ia 218.0∠ − 34.1◦ 315.4∠ − 35.3◦ 311.6∠ − 33.1◦ 307.0∠ − 32.6◦ 309.0∠ − 34.0◦

Ib 296.8∠ − 149.5◦ 250.3∠ − 147.6◦ 246.1∠ − 146.0◦ 244.7∠ − 144.7◦ 246.7∠ − 146.2◦

Ic 370.7∠95.9◦ 319.6∠98.3◦ 313.5∠100.5◦ 312.4∠100.8◦ 314.4∠99.4◦

Li
ne

34 Ia 218.0∠ − 34.1◦ 315.4∠ − 35.3◦ 311.6∠ − 33.1◦ 307.0∠ − 32.6◦ 309.0∠ − 34.0◦

Ib 296.8∠ − 149.5◦ 250.3∠ − 147.6◦ 246.1∠ − 146.0◦ 244.7∠ − 144.7◦ 246.7∠ − 146.2◦

Ic 370.7∠95.9◦ 319.6∠98.3◦ 313.5∠100.5◦ 312.4∠100.8◦ 314.4∠99.4◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.
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Table A.6 Type A Regulators. Inductive Unbalanced Loading. After Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [0 3 3] [3 -2 2] [-5 — 4] [1 -3 —] [— -1 4]

N
od

e
2 V1 7161∠ − 0.1◦ 12360∠29.8◦ 12365∠29.8◦ 12364∠29.8◦ 12365∠29.8◦

V2 7120∠ − 120.3◦ 12393∠ − 90.5◦ 12398∠ − 90.5◦ 12398∠ − 90.5◦ 12390∠ − 90.4◦

V3 7126∠119.3◦ 12333∠149.5◦ 12334∠149.5◦ 12342∠149.5◦ 12337∠149.6◦

N
od

e
3 V1 6929∠ − 2.2◦ 12017∠26.7◦ 11979∠29.8◦ 11981∠29.0◦ 12011∠25.7◦

V2 6976∠ − 123.2◦ 11966∠ − 93.0◦ 12191∠ − 90.4◦ 11987∠ − 89.7◦ 11963∠ − 91.2◦

V3 6968∠115.3◦ 12065∠147.1◦ 12052∠148.8◦ 12216∠149.6◦ 12543∠147.4◦

N
od

e
4 V1 6880∠ − 2.3◦ 11887∠26.3◦ 11848∠29.5◦ 11853∠28.7◦ 11886∠25.4◦

V2 6882∠ − 123.6◦ 11875∠ − 93.6◦ 12101∠ − 91.0◦ 11895∠ − 90.3◦ 11871∠ − 91.8◦

V3 6887∠114.3◦ 11903∠146.4◦ 11892∠148.2◦ 12055∠149.0◦ 12384∠146.8◦

Li
ne

12 Ia 218.0∠ − 34.1◦ 319.5∠ − 35.2◦ 312.7∠ − 34.8◦ 310.9∠ − 32.0◦ 302.7∠ − 34.3◦

Ib 296.1∠ − 149.4◦ 247.2∠ − 148.4◦ 238.7∠ − 144.7◦ 245.3∠ − 146.0◦ 250.5∠ − 146.4◦

Ic 369.8∠96.1◦ 318.0∠99.1◦ 322.3∠101.1◦ 308.1∠101.3◦ 312.0∠97.6◦

Li
ne

34 Ia 218.0∠ − 34.1◦ 310.9∠ − 34.7◦ 309.9∠ − 32.4◦ 308.9∠ − 32.0◦ 304.6∠ − 34.3◦

Ib 290.6∠ − 149.4◦ 248.1∠ − 147.1◦ 246.4∠ − 144.7◦ 246.9∠ − 144.3◦ 244.3∠ − 146.4◦

Ic 363.0∠96.1◦ 315.3∠98.6◦ 314.4∠101.1◦ 313.9∠101.3◦ 310.6∠98.9◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.

Table A.7 Type A Regulators. Capacitive Unbalanced Loading. Before Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [0 0 0] [0 0 0] [0 — 0] [0 0 —] [— 0 0]

N
od

e
2 V1 7210∠ − 0.4◦ 12447∠29.6◦ 12448∠29.6◦ 12451∠29.6◦ 12449∠29.6◦

V2 7179∠ − 120.4◦ 12488∠ − 90.6◦ 12492∠ − 90.6◦ 12494∠ − 90.6◦ 12491∠ − 90.6◦

V3 7181∠119.1◦ 12434∠149.3◦ 12437∠149.3◦ 12441∠149.3◦ 12438∠149.3◦

N
od

e
3 V1 7324∠ − 2.8◦ 12556∠26.8◦ 12448∠29.6◦ 12271∠27.8◦ 12577∠26.8◦

V2 7285∠ − 123.8◦ 12775∠ − 94.0◦ 12825∠ − 93.2◦ 12288∠ − 90.7◦ 12434∠ − 92.4◦

V3 7233∠114.8◦ 12509∠145.5◦ 12117∠146.6◦ 12556∠148.5◦ 12662∠147.7◦

N
od

e
4 V1 7340∠ − 3.2◦ 12534∠26.2◦ 12422∠29.0◦ 12252∠27.2◦ 12558∠26.2◦

V2 7264∠ − 124.3◦ 12810∠ − 94.8◦ 12862∠ − 93.9◦ 12320∠ − 91.5◦ 12468∠ − 93.2◦

V3 7222∠113.7◦ 12479∠144.6◦ 12087∠145.7◦ 12525∠147.6◦ 12630∠146.9◦

Li
ne

12 Ia 204.4∠28.6◦ 258.3∠9.4◦ 262.1∠10.6◦ 262.6∠12.3◦ 259.5∠11.2◦

Ib 275.3∠ − 98.5◦ 247.3∠ − 91.7◦ 249.6∠ − 90.2◦ 252.9∠ − 89.1◦ 249.3∠ − 90.3◦

Ic 346.1∠131.9◦ 321.3∠140.4◦ 326.5∠141.9◦ 326.5∠142.9◦ 322.0∠141.8◦

Li
ne

34 Ia 204.4∠28.6◦ 258.3∠9.4◦ 262.1∠10.6◦ 262.6∠12.3◦ 259.5∠11.2◦

Ib 275.3∠ − 98.5◦ 247.3∠ − 91.7◦ 249.6∠ − 90.2◦ 252.9∠ − 89.1◦ 249.3∠ − 90.3◦

Ic 346.2∠131.9◦ 321.3∠140.4◦ 326.5∠141.9◦ 326.5∠142.9◦ 322.0∠141.8◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.
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Table A.8 Type A Regulators. Capacitive Unbalanced Loading. After Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [-10 -9 -8] [-4 -9 -5] [-7 — -2] [-5 -5 —] [— -7 -10]

N
od

e
2 V1 7210∠ − 0.4◦ 12445∠29.6◦ 12447∠29.6◦ 12451∠29.6◦ 12448∠29.6◦

V2 7178∠ − 120.4◦ 12487∠ − 90.6◦ 12494∠ − 90.6◦ 12494∠ − 90.6◦ 12492∠ − 90.6◦

V3 7180∠119.1◦ 12443∠149.3◦ 12435∠149.3◦ 12440∠149.3◦ 12439∠149.3◦

N
od

e
3 V1 6879∠ − 3.1◦ 11923∠23.5◦ 11903∠29.6◦ 11875∠27.7◦ 11913∠27.4◦

V2 6885∠ − 124.2◦ 11891∠ − 96.2◦ 12476∠ − 91.8◦ 11890∠ − 90.7◦ 11886∠ − 92.6◦

V3 6872∠114.3◦ 11962∠143.8◦ 11948∠146.5◦ 12171∠148.5◦ 11898∠147.6◦

N
od

e
4 V1 6896∠ − 3.6◦ 11901∠22.9◦ 11877∠29.0◦ 11856∠27.1◦ 11891∠26.8◦

V2 6863∠ − 124.8◦ 11927∠ − 97.0◦ 12511∠ − 92.6◦ 11924∠ − 91.5◦ 11923∠ − 93.4◦

V3 6860∠113.1◦ 11929∠142.8◦ 11920∠145.5◦ 12138∠147.5◦ 11864∠146.6◦

Li
ne

12 Ia 203.9∠28.2◦ 259.6∠9.1◦ 263.3∠9.3◦ 262.7∠12.2◦ 262.1∠11.0◦

Ib 275.0∠ − 99.0◦ 246.2∠ − 92.6◦ 245.8∠ − 89.7◦ 253.0∠ − 89.2◦ 246.3∠ − 90.4◦

Ic 346.2∠131.3◦ 319.8∠140.1◦ 330.8∠142.1◦ 326.6∠142.8◦ 322.3∠142.5◦

Li
ne

34 Ia 217.5∠28.2◦ 273.3∠7.3◦ 268.0∠11.1◦ 271.1∠12.2◦ 274.1∠11.0◦

Ib 291.4∠ − 99.0◦ 262.2∠ − 94.1◦ 257.1∠ − 89.7◦ 261.2∠ − 89.2◦ 262.8∠ − 90.4◦

Ic 364.4∠131.3◦ 339.3∠138.0◦ 335.0∠142.1◦ 337.2∠142.8◦ 340.2∠141.8◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.

Table A.9 Type B Regulators. Inductive Balanced Loading. Before Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [0 0 0] [0 0 0] [0 — 0] [0 0 —] [— 0 0]

N
od

e
2 V1 7125∠ − 0.3◦ 12360∠29.7◦ 12364∠29.7◦ 12365∠29.7◦ 12362∠29.7◦

V2 7145∠ − 120.3◦ 12370∠ − 90.4◦ 12375∠ − 90.4◦ 12376∠ − 90.4◦ 12373∠ − 90.4◦

V3 7136∠119.6◦ 12346∠149.6◦ 12351∠149.6◦ 12353∠149.6◦ 12349∠149.6◦

N
od

e
3 V1 6842∠ − 3.4◦ 11870∠26.7◦ 12364∠29.7◦ 11951∠28.8◦ 11891∠26.7◦

V2 6863∠ − 123.4◦ 11882∠ − 93.4◦ 12125∠ − 93.0◦ 12194∠ − 89.8◦ 11950∠ − 91.2◦

V3 6854∠116.6◦ 11857∠146.6◦ 11749∠149.4◦ 12330∠148.6◦ 12296∠147.5◦

N
od

e
4 V1 6752∠ − 3.8◦ 11737∠26.3◦ 12231∠29.3◦ 11821∠28.4◦ 11762∠26.3◦

V2 6798∠ − 123.9◦ 11764∠ − 94.0◦ 12012∠ − 93.5◦ 12077∠ − 90.3◦ 11832∠ − 91.8◦

V3 6778∠116.0◦ 11709∠146.0◦ 11601∠148.9◦ 12187∠148.0◦ 12150∠147.0◦

Li
ne

12 Ia 296.2∠ − 29.7◦ 295.2∠ − 29.7◦ 290.3∠ − 27.6◦ 288.1∠ − 27.1◦ 290.9∠ − 28.7◦

Ib 294.2∠ − 149.7◦ 295.2∠ − 149.7◦ 289.8∠ − 147.7◦ 288.0∠ − 147.1◦ 290.7∠ − 148.7◦

Ic 295.1∠90.2◦ 295.2∠90.3◦ 290.0∠92.4◦ 288.0∠93.0◦ 291.0∠91.3◦

Li
ne

34 Ia 296.2∠ − 29.7◦ 295.2∠ − 29.7◦ 290.3∠ − 27.6◦ 288.1∠ − 27.1◦ 291.0∠ − 28.7◦

Ib 294.2∠ − 149.7◦ 295.2∠ − 149.7◦ 290.0∠ − 147.7◦ 288.0∠ − 147.1◦ 290.7∠ − 148.7◦

Ic 295.1∠90.2◦ 295.2∠90.3◦ 290.0∠92.4◦ 288.0∠93.0◦ 290.8∠91.3◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.
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Table A.10 Type B Regulators. Inductive Balanced Loading. After Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [2 1 2] [2 1 2] [-5 — 4] [1 -3 —] [— 1 2]

N
od

e
2 V1 7125∠ − 0.3◦ 12359∠29.7◦ 12364∠29.7◦ 12366∠29.7◦ 12365∠29.7◦

V2 7145∠ − 120.3◦ 12371∠ − 90.4◦ 12375∠ − 90.4◦ 12376∠ − 90.4◦ 12374∠ − 90.4◦

V3 7136∠119.6◦ 12346∠149.6◦ 12358∠149.6◦ 12351∠149.6◦ 12352∠149.6◦

N
od

e
3 V1 6929∠ − 3.4◦ 12056∠27.0◦ 11989∠29.7◦ 12029∠28.9◦ 12018∠26.4◦

V2 6907∠ − 123.4◦ 12035∠ − 92.8◦ 12078∠ − 90.2◦ 11968∠ − 89.8◦ 12034∠ − 91.2◦

V3 6941∠116.6◦ 12084∠147.2◦ 12060∠149.4◦ 12252∠149.8◦ 12454∠147.6◦

N
od

e
4 V1 6840∠ − 3.8◦ 11925∠26.6◦ 11858∠29.3◦ 11899∠28.4◦ 11890∠26.0◦

V2 6841∠ − 123.9◦ 11919∠ − 93.3◦ 11962∠ − 90.7◦ 11850∠ − 90.3◦ 11916∠ − 91.7◦

V3 6867∠116.0◦ 11937∠146.7◦ 11914∠148.8◦ 12106∠149.2◦ 12309∠147.1◦

Li
ne

12 Ia 296.1∠ − 29.7◦ 296.0∠ − 29.8◦ 292.1∠ − 23.9◦ 288.1∠ − 26.8◦ 284.3∠ − 28.7◦

Ib 294.2∠ − 149.7◦ 294.1∠ − 149.8◦ 300.0∠ − 146.7◦ 291.7∠ − 145.5◦ 285.8∠ − 148.7◦

Ic 295.0∠90.2◦ 295.0∠90.5◦ 283.6∠93.3◦ 295.3∠93.3◦ 285.2∠91.0◦

Li
ne

34 Ia 292.4∠ − 29.7◦ 290.4∠ − 29.2◦ 290.8∠ − 26.7◦ 289.9∠ − 26.8◦ 287.9∠ − 28.8◦

Ib 292.4∠ − 149.7◦ 290.4∠ − 149.2◦ 290.8∠ − 146.7◦ 289.8∠ − 146.7◦ 287.6∠ − 148.7◦

Ic 291.3∠90.2◦ 290.4∠90.8◦ 290.8∠93.3◦ 289.9∠93.3◦ 287.8∠91.3◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.

Table A.11 Type B Regulators. Capacitive Balanced Loading. Before Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [0 0 0] [0 0 0] [0 — 0] [0 0 —] [— 0 0]

N
od

e
2 V1 7184∠ − 0.6◦ 12451∠29.5◦ 12454∠29.5◦ 12455∠29.5◦ 12453∠29.5◦

V2 7199∠ − 120.5◦ 12473∠ − 90.6◦ 12477∠ − 90.6◦ 12478∠ − 90.6◦ 12475∠ − 90.6◦

V3 7198∠119.4◦ 12457∠149.4◦ 12461∠149.4◦ 12463∠149.4◦ 12460∠149.4◦

N
od

e
3 V1 7289∠ − 3.9◦ 12631∠26.2◦ 12454∠29.5◦ 12346∠27.5◦ 12648∠26.2◦

V2 7304∠ − 123.8◦ 12654∠ − 93.9◦ 12733∠ − 92.9◦ 12265∠ − 90.8◦ 12358∠ − 92.5◦

V3 7303∠116.1◦ 12639∠146.1◦ 12138∠147.1◦ 12619∠148.6◦ 12762∠148.0◦

N
od

e
4 V1 7277∠ − 4.7◦ 12617∠25.5◦ 12436∠28.8◦ 12334∠26.8◦ 12637∠25.5◦

V2 7309∠ − 124.5◦ 12667∠ − 94.6◦ 12749∠ − 93.6◦ 12277∠ − 91.5◦ 12371∠ − 93.2◦

V3 7308∠115.4◦ 12636∠145.3◦ 12136∠146.3◦ 12614∠147.8◦ 12756∠147.2◦

Li
ne

12 Ia 274.9∠ − 21.1◦ 274.1∠ − 21.2◦ 278.4∠22.9◦ 279.2∠23.5◦ 275.1∠22.3◦

Ib 273.7∠ − 98.6◦ 274.1∠ − 98.8◦ 278.4∠ − 97.0◦ 279.1∠ − 96.5◦ 275.2∠ − 97.7◦

Ic 273.7∠141.2◦ 274.1∠141.2◦ 278.7∠143.0◦ 279.3∠143.6◦ 275.3∠142.3◦

Li
ne

34 Ia 274.8∠21.1◦ 274.1∠21.4◦ 278.4∠22.9◦ 279.2∠23.5◦ 275.1∠22.3◦

Ib 273.6∠ − 98.6◦ 274.1∠ − 98.8◦ 278.4∠ − 97.0◦ 279.1∠ − 96.5◦ 275.2∠ − 97.7◦

Ic 273.7∠141.2◦ 274.1∠141.2◦ 278.7∠143.0◦ 279.3∠143.5◦ 275.3∠142.3◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.
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Table A.12 Type B Regulators. Capacitive Balanced Loading. After Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [-10 -10 -10] [-6 -6 -6] [-7 — -3] [-6 -5 —] [— -6 -12]

N
od

e
2 V1 7184∠ − 0.6◦ 12450∠29.5◦ 12455∠29.4◦ 12453∠29.4◦ 12450∠29.4◦

V2 7199∠ − 120.5◦ 12472∠ − 90.6◦ 12476∠ − 90.6◦ 12477∠ − 90.6◦ 12479∠ − 90.6◦

V3 7198∠119.4◦ 12457∠149.4◦ 12463∠149.3◦ 12462∠149.3◦ 12463∠149.3◦

N
od

e
3 V1 6859∠ − 3.9◦ 11951∠24.4◦ 11933∠29.4◦ 11888∠27.3◦ 11985∠27.5◦

V2 6874∠ − 123.8◦ 11973∠ − 95.6◦ 12358∠ − 92.0◦ 11877∠ − 90.9◦ 11908∠ − 92.7◦

V3 6872∠116.1◦ 11960∠144.3◦ 11897∠146.9◦ 12209∠148.3◦ 11914∠147.7◦

N
od

e
4 V1 6846∠ − 4.8◦ 11936∠23.6◦ 11915∠28.7◦ 11876∠26.6◦ 11970∠26.7◦

V2 6879∠ − 124.6◦ 11987∠ − 96.4◦ 12372∠ − 92.7◦ 11889∠ − 91.6◦ 11923∠ − 93.5◦

V3 6877∠115.3◦ 11956∠143.4◦ 11897∠146.1◦ 12204∠147.4◦ 11909∠146.8◦

Li
ne

12 Ia 274.9∠21.0◦ 274.1∠21.2◦ 296.1∠24.4◦ 299.8∠23.3◦ 312.0∠22.5◦

Ib 273.7∠ − 98.7◦ 274.1∠ − 98.8◦ 299.9∠ − 97.0◦ 298.8∠ − 97.0◦ 301.2∠ − 97.5◦

Ic 273.7∠141.1◦ 274.1∠141.2◦ 292.7∠143.2◦ 298.0∠143.3◦ 306.7∠144.3◦

Li
ne

34 Ia 292.1∠21.1◦ 289.6∠19.4◦ 287.1∠23.2◦ 289.0∠23.3◦ 290.3∠22.5◦

Ib 290.8∠ − 98.7◦ 289.6∠ − 100.6◦ 287.3∠ − 97.0◦ 288.9∠ − 96.7◦ 290.3∠ − 97.5◦

Ic 290.8∠141.1◦ 289.6∠139.4◦ 287.4∠143.2◦ 289.0∠143.3◦ 290.3∠142.5◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.

Table A.13 Type B Regulators. Inductive Unbalanced Loading. Before Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [0 0 0] [0 0 0] [0 — 0] [0 0 —] [— 0 0]

N
od

e
2 V1 7161∠ − 0.1◦ 12361∠29.8◦ 12364∠29.8◦ 12366∠29.8◦ 12364∠29.8◦

V2 7119∠ − 120.3◦ 12391∠ − 90.5◦ 12396∠ − 90.5◦ 12397∠ − 90.5◦ 12394∠ − 90.5◦

V3 7125∠119.3◦ 12332∠149.5◦ 12338∠149.5◦ 12340∠149.5◦ 12337∠149.5◦

N
od

e
3 V1 6929∠ − 2.2◦ 11846∠27.3◦ 11364∠29.8◦ 11907∠29.0◦ 11873∠27.2◦

V2 6836∠ − 123.3◦ 12040∠ − 93.6◦ 12247∠ − 93.2◦ 12217∠ − 89.7◦ 12042∠ − 91.2◦

V3 6826∠115.1◦ 11793∠146.0◦ 11759∠148.8◦ 12294∠148.4◦ 12236∠147.3◦

N
od

e
4 V1 6881∠ − 2.3◦ 11713∠26.9◦ 12232∠29.5◦ 11779∠28.7◦ 11744∠26.9◦

V2 6739∠ − 123.7◦ 11949∠ − 94.2◦ 12161∠ − 93.8◦ 12125∠ − 90.3◦ 11949∠ − 91.8◦

V3 6744∠114.1◦ 11630∠144.3◦ 11597∠148.2◦ 12135∠147.8◦ 12076∠146.7◦

Li
ne

12 Ia 218.0∠ − 34.1◦ 315.4∠ − 35.3◦ 311.6∠ − 33.1◦ 307.0∠ − 32.6◦ 309.0∠ − 34.0◦

Ib 296.8∠ − 149.5◦ 250.3∠ − 147.6◦ 246.1∠ − 145.9◦ 244.7∠ − 144.7◦ 246.7∠ − 146.2◦

Ic 370.7∠95.9◦ 319.6∠98.3◦ 313.5∠100.5◦ 312.4∠100.8◦ 314.4∠99.4◦

Li
ne

34 Ia 218.0∠ − 34.1◦ 315.4∠ − 35.3◦ 311.6∠ − 33.1◦ 307.0∠ − 32.6◦ 309.0∠ − 34.0◦

Ib 296.8∠ − 149.5◦ 250.3∠ − 147.6◦ 246.1∠ − 145.9◦ 244.7∠ − 144.7◦ 246.7∠ − 146.2◦

Ic 370.7∠95.9◦ 319.5∠98.3◦ 313.5∠100.5◦ 312.4∠100.8◦ 314.4∠99.4◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.
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Table A.14 Type B Regulators. Inductive Unbalanced Loading. After Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [0 3 3] [4 -2 2] [-5 — 4] [1 -3 —] [— 2 2]

N
od

e
2 V1 7161∠ − 0.1◦ 12359∠29.8◦ 12365∠29.8◦ 12368∠29.8◦ 12367∠29.8◦

V2 7112∠ − 120.3◦ 12393∠ − 90.4◦ 12396∠ − 90.5◦ 12397∠ − 90.5◦ 12396∠ − 90.4◦

V3 7125∠119.3◦ 12333∠149.5◦ 12345∠149.5◦ 12339∠149.5◦ 12340∠149.6◦

N
od

e
3 V1 6929∠ − 2.2◦ 12056∠26.6◦ 11991∠29.7◦ 11985∠29.0◦ 12039∠27.3◦

V2 6967∠ − 123.3◦ 11976∠ − 92.9◦ 12199∠ − 90.4◦ 11990∠ − 89.7◦

V3 6957∠115.1◦ 12102∠147.2◦ 12072∠148.8◦ 12216∠149.6◦ 12398∠147.4◦

N
od

e
4 V1 6880∠ − 2.3◦ 11926∠26.3◦ 11860∠29.4◦ 11857∠28.7◦ 11912∠27.0◦

V2 6873∠ − 123.7◦ 11885∠ − 93.5◦ 12109∠ − 91.0◦ 11899∠ − 90.3◦ 12115∠ − 91.8◦

V3 6876∠114.1◦ 11940∠146.6◦ 11912∠148.2◦ 12055∠149.0◦ 12239∠146.8◦

Li
ne

12 Ia 218.0∠ − 34.1◦ 320.9∠ − 35.2◦ 307.3∠ − 30.0◦ 307.0∠ − 32.0◦ 301.0∠ − 33.9◦

Ib 296.6∠ − 149.5◦ 247.5∠ − 148.7◦ 253.8∠ − 144.7◦ 248.6∠ − 142.7◦ 240.3∠ − 146.1◦

Ic 370.5∠95.9◦ 317.2∠99.2◦ 306.2∠101.1◦ 319.8∠101.3◦ 306.3∠99.4◦

Li
ne

34 Ia 218.0∠ − 34.1◦ 310.1∠ − 34.6◦ 309.5∠ − 32.4◦ 308.9∠ − 32.0◦ 304.8∠ − 33.9◦

Ib 291.0∠ − 149.5◦ 247.5∠ − 147.0◦ 246.1∠ − 144.7◦ 246.8∠ − 144.3◦ 243.4∠ − 146.1◦

Ic 363.6∠95.9◦ 314.4∠98.7◦ 314.0∠101.1◦ 313.9∠101.3◦ 310.1∠99.4◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.

Table A.15 Type B Regulators. Capacitive Unbalanced Loading. Before Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [0 0 0] [0 0 0] [0 — 0] [0 0 —] [— 0 0]

N
od

e
2 V1 7212∠ − 0.4◦ 12447∠29.6◦ 12448∠29.6◦ 12451∠29.6◦ 12449∠29.6◦

V2 7179∠ − 120.4◦ 12488∠ − 90.6◦ 12492∠ − 90.6◦ 12494∠ − 90.6◦ 12491∠ − 90.6◦

V3 7181∠119.1◦ 12434∠149.3◦ 12437∠149.3◦ 12441∠149.3◦ 12438∠149.3◦

N
od

e
3 V1 7324∠ − 2.8◦ 12556∠26.8◦ 12448∠29.6◦ 12271∠27.8◦ 12577∠26.8◦

V2 7285∠ − 124.0◦ 12775∠ − 94.0◦ 12825∠ − 93.2◦ 12288∠ − 90.7◦ 12434∠ − 92.4◦

V3 7233∠114.8◦ 12509∠145.5◦ 12117∠146.6◦ 12556∠148.5◦ 12662∠147.7◦

N
od

e
4 V1 7340∠ − 3.2◦ 12534∠26.2◦ 12422∠29.0◦ 12252∠27.2◦ 12558∠26.2◦

V2 7264∠ − 124.3◦ 12810∠ − 94.8◦ 12862∠ − 94.0◦ 12320∠ − 91.5◦ 12468∠ − 93.2◦

V3 7222∠113.7◦ 12479∠144.6◦ 12087∠145.7◦ 12525∠147.6◦ 12630∠146.9◦

Li
ne

12 Ia 204.4∠28.6◦ 258.3∠9.4◦ 262.1∠10.6◦ 262.6∠12.3◦ 259.5∠11.2◦

Ib 275.3∠ − 98.5◦ 247.3∠ − 91.7◦ 249.6∠ − 90.2◦ 252.9∠ − 89.1◦ 249.3∠ − 90.3◦

Ic 346.1∠131.9◦ 321.3∠140.4◦ 326.5∠141.9◦ 326.59∠142.9◦ 322.0∠141.8◦

Li
ne

34 Ia 204.4∠28.6◦ 258.3∠9.4◦ 262.1∠10.6◦ 262.6∠12.3◦ 259.5∠11.2◦

Ib 275.3∠ − 98.5◦ 247.3∠ − 91.7◦ 249.6∠ − 90.2◦ 252.9∠ − 89.1◦ 249.3∠ − 90.3◦

Ic 346.1∠131.9◦ 321.3∠140.4◦ 326.5∠141.9◦ 326.5∠142.9◦ 322.0∠141.8◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.
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Table A.16 Type B Regulators. Capacitive Unbalanced Loading. After Optimization

YgYg ∆∆ O∆ case a O∆ case b O∆ case c

Taps [0 3 3] [4 -2 2] [-5 — 4] [1 -3 —] [— 2 2]

N
od

e
2 V1 7210∠ − 0.4◦ 12446∠29.6◦ 12450∠29.5◦ 12450∠29.5◦ 12446∠29.5◦

V2 7179∠ − 120.4◦ 12487∠ − 90.6◦ 12493∠ − 90.7◦ 12495∠ − 90.7◦ 12495∠ − 90.7◦

V3 7181∠119.1◦ 12435∠149.3◦ 12437∠149.3◦ 12438∠149.3◦ 12435∠149.2◦

N
od

e
3 V1 6893∠ − 2.8◦ 11910∠24.1◦ 11928∠29.5◦ 11886∠27.7◦ 11945∠27.3◦

V2 6897∠ − 123.8◦ 11873∠ − 95.8◦ 12451∠ − 92.2◦ 11904∠ − 90.7◦ 11912∠ − 92.64◦

V3 6887∠114.8◦ 11914∠144.3◦ 11887∠146.4◦ 12181∠148.4◦ 11939∠147.5◦

N
od

e
4 V1 6910∠ − 3.3◦ 11889∠23.5◦ 11902∠28.9◦ 11867∠27.1◦ 11924∠26.7◦

V2 6875∠ − 124.4◦ 11909∠ − 96.6◦ 12487∠ − 93.0◦ 11937∠ − 91.6◦ 11948∠ − 93.5◦

V3 6876∠113.5◦ 11881∠143.4◦ 11906∠146.5◦ 12148∠147.5◦ 12239∠146.8◦

Li
ne

12 Ia 204.3∠28.5◦ 259.5∠9.7◦ 275.3∠12.2◦ 279.3∠12.2◦ 290.4∠10.9◦

Ib 275.4∠ − 98.6◦ 247.5∠ − 92.2◦ 268.8∠ − 89.9◦ 269.1∠ − 89.2◦ 273.5∠ − 90.5◦

Ic 346.3∠131.7◦ 319.5∠140.4◦ 342.3∠142.0◦ 347.4∠142.8◦ 357.4∠142.3◦

Li
ne

34 Ia 217.1∠28.5◦ 274.0∠7.8◦ 269.0∠10.8◦ 270.9∠12.2◦ 273.3∠10.9◦

Ib 290.9∠ − 98.6◦ 262.8∠ − 93.6◦ 257.5∠ − 89.9◦ 260.9∠ − 82.2◦ 262.0∠ − 90.5◦

Ic 363.6∠131.7◦ 340.1∠138.6◦ 335.9∠142.0◦ 336.8∠142.8◦ 339.2∠141.7◦

Where V1, V2 and V3 are phase-to-neutral voltages in wye connections and line voltages in the others.
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Reconciling Tap-Changing Transformer Models

Jose M. Cano , Member, IEEE, Md Rejwanur Rashid Mojumdar , and Gonzalo Alonso Orcajo , Member, IEEE

Abstract—The model of the tap changing transformer used in
classic power system studies, including load flow analysis or state
estimation, is still somehow controversial. Two alternative formula-
tions can be found in the literature, which have been adopted by the
most important software packages. This work demonstrates that
those formulations lead to similar results near the principal tap but
to important discrepancies at extreme tap positions, with different
impact depending on the power factor of the power flowing through
the transformer. Moreover, a general model that fully explains those
differences is proposed. The new model allows to adopt a third
alternative that, without requiring further data than those used by
traditional formulations, leads to highly improved results.

Index Terms—Power transformers, tap changers, transformer
models.

