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RESUMEN (en español) 

Durante la última década, y gracias a la constitución de grandes consorcios internacionales, se 
han ido desentrañando las principales alteraciones moleculares presentes en los tipos de 
tumores más frecuentes. Conocer estas alteraciones ayuda a seguir investigando sobre los 
mecanismos por los que se da la desregulación celular que origina el cáncer. Sin embargo, aún 
queda mucho trabajo por hacer, como analizar otros tipos de tumores no tan frecuentes o 
conseguir que toda esta información se transforme en beneficios para los pacientes, por 
ejemplo, mediante un diagnóstico más preciso o el desarrollo de fármacos con menos efectos 
secundarios. 
 
En este sentido, durante la presente Tesis Doctoral se ha realizado el análisis genómico más 
exhaustivo hasta la fecha de linfomas de célula del manto (MCL). Esto ha permitido la 
identificación de nuevos genes y eventos conductores de esta enfermedad. Además, también 
se ha observado que, mientras en otras patologías los eventos importantes en la tumorigénesis 
son las mutaciones puntuales, en MCL lo son las alteraciones estructurales, ya que estos 
tumores presentan una gran inestabilidad cromosómica. La experiencia acumulada durante la 
identificación de mutaciones somáticas en MCL, y otros tipos de tumores como la leucemia 
linfática crónica (CLL), ha llevado a desarrollar, durante esta tesis, una herramienta, llamada 
RFcaller, con este mismo propósito. En este sentido, RFcaller, que es más rápido e igual de 
preciso que los principales programas desarrollados con este fin, se basa en características en 
nivel de lectura junto con algoritmos de aprendizaje automático para la detección de mutaciones 
somáticas en muestras pareadas normal/tumor. 
 
Por otra parte, también se ha realizado un análisis de exomas del ADN tumoral circulante 
presente en el líquido cefalorraquídeo (CSF) en pacientes pediátricos con meduloblastoma 
(MB). Esto ha confirmado que esta aproximación permite la caracterización y monitorización de 
este tipo de tumores. Este hallazgo es de gran importancia debido a la localización de estos 
tumores, que son de muy difícil acceso. De esta forma, el CSF, que se obtiene de forma 
rutinaria en estos pacientes, se podría utilizar para el diagnóstico y el seguimiento de la 
enfermedad. 
 
Finalmente, el análisis de mutaciones en regiones no codificantes ha permitido la identificación 
y caracterización de U1 como nuevo gen conductor del cáncer, así como la caracterización de 
una serie de mutaciones en la región 3’ no codificante (3’UTR) de NFKBIZ. En concreto, U1 es 
un snRNA encargado del reconocimiento del sitio donador de splicing y que se encuentra 
recurrentemente mutado en MB, CLL o carcinoma hepatocelular (HCC). Tras su identificación 
se comprobó que las mutaciones en este gen alteraban el patrón de splicing de la célula, dando 
lugar a nuevas isoformas aberrantes. Por otra parte, las mutaciones detectadas en el 3’UTR de 
NFKBIZ afectan a una región altamente conservada y se ha podido demostrar que provocan 
un aumento en la expresión de la proteína sin alterar la estabilidad de su ARN mensajero.  
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RESUMEN (en Inglés) 
 

During the last decade, and thanks to the constitution of major international consortia, the main 
molecular alterations present in the most frequent types of tumors have been revealed. 
Knowledge of these alterations helps to elucidate the mechanisms by which the cellular 
deregulation that causes cancer occurs. However, there is still much work to do, such as 
analyzing other types of tumors that are not so frequent or ensuring that all this information is 
transformed into benefits for patients, for example, through more precise diagnosis or the 
development of treatments with fewer side effects. 
 
In this regard, during the present PhD Thesis it has been possible to perform the most 
comprehensive genomic analysis to date of mantle cell lymphomas (MCL). This has allowed the 
identification of new genes and driving events of this disease. Furthermore, it was found that, 
although in other pathologies the main events in tumorigenesis are point mutations, in MCL they 
are structural alterations, since these tumors present high chromosomal instability. The 
experience accumulated during the identification of somatic mutations in MCL, and other types 
of tumors such as chronic lymphocytic leukemia (CLL), has led to the development during this 
PhD Thesis of a bioinformatic tool, called RFcaller, for this same purpose. In this sense, 
RFcaller, which is faster and as accurate as the state-of-the-art variant callers, is based on read-
level features together with machine learning algorithms for the detection of somatic mutations 
in paired normal/tumor samples. 
 
On the other hand, the whole-exome analysis of circulating tumor DNA, present in cerebrospinal 
fluid (CSF), in pediatric patients with medulloblastoma (MB) has confirmed that this approach is 
suitable for the characterization and monitoring of this type of tumor. This finding is very 
important due to the location of these tumors, which are very difficult to access. Thus, CSF, 
which is routinely obtained in these patients, could be used for diagnosis and monitoring of the 
disease. 
 
Finally, the analysis of somatic mutations in non-coding regions allowed the identification and 
characterization of U1 as a novel cancer driver gene, as well as a series of mutations in the 3' 
non-coding region (3'UTR) of NFKBIZ. Specifically, U1 is a snRNA responsible for splicing donor 
site recognition and is recurrently mutated in MB, CLL or hepatocellular carcinoma (HCC). After 
its identification, it was found that mutations in this gene altered the splicing pattern of the cell, 
giving rise to new aberrant isoforms. Moreover, the mutations detected in the 3'UTR of NFKBIZ 
affect a highly conserved region, causing an increase in protein expression without altering the 
stability of its messenger RNA. 
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During the last decade, and thanks to the constitution of major international 

consortia, the main molecular alterations present in the most frequent types of tumors 

have been revealed. Knowledge of these alterations helps to elucidate the mechanisms 

by which the cellular deregulation that causes cancer occurs. However, there is still 

much work to do, such as analyzing other types of tumors that are not so frequent or 

ensuring that all this information is transformed into benefits for patients, for example, 

through more precise diagnosis or the development of treatments with fewer side 

effects. 

In this regard, during the present PhD Thesis it has been possible to perform the 

most comprehensive genomic analysis to date of mantle cell lymphomas (MCL). This has 

allowed the identification of new genes and driving events of this disease. Furthermore, 

it was found that, although in other pathologies the main events in tumorigenesis are 

point mutations, in MCL they are structural alterations, since these tumors present high 

chromosomal instability. The experience accumulated during the identification of 

somatic mutations in MCL, and other types of tumors such as chronic lymphocytic 

leukemia (CLL), has led to the development during this PhD Thesis of a bioinformatic 

tool, called RFcaller, for this same purpose. In this sense, RFcaller, which is faster and as 

accurate as the state-of-the-art variant callers, is based on read-level features together 

with machine learning algorithms for the detection of somatic mutations in paired 

normal/tumor samples. 

On the other hand, the whole-exome analysis of circulating tumor DNA, present 

in cerebrospinal fluid (CSF), in pediatric patients with medulloblastoma (MB) has 

confirmed that this approach is suitable for the characterization and monitoring of this 

type of tumor. This finding is very important due to the location of these tumors, which 

are very difficult to access. Thus, CSF, which is routinely obtained in these patients, could 

be used for diagnosis and monitoring of the disease. 
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Finally, the analysis of somatic mutations in non-coding regions allowed the 

identification and characterization of U1 as a novel cancer driver gene, as well as a series 

of mutations in the 3' non-coding region (3'UTR) of NFKBIZ. Specifically, U1 is a snRNA 

responsible for splicing donor site recognition and is recurrently mutated in MB, CLL or 

hepatocellular carcinoma (HCC). After its identification, it was found that mutations in 

this gene altered the splicing pattern of the cell, giving rise to new aberrant isoforms. 

Moreover, the mutations detected in the 3'UTR of NFKBIZ affect a highly conserved 

region, causing an increase in protein expression without altering the stability of its 

messenger RNA. 
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Durante la última década, y gracias a la constitución de grandes consorcios 

internacionales, se han ido desentrañando las principales alteraciones moleculares 

presentes en los tipos de tumores más frecuentes. Conocer estas alteraciones ayuda a 

seguir investigando sobre los mecanismos por los que se da la desregulación celular que 

origina el cáncer. Sin embargo, aún queda mucho trabajo por hacer, como analizar otros 

tipos de tumores no tan frecuentes o conseguir que toda esta información se transforme 

en beneficios para los pacientes, por ejemplo, mediante un diagnóstico más preciso o el 

desarrollo de fármacos con menos efectos secundarios. 

En este sentido, durante la presente Tesis Doctoral se ha realizado el análisis 

genómico más exhaustivo hasta la fecha de linfomas de célula del manto (MCL). Esto ha 

permitido la identificación de nuevos genes y eventos conductores de esta enfermedad. 

Además, también se ha observado que, mientras en otras patologías los eventos 

importantes en la tumorigénesis son las mutaciones puntuales, en MCL lo son las 

alteraciones estructurales, ya que estos tumores presentan una gran inestabilidad 

cromosómica. La experiencia acumulada durante la identificación de mutaciones 

somáticas en MCL, y otros tipos de tumores como la leucemia linfática crónica (CLL), ha 

llevado a desarrollar, durante esta tesis, una herramienta, llamada RFcaller, con este 

mismo propósito. En este sentido, RFcaller, que es más rápido e igual de preciso que los 

principales programas desarrollados con este fin, se basa en características en nivel de 

lectura junto con algoritmos de aprendizaje automático para la detección de mutaciones 

somáticas en muestras pareadas normal/tumor. 

Por otra parte, también se ha realizado un análisis de exomas del ADN tumoral 

circulante presente en el líquido cefalorraquídeo (CSF) en pacientes pediátricos con 

meduloblastoma (MB). Esto ha confirmado que esta aproximación permite la 

caracterización y monitorización de este tipo de tumores. Este hallazgo es de gran 

importancia debido a la localización de estos tumores, que son de muy difícil acceso. De 

esta forma, el CSF, que se obtiene de forma rutinaria en estos pacientes, se podría 

utilizar para el diagnóstico y el seguimiento de la enfermedad. 
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Finalmente, el análisis de mutaciones en regiones no codificantes ha permitido 

la identificación y caracterización de U1 como nuevo gen conductor del cáncer, así como 

la caracterización de una serie de mutaciones en la región 3’ no codificante (3’UTR) de 

NFKBIZ. En concreto, U1 es un snRNA encargado del reconocimiento del sitio donador 

de splicing y que se encuentra recurrentemente mutado en MB, CLL o carcinoma 

hepatocelular (HCC). Tras su identificación se comprobó que las mutaciones en este gen 

alteraban el patrón de splicing de la célula, dando lugar a nuevas isoformas aberrantes. 

Por otra parte, las mutaciones detectadas en el 3’UTR de NFKBIZ afectan a una región 

altamente conservada y se ha podido demostrar que provocan un aumento en la 

expresión de la proteína sin alterar la estabilidad de su ARN mensajero. 
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Evolution is the process by which organisms change over time and is driven by 

natural selection and other phenomena such as genetic drift1 or gene flow2. The idea of 

evolution was first coined by Charles Darwin in his book On the Origin of Species, where 

he referred to this process as “descent with modification”3. Although most people 

attribute this theory solely to Darwin, his contemporary, the naturalist Alfred Russel 

Wallace, also contributed to its development4. Both came to the same conclusions: i) 

species can change over time, ii) new species come from pre-existing ones and iii) all 

species share a common ancestor. They proposed natural selection, also known as 

“survival of the fittest”, as a mechanism for evolution. In this theory, evolutionary 

change comes from those individuals with a higher reproductive rate because they 

present more favorable traits for surviving in the environment they live in, being these 

characteristics inherited3. 

Despite the revolutionary consequences that this hypothesis represented for our 

understanding of living organisms, and the overwhelming data supporting it, the 

mechanisms by which this gradual change is generated over time was something that 

escaped Darwin and Wallace knowledge. Nowadays we know that it is due to mutations 

in DNA. These variations, that appear naturally due to DNA replication or exposure to 

external agents, generate the diversity upon which evolution acts. Some of these 

variants might confer an advantage under certain environmental conditions, which 

favors transmission to offspring at an increase rate, promoting genetic selection5. It may 

also happen that mutations have a deleterious effect and although they cause a genetic 

disorder, they are also considered an agent of evolution6. However, this will depend on 

where the mutations occur. In this sense, if they appear in germline cells (i.e., eggs or 

sperm cells) they can be passed to the progeny, constituting germline mutations, and 

even get the chance to be fixed in the population, representing polymorphic variants. 

On the other hand, somatic mutations usually exceed the number of germline 

mutations, as they appear in any other cell of the organism and are not passed along to 

subsequent generations7. 
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Mutations can be classified in two large categories depending on their size. If the 

alterations only affect a specific region they are called “point mutations”. These are the 

most frequent and include either substitutions or single nucleotide variants (SNVs), 

when a single base changes to a different base, and small insertions or deletions (indels), 

when there is an insertion or deletion of a few bases in the DNA sequence. On the other 

hand, structural variants (SVs) are less common but they usually affect larger 

chromosomal regions, and include inversions, deletions, duplications or translocations 

(Figure 1)5,8.  

 

Figure 1. Main types of mutations. Single nucleotide variants (SNVs), and small deletions 

and insertions (indels) are point mutations. Duplications, deletions, translocations and 

inversion events imply large chromosomal rearrangements. 

Although DNA replication is highly accurate, resulting in a very low mutation 

rate9,10, the large size of the genome results in the accumulation of a considerable 

number of somatic mutations accumulate throughout the life of an organism11,12. This 

means that the chance of developing a disease, like cancer, increases with age and it is 

linked to the number of stem cell divisions12,13. In fact, about 66% of mutations 

associated with the appearance of tumors appear spontaneously during normal DNA 

replication14. 
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Cancer: a race for evolution 

Cancer is a disease in which some cells escape the mechanisms of growth control 

and acquire the ability to invade other tissues. During the lifetime of an organism, cells 

proliferate, resulting in the accumulation of mutations over time in healthy tissues15–17. 

Most of these mutations occur in non-functional regions of the genome, or even in 

certain genes, but without affecting cell function, and are therefore neutral from an 

evolutionary point of view. However, other mutations accumulate in certain genes or 

functional elements, resulting in the acquisition of specific features driving the process 

of neoplastic transformation18. Similar to the Darwinian theory of evolution, the 

tumorigenic process is driven by somatic evolution, in which cells with certain mutations 

will have a growth advantage over non-mutated cells and will be chosen by natural 

selection (Figure 2)19–21. These capabilities, that include the ability to ignore growth 

suppressors, modify the local microenvironment, evade immune destruction, spread to 

other organs and allow epigenetic reprogramming, are known as Hallmarks of Cancer 

and were collected by Douglas Hanahan and Robert Weinberg in 200022 and updated 

with enabling characteristics in 2011 and 202223,24. 

 

Figure 2. Representation of the acquisition of mutations in cells and the agents involved 

in the tumorigenic process. During mitotic divisions, mutations accumulate naturally due 

to DNA replication or exposure to external agents. Passenger mutations have no effect on 

the cell, but driver mutations cause the clonal expansion that gives rise to the tumor. In 

addition, mutations that confer resistance to cancer therapies can also occur, leading to 

relapses. From Stratton et al. 200919. 
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Depending on the ability of a mutation to confer some of these capabilities, they 

are classified in two major groups: driver or passenger mutations. Thus, driver mutations 

provide a selective growth advantage that promotes tumor progression and in general, 

all tumor cells will inherit these driver mutations. In contrast, passenger mutations are 

those that do not affect any relevant process to cancer development. Although they do 

not confer a growth advantage, if present in a cell that acquires a driver mutation, those 

non-functional mutations will be also passed to daughter tumor cells, so they will be 

selected in the tumor, but they are considered passengers, because the tumor is driven 

by the driver mutations19. Moreover, genes affected by driver mutations can be 

classified into: i) oncogenes, if the mutation causes their activation or gives them a new 

function or ii) tumor suppressor genes, if their inactivation favors tumorigenesis25. 

However, this classification is not so easy, since there are genes with both oncogenic 

and tumor suppressor functions depending on the cellular context26. For example, the 

Wilms’ tumor 1 gene (WT1) encodes to a transcription factor with a tumor suppressor 

activity in kidney tumors, whereas it has an oncogenic role in other pathologies like 

breast cancer or different leukemias27. Similarly, NOTCH1 acts as an oncogene in 

leukemias28,29 but is considered a tumor suppressor in epithelial tumors30,31. There are 

also genes like TGF-β that exhibit this dual role depending on the stage of the tumor32. 

Cancer genomes: next-generation sequencing 

More than 20 years have passed since the publication of the first draft of the 

human genome in 200133,34. However, only recently it has been possible to complete 

the sequencing of a whole human genome that included even the most complex 

regions35. Throughout this period, and thanks to the development of massive 

sequencing technologies, the process of sequencing a genome has evolved from several 

years to just a few days. In combination to the considerable reduction in time, the 

progressive reduction in the cost of sequencing has allowed the pursue of large-scale 

genomic projects36–38. Thanks to these studies, we have been able to understand that 

the mutational burden along the genome is affected by epigenetic features or the 

nucleotide composition39–42, despite it was long considered an stochastic process43. In 

addition, other factors have been found that can also alter the DNA sequence.  
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Since the first cancer-causing mutation in humans was identified, a single 

nucleotide change in the HRAS gene44, the search for genetic alterations that might be 

involved in cancer initiation has constituted a priority in oncological research45. In this 

regard, this process has benefited enormously from the emergence of next-generation 

sequencing (NGS) approaches, either whole-genome sequencing (WGS) or whole-

exome sequencing (WES), techniques that allow the study of cancer in an unbiased 

manner and genome-wide. These techniques allow the detection of most types of 

alterations present in tumors, from point mutations to large structural variants and copy 

number alterations (CNAs). However, the large amount of information obtained from 

these analyses, thousands of mutations for each patient, represented a challenge in the 

interpretation of the first cancer genomes, as the simple detection of somatic mutations 

was not enough to distinguish between driver and passenger mutations25.  

The most common strategy to determine whether a gene is a cancer driver is 

based on the frequency of somatic mutations that affect this gene. If the frequency is 

higher than what would be expected by chance considering the background mutation 

rate, the gene is labeled as driver46,47. This indicates that mutations in these genes are 

likely to confer a selective advantage to the cells that carry them, favoring tumor 

transformation25. Nonetheless, it is possible that a driver gene is missed if the number 

of analyzed tumors is too small to have enough statistical power to detect it. Driver 

genes can be further classified into oncogenes or tumor suppressor genes by applying 

the "20/20 rule". If > 20% of the mutations cause an amino acid change (missense) at a 

recurrent position (i.e. gain of function) it is considered an oncogene, whereas if > 20% 

of the mutations are inactivating (i.e. loss of function) it can be considered a tumor 

suppressor48 (Figure 3). 

Although the previous approach is the most commonly used for the 

identification of driver genes, it has some limitations that are important to keep in mind. 

These methods are based on the background mutation rate, however this is affected by 

GC content, gene density, replication time and nucleosome occupancy among other 

factors, so not all regions of the genome will have the same mutational ratio. 
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Figure 3. Distribution of mutations in two oncogenes (PIK3CA and IDH1) and two tumor 

suppressor genes (RB1 and VHL). Oncogenes usually have activating point mutations in 

specific regions, whereas tumor suppressor genes show truncating mutations throughout 

the gene. Adapted from Vogelstein et al. 201348. 

Furthermore, the background mutation rate is calculated considering 

synonymous mutations and those located in introns or untranslated regions (UTRs), 

since it is assumed that most of them do not have an impact on the cell49, although it is 

now known that this is not entirely correct. The other aspect to consider is the large 

number of samples that is needed to have enough statistical power to detect rare driver 

genes. Most cancer genomic studies so far have found that most driver genes identified 

are only present at low frequency29,36, suggesting that there are many rare driver genes 

to be identified. 

Complementary to frequency-based approaches are function-based approaches. 

These strategies aim to find driver genes based on the impact of mutations on protein 

functionality, for example, by looking at the localization of mutations in the three-

dimensional structure of proteins. In this sense, distinct mutations along the gene can 

be located in the same region of the protein, such as the active center of an enzyme50. 

Another function-based approach is to observe whether mutations affect highly 

conserved sequences in evolution, which would highlight the importance of these 

regions51. 
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Major efforts: international consortia 

The first large effort to identify the genomic alterations driving tumor 

development and progression was possible thanks to the efforts of two major 

international cancer consortia: The International Cancer Genome Consortium (ICGC) 

and The Cancer Genome Atlas (TCGA)37,38. The reasons for the creation of these 

consortia were clear: to avoid duplication of efforts, to standardize analyses, to allow 

comparison between datasets and to favor the rapid dissemination of data, methods 

and results to the scientific community. In addition, this collaboration also allows the 

analysis of a larger number of tumor samples, enhancing the ability to detect and 

analyze tumor alterations. 

Over the past decade, these multinational and collaborative initiatives have 

comprehensively characterized somatically acquired genetic events in at least fifty 

classes of cancer, including those with the highest incidence and mortality. In this way, 

each team, specialized in one type of cancer, has reported the most frequent driver 

alterations identified in each tumor, from point mutations to genomic rearrangements. 

The first publication of this consortium was published only three years after its 

constitution, with the results of the analysis of four chronic lymphocytic leukemia (CLL) 

genomes. Although the analysis was performed on a small number of samples, recurrent 

mutations in genes such as NOTCH1, XPO1, KLHL6 or MYD88 were identified, and 

allowed the classification of patients according to genomic drivers and immunoglobulin 

genes (IGHV) mutational status52. By extending the analysis to more than 500 patients, 

it was possible to show the portrait of the CLL genomic landscape, identifying novel 

driver genes and recurrent non-coding driver mutations29. In parallel, other groups 

shown their results for other types of tumors. For example, the analysis of 560 breast 

cancer (BRCA) whole-genomes allowed to identify 12 base substitution mutational 

signatures and six rearrangement signatures involving 93 genes53. Following the same 

approach, the analysis of 360 cases of hepatocellular carcinoma (HCC) by WES and other 

techniques such as DNA methylation, RNA and proteomic expression, identified three 

HCC subtypes, new significantly mutated genes and potential therapeutic targets54. 
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These advances demonstrated not only the power of NGS approaches for tumor 

characterization, but also that a large number of samples was needed to detect less 

frequent alterations involved in the development of different types of cancer. 

Therefore, in order to obtain a more global view of cancer, of the mechanisms involved 

in its development and to analyze simultaneously all the data published to date, the pan-

cancer analysis of whole genomes (PCAWG) was carried out. In this regard, the PCAWG 

Consortium conducted a meta-analysis of genomic features across tumor types, 

collecting data from more than 2,500 donors36.  

The analysis of this number of whole genomes, together with the heterogeneity 

of tumors studied, has not been an easy task, requiring great efforts both in time and in 

computational resources. The analysis of more than 2,000 tumor genomes resulted in 

the identification of more than 43 million somatic SNVs (SSNVs) and almost 2.5 million 

indels (Figure 4), which required the implementation of a new strategy to separate 

between passenger and driver mutations. Thus, new driver genes were found and it was 

confirmed that many of the tumor suppressor genes are affected by double-hit 

inactivation36. Using this same set of mutations, new mutational signatures to those 

previously described by the Catalogue Of Somatic Mutations In Cancer (COSMIC-v2; 

https:// cancer.sanger.ac.uk/cosmic/signatures_v2) were identified53,55. Many of these 

signatures are of biological origin and appear to a greater or lesser extent in all tumor 

types, but it has also been possible to identify mutational signatures associated with 

different treatments, mutations in specific genes or mutagenic agents such as UV light 

or tobacco, that are overrepresented in some tumor types56. 

This information, generated from these large consortia, has provided great 

knowledge about the altered pathways in cancer and their evolution. However, it is also 

allowing other groups to work on these data from another point of view, which is 

contributing to transfer results to the clinic, one of the ultimate goals of this collective 

effort. Thus, for example, from RNA sequencing (RNA-seq) expression data it has been 

possible to perform survival analyses for all types of cancer, identifying key genes and 

characteristics that support this prediction57,58. This could be useful when selecting 

genes against which to develop drugs, achieving more personalized treatments 

depending on the tumor type.  
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Figure 4. Mutation burdens on single-base substitutions (SBSs), doublet-base 

substitutions (DBS) and small indels across PCAWG tumor types. Each dot represents the 

number of mutations per megabase for one patient. To the left of each distribution is 

shown the proportion of each change and to the right the number of samples for each 

tumor type. From Alexandrov et al. 202056. 

To this end, the Cancer Target Discovery and Development Network is in charge 

of defining the criteria used to determine which drivers have a potential for drug 

development against them, prioritizing those that play a key role in tumor initiation, 

maintenance and metastasis59. An example of this type of strategies is trying to block 

the activity of an oncogene, which will lead, in some cases, to cell death due to a 

phenomenon known as oncogene addiction60. Within this group we can find drugs such 

as Imatinib, for the treatment of chronic myeloid leukemia and whose target is the BCR-

ABL fusion gene61, or Trastuzumab, for ERBB2 in breast cancer62. Another strategy is to 

inhibit genes whose activity is essential if the tumor has mutations in other oncogenes 

or tumor suppressor genes, as in the case of PARP inhibition when the tumor has 

mutations in BRCA1/262,63. Finally, a promising approach, which could reduce the side 

effects of these treatments, is to identify protein-protein interactions that only occur in 

tumors due to mutations in one of the genes involved in this de novo interaction60. 
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Non-coding mutations: new insights 

The completion of these PanCancer studies provided a general view of cancer 

from a genomic perspective. One of the main findings is that, on average, each tumor 

has 4.6 driver mutations, being the most common the presence of somatic copy number 

alterations as well as coding mutations36. However, a surprising fact is that more than 

5% of cases do not contain mutations in any driver gene. These findings suggest that, 

despite the enormous effort to understand specific alterations in genes or pathways that 

contribute to tumor development, some driver events might be present in different 

regions of the genome still unexplored. 

In this regard, it must be noted that most studies performed during the first years 

of cancer genomics have been biased towards mutations and alterations in protein-

coding regions. This is partly due to the techniques employed, such as exome 

sequencing64,65, and to the high costs of WGS, that resulted in a limited number of 

samples analyzed by this approach, preventing the reach of enough statistical power to 

identify and to understand the effect of mutations in non-coding regions66,67. The 

change in perception occurred with the identification of mutations in the promoter 

region of the telomerase reverse transcriptase gene (TERT), found in more than 70% of 

melanoma cases, a fact that had gone unnoticed when the first melanoma genomes 

were analyzed68. This led to the reanalysis of more than 700 tumors of different types, 

with the finding of mutations in the TERT promoter in 43% of central nervous system 

tumors, 10% of malignant thyroid tumors and 59% of bladder cancer, resulting in an 

increased expression of TERT69. 

Following this discovery, mutations in regulatory and other non-coding regions 

began to be perceived as driver events in cancer. Thus, in 2014 Lee et al. carried out the 

first genome-wide analysis of non-coding mutations. This work demonstrated that 

promoter regions, enhancers and 3'/5'UTRs have a mutational frequency similar to 

exons, suggesting that they participate in gene regulation. On the other hand, the 

mutational frequency of intergenic regions is much higher, possibly because they are 

subject to less selective pressure. However, because hotspots of non-coding driver 

mutations are more infrequent and tumor type-specific70, the analysis of only 800 

samples of different types of cancer was unable to find relevant non-coding mutations67. 
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After this proof of concept, which demonstrated that non-coding regions could 

play a role in tumorigenesis, different groups set out to analyze these regions in different 

types of specific tumors. Thus, it was found that in skin cancer, in addition to TERT, the 

promoter of DPH3 is mutated, leading to increase its expression in vitro71 and confers 

greater migratory ability in mice72. On the other hand, two types of mutational hotspots 

in non-coding regions were found in CLL, and whose mechanisms were different from 

those previously reported. Thus, recurrent mutations were detected in an enhancer of 

PAX5, located 330 kilobases upstream of the gene. The other hotspot was located in the 

5'UTR region of NOTCH129, a gene that had already been identified as a driver for this 

disease52. Specifically, these new mutations in NOTCH1 generate a new splicing acceptor 

site causing the loss of the last 53 amino acids of the protein. Thus, the effect achieved 

was the same as with the mutations located in the coding region, the loss of the PEST 

regulatory domain, increasing the stability of the protein29. A final example is found in 

long non-coding RNAs (lncRNAs) or microRNAs (miRNAs), RNA genes that do not code 

for protein but have regulatory functions. In this case, by analyzing samples from 300 

patients with liver cancer, they found mutations in MALAT173, a lncRNA whose 

expression had been associated with increased metastatic capacity74.  

 

Figure 5. Non-coding regions of interests. UTRs, untranslated regions; miRNAs, 

microRNAs; lncRNAs, long non-coding RNAs. 

All these efforts to detect new non-coding mutations and explain their 

mechanisms of action have allowed the development of new strategies to facilitate their 

identification. Thus, for the analysis of non-coding mutations, the PCAWG has focused 

on regulatory regions (enhancers, promoters, 3'/5'UTRs), RNA genes (long/short non-

coding RNAs and microRNAs), as well as intergenic regions and structural variations that 

affect non-coding regions (Figure 5). This has made possible to identify new non-coding 

driver mutations, such as mutations in the 5'UTR of MTG2, which could be affecting its 
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expression levels75; in the 3'UTR of NFKBIZ, where it has been detected a mutational 

hotspot affecting a highly conserved region that could affect both the stability of the 

mRNA76 and its post-transcriptional regulation77; mutations affecting the transcription 

start site and the donor splice site of the first non-coding exon of TP53; or structural 

variants involving the 10p15 arm associated with the overexpression of a family of 

nearby genes (AKR1C1, AKR1C2 and AKR1C3)70. 

Alternative splicing: regulatory mechanisms 

Even with all this new knowledge, it is very likely that there are non-coding 

mutations that are being misinterpreted. For example, when mutations are located 

within the coding sequence, it is very straightforward to identify the functional 

consequence in terms of amino acid change. In the case of evolutionary conserved 

regions such as promoters or even 3'/5'UTRs, a mutation affecting a highly conserved 

residue is likely to cause an impact in its function. However, mutations in introns, unless 

they occur at very specific motifs such as the splicing recognition sites, the poly-

pyrimidine track or the branch point, are very difficult to predict whether they might 

have any effect78. Therefore, the problem is not only the identification of mutations, but 

the interpretation of the potential functional consequences. The case of introns and 

mutations that can affect splicing is especially complex, since it is a mechanism regulated 

by many elements, and not only dependent on the local context in which the mutation 

appears. 

The mechanism of splicing, both the recognition of sequences involved and the 

catalysis of the reactions, is carried out by a ribonucleoprotein complex known as the 

spliceosome (Figure 6a). This complex is formed by small nuclear RNAs (snRNAs) and 

associated proteins, which together form the ribonucleoprotein particles (snRNPs). The 

most important components of the spliceosome are the U1 snRNP, that contains the 

snRNA U1 which is in charge of recognizing the 5' splice site (5'SS), the splicing factor 1 

(SF1) and the U2AF that recognize the 3' splice site (3'SS), and the U2 snRNP, formed by 

the snRNA U2 and the splicing factor SF3B1, in charge of binding to the branch point, an 

adenosine located 18-35 nucleotides upstream of the 3'SS.79. 
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The fact that the spliceosome is able to recognize the canonical splicing site and 

not another, an event known as alternative splicing, is due to cis-regulatory sequences 

and trans-regulatory proteins that bind to these sequences (Figure 6b). Thus, 

surrounding a splicing site, there are elements that promote or inhibit splicing such as 

exon splicing enhancers recognized by the SR family of proteins o exon splicing silencers 

recognized by hnRNPs. In case these motifs are in introns, they are called intron splicing 

enhancers or intron splicing silencer. The balance between these promoting and 

inhibitor signals determines the relative abundance of the different isoforms of the 

transcripts generated by a gene80. 

 

Figure 6. Splicing process and its regulatory elements. a) Summary of the splicing process. 

First, in the A complex, U1 snRNP binds to the 5'SS by complementarity of the U1 snRNA. 

This union promotes the recognition of the branch point (BP) and the 3'SS by the U2 snRNP 

and U2AF proteins respectively. The process continues with the recruitment of U4, U5 and 

U6 proteins, resulting in the B active complex. Then, the C active complex is assembled, 

which allows intron cleavage as it constitutes the catalytic form of the spliceosome. 

Finally, the ILC complex removes the intron. b) Cis-regulatory sequences like exonic 

splicing enhancers/silencers (ESE, ESS) are recognized by SR or hnRNP family proteins 

respectively to promote or inhibit the splicing. These elements can also be found in introns 

as intronic splicing enhancers/silencers (ISE, ISS). 5' splice site (5'SS) consists of the last 

two bases of the exon and the first six bases of the intron, whereas 3' splice site (3'SS) is 

formed by the BP, a polypyrimidine track (Py) and AG dinucleotide in the last two bases of 

the intron. Adapted from Will and Lührmann 201179 and Fu and Ares 201480. 
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Although the presence of these regulatory elements in both exons and introns is 

known, deciphering the effect of mutations in these regions is not easy, since we often 

tend to focus only on the effect they have at the peptide level. For example, a couple of 

missense mutations have been found in exon 12 of the CFTR gene, which instead of 

causing an amino acid change, generate an exon skipping by altering an exon splicing 

regulatory element81. Another clear example can be found in APC, in which missense 

and even synonymous mutations have also been described82. Or the mutation causing 

Hutchinson-Gilford Progeria, where a synonymous mutation in the gene encoding lamin 

A results in the creation of a splice donor site that removes part of the protein 

preventing its normal maturation83. However, due to the large number of mutations 

present in tumor genomes, synonymous mutations are usually filtered out, what would 

miss bona fide pathogenic mutations as those described above. 

 

Figure 7. Most common alternative splicing events. Exon skipping. An exon is excluded 

from the mRNA; Mutually exclusive exons. It involves the selection of one or the other 

exon, they will not be found together in the mRNA. Cryptic exon. A new exon is 

incorporated into the transcript. Alternative 5'/3'SS. They represent exon modification 

events. Multiple promoters and alternative polyadenylation. mRNA isoform may change 

depending on promoter usage or alternative polyadenylation regulation. Canonical 

isoform is represented above the splicing event and alternative isoform below it. SS, splice 

site. Adapted from Matlin et al. 200588. 



Introduction 

 27 

Programs such as Variant Effect Predictor (VEP)84 are often used to annotate the 

effect of mutations. Nevertheless, mutations that alter splicing are very difficult to 

predict, and the easiest way to do so is to obtain WGS/WES and RNAseq data from the 

same patient, which is not always possible. In order to determine whether a mutation is 

affecting splicing, from genomic level data, new tools have been developed that allow 

the prediction of splicing from the pre-mRNA sequence85. In this way, the whole 

transcript is analyzed, so all the regulatory elements present can be considered. Thus, it 

has been feasible to identify deep-intron mutations that actually cause the use of 

alternative donor and acceptor sites, intron retention, exon skipping or the loss of an 

exon fragment (Figure 7)86,87. 

Mutation discovery: Variant callers 

The rapid introduction of NGS for the study of cancer genomes required the 

development of analytical pipelines for the identification of somatic mutations in tumor-

normal paired samples. These mutation callers provide a statistical framework to define 

the set of somatic mutations present in a tumor sample, which are then used to define 

driver mutations or mutational signatures to be considered in the clinic. Therefore, the 

performance of these mutation callers is of outmost importance for downstream 

analyses. If the sensitivity of the caller is low, many real mutations will be missed (false 

negatives) preventing an accurate diagnosis. In contrast, if the specificity is low, 

artefacts, sequencing errors or polymorphisms will be labeled as somatic mutations, 

reducing the utility and confidence in the data.  

During the last decade, different approaches have been developed for the 

analysis of cancer genomes, resulting in the generation of multiple mutation callers. 

Most state-of-the-art variant callers are based in traditional statistical methods, such as 

Sidrón29, CaVEMan89, MuTect290, MuSE91, Strelka292, Pindel93 or SMuFin94 among 

others. However, there is no consensus on the mutations detected by each caller, with 

a large number of private calls specific for each method. These differences are mainly 

due to the ability of each program to deal with the tumor heterogeneity and purity, 
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normal contamination, sequencing and mapping artifacts, coverage, as well as different 

downstream filtering steps95. Due to the advantages of some pipelines to detect specific 

bona fide mutations, some collaborative projects such as the PCAWG36 or the TCGA 

PanCancer Atlas MC396, do not use a single caller but a combination of algorithms, 

keeping the intersection between them as the set of mutations that is more reliable. 

Despite the utility of this multi-pipeline approach to generate a consensus set of 

mutations, this strategy has a very large computational cost, demanding large servers 

and consuming many hours for the analysis of a single case.  

However, since this technology is aimed at clinical diagnosis, the analysis 

requires enough sensitivity and specificity but also to be obtained in a reasonable 

amount of time. To increase accuracy, a final step of manual review through visual 

inspection is usually carried out for mutations that might be clinical informative. This 

manual revision increases the specificity, but at the cost of a labor-intensive process. 

Therefore, if the number of detected mutations is too high due to the use of an 

unspecific method, the effort involved in this last step would be disproportionate. 

In order to simplify this process, new programs based on emerging technologies 

such as machine learning (Figure 8) are being developed in recent years. This field, which 

belongs to a branch of artificial intelligence, has two main approaches: supervised and 

unsupervised classification. The difference between both approaches is that for 

supervised training, the user, in addition to the features with which to train the program, 

also passes the result (whether a mutation is real or a false positive, based on validated 

data or an expert review). In contrast, for unsupervised training it is the program itself, 

based on the initial data, that tries to make the classification. Both strategies usually use 

the same algorithms, among which are: linear regression, decision trees, kNNs or 

random forest. 

Some of the programs that have emerged from these strategies are designed to 

refine a previously extracted set of mutations using several variant callers, which does 

not solve the problem of computational cost and analysis time97–99. More recently, 

however, there have been new programs based on machine learning approaches100,101 
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or neural networks102,103 that are capable of detecting mutations directly. In spite of this, 

most of these programs have been trained with high depth of coverage WES using in 

silico99,100 or orthogonal validated mutations101 and cannot be used for whole-genome 

analysis. The ability to train machine learning models to perform human tasks such as 

reviewing mutation calls represents an opportunity to refine these time-consuming 

tasks and generate higher quality reports which can be of great importance in the 

introduction of WGS in the clinical practice. 

 

 

Figure 8. Workflow to train a supervised machine learning algorithm. The main thing to 

train this kind of algorithms is to have a good dataset with the appropriate features with 

which to train the algorithm and the actual value for each of the inputs. Then, the dataset 

is split in two to be able to train and test the accuracy of the algorithm with different 

inputs. Although this is sufficient for the first steps of generating a machine learning 

algorithm, it is necessary to run the algorithm with a second completely independent 

dataset to really validate its accuracy. 
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The major international consortia have allowed us to have a more complete 

vision of the most frequent genetic alterations that are responsible for the main types 

of cancer. However, despite these advances, there are still cases in which no driver event 

has been detected that could explain the tumor origin. In this regard, there are still 

poorly studied regions, such as non-coding or repetitive regions, which could harbor 

new driver genes. In addition to the analysis of these cases in depth, it is important to 

focus on the study of other less frequent types of tumors, taking advantage of the tools 

and methods developed throughout these years. Thus, the ultimate goal of all this effort 

is no other than better prognosis and better personalized treatments with fewer side 

effects for cancer patients. In this sense, to make the study of genomes a reality in 

clinical practice on a routine basis, the tools used in these analyses must be accessible 

to small and medium-sized groups without large computational capabilities. To further 

address these issues, the specific objectives of this thesis were: 

1. To study new mutations and structural variations in patients with mantel cell 

lymphoma from whole-genome analysis. 

2. Development of a tool for the identification of somatic mutations from tumor-normal 

paired samples. 

3. To determine whether ctDNA from cerebrospinal fluid can be used to characterize 

pediatric medulloblastoma tumors. 

4. To characterize a series of non-coding mutations identified in hematological 

neoplasias. 
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Patient cohort 

Study subjects and data collection 

A written consent was obtained from all patients/legal representatives who 

participated in these studies through individual projects. For pediatric medulloblastoma 

(MB), 13 patients diagnosed and treated at the Hospital Universitario Vall d’Hebron 

were included in the study. For mantle cell lymphoma (MCL) cohort, 61 patients were 

obtained from hematopathology collection registered at the Biobank of the Hospital 

Clinic–Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). For the study 

of neoepitopes in patients with CLL, DNA from 52 patients was obtained through the 

Hospital Universitario Central de Asturias (HUCA) and fresh serum was extracted from 

11 patients (Hospital Clinic and HUCA). 

Samples used in the rest of studies were from participants recruited and 

anonymized by individual ICGC and TCGA projects for the PCAWG project. This dataset 

consisting of 2,583 donors across 37 tumor types was collected from the ICGC Data 

Coordination Center. The use of PCAWG data was approved by the University of Toronto 

Research Ethics Board under RIS Human Protocol Number 30278 and protocol title “Pan-

cancer Analysis of Whole Genomes: PCAWG”. 

In addition to the 5,166 tumor and paired normal WGS aligned BAMs retrieved 

from PCAWG dataset, another 84 WGS and 10 WES paired samples from CLL patients, 

228 WGS paired samples from the Medulloblastoma Advanced Genomics International 

Consortium (MAGIC) and 299, 387 and 225 tumor RNA-seq data from CLL, HCC and MB, 

respectively, were collected. The use of this extra CLL genomic and clinical data was 

approved by the Hospital Clinic of Barcelona Institutional Review Board under protocol 

number HCB/2015/0814 and protocol title “Functional and Clinical Impact of Genomic 

Analysis in CLL”. 
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Molecular biology methods 

DNA, RNA and protein extraction 

For pediatric medulloblastoma project, tumor DNA was extracted from a fresh-

frozen or paraffin-embedded section of the tumor biopsy using the QIAamp DNA mini 

kit (Qiagen) and the QIAamp DNA FFPE tissue kit (Qiagen), respectively. Germline DNA 

was extracted from peripheral blood cells using the QIAamp DNA mini blood kit 

(Qiagen). Peripheral blood was collected in K2EDTA containing tubes (Vacutainer) and 

plasma was acquired following a 1,600 × g centrifugation for 10 min. Both plasma and 

cerebrospinal fluid (CSF) samples were centrifuged at 3000 × g for 5 min and the 

supernatant were collected. Cell-free DNA (cfDNA) from plasma and CSF samples were 

extracted using the QIAamp Circulating Nucleid Acids kit (Qiagen). Genomic and cfDNA 

were quantified using the Qubit fluorometer. 

DNA was extracted from CRISPR clones by lysing the cells with lysis buffer (200 

mM Tris-HCl pH 7.4, 200 mM EDTA, 1% SDS) and precipitating with ammonium acetate 

and isopropanol. 

Total RNA from cell lines was extracted with TRIzol reagent (Life Technologies), 

and then it was purified through alcohol precipitation and dissolved in DEPC water. RNA 

was assayed for quantity and quality (260/280 nm ratio) using NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies) and Qubit RNA HS Assay (Life 

Technologies). 

Proteins derived from the subcellular fractioning protocol were obtained 

following the TRIzol guidelines (Life Technologies). The rest of protein extractions were 

made through cell lysis in RIPA buffer for 5 min (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 

1 mM Na2EDTA, 1 mM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium 

pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4) supplemented with protease 

(cOmplete EDTA-free, Roche) and phosphatase inhibitor cocktails (PhosSTOP, Roche). 

Cell lysates were centrifuged at 13,000 rpm, 4 °C for 10 min. Protein concentration for 

all cell extracts was evaluated by the bicinchoninic acid technique (Pierce BCA Protein 

Assay Kit, Thermo Scientific). 
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Plasmid construction and site directed mutagenesis 

To test the effect of mutations located in the U1 gene, the pLKO.1-puro lentiviral 

vector (Addgene #8453) was modified by removing the internal U6 promoter (between 

NdeI and EcoRI), and replacing it with the U1 locus, including 393 bases of its promoter, 

the U1 sequence and 39 bases of 3ʹ-flanking region using the following oligonucleotides 

(U1- EcoRI-Fwd: 5'-GTCGAGAATTCTTGGCGTACAGTCTGTTTTTG-3'; NdeI-U1-Rev: 

5'-CTATCATATGTAAGGACCAGCTTCTTTGGGA-3'). The g.3A>C and g.3A>G 

mutations were introduced by PCR with the following oligonucleotides: U1-A_C-Fwd: 

5'-GCCAGGTAAGGATGAGATCTTCGGG-3'; U1-A_C-Rev: 5'-CCCGAAGATCTCATC 

CTTACCTGGC-3'; U1-A_G-Fwd: 5'-GCCAGGTAAGCATGAGATCTTCGGG-3'; U1-

A_G-Rev: 5'-CCCGAAGATCTCATCTTACCTGGC-3' in combination with the 

corresponding previous primers. The PCR products were digested with NdeI and EcoRI 

and cloned in the modified pLKO.1 plasmid.  

For the analysis of NFKBIZ mutations, the psiCHECK2 vector with the NFKBIZ-

3'UTR previously cloned downstream of the Renilla luciferase coding sequence was 

used77. In order to generate the mutated forms of the NFKBIZ-3'UTR, and using this 

plasmid as template, site directed mutagenesis was performed following the 

manufacture’s recommendations (Stratagene) of the the QuikChange II XL Site-Directed 

Mutagenesis Kit and the oligonucleotides listed in Table 1. 