I. INTRODUCTION

THE limited amount of information generally available
about transformers, and specifically about tap-changing

transformers, leads to the fact that a quite simplified model of
these devices is used in such usual tasks as load flow analysis
or state estimation. The data is obtained from the nameplate of
the device and comprises the rated power and voltage values,
short-circuit impedance and tap positions. Only transformers
with a tapping range exceeding ±5% are obliged by standards
to provide further information about the short-circuit impedance
(at least, values for the extreme tappings are required in that
case) [1].

Two different tap-changing transformer models can be found
today in both the literature and practical software implementa-
tions [2]–[4]. However, these two models yield different results,
which can easily mislead the user in certain tasks, as during the
validation of engineering or research results with an external
tool. While these discrepancies can be considered merely trivial
at the principal tap, this work demonstrates that the inconsistency
can lead to huge differences at extreme tap positions. This fact
was previously observed by other authors [5] but, they chose one
of the alternatives and focused their efforts on the manipulation
of the other model to reach the same results. On the contrary, this
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3, 2019, and July 19, 2019; accepted August 29, 2019. Date of publication
September 9, 2019; date of current version November 20, 2019. This work was
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2018. (Corresponding author: Jose M. Cano.)
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Engineering, University of Stavanger, Stavanger 4036, Norway (e-mail:
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Color versions of one or more of the figures in this letter are available online
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Fig. 1. Model of the tap-changing transformer with short-circuit impedance
at the off-nominal turns side.

work explains the causes of those discrepancies and proposes a
reconciled solution.

In Section II, a new model for the tap-changing transformer
is proposed, which opens the door to a much more accurate
description of the device. Section III uses the new model to
clearly explain the reasons for the aforementioned discrepan-
cies. An assessment of the errors caused by traditional models
is presented in Section IV. Section V describes a case study
to highlight the importance of the new proposal. Finally, the
conclusions of this study are drawn in Section VI.

II. DESCRIPTION OF THE NEW MODEL

Power system studies do not normally require the shunt branch
of the equivalent model of the transformer to be taken into
account. Thus, when dealing with nominal turns ratios, the use
of the detailed or simplified model of the transformer makes
no difference, as in both cases the device is reduced to a series
impedance. However, this is no longer true when the transformer
is using an off-nominal turns ratio. As it is demonstrated in
this work, the simplified model of the transformer can lead to
important errors.

Let us consider a transformer with off-nominal turns ratio
a : 1 as depicted in Fig. 1. Although the following parameters
are not normally known by the user, let k be the ratio between the
p.u. impedance in the nominal winding, z2, and tapped winding,
z1, (for the sake of simplicity, the same ratio is considered for
resistance and leakage reactance). From the off-nominal side,
the series admittance can then be calculated as

yoffsc =
1

z1 + a2z2
=

1 + k

1 + ka2
ysc, (1)

ysc being the short-circuit admittance obtained during the short-
circuit test at the principal tap (normally shown at the nameplate
of the device as an impedance, zsc), or at the current tap position,
if further data are available.

The application of Kirchhoff Laws and the well-known rela-
tionships that apply to the ideal transformer yields

vi =
iij

yoffsc

+ avj , (2)

iij = − iji
a
, (3)

0885-8977 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Authorized licensed use limited to: UNIVERSIDAD DE OVIEDO. Downloaded on January 22,2021 at 00:04:30 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-5576-613X
https://orcid.org/0000-0003-1954-588X
https://orcid.org/0000-0003-1626-533X
mailto:jmcano@uniovi.es
mailto:gonzalo@uniovi.es
mailto:md.r.mojumdar@uis.no
http://ieeexplore.ieee.org


IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 34, NO. 6, DECEMBER 2019 2267

Fig. 2. π equivalent model of the tap-changing transformer.

and thus, the nodal equations of the device can be written as[
iij

iji

]
=

[
Yii Yij

Yji Yjj

] [
vi

vj

]
, (4)

where

Yii =
1 + k

1 + ka2
ysc, (5)

Yij = Yji = −a (1 + k)

1 + ka2
ysc, (6)

Yjj =
a2 (1 + k)

1 + ka2
ysc. (7)

Hence, the components of the π equivalent of the new model,
shown in Fig. 2, can be calculated as

yij = −Yij =
a (1 + k)

1 + a2k
ysc, (8)

ysi = Yii + Yij =
1− a+ k (1− a)

1 + a2k
ysc, (9)

ysj = Yjj + Yij =
a (a− 1) (1 + k)

1 + a2k
ysc. (10)

III. RECONCILIATION OF PREVIOUS MODELS

As it is easily proved, the two well-known models, extensively
used in the literature and practical implementations, correspond
to the particular cases of making the parameter k equal to 0 and
∞ in (1), and thus in (8)–(10). In particular, k = 0 corresponds
to the option of considering all the short-circuit impedance of the
transformer as being provided by the winding at the off-nominal
turns side. In this case, the off-nominal admittance of the trans-
former, yoffsc , turns to be the same as ysc, and the well-known
parameters of the π equivalent model shown in Fig. 3(a) are
obtained. On the other hand, k = ∞ corresponds to the option
of considering all the short-circuit impedance of the transformer
as being provided by the winding at the nominal turns side. In
this case, the off-nominal admittance of the transformer, yoffsc ,
turns to be ysc/a2, and the set of parameters of the π equivalent
model shown in Fig. 3(b) is reached. It is important to highlight
that the new model opens the door to obtain accurate results if
k is provided by the manufacturer. But, even if this is not the
case, much more realistic estimates can be obtained if k is set
to 1, which is a common engineering practice adopted when the
detailed model of the transformer is to be used [6], [7].

Finally, notice that in [5], the authors pointed out the incon-
sistency of the two alternative models, and concluded that, in
order to make them yield the same results the admittance in
Fig. 3(a) should be previously affected by 1/a2. While this is
a pertinent observation, this approach does not solve the fact
that all the short-circuit admittance is being assigned to the

Fig. 3. π equivalent traditional models of tap-changing transformers.
(a) k = 0, and (b) k = ∞.

nominal winding, which is far from being realistic and can lead
to important errors.

IV. ERROR ASSESSMENT

For a given value of the off-nominal turns side variables, vi
and iij , the new model allows the calculation of the nominal
turns side voltage vj . If the result, for a generic value of k, vkj ,
is taken as a reference, and the calculation is repeated for the
values used by traditional models, thus obtaining v0j and v∞j , an
assessment of the mismatch voltage can be obtained from (8), (9)
and (10), which represent the error of these popular approaches,

Δv0j = v0j − vkj =
k
(
a2 − 1

)
a (1 + k)

iij
ysc

, (11)

Δv∞j = v∞j − vkj =
1− a2

a (1 + k)

iij
ysc

. (12)

V. CASE STUDY

In order to highlight the important differences that can arise
when using the traditional transformer models depicted in Fig. 3
and the benefits of the newly proposed formulation, a case study
is presented in this section. Let us consider an 80 MVA, 50 Hz,
220/132 kV ±10% transformer with a nameplate short-circuit
impedance, zsc, of 0.01 + 0.12j and a tap changer, located on
the highest voltage side, with 21 positions and a tapping step of
1%. If further data about the short-circuit impedance at extreme
tap positions were available, as it should be according to [1], a
different value of zsc could be calculated by linear interpolation
for any tap position. In any case, this straightforward task will not
be used in this case study not to obscure the core of the proposal.

Fig. 4 shows the voltage of the transformer at the nominal turns
side when fed by a constant voltage of 1 pu at the off-nominal
turns side for each tap position available. In each case, the trans-
former is delivering the rated current at the off-nominal turns
side. Two different power factors are considered by selecting the
phase angle betweenvi and iij , which is called θ in the following:
(a) a unity power factor, θ = 0◦, and (b) a pure capacitive case,
θ = 90◦. The voltage is calculated both for the traditional models
(k = 0 and k = ∞) and for the proposed model, assuming a fair
contribution of both windings to the short-circuit impedance,
i.e. k = 1. Although this assumption is probably not exact (this
data is seldom provided by the manufacturer), it is for sure a
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Fig. 4. Nominal-turns side voltage for the different tap positions. Transformer
at rated current with two different power factors: Unity (θ = 0◦) and pure
capacitive (θ = 90◦). (a) Voltage magnitude, and (b) voltage phase angle.

Fig. 5. Maximum deviation in the calculation of the nominal-turns side voltage
at rated current. (a) Voltage magnitude, and (b) voltage phase angle.

better estimate in line with accepted engineering practices. In
Fig. 4(a) the module of the voltage at the off-nominal turns
side is shown. At high power factors, the differences between
the alternative transformer models can be ignored. However,
important discrepancies arise at poor power factors. On the
other hand, Fig. 4(b) shows the phase angle of the voltage at
the off-nominal turns side. The differences between the different
models result evident now at high power factors. The new model
offers a consensus estimate even if k is not accurately known.

The errors arisen from the use of traditional models, cal-
culated by taking the new model as a reference (with k = 1),
were obtained at rated current for every tap position and power
factor (including reverse power flow). In Fig. 5(a) the maximum
deviation of the voltage at the nominal turns side, |v0j | − |v1j | and
|v∞j | − |v1j |, is depicted for each power factor. This graph proves

that the error in the calculation of the voltage can rise to near
1.3% in extreme positions of the tap changer when dealing with
poor power factors. Notice that the same result can be obtain
from (11) and (12). Fig. 5(b) shows the maximum deviation
of the phase angle of the voltage at the nominal turns side.
Noticeably, this error evolves in the opposite direction, being
maximum for high power factors, when it reaches values as high
as 0.8◦, and negligible for reactive power flows. In a symmetrical
tap changer, as the one considered in this work, the maximum
errors are found at the highest position of the tap (and not at the
lowest), as can be easily proved from (11) and (12).

VI. CONCLUSION

The use of the simplified equivalent model of the transformer
is universally admitted when conducting power system studies,
due to the low impact of the magnetizing branch and the inherent
benefit of removing a useless bus from the problem. However,
neglecting the fact that the short-circuit impedance is the result
of contributions from two different windings can lead to unac-
ceptable discrepancies in the formulation of the tap-changing
transformer model. This work proposes a new general model
which includes the contribution of each winding to the short-
circuit impedance. Although this data is not generally available
(and not even easy to derive from traditional tests), the new
model allows to consider a fair contribution (50/50) of both
windings to this parameter, which is an accepted practice in
engineering. The new model can be tuned to match the results
from traditional alternatives, which consider the short-circuit
impedance as caused by only one of the transformer windings,
either the off-nominal or nominal turns side. This fact makes the
new model useful to understand the basis of each formulation,
providing a clear perspective on the influence of the underly-
ing assumptions. The work demonstrates that the discrepancies
caused by traditional models can be unacceptable at extreme tap
positions and are greatly influenced by the operating point of
the transformer. The inclusion of the proposed model in power
system software packages, tuned with the recommended values
shown in this work, can significantly improve the consistency
of power system studies. Nonetheless, the authors are exploring
methods for an accurate evaluation of the contribution of each
winding based on state estimation techniques.
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Abstract—The tap-changing transformer models used in
steady-state power system studies have been recognized as some-
how controversial for a long period. Indeed, discrepant versions
arise depending on slightly different underlying assumptions. As
a consequence, two alternative models are traditionally imple-
mented in power system simulation software packages. A new
model, recently proposed by the authors, has reconciled those
versions, leading the way in removing the ensuing ambiguity. In
this work, several case studies are introduced in order to highlight
the important inconsistencies which can be drawn from the use of
the traditional versions. Furthermore, this contribution presents
a framework for the correct configuration of the new model
in the usual scenario of imperfect information on transformer
construction data. This work demonstrates that the adoption of
the new model solves the aforementioned ambiguity, thus being a
valuable tool to provide consistent results in power system studies
on grids with embedded tap-changing transformers.

Index Terms—power transformers, tap changers, transformer
models

I. INTRODUCTION

Tap-changing transformers are a key asset in the regulation
of voltage in power systems. Thus, models of these devices
are intensively used in the different fields of electric energy
systems analysis and operation. Nonetheless, the models of
the tap-changing transformer traditionally used in steady-
state balanced studies, such as the ones conducted during
power flow calculations or voltage stability analyses, have
been burdened with a long-standing controversy [1]. Indeed,
two alternative tap-changing transformer models can be found
in the description of these devices in different books and
simulation software packages [2]–[5]. Under specific operating
conditions, using one model or the other can lead to results
with significant differences, which produces a serious lack of
consistency in reporting the outcome of the analysis of electric
grids with embedded tap-changing transformers.

In [6], the authors of the present work proposed a consensus
model with the aim of solving the aforementioned contro-
versy. In this recent publication, the theoretical background
that explains the differences caused by traditional models is
presented. Moreover, by introducing an additional parameter,
the new model allows to produce consistent results free of

This work was supported by the Spanish Government Innovation Develop-
ment and Research Office (MEC) under research Grant DPI2017-89186-R.

any ambiguity. The present contribution tries to highlight the
importance of adopting the new model by state-of-the-art
software packages. With this aim, the discrepancies between
traditional models are theoretically assessed and the benefits
of the consensus model are clearly displayed. Furthermore,
a couple of case studies, based on a classical IEEE test
bus system are introduced, in order to demonstrate that the
differences in the outcomes offered by the traditional models
cannot be neglected even in normal operating conditions.

The structure of the contribution is as follows. In Section
II, the classical and newly proposed tap-changing transformer
models are briefly described for the benefit of the reader. A
relevant discussion on the set-up of the new model by using
the limited data typically available for this type of transformers
is provided in Section III, together with an assessment of
the discrepancies between the different models. Section IV
presents a classical power flow analysis and a voltage stability
study conducted in the IEEE 57-bus system [7]. Both cases
clearly highlight the importance of using the new model to
provide consistency in reporting the results of power system
studies.

II. TAP-CHANGING TRANSFORMER MODELS

A. Traditional Models
The most widely used traditional tap-changing transformer

models are derived from two different (and not easy to
justify) alternatives: either considering that all the short-circuit
impedance of the transformer, zsc, is provided by the winding
at the off-nominal side (Type 1) or by the one at the nominal
side (Type 2). Both extreme assumptions are shown in Fig. 1
for a transformer with an off-nominal turns ratio a : 1, where
ysc is the short-circuit admittance of the transformer (typically
provided by the manufacturer as an impedance and shown in
the nameplate of the device). In this figure, the short-circuit
admittance has been referred in both cases to the off-nominal
side, and thus designated as yoffsc .

The well-known relations that apply to ideal transformers,
together with Kirchhoff’s Laws yield

vi =
iij

yoffsc

+ avj , (1)

iij = − iji
a
, (2)
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b) 1
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Fig. 1. Alternative assumptions made in traditional tap-changing transformer
models. (a) Type 1, and (b) Type 2

and thus, the nodal equations of the device can be written in
a compact form as[

iij
iji

]
=

[
Yii Yij
Yji Yjj

] [
vi
vj

]
. (3)

The elements of the bus-admittance matrix, Ybus, are shown
in Table I for the Type 1 and Type 2 models, according
to the value of yoffsc used in each case. From those values,
the parameters of the π-equivalent circuit of both transformer
models can be straightforwardly derived. They have been
explicitly shown in Fig. 2.

TABLE I
Ybus MATRIX FOR THE DIFFERENT TAP-CHANGING TRANSFORMER

MODELS

Ybus Type 1 Type 2 Type 3 Type 3 (k = 1)

Yii ysc
1
a2
ysc

1+k
1+ka2

ysc
2

1+a2
ysc

Yij = Yji −aysc − 1
a
ysc −a(1+k)

1+ka2
ysc − 2a

1+a2
ysc

Yjj a2ysc ysc
a2(1+k)
1+ka2

ysc
2a2

1+a2
ysc

ysc ji iij iji

vi vj
ysc

1–a
a2 ysc

a–1
a

1
a

b)

a ysc ji iij iji

vi vj
ysc(1–a) ysc(a2–a)

a)

Fig. 2. π-equivalent circuit of traditional tap-changing transformer models.
(a) Type 1, and (b) Type 2

B. Consensus Model

A new model, presented in [6], was proposed in order to
remove any ambiguity from the results of power system studies
with embedded tap-changing transformers. This model, desig-
nated in the following as Type 3, includes a new parameter in
order to account for the contribution of each of the transformer
windings to the short-circuit impedance. This parameter, k, is
defined as the ratio between the p.u. impedance of the winding
at the nominal turns side, zj and the p.u. impedance of the
tapped winding (i.e. the one at the off-nominal turns side), zi.
Thus, the short-circuit admittance referred to the off-nominal
side can be calculated as

yoffsc =
1

zi + a2zj
=

1 + k

1 + ka2
ysc. (4)

By applying (1) and (2) to the new value of yoffsc , the
parameters of the Ybus matrix in (3) can be immediately
determined for the Type 3 model. They have been shown in
Table I. From those values, the different admittances of the
corresponding π-equivalent circuit, as depicted in Fig. 3(a),
can be directly obtained as

yij = −Yij =
a (1 + k)

1 + a2k
ysc, (5)

ysi = Yii + Yij =
1− a+ k (1− a)

1 + a2k
ysc, (6)

ysj = Yjj + Yij =
a (a− 1) (1 + k)

1 + a2k
ysc. (7)

ji iij iji

vi vjysc

ysc
2a

1+a2

b)

yij ji iij iji

vi vjysi ysj

a)

2(1–a)
1+a2 ysc1+a2

2a(a–1)

Fig. 3. Consensus model of the tap-changing transformer. (a) General model,
and (b) recommended set-up

It is important to notice that the traditional models, Type 1
and Type 2, are just particular cases of the proposed general
model, Type 3. Indeed, assigning the values 0 and ∞ to
parameter k in (5)–(7) yields to the well-known values already
presented in Fig. 2.
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III. SET-UP OF THE CONSENSUS MODEL

The practical use of the new model should take into account
that, usually, the data provided to the engineering practitioner
in order to model the different components of the power
system, and specifically, tap-changing transformers, is quite
limited. The particular contribution of each transformer wind-
ing to the short-circuit impedance is not a nameplate value
and, since this specification is not required by standards [8], it
is seldom provided by the manufacturer. Thus, setting up the
value of the new parameter, k, turns to be challenging.

As stated in [6], the discrepancy of traditional models with
respect to the consensus model, assessed using the differences
that arise in the voltage of the nominal winding, vj , when the
off-nominal turns side is fed at a fixed voltage, vi, and a fixed
current, iij , can be obtained, as a function of k, according to

∆v0j = v0j − vkj =
k
(
a2 − 1

)
a (1 + k)

iij
ysc

, (8)

∆v∞j = v∞j − vkj =
1− a2

a (1 + k)

iij
ysc

, (9)

where v0j , v∞j and vkj stand for the values obtained with
Type 1, Type 2 and Type 3 models, respectively.

From (8) and (9), it can be concluded that the discrepancies
in vj between the different models grow with the loading
of the transformer as well as with the tap position (extreme
tap positions, i.e. those further from the central tap, exacer-
bate the differences). Due to the mainly inductive behavior
of transformer short-circuit impedances, the effect of those
discrepancies mostly affects the magnitude of voltage when
feeding reactive loads (e.g., in that case, ∆v0j is close to
aligned with v0j and vkj ). Conversely, resistive loads tend to
magnify the differences in voltage phase angle. A detailed
analysis of these facts can be found in [6].

Another interesting conclusion that can be drawn from (8)
and (9) is that the particular case k = 1 is the midpoint be-
tween the extreme assumptions implied by traditional models.
Certainly, for k = 1, it can be followed that ∆v0j = −∆v∞j .
Thus, using k = 1 guarantees the minimization of the max-
imum error caused by the lack of precise knowledge of the
contribution of each transformer winding to the short-circuit
impedance. The Ybus elements of this recommended set-up are
shown in Table I and the corresponding π-equivalent circuit
is depicted in Fig. 3(b). Specifically, using k = 1 assures that
the error is limited to

∆vmax
j = ±a

2 − 1

2a

iij
ysc

. (10)

The use of k = 1 implies the assumption of an equal
contribution of both transformer windings (expressed in per
unit values) to the short-circuit impedance. In fact, this is a
traditional engineering practice used in detailed transformer
modeling [9]–[11], which reinforces the recommendation to
use this set-up when no further data is available.

Undoubtedly, the use of parameter estimation techniques
may allow to improve the quality of the set-up of tap-changing

transformer models in real scenarios by obtaining accurate
values of k for each specific device from the off-line analysis
of field measurements. The authors are currently working in
this field. However, it should be highlighted that, regardless of
the accuracy of the model, which is dependent on the quality
of the estimation of k, the consensus model puts an end to
the lack of consistency in communicating the results of power
system studies, provided that the set-up of this parameter is
included in the data set.

IV. CASE STUDIES

The discrepancies in the results provided by the traditional
tap-changing transformer models are not trivial. A set of case
studies are provided in this section in order to highlight this
fact, and thus, to urge the adoption of the new model by
power system software packages. As it is demonstrated in
this section, the use of the new model can guarantee the
consistency of the results obtained in such common power
system studies as power flow or voltage stability analysis.

The IEEE 57-bus system, which is shown in Fig. 4, has been
adopted as a test case [7]. It represents a simple approximation
of the American Electric power system in the U.S. Midwest
as it was in the early 1960s which has been extensively
used as a test system by the power community. The IEEE
57-bus system comprises 57 buses, 7 generators, 42 loads
and 17 transformers. It is important to note that 15 of these
transformers are set out of the principal tap at the operating
point defined by the test case. This fact makes the system
especially suitable to test the new tap-changing transformer
model. Table II shows the parameters and set-up of those
transformers as described in the IEEE 57-bus system data files.
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Fig. 4. IEEE 57-bus system.
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TABLE II
TRANSFORMERS SET OUT OF THE PRINCIPAL TAP IN THE IEEE 57-BUS

SYSTEM

From bus To bus R, p.u X , p.u Tap, a
4 18 0 0.5550 0.970
4 18 0 0.4300 0.978

21 20 0 0.7767 1.043
24 26 0 0.0473 1.043
7 29 0 0.0648 0.967

34 32 0 0.9530 0.975
11 41 0 0.7490 0.955
11 45 0 0.1042 0.955
14 46 0 0.0735 0.900
10 51 0 0.0712 0.930
13 49 0 0.1910 0.895
11 43 0 0.1530 0.958
40 56 0 1.1950 0.958
39 57 0 1.3550 0.980
9 55 0 0.1205 0.940

A. Power Flow Analysis

The state variables of the IEEE 57-bus system have been
calculated by using a Newton-based power flow method for the
different tap-changing transformer models under evaluation.
MATPOWER [12] was used to conduct this implementation. It
is important to note that this open-source electric power system
simulation tool assumes one of the traditional tap-changing
transformer models commented in the paper. Specifically,
MATPOWER considers all the short-circuit impedance of the
tap-changing transformer as being provided by the winding at
the nominal turns side (i.e. k =∞) [13]. The modification of
those functions of the software devoted to the construction
of the bus admittance matrix, has allowed the authors to
test also the other alternatives (i.e, the traditional model
which considers all the short-circuit impedance as provided
by the off-nominal turns side, k = 0, and the new proposal,
in which a balanced contribution is considered, k = 1). Those
alternative transformer models can be directly implemented
in MATPOWER by considering equations (5)–(7). Fig. 5
shows the resulting voltage profile of the IEEE 57-bus system
according to the different tap-changing transformer models.
The detailed results, for those buses showing the highest
inconsistencies, are reported in Table III.

As it is shown in Table III and is also highlighted in
Fig. 5, the maximum discrepancy in the calculation of voltage
magnitudes between the two traditional models (i.e. k =∞
and k = 0) takes place at bus 49. This discrepancy reaches
a value of 7.63× 10−3 p.u. (i.e. 0.763%), which can be
considered a significant amount even though the transformers
of the IEEE 57-bus system are not set at particularly extreme
tap positions. In the same vein, the maximum discrepancy in
the calculation of voltage phase angle arises at bus 33 with a
value of 0.529 deg. Obviously, those differences in the state
variables spread to the post-calculation of other magnitudes
with an important impact on active and reactive power flows,
currents, etc.

This test clearly reinforces the conclusion of the present
contribution. Indeed, it confirms that the use of different tap-
changing transformer models, such as the widely adopted
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Fig. 5. Voltage profile of the IEEE 57-bus system using the traditional and
new tap-changing transformer models. (a) Voltage magnitude and (b) Phase
angle.

k = 0 (Type 1) and k =∞ (Type 2) versions, leads to different
and thus, inconsistent results. Conversely, the adoption of the
new model by software packages for power system analysis
can solve the problem, just by allowing the user to fix and
report the specific value of k utilized in the study. If further
information is not available to precisely determine this param-
eter, selecting it as k = 1 provides a sensible estimation that
leads to results that lie between the two traditional solutions
and, what is more, minimizes the maximum expected error.

B. Voltage Stability Analysis

Taking again the IEEE 57-bus system as a basis, voltage
stability has been tested by gradually increasing the active
power demand at bus 49. Notice that this bus was selected
for the study in view of the results of the power flow analysis
shown in subsection IV-A. Indeed, these results demonstrate
that the voltage magnitude at bus 49 show the highest discrep-
ancy when calculated using different traditional tap-changing
transformer models.

According to [7], the active power demand at bus 49 in
the IEEE 57-bus system is 18 MW. This active power was
increased in steps of 1 MW and, in each case, the power flow
analysis of the system was repeated for the traditional tap-
changing transformer models and for the new proposed model
with the recommended set-up of k = 1. The results, in the
form of the power-voltage curve (also known as “nose” curve
or P-V curve), are depicted in Fig. 6.

Notice that voltage collapse is reached at quite different
values of the active power demand at bus 49. While stability
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TABLE III
BUS VOLTAGES SHOWING THE HIGHEST DISCREPANCIES

Tap-changing transformer model
Type 1 (k = 0) Type 2 (k =∞) Type 3 (k = 1)

Bus Magnitude, p.u. Phase angle, deg. Magnitude, p.u. Phase angle, deg. Magnitude, p.u. Phase angle, deg.
33 0.941 −19.081 0.948 −18.552 0.944 −18.819
49 1.029 −13.336 1.036 −12.936 1.032 −13.141

100 150 200 250 300 350 400 4500.6

0.7

0.8

0.9

1.0

1.1

k = 1

k = 0

k =

18 500
Power demand at bus 49, 

Vo
lta

ge
 m

ag
ni

tu
de

 a
t b

us
 4

9,
 p

.u
.

MW

Fig. 6. Power-Voltage curves at bus 49 for the traditional tap-changing
transformer models (k = ∞ and k = 0) and for the new proposed model
(k = 1).

is lost at 364 MW in the case of k = 0, collapse is not reached
until 404 MW if the model with k =∞ is considered. The
first case may be a too conservative approach while the second
is certainly underestimating the voltage drop. On the contrary,
the use of the new model with k = 1 estimates that the voltage
collapse would take place at 382 MW which is certainly a
sensible compromise.

Once more, this voltage stability analysis comes to empha-
size the important differences that may arise from the use of
the different versions of traditional tap-changing transformers.
Security constraints may be compromised by using simplified
assumptions, such as the ones implied in traditional models.
What is more, even if k = 1 is a sensible estimation in a
context of scarce data, a precise knowledge of this parameter
could add certainty to the results obtained in this type of power
system studies.

V. CONCLUSION

For decades, the different software simulation packages
devoted to conduct power system studies have included one of
two alternative traditional models of the tap-changing trans-
former. Those different models arise from the assumption of
considering all the short-circuit impedance as provided by the
nominal or off-nominal turns side of the transformer. Though
the differences in the results offered by those models may be

small at close-to-central tap positions, they can be remarkably
large at extreme tap positions. Thus, the consistency in report-
ing results from power system studies can be compromised.
The present contribution demonstrates that those discrepancies
can be significant even in the case of a well-known standard
grid, which is illustrated by a power flow analysis and a
stability analysis. The use of a recently proposed consensus
model is introduced as an ideal solution to the aforementioned
problem. The new model is free from ambiguity and, whereas
an additional parameter has to be provided, a sensible selection
of its value can be done if accurate manufacturing data is not
available.
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Abstract—The model of regulating transformers used in clas-
sic power system studies, such as load flow analysis or state
estimation, is still debatable. A recent publication has demon-
strated that the two alternative tap-changing transformer models
usually found in the literature and power system simulation
software packages may lead to important discrepancies, espe-
cially at extreme tap positions. This work is an extension of
the aforementioned publication, written by the same authors,
with the aim of reconciling those models for the case of the
phase shifting transformer (PST). This work demonstrates that
prevailing formulations of PST, particularly of the asymmetrical
type, may also lead to important discrepancies when operating
far from the nominal tap, with a different impact depending
on the power factor of the power flowing through the device.
Furthermore, a general model for the PST is proposed in this
contribution. The new model uses the same data available in
traditional formulations leading to improved results and avoiding
any ambiguity.

Index Terms—power transformers, phase shifters, transformer
models

I. INTRODUCTION

With the deregulation of the electricity market, control of
power flows over transmission lines and tie lines has become
an important concern. Moreover, uneven loading of parallel
transmission lines is a recurring problem to solve during the
transmission of energy. The use of phase shifting transformers
(PST) is a well-established solution to provide control of real
power flows through transmission lines. Several PSTs, as in
the case of asymmetrical types, offer also some control over
the magnitude of output voltage, thus providing regulation of
the reactive power flows up to a certain limit [1].

The quality of the results of classic power system studies
such as power flow and optimal power flow analysis, state
estimation, etc. are highly dependent on the accuracy of the
models used to describe system components. However, simpli-
fied models are typically used in these algorithms, due to the
complexity and magnitude of the problems and also because of
the scarce information generally available for the engineering
practitioner in charge of these tasks. The nameplate of the
transformer is usually the exclusive data source used in PST
modeling.

In literature and practical implementations, two alternative
voltage-magnitude regulating transformer models can be found

This work was supported by the Spanish Government Innovation Develop-
ment and Research Office (MEC) under research Grant DPI2017-89186-R.

[2]–[5]. The differences in these models arise from the fact
that they consider the short-circuit impedance either provided
exclusively by the nominal or off-nominal turns side winding
of the device. These extreme assumptions cause that both
models yield different results and thus, the users can be misled
trying to validate their results with different tools. This fact
was originally observed in [6], but the authors chose one of
those models and focused their efforts on the manipulations
needed on the other model to reach the same results. However,
in [7] those discrepancies were fully explained and a recon-
ciled solution was proposed. Furthermore, [7] demonstrates
that even if the differences between the two models are trivial
at the principal tap, significant mismatches take place at distant
tap positions. Similarly, this lack of consistency also exists in
the representation of PST through the two traditional models
typically used in power system studies [8]–[10]. The aim of
this contribution is to addressed this problem precisely by
extending the applicability of [7] to PSTs.

Now, in this work, the authors’ objective is to demonstrate
that the two available models also yield different results
for asymmetrical PSTs, which is misleading. Though these
discrepancies from two models can be considered trivial at the
principal tap, the inconsistency can lead to huge differences
at distant tappings.

In this work, a new model of the PST is proposed in
Section II in order to explain the causes of the discrepancies
between the two existing models and with the aim of reaching
a reconciled solution free of any ambiguity. Furthermore, the
new model opens the door to a more accurate description
of the device. Section III describes the traditional models
and demonstrates that they are degenerate cases of the new
proposal. Section IV presents a theoretical assessment of the
discrepancies caused by traditional models and relates them
with the solution offered by the new model. A case study is
presented in Section V in order to highlight the importance
of the new proposal. Finally, the conclusions of this study are
drawn in section VI.