For the genome editing experiments, the lentiCRISPRv2 (Addgene #52961) was 

used to clone the single-guide RNAs (sgRNAs), following the lentiGuide oligo cloning 

protocol104,105 with minor modifications. The sgRNAs were designed to target the 3'UTR 

portion of NFKBIZ where the most recurrent mutation is located: NFKBIZ-101578250-

KI_Sense: 5'-CACCGAGCAACACTCACTGTCAGTT-3' and NFKBIZ-101578250-

KI_Antisense: 5'-AAACAACTGACAGTGAGTGTTGCTC-3'. 
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Table 1. List of primers used for mutagenesis 

Name Sequence 

NFKBIZ-101578250-C_G-Fwd GCCTGGCTAGCAACACTCAGTGTCAGTTAGG 

NFKBIZ-101578250-C_G-Rev CCTAACTGACACTGAGTGTTGCTAGCCAGGC 

NFKBIZ-101578250-C_A-Fwd AGCCTGGCTAGCAACACTCAATGTCAGTTAGGC 

NFKBIZ-101578250-C_A-Rev GCCTAACTGACATTGAGTGTTGCTAGCCAGGCT 

NFKBIZ-101578250-C_CT-Fwd CTGGCTAGCAACACTCATCTGTCAGTTAGGCAGTC 

NFKBIZ-101578250-C_CT-Rev GACTGCCTAACTGACAGATGAGTGTTGCTAGCCAG 

NFKBIZ-101578254-delAGTT-Fwd TAGCAACACTCACTGTCAGGCAGTCCTGATGTAT 

NFKBIZ-101578254-delAGTT-Rev ATACATCAGGACTGCCTGACAGTGAGTGTTGCTA 

NFKBIZ-101578285-del12-Fwd 
CAGTCCTGATGTATCTGTACATAGATATTGGCAAATGTAAG

TTGTTTC 

NFKBIZ-101578285-del12-Rev 
GAAACAACTTACATTTGCCAATATCTATGTACAGATACATC

AGGACTG 

NFKBIZ-101578292-del16-Fwd 
GCAGTCCTGATGTATCTGTACATAGACCATTTTGTAAGTTG

TTTCTATGA 

NFKBIZ-101578292-del16-Rev 
TCATAGAAACAACTTACAAAATGGTCTATGTACAGATACAT

CAGGACTGC 

NFKBIZ-101578304-G_A-Fwd 
TACATAGACCATTTGCCTTATATTGACAAATGTAAGTTGTT

TCTATGAAAC 

NFKBIZ-101578304-G_A-Rev 
GTTTCATAGAAACAACTTACATTTGTCAATATAAGGCAAAT

GGTCTATGTA 

Short-hairpin RNAs (shRNAs) plasmids from the MISSION RNAi library used 

during knockout experiments were bought to Sigma-Aldrich. The identifiers were: 

TRCN0000255467 (IGF2BP2); TRCN0000293594 (IGF2BP3); TRCN0000269876 

(RPSAP52); TRCN0000148785 (PUM1); TRCN0000061861 (PUM2); TRCN0000431553 

(MCPIP1); TRCN0000122593 (RC3H1/2); TRCN0000122593 (RC3H1/2); 

TRCN0000144045 (RC3H1/2); TRCN0000432078 (RC3H1/2); TRCN0000416067 

(RC3H1/2). 

All plasmids were verified by digestion and/or Sanger sequencing. 

Reverse transcription and quantitative real-time PCR 

Quantitative PCR (qPCR) was used to study the effect of 3'UTR-variants in NFKBIZ 

over RNA stability. Reverse transcription coupled to PCR (RT-PCR), apart from qPCR, was 

also used for validation of mis-splicing events in U1 cell lines (JVM3, HG3, MEC1 and 

transfected HEK-293T). 
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In all cases, cDNA was synthesized with the QuantiTect Reverse Transcription kit 

(QIAGEN) using 1 μg of total RNA and following manufacturer’s instructions. 

Quantitative PCR was carried out in triplicate for each sample with 4µL cDNA (1:5) using 

Power SYBR Green PCR Master Mix (Applied Biosystems) with the oligos mentioned in 

Table 2 and an Applied Biosystems 7300HT Real-Time PCR System. Relative 

quantification was analyzed with the 2-ΔCt or 2-ΔΔCt methods using ACTB as the 

endogenous control. 

Table 2. List of primers used for RT-PCR and qPCR 

Name Sequence 

Renilla-SYBR-Fwd AAGAGCGAAGAGGGCGAGAA 

Renilla-SYBR-Rev TGCGGACAATCTGGACGAC 

Firefly-SYBR-Fwd CGTGCCAGAGTCTTTCGACA 

Firefly-SYBR-Rev ACAGGCGGTGCGATGAG 

NFKBIZ-SYBR-Fwd TGCAGTCATAGCCCACAATG 

NFKBIZ-SYBR-Rev TGCTCCCATTTGAATTAGGC 

ABCD3-WT-Fwd GCTCATCACAAACAGTGAAG 

ABCD3-U1-A_C-Fwd GGAACAGAATCTCAGTGAAG 

ABCD3-Rev CAGTTTTCGGAAGACTGAGT 

MSI2-WT-Fwd AGCGCAACCCAAGATGGTCA 

MSI2-U1-A_C-Fwd CCGCAGGAGAATCCTATGGT 

MSI2-Rev CTTGCCAAACTGCTCGAAAT 

POLD1-WT-Fwd CTGGAGATCTCACAGAGCGT 

POLD1-U1-A_C-Fwd CGGATAAAGCAGGAGAGCGT 

POLD1-Rev ACTTAGACTCCACCAGCTGC 

PTCH1-WT-Fwd AGCTGTGGGTGGAAGTTGGA 

PTCH1-U1-A_G-Fwd CACTGCCCTTCCACATTGGA 

PTCH1-Rev TATACATGGACACGGCTGGC 

GLI2-WT-Fwd TGGACGTGTCCCGTTTCTCC 

GLI2-U1-A_G-Fwd AGGAGGCGTTTGTCCCGTTT 

GLI2-Rev GCTGACAGATGCCCGTAGGA 

PCRs for the mis-splicing validation of ABCD3, MSI2, POLD1, PTCH1 and GLI2 

genes were performed using 4 μL cDNA (1:5) and 30 cycles and a melting temperature 

(Tm) of 60ºC using the oligonucleotides in Table 2.  
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Rapid amplification of 5' cDNA ends (5'RACE) 

Rapid amplification of cDNA ends (RACE) was performed using 1 μg of total RNA 

from JVM3, HG3 or MEC1 cell lines infected with either pLKO.1-U1wt or pLKO.1-U1g.3A>C 

and HEK-293T transfected with pLKO.1-U1wt, pLKO.1-U1g.3A>C or pLKO.1-U1g.3A>G 

following the recommendations of the manufacturer (Sigma-Aldrich), and the following 

specific oligonucleotides: U1-RACE-SP1: 5'-CAGGGGAAAGCGCGAACGCAGT-3'; U1-

RACE-SP2: 5'-CCCACTACCACAAATTATGC-3'). A single amplification band of the 

expected size (160 bp) was excised from the gel, purified through column (Macherey-

Nagel) and sequenced with the internal oligonucleotide U1-RACE-SP2. 

rhAMP assay 

Genomic DNA from PCAWG primary tumors and CLL patients from HUCA was 

tested using custom rhAmp SNP assays (Integrated DNA Technology). In brief, locus and 

allele-specific primers were generated individually for RNU1_batch (RNU1-1, RNU1-2, 

RNU1-3, RNU1-4 and RNVU1-18) (CD.GT.ZVBW8769.6) and RNU1_pseudo (RNU1-27P 

and RNU1-28P) (CD.GT.GBJF7460.6). Assays were run in technical triplicates in 5 μL 

volume (DNA concentration sampled at least 10 ng), according to the manufacturer’s 

indications, with gBlocks for wild-type, mutant and heterozygous genotypes or positive 

patients as controls. Reporter mix used Yakima Yellow (mutant) and FAM (wild-type) 

dyes as well as ROX dye for passive reference. Plates were read on the StepOnePlus 

(Applied Biosystems) RT-PCR machine, and genotypes called using the StepOne v2.3 

software. 

Sanger sequencing 

To perform verification of private calls obtained from the analysis of CLLE-ES 

cases, five and two mutations detected only by RFcaller and PCAWG, respectively, were 

chosen to be verified by Sanger sequencing. These positions were chosen because they 

appear in known driver genes for CLL and because tumor and/or normal DNA was 

available. The list of primers and melting temperatures are listed in Table 3. 
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Table 3. List of primers used for Sanger validation of CLL mutations 

Name Sequence* 
Tm 

(ºC) 

Amplicon 

(bp) 

Extension 

time 

(seconds) 

ID 

ADAMTS4-Fwd TACCCAGTTCATGAGCAGCA 

56 303 25 
1_161166093 

DO655 
C>A 

ADAMTS4-Rev GGAGTTGTGTGACATGGTGC 

CREB1-Fwd CTGCCTCTGGAGACGTACAA 

58 288 25 
2_208442348 

DO6558 
C>T 

CREB1-Rev GCAAGATCCATTAATTCTGCTGG 

NFKBIE-Fwd GGACCTCAAAAGTGGGCTGA 

58 288 25 
6_44232738 

DO7172 
TGTAA>T 

NFKBIE-Rev TCACCTACACCCTGTCCTTG 

MED12-Fwd CTGCCCTTTCACCTTGTTCC 

58 290 25 
X_70339253 

DO6558 
G>A 

MED12-Rev CCCTATAAGTCTTCCCAACCCA 

ITPKB-Fwd ACAAAAGTCTCTGCCAGTGG 

56 290 25 
1_226827324 

DO52712 
CT>C 

ITPKB-Rev CTGGGTGGGGTGTTCTCTT 

SETD2-Fwd TTCTTACTGGCTGCAAGGGCTGA 

54 214 25 
3_47088090 

DO6934 
G>A 

SETD2-Rev CAACTTGGAAGTCAGTCTGT 

IKBKB-Fwd ACCCTCAGCTTTCTCCTTCC 

56 255 25 
8_42163889 

DO7084 
A>C 

IKBKB-Rev TGTGACCTCATGCATCTCCA 

*Primers used for sequencing are underline. 

Luciferase assays 

Luciferase assays were performed to check the post-transcriptional effects of the 

mutations located in the 3'UTR of NFKBIZ. HeLa and HEK-293T cells were transfected 

(triplicates) with the psiCHECK2 constructions, 48 h later luminescence determination 

was performed using Dual-Glo Luciferase Assay System (Promega) following the 

manufacturer’s instructions. Measures were carried out in a Varioskan Flash plate 

reader.  

Firefly luciferase activity was used as endogenous control for normalization. 

Relative luciferase activity was calculated as the ratio of luminescence from the 

experimental reporter (Renilla) to that of the control reporter (Firefly). Each transfection 

experiment was repeated three times. 
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Western Blot Analysis 

Protein extracts were separated in SDS-PAGE gels and electrotransferred to 

nitrocellulose or polyvinylidene fluoride (PVDF) membranes (GE Healthcare Life 

Sciences). Then, membranes were blocked with 5% non-fat dry milk or Bovine Serum 

Albumin (BSA) in TBS-T buffer (20 mM Tris pH 7.4, 150 mM NaCl, 0.05% Tween 20). 

Following 4 °C overnight incubation with the primary antibody (Table 4). After washing 

with TBS-T, membranes were incubated with secondary antibodies (Table 4) for 1 h at 

room temperature. To detect the horseradish peroxidase-conjugated (HRP) species-

specific secondary antibodies the Luminata Forte HRP Substrate (Millipore) was used on 

a LAS-3000 (FUJIFILM), while for IRDye secondary antibodies with fluorescence protein 

bands were visualized and recorded using LI-COR Odyssey Imaging System (LI-COR). For 

the study of neoepitopes, 100 µL of fresh serum from patients was used as primary 

antibody and the western blot was revealed with anti-human-IgG (HRP) as secondary 

antibody. 

Table 4. List of antibodies used in this work 

Antibody Species and type Used dilution Reference 

Anti-β-Actin Mouse monoclonal 1:5000 Sigma (A5441) 

Anti-Cleaved-Caspase-3 Rabbit polyclonal 1:1000 Cell Signaling (9661T) 

Anti-GAPDH Rabbit monoclonal 1:1000 Santa Cruz (sc-32233) 

Anti-Histone-H3 Rabbit polyclonal 1:1000 Cell Signaling (9715) 

Anti-Human-IgG Goat polyclonal 1:20000 ThermoFisher (31413) 

Anti-IkB𝔷 Rabbit polyclonal 1:1000 Cell Signaling (9244) 

Anti-NFkB-p52 Mouse monoclonal 0.5 µg/mL Millipore (05-361) 

Anti-PARP Rabbit polyclonal 1:1000 Cell Signaling (9542) 

Anti-α-Tubulin Mouse monoclonal 0.2 µg/mL Sigma (T6074) 

Anti-U1-snRNP70 Mouse monoclonal 1:1000 Santa Cruz (sc-390899) 

IRDye 680RD Goat anti mouse 1:10000 Li-COR (926-68070) 

IRDye 680RD Goat anti rabbit 1:10000 Li-COR (926-68071) 

IRDye 680RD Goat anti rat 1:10000 Li-COR (926-68076) 

IRDye 800CW Goat anti mouse 1:10000 Li-COR (926-32210) 

IRDye 800CW Goat anti rabbit 1:10000 Li-COR (926-32211) 

HRP Goat anti mouse 1:10000 
Jackson ImmunoResearch 

(115-035-062) 

HRP Goat anti rabbit 1:10000 Cell Signaling (70745) 

HRP Goat anti rat 1:5000 Amersham (NA935V) 
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Subcellular fractioning 

In order to study the localization of lncRNAs in JVM3 cell lines harboring U1wt or 

U1g.3A>C, subcellular fractionation was carried out to extract RNA and proteins from each 

of the fractions (cytoplasm, nucleoplasm and chromatin). Only the following buffers, 

with minor modifications, described by Mayer A. and Churchman S (2017)106 in their 

protocol were prepared: cytoplasmic lysis buffer, glycerol buffer, nuclei lysis buffer, 

nuclei wash buffer and sucrose buffer. Briefly, cells (1x107) were washed and collected 

by centrifugation. Then, they were resuspended in the cytoplasmic lysis buffer and 

centrifuged in the sucrose buffer to separate the cytoplasm fraction from the nuclei. 

After centrifugation, the supernatant (cytoplasm) was frozen in TRIzol and the pellet 

(nuclei) was resuspended in the nuclei lysis buffer to centrifugate it again. Finally, both 

the supernatant (nucleoplasm) and the pellet (chromatin) were frozen in TRIzol to 

continue with RNA and protein extractions. 

Cell biology methods 

Cell culture 

Chronic B cell leukemia cell lines: JVM3 (no. ACC 18), HG3 (no. ACC 765) and MEC1 

(no. ACC 497) were obtained from DSMZ. JVM3 and HG3 were grown in RPMI 1640, 10% 

fetal bovine serum (FBS), 1% penicillin-streptomycin-L-glutamine (PSG) and 1% 

antibiotic-antimycotic (AA), whereas MEC1 was grown in Iscove’s modified Dulbecco’s 

medium (IMDM), 10% FBS, 1% PSG and 1% AA (all from Gibco). On the other hand, HEK-

293T and HeLa were grown in Dulbecco’s modified Eagle’s medium containing 10% FBS 

and 1% PSG. In the case of interleukin 1 alpha (IL1) stimulation (eBioscience), cells were 

cultured overnight without FBS the day before luciferase assay or RNA extraction 

protocols. IL1 was added four hours before experiments at a concentration of 2 ng/mL. 

The authenticity of the cell lines was tested with the AmpFLSTR Identifiler Plus PCR 

Amplification Kit (Applied Biosystems). In addition, cell lines are routinely tested for 

mycoplasma. 
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Transient transfections and viral infections 

Transient transfections were performed using Lipofectamine and Plus reagents 

(Invitrogen), following manufacturer’s instructions and with cells at 60-70% confluence. 

The subsequent transcriptomic and proteomic experiments were performed 48 h after 

transfection. 

For lentiviral infection, HEK-293T cells (5x106 cells) were cultured in 10-cm plates 

and transfected using Lipofectamine Plus (Invitrogen) with 2 μg of the specific lentiviral 

vector (pLKO.1-U1wt, pLKO.1-U1g.3A>C), together with 1 μg of psPAX2 packaging plasmid 

and 1 μg of pMD2.G envelope plasmid. Twelve hours after transfection, the medium was 

replaced with complete medium, and 24 h later 10 mL of supernatant were filtered (0.45 

μm), and 4 mL was used to infect cell lines (JVM3, HG3 and MEC1 for U1 and JVM3 and 

HG3 for NFKBIZ experiments) in the presence of 8 μg/mL polybrene. The infection was 

repeated 24 h later, and after 24 h cells were plated in complete medium for one day. 

Then, cells infected with pLKO.1-U1wt or pLKO.1-U1g.3A>C were selected with 1.2 μg/mL 

of puromycin for four days. 

CRISPR-Cas9 experiments 

For the generation of NFKBIZ-3'UTR mutated cells, the lentiCRISPRv2-NFKBIZ 

plasmid was used together with two megamers (Integrated DNA Technology) designed 

to insert two of the detected mutations in the 3'UTR hotspot of NFKBIZ: ssODN-

101578250-C_G: 5'-CTATGTACAGATACATCAGGACTGCGTAACTGACACTGAGTGTT 

GCTAGCCAGGCTCCAAGCTAATGGAGC-3' and ssODN-101578254-delAGTT: 5'-CAA 

ATGGTCTATGTACAGATACATCAGGACTGCGTGACAGTGAGTGTTGCTAGCCAGGCTCC

AAGCTAAT-3'. HeLa and HEK-293T were transfected with 1 µg of the ssODN-

101578254-delAGTT and ssODN-101578250-C_G megamers, respectively. Although the 

transfection was transitory, 24 h later, HeLa and HEK-293T were selected with 1 µg/mL 

and 2.5 µg/mL of puromycin for 48 h, respectively. Then, cells were let to recover for 24 

h and finally plated in four 96-well plates with a density of 0.5 cell/well to be sure that 

two clones did not fall into the same well. As the clones grew, they were genotyped 

(NFKBIZ-Seq-Hotspot-Fwd: 5'-TGTTCCTGTTAGTTGAGGCTGA-3'; NFKBIZ-Seq-
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Hotspot-Rev: 5'-TGTGCCACAAATCAAAGTCC-3'; Cycles: 25; Tm: 60 °C; Extension: 

50 seconds) to check which mutations were present in each one. Because complex 

mutations can be inserted into each allele, the TIDE (Tracking of Indels by 

DEcomposition) tool was used to assist in the interpretation of electropherograms107. 

Short Hairpin RNA knockdown 

pLKO.1 plasmids derived from the MISSION RNAi library and containing the 

desired short hairpin RNAs (shRNAs) were transfected in HeLa cells to silence IGF2BP2, 

IGF2BP3, RPSAP52, PUM1, PUM2 and MCPIP1 genes, as they might be interacting with 

the NFKBIZ-3'UTR. 

Proliferation assays 

To quantify cell proliferation, a Cell Titer 96 Non-Radioactive cell proliferation kit 

was used following manufacturer's instructions (Promega). Briefly, cells were seeded 

into 96-well plates at a density of 2,000 cells per well and plates were incubated at 37 

°C, 5% CO2 for four consecutive days. Cell proliferation was monitored by measuring the 

conversion of a tetrazolium salt into formazan in metabolically active cells. At the 

desired time points (0 h, 24 h, 48 h, 72 h, 96 h and 120 h), 15 μL of dye solution were 

added into each well (n = 5) and cells were incubated at 37 °C for 2 h. Then, 100 μL of 

solubilization mixture were added into each well to stop the reaction. The formazan 

absorbance was measured at 570 nm, and 650 nm to substrate the background, with a 

Power Wave XS Microplate reader (Biotek). Then, each point was normalized with time 

0 h and mean was represented. 

Proteasome and splicing inhibitors on cell proliferation 

Due to the aberrant splicing at the transcriptomic level found in cell lines (JVM3 

and HG3) harboring the U1g.3A>C mutation, it was decided to study the effect that 

inhibition of the spliceosome or proteasome could have on cell viability using U1wt as 

control. To block the spliceosome activity the Pladienolide B (PladB, R&D Systems) 

inhibitor was used at concentrations between 0 nM and 50 nM. On the other hand, 

Bortezomib (Selleckchem) was employed for proteasome inhibition at concentrations 
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from 0 nM to 9 nM. To test the effect of these drugs on cell viability, proliferation assays 

and western blots against PAPR and cleaved caspase 3 and TrypanBlue counts 

(triplicates) were carried out at different concentrations and times (0 h, 24 h and 48 h). 

Bioinformatical and statistical analyses 

Libraries preparation 

Whole-exome DNA sequencing was performed using 2.5 μg of matching tumor 

and germline genomic DNA samples of the 12 patients with pediatric MB. Library 

preparation and enrichment was performed using SureSelect Human All Exon V5 

(Agilent Technologies) and sequenced using Illumina paired-read sequencing platform 

HiSeq2500 (2×100 bp; coverage: >75x control, >100x tumor; 50.4 Mb). For one patient 

(MB13), WES was performed using the SureSelect XT HS Human Focused Exome 17.7 

Mb. Given the limited amount of cfDNA available from the 13 patients, CSF-derived 

cfDNA from four patients underwent DNA sequencing (6-200 ng). For one patient (MB8), 

SureSelect Human All Exon V5 (Agilent Technologies) was used for the CSF-derived 

cfDNA obtained at relapse (51.6 Mb). For the remaining 3 patients, longitudinal CSF 

samples were obtained before surgical intervention of the tumor biopsy and during 

progression or follow-up. Matching tumor and germline (200 ng), and follow-up CSF 

samples (6-200 ng) were analyzed using the SureSelect XT HS Human Focused Exome 

17.7 Mb (custom constitutional panel, Agilent Technologies) for library enrichment and 

sequenced using Illumina platform NextSeq with a read length of 150 bp. For MCL 

samples, WGS was performed using the TruSeq DNA PCR-free protocol and sequenced 

in an Illumina HiSeq X Ten (2x150 bp; coverage 30x). 

In the case of RNA from U1 cell lines, two technical replicates for each of the 

three cell lines (JVM3, HG3 and MEC1) and two conditions (pLKO.1-U1wt or pLKO.1-

U1g.3A>C) were prepared as stranded total RNA-seq libraries and then sequenced with 

the Illumina HiSeq 4000 system (2×76 bp) with >40 million paired-end reads per sample. 

For RNA from HEK-293T, transfected with either pLKO.1-U1wt or pLKO.1-U1g.3A>G (two 

replicates), the mRNA library construction was performed based on oligo dT-based 
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mRNA isolation using NEBNext Poly(A) mRNA Magnetic Isolation Module and sequenced 

on NextSeq 550 (2x100 bp; > 40 M). To study the localization of lncRNAs from subcellular 

fractioning samples (chromatin and total), the ERCC RNA Spike-In Control Mixes 

(Ambion by Life Technologies) was added to total RNA as endogenous control following 

the manufacturer’s guides. Then, TruSeq Stranded Total RNA with Ribo-Zero Gold 

libraries were prepared and sequenced on NovaSeq6000 (2x150 bp; > 60 M). 

RNA-seq libraries from NFKBIZ CRISPR clones (HEK-293T) were prepared for two 

technical replicates and two conditions (wild-type or g.101578250C>G) from total RNA 

using the TruSeq RNA Sample Prep Kit v2 (Illumina). Each library was sequencing with 

the Illumina HiSeq2000 (2×76 bp) with >40 million paired-end reads per sample. 

Read alignment 

All genomic sequencing data were aligned using BWA-MEM (v0.7.17)108 to the 

GRCh37 (hs37d5) version of the reference genome except for MCL cases, which aligned 

to the GRCh37 (v13) that does not contain the patches of the alternative chromosomes 

and the decoy. PCR duplicates were marked using biobambam (v0.0.148)109 for 

medulloblastoma WGS samples, MarkDuplicates 

(http://broadinstitute.github.io/picard/) for PCAWG data or Samblaster (v0.1.25)110 for 

MCL cases. For pediatric medulloblastoma WES samples, due to the low amount of 

starting DNA, a high percentage of PCR duplicates were found so they were removed 

using Samblaster (v0.1.25). 

RNA-seq raw reads were aligned to the GRCh37 (hs37d5) genome using the two-

pass STAR (v2.7.3a)111 method, to maximize the sensitivity of novel junction discovery, 

and GENCODE v19 as the reference gene annotation. The quality control process was 

done with FastQC (v0.11.7) and multiQC (v1.5)112 and transcript integrity number was 

calculated with RSeQC (v2.6.4)113. For RNA-seqs containing the ERCC RNA Spike-In, the 

sequences of control templates were added to the GRCh37 (hs37d5) genome before 

alignment. 
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Variant calling 

Somatic mutation calling for pediatric medulloblastoma WES derived was 

performed using Sidrón29 and annotated using the Variant Effect Predictor84. Germline 

mutations were extracted using bcftools114 and filtered using common SNPs from dbSNP 

v153. Filtering was performed based on the following criteria. For SSNVs, only mutations 

affecting the protein coding sequence were considered; a depth of coverage ≥20 was 

required to compare the tumor with the circulating tumor DNA (ctDNA) variant allele 

frequency (VAF); if VAF > 5% in any of the samples from the same case, it was considered 

as a mutation, and its presence in the other samples was studied. To determine whether 

a sample contained a mutation that was detected in another sample from the same case, 

a VAF greater or equal to 1% was established as threshold. For germline mutations, only 

coding regions with a mapping quality ≥50 and heterozygous variants (0.35 ≤ VAF ≥ 0.75) 

were analyzed. Moreover, mutations with a VAF greater or equal to 0.001 in the control 

cohort of the gnomAD database were removed to ensure that polymorphism were not 

present in the final set of germline mutations. 

In the case of the study of MCL genomes, somatic single-nucleotide variants were 

called using Sidrón, short insertions/deletions combining Sidrón and Pindel93, and 

germline variants using HaplotypeCaller115. 

As U1 is a repetitive gene, traditional callers are not able to detect mutations, so 

a specific calling method was developed to detect them. First, samples without enough 

coverage were flagged as genotype-undetermined and left to manually review. The 

coverage was determined by the median read depth at the 5ʹ splice-site recognition 

sequence of seven U1 genes. For 2,434 donors with enough coverage (≥15 median 

coverage in at least five U1 genes), all reads mapped by BWA MEM to U1 genes and 

pseudogenes as well as their flanking 1-kb regions were extracted with samtools116 and 

saved as miniBAMs. These miniBAMs were then converted into paired FASTQ files and 

re-aligned with Bowtie2 (v2.3.4.1)117 to GRCh37 in multiple mapping report mode (-k). 

Non-default parameters for Bowtie2 were “–score-min L,-0.3,-0.3–no-mixed–no-

discordant -k 100–very-sensitive”. 



Experimental procedures 

 51 

Then, for each pair of multiple mapped reads, only alignments with minimal total 

edit distance (sum of edit distance in two mates) were kept. Reads mapped to U1 

pseudogenes or other genomic regions were discarded. Next, for each re-aligned BAM, 

we counted the number of variant reads and the read depth (number of reference reads 

+ number of variant reads) for each position, and for forward and reverse strand 

separately. To account for multiple mapping, an extra procedure only for the read depth 

counting were performed: that is, when a read had k equally good alignments, it is only 

counted as 1/k read. Then a beta-binomial error model trained on a project-specific 

panel of normal samples was used to call mutations, which was implemented with a 

modified version of EBCall. Finally, IGV was used to manually curate all mutation calls 

and filtered out mutations that were supported by reads with multiple mismatches in 

the same gene, or that had three or more variant reads in the paired normal sample 

according to BWA MEM or Bowtie2 alignments. To further minimize the false-negative 

rate for the g.3A>C mutation, tumors that were called as wild type but that had two or 

more variant reads at the third base of any U1 genes were also assigned to the 

undetermined group. 

Copy number and structural variants 

For exome data, copy number variants were detected using the program 

exome2cnv118 and regions which included <10 probes were removed from the analysis. 

Then, normal samples were compared to each other to identify any region that could be 

altered only by the region’s own variability. Finally, a summary with the events was done 

to obtain the percentage of loss/gain of each chromosome. Regions with a log2Ratio 

greater or equal to 0.5 were considered gains, and lower or equal to −0.5 were 

considered deletions. For a more stringent analysis −1 ≤ log2Ratio ≥ 1 was used as a 

threshold to report CNAs. Copy number alterations in whole-genome data were 

extracted using Battenberg119 and structural variants were analyzed using SMuFin94 and 

LUMPY120. 
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Identification of driver genes 

For the identification of driver genes after the analysis of 61 WGS of patients 

with MCL, all detected mutations and structural alterations focused on a specific gene 

were taken into account. The results of the previous analysis of another 21 cases with 

WES were also incorporated121. After integration of these data, we followed a 

frequency-based strategy to determine which genes could be considered as drivers of 

the disease. This type of strategy is characterized by comparing the mutational 

background with respect to the number of mutations detected in each gene, to check 

whether the gene has more mutations than expected by chance. In this way, the 

mutational background was first calculated based on the number of non-coding 

mutations present in a 0.5 Mb window at each side of the gene, together with the length 

of the gene and the coverage and callability of the coding region in each patient. Then, 

we considered that a gene was mutated in a patient if it had a missense or nonsense 

mutation, a non-coding mutation altering its functionality or was affected by a structural 

alteration (gain or loss). Finally, to test whether a gene was mutated in more samples 

than expected by chance, we calculated the probability that each gene carried a non-

synonymous mutation, following the statistical model described by Puente et al. 

(2015)29. The list of statistically significant genes was manually reviewed to eliminate 

possible false positives, such as genes that had a higher number of mutations than 

expected by chance due to other indirect mechanisms such as somatic hypermutation 

(SHM). 

Analysis of mutational signatures 

For the analysis of mutational signatures two bases upstream and downstream 

of the mutations were selected to reconstruct the context and generate a 1,536 

mutational matrix with which extract the signatures for each sample. The sigminer122 R 

wrapper (nrun= 300 and refit = TRUE) was selected to run the SigProfilerExtractor 

framework55, which uses non-negative matrix factorization iterations to identify the 

matrix of mutational signatures and the matrix of the activities of these signatures. This 

analysis was performed for three independent datasets: mutations detected only by 

RFcaller or PCAWG, respectively, and variants detected by both pipelines. 
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Gene expression and splicing analysis 

After STAR alignment of RNA-seq data, gene-level expression was counted by 

htseq-count (v0.12.4)123 and transcript level expression was estimated by Kallisto 

(v0.44.0)124. The limma125 package with the limma-trend method was used for 

differential expression analysis. Genes that do not have a worthwhile number of reads 

in any sample were filtered and only those with a q < 0.1 or adjusted p-value < 0.01 and 

absolute log2-transformed fold change > 1 were considered as significantly differentially 

expressed. 

For intron-centric differential splicing analysis, the LeafCutter126 package was 

used to quantify intron usage and identify differentially spliced intron clusters between 

two conditions. Splice junction files (SJ.out.tab) generated by STAR were used as input 

for LeafCutter. Only splice junctions supported by uniquely mapped reads and with at 

least 6-bp maximum overhang were used. An intron was considered as significantly 

differentially spliced when q < 0.1 and absolute log2(effective size) > 1. 

For the study of U1 mutations, only RNA-seq data that met the following criteria 

was considered: first, FASTQ files passed at least three main FastQC flags 

(overrepresented sequences, per base N content, per base sequence quality, per 

sequence GC content and per sequence quality scores); second, more than 50% reads 

were uniquely mapped and the total number of reads mapped by STAR was greater than 

1 million; third, the total number of fragments counted by htseq-count was greater than 

5 million; and fourth, the transcript integrity number was greater than 50. 

RNA-seq data for subcellular fractions were analyzed manually. Htseq-count 

results were normalized by ERCC spike-in expression and cell line batch effect was 

removed using the removeBatchEffect function from limma. Transcripts per million 

(TPMs) were calculated and genes with lower expression than 3 TPMs were filtered. 

All false discovery rate controls were conducted with the Benjamini–Hochberg 

procedure and false-discovery rate of 10% (q < 0.1) was selected as the significant 

threshold. P-values were adjusted by Bonferroni method. 
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Gene-set overrepresentation and enrichment analysis 

Gene lists that were significantly overrepresented in differentially expressed and 

spliced genes were identified from Gene Ontology (GO), Kyoto Encyclopedia of Genes 

and Genomes and Reactome databases using g:Profiler127, GOseq128 and 

clusterProfiler129. Gene-set enrichment analysis (GSEA) was also conducted for 

differentially expressed genes using pre-ranked gene lists ordered by −log10(p-value) x 

(sign of fold change) by camera and clusterProfiler packages. For GSEA, we focused on 

C1 (hallmarks), C2 (curated) and C5 (GO) gene sets in the Molecular Signatures Database 

(MSigDB v7.0). 

RFcaller algorithm training 

For the development of machine learning algorithms, two different set of 

mutations were used, a training set and a testing set. To build them, all possible somatic 

mutations from four WGS MCL samples sequenced at 30x coverage (M032 and M439 

for training; M065 and M431 for testing) were extracted with bcftools. For the initial 

training, previously published mutations were defined as true positive mutations. With 

each iteration, all discordant calls were manually reviewed by three experts, through 

visual inspection, and the database was updated accordingly. This procedure resulted in 

the identification of novel bona fide mutations that would constitute false negatives in 

the initial set, as well as the rejection of certain mutations, such as artifacts or germline 

mutations present in the original dataset, that would represent false positives, 

respectively. After several rounds of training the algorithms and curating the set of 

mutations, all discordant variants had already been examined, which allowed us to 

obtain a reliable dataset for training and testing the final version of the algorithms. 

To train the algorithms, a training set containing 66,096 SSNVs and 931 indels 

was used for which read-level features were previously extracted (Table 5). These data 

were used as input by TPOT (v0.11.1)130, with the default configuration of the 

TPOTRegressor function, to find the best pipeline to train the regression algorithms. As 

a result, an extremely randomized tree “Extra-Tree” Regressor for SSNVs and a Random 

Forest Regressor for indels were built. In both cases, a transformation of the data was 

carried out before the regression using the StackingEstimator function. 
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Table 5. List of read-level features required to run the algorithms 

Key Definition Algorithm 

Q30N_cov 
Coverage in normal sample when the mapping quality is high 
(Q≥30) 

SSNV; indel 

Q30T_cov 
Coverage in tumor sample when the mapping quality is high 
(Q≥30) 

SSNV; indel 

Q30N_mut_reads 
Number of mutated reads in normal sample with high 
mapping quality (Q≥30) 

SSNV; indel 

Q30T_mut_reads 
Number of mutated reads in tumor sample with high 
mapping quality (Q≥30) 

SSNV; indel 

N_mut_reads 
Number of mutated reads in normal sample without filtering 
reads (Q≥0) 

indel 

T_mut_reads 
Number of mutated reads in tumor sample without filtering 
reads (Q≥0) 

indel 

N_normal_mapQ 
Average mapping quality for wild-type reads in normal 
sample without filtering reads (Q≥0) 

SSNV; indel 

T_normal_mapQ 
Average mapping quality for wild-type reads in tumor sample 
without filtering reads (Q≥0) 

SSNV; indel 

N_mut_mapQ 
Average mapping quality for mutated reads in normal sample 
without filtering reads (Q≥0) 

SSNV; indel 

T_mut_mapQ 
Average mapping quality for mutated reads in tumor sample 
without filtering reads (Q≥0) 

SSNV; indel 

Normal_Error_Ratio 
Percentage of mismatched nucleotides around the position 
of the mutation in normal sample 

SSNV; indel 

Tumor_Error_Ratio 
Percentage of mismatched nucleotides around the position 
of the mutation in tumor sample 

SSNV; indel 

Normal_cigar 
Number of reads in normal sample containing a different 
cigar other than M 

SSNV; indel 

Tumor_cigar 
Number of reads in tumor sample containing a different cigar 
other than M 

SSNV; indel 

Dimers 
Number of repeated dinucleotides around the position of the 
mutation  

SSNV; indel 

GC_percentaje Percentage of GC SSNV; indel 

Interval_size 
The distance between the leftmost and rightmost mutation 
in the reading 

SSNV; indel 

Mean_position Mean position of the mutation along the mutated reads SSNV; indel 

N_repeat_indel 
Number of times the indel is repeated around the position of 
the mutation 

indel 

Normal_insertion_count 
Count of insertions around the position of the mutation in 
normal sample 

indel 

Normal_insertion_lenght 
Length of the largest insertion around the position of the 
mutation in normal sample 

indel 

Normal_deletion_count 
Count of deletions around the position of the mutation in 
normal sample 

indel 

Normal_deletion_lenght 
Length of the largest deletion around the position of the 
mutation in normal sample 

indel 

Tumor_insertion_count 
Count of insertions around the position of the mutation in 
tumor sample 

indel 

Tumor_insertion_lenght 
Length of the largest insertion around the position of the 
mutation in tumor sample 

indel 

Tumor_deletion_count 
Count of deletions around the position of the mutation in 
tumor sample 

indel 

Tumor_deletion_lenght 
Length of the largest deletion around the position of the 
mutation in tumor sample 

indel 
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Once we had the algorithms, the test dataset, with 63,948 SSNVs and 2,506 

indels, was used to select the best cutoffs for both pipelines. With this purpose, the 

result from RFcaller was filtered to get the “QUAL” field for those mutations that passed 

all filters. This parameter is calculated considering the initial quality from bcftools and 

the regression value for SSNV and indels, and only the regression value for 

homopolymer indels (polyindels): 

𝑄𝑈𝐴𝐿!"# 	= 𝑏𝑐𝑓𝑡𝑜𝑜𝑙𝑠	𝑞𝑢𝑎𝑙 ∗ 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑣𝑎𝑙𝑢𝑒$ 

𝑄𝑈𝐴𝐿%&'() = 𝑏𝑐𝑓𝑡𝑜𝑜𝑙𝑠	𝑞𝑢𝑎𝑙*(+*(,,%-&	/0)1( 

𝑄𝑈𝐴𝐿2-)3%&'() = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑣𝑎𝑙𝑢𝑒 

Then, ROC curves and area under the curve (AUC) were calculated using 

OptimalCutpoints131 with the MaxEfficiency method. False/True Positive/Negative ratios 

were calculated using the formulas described in the ROCR R package132. 

Computational cost 

To compare the performance of RFcaller with other state-of-the-art tools, the 

docker containers corresponding to the four callers used by PCAWG for the detection of 

SSNVs were downloaded (https://dockstore.org/organizations/PCAWG/collections/ 

PCAWG). After minor fixes of broken links in the Sanger and DKFZ tools, all of them were 

run with the default parameters for one random donor. In case the tools allowed to 

choose the number of threads and RAM to be used, 20 threads and 200 Gb of memory 

were specified. In addition, because RFcaller allows multiple samples to be run 

simultaneously, four cases were run in parallel using the default parameters to calculate 

the computational cost. 

Comparative analysis of RFcaller and PCAWG mutations 

To validate that the trained models are applicable for liquid and solid tumors and 

to compare the results to those obtained by the PCAWG pipeline, RFcaller was run for 

the CLLE-ES and BRCA-EU studies. PCAWG BAM files were downloaded from the 

“collaboratory” repository using the score-client program. RFcaller was run with its 

default parameters for all samples and the obtained results were combined into a single 
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VCF file for each study. Then, a custom panel of normals was used to annotate variants 

in complex regions. The set of mutations detected by the PCAWG pipeline were 

extracted from the controlled consensus callsets for SSNV/Indel. To analyze coding and 

non-coding mutations, the VEP tool was launched for both datasets using the following 

options: --offline --format vcf --dir_cache homo_sapiens –-symbol --force_overwrite --

total_length --numbers --ccds --canonical --biotype --pick --vcf --assembly GRCh37. 

To be able to compare both set of mutations in the most accurate manner: i) 

dinucleotides and trinucleotides from RFcaller were split as this feature is not available 

for PCAWG, ii) RFcaller mutations located in alternative chromosomes and PCAWG’s 

variants that appear in our custom dbSNP were removed and iii) only mutations that 

passed all filters were studied. For this comparison, a mutation was considered as 

subclonal when its variant allele frequency was lower than 0.15. 

For the purpose of calculating the precision and recall of both pipelines in each 

study, 1% or at least 50 discordant mutations from each section were manually reviewed 

by a panel of experts. Thus, a total of five blocks were checked: mutations detected only 

by RFcaller and mutations detected between one and four of the callers used by the 

PCAWG, as the ratio of false positives may be different between them. The results 

obtained were then extrapolated to the whole set of mutations to calculate the 

parameters needed to define precision and recall for both pipelines. These measures 

were calculated with the prediction and performance functions of the R package ROCR. 

Additionally, deep sequencing data generated by previous studies133,134 for some 

CLLE-ES cases were used to analyze possible subclonal mutations in driver genes. In 

order to compare both results, only mutations in CLL driver genes and donors analyzed 

by both WGS and deep sequencing were selected. In addition, mutations detected by 

deep sequencing were removed from the analysis if they were germline or there was 

insufficient coverage or reads supporting the mutation by WGS. 

To also test the performance of RFcaller on exome sequencing data, five CLLE-ES 

cases previously analyzed by WGS and for which exome data were available, were 

selected. RFcaller was run with default parameters and LIKELY_GERMINAL variants were 
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removed. Only mutations within the targeted regions of the exome (Agilent – SureSelect 

Human All Exons V4) were taken into account. Finally, for those mutations not detected 

by both methods, total coverage and number of mutated reads were extracted in order 

to determine the cause for loss. 

Additional information 

The bioinformatics analyses mentioned above have resulted in a large amount 

of raw data, which due to their length could not be inserted in this thesis. In this regard, 

we refer for example to the lists of mutations, CNAs or SVs detected in the different 

projects, the differential expression and splicing analyses, or the results of RFcaller 

training and its comparison with PCAWG. However, all these data are already published 

and can be found as supplementary material within the list of articles that constitute 

this thesis. 
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Genomic analysis of MCL whole genomes 

Mantle cell lymphoma is a mature B-cell neoplasm genetically characterized by 

the translocation t(11;14)(q13;q32), leading to CCND1 overexpression135–137. Although 

this tumor has a very heterogeneous behavior, two molecular subtypes with different 

clinical and biological features can be identified138–140. A poor prognosis conventional 

MCL (cMCL) characterized by the expression of SOX11 and a large number of genomic 

alterations and leukemic non-nodal MCL (nnMCL), negative for SOX11 and genetically 

stable which follows an indolent behavior. 

Although the mutational profile of MCL has been reported previously121,141,142, 

these studies were carried out with a small number of cases and by whole-exome or 

targeting sequencing, which did not allow to explore the genome-wide mutational and 

structural alterations of both MCL subtypes. 

Genome-wide mutational and structural alterations 

To extend the knowledge of mutational and structural landscape in MCL, the 

group of Dr. Elías Campo (IDIBAPS) performed WGS in 44 cMCL and 17 nnMCL cases. We 

used our previously developed Sidrón pipeline to perform somatic mutation calling for 

SSNVs and small indels in these cases. This resulted in the detection of a median of 3,593 

somatic mutations per case (1.2 mutations/Mb), including 33 coding mutations per 

tumor. Additionally, MCL tumors carried a median of 9 SV and 9 CNA. The mutational 

burden was similar in both MCL subtypes, but cMCL carried higher number of SV 

(median, 13 vs 3) and CNA (median, 12 vs 1) than nnMCL (Figure 9). A complex genomic 

landscape, defined by the presence of ≥15 SV, ≥15 CNA and/or complex alterations 

(chromothripsis, chromoplexia, kataegis or breakage-fusion-bridge) was observed in 23 

(52%) cMCL and 3 (18%) nnMCL. 
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Figure 9. Number of mutations and structural alterarions identified by WGS between 

MCL subtypes. Box plots of the total number of mutations (median: 3593 (total); 3553 

(cMCL); 4112 (nnMCL)), structural variants (SV) (median: 9 (total); 13 (cMCL); 3 (nnMCL)) 

and copy number alterations (CNA) (median: 7 (total); 12 (cMCL); 1 (nnMCL)) in cMCL 

(blue) and nnMCL (yellow). 

Chromothripsis events were clonal in all but one case, and recurrently targeting 

RB1 in 4 (9%) cMCL and TERT in 2 (12%) nnMCL. Chromoplexia affected 14 different 

chromosomes with TERT the only cancer gene affected in one case. Chromothripsis and 

chromoplexia occurred in both MCL subtypes, but breakage-fusion-bridge (BFB) cycles, 

a novel and frequent finding in MCL, was only observed in cMCL (20%). This is a 

mechanism of genomic instability that occurs during mitosis due to the loss of the 

telomere in one of the chromatids. Upon duplication during mitosis, both sister 

chromatids, as they lack telomeres, join together to form a single dicentric chromosome. 

When both centromeres separate, if the breakage does not happen at exactly the same 

point of fusion, structural rearrangements occur. Because the resulting chromosomes 

lack telomeres, duplications, deletions, inversions or translocations continue to occur in 

each cycle143. Thus, BFB cycles generated recurrent high-level amplification of BMI1 (4 

cases) and MIR17HG (2 cases) and were associated with worse clinical outcome. On the 

other hand, although chromosomal translocations and inversions were relatively 

frequent in MCL, they were not recurrent and very few were associated with known 

cancer genes. In this regard, only two cMCL had SVs that truncated PAX5, and just one 

cMCL had a balanced 2p inversion that fused MYCN with IGK enhancer, leading to high 

overexpression of the gene. 
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The CNA detected by WGS confirmed the specific MCL profile previously 

characterized by frequent losses of 1p22-p13, 6q, 9p21/CDKN2A, 9q22-q31, 11q22-

q23/ATM, 13q14/RB1, 13q33q34, and 17p/TP53, and gains of 3q25-q29 and 7p. We also 

identified novel recurrent losses at 10q21.1 and 15q14-q21.1 and significant differences 

in the distribution of specific alterations in cMCL (losses of 1p22-p13, 6q, 9q22-q31, 

11q22-q23/ATM, 13q33-q34, and gains of 3q25-q29 and 7p) and nnMCL (loss of 

17p/TP53) (Figure 10). 