II. DESCRIPTION OF THE NEW MODEL

Neglecting the shunt admittances of the detailed model
of PSTs (i.e. those responsible for the magnetizing current
and core losses) is a common practice in power system
studies. This fact, simplifies the analysis, as the internal bus
of the detailed model is removed from the problem. If the

978-1-7281-5508-1/20/$31.00 ©2020 IEEE
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PST operates at nominal turns ratios, no further assumption
is needed, as the specific contribution of each transformer
winding to the short-circuit impedance is irrelevant in that
case. However, as is demonstrated in the following, this is far
from being true when the PST works at an off-nominal tap
position. Let us consider a PST with off-nominal turns ratio
|a|ejθ as depicted in Fig. 1.

yof
 

f

i j
ysc 

|a|ejΘ : 1iij iji
vi vjvi’ vj’

Fig. 1. Model of the phase shifting transformer with short-circuit impedance
at the off-nominal turns side

The fundamental equations of a PST can be formulated as

v
′

i

v
′
j

= a = |a|ejθ, (1)

iij
iji

= − 1

a∗
= − 1

|a|e−jθ
. (2)

Then, though these parameters are not normally known by
the user, let k be the ratio between the per p.u. impedance in
the nominal winding, z2 and tapped winding, z1 (for the sake
of simplicity, the same ratio is considered for resistance and
leakage reactance). So, from (1) and (2), z2 can be referred to
the off-nominal turns side as

zoff2 =
v

′

i

v
′
j

−iji
iij

z2 = aa∗z2 = |a|2z2. (3)

Therefore, considering the new ratio k together with (3), the
series transformer admittance, as seen from the off-nominal
side, can be calculated as

yoffsc =
1

z1 + |a|2z2
=

1

z1 (1 + |a|2k)
. (4)

Typically, the data provided to the engineering practitioner in
order to model the PST is the short-circuit impedance of the
transformer, zsc, which is also available at the nameplate of
the device. This data is obtained from the short-circuit test,
which is conducted, at least, at the nominal tap (i.e. |a| = 1).
Thus, the rated short-circuit admittance of the PST, ysc, can
be expressed as

ysc =
1

z1 + z2
. (5)

From (5) and the definition of k, the contribution of the
winding at the off-nominal side to the short-circuit impedance,
z1, can be calculated as

z1 =
1

ysc (1 + k)
, (6)

Using this value in (4) yields

yoffsc =
1 + k

1 + k|a|2
ysc. (7)

Considering KVL, the nodal equations of the PST can now be
written as [

iij
iji

]
=

[
Yii Yij
Yji Yjj

] [
vi
vj

]
, (8)

where
Yii = yoffsc =

1 + k

1 + k|a|2
ysc, (9)

Yij = −ayoffsc = −a (1 + k)

1 + k|a|2
ysc, (10)

Yji = −a∗yoffsc = −a
∗ (1 + k)

1 + k|a|2
ysc, (11)

Yjj = |a|2yoffsc =
|a|2 (1 + k)

1 + k|a|2
ysc. (12)

It is important to note that the Y-bus matrix of the nodal
equations for PST is not symmetrical as Yij 6= Yji. Therefore
forming a π-equivalent model for PST is not straightforward;
rather the model will have two different branch admittances
depending on the current under consideration (iij or iji).
Keeping this fact in mind, the parameters of a pseudo π-
equivalent model for the PST, which has been depicted in
Fig. 2, can be derived from (9)–(12), as

yij = −Yij =
a (1 + k)

1 + k|a|2
ysc, (13)

yji = −Yji =
a∗ (1 + k)

1 + k|a|2
ysc, (14)

ysi = Yii + Yij =
(1− a) (1 + k)

1 + k|a|2
ysc, (15)

ysj = Yjj + Yji =

(
|a|2 − a∗

)
(1 + k)

1 + k|a|2
ysc. (16)

yij ji iij iji

vi vjysi ysj

yji

Fig. 2. A pseudo π-equivalent model of PST

III. RECONCILIATION OF PREVIOUS MODELS

It can be easily derived that the two PST models most ex-
tensively used in the literature and practical implementations,
correspond to the particular cases of making the parameter k
equal to 0 and∞ in (7), and thus in (9)–(16). The version with
k = 0 corresponds to the assumption that all the short-circuit
impedance of the PST is provided by the winding at the off-
nominal turns side. In this case, the off-nominal admittance of
the PST, yoffsc , turns to be the same as the rated short-circuit
admittance, ysc, and the parameters of the pseudo π-equivalent
circuit shown in Fig. 3(a) are obtained. On the other hand,
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considering k =∞, corresponds to the assumption that all the
short-circuit impedance of the PST is provided by the winding
at the nominal turns side. Thus, yoffsc turns to be ysc/|a|2, and
the set of parameters of the pseudo π-equivalent circuit shown
in Fig. 3(b) is reached.

ji iij iji

vi vjysc

b)

ji iij iji

vi vj

a)

1–a
|a|2 ysca

a–1

(1–a)ysc (|a|–a*)ysc

aysc

a*ysc

ysc

ysc

a*
1

a
1

Fig. 3. π-equivalent traditional models of the phase shifting transformer. (a)
k = 0, and (b) k = ∞

It is interesting to note that the lack of consistency between
the results offered by the two traditional alternatives of the PST
models was initially identified in [6]. However, this publication
focused on the adjustments needed to make them yield the
same results and, thus, appropriately pointed out that the model
in Fig. 3(a) turns to be the same as the one in Fig 3(b) if all
the admittances are divided by |a|2. The problem of taking this
approach lies on the fact that all the short-circuit impedance
of the device is still being assigned to one specific side of the
transformer which, as is demonstrated in this contribution, can
lead to important errors. Conversely, the new model is capable
of describing the cause of the discrepancies and allows for a
description of the device free of any ambiguity, provided that
the specific value of k used in the analysis is reported.

It is important to highlight that the new PST model pre-
sented here, opens the door to obtain accurate results if k is
known (e.g. being provided by the manufacturer or estimated
from off-line field measurements). But, even if this is not
the case, much more realistic estimates can be obtained if
k is set to 1, which stands for an equal contribution of each
winding of the transformer to the short-circuit impedance. In
fact, this is a common engineering practice, typically used
when a detailed model of the transformer is to be used [10],
[11]. While the benefits of using k = 1 in the case of the
tap-changing transformer model was previously discussed in
[7], this work analyzes the advantage of making the same
assumption for the case of PSTs.

IV. ERROR ASSESSMENT

By using the new PST model proposed in Section II, the
voltage at the nominal turns side of the PST, vj , can be
determined if the variables at the off-nominal turns side, vi

and iij , are provided. Indeed, using the nodal equation of the
PST displayed in (8), vj can be calculated as

vj =
iij − Yiivi

Yij
. (17)

Let us designate the voltage at the nominal turns side for a
generic value of k as vkj . Thus, the discrepancies between the
traditional models and the consensus model, can be assessed,
by just considering the values obtained for k = 0 and k =∞,
i.e. v0j and v∞j . Indeed, using (17) according to the values of
Yii and Yij in (9) and (10), yields,

∆v0j = v0j − vkj =
k
(
|a|2 − 1

)
iij

a (1 + k) ysc
, (18)

∆v∞j = v∞j − vkj =

(
1− |a|2

)
iij

a (1 + k) ysc
. (19)

As it is immediately derived from (18) and (19), the
discrepancies grow with the load level of the transformer as
well as with the value of the rated short-circuit impedance.
Moreover, those equations imply that the mismatch does not
take place when |a|=1, which is the case of symmetrical PSTs
(i.e. those causing a pure phase-angle shift but with no effect
on voltage magnitudes). In this specific case, the proposed
model cannot contribute to provide better results. In fact, both
the traditional and new models turn to be the same under that
particular circumstances.

However, many asymmetrical PSTs are also used in power
system applications. The proposed model can highly contribute
to their modeling and simulation. According to [12], there
exist three types of asymmetrical PSTs. For the widely-used
quadrature booster, shown in Fig. 4.(a), the regulating winding
is connected at ±90 deg., whereas for other asymmetric PSTs,
as the one shown in Fig. 4.(b), the regulating winding can be
connected at different angles, 0<δ<180. For the asymmetrical
PST with in-phase transformer, as in Fig. 4.(c), voltages on
both primary and secondary side can be boosted with a com-
mon ratio r while the regulating winding remains connected
with same angle, δ. As |a|6=1 in those cases, traditional models
cause inconsistent results and the new model may effectively
solve this problem.

v2

v1

a)

ΘΘmax

v1

b)

v2

ΘΘmax

δ

c)

v1

v2

ΘΘmax

δ

δ

r v2 rmaxv1

r v1

Fig. 4. Phasor diagram of PSTs. (a) Quadrature booster (b) asymmetrical
PST, (c) in-phase transformer and asymmetrical PST
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Notice that the new model is also useful to account for
voltage magnitude tap-changing transformers provided that
their vector group causes a non-zero phase-shift. In those
cases, the discrepancies can be exacerbated by extreme tap
positions, due to the high differences between |a| and 1 that
can be found in this type of devices.

V. CASE STUDY

A case study is presented in this section in order to point
out the inconsistencies implied by the use of the traditional
PST models shown in Fig. 3. Furthermore, this case study
demonstrates that the new PST model, proposed in this contri-
bution and depicted in Fig. 2, can solve this problem assuring
certainty in reporting results.

From Fig. 4, it can be easily seen that, for any of these
asymmetric PSTs, there are general relations between the tap
position, n, neutral tap position, n0, phase shift, θ, magnitude
of the off-nominal p.u. turns ratio, |a|, regulating winding
connection angle, δ, and p.u. voltage step increment per tap
change of the regulating winding, du. The general relations,
including the effect of r, are well documented in [12], [13].
For the particular case of the asymmetrical PST, which is
considered in the present case study, those relations, according
to Fig. 4.(b), can be expressed as

θ = − arctan

(
(n− n0) du sinδ

1 + (n− n0) du cosδ

)
, (20)

|a| = 1√
((n− n0) du sinδ)

2
+ (1 + (n− n0) du cosδ)

2
.

(21)
Even if the manufacturer can provide different short-circuit

impedance values for different tap positions, this fact is omit-
ted in the following, not to obscure the core of the proposal.

Let us consider an 80 MVA, 50 Hz, 220/132 kV, asym-
metric PST, with a nameplate short-circuit impedance, zsc, of
0.01 + 0.12j and a maximum no-load phase shift, θmax, of
−4.715 deg. The regulating winding connection angle, δ, is
at 60 deg. and the tap changer, located on the higher voltage
side, has 11 positions (from the neutral tap, n0=0, to n=10)
and a voltage step increment per tap change, du, of 1%.

A. Analysis of the nominal turns side voltage deviations for
different tap positions and power factors

The effect of the tap position in the deviations caused
by traditional models is studied in this case. The voltage
at the off-nominal turns side of the PST, vi is fixed at 1
p.u. as well as the current at the same side, iij , which is
also forced to supply the rated current of the transformer.
Two different power factors are used in this analysis: (a) a
unity power factor, ϕ=0 deg., i.e. iij is in-phase with vi, and
(b) a pure capacitive case, ϕ=90 deg. in which iij leads vi
in this amount. Thus, the voltage at the nominal turns side
of the transformer, vj , can be calculated using the different
models. Fig. 5 shows the results for the traditional versions,
i.e. k=0 and k=∞, together with those obtained using the new
model and assuming an equal contribution of both windings

to the short-circuit impedance, i.e. k=1. Although the setting
of k in this way is not necessarily exact, it is according to
well-accepted engineering practices, and is a more sensible
estimation than the one derived from the extreme assumptions
made in the traditional models.
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Fig. 5. Nominal-turns side voltage at different tap positions for the different
PST models. The PST is operated at rated values at the off-nominal turns
side at two different power factors: unity (ϕ = 0 deg.) and pure capacitive
(ϕ = 90 deg.). (a) Voltage magnitude, and (b) voltage phase angle

The discrepancies in the magnitude of voltage at the nom-
inal turns side of the transformer can be observed in Fig. 5.a.
While they can be practically neglected at high power factors,
the inconsistency is exacerbated in the capacitive case. Fur-
thermore, and in agreement with (18) and (19), the mismatch
grows when moving to distant positions from the neutral tap.
In the same vein, the phase angle of the voltage at the nominal
turns side (the voltage at the off-nominal side is taking as a
reference) is depicted in Fig. 5.b. Unlike in the previous case,
the discrepancies appear now magnified at high power factors
and tend to be negligible with pure capacitive loads. As it is
concluded from Fig. 5, the model proposed in this contribution
offers a consensus estimate even if k is not accurately known
and, more importantly, it removes any ambiguity from the
results if the value of k used in the analysis is provided.

B. Maximum deviations in the calculation of the nominal-
turns side voltage

In order to obtain the maximum deviations taking place in
using the different models of the PST under study, the equiva-
lent circuits of the traditional (k=0 and k=∞) and new model
(setup with k=1) were used to calculate the nominal turns side
voltage at every tap position, n, and with every possible power
factor (i.e. letting ϕ vary in the full range, which includes
reverse power flow) while operating the transformer at rated
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values on the off-nominal side. The results obtained with the
new model, v1j , were taken as a reference. Thus, Fig. 6.(a)
represents the differences in voltage magnitude between the
traditional models and the present proposal, i.e. |v0j | − |v1j |
and |v∞j | − |v1j |. The maximum difference reaches a value
of 0.63% which is, in fact, a significant discrepancy. Notice
that the mismatch between the traditional models doubles the
previous result, being as high as 1.26%. The same differences
are depicted in Fig. 6.(b) for the case of the phase angle of
the nominal turns side voltage. The mismatch reaches in this
case 0.69 deg. between the traditional models, being reduced
to 0.35 deg. when compared with the new model. Noticeably,
these inconsistencies in the calculation of voltage phase angle
can have a deep impact in the regulation of power flows by
means of PST in real grids. The same results can be directly
obtained from (18) and (19).

Fig. 6. Maximum deviation in the calculation of the nominal-turns side
voltage at rated current. (a) Voltage magnitude, (b) voltage phase angle

VI. CONCLUSION

The use of simplified single-phase models of PSTs is stan-
dard practice in the execution of steady-state balanced power
system studies. Although the specific contribution of each
of the transformer windings to the short-circuit impedance
can be completely neglected in untapped devices or when
the operation takes place at the nominal tap, the same does
not hold true at different tap positions. Traditional models
of voltage-magnitude regulating transformers and PSTs are
based on the assumption that all the short-circuit impedance
is fully provided either by the winding at the nominal or
off-nominal side, leading to two alternative models that yield
different results. This may have strong implications, not only
in the accuracy but also on the consistency of the outcomes

from different tools. Although this problem does not appear in
symmetrical PSTs, it can be a serious issue in asymmetrical
PSTs or in voltage-magnitude regulating transformers with a
non-zero vector group. Indeed, this work demonstrates that, in
those cases, the mismatch of the results from those traditional
models may be relevant, especially at extreme tap positions.
These discrepancies appear both in voltage phase and voltage
magnitude, depending on the power factor of the power flow
handled by the device. Furthermore, this contribution proposes
a consensus model of the PST which fully explains the
aforementioned differences. The new model includes a new
parameter that takes into account the contribution of each
transformer winding to the short-circuit impedance. The use
of this model gets rid of any ambiguity provided that the
value of this parameter is reported within the data of the
study. Moreover, the new model can boost the accuracy of the
results if good estimates for the new parameter are available.
Even if this is not the case, a sensible setup, as the one
derived from the assumption of an equal contribution of each
transformer winding to the short-circuit impedance, provides
a more reliable outcome than those obtained from the extreme
assumptions of the traditional models. Thus, the inclusion of
the proposed PST model in power system software packages
has the potential to significantly improve the consistency of
power system studies with embedded PSTs.
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Abstract—Recent contributions have shown that two widely used
formulations of the tap-changing transformer model are controver-
sial, as they generate dissimilar results depending on the selected
tap and operating point. In recent works, the authors proposed
a new model and demonstrated its consistency to reconcile this
debate. It introduces a parameter which stands for the ratio be-
tween the impedances of the nominal and tapped winding of the
transformer. However, this parameter is not provided with and
cannot be obtained from standard datasheets, which compels the
users to rely on rough approximations. To overcome this problem,
an offline state-vector-augmented parameter estimation method
capable of providing accurate estimates of transformer impedance
ratios is proposed in this work. It is demonstrated that their use can
effectively lead state estimators to better estimates of system states.
This work also contributes with the derivatives of the different
measurement functions in terms of the impedance ratios, which are
essential for this or any other linearized state estimator. A multi-
snapshot implementation is used to obtain a twofold advantage —
increased measurement redundancy and improved accuracy of the
estimated parameters. A detailed formulation of the implemen-
tation and several case studies are presented to demonstrate the
validity of the proposal.

Index Terms—Maximum likelihood estimation, parameter
estimation, power transformers, tap changers, transformer models.

I. INTRODUCTION

S EVERAL power system studies, such as power flow (PF),
optimal power flow (OPF) or state estimation (SE), are

crucial today to ensure safety and optimality in the operation of
modern grids. In this context, tap-changing transformers serve
at the vanguard for voltage regulation in power systems, and
thus, accurate models of these devices are needed when they are
present in the network under study.

The two most widely spread tap-changing transformer models
found both in literature and software packages [1], [2] have
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been demonstrated to be inconsistent [3]–[5]. One of the models
assumes that the transformer impedance, obtained through the
well-known short-circuit test, is totally provided by the nominal
winding, whereas the other model allocates it exclusively at the
off-nominal side. This fact was first reported in [3]; however,
the authors of this work selected one of the alternatives and
proposed a method to shape the other so as to converge into the
same results. Later, in [4], [5], it was established that, while
the two models produce similar results near the central tap,
they lead to significant differences at extreme tap positions.
The power factor of the power flowing through the transformer
primarily determines whether this divergence appears in voltage
magnitude or phase angle. Analytical formulations and case
studies demonstrating this inconsistency are presented in the
aforementioned references.

To reconcile this dispute, the authors proposed a consistent
model which reflects that the short-circuit impedance is in
fact shared by both sides of the transformer [4], [5]. The new
model introduces a parameter, k, which stands for the per-unit
(p.u.) impedance ratio between the nominal winding and tapped
winding of the tap-changing transformer. However, admittedly,
the user cannot obtain the value of this parameter from stan-
dard transformer data sheets or even through straight-forward
calculations. In response to that, the authors argued and demon-
strated that if this parameter is not available, assuming k = 1,
i.e. considering an equal share of the p.u. impedance at both
sides of the transformer, produces results which minimizes the
maximum expected error. Nonetheless, the authors pointed out
that, to achieve accurate results, the p.u. impedance ratio could be
obtained in real scenarios from the application of SE techniques.
In fact, this is the main purpose of the present proposal.

In a broad classification, SE methods are either recursive or
static. However, static state estimators constitute a compara-
tively mature technology widely used by utilities for power
system monitoring. While there are other possibilities, most
of the static estimators minimize the weighted least squares
(WLS) of residuals from a single snapshot of measurements
to provide estimates of the current states of the system [6],
[7]. For static SE, several alternative formulations are available
in literature in order to overcome some deficiencies of the
seminal algorithms, increasing numerical capabilities or adding
some practical advantages. Many of these formulations are well
documented in [6], [7]. In the present proposal, a widely used
and suitable WLS-based formulation is extended further to cope
with the objectives of this work.
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In addition to providing estimates of the state variables, other
functions and associated routines are integral parts of power
system state estimators, such as observability analysis, bad
data detection and identification, topology error processing and
parameter estimation. Among these, the latter can be pointed
out as the key tool to address the problem of estimating the
p.u. impedance ratios of tap-changing transformers. Network
parameter estimation methods are broadly classified in two
groups-residual sensitivity-based analysis and state vector aug-
mentation [6]. Residual sensitivity-based analysis is efficient
for parameter error identification which is not required for
the purpose of this work, as transformer impedance ratios are
objectively included in the suspicious set. As the name suggests,
in state vector augmentation methods, the suspected param-
eters are included in the state vector and estimated together
with the system state variables [8]–[13]. Importantly, for the
sole purpose of parameter estimation, state vector augmentation
methods are considered to deliver superior performance due to
the fact that all the surrounding measurements get involved in
the estimation [14]. Therefore, the state vector augmentation
method has been selected and implemented in this proposal to
provide accurate estimates of the parameters of interest.

The estimation of transformer tap positions has been a central
issue for parameter estimation methods in power systems [10],
[13]. In fact, estimation of unmeasured or erroneous transformer
taps is today a regular or online function of state estimators.
On the contrary, due to the non-varying nature of impedance
ratio parameters, which may change only in the event of a fault
or a complete replacement of a transformer, their estimation is
required in very long intervals. It is not worth including the
estimation of these parameters in an online state estimator, as
this may deteriorate the performance of the algorithm in terms
of speed without a practical improvement. Therefore, an offline
parameter estimator, designed to be run periodically, with a low
cadence, is proposed in this work. In this concept, the online
estimator used in the operation of the grid is in charge of the
estimation of transformer tap positions at each snapshot; then,
the offline parameter estimator, executed in long time periods,
uses those tap positions together with the raw measurements at
different snapshots to provide accurate estimates of the trans-
former impedance ratios. Certainly, the updated estimates of
these parameters can now be fed into the online state estimator
to increase its accuracy, as a consequence of the improvement
of the model.

Finally, it is important to discuss the potential hindrances of
assessing the transformer p.u. impedance ratios through param-
eter estimation techniques. If a large number of tap-changing
transformers are embedded in the grid under study, the new
variables to be included in the augmented state vector could
significantly deteriorate the redundancy of the measurements.
Moreover, as in any other SE application, the noise of field
measurements has an impact on the quality of the estimation of
the parameters. However, even more important for this particular
problem is that the sensitivity of the measurement functions
with respect to p.u. impedance ratios are significantly lower
than the sensitivities with respect to the other state variables.
As a consequence, measurement noise is likely to conceal the

Fig. 1. Model of the tap-changing transformer with short-circuit impedance
at the off-nominal turns side.

Fig. 2. Two-port π-model of a tap-changing transformer or a network branch.

biases of erroneous estimation of impedance ratios throughout
the process. The above-mentioned difficulties turn the estimation
of the desired transformer parameters into a challenging task.
Nonetheless, one expedient feature of transformer impedance
ratios can help to overcome these obstacles: they can be consid-
ered time-invariant, at least for a reasonable time span. Thus,
the method proposed in this work can be fed with multiple
snapshots of measurements, i.e. with historical data collected
along a reasonable time period. Multi-snapshots usage has clear
advantages in parameter estimation, as has been previously re-
ported by other authors [6], [9], [11]. Therefore, a multi-snapshot
implementation has been embraced in this proposal.

In Section II, the consistent tap-changing transformer model,
and thereby, the emergence of the impedance ratio parameter,
is presented for the benefit of the reader. Then, an advanta-
geous equality-constrained SE method is briefly described in
Section III. Section IV articulates the derivation and integration
details of the estimation of p.u. impedance ratios. A set of case
studies are included in Section V to validate and demonstrate
the advantages of the proposal. Finally, the conclusions of this
study are gathered in Section VI.

II. CONSISTENT TAP-CHANGING TRANSFORMER MODEL

Let us consider a tap-changing transformer with off-nominal
turns ratio a : 1 as depicted in Fig. 1. Like any network branch
or in-phase transformer, a tap-changing transformer can be
represented as a π-equivalent model, as shown in Fig. 2. The
π-equivalent model possesses two shunt branches which induce
no effect while the transformer is operated at its nominal turns
ratio. However, tap-changing transformers are often operated
at off-nominal turn ratios for voltage regulation purposes, and
thus, the shunt branches of their π-equivalent model cannot be
neglected.

As discussed in Section I, the consistent model of the tap-
changing transformer was introduced in [4], [5] to reconcile the
inconsistency between two widespread models. The new consis-
tent model states that the off-nominal short-circuit admittance
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at the off-nominal turns side can be calculated as

yoffsc =
1

z1 + a2z2
=

1 + k

1 + ka2
ysc, (1)

where ysc represents the p.u. admittance of the transformer,
obtained through the short-circuit test and always provided as
nameplate data. Parameter k is introduced in [4] to denote the
p.u. impedance ratio between the nominal winding, z2, and
tapped winding, z1. Classical transformer models assume ex-
treme values of this parameter (k= 0 and k=∞). The elements
of the bus admittance matrix for the consistent tap-changing
transformer model are derived in [4], [5] as

Yii =
1 + k

1 + ka2
ysc, (2)

Yij = Yji = −a(1 + k)

1 + ka2
ysc, (3)

Yjj =
a2(1 + k)

1 + ka2
ysc. (4)

Then, the parameters of the π-model can be straightforwardly
obtained as

yij = −Yij =
a(1 + k)

1 + ka2
ysc, (5)

ysi = Yii + Yij =
(1− a)(1 + k)

1 + ka2
ysc, (6)

ysj = Yjj + Yij =
a(a− 1)(1 + k)

1 + ka2
ysc. (7)

An unresolved issue of the consistent model is that the
particular value of the p.u. impedance ratio, k, for a specific
tap-changing transformer is a constructive parameter normally
unknown for the user. Therefore, the accuracy and consistency of
the results of power system studies with embedded tap-changing
transformers can be obviously improved if the actual value of k
is determined through a parameter estimation process utilizing
historical sets of measurements. Thus, the estimation of k is
pursued in the present proposal.

III. EQUALITY-CONSTRAINED SE

The Normal Equations (NE) formulation of WLS SE in their
application to power system studies may lead to some well-
known problems, such as ill-conditioning or divergence. This
is especially critical when using zero-injection buses as virtual
measurements. Therefore, several proposals have been made to
overcome the shortcomings of the basic NE formulation [6].
Among these propositions, appear numerical techniques such
as the Lower Upper (LU) factorization and orthogonal (QR)
factorization of the gain matrix. More advantageously, there are
some restructured formulations called equality-constrained SE
which take advantage of the Lagrangian of equality-constrained
optimization problems [6], [15]. In the present work, an equality-
constrained SE algorithm called augmented matrix method [6],
[16] was extended to the particular parameter estimation prob-
lem of interest. In this method, both the virtual and regular
measurement equations are taken as equality constraints in order

to improve the condition number of the Hachtel’s matrix. Ac-
cording to this method, the following set of linearized equations
describes the SE problem

⎡
⎢⎣

R H 0

HT 0 CT

0 C 0

⎤
⎥⎦
⎡
⎢⎣

μ

Δx

λ

⎤
⎥⎦ =

⎡
⎢⎣

Δz

0

−c(x)

⎤
⎥⎦ , (8)

where,
� R is the covariance matrix having variances of regular

measurement errors at its diagonal elements,
� H is the matrix for derivatives of regular measurements,
� C is the matrix for derivatives of virtual measurements,
� μ is the vector of Lagrange multipliers for regular mea-

surements,
� λ is the vector of Lagrange multipliers for virtual measure-

ments,
� Δx is the vector for deviations of state variables,
� Δz is the vector for measurement residuals, i.e., the differ-

ence between regular field measurements and their theoret-
ical values calculated from the current estimation of state
variables,

� and c(x) is the vector for virtual measurement residuals.

IV. ESTIMATION OF TRANSFORMER IMPEDANCE RATIOS

Most SE methods are linearized formulations which require
the derivatives of the measurement functions, h, in terms of the
state variables. As power system static SE is a well-developed
and mature technique, the derivatives of general measurement
functions in terms of commonly used state variables and param-
eters are widely used and readily available in the literature [6].
However, the consistent tap-changing transformer model is a
state-of-the-art concept which has not been implemented be-
fore in power system SE algorithms. Hence, no work has yet
introduced the derivatives of measurement functions in terms of
the impedance transformer ratio, k, which are required for the
estimation of these parameters.

In a standard SE formulation, the state vector, x, includes
bus voltage magnitudes, V , and phase angles, θ, except for
the phase angle reference, as state variables. In this proposal,
the state vector is augmented by including the k parameters
of the tap-changing transformers embedded in the network
under study. Thus, as an important contribution of this work,
the derivatives of general field measurement types such as bus
voltage magnitudes, active and reactive bus power injections
and active and reactive branch power flows, in terms of the
impedance ratio, are presented. These derivatives are crucial
for the construction of both the H and C matrices included in
(8). Finally, for the problem-specific requirements, the authors
have integrated these new derivatives into a single snapshot and
a multi-snapshot augmented matrix SE algorithm.

A. Derivatives of Measurement Functions in Terms of k

1) Bus Voltage Magnitudes: The measurement function of
voltage magnitude at bus i reduce itself to its corresponding
voltage magnitude, Vi, which is a state variable on its own.
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Therefore, these functions are independent of tap-changing
transformer impedance ratios, k. So, it can be stated that

∂Vi

∂k
= 0. (9)

2) Power Injections: The measurement functions for the ac-
tive and reactive power injections, Pi and Qi, at a specific bus i,
are well-known in power system analysis, being formulated as

Pi = Vi

N∑
n=1

Vn[Gin cos θin +Bin sin θin], (10)

Qi = Vi

N∑
n=1

Vn[Gin sin θin −Bin cos θin], (11)

where n stands for each of the total number of buses in the
network, N . Likewise, Gin, Bin are the conductance and sus-
ceptance of the elementYin of the system bus admittance matrix.
Finally, θin stands for the phase angle between buses i and n.

As it can be immediately concluded from (10) and (11), if
bus i is not directly connected to a tap-changing transformer,
none of the terms of these equations depend on the impedance
ratio of that specific device. Thus, the derivatives of those active
and reactive power injections in terms of the impedance ratio
of that transformer equal zero. On the other hand, if there
is a tap-changing transformer located between buses i and j,
with an impedance ratio k, the admittance of the transformer
impacts the calculation of power injections through the addends
corresponding to n = i and n = j. Thus, the parts of Pi and
Qi impacted by k, which are the only ones of interest for the
calculation of the derivatives, can be designated as P k

i and Qk
i

and may be evaluated as

P k
i = V 2

i G
k
ii + ViVj [Gij cos θij +Bij sin θij ], (12)

Qk
i = − V 2

i B
k
ii + ViVj [Gij sin θij −Bij cos θij ], (13)

where,Gk
ii andBk

ii contain the addends of the diagonal elements
of the bus admittance matrix which are a function of k, i.e. those
provided by the series and shunt branch of the tap-changing
transformer model connected at bus i.

At this point, two cases should be taken into consideration.
On the one hand, if the tapped winding of the transformer is
connected to bus i, as depicted in Fig. 1, (2) and (3) allow to
express the elements of the bus admittance matrix in (12) and
(13) as a function ofk and the conductance, gsc, and susceptance,
bsc, of the short-circuit admittance, ysc, of the transformer. Thus,

Gk
ii =

1 + k

1 + ka2
gsc, Bk

ii =
1 + k

1 + ka2
bsc, (14)

Gij = −a(1 + k)

1 + ka2
gsc, Bij = −a(1 + k)

1 + ka2
bsc. (15)

The substitution of (14) and (15) in (12) and (13) leads to

P k
i =

1 + k

1 + ka2
[
V 2
i gsc − aViVj (gsc cos θij + bsc sin θij)

]
,

(16)

Qk
i =

1 + k

1 + ka2
[−V 2

i bsc − aViVj (gsc sin θij − bsc cos θij)
]
.

(17)

By applying the quotient rule to (16) and (17), the derivatives of
Pi and Qi in terms of k can be obtained as

∂Pi

∂k
=

1 + ka2 − a2(1 + k)

(1 + ka2)2

× . . .
[
V 2
i gsc − aViVj (gsc cos θij + bsc sin θij)

]
,
(18)

∂Qi

∂k
=

1 + ka2 − a2(1 + k)

(1 + ka2)2

× . . .
[−V 2

i bsc − aViVj (gsc sin θij − bsc cos θij)
]
.