 

Figure 10. Global profile of CNA in cMCL and nnMCL. Only regions with at least 6 altered 

cases were included in the comparison. cMCL is colored in blue and nnMCL in yellow. 

Since the translocation between chromosomes 11 and 14, which results in 

CCND1 overexpression, was detected in practically all patients with WGS (60/61), and as 

this technique provides sufficient information to be able to detect breakpoints, we 

decided to investigate this event in more detail. Thus, we detected nineteen 

translocations (14 cMCL, 5 nnMCL) occurring at a small region of just 89 bp within the 

previously recognized major translocation cluster (MTC). The remaining breakpoints 

were similarly scattered at both sides of the MTC in cMCL and nnMCL (Figure 11). 

Moreover, most 5' and MTC breaks occurred near CpG sites and activation-induced 

cytidine deaminase (AID) motifs, whereas 3' breaks were only found near AID motifs. 

This provides a strong and direct evidence that translocations between IgH and CCND1 

are initiated by AID in both subgroups. 
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Figure 11. CCND1 breakpoints. Distribution of the CCND1 breakpoints in cMCL (blue-top) 

and nnMCL (yellow-bottom). The major translocation cluster (MTC) corresponding to 89 

bp region is highlighted in green. Both cMCL and nnMCL have the same breakpoint 

distribution: 21% vs 12% (5'), 33% vs 29% (MTC) and 44% vs 59% (3'). 

Drivers in MCL 

To discover genomic alterations involved in MCL lymphomagenesis we 

integrated all mutations, CNAs and SVs detected in the 61 WGS sequenced in this study, 

together with 21 nonoverlapping and previously analyzed WES cases (74% cMCL and 

26% nnMCL)7. In this sense, for the discovery of new driver genes a frequency-based 

strategy was followed. Thus, due to the different mutational burden of different 

genomic loci, we calculated the mutational background for each locus using the number 

of non-coding mutations in a 0.5 Mb window centered in the gene. To compute the 

number of expected mutations in the coding region, we considered the length of each 

gene, as well as the coverage and the callability of the coding region along all analyzed 

samples. The number of affected cases for each gene was calculated considering 

missense and nonsense mutations, non-coding mutations affecting the functionality of 

the gene as well as other associated events, such as amplifications or deletions. This 

procedure allowed us to identify 26 genes significantly altered in the whole cohort. 

Among them we confirmed some of the previously described driver genes in 

MCL, such as ATM (48%), CCND1 (44%) with exon1/intron1 somatic mutations (26%) 

and/or 39 UTR activating alterations (21%), TP53 (26%), KMT2D (23%), RB1 (23%), BIRC3 

(22%), CDKN2A (21%), SP140 (13%), NSD2 (12%), BMI1 (11%), MIR17HG (10%), and 

UBR5 (6%). However, this analysis also revealed 7 novel MCL driver genes altered by 

missense or truncating mutations and deletions, including CDKN1B (12%), SAMHD1 
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(10%), BCOR (9%), SYNE1 (6%), HNRNPH1 (6%), SMARCB1 (4%), and DAZAP1 (4%). 

Furthermore, 4 genes mutated at lower frequency, but carrying known driver alterations 

(NOTCH1, NOTCH2, TLR2, and PAX5) were also detected. 

In this regard, it must be noted that despite the increase in the number of cases 

analyzed over previous studies, only a few novel driver genes were discovered. 

Moreover, this was achieved mainly to the identification of SVs and CNAs, which play a 

major role in this pathology, while point mutations played a more limited role in the 

identification of novel driver genes. Additionally, with respect to CNAs, 13 chromosomal 

regions without a defined target gene were recurrently altered, most of them 

corresponding to deletions. Overall, 81 of 82 (99%) MCL cases had at least 1 driver 

alteration in addition to the t(11;14) (median, 6). Collectively, 8 main pathways were 

frequently altered in MCL including proliferation, cell survival, DNA damage response, 

telomere maintenance, chromatin remodeling, B-cell receptor/Toll-like receptor/NF-kB 

signaling, NOTCH signaling, and RNA regulation (Figure 12). 

Finally, most MCL drivers were found to be preferentially altered in cMCL cases, 

with the unique exception of somatic hypermutation in CCND1 mainly found in nnMCL. 

Of note, ATM alterations (64%); deletions of 1p, 10p, and 19p; and gain of 7p were 

exclusively seen in cMCL, whereas TP53 and TERT alterations were the only drivers 

slightly enriched in nnMCL, with all 5 cases with TERT alterations carrying concomitant 

TP53 aberrations. Altogether, cMCL cases had a significant higher number of driver 

alterations than nnMCL (median, 7 vs 2), what might explain the different evolution 

course of both subtypes of MCL. 
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Figure 12. Oncoprint representation of the 43 driver alterations identified in MCL. Drivers 

are depicted in rows and group according to pathways in which they are involved. Cases 

are displayed in columns. Novel driver alterations identified in this study are highlighted 

in dark orange. From Nadeu et al. 2020. 
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Development of a machine learning based tool for the 

detection of somatic mutations 

The identification of cancer driver genes, as well as secondary analysis such as 

mutational burden and mutational signatures depends on the performance of somatic 

mutation callers. In the case of the PCAWG analysis, the most comprehensive analysis 

of tumor genomes to date, we noticed that this collective effort used up to 5 variant 

callers for the identification of somatic mutations. Due to the importance of this step, 

and the large computing resources required for this redundant analysis, we thought that 

it was necessary to develop an easy-to-use tool with fewer requirements so that more 

modest groups and even clinical centers could also carry out this type of analyses in a 

reasonable amount of time. Hereby, our previous experience during the analysis and 

review of MCL whole genomes allowed us to generate a database with manually curated 

mutations that could be used to train a machine learning algorithm, a promising 

technology that offered many possibilities. We have thus developed RFcaller, an 

algorithm based on read-level features that uses machine learning for somatic mutation 

detection in paired normal/tumor samples. 

RFcaller workflow 

An overview of the RFcaller’s workflow is provided in Figure 13. The pipeline 

takes as input the BAM files from the normal-tumor paired samples and starts 

performing a basic variant calling using bcftools (v1.10.2) with the -P option set to 0.1 to 

enable calling of low frequency variants. Then, indels are normalized, and common SNPs 

(dbSNP v153), and variants within five base pairs of an indel, are removed. To increase 

the speed of the pipeline, low quality calls are filtered out (<15 for SSNVs and <40 for 

indels). Remaining mutations are divided into three different files to be processed 

independently: SSNVs, short-indels (<7bp) and long-indels (≥7bp). 
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Figure 13. Flowchart of the RFcaller pipeline. 

SSNVs and indels have a specific pipeline where read-level features are extracted 

for those mutations that meet basic requirements that can be customized, such as 

having a minimum coverage (≥7), a maximum number of mutated reads in normal (≤3 

for SSNVs and ≤2 for indels) or a minimum number of mutated reads in tumor (≥3 for 

SSNVs and ≥4 for indels). These filters have been chosen because positions that fail to 

meet these requirements cannot be confidently classified as bona fide mutations from 

the available data. Once all features have been extracted, a CSV file is generated to be 

used by the algorithm. The result is a VCF file with the mutations that have passed the 

threshold for the “QUAL” field. 
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To classify mutations that might be germinal but have passed the previous filters, 

a 95% confidence interval is applied to calculate the number of mutant reads expected 

in the normal sample, considering: the VAF of the mutation in tumor sample, the 

expected contamination of tumor in normal sample defined by the user and the normal 

coverage. Thus, if the number of mutated reads in normal is greater than the expected, 

the position is labeled as “LIKELY_GERMINAL”. 

Finally, the RFcaller pipeline for SSNVs searches for dinucleotide or trinucleotide 

mutations within the results. With this step, if two mutations are found together in cis, 

they are merged into a single mutation to be accurate when predicting its functional 

effect, a step that is usually missed by most commonly used somatic callers, resulting in 

incorrect predictions of the potential functional effect. 

RFcaller training 

For the initial training step, previous results from the genomic analysis of two 

mantle cell lymphomas144 were used to annotate the set of mutations, and RFcaller was 

trained with this initial dataset. The obtained results were compared with those used 

for training, and all discordant positions were manually reviewed to improve the 

accuracy of the dataset. These steps were repeated until all discrepancies were classified 

by an expert panel. After that, 2,208 and 2,901 calls were reviewed for training and 

testing, respectively, resulting in a high quality set of mutations to train and test the final 

versions of the algorithm (Table 6). 

Table 6. Number of total and manually reviewed mutations used for training and testing RFcaller 

 Training set Test set 
 SSNV Indel SSNV Indel 
 TP TN TP TN TP TN TP TN 

Manually reviewed 915 730 321 242 924 959 528 490 

Total 8,362 57,734 504 427 6,909 57,039 696 1,810 

TP: Number of True Positive mutations; TN: Number of True Negative mutations 
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In order to select the best cutoff for the pipeline, SSNVs, indels and 

homopolymer indels were considered independently as they represent mutations 

whose detection is influenced by different features. The distinction between both types 

of indels (isolated or within a homopolymer trait) was introduced due to the bias of the 

initial calling performed by bcftools against indels within homopolymeric tracts, giving 

very low scores to mutations that otherwise appeared to be real. Furthermore, different 

formulas were considered to calculate the “QUAL” threshold used by RFcaller (Table 7).  

Table 7. Metrics given by OptimalCutpoints for each formula and mutation type 

  Formula OptimalCutpoint* AUC IC95% 
TP 

(TPR) 

FP 

(FPR) 

TN 

(TNR) 

FN 

(FNR) 
F1 

S
S

N
V

s 

RF 0.3179 0.999 
0.998 6681 55 2334 75 

0.9903 
0.999 0.989 0.023 0.977 0.011 

BCF*RF 14.4152 0.998 
0.997 6714 78 2311 42 

0.9911 
0.999 0.994 0.033 0.967 0.006 

BCF*(RF**2) 10.726 0.999 
0.998 6685 31 2358 71 

0.9924 
0.999 0.99 0.013 0.987 0.011 

BCF**RF 4.2335 0.999 
0.998 6683 39 2350 73 

0.9916 
0.999 0.989 0.016 0.984 0.011 

In
d

e
ls

 

RF 0.6232 0.94 
0.926 507 72 652 64 

0.8817 
0.953 0.888 0.099 0.901 0.112 

BCF*RF 140.9368 0.848 
0.828 391 92 632 180 

0.7419 
0.869 0.685 0.127 0.873 0.315 

BCF*(RF**2) 76 0.909 
0.893 458 88 636 113 

0.82 
0.926 0.802 0.122 0.879 0.198 

BCF**RF 32.1418 0.936 
0.922 504 52 672 67 

0.8944 
0.95 0.883 0.072 0.928 0.117 

H
o

m
o

p
o

ly
m

e
r 

in
d

e
ls

 

RF 0.7723 0.98 
0.954 95 4 46 1 

0.9743 
1 0.99 0.08 0.92 0.01 

BCF*RF 3.0406 0.814 
0.735 95 23 27 1 

0.8878 
0.893 0.99 0.46 0.54 0.01 

BCF*(RF**2) 3.3084 0.935 
0.89 92 9 41 4 

0.934 
0.981 0.958 0.18 0.82 0.042 

BCF**RF 3.0395 0.947 
0.906 94 8 42 2 

0.9494 
0.987 0.979 0.16 0.84 0.021 

*Selected cutoffs are underline. 

AUC: Area Under the Curve; IC95%: Interval Confidence 95%; TP: Number of True Positive mutations; 

FP: Number of False Positive mutations; TN: Number of True Negative mutations; FN: Number of False 

Negative mutations; TPR: True Positive Rate; FPR: False Positive Rate; TNR: True Negative Rate; FNR: 

False Negative Rate; F1: F1-score 
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Although the RFcaller score provided high accuracy, we observed that by 

combining the regression obtained by RFcaller with the score given by bcftools, the 

accuracy was improved over each one independently, suggesting both scores 

complement each other. We did not observe major differences between formulas for 

SSNVs and indels according to the AUC, so we selected the formulas with the highest F1 

score. Thus, the cutoffs were 10.726 for SSNVs, 32.1418 for indels and 0.7723 for 

homopolymer indels (Figure 14), which achieved 1.3%, 7.18% and 8% of false positive 

mutations, respectively. We observed that many of the false positives belonged to 

complex regions like microsatellites or GC-rich sites, appearing also in normal samples 

from other donors. Therefore, we used a panel of normals to filter these calls and 

improve the accuracy of the pipeline. 

 

Figure 14. ROC curves for each mutation type with RFcaller results for the test data set 

using the formulas with the best F1 score. Cutoffs were obtained with the MaxEfficiency 

criterion. polyINDEL, Homopolymer indel. 

In terms of the number of variables selected, only 16 and 27 read-level features 

were considered for SSNVs and indels respectively, which helped us to avoid overlapping 

features that can be counterproductive and lead to overfitting. Another important 

aspect we considered during the selection of these features was the difficulty by which 

they can be extracted, resulting in a fast pipeline for medium-size servers. Thus, the 

analysis of four WGS tumor-normal paired samples using 20 threads consumes only ~5 

GiB of RAM and takes ~3 hours/case, while using only 10 processors the analysis is 

extended up to ~4.5 hours/case (Figure 15d). 
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Figure 15 Representation of the computational cost of running RFcaller and the other 

callers used by the PCAWG. a) the time it takes for each caller to complete a case. B, c) 

CPU and memory (RSS) usage for the duration of the pipelines (RSS memory was limited 

to 200Gb when the caller allowed it). D) memory (RSS) usage of RFcaller pipeline when it 

is run with 10 or 20 threads for four independent cases simultaneously. 

When RFcaller was compared with the callers used by PCAWG for the detection 

of SSNVs, only the muse-variant-caller (~2.5 h) was faster than RFcaller (~4.8 h) (Figure 

15), while sanger-variant-caller was the slowest, taking more than 70 h for a single case. 

In terms of memory consumption (RSS), mutect-variant-caller is the most demanding, 

consuming between 100 GiB and 250 GiB during half the time it is running (~5 h). In this 

case, RFcaller and muse-variant-caller consume the least memory with an average of 5 

GiB. It is important to note that although we have used the SSNVs specific callers, all of 

them, except MuSE, also detect indels, which would imply that RFcaller is the fastest 

and least resource consuming tool for the simultaneous calling of SSNVs and indels. 
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Validation of RFcaller pipeline: PCAWG analysis 

To test RFcaller against a validated set of cancer WGS cases we used data from 

the PCAWG study belonging to two different projects (CLLE-ES and BRCA-EU), 

representative of liquid and solid tumors, with a total of 89 and 75 cases, respectively. 

RFcaller results were compared to those mutations labeled as “PASS” by the PCAWG 

mutation calling pipeline. Due to the inherent differences between SSNVs and indels, 

we performed each analysis independently. 

Somatic Single Nucleotide Variants 

After merging RFcaller and PCAWG “PASS” mutations, we observed that ~70% of 

SSNVs were detected by both pipelines in both studies. However, and even though the 

number of shared mutations was almost the same, for samples from the CLLE-ES project 

11% of mutations were detected only by the PCAWG pipeline vs. 16.3% mutations 

specifically detected by RFcaller. For BRCA-EU-derived mutations, only 4.4% mutations 

were RFcaller-specific, vs. 25.4% for PCAWG pipeline (Figure 16a). A detailed analysis of 

those differentially called mutations revealed that the mean VAF for SSNVs detected by 

both pipelines was 0.41 and 0.27 for CLLE-ES and BRCA-EU, respectively (Figure 16c). 

However, those detected by the PCAWG pipeline but not RFcaller had a mean VAF of 

0.16 and 0.10 for CLLE-ES and BRCA-EU, respectively (Figure 16c), suggesting that they 

constitute subclonal mutations. In fact, only 29% and 50% of them could be detected by 

more than two callers in the PCAWG pipeline for CLLE-ES and BRCA-EU, respectively 

(Figure 16e). Furthermore, those SSNVs detected by RFcaller but not the PCAWG 

pipeline had a mean VAF of 0.46 for CLLE-ES and 0.28 for BRCA-EU, similar to those 

detected by both pipelines, suggesting that they constitute clonal mutations detected 

by RFcaller. Some of them showed minor tumor in normal contamination (1-3 mutant 

reads), common in hematological tumors, resulting in most callers missing these true 

positive somatic mutations, while RFcaller is able to retain most of them. 
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Figure 16. Summary of mutations detected by PCAWG and/or RFcaller pipelines for 

SSNVs and indels. a,b) Classification of mutations according to the pipeline that can detect 

them. Mutations are divided in clonal (VAF≥0.15) and subclonal (VAF<0.15) mutations. c, 

d) Distribution of the variant allele frequency of the mutations identified by both 

pipelines, or specifically by RFcaller or PCAWG pipeline. e, f) Number of callers detecting 

each of the PCAWG-private mutations. 

To explore the set of discordant mutations between both pipelines, we randomly 

selected 1-2% of the pipeline-private calls (n = 776 for CLLE-ES and n = 1,233 for BRCA-

EU) to be manually reviewed by a panel of experts. As expected, PCAWG-specific 

variants detected by four callers are more precise than those identified by two tools 

(Table 8). Surprisingly, the difference in precision for RFcaller-private mutations 

between studies was very high, 98.5% for CLLE-ES and 74.5% for BRCA-EU, probably 
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reflecting the fact that RFcaller was trained using a hematological tumor. However, 

despite the apparently higher number of false positives, RFcaller-private calls only 

represent 18.3% and 5.9% of the total number of SSNVs detected by RFcaller in the CLLE-

ES and BRCA-EU projects, respectively. Considering the observed number of false 

positive calls within these sets, the real precision of RFcaller calls for SSNVs is 99.7% and 

98.5% for CLLE-ES and BRCA-EU, respectively, while the precision of the PCAWG pipeline 

is 97.3% for both studies (Figure 17). 

Table 8. Total number of false positive private SSNVs extrapolated after manual revision  

 CLLE-ES BRCA-EU 
 SSNVs TP FP Precision SSNVs TP FP Precision 

2 callers 20,956 16,097 4,859 76.81% 50,823 42,804 8,019 84.22% 

3 callers 5,715 5,001 714 87.50% 28,490 26,469 2,021 92.91% 

4 callers 2,729 2,519 210 92.31% 23,580 23,080 500 97.88% 

RFcaller 41,772 41,153 619 98.52% 17,699 13,189 4,510 74.52% 

TP: Number of True Positive SSNVs; FP: Number of False Positive SSNVs 

 

Figure 17. Accuracy of RFcaller and PCAWG pipelines for SSNVs and indels against CLLE-

ES and BRCA-EU datasets. RFcaller shows a higher recall in both SSNVs and indels for CLLE-

ES, whereas in BRCA-EU the PCAWG manages to detect a higher number of mutations. The 

precision of the two pipelines is similar in all conditions. 

To further explore these private mutations, we extracted the mutational 

signatures independently for the set of mutations detected by both pipelines, as well as 

for those specific for each caller (Figure 18). We could see that in CLLE-ES study, both 

RFcaller-private SSNVs and those common to both pipelines contained the same 

signatures (SBS1, 5, 8 and 9), while PCAWG-private SSNVs shared 3 signatures (SBS1, 5 
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and 8), missed one (SBS9) and contained two signatures not detected in the common 

set (SBS23 and 51), although affecting a limited number of samples. While on the BRCA-

EU study, both pipelines missed some signatures present in the common set (2 PCAWG 

and 4 RFcaller), and both detected one and two signatures, respectively, not present in 

the common. Together, these results suggest that the private mutations detected by 

RFcaller constitute bona fide calls, with a similar profile to those detected by both 

pipelines. 

 

Figure 18. Mutational signatures extracted for CLLE-ES and BRCA-EU studies using the set 

of mutations detected by both pipelines and RFcaller and PCAWG-private SSNVs 

independently. At the bottom of each lane the number of patients presenting that 

signature with respect to the total is indicated. The median number of mutations per 

megabase for each signature is shown in red. 



Results 

 77 

Small insertions/deletions 

The analysis of small indels revealed that there were more differences between 

pipelines than those seen for SSNVs. In this regard, only ~50% of indels were detected 

by both RFcaller and PCAWG pipelines, however for CLLE-ES RFcaller-private calls 

represented 39.1% of the total number of indels whereas only 11.5% of them were 

PCAWG-specific. In contrast, in BRCA-EU, RFcaller and PCAWG-private mutations 

accounted for 13.8% and 31.4% respectively (Figure 16b). Moreover, among them, less 

than 45% of PCAWG-private indels were detected by more than two callers (Figure 16f), 

reflecting the difficulty to identify somatic indels in tumor samples. 

To further explore pipeline-private indels, we selected at least 50 indels from 

each group for expert review (n = 283 for CLLE-ES and n = 429 for BRCA-EU). We 

observed that the precision within PCAWG-private indels was very high, varying 

between 70% and 99% depending on the number of individual callers supporting the call 

(Table 9). In contrast, the precision observed for RFcaller was 89%, despite the fact that 

the total number of indels detected by this pipeline was much higher. Similar to SSNVs, 

the observed VAF was slightly higher in CLLE-ES compared to BRCA-EU (0.42 vs 0.29), 

probably reflecting higher tumor purity. Nonetheless, we did not observed differences 

in VAF between pipeline-private indels (Figure 16d), suggesting that pipeline-specific 

mutations were not due to clonality, as they were for SSNVs, but to other factors such 

as alignment issues, size of the indel, the presence of microsatellites or if they were 

within homopolymer tracks.  

Table 9. Total number of false positive indels extrapolated after manual revision 

 CLLE-ES BRCA-EU 

 Indels TP FP Precision Indels TP FP Precision 

1 caller 392 276 116 70.37% 1,125 1,008 117 89.57% 

2 callers 1,044 1,002 42 96.00% 3,046 2,792 254 91.67% 

3 callers 546 495 51 90.74% 2,133 2,097 36 98.31% 

4 callers 211 207 4 98.18% 1,184 1,174 10 99.14% 

RFcaller 7,335 6,916 419 94.29% 3,257 2,721 536 83.54% 

TP: Number of True Positive indels; FP: Number of False Positive indels 
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Despite the higher precision obtained by the PCAWG pipeline for indel calling, 

this might be at the expense of a larger number of false negative calls in otherwise clonal 

and bona fide somatic indels, as shown by the number of true positive calls detected by 

RFcaller (Figure 17). In the case of mutational signatures detected for indels (Figure 19), 

private calls from both pipelines contained most of the mutational signatures present in 

common mutations, while in the case of RFcaller-private indels, 3 signatures not present 

in the common set were detected for both CLLE-ES and BRCA-EU studies. 

 

Figure 19. Mutational signatures extracted for CLLE-ES and BRCA-EU studies using the set 

of mutations detected by both pipelines and RFcaller and PCAWG-private indels 

independently. At the bottom of each lane the number of patients presenting that 

signature with respect to the total is indicated. The median number of mutations per 

megabase for each signature is shown in red. 
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Exome analysis 

RFcaller was trained with WGS data, but as the features used for the prediction 

are at read level, this pipeline could also be used for exome analysis. In order to test the 

ability of RFcaller to detect mutations by WES, exomes from five cases previously 

analyzed by WGS were run with default parameters. Results were compared with those 

obtained by RFcaller and PCAWG in the WGS analysis after filtering for mutations within 

target regions in WES. Thus, 63% (n = 110) of mutations detected by WES were also 

detected by WGS. Additionally, we were able to identify 47 novel mutations for which 

there was neither coverage nor any mutated read in WGS (Figure 20a). When we made 

the comparison in the opposite direction, we found that 55% (n = 136) of the mutations 

detected by WGS did not appear by WES. However, 93% (n = 126) of these missing 

mutations had no coverage or any mutated read in the exome or were clearly germinal 

(Figure 20b). Only 10 mutations detected by WGS had enough coverage in WES and were 

not detected, constituting false negatives (RFcaller exome recall = 94%). Similarly, 

considering the 17 mutations that were labeled as germinal by WGS but detected by 

WES as false positives, RFcaller achieves a precision of 90%. 

 

Figure 20. Comparison of mutations detected by analysis of WGS and WES in selected 

donors. Comparison is limited to exomic regions. a) Mutations detected by WES and 

analysis of their status in WGS. b) Mutations detected by WGS and analysis of their status 

in WES samples. 
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Detection and verification of mutations in driver genes 

From the above data we can conclude that RFcaller has a similar accuracy to 

detect SSNVs, and an increased sensitivity to detect indels at the cost of a smaller 

specificity. To explore if these differences might allow the detection of previously missed 

mutations with potential clinical impact, we analyzed somatic mutations on the set of 

driver genes previously described in these two tumor types (Knisbacher, B et al. 2022 (in 

press))53. This analysis resulted in the identification of 155 coding mutations in driver 

genes in the CLLE-ES project and 162 in the BRCA-EU study. Out of those calls, 83% of 

them were shared between both pipelines, while 53 (17%) in 35 driver genes, were 

pipeline-specific. 

Those pipeline-specific mutations were manually reviewed, resulting in the 

identification of 19 clonal mutations detected by RFcaller (12 SSNVs and 7 indels) vs. 4 

clonal SSNVs detected by the PCAWG pipeline in CLLE-ES. For the BRCA-EU project, 8 

clonal mutations were detected by RFcaller (5 SSNVs and 3 indels) vs. 4 clonal detected 

by PCAWG pipeline (3 SSNVs and 1 indel). 

For seven private calls detected in the CLLE-ES study (5 by RFcaller, and 2 by the 

PCAWG pipeline), tumor and normal DNA was available for verification by Sanger 

sequencing, except two cases in which only tumor DNA was available. This analysis 

resulted in the verification of all RFcaller-private calls (Figure 21), as well as one of the 

PCAWG-private SSNVs. The last call could not be verified because it was a subclonal 

mutation with a very low VAF (8.7%), that falls below the detection limit of this 

technique.  

To further perform an orthogonal validation of these pipelines, we took 

advantage of a previous study in which 26 CLL driver genes had been analyzed by deep-

sequencing in some of the CLL cases used by PCAWG133,134. A total of 77 mutations, 

excluding germline calls, were detected in 28 cases, for which enough coverage was 

available in WGS to make a call. Due to the high depth of sequencing, VAF was very 

variable (range 0.0029 to 0.9665), therefore, mutations were classified as clonal if 

VAF≥0.15 (n = 44, median 0.43), and subclonal if VAF<0.15 (n = 33, median 0.03). As 
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expected, most subclonal mutations could not be detected from WGS data, as each 

pipeline was only able to detect 6/33 subclonal mutations (18%). By contrast, most 

clonal mutations detected by deep sequencing could be identified by RFcaller (39/44, 

89%), while the performance of the PCAWG pipeline was slightly lower (31/44, 70%).  

 

 

Figure 21. Electropherograms corresponding to Sanger verification of private mutations 

detected by RFcaller and PCAWG in CLL driver genes. Black arrows correspond to wild-

type positions, whereas red arrows indicate the mutations. For the RFcaller-private indel, 

wild-type and mutated sequences appear below the electropherogram. 

The mutations specifically detected by RFcaller affected NOTCH1 (3), ATM (2), TP53, 

RPS15, MGA and DDX3X, some of which have been associated with poor prognosis and 

whose presence might impact clinical decisions. The PCAWG pipeline was able to 

identify a mutation in ATM that was not detected by RFcaller due to a very low VAF 

(0.065). Together, these results support the utility of RFcaller to identify novel clonal 

driver mutations of potential clinical value. 
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Circulating tumor DNA from the cerebrospinal fluid allows 

the characterization and monitoring of medulloblastoma 

The importance of somatic mutation callers in the clinical practice depends on 

the increasing relevance of molecular classification of tumors for prognosis and clinical 

decisions. In this regard, medulloblastoma constitutes the most prevalent malignant 

brain tumor in childhood and can be subdivided into different subtypes with very diverse 

prognosis145,146. Accordingly, a risk-classification scheme has been established to stratify 

patients in four groups with a 5-year progression-free survival of 91% (favorable), 81% 

(standard), 42% (high risk) and 28% (very high risk)145,147. To achieve this 

characterization, both clinical and molecular features are needed. 

As first line, surgical specimens are used for diagnosis and tumor 

characterization. However, MB tumors evolve with time highlighting the need for 

longitudinal samples for disease monitoring. In this regard, a relatively noninvasive 

method, such as liquid biopsies and ctDNA, is required to assist the clinical management 

of MB patients. However, even though the detection of ctDNA in CSF, which is obtained 

routinely for cytologic analysis, was previously reported in adult brain malignancies148–

151, it has not yet been explored in the pediatric setting. 

Classification of MB patients 

In order to assess whether the analysis of CSF ctDNA could be a tool for the 

diagnosis and monitoring of MB patients, the group of Dr. Joan Seoane at VHIO collected 

tumor, blood and CSF samples from 13 patients, and whole-exome sequencing was 

performed in those samples. My involvement in this project was the analysis of somatic 

and germline mutations, as well as copy number alterations, derived from the exome 

sequencing of tissue biopsies and normal DNA, as well as from CSF ctDNA. To carry out 

the initial classification of patients (Table 10, Figure 22a) into previously defined MB 

subgroups and subtypes145,146, common MB germline and somatic driver mutations 

(median 0.36 mutations/Mb), focal copy number alterations, arm-level and whole 

chromosome gain/loss were identified from WES from tumor-normal pairs (Figure 22b). 
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Figure 22. Project outline and characterization of a cohort of 13 pediatric patients with 

MB. a) Summary of the MB common molecular alterations investigated for the 

classification into subgroup and association of risk stratification. b) Oncoprint with 

molecular features, including driver events in MB, identified from the WES 

characterization of 13 MB patients. The number of mutations identified for each patient 

is indicated in the top and the proportion of patients with each alteration on the right. 

Distinct alterations are indicated in the color legend. 
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WES of CSF ctDNA reflects the tumor genomic alterations 

allowing MB-subgroup and risk stratification 

Together with the analysis of primary tumors, whole-exome sequencing analysis 

of CSF ctDNA was performed in four patients with very high risk (MB5, MB6, MB8 and 

MB13) to determine whether WES of ctDNA in the CSF could reliably identify and reflect 

the genomic alterations of the tumor. 

After WES analysis, we found that 98.9% (88/89) of the mutations detected in 

the primary tumor sample with VAF > 5% could also be detected in the matching CSF 

ctDNA. Importantly, there was a significant correlation between tumor VAFs and the 

ones obtained from the CSF ctDNA (Figure 23). This observation indicates that the CSF 

ctDNA recapitulates the intratumor heterogeneity present in the primary tumor 

providing information about the subclonal genomic architecture of MB tumors. Using 

our previously developed pipeline for the analysis of copy number alterations from WES 

(exome2cnv), we identified CNAs from primary tumor and CSF ctDNA. This analysis 

revealed that the overall CNA landscape in the CSF samples resembled the one found in 

the matching tumors (MB6, MB8 and MB13). Despite the limited amount of ctDNA from 

sample MB5-CSF, key MB CNAs detected in the primary tumor could also be detected in 

the CSF (Figure 24). 

 

Figure 23. CSF ctDNA allows the detection of the main mutations present in MB tumors. 

a) Correlation of CSF ctDNA VAF with tumor VAF for each mutation identified in the tumor 

sample (VAF > 5%). Linear regression and Goodness-of-fit R2 indicated in each figure. n, 

represents the number of mutations detected in the primary tumor sample with VAF > 5%. 
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Figure 24. CNA detected in tumor and CSF for four MB patients with longitudinal samples. 

The marked alterations are those used for molecular characterization and classification 

into the different MB subtypes. Each dot shows log2 ratios of tumor-normal probe 

intensities. The chromosomes, from 1 to X, are represented each one in a different color. 

CSF1 samples were collected at the same time that the tumor, while CSF2 and MB8-CSF 

samples were extracted for patient monitoring months later. 
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To determine whether the molecular information obtained from CSF ctDNA 

could be enough to perform a clinical classification of the primary tumor, we classified 

patients into a MB-subgroup and risk-stratified. In this regard, many of MB common 

molecular alterations used for the classification could be detected in CSF, such as PTCH1 

and TP53 mutations; MYCN and GLI2 amplifications; SUFU deletion and 17p loss, which 

facilitated classification by subgroups. These results matched the classification obtained 

through the WES analysis of primary tumors, demonstrating that the CSF ctDNA analysis 

could be used as a diagnostic tool to classify and risk-stratify patients. 

CSF ctDNA allows MB tumor monitoring 

We next sought to address whether WES from CSF ctDNA could help follow 

tumor evolution of MB patients and provide information concerning response to 

treatment or disease progression. For this aim, collected follow-up samples of CSF were 

analyzed and compared to samples at diagnosis. 

In this sense, MB6 and MB13 patients underwent surgical resection, but residual 

disease was detected by magnetic resonance imaging. After chemo and radiotherapy, 

MB6 showed a small nodule whereas for MB13 there was no evidence of residual 

disease during follow-up imaging. The analysis of longitudinal CSF samples for these two 

patients was able to identify some of the mutations previously detected in tumor and in 

early CSF samples, but no novel mutations were detected. Even though the frequency 

at which these mutations appeared in the CSF was very low (VAF < 1.5%), the fact that 

a small amount of ctDNA was observed in the CSF sample obtained at the end of the 

treatment indicated that residual disease was still present. Thus, both cases, MB6 and 

MB13, evidenced that CSF ctDNA could facilitate the identification of minimal residual 

disease in MB patients. 

In contrast to the previous cases outlined, patients MB5 and MB8 progressed 

and died from their disease following relapse. After surgery, postoperative imaging of 

patient MB8 identified residual disease and treatment was initiated, but without 

achieving the expected results. Sequencing analysis of tumor and CSF samples at relapse 

revealed common alterations including predicted drivers and CNAs. In addition to the 

tumor-specific mutations that were also detected in the ctDNA, CSF-private mutations 

were identified, including a new driver mutation in KMT2A. 
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Similarly, patient MB5 underwent surgical resection, although residual disease 

was also identified on postoperative imaging. Treatment was initiated and thirty months 

after diagnosis, the patient relapsed. Following tumor resection and chemotherapy, an 

acute tumor progression was observed, and the patient died 9 months after relapse 

(Figure 25a). Despite the limited amount of CSF cfDNA, mutations and most relevant 

genomic alterations identified in the tumor were also detected in the CSF ctDNA, 

including MYCN and GLI2 amplification and partial loss of 17p. Surprisingly, the analysis 

of CSF ctDNA at relapse revealed a genomic transformation, with a distinct molecular 

profile not shared with the primary nor with the first relapsed tumor (Figure 24 and 

Figure 25b).  

 

Figure 25. CSF ctDNA reveals a new primary tumor in MB5 longitudinal sample. a) 

Longitudinal monitoring of MB5 patient that relapsed and died from the disease. b) VAFs 

(%) identified from the WES of tumor DNA, CSF1 and CSF2 cfDNA samples. Most of the 

mutations detected in CSF2 had not been previously detected in the tumor or in CSF1. The 

color refers to whether the samples (a) or the mutations (b) belonged to the first (green) 

or to the second independent tumor (orange). MRI stands for magnetic resonance imaging. 

The almost complete disappearance of all somatic mutations detected in the 

primary tumor and the appearance of a new set of somatic mutations at relapse strongly 

supported the idea of the presence of two independent tumors, one at diagnosis and a 

different one at relapse. Due to the low probability of developing MB, we sought to 

determine whether this patient might have a predisposing condition for MB 

development. Thus, analysis of germline variants by WES revealed that the patient 

carried a TP53 p.R282W mutation, indicating that he suffered from Li-Fraumeni 
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syndrome. This mutation had been previously described in Li-Fraumeni152, and as 

expected, both tumor samples from this patient had loss of heterozygosity (LOH) of the 

normal allele. Importantly, our data highlights that the analysis of CSF ctDNA can be used 

to monitor genomic tumor evolution. In this case, CSF ctDNA was able to identify two 

completely different tumors at diagnosis and relapse. This result prompted us to analyze 

germline variants from the 13 MB patients analyzed (Table 11), resulting in the 

identification of another Li-Fraumeni case (MB13 TP53 p.S127F). Although in ClinVar 

(VCV000182928) the clinical significance for this mutation is “Conflicting interpretations 

of pathogenicity”, it has been identified in another Li-Fraumeni patient and the last three 

submissions have labeled it as “Pathogenic”. Moreover, this mutation appears 90 times 

in COSMIC as somatic mutation, and we confirmed LOH of the normal allele in the 

tumor, strongly suggesting that it is a bona fide loss of function mutation. 

Table 11. Germline mutations in cancer predisposing syndrome genes detected in MB patients 

Case Chr Pos* Ref Alt VAF Consequence** Gene gnomAD*** ClinVar 

MB12 9 98268688 C T 0.69 
Splice donor 
c.196+1C>T 

PTCH1 - VCV000428849 
Pathogenic 

MB7 13 32911754 C T 0.46 
Missense 
p.P1088S 

BRCA2 5.00E-05 
VCV000037829 

Conflicting interpretations 

of pathogenicity 

MB3 13 32929431 G A 0.42 
Splice region 
c.7435+6G>A 

BRCA2 2.40E-04 
VCV000038096 

Conflicting interpretations 

of pathogenicity 

MB8 13 32944624 C T 0.48 
Missense 
p.S2806L 

BRCA2 3.40E-04 
VCV000142874 

Conflicting interpretations 

of pathogenicity 

MB7 15 91312388 C G 0.46 
Missense 
p.S778C 

BLM 7.00E-05 
VCV000127484 

Conflicting interpretations 

of pathogenicity 

MB3 15 91346807 C T 0.59 
Stop gained 

p.R1139* 
BLM - VCV000156484 

Pathogenic 

MB9 15 91354640 T G 0.51 
Splice region 
c.4076+4T>G 

BLM 3.45E-03 
VCV000136520 

Conflicting interpretations 

of pathogenicity 

MB5 17 7577094 G A 0.59 
Missense 
p.R282W 

TP53 - VCV000012364 
Pathogenic 

MB13 17 7578550 G A 0.53 
Missense 
p.S127F 

TP53 - 
VCV000182928 

Conflicting interpretations 

of pathogenicity 

MB13 17 41243700 T C 0.42 
Missense 
p.H1283R 

BRCA1 1.00E-05 
VCV000055028 

Conflicting interpretations 

of pathogenicity 

*The mutation manually added after being eliminated for appearing with a frequency in the population 

higher than 0.001 is underline. 

**Consequences were predicted with the program “Variant Effect Predictor”.  

***Frequency of the mutation detected for general population in gnomAD database. 
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Furthermore, we found three cases with variants in the RecQ Bloom-syndrome 

associated helicase BLM. Case MB3 had a p.R1139* premature stop codon 

(15:g.91346807C>T) that appears in ClinVar (VCV000156484) as “Pathogenic” in 

patients with Bloom syndrome. Case MB7 had a p.S778C (15:g.91312388C>G). In ClinVar 

its accession number is VCV000127484 and is labeled as “Conflicting interpretations of 

pathogenicity”. It has been detected in a patient with hereditary cancer-predisposing 

syndrome, and 3 other individuals for which condition was not indicated. There are no 

mutations in COSMIC, so the clinical significance is unknown. There was an extra case 

(MB9) with another mutation in BLM c.4076+4T>G (15:g.91354640T>G) affecting the 4th 

base of intron 21-22, and with the label “Conflicting interpretations of pathogenicity” in 

ClinVar (VCV000136520). It has been detected in a patient with Bloom syndrome and 

two patients with hereditary cancer predisposing syndrome, but also in 7 patients for 

which condition was not specified. This variant also appears in gnomAD with a VAF of 

0.00345 (reason why it did not pass our filters). However, we think that having two more 

cases with mutations in this gene and knowing that it is also implied in a cancer 

predisposition syndrome (Bloom syndrome) it may be relevant in the susceptibility of 

this patient. As this mutation is near a splice donor site, it might have an impact on 

splicing. Thus, we performed an analysis with the Human Splicing Finder tool, and we 

obtained that the mutation creates a new donor site as it generates the consensus donor 

sequence (AGGT), suggesting that it might have an impact on splicing. 

In addition to germline variants in TP53 and BLM, we identified three cases with 

germline variants in BRCA2, a well-known gene for hereditary predisposition to ovarian 

cancer. Case MB7 had a p.P1088S variant (13:g.32911754C>T) which is present in 

ClinVar (VCV000037829), labeled as “Conflicting interpretations of pathogenicity”. It has 

been detected in 7 patients with familial breast-ovarian cancer or hereditary cancer 

predisposing syndrome, and in 5 individuals with no clinical information. This same 

variant is also present in gnomAD at a frequency of 4x10-5, suggesting that is not a 

common variant, but its status as pathogenic is not clear. MB3 presented a mutation 

c.7435+6G>A affecting the 6th base of intron 14 (13:g.32929431G>A). This variant is 
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present in ClinVar (VCV000038096) as “Conflicting interpretations of pathogenicity”, 

and it has been detected in 9 patients with familial breast-ovarian cancer or hereditary 

cancer predisposing syndrome, and in 7 individuals with no clinical information. In 

gnomAD it is present at 2x10-4, indicating that it might constitute a rare variant. Finally, 

MB8 had a p.S2806L (13:g.32944624C>T). Again, although this variant appears in ClinVar 

(VCV000142874), it is classified as “Conflicting interpretations of pathogenicity”. It has 

been detected in 4 patients with familial breast-ovarian cancer or hereditary cancer 

predisposing syndrome, and in 3 individuals with no clinical information. This variant is 

present in gnomAD at a frequency of 2.5x10-4, suggesting that it might be a rare variant 

with clinical implications. Although the three BRCA2 variants have been labeled as 

“Conflicting interpretations of pathogenicity”, the finding of 3 variants in just 12 patients 

is remarkable and is much higher that it would have been expected by chance, 

suggesting that they might be implicated in the etiology of the disease. 

In addition, two variants were found in BRCA1, MB13 p.H1283R 

(17:g.41243700T>C), and in PTCH1, MB12 c.196+1C>T affecting the first base of intron 

2 (9:g.98268688C>T), which disrupts the splicing donor site. Both are present in ClinVar 

(VCV000055028 and VCV000428849, respectively) and classified as “Conflicting 

interpretations of pathogenicity” in the case of BRCA1 or “Pathogenic” for PTCH1. 

Although BRCA1 variant was found in two patients with hereditary predisposing 

syndrome and three patients with breast-ovarian cancer, it is not clear whether it might 

be important in the etiology of this tumor. On the other hand, this same variant in PCTH1 

was also detected in a patient with hereditary cancer predisposing syndrome, and in 

another individual for which clinical condition was not reported. In summary, although 

many of these germline mutations might be considered rare variants, they all appear to 

have clinical implications, suggesting that they may be associated with an increased 

predisposition to develop MB. 
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Mutations in the U1 spliceosomal RNA 

The studies carried out by the major international cancer consortia such as 

PCAWG and TCGA have provided a detailed view of the molecular alterations involved 

in cancer development. Hundreds of driver genes have been identified, most of them 

located in coding regions36. However, despite the efforts made, there is still a bias in the 

detection of mutations in certain regions due to the characteristics of NGS. Thus, 

repetitive regions, where the alignment quality is very low due to the inability to align 

short reads to any individual sequence, are excluded from these analyses. Therefore, so 

far it has not been possible to detect mutations in these regions. 

U1 snRNA is recurrently mutated in multiple cancers 

The small nuclear RNA U1 is a non-coding component of the spliceosome, 

responsible for the recognition of the 5' splice site by base pairing (Figure 6). There are 

7 identical copies of this gene in our genome and more than 130 annotated pseudogenes 

with minor changes, in addition the promoter regions of all of them are also very 

similar153,154. The repetitiveness of these sequences makes the classical variant callers 

exclude them from their analysis, suggesting that there are no mutations affecting this 

gene. However, targeted and exhaustive analysis of this gene in 2,538 whole-genome 

sequenced donors across 37 tumor types from the PCAWG has identified three mutation 

hotspots, at positions 3, 9 and 28, in more than 5% of patients in at least one tumor 

type. 

The most common frequent mutation affected base 3 of U1. This base forms part 

of the sequence that recognizes the 5'SS, and was mutated in more than 50 cases across 

five tumor types. In particular, the g.3A>G mutation was found in 26 out of 135 (19.3%) 

medulloblastoma cases and only 1 case of pancreatic ductal adenocarcinoma, 

concluding that this is extremely specific to medulloblastoma. In addition, expanding the 

analysis to the entire ICGC dataset and 114 samples from MAGIC and using an allele-

specific PCR (rhAMP) for the detection of the g.3A>G mutation, we found that this 

mutation was largely restricted to cases of SHH medulloblastoma subtype in adulthood 

(SHHδ, present in 97% of cases) and adolescence (SHHα, present in 25% of cases), and 
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absent from those in infancy (Figure 26). On the other hand, the g.3A>C mutation was 

found in 8/78 cases of chronic lymphocytic leukemia (10.3%), 16/189 cases of 

hepatocellular carcinoma (8.5%) and 2/107 (1.9%) cases of B cell non-Hodgkin 

lymphoma. 

 

Figure 26. Clinical and cytogenetic features of SHH medulloblastomas with mutant U1 

snRNA. a) Frequency of U1 snRNA mutations across subtypes of SHH medulloblastoma. 

NA, not available (samples for which the subtype is unknown). b) Frequency of U1 snRNA 

mutation by age group (n = 74 for infants, n = 53 for children, n = 32 for adolescents, n = 

95 for adults). 