(19)

On the other hand, if bus i is connected to the untapped
winding of the transformer, (4) should be used instead of (2)
to formulate the diagonal elements of the bus admittance matrix
impacted by k, Gk

ii and Bk
ii, in (12) and (13). Thus,

Gk
ii =

a2(1 + k)

1 + ka2
gsc, Bk

ii =
a2(1 + k)

1 + ka2
bsc. (20)

The substitution of (15) and (20) in (12) and (13) leads to

P k
i =

a(1 + k)

1 + ka2
[
aV 2

i gsc − ViVj (gsc cos θij + bsc sin θij)
]
,

(21)

Qk
i =

a(1 + k)

1 + ka2
[−aV 2

i bsc − ViVj (gsc sin θij − bsc cos θij)
]
.

(22)

And the derivatives of Pi and Qi in terms of k in this second
case turn out to be

∂Pi

∂k
=

a(1 + ka2)− a3(1 + k)

(1 + ka2)2

× . . .
[
aV 2

i gsc − ViVj (gsc cos θij + bsc sin θij)
]
,
(23)

∂Qi

∂k
=

a(1 + ka2)− a3(1 + k)

(1 + ka2)2

× . . .
[−aV 2

i bsc − ViVj (gsc sin θij − bsc cos θij)
]
.

(24)

3) Power Flows: Note that the π-equivalent model depicted
in Fig. 2 is not only valid for a tap-changing transformer but also
for a line. Thus, the measurement functions of active and reactive
power, Pij , Qij , flowing from bus i to bus j and measured at the
sending end can be expressed for both types of elements as

Pij = V 2
i (gsi + gij)− ViVj(gij cos θij + bij sin θij), (25)

Qij = −V 2
i (bsi + bij)− ViVj(gij sin θij − bij cos θij), (26)

where, gsi and bsi are the conductance and susceptance of the
shunt leg at bus i, and gij and bij stand for the conductance and
susceptance of the series admittance.
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From (25) and (26), it can be immediately concluded that, if
a power flow measurement between the adjacent buses i and j
does not flow through a tap-changing transformer, none of the
elements of these equations are affected by the impedance ratio
of the device. Thus, the derivatives of those active or reactive
power flows in terms of the k equal zero. However, when a tap-
changing transformer connects buses i and j, the admittances in
those equations are a function of the impedance ratio, k. Again,
two different cases need to be addressed. On the one hand, if
the measuring location, i.e. bus i, is connected to the tapped
winding, as in Fig. 1, the conductances and susceptances can be
directly taken from (5) and (6). Thus,

gsi + gij =
1 + k

1 + ka2
gsc, bsi + bij =

1 + k

1 + ka2
bsc, (27)

gij =
a(1 + k)

1 + ka2
gsc, bij =

a(1 + k)

1 + ka2
bsc. (28)

The substitution of (27) and (28) in (25) and (26) leads to

Pij =
1 + k

1 + ka2
[
V 2
i gsc − aViVj (gsc cos θij + bsc sin θij)

]
,

(29)

Qij =
1 + k

1 + ka2
[−V 2

i bsc − aViVj (gsc sin θij − bsc cos θij)
]
.

(30)

By applying the quotient rule to (29) and (30), the derivatives of
Pij and Qij in terms of k can be obtained as

∂Pij

∂k
=

1 + ka2 − a2(1 + k)

(1 + ka2)2

× . . .
[
V 2
i gsc − aViVj (gsc cos θij + bsc sin θij)

]
,

(31)

∂Qij

∂k
=

1 + ka2 − a2(1 + k)

(1 + ka2)2

× . . .
[−V 2

i bsc − aViVj (gsc sin θij − bsc cos θij)
]
.

(32)

On the other hand, if the measuring location, i.e. bus i, is
connected to the untapped winding, (7) should be used instead
of (6) to obtain the conductances and susceptances used in (29)
and (30). Thus,

gsi + gij =
a2(1 + k)

1 + ka2
gsc, bsi + bij =

a2(1 + k)

1 + ka2
bsc. (33)

The substitution of (28) and (33) in (29) and (30) leads to

Pij =
a(1 + k)

1 + ka2
[
aV 2

i gsc − ViVj (gsc cos θij + bsc sin θij)
]
,

(34)

Qij =
a(1 + k)

1 + ka2
[−aV 2

i bsc − ViVj (gsc sin θij − bsc cos θij)
]
.

(35)

Fig. 3. Formation of the augmented Jacobian matrices for a single snapshot.
(a) H matrix, and (b) C matrix.

And the derivatives of Pij and Qij in terms of k in this second
case can be expressed as

∂Pij

∂k
=

a(1 + ka2)− a3(1 + k)

(1 + ka2)2

× . . .
[
aV 2

i gsc − ViVj (gsc cos θij + bsc sin θij)
]
,

(36)

∂Qij

∂k
=

a(1 + ka2)− a3(1 + k)

(1 + ka2)2

× . . .
[−aV 2

i bsc − ViVj (gsc sin θij − bsc cos θij)
]
.

(37)

B. Formation of Jacobian Matrices for the SE Process

In the formulation of the augmented matrix approach for
SE [6], [15], the derivatives of the hz–functions of a set of L
regular measurements, zr, reside in the H matrix, while the
derivatives of the cz–functions of a set of M virtual measure-
ments, zv , reside in the C matrix shown in (8). Both matrices
are augmented in this proposal with a new set of state variables,
k, corresponding to the transformer impedance ratios of the T
tapped-transformers embedded in the grid under study.

If the estimation of k is carried out considering just a single
snapshot of measurements, the extension of the Jacobian matri-
ces is rather straightforward. In this case, a new column has to be
added, both to the H and C matrices, to account for each of the
T elements of k. Thus, the use of the new derivatives described
in Section IV-A together with the classical set [6], allows to
form the augmented H and C matrices as depicted in Fig. 3.
Notice that in this figure and w.l.o.g, the phase angle at bus 1,
θ1, has been taken as reference, and thus, excluded from the set of
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state variables. This is a similar approach to other augmentation
techniques such as those previously presented in [8]–[13].

According to Fig. 3, two parts can be distinguished in the new
H and C matrices: H1 and C1, that account for the derivatives
of regular and virtual measurements with respect to the conven-
tional state variables, and H1k and C1k, that hold the derivatives
of regular and virtual measurements in terms of the transformer
impedance ratios, k. The final H and C matrices are formed by
horizontal concatenation of H1, H1k and C1, C1k respectively.

The difficulties of estimating the p.u. impedance ratios of tap-
changing transformers from a single snapshot of measurements
have been previously discussed in Section I. As it was pointed
out, an adaptation of a multi-snapshot of measurements is pro-
posed in this work to overcome those obstacles. This is a suitable
approach for the estimation of the parameters under study, which
can be considered time-invariant during long periods. Indeed,
parameter estimation, conducted as an offline task, can sacrifice
computation time in favor of the accuracy of the estimation.

In SE theory, measurement redundancy is defined as the ratio
between the number of measurements and the number of state
variables. Hence, as L is the number of regular measurements
and M is the number of virtual measurements, the base case
redundancy of the problem, ε0, i.e., the one in which p.u.
impedance ratios are not included as state variables, can be
calculated as

ε0 =
L+M

2N − 1
. (38)

In a single snapshot or multi-snapshot implementation of the
augmented problem, in which Q snapshots and T time-invariant
transformer impedance ratios are included as additional state
variables, the redundancy level is deteriorated according to

εQ =
Q(L+M)

Q(2N − 1) + T
=

L+M

2N − 1 + T
Q

. (39)

From (39), it can be concluded that, increasing the number
of snapshots in the estimation process, allows to move the
redundancy level of the augmented problem as close as desired
to the redundancy of the base case. Thus, provided that a suf-
ficient number of snapshots are included into the problem, the
application of the augmented approach cannot be blamed for
deteriorating the redundancy level.

The formation of the augmented matrices, H and C, for
the case of the multi-snapshot problem is depicted in Fig. 4.
Each snapshot q involves a specific set of conventional state
variables, [V θ]q , together with a specific set of h–functions,
[hzr]q , and c–functions, [czv]q , associated with regular and
virtual measurements, respectively. Notice that the conventional
state variables change at each snapshot but the augmented ones,
k, remain always the same. Thus, the parts of the Jacobian
matrices linked to conventional state variables are augmented
diagonally by means of Hq and Cq , while the parts associated
with the transformer impedance ratios are augmented vertically
by means of Hqk and Cqk.

It is worth noting that, in order to apply (8) in the multisnap-
shot context, the covariance matrix, R, should be formed by
diagonal augmentation of the respective covariance matrices of

Fig. 4. Formation of the augmented Jacobian matrices in a multi-snapshot
problem. (a) H matrix, and (b) C matrix.

each snapshot. Likewise, Δz and Δx vectors are respectively
formed by vertical concatenation of measurement residuals and
state variable deviations from each snapshot.

Equation (8) can now be iteratively solved to provide es-
timates of the full set of state variables. Among them, the
final values of k constitute the estimated parameters of the p.u.
impedance ratios of the tap-changing transformers.

C. Treatment of Bad Data

The treatment of bad data is a crucial concern for any state
estimator. However, as it is pointed out in Section I, the parameter
estimator proposed in this work is designed to work offline. Thus,
it uses historical data comprised of measurement snapshots in
which any possible bad data has been already detected, identified
and removed by the online state estimator used in the operation
of the grid. Of course, removal of bad data may reduce the
redundancy of the measurement set. However, as it is shown in
the case studies presented in Section V, the proposed algorithm
converges to the solution even in low redundancy scenarios.
In summary, as the bad data is pre-treated by the online state
estimator, the proposed offline parameter estimator does not
need further filtering of the input measurements.

Nevertheless, it is interesting to point out that model inaccu-
racies, such as those that may appear during the initialization
process (i.e. when k = 1 is adopted as an educated guess of
the transformer impedance ratios), can lead the online state
estimator to an undesired removal of measurements (erroneously
flagged as bad data). The influence of this aspect on the proper
estimation of the parameters is studied in Section V-E.

D. Initialization and Pseudomeasurement Strategy

The initialization of the iterative process presented in (8) is
conducted considering a flat profile, i.e. all the bus voltage mag-
nitudes are set to 1 p.u. and all the bus voltage phase angles are
set to 0 deg. For the case of transformer impedance ratios, k, they
are set to 1, which is a sensible educated guess according to [4].
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Nonetheless, once the algorithm has been run for the first time in
a particular grid, the initialization of the transformer impedance
ratios can be changed to adopt the estimated parameters provided
as an output by the last execution.

As it is analysed in Subsection IV-B, adding new elements to
the state vector reduces measurement redundancy. To counteract
this fact, a general practice was common in parameter estimation
methods: the inclusion of the last available estimates of the
suspicious parameters as pseudomeasurements in the problem.
This practice can be applied to the case of the estimation of
transformer impedance ratios; however, this strategy has been
argued as controversial [6], [14]. Certainly, if the system is
not observable without the pseudomeasurements, then the pa-
rameters become critical and their estimates become equal to
the initialization values. On the other hand, if the pseudomea-
surements are not critical, but redundant, the arbitrary weights
assigned to them can lead to largely biased results. For this
reason, transformer impedance ratios have not been included
as pseudomeasurements in the present implementation.

It is important to note that, if pseudomeasurements of the
estimated parameters are not used, as in the case of the present
proposal, initiating the iterative process from a flat start leads
to the singularity of the Jacobian matrix at the first iteration.
Certainly, all the derivatives with respect to the parameters
become zero at this operating point. This problem can be easily
counteracted by including the parameters in the state vector only
after the first iteration [6]. This is the strategy followed by the
authors in the present contribution.

V. CASE STUDIES

A well-tested industrial power system, previously used
in [17], has been adopted in these case studies to validate and an-
alyze the proposal. The topology of the network, which includes
four tap-changing transformers, together with the voltage levels
are depicted in Fig. 5. The specific data of the lines, transformers
and loads are summarized in Table I.

In order to generate data for the multi-snapshot scenario, the
tap position of the transformers and the value of the loads are
randomly assigned at each instant. All the transformers provide
a voltage regulating range of ±7%, with a regulating step, ΔU ,
of 1%. Thus, each p.u. turns ratio is calculated at every snapshot
according to

a =
1

1 +ΔU × I
, (40)

with I being a random integer which follows a uniform discrete
distribution in the range −7 to +7. It is worth mentioning that,
according to (2)–(7), at central taps, i.e. a= 1, the impedance ra-
tio, k, has no effect on the impedance values of the π-equivalent
transformer model. Thus, any snapshot with one or more trans-
formers operating at the central tap positions does not aid in the
estimation of the impedance ratio of those particular machines.
However, provided that there is not a transformer in the grid
permanently connected at the central tap position (i.e. during the
T snapshots considered in the problem), the measurement sets
include information on every transformer impedance ratio, and
thus, all those parameters become observable. The diversity of

Fig. 5. 9-bus test grid. The specific set of measurements used in the case study
shown in Section V-D are highlighted in this figure.

TABLE I
PARAMETERS OF THE 9-BUS TEST GRID

1 Taps are randomly selected within this range.
2 Preceded by the number of transformers connected in parallel.
3 Load data are randomly generated around the mean values.

each snapshot is further guaranteed by assigning random values
to each active and reactive power injection. Thus, a random
value from a continuous uniform distribution within the range
of −50% to +50% is added to the mean value of each of the
loads shown in Table I. In this way, the case studies presented in
this section incorporate the possible influence of the variation of
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TABLE II
COMPARISON OF ACTUAL AND ESTIMATED IMPEDANCE RATIOS - FULL

REDUNDANCY - 20 SNAPSHOTS

the transformer load level in the performance of the parameter
estimation algorithm.

With the aim of emulating the measurement acquisition pro-
cess, the topological information and assigned values for taps
and loads were used to conduct a power flow of the grid for
each snapshot. The system states, which were verified with
OpenDSS [18], were used to calculate the full set of ideal mea-
surements: bus voltages magnitudes, active and reactive power
injections and active and reactive line power flows. Eventually,
Gaussian noise was added to these measurements in order to
obtain a set of corrupted regular measurements which, together
with virtual measurements (from zero injection buses), were
included in the SE process. According to [6], sensible values for
the standard deviation of the measurements can be selected as
σ = 0.1 · γ · FS for voltage measurements and as σ = γ · FS
for power measurements, where γ stands for the accuracy class
of the measurement device and FS stands for the full scale
value in accordance with the largest magnitude expected at the
respective measurement point. In the present proposal, devices
of accuracy class 0.1 according to [19] were considered and,
for the sake of simplicity, the value of the corresponding ideal
measurement was adopted as the full scale value.

A. Validation of the Proposal

For an initial validation of the proposal, a full redundancy
scenario is considered. This includes measurements for bus
voltage magnitudes, sending and receiving branch power flows,
and power injections at each bus (except for bus 1 that is
taken as the slack). According to (38), a redundancy of 3.35
corresponds to this base case. However, considering (39), the
inclusion ofk parameters in a single-snapshot implementation of
the augmented SE problem reduces the redundancy level to 2.71.
To recover most of the redundancy of the base case, 20 snapshots
are considered in this initial study, which, according to (39),
increases its level to 3.31. In this full redundancy scenario, the
algorithm converges in 7 iterations using a threshold of 1e− 8
for the maximum absolute value of the state variable deviations,
Δx. The conventional state variables, not shown here for space
constraints, are found to be very close to the actual values,
previously obtained from the power flow analysis. Finally, the
estimated values of the transformer p.u. impedance ratios, kSE ,
are presented in Table II, together with their actual values, kAC ,
and absolute errors, |e|. A maximum absolute error (MAE) of
1.94% and an average absolute error (AAE) of 0.83% allow to
demonstrate the validity of the proposal.

TABLE III
COMPARISON OF ESTIMATION ERRORS IN STATE VARIABLES - A) USING AN

EDUCATED GUESS, kt = 1, B) USING ESTIMATES OF kt

B. Improvement in SE Results

In [4], [5], through several case studies, the advantages of
using the new transformer model with an educated guess of k
= 1, was established. However, as the present proposal allows
for the offline estimation of accurate values of transformer p.u.
impedance ratios, it is interesting to assess the expected improve-
ment in the accuracy of SE results, as those provided by an online
state estimator, as a consequence of this refinement. With this
aim, a single snapshot standard WLS augmented matrix state
estimator was used to calculate the state variables of the grid
in Fig. 5 for the 20 measurement snapshots considered in the
previous case study (i.e. the one shown in subSection V-A). This
test was carried out with two different setups of the transformer
impedance ratios: Case A) uses the educated guess proposed
in [4], [5], i.e. all the parameters are assumed as equal to 1;
conversely, in Case B) the estimated parameters shown in the
3rd column of Table II were used along the SE process.

As it is highlighted in [4], [5], the errors derived from the use
of an inaccurate value of k become more significant at extreme
tap positions and are highly dependent on the power factor of
the power flow. As the case study reported in subSection V-A
uses both load values and tap positions randomly generated,
a diverse influence of the errors caused by k is assured. Two
figures of merit have been used to assess the comparison: (1) the
MAE of bus voltage magnitudes and phase angles with respect
to the true state, calculated considering the full set of buses and
snapshots, and (2), the average value of the sum of variances
over Q snapshots, defined as

σ2
av =

1

Q

Q∑
q=1

[
1

S

S∑
s=1

(x̂sq − xsq)
2

]
, (41)

with x̂sq and xsq being the estimated and true state of the s-th
state variable of the system at snapshot q, which has been used
with this aim in similar studies [20]. The true state of the system
was previously obtained for each snapshot by using a power flow
algorithm with the true values of k, i.e, those shown in the 2nd
column of Table II. The results in Table III show the values of
the aforementioned figures of merit.

From Table III, it becomes evident that the errors in the
estimated states are significantly reduced with the use of accurate
estimates of transformer impedance ratios. This result ensures
the practical usefulness of the proposal.

C. Influence of the Number of Snapshots

As it is stated in (39), using a large number of snapshots
should return the redundancy of the SE problem close to the one
from the base case. However, it is still interesting to analyze if
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Fig. 6. Estimation errors of transformer impedance ratios vs. number of
snapshots - full redundancy.

the quality of the estimates of the transformer impedance ratios
keeps improving with the number of snapshots or if, from a
certain point, adding more snapshots is not really worthy. This
case study is designed to test this specific feature, and for that,
the same base case of subSection V-A is used. However, now,
the test is repeated with an increasing number of snapshots,
Q, ranging from 1 to 60. The quality of these multi-snapshot
estimates is assessed by using different figures of merit. Thus,
Fig. 6 represents the value of the MAE, AAE and root mean
square error (RMSE). The definitions of these figures of merit,
in the context of this test, are included in the legend of the figure.
Note that kAC

t and kSE
t are the actual and estimated values of

p.u. impedance ratios, t, and T being the particular and the total
number of transformer impedance ratios to be estimated.

From Fig. 6, it can be concluded that using a very low number
of snapshots is not feasible, as Q in ranges from 1 to 11 may
lead to gross errors in the estimation of the parameters. On the
other hand, the graph shows that these errors decline very fast
as new information is included into the problem by increasing
the number of snapshots. In this case study, the MAE is always
lower than 5% when 12 or more snapshots are included into the
problem, and lower than 3.5% if Q is raised to 17. Regarding
the RMSE, it is always lower than 5% if at least 11 snapshots
are used and lower than 3.5% if more than 12 snapshots are
included. Similarly, 9 and 11 snapshots are enough to assure an
AAE under 5% and 3.5%, respectively.

It is also interesting to note that, from a certain number of Q,
the benefit of adding new snapshots is only marginally signifi-
cant. Thus, none of the p.u. impedance ratio estimation shows an
error higher than 5% (compared with the actual values) when the
number of snapshots included in the problem is at least 20. This
comparison is presented in Table IV. In any case, a compromise
between accuracy and computational burden should be assumed
by the user.

D. Influence of the Redundancy Level

An interesting concern related to the utilisation of the pro-
posed methodology, is to analyze the influence of the redun-
dancy level on its capability to provide accurate estimates of
the transformer impedance ratios. With this aim, the base case
used in Section V-A is downgraded now by removing some of

TABLE IV
COMPARISON OF ACTUAL AND ESTIMATED VALUES - FULL REDUNDANCY -

DIFFERENT SNAPSHOTS

Fig. 7. Estimation errors of transformer impedance ratios vs. number of
snapshots - minimum redundancy.

the measurements, down to the point in which the system is just
observable with a single snapshot. In this minimum redundancy
case study, the 17 state variables and 4 parameters to be estimated
in the single snapshot scenario, are obtained from a set of 21
measurements, thus leading, according to (39), to a redundancy
level of 1 for a single-snapshot implementation, i.e. ε1 = 1.
Specifically, all the power flow measurements, less common at
certain parts of the grid, have been completely removed. On the
other hand, 5 of the 9 bus voltage magnitudes as well as the full
set of power injection measurements are retained. For the benefit
of the reader, the specific set of measurements considered in the
problem is depicted in Fig. 5.

The same multi-snapshot analysis previously conducted in
Section V-C for the full redundancy case, has been carried out
here for the new minimum redundancy scenario. Fig. 7 shows
the values of the different figures of merit, i.e. MAE, AAE and
RMSE for the different number of snapshots included into the
problem, ranging from 1 to 60. Thus, according to (39), the
maximum redundancy level considered along the test is limited
to ε60 = 1.23.

As it can be seen in Fig. 7, a similar pattern to the one
derived from the full redundancy scenario is obtained, though
slightly higher errors arise in this case. However, it is important
to highlight that the convergence ratio of the problem is not
deteriorated and not more than 8 iterations are needed to solve the
SE for any value ofQ. This is an important observation for those
parts of the grid where full redundancy is typically far from the
reality of standard infrastructures. Specifically, the MAE needs
at least 18 snapshots to drop under 5%. For the case of the RMSE,
11 snapshots are needed to go under this error threshold. Finally,
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TABLE V
COMPARISON OF ACTUAL AND ESTIMATED VALUES - MINIMUM REDUNDANCY

- DIFFERENT SNAPSHOTS

just 10 snapshots are enough to reduce the AAE under 5%.
Estimations from specific snapshots are presented in Table V for
the minimum redundancy case. This allows to conclude that, in
order to achieve similar accuracy levels, the user should be aware
of including a higher number of snapshots when redundancy is
compromised. Indeed, this observation is aligned with the nature
of the problem, as fewer information about the system is being
provided if this compensation is not conducted.

E. Influence of Bad Data

As it was stated in Section IV-C, the proposed parameter
estimation algorithm is designed to work offline, and thus, a
conventional online state estimator is responsible for the de-
tection, identification and removal of bad data. However, using
inaccurate values of the transformer impedance ratios (as during
the initialization process in which an educated guess is used,
k = 1), can lead the online state estimator to erroneously
flag and remove measurements as bad data. The present case
study analyses if the removal of these measurements from the
data set could have a significant influence on the estimation of
transformer impedance ratios by the offline algorithm.

To replicate the performance of an online state estimator, a
single snapshot standard WLS augmented matrix algorithm was
applied to the 60 snapshots considered in the full redundancy
case study analysed in Section V-C. A value of k = 1 was
assigned to the impedance ratio of each of the four tapped
transformers in Fig. 5. The normalized residual test, with a
threshold level of 4, was used to detect, identify and remove bad
data. The estimation process and bad data test are sequentially
repeated until the complete filtering of the input data. As a
result, bad data was identified in 28 of the 60 snapshots. Up
to a maximum of 4 measurements had to be removed from a
single snapshot to reach a set of fully filtered data.

The parameter estimation algorithm proposed in this work
was applied to the filtered set of measurements for an increasing
number of snapshots (from 1 to 60). Fig. 8 compares the value
of the average absolute error of the estimated parameters with
those obtained in Section V-C. As can be observed in Fig. 8,
the removal of measurements can lead to a slight increase in
parameter estimation errors when a low number of snapshots are
used as input data. However, this effect is practically obliterated
by the addition of more snapshots.

Fig. 8. Estimation errors of transformer impedance ratios vs. number of
snapshots - influence of bad data.

It is important to highlight that this situation is only expected
during the first execution of the algorithm in a particular grid.
Once a realistic approximation to the values of k is available
for the online estimator, erroneous bad data detections due to
transformer model inaccuracies are not likely to occur. Thus,
using a larger number of snapshots during the initialization can
be considered a sensible recommendation.

Finally, in a context of lower redundancy, the same pattern
shown in Section V-D is expected. Notice that if the removal
of bad data causes the loss of observability, the corresponding
snapshot would just not be provided by the online estimator, and
thus, it will not have any influence on the parameter estimation
algorithm.

VI. CONCLUSION

An offline state-vector-augmented parameter estimation
method, capable of providing accurate estimates of transformer
impedance ratios, is proposed, validated, and analyzed in this
work. Moreover, the derivatives of the different measurement
functions in terms of the new parameter, which are essential for
this or any other linearized state estimator, are provided as a
contribution. This study, calls attention to the hindrances found
in the estimation of these parameters, such as the significantly
lower sensitivity of the measurement functions with respect to
p.u. impedance ratios and the reduction of redundancy that their
inclusion causes in the state estimation problem. To overcome
these difficulties, the authors propose a method based on the
use of a multi-snapshots scenario. A set of case studies are
presented in order to validate and demonstrate the usefulness
of the proposal, including an analysis of the effect of the num-
ber of snapshots and the redundancy level on the accuracy of
the estimation. They allow to conclude that, a lower number
of snapshots, in the range 1 to 10, are not enough to derive
accurate results regardless of the redundancy level. However, the
inclusion of a higher number of snapshots always allows to reach
acceptable estimates. Though a low measurement redundancy
level requires a higher number of snapshots to reach the same
accuracy, this work demonstrates that even those systems close
to the limit of observability can be handled successfully by the
proposed algorithm.
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Step-Voltage Regulator Model Test System
Md Rejwanur Rashid Mojumdar, Pablo Arboleya, Senior Member, IEEE

and Cristina González-Morán, Member, IEEE

Abstract—In this paper, a 4-node test feeder will be proposed
as the Step-Voltage Regulator (SVR) model test system. The
formulation for modelling a SVR bank consisting on three single
phase Type A regulators in raise position will be stated in an
extended way. However, the procedure to extend the formulation
to any other connection will be also explained, and the results
consider all possible connections and types. In the literature,
there exist standard systems for testing, comparing and validate
power transformers models, like for instance the IEEE 4-node test
feeder, but the authors did not found any standardised system
for testing and validate SVRs models. Thats why the authors
decided to modify the IEEE 4-node test system, embedding into
it the SVR models implemented with the well known exact model
equations.

Index Terms—4-node test feeder, SVR modelling, conventional
power flow results, voltage regulation.

. I. INTRODUCTION

MODELING of SVRs possess particular importance in
power flow studies of unbalanced distribution net-

works. The IEEE test feeders of reference [1] were developed,
mainly, to provide a set of common data to be used in testing
and validation of distribution analysis software. There the 4-
node test feeder was developed primarily for the purpose of
testing transformer models [2]. There is no such SVR model
test system available in literature. Hence, in this paper, the
IEEE 4-node test feeder [1] will be modified for SVR model
test system.

Kersting’s voltage regulator modelings [3], [4] are the
major works in matrix-equation based SVR modeling. Those
works covered the distribution system SVR modeling in abc
reference frame, SVR control mechanism by calculating the
compensator R and X settings and other applications of SVRs
in distribution systems. Though he did not present all of the
configuration but he laid proper baseline for each of them.
For this paper, similar matrix equation based models were de-
veloped and validated for twenty possible SVR configurations
in grounded-wye, closed-delta and three possible open-delta
connection with Type A and Type B regulators at both raise
and lower position. These models were incorporated in the
complex vector based model of unbalanced distribution system
in αβ0 stationary reference frame [5] to solve for conventional
power flow results.

Finally, the benchmark conventional power flow result will
be presented for all these SVR configurations, serving an
unbalanced load, for both at raise and lowering at a fixed tap

The authors are with the Department of Electrical Engineering, Univer-
sity of Oviedo, Gijón, Spain (e-mail: m.r.r.mojumdar@gmail.com; arboleya-
pablo@uniovi.es; gonzalezmorcristina@uniovi.es).

This work was partially supported by the Spanish Ministry of Science
and Innovation under Grant ENE2013-44245-R (MICROHOLO Development
of a Holistic and Systematical Approach to AC Microgrids Design and
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position of 8 with Type B configurations and at different tap
positions with Type A configurations, in the proposed SVR
model test system.

II. THE REGULATOR MODEL

Basics of SVRs modeling, equations for single-phase Type
A or Type B regulators and possible SVR configurations
have been described in [4]. Summarizing in the Table I, the
relationships between the source voltage and current to the
load voltage and current, for both the Type A and Type B
regulators whether in raise or lower:

TABLE I
GENERALIZED EQUATIONS FOR SINGLE-PHASE REGULATORS [4]

Type Voltage Eq Current Eq aR for Raise aR for Lower

A VS = 1
aR

VL IS = aRIL aR = 1 +
N2
N1

aR = 1 − N2
N1

B VS = aRVL IS = 1
aR

IL aR = 1 − N2
N1

aR = 1 +
N2
N1

No matter how the regulators are connected, the relation-
ships between the series and shunt winding voltages and
currents for each single-phase SVR must be satisfied. Here,
N1 and N2 are the primary and secondary turn number of
the single-phase regulators and the value of effective regulator
ratio is denoted as aR.

For an overview of configurations, a closed-delta connected
Type A regulator in raise, wye connected Type B regulator in
lowering and open-delta connected (case. a) Type B regulator
in raise has been presented in Fig. 1, Fig. 2 and Fig. 3
respectively. However, for the basic modeling idea, the model
will be presented below, only for closed-delta connected SVR
with Type A regulators in raise.

As shown in Fig. 1, three single-phase Type A regulators
in raise can be connected in a closed delta, to be used in
three-wire delta feeders.

Fig. 1. Closed delta-connected type A regulators in raise
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Fig. 2. Wye connected Type B regulators in lowering

A. Voltage Equations

KVL can be applied around a closed loop to obtain equa-
tions for the line-to-line voltages. For example, for the line-
to-line voltages between phases A and B on the source side
refer to the Fig. 1:

VA′B′ = VA′a + VaB′ (1)

But, winding voltages can be related in terms of turns ratios:

VA′a=
N2

N1
VcA′ =

N2.N1

N1.(N1 + N2)
Vca

=
N2

N1

1 + N2

N1

Vca=
aRca − 1

aRca
Vca (2)

VaB′ =
N1

N1 + N2
Vab =

1

1 + N2

N1

Vab =
1

aRab
Vab (3)

Substituting Equations (2) and (3) in (1) and simplify:

VA′B′ =
1

aRab
Vab +

aRca − 1

aRca
Vca (4)

To determine the relationships between the other line-to-
line voltages, the same procedure can be followed and the
three-phase voltage equation relating source side and load side
without consideration of drop in winding impedances for this
regulator configuration will be:VA′B′VB′C′

VC′A′

 =

 1
aRab

0 aRca−1
aRca

aRab−1
aRab

1
aRbc

0

0 aRbc−1
aRbc

1
aRca

VabVbc
Vca

 (5)

However, the regulator winding impedances can be consid-
ered as equal in each phase so that, in a matrix form, they can
be denoted as:

Zreg =

 ZA 0 0
0 ZB 0
0 0 ZC

 = Z

 1 0 0
0 1 0
0 0 1

 (6)

Now, using Equation (6), the voltage drops in the regulator
impedances can be expressed as:VAA′

VBB′

VCC′

 = Zreg

IAIB
IC

 (7)

Fig. 3. Open-delta connected (case. a) Type B regulators in raise

And, let’s introduce the TDY matrix [5] which is a matrix
to obtain phase-phase quantities from phase-neutral quantities.
But it is a singular matrix. This implies that phase-to-neutral
quantities can not be obtained from phase-to-phase voltages.
This TDY matrix as shown in Equation (8) will be used
repeatedly for other configurations also.