Looking at the interaction of these mutations with those previously detected in 

these pathologies, we found that U1g.3A>G co-occurred significantly with mutations in the 

TERT promoter (Fisher’s q = 3.18x10-8) and DDX3X (Fisher’s q = 2.02x10-8) for SHH 

medulloblastoma cases. In the case of U1g.3A>C, in CLL it co-occurred with NFKBIE 

(Fisher’s q = 0.0077), whereas in HCC it co-occurred with APOB (Mantel-Haenszel test q 

= 0.018) and TERT (Fisher’s q = 0.016), although the latter only in one liver project (LIHC-

US). Although SF3B1 is one of the most recurrently mutated genes in CLL29,155, also 

causing global splicing changes when mutated156, no mutations were found in both 

genes in the same sample. However, just by chance we would have expected to find at 

least two cases with both genes altered. These data suggest that the mutations may be 

mutually exclusive, although a larger data set is needed to have sufficient statistical 

power to confirm this fact. 



Results 

 94 

Expression and splicing deregulation 

The U1 snRNA is responsible for the recognition of the 5'SS sequence in the 

transcribed RNA. U1 anneals from nucleotides 3 to 10 with the 5'SS of the mRNA, 

marking this region for the subsequent splicing steps (Figure 27). Although recognition 

occurs by Watson-Crick base complementarity, this pairing does not have to be perfect, 

leading to the presence of strong or weak splicing donor sites depending on how many 

and in which positions mismatches occur. Thus, it has been possible to generate a 

consensus 5'SS with the probability of each nucleotide to appear in each position, with 

some bases, such as the first two of the intron (GU nucleotides at positions 1 and 2), 

being more important than the rest. Therefore, because the mutation found at position 

3 is part of the 5'SS recognition sequence, we hypothesized that these mutations could 

shift the U preference towards a C or G at the sixth position of the 5'SS (hereafter C/G6-

5'SS). 

 

Figure 27. The RNA–RNA interaction between U1 and the 5ʹ splice site. Bases 3 to 10 of 

U1 (red box and numbering) can base-pair with the 5ʹ splice site (black box and 

numbering). The base-pairing affected by the mutation located in base 3 is in blue. 
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To check if there were global changes in the splicing pattern, an intron-centric 

differential splicing analysis with LeafCutter was performed using RNA-seq data from 

MB (13 SHHα-U1g.3A>G vs 39-SHHα U1wt and 30-SHHδ U1g.3A>G vs 90 U1wt from other SHH 

subtypes), CLL (11 U1g.3A>C vs 254 U1wt) and HCC (20 U1g.3A>C vs 367 U1wt). Thus, 3,193 

and 533 differentially spliced introns were identified in 1,519 and 303 genes (LeafCutter 

q < 0.1 and absolute log2(effective size) > 1) in CLL and HCC, respectively. In 

consequence, we observed 2-3 times more novel splicing events in patients harboring 

the g.3A>G/C mutation than the wild-types, especially for splicing with the cryptic C/G6-

5'SS in the three types of tumors. Furthermore, the direction of change for each intron 

was determined using the magnitude of the splicing change (ΔPSI). When comparing the 

base composition of the 5ʹ splice site among introns with increased excision (ΔPSI > 0) 

and decreased excision (ΔPSI < 0) in samples with U1 mutation, we observed an 

enrichment of a dominant C or G base at the sixth position, as opposed to the T base 

observed in tumors with wild-type U1 snRNA (Figure 28). 

To detect alternative splicing in individual genes, we focused on cryptic 5ʹ splicing 

events with a C or G base at the sixth intronic position. For patients with SHHα and SHHδ 

subtypes of MB who harbor the U1g.3A>G mutation, cryptic and very specific splicing 

events with high effect sizes were detected in protein patched homolog 1 (PTCH1), zinc 

finger protein GLI2 (GLI2) and paired box 5 (PAX5). Splicing mediated by the U1g.3A>G 

mutant in PTCH1 results in the inclusion of a cassette exon between exon 2 and exon 3, 

which causes a frameshift, and therefore predicted translation start from the ATG in 

exon 3 (Figure 29a). It has previously been reported that loss of expression of the 1,447-

amino-acid isoform of PTCH1 promotes the derepression of Hedgehog signaling157, an 

upregulated pathway in this MB subgroup. Similarly, the U1g.3A>G cassette exon in GLI2 

is spliced between exon 4 and exon 5, which results in a putative GLI2 protein that lacks 

the repressor domain (Figure 29b). Physiological GLI2 protein has a repressor domain at 

its amino terminus, and constructs that lack the amino terminus are much more potent 

at activating Hedgehog signaling than the full-length protein158. 



Results 

 96 

 

Figure 28. Global gene splicing changes associated with the g.3A>G and g.3A>C mutations 

in MB, and CLL and HCC, respectively. a) 5' splice site (5'SS) for introns with increased (n 

= 9,182 in MB; n = 1,657 in CLL; n = 239 in HCC) or decreased excision (n = 10,126 in MB; 

n = 1,536 in CLL; n = 294 in HCC) in cases with U1 mutation (n = 11 patients). Increased 

excision and decreased excision represent intron clusters that have significantly mis-

spliced introns with ΔPSI > 0 and ΔPSI < 0, respectively. b) Category of mis-splicing events 

in MB, CLL and HCC, respectively. The number of introns is coloured by the sixth base of 

5ʹ splice site. The 6th base of the sequence corresponds to the one interacting with base 3 

of U1. The definitions of each category is: “annotated” if the junction matches any 

annotated introns; “novel annotated” if both splice sites are annotated but not paired; 

“cryptic 5ʹ splice site” if only the 3ʹ splice site is annotated; “cryptic 3ʹ splice site” if only 

the 5ʹ splice site is annotated. 

In the case of the PAX5 tumor suppressor gene, the isoform present in SHH MBs 

with U1wt translates the complete DNA-binding domain. However, the cryptic exon in 

SHH medulloblastomas with mutant U1 snRNA causes a stop codon before the DNA-

binding domain, resulting in loss of function (Figure 29c). Alternative splicing of the cell-

cycle gene CCND2, a known downstream target of SHH signaling that is recurrently 

amplified in SHH MB, is detected in U1g.3A>G mutants of SHHδ but not in SHHα. The 
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CCND2 alternative isoform is prematurely terminated, which results in N-terminal 

sequences in which the PEST domain is predicted to be deleted (Figure 29d). Deletion of 

the PEST domain causes resistance to protein degradation and impaired export to the 

cytoplasm, which results in CCND2 accumulating in the nucleus to promote cell-cycle 

progression159. 

 

 

Figure 29. Illustration of canonical and cryptic alternative isoforms of genes affected by 

U1g.3A>G in MB. a) The new cassette in PTCH1 causes transcription to begin in exon 3, losing 

exons 1 and 2. b) The new cassette between exons 4 and 5 of GLI2 generates a frameshift 

that causes the protein to start transcribing in exon 5. This results in the loss of a 

repression domain in the mutant protein. c) The addition of a new exon between exons 1 

and 2 of PAX5 delays the initiation of transcription to exon 2, leading to the loss of a 

paired-box domain. d) In CCND2 alternative splicing causes the loss of a PEST domain 

located in the C-terminal region of the protein. In green are represented the canonical 

exons, in yellow the cryptic exon generated by mutated U1 and in dark grey canonical 

exons affected by novel exons. Resulting proteins (and size) are displayed for each isoform. 

aa, amino acid. 
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For patients carrying the U1g.3A>C mutation in both CLL and HCC, 84 and 16 genes 

were mis-spliced according to Cancer Gene Consensus (CGC v.84), respectively. The 

most significant mis-spliced cancer gene associated with a G6 5ʹ splice site was musashi 

RNA binding protein 2 (MSI2) in CLL, where an isoform containing a cryptic exon that 

features a premature stop codon is exclusively expressed (Figure 30a). A similar pattern 

was observed for the gene DNA polymerase delta 1, catalytic subunit (POLD1). As the 

cryptic exon affected the polymerase, but not the exonuclease domain of POLD1 (Figure 

30b), the g.3A>C mutation was not associated with a higher mutation burden. We also 

found mis-splicing in other genes not present in the CGC but related to CLL biology, such 

as the hyaluronic acid receptor gene CD44 molecule (CD44), which was the most 

significantly differentially spliced gene. Alternative splicing of CD44 is tissue specific and 

has previously been associated with processes such as lymphocyte homing and 

tumorigenesis; the gene is also thought to regulate anti-apoptosis signaling in CLL160,161. 

Patients with wild-type CLL expressed predominantly the standard isoform (CD44s, 

which does not contain exon v2–v10), whereas cases of CLL with U1 mutations 

overexpressed multiple variant isoforms (CD44v)—presumably because the presence of 

several G6 5ʹ splice sites increased the excision rate of introns associated with variant 

exons (Figure 30c). Another similar example is ATP-binding cassette sub-family D 

member 3 (ABCD3), a fatty acid transporter for peroxisomes. Two cryptic exons were 

expressed exclusively in cases of CLL with U1 mutations (Figure 30d).Together, the 

alternative splicing results observed in these experiments support a model in which 

cryptic alternative splicing mediated by U1g.3A>G and U1g.3A>C might function as a driver 

in subsets of SHH MB, CLL and HCC, respectively. 
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Figure 30. Sashimi plots of genes with alternative splicing due to U1g.3A>C. a-b) The g.3A>C 

mutation in U1 allows the detection of a cryptic exon in MSI2 and POLD1 genes. c) In the 

case of CD44, the mutation does not generate new exons but causes the expression of 

different isoforms, previously described, but not expressed in B cells. d) In contrast, in 

ABCD3, U1g.3A>C results in the detection of two cryptic exons in intron 9 of the gene. The 

lines joining the exons represent the junctions that give rise to the different isoforms 

detected for each gene. Plots have been generated from RNA-seq data of patients with or 

whithout mutations in U1 with the program ggsashimi. 

Because splicing and expression frequently correlate156,162, we also conducted 

differential expression analysis. In this regard, we found a wide range of deregulated 

genes in which we performed pathway analysis. An increase in non-sense mediated 

decay, which is consistent with the destruction of aberrantly spliced transcripts, was 

detected for SHH MB primary tumors (Figure 31a). However, in CLL this pathway was 

downregulated together with apoptosis, B cell receptor signaling and cytoplasmic 

ribosomes (Figure 31b). The downregulation of ribosomal genes may explain the 

reduced rates of nonsense-mediated decay observed in CLL. On the other hand, genes 

related to mRNA transcription, RNA splicing, protein ubiquitination and telomere 

maintenance were upregulated in CLL. 
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Figure 31. Pathways altered in MB and CLL with U1 mutations. Enrichment plots by gene 

set enrichment analysis (GSEA) of a) “nonsense mediated decay” process between SHHα 

with mutant U1 (n = 13) and SHHα with wild-type U1 (n = 39), and SHHδ with mutant U1 

(n = 30) and other subtypes of SHH medulloblastoma with wild-type U1 (n = 90). b) 

“promotion of intrinsic apoptosis”, “B cell receptor” and “cytosolic ribosome” pathways 

between CLL with mutant (n = 11) and wild-type (n = 254) U1. Genes in the x axis are sorted 

from the most significantly upregulated gene to the most significantly downregulated 

gene. NES, normalized enrichment score. 

Validation of U1g.3A>G and U1g.3A>C mutations 

To determine whether there was a causal relationship between the U1 

mutations and the splicing alterations observed in primary tumor samples, we 

performed an in vitro validation study. Thus, we constructed vectors carrying the U1 

wild-type sequence as well as the two mutations previously described for position 3. To 

be as closely as possible physiological conditions, and since the U1 promoter region is 

well characterized163,164, we decided to clone not only the U1 gene but also its flanking 

regions. In this way we extracted 400 bp upstream of the start of the gene containing 

the promoter with the two required regions for U1 expression, the distal sequence 

enhancer and the proximal sequence enhancer. In addition, we also cloned 40 bp 

downstream of the gene, as this region is important for its post-transcriptional 
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processing and transport between the nucleus and the cytoplasm (Figure 32). In order 

to express the g.3A>C mutation in CLL cell lines (JVM3, HG3 and MEC1), and due to their 

low transfection efficiency, the plasmid used for these constructions was pLKO.1-puro, 

a lentiviral vector previously used in our laboratory. This plasmid is designed to insert 

the gene of interest under the U6 promoter. However, we replaced most of the U6 

promoter as we used the U1 endogenous promoter (Figure 32). 

 

Figure 32. Representation of how the pLKO.1-U1wt and pLKO.1-U1g.3A>G/C plasmids, used 

during cell lines experiments, were generated. The 3' region of the U6 promoter was 

removed by inserting the promoter, gene and 3' flanking sequence of U1. The proximal 

(PSE) and distal (DSE) sequence enhancers necessary for U1 expression are represented 

within the U1 promoter. 

To verify that the plasmid expressed the U1 mutations, pLKO.1-U1wt and pLKO.1-

U1g.3A>G vectors were transfected into human embryonic kidney 293T and pLKO.1-U1wt 

and pLKO.1-U1g.3A>C were used to infect the CLL cell lines JVM3, HG3 and MEC1. Then, 

RNA was extracted to perform 5'RACE followed by Sanger sequencing, confirming that 

mutant U1 was expressed in the selected cell lines (Figure 33). 

Previous analysis of RNA-seq data from MB, CLL and HCC patients resulted in the 

identification of numerous genes affected by mutations in U1. This allowed us to select 

some of them to validate the changes by RT-PCR. In this way, specific oligonucleotides 

were designed to amplify the affected region in the wild-type and mutated isoforms of 

the following genes: PTCH1 and MSI2 for U1g.3A>G and ABCD3, MSI2 and POLD1 for 

U1g.3A>C. Thus, it was verified that cells expressing mutant U1 also had altered splicing 

(Figure 34). 
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Figure 33. 5ʹ RACE confirming the expression of the U1g.3A>G in HEK-293T and U1g.3A>C in three 

CLL cell lines. HEK-293T were transfected whereas CLL cell lines (JVM3, HG3 and MEC1) were 

infected with lentiviral particles that contain U1 locus with or without the g.3A>G or g.3A>C 

mutations respectively. The electropherograms correspond to the sequence of the PCR 

product (reverse strand). The arrowheads indicate the location of the 3rd base of U1. The 

location of the 5ʹ RACE primer is also indicated. The experiment was conducted once. 

 

Figure 34. RT-PCR results for experimental validation of aberrant splicing after expression 

of mutant U1. To validate the g.3A>G mutation, PTCH1 and GLI2 genes were used, while for 

g.3A>C were ABCD3, MSI2 and POLD1. The RNA used for this experiment was extracted from 

HEK-293T transfected with pLKO.1-U1g.3A>G and from CLL cell lines (JVM3, HG3 and MEC1) 

infected with pLKO.1-U1g.3A>C. In the case of PTCH1 and POLD1 the mutated isoform appears 

in the wild-type cells at low levels and an increase in the intensity of the band is observed. 
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After confirming that cells transfected or infected with the pLKO.1-U1g.3A>C and 

pLKO.1-U1g.3A>C constructions, respectively, expressed the mutation in U1 and that this 

was leading to changes in splicing, we decided to perform an RNA-seq experiment. Thus, 

the same transcriptome analysis for RNA-seq data was performed for these cell lines as 

was done for patients. In total, 826 introns in 318 genes in HEK-293T and 7,238 introns 

in 2,365 genes in CLL cell lines were differentially spliced when comparing U1wt vs 

U1g.3A>G or U1g.3A>C. Moreover, intron-centric analysis clearly demonstrates an 

enrichment of a G at the sixth intronic position when using the pLKO.1-U1g.3A>C vector 

(Figure 35). In the same way, a considerable increase in the incidence of cryptic 5ʹ 

splicing events was detected, with the finding of more introns with increased than 

decreased excision (Figure 35). In addition, CLL cell lines with U1 mutations shared 

39.1% of the G6 5ʹ splice site introns with increased excision and many differentially 

expressed genes of those detected in primary tumors. These results reproduce what was 

observed in primary tumors and validate a causal link between the g.3A>G and g.3A>C 

mutations and global splicing changes.  

 

Figure 35. Exogenous expression of the g.3A>C mutation in cell lines induced global 

splicing changes. On the left, 5' splice site (5'SS) sequence usage for introns with increased 

(n = 3,645) or decreased excision (n = 3,593) in CLL cell lines infected with U1g.3A>C. 

Increased excision and decreased excision represent intron clusters that have significantly 

mis-spliced introns with ΔPSI > 0 and ΔPSI < 0, respectively. On the right, category of mis-

splicing events in CLL cell lines infected with U1g.3A>C. The number of introns is coloured 

by the sixth base of 5ʹSS. The 6th base of the sequence corresponds to the one interacting 

with base 3 of U1. The definitions of each category is: “annotated” if the junction matches 

any annotated introns; “novel annotated” if both splice sites are annotated but not paired; 

“cryptic 5ʹ splice site” if only the 3ʹ splice site is annotated; “cryptic 3ʹ splice site” if only 

the 5ʹ splice site is annotated. 
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Characterization of U1g.3A>C CLL cell lines 

The confirmation that CLL lines carrying the g.3A>C mutation in U1 snRNA 

showed the same changes in splicing as patients with this same mutation, allowed us to 

use this cell model to explore the potential differences in cells carrying these mutations 

versus those expressing the U1wt. 

Proliferation and apoptosis in U1 g.3A>C cells 

To test whether the expression of the U1g.3A>C mutation had an impact on 

proliferation when compared to control cells (those infected with lentiviral vector 

carrying the U1wt allele), we performed a proliferation assay using MTT. We did not 

observe differences in cell proliferation between U1g.3A>C expressing-cells and U1wt 

control cells in any of the three CLL cell lines analyzed (JVM3, HG3 or MEC1) (Figure 36a). 

These results indicate that the transcriptomic changes caused by the g.3A>C mutation 

in U1 snRNA do not appear to have an impact on proliferation. 

  

Figure 36. Characterization of CLL cell lines harboring the g.3A>C mutation in U1. A) 

Proliferation assay (MTT) carried out during five days with the three cell lines (JVM3, HG3 

and MEC1) infected with pLKO.1-U1wt (blue) or pLKO.1-U1g.3A>C (red). B) Western blot 

analysis of PARP to see differences in apoptosis induction (PARP cleavage) between cells 

expressing U1wt and U1g.3A>C for the three cell lines (JVM3, HG3 and MEC1). 

Complementary studies revealed that no differences in apoptosis could be 

detected between U1g.3A>C mutated cells and control ones. Thus, there was no change 

in the ratio between PARP and cleaved-PARP in any of the three studied cell lines when 

comparing U1g.3A>C vs U1wt (n = 2) (Figure 36b). This is in concordance with what was 

observed in the RNA-seq analysis, since although down-regulation of genes involved in 

apoptosis was detected in patients, this was not observed when cell lines were analyzed. 
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Sensitivity to Bortezomib and Pladienolide B in U1g.3A>C cells 

The results obtained above show that the g.3A>C mutation in U1 snRNA causes 

a major dysregulation of splicing. This process will presumably result in the generation 

of many aberrant proteins, many of them might not fold properly and are likely to be 

degraded. Due to the relevance of the proteasome in protein degradation and recycling, 

we hypothesized that the g.3A>C mutation in U1 might result in a higher dependency 

on the activity of the proteasome, making cells expressing U1g.3A>C more sensitive to its 

inhibition. To test this hypothesis, cells were incubated in the presence of the 

proteasome inhibitor Bortezomib (JVM3 and HG3 at 0 nM, 6 nM and 9 nM and MEC1 at 

0 nM, 3 nM and 6 nM) and cell viability was measured at 24 h and 48 h (n = 2). We 

observed that JVM3-U1g.3A>C and HG3-U1g.3A>C cells had higher mortality than their 

respective controls at a concentration of 6 nM of Bortezomib although this result was 

not statistically significant (Figure 37a). When the experiment was repeated with an 

increased number of replicates (n = 6) JVM3-U1g.3A>C seemed to be more sensitive to 6 

nM of Bortezomib than JVM3-U1wt (Figure 37b). However, these results were still not 

robust, probably due to the high variability. This trend could not be validated either by 

proliferation assays or by looking at apoptosis through PARP activation (Figure 37c,d). 

On the other hand, for HG3 there was no difference in cell viability at 6 nM nor 9 nM of 

Bortezomib between those expressing U1g.3A>C or U1wt (Figure 37b). Together, these 

results suggest that the U1g.3A>C mutation does not increase the sensitivity of cells to 

proteasome inhibition. 

Furthermore, we tested the sensitivity of these cells to Pladienolide B, a 

spliceosome inhibitor. Specifically, this drug inhibits SF3B1, which is responsible for 

recognizing the 3'SS. Because it appears that mutations in U1 and SF3B1 are mutually 

exclusive in CLL, we reasoned that cells carrying the g.3A>C mutation in U1 could be 

more sensitive to this drug. However, neither cell viability assays carried out in JVM3 

and HG3 nor proliferation assays (n = 2) in JVM3, with PladB concentrations of 0 nM, 10 

nM, 25 nM and 50 nM, at 24 h and 48 h showed differences between those expressing 

U1wt and U1g.3A>C (Figure 38a,b). The same results were obtained when the cell viability 

assays were repeated with lower concentrations of PladB (0 nM, 1.25 nM, 2.5 nM, 10 

nM and 20 nM) (Figure 38c). There were also no differences in apoptosis (n = 2) after 2 

h and 4 h of incubation with 50 nM PladB (Figure 38d). 
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Figure 37. Cell viability, proliferation and apoptosis assays performed on JVM3, HG3 and 

MEC1, U1wt (blue) and U1g.3A>C (red), in the presence of different concentrations of 

Bortezomib (Btz). a) Cell viability assay (n = 2) on JVM3, HG3 and MEC1 cell lines harboring 

U1wt or U1g.3A>C at 24 h and 48 h, and with two diferent concentrations of Btz, 6 nM and 9 

nM for JVM3 and HG3, and 3 nM and 6 nM for MEC1. b) Repetition of the cell viability 

assay for JVM3 and HG3 with the same conditions, but increasing the number of replicates 

(n = 6). c) MTT proliferation assay for JVM3 and HG3 (U1wt  and U1g.3A>C) cells without Btz 

(control condition) vs 6 nM and 9 nM of Btz. d) Western blot analysis of PARP cleavage as 

an indicator of apoptosis in control (0 nM) and at two different times (24h and 48h) after 

incubation with 6 nM of Btz in JVM3-U1wt and JVM3- U1g.3A>C cell lines. 
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Figure 38. Cell viability, proliferation and apoptosis assays performed on JVM3 and HG3, 

U1wt (blue) and U1g.3A>C (red), in the presence of different concentrations of 

PladienolideB (PladB). a,c) Cell viability assay on JVM3 and HG3 cell lines harboring U1wt 

or U1g.3A>C at 24 h and 48 h, and with three diferent concentrations of PladB, a) 10 nM, 25 

nM and 50 nM or c) 1.25 nM, 2.5 nM, 10 nM and 20 nM. b) MTT proliferation assay (n = 2) 

for JVM3-U1wt  and JVM3-U1g.3A>C cells without PladB (control condition) vs 10 nM, 25 nM 

and 50 nM of PladB. d) Western blot analysis of PARP cleavage as an indicator of apoptosis 

in control (0 nM) and at two different times (2h and 4h) after incubation with 50 nM of 

PladB in JVM3-U1wt and JVM3- U1g.3A>C cell lines. 
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Effect of U1g.3A>C mutation in lncRNA localization 

Although the main function of U1 snRNA is the recognition of the 5'SS, it has 

recently been discovered that U1 also promotes the chromatin recruitment of long non-

coding RNAs165. In particular, this has been seen in those lncRNAs with a higher density 

of predicted U1 recognition sites, as these are identified by the same 8 bases (from base 

3 to 10 of the U1 snRNA) that recognize the 5'SS. Thus, similar to the effect of U1g.3A>C 

mutation altering the splicing of multiple genes, the presence of a mutation in a critical 

region involved in lncRNA localization might affect its localization in the chromatin. In 

order to test whether lncRNAs enriched with the new U1g.3A>C motif might be more 

associated to the chromatin than in normal conditions, we performed subcellular 

fractionation of chromatin, nucleoplasm and cytoplasm of JVM3 and HG3 cells infected 

with either pLKO.1-U1wt or pLKO.1-U1g.3A>C, followed by RNA sequencing. 