TDY =

 1 −1 0
0 1 −1

−1 0 1

 (8)

Now, in the next equation, per phase voltage drops in the
regulator impedances are related to the phase-to-phase voltages
in the primary side of the regulator [5]:

VAB − VA′B′

VBC − VB′C′

VCA − VC′A′

 =

VAA′ − VBB′

VBB′ − VCC′

VCC′ − VAA′

 = TDY

VAA′

VBB′

VCC′

 (9)

Combining (5), (7) and (9) the relationship between primary
voltages, secondary voltages and primary line currents can be
written as:

VAB

VBC

VCA

 = TDY Zreg

IAIB
IC

+

 1
aRab

0 aRca−1
aRca

aRab−1
aRab

1
aRbc

0

0 aRbc−1
aRbc

1
aRca

VabVbc
Vca


(10)

B. Current Equations

Applying KCL at the load side terminal a:

Ia = IA′a + IB′a (11)

But as:

IA = IA′c + IA′a =
N2

N1
IA′a + IA′a = (1 +

N2

N1
)IA′a (12)

So that:
IA′a =

1

1 + N2

N1

IA =
1

aRca
IA (13)

Again as:

IB = IB′a + IB′b =
N1

N2
IB′a + IB′a = (1 +

N1

N2
)IB′a (14)
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Again so:

IB′a =
1

(1 + N1

N2
)
IB =

N2

N1

1 + N2

N1

IB =
aRab − 1

aRab
IB (15)

Substituting Equations (13) and (15) into Equation (11):

Ia =
1

aRca
IA +

aRab − 1

aRab
IB (16)

Following same procedure at the other two load side ter-
minals, for this configuration, three-phase equation between
source and load line currents can be obtained as:IaIb

Ic

 =

 1
aRca

aRab−1
aRab

0

0 1
aRab

aRbc−1
aRbc

aRca−1
aRca

0 1
aRbc

IAIB
IC

 (17)

C. Generalized Equations

We can denote, AR-KVL−04 and AR-KCL−04 matrices for
closed delta connection with Type A regulators both in raise
position and lower position as:

AR-KVL−04 =

 1
aRab

0 aRca−1
aRca

aRab−1
aRab

1
aRbc

0

0 aRbc−1
aRbc

1
aRca

 (18)

AR-KCL−04 =

 1
aRca

aRab−1
aRab

0

0 1
aRab

aRbc−1
aRbc

aRca−1
aRca

0 1
aRbc

 (19)

In the similar structure, all other SVR configurations were
modeled. Therefore, denoting AR-KVL matrices for voltage
equations and AR-KCL matrices for current equations of each
connections and expressing three-phase voltage and branch
current in short form, we can express Equations like (10) and
(17) in very compact form.

Finally, by observing all the models, there was only one
structure of the general current equation for all the configura-
tions which is: [

IBr

]S
abc

= AR-KCL
[
IBr

]P
abc

(20)

But there are two structures of the general voltage equation.
For all the wye configurations:[

Vph−n

]P
abc

= Zreg

[
IBr

]P
abc

+ AR-KVL
[
Vph−n

]S
abc

(21)

For all closed and open delta configurations:[
Vph−ph

]P
abc

= TDY Zreg

[
IBr

]P
abc

+ AR-KVL
[
Vph−ph

]S
abc

(22)

D. Incorporation and Simulation

Generalized voltage and current equations developed in the
regulator models were incorporated as linear equations in
the complex vector based model of unbalanced distribution
system in αβ0 stationary reference frame [5]. Then, other
non-linear equations were also included in the the power
flow problem. Finally, each power flow problem with different
SVR configurations, was simulated using ’FSOLVE’ function
of MATLAB® to solve all linear or non-linear equations to
provide the benchmark conventional power flow results.

III. THE TEST SYSTEM

The system to be used in testing SVR models is proposed
and shown in Fig. 4.

A. Line Configuration

We propose, the line segment on the source side and the
line segment on the load side of the regulator bank will
have the configuration 601 of proposed IEEE 13-node test
feeder at [1]. Like other line configurations in that 13-node
test feeder (Configurations 601 - 607) with single or multiple
laterals, configuration 601 is provided in the form derived after
following modified Carson’s equation [4] and corresponding
Kron reduction [4]. Finally, (3 × 3) phase frame matrice of
configuration 601 will be used. And the phase impedance of
configuration 601, Zabc in Ω /mile is:

Zabc =

0.4572 + j1.0791 0.1556 + j0.5027 0.1531 + j0.3860
0.1556 + j0.5027 0.4663 + j1.0492 0.1577 + j0.4247
0.1531 + j0.3860 0.1577 + j0.4247 0.4611 + j1.0661


(23)

B. Regulator Impedance

And the regulator winding impedance, Zreg in Ω, used for
the results is:

Zreg =

0.00768 + j0.2304 0 + j0 0 + j0
0 + j0 0.00768 + j0.2304 0 + 0
0 + j0 0 + j0 0.00768 + j0.2304


(24)

It’s important to note that, for the regulator with three possible
open delta connections, corresponding phasing impedance
were taken out from the Zreg mentioned here. Specifically,
ZB for case a, ZC for case b and ZA for case c will be zero
(0) in the Zreg of three cases of open delta configurations.

C. Unbalanced Loads and Generations

For the benchmark power flow results presented in the
following section, the unbalanced load profile used at node
4 of Fig. 4 was:

TABLE VI
UNBALANCED LOAD DATA FOR TEST RESULTS

Phase-1 Phase-2 Phase-3

kW kVar p.f kW kVar p.f kW kVar p.f
50 16.43 0.95 26 12.59 0.9 37 15.76 0.92

Fig. 4. 4-node test feeder with regulator.
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TABLE II
TYPE B IN RAISE REGULATORS (TAPS AT 8)

Connection Gnd-Y Cld-Delta Op-Delta-a Op-Delta-b Op-Delta-c

Taps [8 8 8] [8 8 8] [8 8 −] [− 8 8] [8 − 8]

Voltage Node-2

V1 391.66 − 1.2 ° 391.9 6 − 1.2 ° 389.96 − 0.3 ° 398.66 − 0.3 ° 384.56 − 3.2 °
V2 399.56 − 120.3 ° 3996 − 120.3 ° 391.36 − 121.6 ° 393.76 − 119.7 ° 401.36 − 120.4 °
V3 392.76 119.5 ° 392.8 6 119.5 ° 401.56 118.9 ° 3876 117.4 ° 3916 120.1 °
Voltage Node-3

V1 398.96 − 5.6 ° 408.8 6 − 2.8 ° 3966 − 4.9 ° 577.76 − 23.6 ° 404.86 − 3.2 °
V2 411.86 − 122.4 ° 420.6 6 − 119.9 ° 411.96 − 121.6 ° 404.16 − 122.1 ° 229.56 − 129.1 °
V3 401.66 116.3 ° 412.1 6 118.8 ° 363.96 148.3 ° 407.46 117.4 ° 398.16 116.5 °
Voltage Node-4

V1 394.66 − 6.4 ° 404.6 6 − 3.5 ° 391.86 − 5.5 ° 574.76 − 23.9 ° 400.66 − 3.7 °
V2 411.66 − 122.6 ° 420.3 6 − 120.1 ° 410.36 − 121.8 ° 402.26 − 122.4 ° 226.16 − 129.9 °
V3 397.66 116 ° 408.2 6 118.5 ° 360.56 147.8 ° 404.56 117 ° 395.26 116.1 °
Current I1−2

Ia 140.46 − 24.6 ° 139.4 6 − 23.8 ° 141.46 − 23.7 ° 96.46 − 42.1 ° 298.96 − 12.5 °
Ib 73.96 − 148.4 ° 76.56 − 150.5 ° 163.86 − 139.4 ° 75.66 − 148.2 ° 134.56 − 155.7 °
Ic 106.56 92.9 ° 105.4 6 93.5 ° 117.46 124.7 ° 236.86 103.6 ° 107.16 93 °
Current I3−4

Ia 133.46 − 24.6 ° 130.1 6 − 21.7 ° 134.36 − 23.7 ° 91.66 − 42.1 ° 131.46 − 21.9 °
Ib 70.26 − 148.4 ° 68.76 − 145.9 ° 70.46 − 147.6 ° 71.86 − 148.2 ° 127.86 − 155.7 °
Ic 101.26 92.9 ° 98.56 95.5 ° 111.56 124.7 ° 99.46 94 ° 101.86 93 °

TABLE III
TYPE B IN LOWER REGULATORS (TAPS AT 8)

Connection Gnd-Y Cld-Delta Op-Delta-a Op-Delta-b Op-Delta-c

Taps [8 8 8] [8 8 8] [8 8 −] [− 8 8] [8 − 8]

Voltage Node-2

V1 391.66 − 1.2 ° 391.36 − 1.2 ° 389.86 − 0.3 ° 398.6 6 − 0.3 ° 384.56 − 3.2 °
V2 399.56 − 120.3 ° 4006 − 120.3 ° 39136 − 121.6 ° 393.7 6 − 119.7 ° 401.36 − 120.4 °
V3 392.66 119.5 ° 392.46 119.6 ° 401.46 118.8 ° 3876 117.4 ° 3916 120.1 °
Voltage Node-3

V1 360.76 − 5.7 ° 351.46 − 8.2 ° 358.26 − 5 ° 522.7 6 − 23.7 ° 366.26 − 3.2 °
V2 372.66 − 122.4 ° 364.16 − 124.7 ° 372.76 − 121.6 ° 365.6 6 − 122.1 ° 207.96 − 129.1 °
V3 363.36 116.3 ° 352.66 114 ° 328.76 148.3 ° 368.6 6 117.4 ° 360.16 116.5 °
Voltage Node-4

V1 3566 − 6.6 ° 346.56 − 9.2 ° 353.56 − 5.7 ° 519.4 6 − 24 ° 361.56 − 3.8 °
V2 372.46 − 122.6 ° 363.96 − 124.9 ° 370.96 − 121.8 ° 363.5 6 − 122.5 ° 204.16 − 130 °
V3 358.86 115.9 ° 3486 113.6 ° 3256 147.7 ° 365.3 6 116.9 ° 356.96 116 °
Current I1−2

Ia 140.86 − 24.8 ° 142.26 − 25.6 ° 141.86 − 23.8 ° 96.56 − 42.2 ° 299.76 − 12.6 °
Ib 73.96 − 148.5 ° 71.96 − 146.3 ° 1646 − 139.5 ° 75.76 − 148.3 ° 134.86 − 155.8 °
Ic 106.76 92.9 ° 108.26 92 ° 117.96 124.6 ° 237.2 6 103.5 ° 107.36 92.9 °
Current I3−4

Ia 147.96 − 24.8 ° 151.96 − 27.4 ° 148.96 − 23.8 ° 101.3 6 − 42.2 ° 145.66 − 22 °
Ib 77.66 − 148.5 ° 79.46 − 150.7 ° 77.9 6 − 147.7 ° 79.56 − 148.3 ° 141.56 − 155.8 °
Ic 112.16 92.9 ° 115.66 90.5 ° 123.86 124.6 ° 110.1 6 93.9 ° 112.76 92.9 °

IV. VALIDATION OF THE PORPOSED FORMULATION

At [4], Kersting developed regulator models for a number
of configurations at abc reference frame. In this paper the
author proposed and alternative formulation based in αβ0
reference frame. The two formulations represent exact equiv-
alent models, so the authors used the original formulation to
validate the proposed one. Once the results using the αβ0
based formulation were obtained, they were transformed to abc
reference and compared with those obtained directly from the
original formulation. In all cases, the solutions were exactly
the same as it was expected.

V. BENCHMARK POWER FLOW RESULTS FOR SVRS

In tables II and III, the obtained results for type B regulators
in raise and lower positions are shown. In both cases, the tap
position is set to 8 and the considered configurations were
Grounded-Wye, Closed-Delta and Open-Delta considering the
three different possibilities - connection with regulators be-
tween phases AB and CB, between BC and AC and finally
between CA and BA which are denoted as case a, case b and
case c connection respectively. In tables IV and V, the results
are represented for all type A regulator connections, however,
in different tap positions at different single-phase regulators.

It’s worth mentioning that, for three wire delta configura-
tions, the voltages in results provided here are phase-phase
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TABLE IV
CASE C TEST RESULTS: TYPE A IN RAISE REGULATORS (TAPS AT DIFFERENT POSITIONS)

Connection Gnd-Y Cld-Delta Op-Delta-a Op-Delta-b Op-Delta-c

Optimum Taps [9 4 8] [6 2 7] [10 4 −] [− 7 6] [7 − 9]

Voltage Node-2

V1 391.66 − 1.2 ° 391.56 − 1.1 ° 3906 − 0.3 ° 398.6 6 − 0.3 ° 384.36 − 3.2 °
V2 399.56 − 120.3 ° 399.16 − 120.3 ° 390.46 − 121.6 ° 393.7 6 − 119.7 ° 401.36 − 120.4 °
V3 392.76 119.5 ° 393.26 119.5 ° 401.56 118.9 ° 386.9 6 117.4 ° 3916 120.1 °
Voltage Node-3

V1 400.36 − 5.6 ° 401.36 − 7.7 ° 399.86 − 4.9 ° 570.1 6 − 23.9 ° 401.16 − 3.2 °
V2 4016 − 122.4 ° 4016 − 124.5 ° 400.16 − 121.6 ° 400.7 6 − 122.1 ° 228.36 − 129.7 °
V3 400.66 116.3 ° 401.46 115.5 ° 367.96 146.9 ° 401.4 6 117.4 ° 399.56 116.6 °
Voltage Node-4

V1 3966 − 6.4 ° 3976 − 8.4 ° 395.76 − 5.5 ° 5676 − 24.2 ° 396.96 − 3.7 °
V2 400.76 − 122.6 ° 400.66 − 124.6 ° 398.46 − 121.8 ° 398.8 6 − 122.4 ° 224.86 − 130.4 °
V3 396.66 116 ° 397.56 115.2 ° 364.66 146.4 ° 398.4 6 117 ° 396.66 116.1 °
Current I1−2

Ia 140.46 − 24.6 ° 139.96 − 25.6 ° 141.36 − 23.6 ° 96.36 − 42.4 ° 300.36 − 12.9 °
Ib 73.96 − 148.4 ° 75.46 − 149.5 ° 170.36 − 142.3 ° 75.66 − 148.2 ° 134.16 − 156.2 °
Ic 106.56 92.9 ° 105.36 95 ° 113.16 123.3 ° 237.3 6 103.4 ° 107.16 93.1 °
Current I3−4

Ia 132.96 − 24.6 ° 132.66 − 26.6 ° 1336 − 23.6 ° 92.86 − 42.4 ° 132.66 − 21.9 °
Ib 72.16 − 148.4 ° 72.16 − 150.5 ° 72.5 6 − 147.6 ° 72.46 − 148.2 ° 128.56 − 156.2 °
Ic 101.46 92.9 ° 101.26 92.1 ° 110.36 123.3 ° 100.9 6 94 ° 101.46 93.1 °

TABLE V
CASE C TEST RESULTS: TYPE A IN LOWER REGULATORS (TAPS AT DIFFERENT POSITIONS)

Connection Gnd-Y Cld-Delta Op-Delta-a Op-Delta-b Op-Delta-c

Optimum Taps [1 6 2] [3 7 1] [1 7 −] [− 1 2] [1 − 5]

Voltage Node-2

V1 391.66 − 1.2 ° 391.56 − 1.2 ° 3906 − 0.3 ° 398.6 6 − 0.3 ° 384.16 − 3.2 °
V2 399.56 − 120.3 ° 399.26 − 120.3 ° 390.36 − 121.6 ° 393.7 6 − 119.7 ° 401.36 − 120.4 °
V3 392.76 119.5 ° 393.16 119.5 ° 401.56 118.9 ° 386.9 6 117.4 ° 3916 120.1 °
Voltage Node-3

V1 376.56 − 5.6 ° 369.66 − 5.4 ° 373.86 − 4.9 ° 542.7 6 − 24 ° 374.56 − 3.2 °
V2 376.66 − 122.4 ° 369.56 − 121.5 ° 373.26 − 121.6 ° 381.5 6 − 122.1 ° 213.86 − 130 °
V3 376.76 116.3 ° 370.86 118.4 ° 343.86 146.8 ° 382.1 6 117.4 ° 375.86 116.6 °
Voltage Node-4

V1 371.96 − 6.5 ° 364.96 − 6.3 ° 369.46 − 5.5 ° 539.4 6 − 24.3 ° 3706 − 3.8 °
V2 376.26 − 122.6 ° 369.16 − 121.7 ° 371.46 − 121.8 ° 379.5 6 − 122.4 ° 210.16 − 130.8 °
V3 372.56 116 ° 366.66 118 ° 340.26 146.3 ° 378.9 6 117 ° 372.76 116.1 °
Current I1−2

Ia 140.66 − 24.7 ° 142.56 − 24.9 ° 141.66 − 23.7 ° 96.36 − 42.5 ° 301.66 − 13.3 °
Ib 73.96 − 148.5 ° 74.76 − 150.8 ° 170.96 − 142.6 ° 75.66 − 148.3 ° 1346 − 156.7 °
Ic 106.66 92.9 ° 104.56 94.6 ° 1136 123.2 ° 237.6 6 103.3 ° 107.26 93 °
Current I3−4

Ia 141.56 − 24.7 ° 144.26 − 24.5 ° 142.56 − 23.7 ° 97.66 − 42.5 ° 142.26 − 22 °
Ib 76.86 − 148.5 ° 78.36 − 147.6 ° 77.8 6 − 147.7 ° 76.16 − 148.3 ° 137.56 − 156.7 °
Ic 1086 92.9 ° 109.76 95 ° 118.26 123.2 ° 106.1 6 93.9 ° 107.96 93 °

and for four wire wye configurations, they are phase-neutral.

VI. CONCLUSIONS

The IEEE 4-node test feeder has been modified and adapted
to test Step-Voltage Regulators (SVR). As an example, the
extended formulation was presented for closed-delta connected
SVR with Type A regulators in raise. Due to the lack of
space the formulation was not extended for other types of
SVR. However, the guidelines for obtaining other types of
SVR with different connections were also presented. In the
benchmark section the results for 20 different SVR types
with different connections were presented. In further works,
the proposed formulation will be used for analyse large low
voltage distribution networks.
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a b s t r a c t

This work has two main contributions; First, the development of a general, exact and standardized Step
Voltage Regulator model considering all possible configurations and second, the proposal of a 4-Node
Test System for testing and evaluation of three-phase Step Voltage Regulator connections. Although
the 4-Node Test Feeder for testing three phase transformer configurations is already available in the
literature, there is not such model for the inclusion, testing and validation of Step Voltage Regulators
in a test feeder. With the work presented in this paper, a new test system will be available to evaluate
and benchmark programs or algorithms that attempt to include different configurations of Step
Voltage Regulators. The formulation is stated for all three phase Step Voltage Regulators; i.e. wye,
close-delta and open-delta connections, both type A and B regulators, in raise or lower positions. Then,
all these models are included in a 4-Node Test Feeder to obtain several power flow solutions. All obtained
results will be available for power flow software developers on-line.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Step Voltage Regulators (SVRs) have been employed in power
feeders for many decades [1–4]. Its modeling posses particular
importance in power flow studies of unbalanced distribution
networks [5–7] and is gaining even more importance in distribution
feeders with the proliferation of Distributed Generation (DG) [8];
several voltage control possibilities can be achieved by coordinating
the small generators and storage units installed near customers
and the well-known switched capacitors and step voltage
regulators [9]. As an example, the authors in [10] proposed a
coordinated control of energy storage systems with SVRs to
mitigate the voltage rise caused for high penetration levels of
photovoltaic systems. Similar applications can be found in [11] or
[12]; In both works the combination of SVRs, Static VAR
Compensators (SVC) and Shunt Capacitors (SC) are applied to
achieve voltage control in distribution feeders including DG. In
[13] the control schedules of SVRs are updated according to wind
power predictions to compensate voltage variations derived form
high penetration of wind power plants. Many other works related
to coordination of SVRs in distributed systems with DG can be

found in the literature [14–17]. In [14] a voltage estimation is used
to control over-voltages in residential networks with varying PV
penetrations. In [15] the authors coordinate the location of reactive
power injections from the PV inverters with transformer tap
positions in a distributed system as a way to constrain voltage
variations. In [16] an unbalanced power flow is used to obtain
the influence of SVRs and DGs penetrations in power losses and
voltage profiles. In [17] several voltage control techniques; On Load
Tap Changers (OLTC), SVR, SC, Shunt Reactor (ShR), and SVC are
optimally controlled in coordination with DG.

In [18] a robust, low-cost and high-efficiency voltage regulator
is designed for rural networks with serial voltage compensation. In
[19] the authors propose distributed voltage control for multiple
voltage regulation devices; on-load tap changers, step voltage
regulators and switched capacitors in the presence of PV. They
tested the scheme in a medium voltage feeder in California. In
[20] detailed models for open-delta connected SVR are presented.
The authors developed a bus admittance model suitable for
unbalanced power flow studies.

Regarding the optimization of tap positions, in [21] an
algorithm to set the positions of regulating transformers is
proposed. The algorithm is valid for unbalanced and distributed
systems. In [22], the authors propose a linear power flow
formulation to optimally configure a distribution system using,
among other control variables, the tap positions in voltage
regulators. In [23], also the tap positions of transformers are
included as optimization variables.

http://dx.doi.org/10.1016/j.ijepes.2017.06.027
0142-0615/� 2017 Elsevier Ltd. All rights reserved.
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Directly related to SVR modeling, we can find the work in [24],
in which there is a brief description of a SVR model to be included
in an unbalanced power flow formulation based on the current
injection method. In [25] the authors are capable of designing
dynamic SVRs, but they considered a single phase model. From
their point of view, this model can be used into a 3 phase system
taking into account that each phase works separately, so they do
not considered closed delta or open delta configurations. In
[26,27] Kersting addressed the modeling of some SVR configurations
to study some of their applications. Those works cover the
distribution system modeling in abc reference frame, the SVR
control mechanism by estimating R and X line settings and other
applications of SVRs in distribution systems.

Looking at this literature review we can conclude that SVR
modeling and testing are of great importance for distribution
systems and power flow studies, and are expected to be even more
present with the proliferation of DG. However, we have found that,
although there are many extensive works dealing with SVR
inclusion in power flow studies, there is not any work presenting
general models and results for all possible configurations. This
work might be also used as a benchmark for other researchers.

Reviewing the IEEE test feeders [28] of the IEEE PES Distribution
System Analysis Subcommittee’s Distribution Test Feeder Working
Group, we will find a set of common data for testing and validation
of Distribution System Analysis software. More specifically, the
4-Node Test Feeder offers a set of comparison results to deal with
transformers of various configurations [29].

In this paper, the IEEE 4-Node Test System in [28] will be
modified; The transformer is removed to introduce SVRs instead.
We propose the general model for SVR and the 4-Node Test Feeder
with SVR, both of them will be available for designers and power
flow developers as a test system with detailed SVR modeling and
results.

The paper is structured as follows: First, a general matrix
formulation will be stated for all possible configurations: 2
grounded-wye connections (type A and B regulators), 2 close-
delta connections (type A and B) and 6 open-delta connections
depending on the selection of phases (3 cases for type A and 3
other cases for type B). The regulators can be at raise or at lower
positions. All these SVR configurations defined a 4-Node Test
Feeder that has been formulated in ab0 frame, following the
procedure of [30], but adapted for SVRs. Then, the power flow
formulation is presented for balanced and unbalanced loading at
different tap positions. Finally, the problem is solved with the
Backward Forward Sweep (BFS) algorithm of [31] to obtain the
results for all possible configurations. Due to the high extension
of results that were obtained, only some examples are included
in this paper. The rest of results will be available on line
(see Supplementary material).

2. SVR modeling

2.1. Single phase Step Voltage Regulator

A model for an ideal single phase regulator can be derived from
[27]. If the series impedance is to be also considered, then, that
ideal model needs to be modified: In Fig. 1 the single phase
configurations are displayed. P stands for primary (or source side)
and S stands for secondary (load side). For the sake of simplicity, as
it will be justified later, the series impedance is concentrated at the
secondary side for type A configurations and at the primary side for
type B configurations. The relationships between voltages and
currents for the ideal SVR are summarized in Table 1, where N1

and N2 are the number of turns of the shunt and series windings
respectively. aR is the effective turns ratio and is defined in a

different way depending on the type of regulator, as it is shown
in the table. From Fig. 1 it can be deducted that P = P0 for type A
and S = S0 for type B regulators.

The relationship between primary and secondary voltages for
type A, single phase regulators can then be written as follows:

VP0 ¼ VS0
1
aR

ð1Þ
VP0 ¼ VP ð2Þ
VS0 ¼ VS þ Z IS ð3Þ
replacing (2) and (3) into (1) and taking VP apart, it is obtained:

VP ¼ 1
aR

VS þ 1
aR

Z IS ð4Þ

For type A regulators, the primary and secondary currents can be
related by:

IP ¼ aR IS ð5Þ
The corresponding equations for type B, single phase regulators,

with impedance on the primary side are stated as:

VP0 ¼ VS0 aR ð6Þ
VS0 ¼ VS ð7Þ
VP ¼ ZIP þ VP0 ð8Þ
replacing (6) and (7) into (8) it is deducted that:

VP ¼ aRVS þ ZIP ð9Þ
And finally, primary and secondary currents for type B regulators
can be related in:

IP ¼ 1
aR

IS ð10Þ

Single phase Eqs. (4), (5) for type A regulators and (9), (10) for type
B regulators are the baseline for the definition of the three phase
configurations.

2.2. Three phase connections

Three phase configurations to be considered are wye, close delta
and open delta. In following subsections, upper cases letters will be
used for primary (or source) side and lower case letters will
represent secondary (or load) side. In the present work, type A
regulators have been chosen for three phase connections. However,
the same procedure can be extended to type B regulators. For the
power flow calculations, the mathematical model in [30] and a
BFS algorithm are going to be used. The formulation is valid for
any transformer connection, and the algorithm in ab0 frame solves
the problems of some transformer connections including three
wire configurations (D and ungrounded wye) in abc frame;
especially YgD connection. The problems are solved by means of
the zero components of voltages and currents that in ab0 frame
are always available [30].

There are three general equations that represent all three phase
connections:

½V�Pab0 ¼ NIIab0 ½V�Sab0 þ ZNIab0 ½I�PSab0 ð11Þ
½0� ¼ �½I�Pab0 þ NIVab0 ½I�PSab0 ð12Þ
½0� ¼ ½I�Sab0 þ NIIIab0 ½I�PSab0 ð13Þ
The sub-index ab0 are used in the expressions because all the
elements in brackets are three phase ab0 components (voltages or
currents). The super-indexes P and S stand for primary and
secondary respectively. The super-index PS stands for primary or
secondary, depending on the transformer connection. Eqs. (11)–(13)
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comprise an exact model for three phase transformers, so they can
be directly included in the power flow solver. The matrices
NIab0 ;NIIab0 ;NIIIab0 and NIVab0 are different for each transformer
connection. Any transformer connection is defined by these four
matrices and the phase impedance Z. These equations can be also
used to model SVRs as it will be demonstrated.

The meaning of superscript PS will change with the type of reg-
ulator. If (11) is compared to (4) and (9), it seems as in the SVR
case, it will be easy to consider that PS stands for secondary in type
A regulators and for primary in type B regulators. This fact will be
proven for each transformer connection. Z is the transformer impe-
dance, that is suppose to be the same for all the phases.

In the present work, the matrices NIab0 ; NIIab0 ; NIIIab0 and NIVab0

will be defined to include any type of SVR configuration in the
power flow solution. The equations are firstly described in abc
frame, so those matrices are obtained in abc frame and
transformed into ab0 frame using the transformation matrix A in
(14).

A ¼
ffiffiffi
2
3

r 1 0 1ffiffi
2

p

� 1
2

ffiffi
3

p
2

1ffiffi
2

p

� 1
2 �

ffiffi
3

p
2

1ffiffi
2

p

0
BB@

1
CCA ð14Þ

2.2.1. Wye-connected regulators
Three phase wye-connected regulators are depicted in Fig. 2a

(type A) and Fig. 2b (type B). The winding polarities are shown
for both raise and lower positions. The equations that relate
primary and secondary phase to neutral voltages are similar to
those for the single phase (4), but extended to the three phase
wye connection:

VA

VB

VC

2
64

3
75 ¼

1
aRa

0 0

0 1
aRb

0

0 0 1
aRc

0
BBB@

1
CCCA

Va

Vb

Vc

2
64

3
75þ � � �

þ � � � Z

1
aRa

0 0

0 1
aRb

0

0 0 1
aRc

0
BBB@

1
CCCA

Ia
Ib
Ic

2
64

3
75 ð15Þ

This equation can be expressed in matrix form:

½V�Pabc ¼ NIIabc ½V�Sabc þ ZNIabc ½I�Sabc ð16Þ
where

NIabc ¼ NIIabc ¼

1
aRa

0 0

0 1
aRb

0

0 0 1
aRc

0
BBB@

1
CCCA ð17Þ

Translating Eq. (16) into ab0 frame, the resulting equation is:

A½V�Pab0 ¼ NIIabcA½V�Sab0 þ ZNIabcA½I�Sab0 ð18Þ

and taking ½V�Pab0 apart, the following equation applies:

½V�Pab0 ¼ NIIab0 ½V�Sab0 þ ZNIab0 ½I�Sab0 ð19Þ
where two of the four generalized matrices are defined:

NIab0 ¼ A�1NIabcA ð20Þ
NIIab0 ¼ A�1NIIabcA ð21Þ

Fig. 1. SVR: Single Phase connections. N Raise position. j Lower position.

Table 1
Equations for ideal single phase SVRs.

Type Operator � aR VP0
VS0

IP
IS

Lower Raise

A � + 1� N2
N1

1
aR

aR

B + � aR 1
aR
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Eq. (19) is already of the same form as (11), proving that ½I�PSab0 are
secondary currents for wye type A configurations. For the case of
type B regulators primary currents would be needed instead.

To derive the relationships between primary and secondary
currents, from (5) the resulting three phase equation is:

IA
IB
IC

2
64

3
75 ¼

aRa 0 0
0 aRb 0
0 0 aRc

0
B@

1
CA

Ia
Ib
Ic

2
64

3
75 ð22Þ

Rewriting this equation in matrix form:

½I�Pabc ¼ NIVabc
½I�Sabc ð23Þ

where

NIVabc
¼

aRa 0 0
0 aRb 0
0 0 aRc

0
B@

1
CA ð24Þ

Translating this equation into ab0 frame and taking all terms to the
right, Eq. (25) applies:

½0� ¼ �½I�Pab0 þ NIVab0 ½I�Sab0 ð25Þ

Eq. (25) can be now identified with (12), being ½I�PSab0 equal to ½I�Sab0 in
this case. From (25) another generalized matrix in ab0 frame can be
derived as:

NIVab0 ¼ A�1NIVabc
A ð26Þ

To obtain the last generalized matrix NIIIab0 , an equation similar
to (13) has to be written. First, it can be assured that Eq. (27)
applies:

½0� ¼ ½I�Sabc � ½I�Sabc ð27Þ
Then, introducing matrix NIIIabc in (28)

NIIIabc ¼ �
1 0 0
0 1 0
0 0 1

0
B@

1
CA ð28Þ

Eq. (27) becomes:

½0� ¼ ½I�Sabc þ NIIIabc ½I�Sabc ð29Þ
Translating into ab0 frame the resulting expression is:

½0� ¼ ½I�Sab0 þ NIIIab0 ½I�Sab0 ð30Þ

where

NIIIab0 ¼ A�1NIIIabcA ð31Þ

Considering in this case that ½I�PSab0 are secondary currents, (30) is
of the same form as (13), so the model is feasible to be introduced
into the power flow formulation of [30].

The four Eqs. (20), (21), (26) and (31) demonstrate that for a
generic matrix in abc frame, Nabc , the corresponding matrix in
ab0 frame, Nab0, can be computed as:

Nab0 ¼ A�1NabcA ð32Þ
The fourmatricesNIabc ; NIIabc ; NIIIabc andNIVabc

are presented in Table 4
for this connection and also for subsequent connections. Idð3�3Þ
stands for the identity matrix with dimensions ð3� 3Þ. Because all
matrices are defined in terms of effective turns ratio instead of
number of turns, they are valid for both raise and lower positions.

2.2.2. Close delta-connected regulators
Three single phase regulators can be connected in close-delta

configurations as shown in Fig. 2c (type A) and 2d (type B). Both
lower and raise positions give different polarities in the windings,
as it is also depicted. For close-delta connections line to line
voltages have to be considered. The relationship between primary

Fig. 2. SVR: Three Phase connections. N Raise position. j Lower position.
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and secondary phase-to-phase voltages in type A close-delta case,
is given by (refer to 2c):

VAB þ VBb0 þ Vb0a0 þ Va0A ¼ 0 ð33Þ
So secondary voltage Va0b0 can be written as:

Va0b0 ¼ VAB þ VBb0 þ Va0A ð34Þ
The voltages VAB and Va0A are related by the effective turns ratio for
the regulator connected between phases A and B [27]. The same
assumption can be made for voltages VBC and Vb0B. If the shunt
winding has a number of turns N1, the series winding has a number
of turns N2 and the raise position is taken in consideration then:

VAB

Va0A
¼ N1

N2
ð35Þ

VBC

Vb0B
¼ N1

N2
ð36Þ

If VBb0 and Va0A are replaced into (34) by their relations to VAB and
VBC using (35) and (36) it is deducted that:

Va0b0 ¼ VAB 1þ N2

N1

� �
þ VBC �N2

N1

� �
ð37Þ

If the positions of the reversing switches of all regulators are in
raise, this equation can be rewritten in terms of the effective turns
ratios (see Table 1); i.e. aRab (for the regulator between phases A and
B) and aRbc (for the regulator between phases B and C):

Va0b0 ¼ aRab VAB þ ð1� aRbc ÞVBC ð38Þ
If the same procedure is followed for obtaining the voltages Vb0c0 and
Vc0a0 , the resulting three phase equation is:

Va0b0

Vb0c0

Vc0a0

2
64

3
75 ¼

aRab 1� aRbc 0
0 aRbc 1� aRca

1� aRab 0 aRca

0
B@

1
CA

VAB

VBC

VCA

2
64

3
75 ð39Þ

With a similar reasoning for lower positions in the regulators, the
same expression would be derived, so regardless of whether the
regulators are raising or lowering the voltages, the same Eq. (39)
applies. If the matrix of Eq. (39) is renamed as ARV (it is a
non-singular matrix and has inverse) the primary voltages are
obtained as:

½V�S0abc ¼ ARV ½V�Pabc ð40Þ
As it was explained in the previous subsection, being the regulators
of type A, the impedances must be considered into the secondary
side. Then, the matrix equation that includes the drop across those
impedances is given by:

Va0a

Vb0b

Vc0c

2
64

3
75 ¼ Z

Ia
Ib
Ic

2
64

3
75 ð41Þ

The phase to phase voltages in the secondary side are then
computed as:

Va0b0

Vb0c0

Vc0a0

2
64

3
75 ¼

Vab

Vbc

Vca

2
64

3
75þ

1 �1 0
0 1 �1
�1 0 1

0
B@

1
CA

Va0a

Vb0b

Vc0c

2
64

3
75 ð42Þ

The matrices of Eq. (42) will be labeled as TDY. It is a singular matrix.
Substituting Eq. (41) into (42) and writing it into matrix form:

½V�S0abc ¼ ½V�Sabc þ ZTDY ½I�Sabc ð43Þ
Merging Eqs. (40) and (43) and taking primary voltages apart, the
resulting equation is:

½V�Pabc ¼ A�1
RV
½V�Sabc þ A�1

RV
ZTDY½I�Sabc ð44Þ

Eq. (44) might be written in the same form of (11). A comparison
between both equations reveals:

NIabc ¼ A�1
RV

TDY ð45Þ
NIIabc ¼ A�1

RV
ð46Þ

To derive the relationships between primary and secondary
currents, if current references are taken as they are shown in
Fig. 2c, it can be assured that:

IA ¼ IA0 þ IAC ð47Þ
IA0 ¼ Ia þ IAB ð48Þ
Again, the relationship between currents through shunt and series
windings can be computed in terms of the turns ratio:

IAC
Ic

¼ �N2

N1
ð49Þ

IAB
Ia

¼ N2

N1
ð50Þ

Merging Eqs. (47)–(50) into one equation it can be said that:

IA ¼ Ia 1þ N2

N1

� �
þ Ic �N2

N1

� �
ð51Þ

Because the regulators are in raise position, Eq. (51) can be written
as (see Table 1):

IA ¼ aRab Ia þ ð1� aRca ÞIc ð52Þ
In a similar manner, the primary currents IB and IC can be also
expressed in terms of secondary currents and effective turns ratios.
The generalized matrix equation that relates primary and secondary
currents is finally given by:

IA
IB
IC

2
64

3
75 ¼

aRab 0 1� aRca
1� aRab aRbc 0

0 1� aRbc 0

0
B@

1
CA

Ia
Ib
Ic

2
64

3
75 ð53Þ

Labeling the matrix of (53) as ARI , the Eq. (53) becomes:

½I�Pabc ¼ ARI ½I�Sabc ð54Þ
Eq. (54) is written in the same form as (12) so matrix NIVabc

is
already known:

NIVabc
¼ ARI ð55Þ

In this case, Eq. (29) also applies, so matrix NIIIabc is the same as in
(28).

The four matrices NIabc ; NIIabc ; NIIIabc and NIVabc
are included in

Table 4 for both close delta connections (type A and B). All these
matrices are defined again in terms of turns ratios, so they are
the same for both raise and lower positions.

2.2.3. Open-Delta connections
Two single phase regulators can be connected giving rise to a

three phase configuration. This is an open-Delta connection.
Because there are two regulators to be connected between three
phases, there are three different connections (or cases). In this
work, the notation case a, case b and case c is going to be used.
All configurations are depicted in Fig. 2e for type A regulators
and in Fig. 2f for type B regulators. As in previous connections,
the impedances are considered in the primary side for type B and
in the secondary side for type A regulators.

In Fig. 2e and f, characters P1; P2; P3; P
0
1; P

0
2 and P0

3 are used in
the primary side and s1; s2; s3; s01; s

0
2 and s03 denote secondary side.

The schemes are general for all open delta configurations; the
meaning of each character in both figures depends on the
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considered case, as it is detailed in Table 2. For instance, in case b
the two regulators are connected between phases bc and ab. As
before, upper case letters are employed for the terminals at
primary side and lower case letters are used for secondary side.
The meaning of each character P1; P2 and P3 are B; C and A
respectively for both types of regulators; P0

1; P
0
2 and P0

3 mean
B0; C0 and A0 for type B regulators and has no meaning for type A
because those points do not exist in open delta connected type A
regulators (see Fig. 2e).

In this section, the open-delta connection, case a with type A
regulators has been chosen as the case to explain the open-delta
general model. The regulators are supposed to be in raise position.
The matrices needed for the power flow problem are going to be
deducted for this specific case, but with the general notation of
Fig. 2e and f and Table 2. The same reasoning may be applied to
any other open-delta configuration.

First, it has to be noted for the studied configuration that phase
A in the primary and phase a in the secondary are directly
connected, so it can be written A ¼ a0. From Fig. 2e the voltages
through the first regulator are related by:

Va0b0 ¼ VAb0 ¼ VAB þ VBb0 ð56Þ
Being N1 the turns number for the shunt winding and N2 the turns
number for the series winding (in the regulator connected to phases
ab), the voltages VAB and VBb0 can be related:

VBb0

VAB
¼ N2

N1
ð57Þ

Merging (56) and (57) into one equation it is obtained:

Va0b0 ¼ VAB þ VAB
N2

N1
¼ VAB 1þ N2

N1

� �
ð58Þ

Being the type A regulators in raise position and according to
Table 1, the equation becomes:

Va0b0 ¼ aRab VAB ð59Þ
For voltage Vc0a0 the same procedure can be followed to obtain these
expressions:

Vc0a0 ¼ Vc0C þ VCA ð60Þ
Vc0C

VCA
¼ N2

N1
ð61Þ

Vc0a0 ¼ VCA
N2

N1
þ VCA ð62Þ

Vc0a0 ¼ VCA 1þ N2

N1

� �
ð63Þ

Vc0a0 ¼ aRca VCA ð64Þ
In matrix form, primary voltages as a function of secondary

voltages are now obtained from the combination of (59) and (64)
and taking into account that for three phase-three wire
configurations the primary voltages have to satisfy
VAB þ VBC þ VCA ¼ 0.

VAB

VBC

VCA

2
64

3
75 ¼

1
aRab

0 0

� 1
aRab

0 � 1
aRca

0 0 1
aRca

0
BBB@

1
CCCA

Va0b0

Vb0c0

Vc0a0

2
64

3
75 ð65Þ

The number of turns have been replaced by the effective turns
ratios of the regulators, as it was done before.

If the same reasoning is carried out for lower positions, the
matrix of (65) is also obtained. If this matrix is called ARv2 , the
equation can be written in compact form as:

½V�Pabc ¼ ARv2 ½V�S
0

abc ð66Þ
For the studied connection, the drops across the secondary side
impedances are given as:

Va0a

Vb0a

Vc0c

2
64

3
75 ¼ Z

0 0 0
0 1 0
0 0 1

0
B@

1
CA

Ia
Ib
Ic

2
64

3
75 ð67Þ

There is no voltage drop due to current Ia because of the regulators
connection (from Fig. 2e it easily deducted that A ¼ a ¼ a0).

Eq. (42) must be also satisfied in this case, so the secondary
voltages can be deducted merging Eqs. (42) and (67):

Va0b0

Vb0c0

Vc0a0

2
64

3
75 ¼

Vab

Vbc

Vca

2
64

3
75þ ZTDY

0 0 0
0 1 0
0 0 1

0
B@

1
CA

Ia
Ib
Ic

2
64

3
75 ð68Þ

Substituting (68) into (65), and writing the new equation in
compact form, it is obtained:

½V�Pabc ¼ ARv2 ½V�Sabc þ ZARv2TDYa½I�Sabc ð69Þ
where

TDYa ¼
0 �1 0
0 1 �1
0 0 1

0
B@

1
CA ð70Þ

Matrix TDYa in (70) is the same matrix as TDY in (43) in which the
first column was replaced by zeros. For open-delta configurations
case b and case c, the matrices TDYb and TDYc would be obtained.
In the former, the second column in TDY has been replaced by zeros
and in the latter the third column in TDY is changed by zeros.

To derive the relationship between primary and secondary
currents in Fig. 2e, the depicted current references as well as the
corresponding phases related in Table 2 are needed. From the
figure it can be said:

IB ¼ Ib þ IBA ð71Þ
IC ¼ Ic þ ICA ð72Þ
If for both regulators the numbers of turns are N1 and N2 for the
shunt and series wingdings respectively and the raise position is
considered, then it can be assured that:

Table 2
Terminals notation for Open Delta connections.

Case a Case b Case c
Regulators ab & ca bc & ab ca & bc

Type A B A B A B

P1 P2 P3 A B C A B C B C A B C A C A B C A B
P0
1 P0

2 P0
3 – A0 B0 C0 – B0 C0 A0 – C0 A0 B0

s1 s2 s3 a b c a b c b c a b0 c0 a0 c a b c0 a0 b0

s01 s02 s03 a0 b0 c0 – b0 c0 a0 – c0 a0 b0 –
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IBA
Ib

¼ N2

N1
ð73Þ

ICA
Ic

¼ N2

N1
ð74Þ

Merging the last four equations, and writing them in terms of turns
relations, it is obtained that:

IB ¼ Ib 1þ N2

N1

� �
¼ aRab Ib ð75Þ

IC ¼ Ic 1þ N2

N1

� �
¼ aRca Ic ð76Þ

Merging (75) and (76) and taking into account that for a three phase
three wire connection the equation IA þ IB þ IC ¼ 0 must be
satisfied, a matrix equation is obtained:

IA
IB
IC

2
64

3
75 ¼

0 �aRab �aRca
0 aRab 0
0 0 aRca

0
B@

1
CA

Ia
Ib
Ic

2
64

3
75 ð77Þ

Being the matrix in Eq. (77) named as ARI2 , this equation if of the
same form as (12):

½I�Pabc ¼ ARI2 ½I�Sabc ð78Þ

Then, matrix NIVabc
can be obtained:

NIVabc
¼ ARI2 ð79Þ

In this case, Eq. (29) also applies, so matrix NIIIabc is the same matrix
as in (28).

Matrices NIabc ; NIIabc ; NIIIabc and NIVabc
are included in Table 4 for

all open delta configurations (cases a; b and c, type A and B
regulators). They are defined in terms of effective turns ratios, so
they are the same for both raise and lower positions. To obtain
the corresponding ab0 frame matrices, the same transformation
that was used for previous connections may be applicable (32).

With the generalized matrices detailed in Table 4, the SVR
models are prepared for the power flow solver. All the
configurations in the table were simulated in the 4-Node Test
Feeder, as it will be explained later.

2.3. Comparison to previous works

There are several related works in the literature that present
similar SVR models, however, none of them includes all possible
configurations. In Table 3 a comparison to the models described
in previous works is summarized. It can be seen how the type B
regulators are usually considered due to the fact they are mainly
installed in the distribution systems. With our work we aim to
include not only the most common configurations, but all of them;
We describe and propose a general model that will allow the
inclusion any SVR configuration in a power flow analysis. Besides,
a 4-Node Test Feeder with SVR is provided.

3. 4-Node Test Feeder including SVRs

To introduce SVRs in the 4-Node Test Feeder [28], the
transformer was replaced by a SVR. The power flow problem to
be solved is the one in which the transformer matrices
NI; NII; NIII and NIV are taken from Table 4 for each specific SVR
configuration. The matrices in this table are defined in abc frame,
so they need to be translated into ab0 frame by means of Eq. (32).

Several configurations were solved for defining a benchmark
of results. The effective turns ratios for the different regulators
were taken considering that most of the SVRs have a reversing
switch enabling �10% regulator range in 32 steps (16 in raise
and 16 in lower positions). That means a change of 0.625 per unit
per step. With these numbers, the effective turns ratio in
terms of number of turns might be replaced by expression [27,
Chapter 7]:

aR ¼ 1� 0:00625 Tap ð80Þ
where Tap has a value between 0 and 16, depending on the tap
position and the operator � has to be taken from Table 1. The model
has been defined in such a way that for wye and close-delta
configurations three single phase regulators are connected together.
That means the taps of each regulator can change separately. This
implies different values for the effective turns ratio per phase.
Nevertheless, three phase regulators (in which the taps in all
windings change the same) might be also modeled by choosing
the same values of aR in the three phases. For open delta
connections only single phase regulators are used, so the values
for the different turns ratio aR can be equal or not.

The resulting 4-Node Test Feeder including a SVR is depicted in
Fig. 3. The SVR is always connected between nodes 2 and 3, node 1
works as an infinite or slack bus and the load is connected at node
4. Line configurations and load types were chosen from the
conventional test feeder [28]. In this case, because the transformer
has been replaced by a SVR the rated voltage is the same in primary
and secondary sides of the regulator. This value has been chosen as
12.47 kV that is one of the rated voltages at load side in the original
test feeder.

The used algorithm is an unbalanced BFS solver [27] in which
linear equations were defined in matrix form including all system
KVL and KCL equations:

MzT ¼ 0 ð81Þ
The vector z contains all complex, three phase system voltages and
currents as follows:

z ¼ I12 I23 I34 ILoad4
IG1 V1 V2 V3 V4

� �
ab0 ð82Þ

where I12 and I34 are the line currents depicted in Fig. 3, IG1 are the
currents from the infinite bus (the only generator), ILoad4 are the load
currents and I23 are the SVR primary or secondary currents
depending on its configuration. The structure of M is shown in (83).

where the matrices C and CT are the modified node incidence
matrices in which the SVR matrices NI; NII; NIII and NIV are included
at the corresponding positions where a SVR is connected. This is the
same procedure that the one for transformers described in [30].

The load will add the following non-linear equations:

Pabc ¼ real AVab0 � conj AILab0
� �� � ð84Þ

Q abc ¼ imag AVab0 � conj AILab0
� �� � ð85Þ

where the operator � is the Hadamard (element-wise) product.

Table 3
Comparison to previous modeling works.

Refs. Connection Type Frame

[9] OD not specified abc
[11] YY B abc
[16] YY B abc
[20] OD, case b B abc
[26] YY B abc
[27] YY, DD; OD, case b B abc

Present work All A and B abc/ab0
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To test the different configurations for the regulators in lower
and raise positions, both types of loads; capacitive and inductive
were considered. In all studied cases the algorithm has shown good
convergence.

Due to the extension of this paper and the lack of space that
would be necessary to properly describe and present all cases, this
manuscript presents some examples. Additional results will be
available on-line (see Supplementary material).

4. Basic data

The data for describing loads, lines and SVR were chosen similar
to those described in the 4-Node Test Feeder with transformers

[28] but with some modifications needed to replace the trans-
former by a SVR.

4.1. Step Voltage Regulators

The SVR configurations used in this work were taken from
[27, chapter 7]. Depending on the way that the single-phase
regulators are connected, the resulting configurations are different.
In wye and close delta there are 3 regulators, but in case of open
delta there are only 2 regulators. In open delta, 3 different
connections (cases a, b and c) are defined: In case a, the regulators
are connected to phases ab and ca, in case b to phases ab and ca
and finally, in case c to phases ab and ca. There is only a
four-wire configuration: wye-grounded connection; Close delta
and open delta are three-wire. That means the lines connected to a
wye-grounded SVR have to be four-wire and in the other four cases
they have to be three-wire configured.

The 3-phase SVR has rated values as follows: Power of 6000
kVA; voltage 12.47 kV; R = 1% and X = 6%.

4.2. Loads

A 3-phase load is connected to node 4. Depending on the SVR
connection and the line configuration between nodes 3 and 4,

Table 4
Matrices for all SVR configurations.

Where D stands for Delta Y for wye and OD for Open Delta.

Fig. 3. 4 Node Test Feeder system.

252 C. González-Morán et al. / Electrical Power and Energy Systems 94 (2018) 245–255



the load is wye-grounded or delta type. Loads are given in terms of
constant active and reactive power (PQ). Different loading
scenarios were considered trying to achieve different positions in
taps (raise and lower positions). The loads are defined in Table 5.
For each balanced or unbalanced loading scenario two possibilities
are considered: lag and lead power factor. In the table, there is no
reference to phases a, b and c as the nomenclature phase 1, 2 and 3
is employed instead. This is because the spot loads are not always
connected to a given phase: For 3-wire nodes loads are connected
line-to-line and for 4-wire nodes the loads are connected between
a phase and the neutral conductor.

4.3. Lines

The lines were chosen to be exactly the same configurations and
lengths as in the 4-Node Test Feeder.

The line model is the exact segment model described in
[27, chapter 6]. The matrices derived from Carson’s equations
and Kron’s reduction are always of dimensions 3� 3 and are
available in the web site [28] for both three-wire and four-wire
configurations.

5. Study cases

The cases have been selected in such a way that each SVR
configuration (type A and type B regulators) has been tested under
several conditions: Balanced and unbalanced, inductive (lag power
factor) and capacitive (lead power factor) loading and two different
cases: Before and after optimization. The optimization has to do
with tap positions; Each regulator has 32 taps; The neutral position
is in the middle, there are 16 taps for raise positions and other 16
taps for lower positions. Before and after optimization refer to the
comparison between two different scenarios: The first one with the
SVR in the neutral position, and the second scenario with

regulation to achieve the minimum value in voltage magnitude
for the whole grid, without violating the voltage constraint.

The load can be inductive or capacitive, so the taps will need to
be sometimes in raise and other times in lower positions. The
different combinations between connections, regulator types and
loading scenarios, as well as the cases before/after optimization
have given rise to 80 different cases.

For wye and close delta connections there are 3 taps per
regulator, that can be changed independently, but in case of open
delta there are only 2 tap changers per regulator, that means one
less grade of freedom for optimization.

For the voltage constraint, 0.95 per unit was selected as the
minimum voltage. That means 11847 V phase-to-phase or 6840 V
phase-to-neutral. There was no need of fixing a maximum value,
because the optimization aims to find the minimum voltage profile
that satisfies the constraint, so the maximum value is never
reached.

Because the system is radial, the furthest node from the slack is
node 4. As a result, it happened for all inductive loading scenarios
that the minimum voltage magnitudes are obtained at that node,
so if the minimum voltage constraint is satisfied at this node it will
be satisfied at all nodes. Then, it is expected that the optimization
algorithm searches for a power flow solution that meets the
minimum voltage profile per phase (0.95 pu) at node 4 in inductive
cases. For capacitive loading cases the voltage profile changes
because node 4 does not always present the minimum voltage
per phase in the network.

6. Results

The results to the 80 cases are available on line (16 tables in
total; see Supplementary material). They have been organized in
tables. Two examples of them are included in here: Tables 6 and
7. They include three phase voltages in nodes 2, 3 and 4 and three
phase currents in lines 1 (from node 1 to 2) and line 2 (from node 3
to 4). The currents are line currents in phases a, b and c while
the voltages are line-to-line voltages for 3-wire nodes and
line-to-neutral voltages for 4-wire nodes. Each single current or
voltage is represented by its magnitude in Amps or Volts and its
phase in degrees. The columns correspond to the different
connections: YgYg ; DD and OD stand for wye grounded, close delta
and open delta respectively. All the results in a table correspond to
the same loading scenario (in this case balanced and inductive
loading case) and the same optimization stage (before and after
optimization in these two tables).

Table 6
Type A regulators. Inductive balanced loading. Before Optimization.

YgYg DD OD case a OD case b OD case c
Taps [0 0 0] [0 0 0] [0 — 0] [0 0 —] [— 0 0]

Node 2 V1 7125\� 0:3� 12360\29:7� 12364\29:7� 12365\29:7� 12362\29:7�

V2 7145\� 120:4� 12370\� 120:4� 12375\� 90:4� 12376\� 90:4� 12373\� 90:4�

V3 7136\119:6� 12346\149:6� 12351\149:6� 12353\149:6� 12349\149:6�

Node 3 V1 6842\� 3:4� 11870\26:7� 12364\29:7� 11951\28:8� 11891\26:7�

V2 6863\� 123:4� 11882\� 93:4� 12125\� 93:0� 12194\� 89:8� 11950\� 91:2�

V3 6854\116:6� 11857\146:6� 11749\149:4� 12330\148:6� 12296\147:5�

Node 4 V1 6752\� 3:8� 11737\26:3� 12231\29:3� 11821\28:4� 11762\26:3�

V2 6798\� 123:9� 11764\� 94:0� 12012\� 93:5� 12077\� 90:3� 11832\� 91:8�

V3 6778\116:0� 11709\146:0� 11601\148:9� 12187\148:0� 12150\147:0�

Line 12 Ia 296:2\� 29:7� 295:2\� 29:7� 290:3\� 27:6� 288:1\� 27:1� 290:9\� 28:7�

Ib 294:2\� 149:7� 295:2\� 149:7� 289:8\� 147:7� 288:0\� 147:1� 290:7\� 148:7�

Ic 295:1\90:2� 295:2\90:3� 290:0\92:4� 288:0\92:9� 290:8\91:4�

Line 34 Ia 296:2\� 29:7� 295:2\� 29:7� 290:3\� 27:6� 288:1\� 27:1� 290:9\� 28:7�

Ib 294:2\� 149:7� 295:2\� 149:7� 289:8\� 147:7� 288:0\� 147:1� 290:7\� 148:7�

Ic 295:1\90:2� 295:2\90:3� 290:0\92:4� 288:0\92:9� 290:8\91:4�

Where V1;V2 and V3 are phase to neutral voltages in wye connections and phase to ground voltages in the others.

Table 5
Loads.

Balanced Unbalanced

Phase 1 P (kW) 1800 1275
Power factor 0.9 lag/lead 0.85 lag/lead

Phase 2 P (kW) 1800 1800
Power factor 0.9 lag/lead 0.9 lag/lead

Phase 3 P (kW) 1800 2375
Power factor 0.9 lag/lead 0.95 lag/lead
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For each connection, a vector named Taps is included in the
tables, at second row. It represents the tap positions for the
different regulators. As it can be seen, this vector includes 3 values
for wye and close delta connections (1 regulator per phase) and 2
values for open delta configurations (2 regulators for three phases).
For open delta cases there is always an empty position in Taps, that
corresponds to the phase in which there is no regulator. As an
example, consider case a: The 2 regulators are connected between
phases a/b and c/a (first and third positions), so the corresponding
vector Taps is of the form ½0� 0�. Between phases b/c (second
position) there is no regulator, so the corresponding position at
vector Taps is empty. The same reasoning applies to open delta
cases b and c. A zero in Taps means neutral position. A positive
value corresponds to a raise position, varying form 1 to 16, and a
negative value is obtained for lower positions, varying from �1
to �16.

Looking at the tables, several analysis can be done. First,
comparing the voltage profiles for this specific case before and
after optimization: Before optimizing, in YgYg case the voltage level
at node 4 is violating the voltage constraint in the 3 phases (less
than 6840 V), but after optimization the constraint is not violated
in any phase. The minimum voltage is obtained at node 4, phase
b 6845 V (0.951 pu). A similar reasoning can be applied to connections
DD and open D; it can be observed that in all cases the voltage
constraint is fulfilled (11847 V for three wire connections).

Then, in balanced loading cases, with wye and close delta
connections, the tap positions are quiet similar among different
phases but not exactly the same because of the unbalanced nature
of lines. In contrast, open delta connections give rise to great
differences among taps because the SVR itself is not symmetric
(two regulators for three phases), so even for a balanced loading
scenario one regulator can be at raise position while the other
can be at lower position.

Finally, for unbalanced loading cases it can be seen that the SVR,
not only improves the voltage in magnitude but also leads to a
more balanced scenario.

7. Conclusion

This work provides for the theoretical background, the model
description and the diagrams needed for the inclusion of Step
Voltage Regulators into a general, there phase and unbalanced
power flow problem. The general model for three phase Step
Voltage Regulators has been included in a 4 Node Test Feeder

and solved by means of an unbalanced Backward-Forward Sweep
solver. The obtained results are presented as a benchmark. The
main contribution of this work is, besides the guidelines for the
SVR model development, the proposal of a new 4-Node Test
System for testing and evaluation of three-phase SVRs connections.
The authors would like to encourage software developers to test
their software using the model and data presented in this work.
All results are available on-line (see Supplementary material).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ijepes.2017.06.
027.

References

[1] Hobson JE, Lewis WA. Regulating transformers in power-system analysis.
Electr Eng 1939;58(11):874–86.

[2] Hill LH. Step type feeder voltage regulators. Electr Eng 1935;54(2):154–8.
[3] Saidy M, Hughes F. A predictive integrated voltage regulator and power system

stabilizer. Int J Electric Power Energy Syst 1995;17(2):101–11. cited By 8.
[4] Dzafic I, Jabr RA, Halilovic E, Pal BC. A sensitivity approach to model local

voltage controllers in distribution networks. IEEE Trans Power Syst 2014;29
(3):1419–28.

[5] Pereira C, Castro C. Optimal placement of voltage regulators in distribution
systems. In: PowerTech, 2009 IEEE Bucharest. p. 1–5. June.

[6] Watson JD, Watson NR, Das B. Effectiveness of power electronic voltage
regulators in the distribution network. IET Gener Transm Distrib 2016;10
(15):3816–23.

[7] Brito MEC, Limongi LR, Cavalcanti MC, Neves FAS, Azevedo GMS. A step-
dynamic voltage regulator based on cascaded reduced-power series
transformers. Electric Power Syst Res 2014;108:245–53. cited By:3.

[8] Senjyu T, Miyazato Y, Yona A, Urasaki N, Funabashi T. Optimal distribution
voltage control and coordination with distributed generation. IEEE Trans
Power Deliv 2008;23(2):1236–42.

[9] Hossain MI, Yan R, Saha TK. Investigation of the interaction between step
voltage regulators and large-scale photovoltaic systems regarding voltage
regulation and unbalance. IET Renew Power Gener 2016;10(3):299–309.

[10] Liu X, Aichhorn A, Liu L, Li H. Coordinated control of distributed energy storage
system with tap changer transformers for voltage rise mitigation under high
photovoltaic penetration. IEEE Trans Smart Grid 2012;3(2):897–906. June.

[11] Youssef KH. A new method for online sensitivity-based distributed voltage
control and short circuit analysis of unbalanced distribution feeders. IEEE
Trans Smart Grid 2015;6(3):1253–60.

[12] Rahbarimagham H, Sanjari MJ, Tavakoli A, Gharehpetian GB, Jafari R. Emission
reduction in a micro grid including pv considering voltage profile
improvement. In: 2013 Smart Grid Conference (SGC), Dec. p. 219–24.

[13] Tang Z, Hill D, Liu T, Ma H. Hierarchical voltage control of weak
subtransmission networks with high penetration of wind power. IEEE Trans
Power Syst 2017;PP(99). 1–1.

Table 7
Type A regulators. Inductive balanced loading. After Optimization

YgYg DD OD case a OD case b OD case c
Taps [2 1 2] [2 1 2] [-5 — 4] [1 �3 —] [— 1 2]

Node 2 V1 7125\� 0:3� 12360\29:7� 12365\29:7� 12363\29:7� 12362\29:7�

V2 7145\� 120:3� 12371\� 90:4� 12377\� 90:4� 12377\� 90:4� 12373\� 90:4�

V3 7136\119:6� 12346\149:6� 12347\149:6� 12354\149:6� 12349\149:6�

Node 3 V1 6936\� 3:3� 12075\27:1� 11979\29:7� 12025\28:8� 12015\26:4�

V2 6910\� 123:3� 12046\� 92:7� 12070\� 90:2� 11965\� 89:8� 12031\� 91:2�

V3 6947\116:7� 12098\147:3� 12040\149:4� 12253\149:8� 12450\147:6�

Node 4 V1 6847\� 3:7� 11944\26:7� 11847\29:3� 11895\28:4� 11887\26:0�

V2 6845\� 123:8� 11930\� 93:2� 11953\� 90:7� 11848\� 90:3� 11914\� 91:7�

V3 6873\116:1� 11952\146:8� 11894\148:9� 12107\149:2� 12305\147:0�

Line 12 Ia 295:8\� 29:6� 295:5\� 29:7� 290:6\� 29:5� 291:7\� 26:7� 289:8\� 28:8�

Ib 294:0\� 149:7� 293:7\� 149:7� 282:1\� 146:7� 288:1\� 148:0� 291:3\� 148:7�

Ic 294:6\90:3� 294:6\90:6� 298:4\93:3� 284:5\93:3� 290:6\91:0�

Line 34 Ia 292:1\� 29:6� 290:1\� 29:1� 291:1\� 29:7� 289:9\� 26:7� 288:0\� 28:8�

Ib 292:2\� 149:7� 290:1\� 149:1� 291:2\� 146:7� 289:9\� 146:7� 287:7\� 148:7�

Ic 291:0\90:3� 290:1\90:9� 291:1\93:3� 289:9\93:3� 288:0\91:3�

Where V1;V2 and V3 are phase to neutral voltages in wye connections and phase to ground voltages in the others.

254 C. González-Morán et al. / Electrical Power and Energy Systems 94 (2018) 245–255

http://dx.doi.org/10.1016/j.ijepes.2017.06.027
http://dx.doi.org/10.1016/j.ijepes.2017.06.027
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0005
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0005
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0010
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0015
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0015
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0020
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0020
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0020
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0025
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0025
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0030
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0030
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0030
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0035
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0035
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0035
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0040
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0040
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0040
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0045
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0045
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0045
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0050
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0050
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0050
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0055
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0055
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0055
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0060
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0060
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0060
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0065
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0065
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0065


[14] Murphy KM, Nair NKC. Voltage control in distribution networks with
penetration of solar pv: estimated voltages as a control input. In: 2016 IEEE
Power and Energy Society General Meeting (PESGM), July. p. 1–5.

[15] Ceylan O, Dimitrovski A, Starke M, Tomsovic K. Optimal reactive power
allocation for photovoltaic inverters to limit transformer tap changes. In: 2016
IEEE Power and Energy Society General Meeting (PESGM), July. p. 1–5.

[16] Farag H, El-Saadany E, El Shatshat R, Zidan A. A generalized power flow
analysis for distribution systems with high penetration of distributed
generation. Electric Power Syst Res 2011;81(7):1499–506. cited By 35.

[17] Oshiro M, Tanaka K, Uehara A, Senjyu T, Miyazato Y, Yona A, et al. Optimal
voltage control in distribution systems with coordination of distribution
installations. Int J Electric Power Energy Syst 2010;32(10):1125–34. cited By
26.

[18] Frias P, Platero CA, Soler D, Blazquez F. High-efficiency voltage regulator for
rural networks. IEEE Trans Power Deliv 2010;25(3):1666–72.

[19] Chamana M, Chowdhury BH, Jahanbakhsh F. Distributed control of voltage
regulating devices in the presence of high pv penetration to mitigate ramp-
rate issues. IEEE Trans Smart Grid 2017;PP(99). 1–1.

[20] Yan R, Li Y, Saha T, Wang L, Hossain M. Modelling and analysis of open-delta
step voltage regulators for unbalanced distribution network with photovoltaic
power generation. IEEE Trans n Smart Grid 2017;PP(99). 1–1.

[21] Robbins BA, Zhu H, Domínguez-García AD. Optimal tap setting of voltage
regulation transformers in unbalanced distribution systems. IEEE Trans Power
Syst 2016;31(1):256–67.

[22] Ahmadi H, Martí JR. Distribution system optimization based on a linear power-
flow formulation. IEEE Trans Power Deliv 2015;30(1):25–33.

[23] Araujo LR, Penido DRR, Carneiro S, Pereira JLR. A three-phase optimal power-
flow algorithm to mitigate voltage unbalance. IEEE Trans Power Deliv 2013;28
(4):2394–402.

[24] Ghatak U, Mukherjee V. An improved load flow technique based on load
current injection for modern distribution system. Int J Electric Power Energy
Syst 2017;84:168–81.

[25] Liu JW, Choi SS, Chen S. Design of step dynamic voltage regulator for power
quality enhancement. IEEE Trans Power Deliv 2003;18(4):1403–9.

[26] Kersting WH. The modeling and application of step voltage regulators. In:
2009 IEEE/PES power systems conference and exposition, March. p. 1–8.

[27] Kersting WH. Distribution system modeling and analysis. Abingdon: CRC
Press; 2001.

[28] Distribution Test Feeders, IEEE PES Distribution System Analysis
Subcommittee’s. Distribution Test Feeder Working Group. Available: <http://
ewh.ieee.org/soc/pes/dsacom/testfeeders/>.

[29] Kersting WH. Transformer model test system. In: Transmission and
distribution conference and exposition, 2003 IEEE PES 3. IEEE; 2003. p.
1022–6.

[30] Arboleya P, González-Morán C, Coto M. Unbalanced power flow in distribution
systems with embedded transformers using the complex theory in ab0
stationary reference frame. IEEE Trans Power Syst 2014;PP(99):1–11.

[31] González-Morán C, Arboleya P, Mohamed B. Matrix backward forward sweep
for unbalanced power flow in ab0 frame. Electric Power Syst Res
2017;148:273–81.

C. González-Morán et al. / Electrical Power and Energy Systems 94 (2018) 245–255 255

http://refhub.elsevier.com/S0142-0615(17)30239-9/h0070
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0070
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0070
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0075
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0075
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0075
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0080
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0080
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0080
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0085
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0085
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0085
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0085
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0090
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0090
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0095
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0095
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0095
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0100
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0100
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0100
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0105
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0105
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0105
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0110
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0110
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0115
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0115
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0115
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0120
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0120
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0120
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0125
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0125
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0130
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0130
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0135
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0135
http://ewh.ieee.org/soc/pes/dsacom/testfeeders/
http://ewh.ieee.org/soc/pes/dsacom/testfeeders/
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0145
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0145
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0145
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0150
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0150
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0150
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0155
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0155
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0155
http://refhub.elsevier.com/S0142-0615(17)30239-9/h0155


Phase shifting transformer model for direct approach power flow studies

José M. Cano ⇑, Md. Rejwanur R. Mojumdar, Joaquín G. Norniella, Gonzalo A. Orcajo
Department of Electrical Engineering, University of Oviedo, Spain

a r t i c l e i n f o

Article history:
Received 11 January 2017
Received in revised form 2 March 2017
Accepted 12 March 2017
Available online 22 March 2017

Keywords:
Direct approach method
Phase shifting transformer
Power flow
Weakly-meshed network

a b s t r a c t

This proposal is intended to extend the field of application of an extremely efficient power flow algorithm
used in radial and weakly meshed grids, the so-called Direct Approach (DA) method. In this work the
method is broadened with the possibility of handling shunt admittances, transformers with taps, and
phase shifting transformers. While the integration of the two former elements in the DA solver is quite
straightforward, the use of phase shifting transformers is far from obvious due to their inherent non-
symmetrical admittance matrix. Thus, a model for phase shifting transformers is proposed in this contri-
bution, which allows the use of the DA method in grids that include such devices. A set of case studies is
conducted in the contexts of a balanced industrial grid and a standard testbed to demonstrate the validity
of the proposal.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Power flow solvers are an essential tool in the operation and
planning of power systems. They allow the assessment of voltage
profiles, power flows and losses in the grid, and thus, they are cru-
cial to detect unacceptable voltage deviations and identify over-
loaded components. Furthermore, power flow algorithms are
used to conduct reliability studies and foresee the impact of future
demand [1,2].

The most traditional power flow methods such as Newton-
Raphson and Gauss-Seidel, used widely in transmission systems,
do not offer the best performance and robustness when applied
to the distribution level [3]. This is due to the especial nature of
the distribution network, characterized by a radial or weakly
meshed topology and a high R=X ratio. Several approaches have
been proposed in order to deal with these particular features, such
as the implicit Z-bus Gauss method [4] and backward-forward
sweep methods [5,6]. In the latter group, a very efficient formula-
tion called the direct approach (DA) was proposed in [7]. The DA
method avoids the time-consuming tasks of LU factorization and
forward and backward substitution of the Jacobian or admittance
matrices, which are a commonplace in traditional formulations.
The characteristics of DA method make it ideal for real-time appli-
cations in the smart grid context. In [8], the DA solver is used in the
core of an optimal power flow (OPF) algorithm to provide refer-
ences to a distribution FACTS in an industrial grid. High update

rates are needed in this type of applications and the DA solver
accommodates perfectly to this requirement.

The three-phase approach used in [7] takes series self-
impedances and mutual couplings into consideration; however,
shunt admittances are neglected. Even if that assumption can be
enough to run a power flow analysis at the lowest voltage levels
of the distribution grid, characterized by short-length lines and
untapped transformers, ignoring shunt admittances strongly limits
the application of the method to higher voltage levels. The exten-
sion of the method to accommodate medium-length lines and
transformers with tap changers in a balanced environment is pre-
sented in this paper. Though no previous references to this use
have been found, its application is fairly straightforward.

In a pure radial grid, a post-processing of the voltage phase
angles after the application of the power flow solver is enough to
account for the transformer phase shift. However, if a weakly
meshed grid is to be considered, this method is no longer valid.
Thus, a model of the phase shifting transformer, both to consider
specific devices used to control the active power flow in the loop
and to include the phase shift of common power transformers, is
mandatory. Modeling of phase shifting transformers in power flow
studies is a non-trivial problem, as they cannot be represented by a
pi-equivalent component due to their inherent asymmetric admit-
tance matrix [1]. A set of different phase shifting transformer mod-
els is available for application in various fields of study, to both
steady state [9–13] and transient simulation [14]. In [15], a survey
on phase shifting transformer models for steady state analysis is
presented; however, none of them are expressed in a suitable form
to be embedded in the DA solver. In this work, a new model is pro-
posed to overcome this limitation.
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The DA method, as described in [7], is presented in Section 2 for
the benefit of the reader. Section 3 presents a straightforward
method to include shunt admittances in the DA solver. Thus, those
components capable of being represented by pi-equivalent models,
such as medium-length lines and transformers with tap changers,
can be easily included in the problem. In Section 4, the new phase
shifting transformer model is presented together with minor mod-
ifications to be performed in the DA algorithm. Three case studies
are presented in Section 5 in order to illustrate the implementation
procedure and demonstrate the validity of the proposal. Finally,
Section 6 summarizes the most important results of this study.

2. Direct approach power flow

The method to be proposed in this contribution is based on the
DA formulation of the power flow problem [7]. This is a technique,
especially designed for radial networks, inspired by well-known
backward-forward sweep methods such as Ladder Iterative Tech-
nique [6]. DA provides a very compact vectorized formulation with
excellent computational and convergence characteristics.

In the application of DA to balanced grids, lines and transform-
ers are modeled as series impedances, zik, as it is shown in Fig. 1.
The equivalent bus current injection vector, Ig , is calculated from
the power injection at each bus, i, given the estimation of the
bus voltage vector V at iteration ðnÞ as

IðnÞgi ¼ Pi � jQ i

conjðV ðnÞ
i Þ

: ð1Þ

Assuming a radial grid, the branch current vector can be calcu-
lated as

BðnÞ ¼ BIBC � IðnÞg ; ð2Þ

where BIBC is the so-called bus-injection to branch-current matrix.
The entry BIBCbi equals 1 if the current injection of node i con-
tributes to the branch current Bb, and equals 0 otherwise. Finally,
a better approximation to the voltage profile can be obtained from

DV ðnþ1Þ ¼ BCBV � BðnÞ; ð3Þ
where BCBV is the branch-current to bus-voltage matrix. The entry
BCBVib equals the series impedance of branch b if that branch is in
the path from node i to the slack bus, and equals 0 otherwise. DV
is a vector with the voltage of the slack bus referred to the different
bus voltages. An improved approximation to the state variables is
subsequently obtained by

V ðnþ1Þ ¼ Vs � DV ðnþ1Þ; ð4Þ
where Vs is a column vector with the slack bus voltage at each
entry.

Starting from a flat voltage profile, the solution of the distribu-
tion power flow is reached by solving (1)–(4) iteratively up to a
specified convergence threshold.

In order to include the treatment of meshes in the network,
Teng [7] proposes minor modifications to be conducted in the

definition of BIBC and BCBV and in the solution technique. A brief
summary of these changes can be described as:

� Specific branches are selected to break the meshed grid into a
radial network. Then, new entries are included in the current
injection vector to account for the currents at the selected

branches, i.e. ½IgBnew�T .
� The BIBC matrix is built as in the base case, by considering the
currents of the branches used to break the network as addi-
tional current injections. However, entries with the value �1
appear now to account for the contribution of the receiving
node of the branches used to break the network due to the
inverted current reference. Notice that the double-sided contri-
bution of the sending and receiving nodes of a branch used to
break the network, Bc , to the current of those branches
upstream from the first common parent node, Bb, is null, as they
have the same value but opposite references.
Additionally, new rows are added to the BIBCmatrix with a sin-
gle non-null entry in order to identify the currents of the
branches used to break the network. Taking all this into account
the modified BIBC matrix can be obtained as

B
B new

� �ðnÞ
¼ BIBC � Ig

B new

� �ðnÞ
: ð5Þ

� The BCBVmatrix is built as in the base case, but a new row is
added for each loop in the grid to account for KVL. The impe-
dances included in the entries of the new rows of the matrix
are signed positive or negative according to the reference of
the current at the different branches. Then, (3) is reformu-
lated as

DV
0

� �ðnþ1Þ
¼ BCBV � B

B new

� �ðnÞ
: ð6Þ

� By using (5) and (6) and rewriting the resulting matrix,
it follows that

DV
0

� �ðnþ1Þ
¼ BCBV � BIBC � I

B new

� �ðnÞ
¼ A P

M N

� �
I

B new

� �ðnÞ
:

The application of Kron reduction to (7) leads to

DV ðnþ1Þ ¼ ðA�MTN�1MÞIðnÞg : ð7Þ

The iterative use of (1), (7) and (4), in this order, allows the
application of the DA method to weakly meshed grids.

3. Including pi-equivalent models

The DA method in [7] models the lines and transformers in bal-
anced systems by simple series impedances. While this is accept-
able for short-length lines and untapped transformers, minor

Fig. 1. Scheme used in the DA method. Fig. 2. Pi-equivalent line model.
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modifications must be included in the method in order to deal with
other common device models.

By considering a pi-equivalent model as the one shown in Fig. 2,
medium-length lines with series impedance zik and total lumped
shunt admittance Yik can be included in the DA method. In this
case, an intermediate variable arises, Bb, which is to be included
in the branch current matrix B. The current injection vector, Ig , is
now replaced in (2) by an augmented vector I that includes the
currents drawn by the shunt admittances as

IðnÞ ¼ IðnÞg þ YB � V ðnÞ; ð8Þ
where � is the Hadamard product and YB is the bus admittance vec-
tor. The sending and receiving end currents, Bin and Bout , do not
appear explicitly in the formulation, but can be subsequently
obtained from the state variables by

Bin ¼ Bb þ Yik

2
Vi; ð9Þ

Bout ¼ Bb � Yik

2
Vk: ð10Þ

Once the structure in Fig. 3 is adopted, no further modifications are
required in the DA method if zik is used within the BCBV matrix.

Even more important than medium-length lines in radial grids
is the inclusion of tap changing transformers in the DA solver.
The latter devices are massively used along the power system
and are of particular importance in the regulation of voltages in
radial grids, to which the DA method is specifically devoted. Con-
sidering a tap changing transformer as in Fig. 4, where Ysc stands
for its short circuit admittance and a represents the regulation
between the primary and secondary voltages, the following equa-
tions apply

Vi ¼ aVp ¼ a
Bout

Ysc
þ Vk

� �
; ð11Þ

Bout ¼ aBin: ð12Þ
As it is well established in [16], from (11) and (12) the tap

changing transformer can be represented through a pi-equivalent
model as in Fig. 5, which accounts for the nodal equations of the
machine

Bin ¼ 1
a2

YscVi � 1
a
YscVk; ð13Þ

� Bout ¼ �1
a
YscVi þ YscVk: ð14Þ

Using the same methodology described for pi-equivalent lines,
the inclusion of tap changing transformers in the DA method is
thus achieved. Notice that, in this case, the input and output cur-
rents of the transformer can be derived from the state variables as

Bin ¼ Bb þ 1� a
a2

YscVi; ð15Þ

Bout ¼ Bb � a� 1
a

YscVk: ð16Þ

4. Phase shifting transformer model

Phase shifting transformers cannot be represented through a pi-
equivalent model due to the asymmetry of its admittance matrix.
As a consequence, the methodology described in Section 3 is not
valid for the integration of these devices within the DA method.
However, an alternative equivalent model, which is suitable to be
used with the DA method provided that slight modifications are
included, is described in this section.

4.1. Pseudo pi-equivalent model

The equivalent circuit shown in Fig. 4 is still valid to represent a
phase shifting transformer, provided that a is now a complex num-
ber, i.e. a ¼ jajejh; jaj being the regulation between the primary and
secondary voltage magnitudes and h being the phase shift. The fun-
damental equations of such a machine can be written as

Vi ¼ aVp ¼ a
Bout

Ysc
þ Vk

� �
; ð17Þ

Bout ¼ a�Bin; ð18Þ
where a� is the complex conjugate of a.

The nodal equations of a phase shifting transformer can be
derived from (17) and (18) as

Bin ¼ 1
aa�

YscVi � 1
a� YscVk; ð19Þ

� Bout ¼ �1
a
YscVi þ YscVk: ð20Þ

where the asymmetry of the admittance matrix becomes clear.
In order to comply with the principles of the DA method, a suit-

able equivalent of the phase shifting transformer should maintain
the structure of (3). From (17) and (18), it can be derived that

Vi � Vk ¼ a
Ysc

Bout þ a� 1
a

YscVk

� �
¼ a

Ysc
Bb; ð21Þ

where Bb, defined as

Bb ¼ Bout þ a� 1
a

YscVk; ð22Þ

is an intermediate variable used to calculate the voltage between
nodes i and k. Finally, using (17), (18) and (21), the input current
to the transformer can be formulated as

i
zik Bb k

Ii

YBi

Igi

Pi + jQi

Ik

YBk

Igk

Pk + jQk

Fig. 3. Modified scheme for the DA method.

Fig. 4. Equivalent circuit for the tap changing transformer.

Fig. 5. Pi-equivalent model of the tap changing transformer.
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Bin ¼ ej2hBb þ 1� a

j aj2
YscVi: ð23Þ

The equivalent circuit shown in Fig. 6 meets the set of
Eqs. (21)–(23) and constitutes the transformer phase shifting model
proposed in this contribution. Though it is obviously not a pure
pi-equivalent circuit, it is especially suited to be embedded in the
DA power flow method, as is demonstrated in the following.

4.2. Integration of the model in the DA method

Slight modifications in the application of the DAmethod have to
be conducted in order to integrate the pseudo pi-equivalent circuit
of the phase shifting transformer into the DA power flow calcula-
tion method. The first two considerations are in fact extensions
from the conclusions drawn in Section 3 for the inclusion of pi-
equivalent models:

� The series impedance zik shown in Fig. 6 is used to represent the
impedance between nodes i and k within the BCBV matrix.

� In the calculation of the current injection augmented vector I
according to (8), YB has to include new shunt admittance terms
at the sending bus, i, and receiving bus, k, according to Fig. 6.

The third consideration requires the modification of the BIBC
matrix. As is depicted in Fig. 7(a), let i0; k0 and b0 be the sending
node, receiving node and branch index of a phase shifting trans-
former. In the same way, let b be the index of a branch located
upstream from that transformer. According to (23) and Fig. 6, the
effect of all the augmented current injections of the nodes down-
stream from i0 on the branch current, Bb, can be evaluated as
ej2hBb0 . This fact can be easily considered by modifying the entries
BIBCbi of the matrix. If node i is now downstream from the receiv-
ing node of branch b, the following term,

BIBCbi ¼
Y
t

ej2ht ¼ e
j2
X
t

ht

; ð24Þ

applies instead of 1, with t being the different phase shifting trans-
formers between the receiving node of branch b and node i, and ht
being their corresponding phase angle shifts. Fig. 7 illustrates the
process for the cases of one phase shifting transformer, example
(a), and two series connected phase shifting transformers, example
(b).

4.3. Dealing with weakly meshed grids

Additional changes, apart from those described in Section 2,
must be conducted to include the proposed phase shifting trans-
former model in the DA method in the context of weakly meshed
topologies. Those modifications can be summarized in the follow-
ing aspects:

� The double-sided contribution of the current of a branch used to
break the network, Bc , to a branch current upstream from the
first common parent node, Bb, is no longer canceled in this case,
as it is shown in Fig. 8. Notice that even if Bc arises with differ-
ent current references in each path, both sides can be affected
by different phase angle jumps. As a consequence, a minor mod-
ification of the BIBC matrix is required. For those branches, b,
upstream from the first common parent node, the contribution
of a branch used to break the network, c, whose current branch

is at position i in the augmented injection vector IgB new
� �T , is

evaluated by the term

BIBCbi ¼
Y
ts

ej2hts �
Y
tr

ej2htr ¼ e
j2
X
ts

hts

� e
j2
X
tr

htr

: ð25Þ

In (25) ts stands for the different phase shifting transformers
found in the path between the receiving node of branch b and
the receiving node of branch c that includes the sending node
of branch c. In the same way, tr stands for the different phase
shifting transformers found in the path between the receiving
node of branch b and the receiving node of branch c that does
not include the sending node of branch c. Finally, hts and htr
account for their corresponding phase angle shifts. The example
shown in Fig. 8 illustrates this situation using a simple network.
Notice that, in this example, one phase shifting transformer
exists between node n and the receiving node k0 of branch c
along the path that includes the sending node of branch c. How-
ever, no phase shifting transformers exist along the alternative
path connecting the same pair of nodes, which obviously leads
to �1 in the second addend of (25).

� From the application of (5) and (6) to this case, it follows that

DV
0

� �ðnþ1Þ
¼ BCBV � BIBC � I

B new

� �ðnÞ
¼ A P

M N

� �
I

B new

� �ðnÞ
:

Notice that the symmetry found in (7) does not appear in (26). In
any case, the application of Kron reduction leads to

DV ðnþ1Þ ¼ ðA� PN�1MÞIðnÞ: ð26Þ

The iterative use of (1), (8), (26) and (4), in this order, allows the
application of the DA method to weakly meshed grids including
phase shifting transformers.

5. Case studies

To demonstrate the validity of the proposed methodology, three
case studies are carried out in this section. In the first one, the DA
method is applied to a radial network in which the phase shifts
associated to the embedded power transformers are considered.
In the second case study, the same radial grid is turned into a
weakly meshed grid by using a phase shifting transformer. While
the first two case studies take advantage of the low number of
nodes of an industrial grid to give insight into the matrices building
process, the third case study is used to demonstrate the good con-
vergence characteristics of the method in a standard medium-size
testbed.

5.1. Case 1: Radial network

A simplified version of the customer owned grid of a steelworks
in the north of Spain, already tested in previous works [8], is con-
sidered in this case study. The grid is shown in Fig. 9 and the
parameters and configuration of the embedded transformers are
listed in Table 1. Table 2 shows the lengths and per km impedancesFig. 6. Pseudo pi-equivalent model of the tap changing transformer.
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of the lines, together with the series impedances, zik, of each branch
for lines and transformers, according to Figs. 2 and 6 respectively.

In [8], a proposal aimed to improve the efficiency of the grid and
provide dynamic voltage support to the facility was presented. This
objective is conducted through the application of a distribution
FACTS usually known as Loop Power Flow Controller (LPFC). The
real-time optimization of the device is based on a heuristic algo-
rithm out of the scope of this paper. However, the proper operation
of that heuristic algorithm relies upon the availability of a fast
power flow algorithm, compatible with such a real-time applica-
tion. Even if other algorithms were considered, the DA method
shows very good performance in this environment, characterized
by a small number of nodes and radial nature. The controller uses
the DA power flow algorithm to analyze the effect of different
power injections at the power converter terminals (i.e. the real
power, P, flowing from terminal A to B in Fig. 9, and the decoupled
reactive power injections at both terminals, QA and QB). The addi-
tion of these values to the rest of the power injections at buses 7
and 9 turns the power flow problem into a pure radial case, despite
of the mesh created by the distribution FACTS. Table 3 shows the
specific power injection values considered in this case study. Note
that the negative value of the reactive power injection in bus 9 is
due to the reactive power supply of the LPFC at terminal B for
the current operation point. The voltage at the slack bus is taken
as 1:0 pu and as the origin of phase angles.

The use of the phase shifting model proposed in this contribu-
tion for the tapped transformers in such a radial network is not
really mandatory, as it would be in Case 2. This is due to the fact
that, in a radial network, the phase shift of the transformers can
be initially disregarded and later taken into account on a subse-
quent post-processing of the results that would correct the phase
angle jump in each voltage area. Nevertheless, the use of the pro-
posed phase shifting transformer model is applied in this case
study in order to avoid any post-processing of the results.

The BIBC and BCBV matrices are calculated according to the
considerations disclosed in sub-Section 4.2. Their structure is
shown in (27) and (28) for the sake of clarity.

b
b Branch index
i Bus index

i’

k’

i

Bb

n1

In1

b’

Ii’

e j2θt1 · Bb’

Bb’

Ik’

In2

n2

Ii

Bb’=Ik’+In2+Ii+...
Bb=In1+Ii’+e j2θt1 · Bb’

Bb=In1+Ii’+e j2θt1 · [Ik’+In2+Ii+...]
Bb=...+e j2θt1 · Ii+...
BIBCbi=e j2θt1

|a|e jθt1 :1

b
i’

k’

i

Bb

Ii’

e j2θt1 · Bb1’

Bb1’

In

Ii

|a|e jθt1 :1

Ik’

e j2θt2 · Bb2’

Bb2’

|a|e jθt2 :1
b2’

n

Bb2’=In+Ii+...
Bb=Ii’+e j2θt1 · Bb1’=Ii’+e j2θt1 · [Ik’+e j2θt2 · Bb2’]
Bb=Ii’+e j2θt1 · Ik’+e j2(θt1+θt2) · [In+Ii+...]

Bb=...+e j2(θt1+θt2) · Ii+...
BIBCbi=e j2(θt1+θt2)

Bb1’=Ik’+e j2θt2 · Bb2’

(b)(a)

Example a)

Example b)t1

t1

t2

b1’

Fig. 7. Building process of the BIBC matrix for grids with embedded phase shifting transformers. (a) Example with one phase shifting transformer, and (b) example with two
phase shifting transformers.

b
b Branch index
i Bus index

i’ k’

Bb

n

In

Ii’

e j2θt1 · Bc Bc

Ik’|a|e jθt1 :1

t1

Branch used to
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c

Fig. 8. Example of the building process of the BIBC matrix for weakly meshed grids
with embedded phase-shifting transformers.
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Fig. 9. Industrial installation with a distribution-FACTS-based mesh.
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z12 0 0 0 0 0 0 0
z12 z23 0 0 0 0 0 0
z12 z23 z34 0 0 0 0 0
z12 z23 z34 z45 0 0 0 0
z12 z23 z34 z45 z56 0 0 0
z12 z23 z34 z45 z56 z67 0 0
z12 z23 0 0 0 0 z38 0
z12 z23 0 0 0 0 z38 z89

2
66666666666664

3
77777777777775

ð28Þ

A flat voltage profile is considered for the initial iteration step.
The set (1)–(4) is applied iteratively together with (8) to account
for the augmented current injection vector, until a threshold of
1e� 6 is reached in the maximum absolute deviation of two con-
secutive entries in V . The voltages at the different buses, as state
variables of the grid, are presented in Table 4. The system has also
been implemented in the PowerWorldTM Simulator software to

crosscheck and demonstrate the validity of the results. Even if this
tool uses a Newton-Raphson approach to solve the system, the
results are identical up to the threshold level, hence their represen-
tation is avoided in this paper.

5.2. Case 2: Weakly meshed grid

In this case study, the industrial network considered in the pre-
vious subsection is used to verify the correct performance of the
DA method with embedded phase shifting transformers in the con-
text of a weakly meshed grid. With this aim, a similar role as the
one played by the LPFC in Case 1 is played by a tapped phase shift-
ing transformer. This device regulates the power flow between
nodes 7 and 9. The new setup is depicted in Fig. 10. The parameters
and selected tap of the phase shifting transformer used to mesh the
grid is shown in Tables 5 and 6 displays the series impedance, z79,
of the new branch according to the model shown in Fig. 6.

Only the proposal presented in this paper allows the application
of the efficient DAmethod to this type of system. Notice that in this
case a post-processing of the phase-angle jumps of the transform-
ers is not possible, due to the coupling between both sides of the
grid downstream from the first common parent node. The new
branch, c ¼ 9, is selected to break the mesh, though any other
branch within the loop (i.e. 3 to 8) could be used with this aim.
According to Section 2 and Sub-Section 4.3, once the selection is
made, this branch is treated as an additional source of current
injection at nodes 7 and 9. However, the use of Kron reduction
allows a straightforward consideration of the mesh, i.e. no addi-
tional iterative processes are involved. For clarity purposes, the
same power injections considered in Case 1 are adopted here and
once again the voltage at the slack bus is taken as 1:0 pu and as
the origin of phase angles.

The BIBC and BCBV matrices are calculated according to the
specific considerations described in sub-Section 4.3. Their structure
is shown in (29) and (30). The entries BIBC19 and BIBC29 account for
the double contribution of B9 to the branch currents B1 and B2,
respectively. Notice, as an example, that for BIBC19 the phase shifts
to be considered fit tr ¼ t23; t45; t67; t79½ �T and ts ¼ t23; t38½ �T . It should
be highlighted that both BIBC19 and BIBC29 would be zero in a
meshed network not including phase shifting transformers, as the
contribution of both sides would be canceled upstream from the
first common parent node in such a case.

1 ej2h23 ej2h23 ej2 h23þh45ð Þ ej2 h23þh45ð Þ ej2 h23þh45þh67ð Þ ej2 h23þh38ð Þ ej2 h23þh38ð Þ

0 1 1 ej2h45 ej2h45 ej2 h45þh67ð Þ ej2h38 ej2h38

0 0 1 ej2h45 ej2h45 ej2 h45þh67ð Þ 0 0
0 0 0 1 1 ej2h67 0 0
0 0 0 0 1 ej2h67 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

2
66666666666664

3
77777777777775

ð27Þ

Table 1
Transformer parameters.

Transf. # Sn [MVA] Rsc [%] Xsc [%] a [pu] h [deg.]

t23 2 � 270 0:90 12:90 1:0125 �30
t45 3 � 37.5 0:90 9:00 0:9875 0
t67 10 0:95 4:80 0:9250 30
t38 3 � 50 0:92 8:50 0:9750 30

Table 3
Power injections.

Bus # Real power, Pi [MW] Reactive power, Qi [Mvar]

2 0:0 0:0
3 84:0 26:0
4 0:0 0:0
5 34:0 12:0
6 0:0 0:0
7 4:9 12:6
8 52:0 39:0
9 2:7 �3:4

Table 2
Branch parameters.

Branch # Length [km] zline [X/km] zik [pu]

1 4:7 0:025þ j0:240 2:428e� 5þ j2:331e� 4
2 – – 1:356e� 3þ j2:010e� 3
3 1:5 0:161þ j0:151 1:386e� 4þ j1:300e� 4
4 – – 7:900e� 4þ j7:900e� 3
5 0:3 0:568þ j0:133 1:893e� 3þ j4:433e� 4
6 – – �1:459e� 2þ j4:285e� 2
7 – – �2:245e� 3þ j5:084e� 3
8 1:8 0:161þ j0:112 1:522e� 2þ j1:059e� 2

Table 4
Case 1 – Results: state variables.

Bus # j Vi j [pu] hi [deg.] Bus # j Vi j [pu] hi [deg.]

2 0:9972 �0:226 6 0:9419 25:588
3 0:9579 27:278 7 0:9496 �5:097
4 0:9570 27:270 8 0:9574 �4:478
5 0:9436 25:436 9 0:9569 �4:980
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z12 0 0 0 0 0 0 0 0
z12 z23 0 0 0 0 0 0 0
z12 z23 z34 0 0 0 0 0 0
z12 z23 z34 z45 0 0 0 0 0
z12 z23 z34 z45 z56 0 0 0 0
z12 z23 z34 z45 z56 z67 0 0 0
z12 z23 0 0 0 0 z38 0 0
z12 z23 0 0 0 0 z38 z89 0
0 0 z34 z45 z56 z67 �z38 �z89 z79

2
66666666666666664

3
77777777777777775

ð30Þ

As in the previous case study, a flat voltage profile is considered
for the initial iteration step. The set (1), (8), (26) and (4) is applied
iteratively in this order until convergence. With this aim, a thresh-
old of 1e� 6 in the maximum absolute deviation of two consecu-
tive values in V is considered. The solution of the power flow
problem, in the form of the bus voltages taken as state variables
of the system, is presented in Table 7. The new setup was also
implemented in the PowerWorldTM Simulator software package
to demonstrate the validity of the results. As in the previous case
study, those results are not showed here, due to a perfect match
with the proposed methodology.

5.3. Case 3: Standard test grid

The IEEE 33-bus test distribution system [17] is used in this case
study to assess the impact of the inclusion of the proposed phase
shifting transformer model on the convergence characteristics of
the DA method. This standard testbed describes a radial grid with
33 buses and 5 tie lines. A modified version of this testbed is pre-
sented in this contribution in order to test the proposed model. The
modified version, shown in Fig. 11, uses two of the existing tie lines
to mesh the network through phase shifting transformers. With
this aim, two additional buses, 34 and 35, are added to the stan-
dard system. The power injections and line parameters of the IEEE
33-bus test distribution system can be found in [17]. The parame-
ters of the phase shifting transformers, which are the only data of
the modified topology not presented in the original testbed, are
shown in Table 8.

While the original version is solved using the traditional DA for-
mulation [7], only the proposal included in this paper allows the
DAmethod to solve the modified testbed. The results for both cases
are shown in Tables 9 and 10. The validity of these results was
checked by using PowerWorldTM Simulator software. System
losses are reduced from 211.00 kW to 183.14 kW thanks to the
control of the power flows offered by the use of phase shifting
transformers. Furthermore, the minimum bus voltage in the grid
increases from 0.9038 pu to 0.9203 pu, which illustrates the volt-
age support capability of the modified topology. A threshold of
1e� 6 in the maximum absolute deviation of two consecutive val-
ues in V was considered and, starting from a flat voltage profile,

1 ej2h23 ej2h23 ej2 h23þh45ð Þ ej2 h23þh45ð Þ ej2 h23þh45þh67ð Þ ej2 h23þh38ð Þ ej2 h23þh38ð Þ ej2 h23þh45þh67þh79ð Þ � ej2 h23þh38ð Þ

0 1 1 ej2h45 ej2h45 ej2 h45þh67ð Þ ej2h38 ej2h38 ej2 h45þh67þh79ð Þ � ej2h38

0 0 1 ej2h45 ej2h45 ej2 h45þh67ð Þ 0 0 ej2 h45þh67þh79ð Þ

0 0 0 1 1 ej2h67 0 0 ej2 h67þh79ð Þ

0 0 0 0 1 ej2h67 0 0 ej2 h67þh79ð Þ

0 0 0 0 0 1 0 0 ej2h79

0 0 0 0 0 0 1 1 �1
0 0 0 0 0 0 0 1 �1
0 0 0 0 0 0 0 0 1

2
66666666666666664

3
77777777777777775

ð29Þ
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Fig. 10. Industrial installation meshed through a phase shifting transformer.

Table 5
Phase shifting transformer parameters.

Transf. # Sn [MVA] Rsc [%] Xsc [%] a [pu] h [deg.]

t79 10 0:95 4:80 1:0000 5

Table 6
New branch parameters.

Branch # Length [km] zline [X/km] zik [pu]

9 – – 5:280e� 3þ j4:865e� 2

Table 7
Case 2 – Results: state variables.

Bus # j Vi j [pu] hi [deg.] Bus # j Vi j [pu] hi [deg.]

2 0:9972 �0:223 6 0:9423 25:955
3 0:9578 27:275 7 0:9485 �2:824
4 0:9569 27:273 8 0:9574 �4:714
5 0:9428 25:766 9 0:9478 �5:775
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only 6 iterations were needed to reach convergence in both topolo-
gies. This fact proves that the excellent convergence characteristics
of the DA method persist with the inclusion of the proposed phase
shifting transformer model.

In order to generalize this result, a set of 10;000 cases was
solved with the aim of putting additional stress on the convergence
test. With this purpose, the power injections of the 33-bus testbed
were randomly varied using independent normal distribution
functions for each real power and reactive power. The mean of
these distribution functions was set to their corresponding values
in the original testbed, Pi and Qi, and the standard deviation to

40% of these values, i.e. NðPi; 0:4Pið Þ2Þ and NðQi; 0:4Qið Þ2Þ. The set
was solved by applying the traditional DA formulation to the orig-
inal testbed topology, and by applying the formulation proposed in
this paper to the modified topology. Table 11 shows the key results
of this demanding test. The average and maximum number of iter-
ations were not increased by the use of the phase shifting trans-
former model even when the meshed configuration used in the

modified version results in a more complex topology. In fact, the
average number of iterations is slightly reduced, as the voltage
support capability of the phase shifting transformers leads to solu-
tions closer to the flat voltage profile used as an initial iteration
point. The time required for these calculations was estimated by
averaging the results over the full set of simulation runs, which
were carried out in an Intel Core i5 - 2467M - CPU 1.60 GHz. This
time increases from 1.4 ms to 3.6 ms, which is due to the higher
number of buses used in the modified topology, 35 vs. 33, and par-
ticularly, to the additional matrix manipulations involved in the
treatment of meshed grids, according to Subsection 4.3. This test
clearly demonstrates that the convergence characteristics of the
DA method are not negatively affected by the inclusion of the
phase shifting model proposed in this contribution.

6. Concluding remarks

This paper proposes an extension of the well-known DA power
flowmethod applied to balanced networks in order to allow its use
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Fig. 11. Modified IEEE 33-bus test distribution system.

Table 8
Phase shifting transformer parameters.

Transf. # Sn [kVA] Rsc [%] Xsc [%] a [pu] h [deg.]

t12� 34 250 0:95 4:80 1:0000 5
t18� 35 400 0:95 4:80 1:0000 �3

Table 9
Case 3 – IEEE 33-bus system: state variables.

Bus # j Vi j [pu] hi [deg.] Bus # j Vi j [pu] hi [deg.]

2 0:9970 0:015 19 0:9965 0:004
3 0:9829 0:097 20 0:9929 �0:063
4 0:9754 0:163 21 0:9922 �0:083
5 0:9680 0:230 22 0:9916 �0:103
6 0:9495 0:136 23 0:9793 0:066
7 0:9460 �0:096 24 0:9726 �0:023
8 0:9323 �0:249 25 0:9693 �0:067
9 0:9260 �0:324 26 0:9475 0:175

10 0:9201 �0:388 27 0:9450 0:232
11 0:9192 �0:380 28 0:9335 0:315
12 0:9177 �0:368 29 0:9253 0:393
13 0:9115 �0:462 30 0:9218 0:498
14 0:9092 �0:542 31 0:9176 0:413
15 0:9078 �0:580 32 0:9167 0:390
16 0:9064 �0:604 33 0:9164 0:383
17 0:9044 �0:683 34 – –
18 0:9038 �0:693 35 – –

Table 10
Case 3 – Modified IEEE 33-bus system: state variables.

Bus # j Vi j [pu] hi [deg.] Bus # j Vi j [pu] hi [deg.]

2 0:9970 0:016 19 0:9959 �0:010
3 0:9845 0:116 20 0:9873 �0:204
4 0:9781 0:196 21 0:9851 �0:275
5 0:9719 0:277 22 0:9819 �0:401
6 0:9562 0:263 23 0:9809 0:085
7 0:9537 0:088 24 0:9742 �0:003
8 0:9445 �0:043 25 0:9709 �0:047
9 0:9409 �0:104 26 0:9544 0:313

10 0:9377 �0:155 27 0:9520 0:384
11 0:9372 �0:154 28 0:9412 0:545
12 0:9365 �0:154 29 0:9334 0:683
13 0:9296 �0:347 30 0:9302 0:815
14 0:9272 �0:480 31 0:9266 0:814
15 0:9255 �0:563 32 0:9258 0:821
16 0:9237 �0:637 33 0:9255 0:853
17 0:9213 �0:847 34 0:9750 �0:605
18 0:9203 �0:909 35 0:9257 0:896

Table 11
Convergence characteristics: set of 10; 000 simulations.

Topology Av. iter. # Max. iter. # Av. sim. time [ms]

Base case 6:0244 7 1:4019
Modified version 5:9528 7 3:5503
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with common grid components not previously considered in the
existing formulation. The inclusion of pi-equivalent line models
and transformer tap changers is quite straightforward, and only a
formal formulation of the considerations needed to use these com-
ponents is stated in this work. However, the inclusion of phase
shifting transformer models in the DA method is far from obvious,
due to the inherent asymmetry of their admittance matrix. Only a
custom model of these devices can allow the application of the DA
method in weakly meshed networks, where the phase angle of
transformers cannot be corrected by post-processing. Thus, this
proposal introduces a new phase shifting transformer model,
together with a set of slight modifications to be included in the
standard DA power flow formulation. Two case studies in the con-
text of the application of fast power flow algorithms to industrial
networks are presented. Those cases allow to demonstrate the
validity of the proposal both with radial and weakly-meshed
topologies. A third case study is carried out in a medium-size test
system in order to prove that the excellent convergence character-
istics of the DA method are not deteriorated by the inclusion of the
new phase shifting transformer model. In each case, the results are
compared with those obtained from a popular software package
that uses a different approach, leading to a perfect match.
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Abstract—Tap-changing transformer models used in power
system studies tend to neglect the change in the short-circuit
impedance of the device at the different tap positions. However,
the variation of the short-circuit impedance can be significant in
transformers with a wide voltage-regulation range. Fortunately,
in those cases in which the voltage variation of ±5% is exceeded,
the manufacturer is obliged to test and provide data for the short-
circuit impedance at terminal taps. The present contribution
provides an update of a recently proposed model of the tap-
changing transformer so that it can take advantage of the
additional information available in the aforementioned cases. The
increased accuracy of the resulting model has the potential to
improve the quality of the results from power system studies
with embedded tap-changing transformers.

Index Terms—power transformers, tap changers, transformer
models, power system studies

I. INTRODUCTION

Tap-changing transformers are a key element in achieving
voltage regulation at the different parts of the power system.
Indeed, either in the form of off-load or on-load tap changers,
their presence is ubiquitous both in the transmission and dis-
tribution system. Thus, a proper modeling of the tap-changing
transformer is essential to conduct accurate power system
studies, either in the operating or planning environment. Power
flow analysis, economic dispatch or state estimation are just a
sample of the tools which require this type of model in order
to provide reliable results.

Recently, a consensus model of the tap-changing trans-
former, [1], was proposed by the authors to reconcile the sig-
nificant difference arising from the use of traditional versions,
widely spread in literature, [2], and software packages [3],
[4]. The consensus model introduces a new parameter, which
stands for the ratio between the impedances at both sides of
the device. An educated guess of this parameter is enough
to provide better results than the traditional models, which
are based on extreme assumptions. However, the authors have
recently proposed the use of parameter estimation techniques
based on historical data in order to obtain accurate values of
the aforementioned parameters, since they are not typically

This work was supported by the Spanish Government Innovation Develop-
ment and Research Office (MEC) under research Grant DPI2017-89186-R.

specified by the manufacturer [5]. Only in this way can
the consensus model be fully exploited in its capabilities to
provide enhanced results.

Neither the consensus tap-changing transformer model nor
the traditional versions include the effect of the change of
tap in the variation of short-circuit impedance that takes
place in the tapped winding due to the modification of the
series resistance and leakage inductance. In fact, this effect
is completely neglected in transformers with a low voltage
regulation range, to the extent that international standards
do not require manufacturers to provide data on the short-
circuit impedance of these devices out of the principal tap.
However, according to [6], those tap-changing transformers
with a wide voltage-regulation range, defined here as those
exceeding a voltage variation of ±5% from the principal tap,
must additionally provide the short-circuit impedance at the
terminal taps. Indeed, this wide voltage variation range may
imply a significant variation on the short-circuit impedance
of the transformer at the different taps, which should be
considered in the model to avoid a deterioration of its accuracy.

The present proposal contributes with an improved version
of the consensus tap-changing transformer model which allows
to include information on the short-circuit impedance of the
transformer at different taps. Though the new model can be
universally adopted to improve the accuracy of the results if
detailed information of the device is available, it is of especial
relevance for tap-changing transformers with a wide voltage
regulation range, in which the accuracy can be seriously
compromised when using other approaches. Thus, for the
benefit of the reader, section II presents the consensus tap-
changing transformer model. Section III introduces the update
of the consensus model which allows for the inclusion of a
varying short-circuit impedance at different taps. Two case
studies are depicted in section IV to illustrate the benefits
of the proposal and highlight the expected improvement in
accuracy when compared with conventional implementations.
Finally, the most important conclusions of this contribution
are drawn in the last section.

II. CONSENSUS TAP-CHANGING TRANSFORMER MODEL

A new model of the tap-changing transformer was proposed
in [1] with the aim of putting an end to the discrepancies978-1-6654-4875-8/21/$31.00 ©IEEE
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occurring when using two different traditional versions of
the model of this device widely spread in literature and
different software packages. The aforementioned contribution
demonstrates that those differences are caused by an extreme
assumption adopted by traditional models, which allocate all
the short-circuit impedance of the device to either the off-
nominal or nominal side of the transformer. The consensus
model introduces a new parameter, k, which stands for the
ratio between the short-circuit impedance at the nominal side,
zn, and the one at the off-nominal side, zo. According to Fig. 1,
in a transformer with an off-nominal turns ratio a

t
: 1, where

a
t

is related with the tap, t, expressed as the voltage regulation
(in percentage) through,

a
t
=

1

1 + t/100
, (1)

the short-circuit admittance of the device, as seen from the
off-nominal side, can be formulated as

yoffsc =
1

zo + a2
t
zn

=
1 + k

1 + a2
t
k
ysc, (2)

where ysc stands for the p.u. short-circuit admittance. This
is a value obtained through the short-circuit test, and always
provided by the manufacturer as nameplate data in the form
of the short-circuit impedance, zsc at the principal tap.

yof
 

f
i j

ysc
at : 1iij iji

vi vj

Fig. 1. Consensus model of the tap-changing transformer with the short-
circuit admittance represented at the off-nominal side.

The application of Kirchhoff Laws, together with the well-
known relationships that apply to ideal transformers, allows to
express the terms of the bus admittance matrix of the nodal
equations of the device as

Yii =
1 + k

1 + a2
t
k
ysc, (3)

Yij = Yji = −
a

t
(1 + k)

1 + a2
t
k
ysc, (4)

Yjj =
a2

t
(1 + k)

1 + a2
t
k
ysc. (5)

Due to the symmetrical nature of the bus admittance matrix
of the tap-changing transformer, it is possible to obtain a π-
equivalent model of the device, as the one shown in Fig. 2.
Straightforward calculations let us express the value of both
the series and shunt branches of this equivalent as

yij = −Yij =
at (1 + k)

1 + a2
t
k
ysc, (6)

ysi = Yii + Yij =
(1− at) (1 + k)

1 + a2
t
k

ysc, (7)

ysj = Yjj + Yij =
a

t
(a

t
− 1) (1 + k)

1 + a2
t
k

ysc, (8)

where ysi stands for the shunt branch at the off-nominal turns
side and ysj stands for the shunt branch at the nominal turns
side.

As it is demonstrated in [1], [7], traditional models corre-
spond to extreme values of k, such as 0 and∞, which equal to
allocating all the short-circuit impedance to the off-nominal or
nominal windings, respectively. In the absence of further infor-
mation, selecting k = 1, i.e. assuming a balanced contribution
of both sides to the short-circuit impedance, minimizes the
maximum expected error. In any case, [5] provides the tools
for an accurate identification of this parameter in the context
of a real grid.

yij

ysi ysj

ji
iij iji

vi vj

Fig. 2. π-equivalent model of the tap-changing transformer.

III. INCLUDING THE EFFECT OF SHORT-CIRCUIT
IMPEDANCE VARIATIONS

As it was stated in section I, neither the consensus model
nor the traditional ones include the effect of the inherent short-
circuit impedance variation that takes place when a tap change
occurs. There are good reasons to support this approach in tap-
changing transformers with a reduced voltage regulation range:
(a) the influence of this variation may be not very significant
in this case due to the small part of the winding affected, and
(b), this data is not typically available, as manufacturers do
not need to specify this variation provided that the voltage
regulation range remains within ±5%, [6]. On the contrary,
a significant effect could be expected in transformers with a
wider voltage regulation range, and [6] guarantees the avail-
ability of further data in this case. According to this standard,
the short-circuit impedance at extreme tap positions should be
“referred to the rated tapping voltage (at that tapping) and the
rated power of the transformer”.

Let zsc0 and zsct be the short-circuit impedance of the
transformer at the principal tap, 0, and at a different tap, t.
Let k

0
be the transformer impedance ratio at the principal tap,

whether obtained from a deep knowledge of the constructive
characteristics of the machine, as an educated guess (typically
k = 1) or through the application of a parameter estimation
technique based on historical data. As the contribution to
the short-circuit impedance of the nominal turns side is not
affected by the tap position, it can be stated that

zsc0 = zo0 + zn, (9)

http://refhub.elsevier.com/S0142-0615(17)30080-7/h0005
http://refhub.elsevier.com/S0142-0615(17)30080-7/h0005
http://dx.doi.org/10.1109/PES.2011.6039172
http://dx.doi.org/10.1016/0142-0615(95)00050-0
http://dx.doi.org/10.1109/61.85860
http://dx.doi.org/10.1109/59.192932
http://dx.doi.org/10.1109/59.192932
http://refhub.elsevier.com/S0142-0615(17)30080-7/h0030
http://refhub.elsevier.com/S0142-0615(17)30080-7/h0030
http://dx.doi.org/10.1109/TPWRD.2003.813818
http://dx.doi.org/10.1109/TPWRD.2003.813818
http://dx.doi.org/10.1109/PESGM.2015.7285766
http://dx.doi.org/10.1109/PESGM.2015.7285766
http://dx.doi.org/10.1109/TCS.1985.1085671
http://dx.doi.org/10.1109/ISCAS.2011.5937950
http://dx.doi.org/10.1109/ISCAS.2011.5937950
http://dx.doi.org/10.1049/ip-c.1993.0049
http://dx.doi.org/10.1109/59.852135
http://dx.doi.org/10.1109/ICPST.2002.1067770
http://dx.doi.org/10.1049/cp:20040133
http://dx.doi.org/10.1109/EPE.2016.7521831
http://dx.doi.org/10.1109/MPER.2001.4311274
http://dx.doi.org/10.1109/MPER.2001.4311274
http://dx.doi.org/10.1109/61.25627


zsct = zot + zn, (10)

where zo0 and zot stand for the short-circuit impedance
provided by the tapped winding at taps 0 and t, respectively.
Considering (9) and the definition of k

0
, it is possible to

calculate zo0 from the given values, i.e.

zo0 = zsc0 − zn = zsc0 − k0
zo0 → zo0 =

zsc0
1 + k

0

. (11)

Thus, applying (10) and (11), the value of the short-circuit
impedance ratio for tap t can be determined as

k
t
=
zn
zot

=
1

zsct
k
0
zo0
− 1
→ k

t
=

1

(1+k
0)zsct

k
0
zsc0

− 1
. (12)

Equation (12) can be expressed in terms of the corresponding
short-circuit admittances at both taps, ysc0 and ysct , which is
typically preferred in power system studies. Thus,

kt =
1

(1+k
0)ysc0

k
0
ysct

− 1
. (13)

According to this development, the model of the consensus
tap changing transformer can now be reformulated. Thus, in
the same sense as it was conveyed by (2), the short-circuit
impedance of the transformer as seen from the off-nominal
side for each particular tap t can now be expressed as

yoffsct =
1

zot + a2
t
zn

=
1 + k

t

1 + a2
t
k

t

ysct . (14)

As a result, the terms of the bus admittance matrix of the nodal
equations of the transformer turn to be not only dependant on
the tap position through a

t
, but also through the impact of the

short-circuit impedance variation. Thus, (3)–(5) can now be
expressed as

Yiit =
1 + k

t

1 + a2
t
kt

ysct , (15)

Yijt = Yjit = −
a

t
(1 + k

t
)

1 + a2
t
k

t

ysct , (16)

Yjjt =
a2

t
(1 + k

t
)

1 + a2
t
kt

ysct . (17)

Accordingly, the π-equivalent model of the device is now a
function of the short-circuit impedance of the transformer at
each particular tap position, as shown in Fig. 3, and the values
of the admittances in this model can be expressed as

yijt = −Yijt =
at (1 + kt)

1 + a2
t
k

t

ysct , (18)

ysit = Yiit + Yijt =
(1− a

t
) (1 + k

t
)

1 + a2
t
kt

ysct , (19)

ysjt = Yjjt + Yijt =
a

t
(a

t
− 1) (1 + k

t
)

1 + a2
t
kt

ysct . (20)

Notice that the different components of the π-equivalent model
are not only affected by the short-circuit impedance measured
at each particular tap, ysct , but also by the variation of the

yijt

ysit ysjt

ji
iij iji

vi vj

Fig. 3. π-equivalent model of the tap-changing transformer considering the
effect of the short-circuit impedance variation caused by the tapped winding.

impedance ratio of the contribution of each winding through,
kt , caused by the change of tap.

Although the practising engineering will typically be pro-
vided with only the short-circuit impedance at three taps (the
principal and terminal ones), using a simple interpolation,
which accounts for the rated voltage of each tap position,
allows to determine a custom model for each tap based
on sensible assumptions. Thus, considering ysc0 , yscT the
short-circuit impedances at the principal and an extreme tap
referred to the same bases, and T the voltage regulation
percentage of the extreme tap, the short-circuit impedance of
any intermediate tap, ysct with a voltage regulation percentage
of t should be calculated as

ysct = ysc0 +
t

T
(yscT − ysc0) . (21)

IV. CASE STUDIES

A. Case Study I

In order to highlight the importance of adopting the model
proposed in this contribution for wide voltage-regulation range
tap-changing transformers, a standard device, similar to the
one previously analyzed in [1] is considered in this case study.
Thus, the performance of an 80 MVA, 50 Hz, 230/132 kV
±10% transformer is studied in the following. The manufac-
turer provides data of the short-circuit impedance of the device
at the principal tap, zsc0 , which amounts for 0.01+0.12j p.u.
The tap changer, which is located at the high voltage side of
the transformer, has 21 positions, with a voltage regulation
step of 1%. As the voltage regulation range exceeds ±5%,
and in order to comply with regulations, [6], the manufacturer
provides the value of the short-circuit impedance of the
device at terminal taps, zsc10 and zsc−10 , which amounts for
0.0092+0.1104j p.u. and 0.0109+0.1308j p.u., respectively.
Notice that, according to [6], “if the impedance (at non-
principal taps) is expressed in percentage (or p.u. values), it
shall be referred to the rated tapping voltage”. For the sake of
simplicity, short-circuit impedances at terminal taps have been
already referred here to the rated voltage of the transformer at
the principal tap.

According to (21), the use of interpolation allows for the cal-
culation of a sensible estimate of the short-circuit admittance
of the machine at the different tap positions. Notice that T=10
and ysc10 are used for taps, t, in the positive voltage regulation
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range and T=−10 and ysc−10 are considered for those in
the negative range. In [1], [7], the authors demonstrated
that, in the absence of detailed transformer construction data
(which is the most common case), assigning a value of one
to the transformer impedance ratio of the machine at the
principal tap, k

0
=1, is a prudent decision which minimizes

the maximum expected error. This criterion is adopted in the
following. Thus, all the information needed to calculate a
custom value of the transformer impedance ratio at each tap
position, k

t
, by applying (13) is now available. Finally, (18)–

(20), lead to the model of the tap-changing transformer shown
in Fig. 3, which is the subject of this contribution.

Fig. 4 compares the results obtained from the consensus
model described in section II with those derived from the new
model proposed in section III, which includes the effect of
impedance variations on the tapped winding. Thus, the voltage
at the nominal side of the transformer at each tap is shown in
both cases. At each operating point, the transformer is fed at
rated voltage and current at the off-nominal side. Furthermore,
three extreme power factors are considered, by varying the
angle of the off-nominal side current with respect to the off-
nominal side voltage, θ: unity (0◦), pure capacitive (90◦) and
pure inductive (−90◦).
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Fig. 4. Nominal turns side voltage of the transformer at the different
tap positions for the constant impedance model and the proposed variable
impedance model: a) voltage magnitude, and b) voltage phase angle. The
transformer is operated at rated voltage and current from the off-nominal side
with different power factors: unity (θ = 0), pure capacitive (θ = 90) and
pure inductive (θ = −90).

As expected, the effect of the impedance variation of the
tapped winding is magnified at terminal taps. According to
Fig. 4.a), the maximum difference among both models in terms
of voltage magnitude appears with pure capacitive or pure
inductive power factors, reaching values of 1.01% at t=−10
and 0.97% at t=10 in both cases. Conversely, the effect
of impedance variation on voltage magnitude at high power
factors is practically negligible. From Fig. 4.b), it is clear that

the nominal turns side voltage phase angle is hardly affected
at any tap, provided that the transformer is operated at poor
power factors. Indeed, the maximum difference between both
models appears now at unity power factor, when discrepancies
of 0.53 deg. and 0.62 deg. are confirmed at t=−10 and t=10,
respectively.

Thus, this case study confirms that neglecting the effect of
the impedance variation on the tapped winding can lead to
significant errors in the results obtained from the transformer
model, which may appear as voltage magnitude or phase
angle errors depending on the operating point of the device.
Specifically, according to Fig. 4.a), the voltage regulation
range of the transformer can be overestimated at the lower
taps and underestimated at the higher ones if this impedance
variation is not considered.

B. Case Study II

A standard test grid has been used in this case study in
order to highlight the improvements in the quality of the
results that can be derived from the use of the tap-changing
transformer model proposed in this contribution. Thus, the
IEEE 57-bus system [8], which represents an approximation
of the American Electric Power system in the U.S. Midwest as
it was in the early 1960s, was selected for this case study due
to the large amount of tap-changing transformers embedded
in it. The IEEE 57-bus system, shown in Fig. 5, comprises
57 buses, 7 generators, 42 loads and 17 transformers. It is
important to note that 15 of these transformers are set out
of the principal tap at the operating point defined by the test
case. This fact makes the system especially suitable to test the
proposed model and compare it with other alternatives which
do not consider the impedance variation.
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Fig. 5. IEEE 57-bus system.
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Table I shows the parameters and set-up of the transformers
in the IEEE 57-bus system as described in the test data files.
This information suffices to run a power flow analysis of the
grid in the case of traditional tap-changing transformer models.
Thus, the bus voltages for a set of specific buses using the
models which assume that all the short-circuit impedance is
provided exclusively by the off-nominal turns side (kt = 0) or
by the nominal turns side (k =∞) are shown in Table II. In
the same way, this table shows the results derived from the use
of the consensus model previously proposed by the authors [1].
Due to the lack of detailed information on the tap-changing
transformers, an equal sharing of the short-circuit impedance
between the off-nominal and nominal side is assumed, i.e.
kt = 1. Notice that in this case, the influence of the impedance
variation on kt is not taken into account.

TABLE I
TRANSFORMER DATA IN THE IEEE 57-BUS SYSTEM

From bus To bus R, p.u X , p.u Tap, at

4 18 0 0.5550 0.970
4 18 0 0.4300 0.978

21 20 0 0.7767 1.043
24 25 0 1.1820 1.000
24 25 0 1.2300 1.000
24 26 0 0.0473 1.043
7 29 0 0.0648 0.967

34 32 0 0.9530 0.975
11 41 0 0.7490 0.955
11 45 0 0.1042 0.955
14 46 0 0.0735 0.900
10 51 0 0.0712 0.930
13 49 0 0.1910 0.895
11 43 0 0.1530 0.958
40 56 0 1.1950 0.958
39 57 0 1.3550 0.980
9 55 0 0.1205 0.940

TABLE II
BUS VOLTAGES SHOWING THE MAXIMUM DISCREPACIES

Voltage magnitude
Bus kt = 0 kt =∞ kt = 1 kt variable MAE (%)
49 1.029 1.036 1.032 1.030 0.196
56 0.963 0.968 0.966 0.964 0.152
57 0.959 0.965 0.962 0.961 0.147
50 1.017 1.023 1.020 1.019 0.143

Voltage phase angle
Bus kt = 0 kt =∞ kt = 1 kt variable MAE (deg.)
57 −16.972 −16.584 −16.780 −16.939 0.159
56 −16.430 −16.065 −16.249 −16.407 0.158
42 −15.875 −15.533 −15.705 −15.852 0.147
33 −19.081 −18.552 −18.819 −18.964 0.145

According to Table I, the most extreme positions of the tap-
changing transformers correspond to the one between buses
13 and 49, with a positive voltage regulation, t, of 11.73%,
and those between buses 21 and 20 and 24 and 26, with a
negative voltage regulation, t, of −4.12%. To complete the
information provided by the test case according to [6], a
maximum voltage regulation range, T , of ±15% was selected
for all the transformers. Furthermore, the p.u. impedances of
the transformers shown in Table I were used to determine the

admittances at the central tap, ysc0 , while these admittances
were increased or decreased in a 15% to estimate the values at
extreme tap positions, ysc+15

and ysc−15. As in the previous
case, an equal contribution of both windings to the short-circuit
impedance is assumed, but now this corresponds exclusively to
the central tap position, i.e. k0 = 1. With those assumptions
the power flow analysis was repeated for the tap-changing
transformer model proposed in the present contribution, and
the results are shown in Table II. The maximum absolute
error, MAE, showing the discrepancies between the consensus
model, kt = 1, and the one considering the variable nature of
the short-circuit impedance, is provided in the last column of
this table. In fact, those buses showing the greatest differences,
both in voltage magnitude or phase angle, were selected to
highlight the benefits of the proposal. Note that even though
the transformers in the study were not configured in extreme
tap positions, the results can be significantly improved by
considering the influence of the impedance variation on the
tapped winding.

V. CONCLUSION

The variation of the short-circuit impedance of a tap-
changing transformer at different tap positions can have a
significant impact on the accuracy of the models used to
represent this crucial equipment in power system studies. This
is especially important in the case of tap-changers with a wide
voltage regulation range. The present proposal introduce the
modifications needed to adapt the recently proposed consensus
model of the tap-changing transformer in order to include
this important effect. The new version of the model relies
on the additional information provided by manufacturers on
the short-circuit impedance of the machine at terminal tap
positions, which is required by international standards. The
impact of the new model in the accurate identification of the
impedance ratio of the transformer at the principal tap by using
parameter estimation techniques, which was previously tackled
by the authors for the standard consensus model, is left here
for further investigation.
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