RNA-seq analysis revealed that the chromatin-derived RNA was highly enriched 

in introns (52.3% vs. 19.4%) and intergenic regions (8.5% vs. 3.4%) when compared to 

total RNA. These results were expected, since RNA synthesis occurs in the chromatin, 

and therefore unprocessed RNA should be enriched in this fraction. We used ERCC RNA 

spike-in to normalize the data. After normalization and removing the cell line batch 

effect, the number of transcripts per million was calculated, filtering out genes with an 

expression of less than 3 TPMs. Only 11/259 lncRNAs had a chromatin retention ratio 

greater than 1.5 (Table 12). One of them, the Small Nucleolar RNA Host Gene 1 (SNHG1), 

was the only transcript in which a new strong donor site was recognized by the 5'SS 

sequence of U1g.3A>C, while 5/11 transcripts had new medium donor sites. However, 

many other genes with several predicted new strong and medium donor sites did not 

appear associated to the chromatin, suggesting that the mutation might not have a 

major impact on this activity of U1. 
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Table 12. List of lncRNAs that appear associated to the chromatin in JVM3 and HG3-U1g.3A>C cell lines 

Identifier Symbol 

Chromatin 

retention 

ratio 

New  

strong 

site 

New  

medium 

site 

Density of strong 

sequences* 

U1wt U1g.3A>C 

ENSG00000246582 LOC389641 1.92 - - - - 

ENSG00000205559 CHKB-DT 1.77 0 2 0.40 0.63 

ENSG00000261520 DLGAP1-AS5 1.76 0 1 0.39 0.52 

ENSG00000261879 LOC100130950 1.70 - - - - 

ENSG00000236618 PITPNA-AS1 1.65 0 1 0 0 

ENSG00000233429 HOTAIRM1 1.63 0 1 0.22 0.43 

ENSG00000234327 LOC101928000 1.63 - - - - 

ENSG00000254319 LOC101927815 1.62 - - - - 

ENSG00000249846 LINC02021 1.62 0 8 0.40 0.56 

ENSG00000253633 LOC107986898 1.59 - - - - 

ENSG00000255717 SNHG1 1.59 1 0 1.51 1.76 

*Prediction of the number of strong recognition sequences for U1 (wild-type or g.3A>C) per kilobase of 

gene. 

Analysis of U1g.3A>C -neoepitope-induced immune response 

Due to the observed effect of the U1g.3A>C mutation on splicing affecting many 

proteins, we hypothesized that some of the aberrant proteins that are produced might 

contain neoepitopes that could be recognized by the immune system. To test our 

hypothesis, protein extracts from the three cell lines (JVM3, HG3 and MEC1), infected 

with either pLKO.1-U1wt or pLKO.1-U1g.3A>C, were separated in an SDS-PAGE gel and 

transfer to a PVDF membrane. Membranes were then incubated with 100 µL of serum 

containing the antibodies from 6 CLL patients with the U1g.3A>C mutation and 5 patients 

without mutated U1. Due to the overlap between proteins with altered splicing between 

cell lines and patients, if antibodies against any of those neoantigens were present in 

serum from these patients, they might react against altered proteins produced by the 

cell lines expressing mutated U1. However, although serum from these patients 

recognized different proteins in the protein extracts derived from the cell lines, we could 

not detect any differences between lanes loaded with proteins derived from U1wt or 

U1g.3A>C cell lines for any of the patients (Figure 39). 
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Figure 39 Western blot for detecting the presence of neoepitopes. Protein extracts from 

JVM3, HG3 and MEC1 expressing U1wt or U1g.3A>C were incubated with a) serum from 

patients with U1wt (control) or b) patients with U1g.3A>C. If there is a protein with 

neoepitopes that could be detected, it should appear as a specific band in the extracts of 

the mutated cell lines when the membrane is incubated with serum from patients who 

also have the mutation. 

Elucidating the mechanism of action of mutations located 

in the 3'UTR of NFKBIZ 

During the course of this thesis we participated in the integrative analysis of 

more than 1,100 CLL patients in collaboration with the group of Drs. Cathy Wu and 

Gaddy Getz. In a previous work by Dr. Gutiérrez-Abril focused on the analysis of 

mutations in non-coding regions, we identified five patients with mutations in the same 

highly conserved 3'UTR region of NFKBIZ (Figure 40), a gene that codifies for the NF-

kappa-B inhibitor zeta (IκBζ), suggesting that it might constitute a putative driver gene 

in CLL. To further investigate the potential relevance of this non-coding region in cancer, 

we extended the analysis of somatic mutations in the 3'UTR of NFKBIZ to all available 

ICGC and TCGA cases. We discovered mutations affecting this region in eleven other 

cases of malignant lymphoma, four cases of diffuse large B-cell lymphoma (DLBCL) and 

at a lower frequency in other tumors. Previous studies by Gutiérrez-Abril with one of 

these mutations (3:g.101578254CAGTT>C) revealed that this mutation did not have a 

major impact on mRNA stability, but it suggested that its effect was related to post-

transcriptional regulation. However, further experiments were needed to know what 

effects these mutations have on the cell and their mechanism of action77. 
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Figure 40. Secondary structures in the 3'UTR of NFKBIZ. On top are the five loops (SL1-5) 

that are formed at the beginning of the 3'UTR of NFKBIZ. The nucleotides in red are those 

belonging to the mutational hotspot. The distribution of mutations detected in different 

tumor types along this structure can be seen below. BRCA, breast cancer; CLL, chronic 

lymphocytic leukemia; DLBCL, Diffuse large B-cell lymphoma; ML, malignant lymphoma; 

Other, head and neck squamous cell carcinoma, colon cancer, biliary tract cancer and 

endometrial cancer. 

Extending the analysis of gene expression in mutant 3'UTR 

constructions 

In order to explore the mechanism by which these mutations in the 3'UTR of 

NFKBIZ might contribute to tumor development, six new mutations were cloned into the 

psiCHECK2 plasmid to test how they affected mRNA stability and post-transcriptional 

regulation (Table 13). 

Table 13. List of NFKBIZ mutations analyzed by luciferase assays and qPCR 

Chr Position* Ref Alt ID 

3 101578250 C G 250_C>G 

3 101578250 C A 250_C>A 

3 101578250 C CT 250_insT 

3 101578254 CAGTT C 254_delAGTT 

3 101578285 GACCATTTGCCTT G 285_del12 

3 101578292 TGCCTTATATTGGCAAA T 292_del16 

3 101578304 G A 304_G>A 

*The mutation previously validated is underline. 
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To determine the effect of these mutations on mRNA stability and protein 

production, we transfected those vectors in HeLa cells (n = 3), and luciferase mRNA 

expression was analyzed by RT-qPCR, while production of luciferase was assayed using 

the luciferase assay. This analysis revealed that all mutations caused a 5 to 20-fold 

increase in protein expression (Figure 41a), with the exception of g.101578304G>A, 

which was the only one located outside the loops. However, these mutations barely 

affected the stability of Renilla luciferase mRNA (n = 3) (Figure 41b). 

 

Figure 41. Effect of mutations in the 3'UTR of NFKBIZ on luciferase and mRNA expression. 

a) Normalized luciferase activity of Renilla protein in luciferase assays. b) Normalized 

expression of Renilla mRNA in luciferase assays. Data were normalized to NFKBIZ-3'UTRwt 

values. 

The expression of IκBζ is stimulated by interleukin 1 alpha through the MYD88 

pathway, resulting in a rapid translation of previously synthesized mRNAs. Due to the 

importance of MYD88 mutations in CLL pathogenesis, we decided to test whether 

addition of IL1 could have an effect on the activity of the mutations observed in the 

3'UTR of NFKBIZ. To test it, HeLa cells were transfected with different vectors containing 

the luciferase cDNA with the 3'UTR of NFKBIZ and the different mutations, and 4 h 

before the luciferase assay or the RNA extraction they were stimulated with IL1 (n = 3). 
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To perform the analysis, we compared how much Renilla luciferase activity, or 

its mRNA expression, was increased between cells stimulated with IL1 or unstimulated. 

In this regard, the conditions that showed the greatest increase in luciferase protein 

expression after IL1 stimulation were cells transfected with the wild-type or the 

g.10157830304G>A constructions. In fact, it was observed that those mutations that 

caused a greater increase in luciferase expression under normal conditions were those 

that achieved a smaller increase after stimulation with IL1 (Figure 42a). This might 

indicate that mutations in the 3'UTR of NFKBIZ have the same target with which IL1 

modulates its translational levels. As under normal conditions, no change in mRNA 

stability was observed after IL1 stimulation (n = 2) (Figure 42b). 

 

Figure 42. Effect of mutations in the 3'UTR of NFKBIZ on luciferase and mRNA expression 

under IL1 stimulation. a) Relative luciferase activity of Renilla protein in luciferase assays. 

b) Relative expression of Renilla mRNA in luciferase assays. For each mutation, the results 

correspond to the increase in activity or expression shown when comparing the values 

obtained under IL1 stimulation with respect to the unstimulated control. 
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Generation of clones with NFKBIZ-3'UTR mutations 

To further study the downstream effects these mutations could have on cells, 

CRISPR knock-ins (KIs) were generated in HeLa and HEK-293T cell lines to produce the 

g.101578254CAGTT>C and g.101578250C>G mutations in the NFKBIZ gene, respectively 

(Figure 43a), as these mutations showed the greatest increase in protein expression. 

Although no clones with the desired mutations were obtained in HeLa cells, we did 

obtain a homozygous clone for the NFKBIZ-3'UTRg.101578250C>G mutation (Figure 43b) and 

another homozygous clone with NFKBIZ-3'UTRg.101578255AGTTAC>A (255_delGTTAC) (Figure 

43) in HEK-293T. The latter, although it does not delete exactly the same four 

nucleotides as the g.101578254CAGTT>C mutation present in the patients, is located in 

the same region, so we decided to include it in the following studies. In addition, two 

other clones were used as negative controls: a clone with NFKBIZ-3'UTRwt (no mutation 

was introduced after transfection with CRISPR-Cas9 and ssODN) and another 

homozygous clone that recurrently appeared with the NFKBIZ-3'UTRg.101578254C>CA 

mutation (254_insA) (Figure 43d). 

Next, to verify that the clones had increased expression of IκBζ, both under 

normal conditions and after stimulation with IL1, as seen in luciferase assays, a western-

blot assay was performed (n = 3). Thus, we could see how under normal conditions, IκBζ 

was not detectable in wild-type cells or in cells with the control g.101578254C>CA 

mutation, but it was highly produced in clones with the pathogenic variants (NFKBIZ-

3'UTRg.101578250C>G and NFKBIZ-3'UTRg.101578255AGTTAC>A) (Figure 44a). In contrast, 

stimulation with IL1 induced the expression of IκBζ in all analyzed clones (Figure 44b). 

Furthermore, due to the activity of IκBζ in the Nuclear Factor kappa B (NF-κB) pathway, 

we investigated whether increasing IκBζ, under normal conditions, could affect NF-κB 

expression, since IκBζ is upstream in the signaling pathway. In this regard, the 

overexpression of IκBζ caused by mutations in its 3'UTR (g.101578250C>G and 

g.101578255AGTTAC>A) results in a slight increase of p52, the active subunit of NF-κB, 

when compared to its expression in controls (Figure 44c). 
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Figure 43. Generation of HEK-293T clones with mutations in the 3'UTR of NFKBIZ using 

the CRISPR-Cas9 system. a) On the top we find the sequence of the 3'UTR where the 

mutational hotspot is located. Mutations 250_C>G, 254_delAGTT and the PAM sequence 

that is recognized by the Cas9 protein have been indicated. Specifically, the sgRNA guides 

Cas9 to the complementary strand where the PAM sequence is located, also known as the 

target strand. The nuclease domains of Cas9 then cause a cut in the double strand just 

upstream of the PAM sequence. The ssODN binds to the nontarget strand by 

complementarity and the mutations are inserted into the genome by homology-directed 

repair (HDR) mechanism. In order to prevent Cas9 from repeatedly cleaving the target 

region, a change in the PAM sequence is inserted via ssODN. b-d) Electropherograms to 

genotype the changes produced by CRISPR-Cas9 for the clones with 250_C>G, 

255_delGTTAC and 254_insA mutations, respectively. 
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We also tested whether the presence of mutations in the endogenous 3'UTR of 

NFKBIZ affected the stability of its mRNA (n = 2), but as we had observed in HeLa 

transfected with the 3'UTR fused to the Renilla luciferase CDS, no major differences 

were observed to explain the significant increase in the expression of IκBζ (Figure 44d). 

  

Figure 44. Analysis of HEK-293T knock-ins generated by CRISPR-Cas9. The same clones 

harboring the 255_delGTTAC, 250_C>G and 254_insA mutations or the wild-type isoform 

of NFKBIZ were used in all the experiments. a) Western blot analysis of IκBζ expression in 

normal conditions or b) under IL1 stimulation (cells were cultured without FBS and then 

incubated with IL1 for 4 h). c) Study to see if IκBζ overexpression alters NF-κB expression 

levels. P100 is the inactive protein, whereas p52 is the active subunit. d) Relative 

expression of NFKBIZ mRNA. For each mutation, the results correspond to the increase in 

expression shown when comparing the values obtained under IL1 stimulation with respect 

to the unstimulated control. 

Next, we explored whether the presence of a mutation in the 3'UTR of NFKBIZ 

could lead to differences in proliferation. Thus, we compared clones with NFKBIZ-

3'UTRg.101578250C>G and NFKBIZ-3'UTRg.101578255AGTTAC>A versus clones with NFKBIZ-3'UTRwt 

or NFKBIZ-3'UTRg.101578254C>CA using a proliferation assay (n = 2). In addition to the clones 

used in the previous experiments, other independent clones for NFKBIZ-3'UTRwt and 

NFKBIZ-3'UTRg.101578254C>CA were added for this assay to reduce the possibility of bias due 

to clone selection. No extra clones were added for the other mutations as they could 

not be obtained. Contrary to what it could be expected, clones with a higher expression 

of IκBζ were the ones with slower growth (Figure 45). Moreover, these are the only ones 

together with a wild-type clone (WT2) that do not show different proliferation rate 
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under normal conditions or with IL1 stimulation. On the other hand, the fact that the 

remaining clones show slower growth under IL1 stimulation is likely due to the fact that 

they are maintained without FBS, and it is possible that HEK-293T cells are not as 

dependent on IL1 for proliferation as immune cells. 

 

Figure 45. Proliferation assays performed on HEK-293T CRISPR clones with mutations in 

the 3'UTR of NFKBIZ. Unstimulated cells were maintained without FBS, while the 

stimulated cells were maintained without FBS but stimulated with IL1 (refreshed daily). 

For wild-type and 254_insA, two different clones were used. Ø represent cells that did not 

undergo clone selection. 

Finally, RNA-seq (2 NFKBIZ-3'UTRwt vs 2 NFKBIZ-3'UTRg.101578250C>G) was 

performed to determine which genes and pathways might be altered due to 

overexpression of IκBζ. In total, we detected 797 genes that were significantly 

deregulated (539 down and 258 up). After pathway enrichment analysis we found that 

there was an over-representation of altered genes that participate in the “positive 

regulation of NF-κB transcription activity” gene ontology (C5 gene set from MSigDB). 

This would make sense since NFKBIZ is a regulator of this pathway. However, this result 

was no longer significant once we corrected for FDR. Although there were other altered 

pathways and categories, none of them were related to CLL. In this regard, it must be 

taken into account that the analysis was performed with RNA from HEK-293T cells, 

derived from embryonic kidney, rather than B cells. Further analyses in CLL-derived cells 

could help determine the putative alteration of the NF-κB pathway by mutations in the 

3'UTR of NFKBIZ. 
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Elucidating the mechanism of action 

The 3'UTR of NKFBIZ is highly conserved near the mutation hotspot, and it has 

been described that at least two endonucleases, MCPIP1 (also known as Regnase-1) and 

Roquin1/2 (coded by RC3H1/2 genes) bind to this region166–168. However, our studies do 

not support an effect of these mutations in mRNA stability. Furthermore, these proteins 

bind to loops 4 and 5, whereas the mutations detected in patients are mainly found in 

loop 1. We hypothesized that there is at least a third protein that binds to this first loop 

inhibiting mRNA translation. The presence of these mutations or signaling by IL1 might 

affect the binding of this protein to the 3'UTR of NFKBIZ, preventing its repressor activity 

(Figure 46). 

 

Figure 46. Model of the effect of the mutations in the 3'UTR of NFKBIZ. Under normal 

conditions MCPIP1 and Roquin1/2 bind to SL4 and SL5 promoting mRNA degradation. 

According to our hypothesis, there would also be a third protein recognizing SL1 and 

inhibiting protein translation. Mutations in SL1 destroy the loop structure preventing this 

putative protein from binding. This allows mRNA to be recruited to polysomes, causing 

overexpression of IκBζ. 
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To try to determine which proteins might be bound to this region of the 3'UTR 

of NFKBIZ, we decided to perform an in silico prediction using only the sequence 

corresponding to loops 1 and 2. For this purpose, we used two online tools: RBPmap and 

Attract. RBPmap predicted 41 regions (p-value < 0.05) in which 17 RNA binding proteins 

(RBPs) could bind, whereas Attract identified 60 regions for 31 RBPs. Among them, only 

5 RBPs had been predicted by both programs (Table 14). However, most of them (4/5) 

are located in the nucleus and are related to splicing regulation. Only PUM2 exerts its 

function in the cytoplasm, the compartment in which the NFKBIZ mRNA is found. 

Moreover, this protein is involved in post-transcriptional repression169, which is exactly 

the mechanism we wanted to investigate. In addition to PUM2, another protein of the 

same family and with the same function (PUM1) was also selected to perform a targeted 

screening to test whether these proteins are involved in the post-transcriptional 

regulation of NFKBIZ. We also chose IGF2BP2 and IGF2BP3 (predicted by Attract), two 

RBPs with translation repressor activity that are mainly located in the cytoplasm170 and 

RPSAP52, a lncRNA that facilitates binding between IGF2BP2/3 and their target 

mRNAs171. Finally, MCPIP1 were added to the study to see how increased mRNA stability 

affected protein expression. 

Table 14. RBPs that are predicted to bind to the loops 1 and 2 in the 3'UTR of NFKBIZ 

RBP Localization Function 

HNRNPA1 Nucleus 

Involved in the packaging of pre-mRNA into hnRNP particles, 

transport of poly(A) mRNA from the nucleus to the cytoplasm and 

may modulate splice site selection 

PUM2 Cytoplasm 

Mediates post-transcriptional repression of transcripts via 

different mechanisms: acts via direct recruitment of the CCR4-

POP2-NOT deadenylase leading to translational inhibition and 

mRNA degradation169 

MBNL1 Nucleus 
Mediates pre-mRNA alternative splicing regulation. Acts either as 

activator or repressor of splicing on specific pre-mRNA targets 

PTBP1 Nucleus 
Plays a role in pre-mRNA splicing and in the regulation of 

alternative splicing events 

SRSF5 Nucleus 
Plays a role in constitutive splicing and can modulate the selection 

of alternative splice sites 
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In order to knock-out these proteins, one shRNA plasmid from the MISSION RNAi 

library were selected per target protein. Then, they were co-transfected into HeLa cells 

together with the psiCHECK2-3'UTRwt plasmids to perform luciferase assays (n = 4). Thus, 

we wanted to see the effect that these proteins had on luciferase expression and 

whether their inhibition led to increase luciferase activity. Two extra conditions were 

also transfected, psiCHECK2-3'UTRg.101578254CAGTT>C and psiCHECK2-3'UTRwt, as positive 

and negative controls respectively (Figure 47). However, no differences in Renilla 

luciferase activity were observed between knock-down conditions. 

 

Figure 47. Effect of inhibition of proteins that might be interacting with the 3'UTR of 

NFKBIZ on Renilla luciferase expression. Assays were carried out in HeLa by co-

transfecting shRNAs designed to knock out selected proteins together with plasmid 

psiCHECK2-3'UTRwt (n = 4). “WT” and “Control +” conditions were transfected only with 

psiCHECK2-3'UTRwt and 3'UTRg.101578254CAGTT>C vectors, respectively. Data were normalized 

to “WT” values. 
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New driver mutations and structural variants in MCL 

The analysis of sequencing data, driven by the collaboration between the 

different groups that form the major international cancer genome sequencing consortia, 

has given us a very complete picture of the main molecular alterations present in the 

main types of cancer8,21,36,56,70,78. The integration of all this data has not been an easy 

task and has required more than five years and 10 million hours of CPU time36. However, 

there are still pending tasks, such as the analysis of other types of tumors not included 

within the ICGC or TCGA projects, and ensuring that all this knowledge reaches patients 

in the form of more precise diagnosis and new and better treatments. During this thesis, 

I have contributed to the mutational analysis of more than 60 patients with mantle cell 

lymphoma, a tumor type which had not been studied in depth to date121,141,142. The 

ability to analyze more than 60 tumors by WGS has allowed the characterization of this 

tumor type at an unprecedented resolution, allowing the detecting of new driver genes, 

and identifying a large number of structural alterations.  

In this regard, we were able to observe that the t(11;14), an indispensable 

feature for the classification of both MCL subtypes, occurs by the same mechanism in 

cMCL and nnMCL. In fact, most breakpoints on chromosome 11 are located within the 

same 100 bp region (MTC) associated with the recognition motifs of the AID, an enzyme 

involved in the processes of somatic hypermutation and class switch recombination 

during the maturation of B lymphocytes. This, together with the fact that the MTC 

corresponds to an open chromatin region, allows the rearrangement of the 

immunoglobulin promoter (chr14) upstream of CCND1 (chr11) during B cell 

development, resulting in overexpression of this cyclin and tumor transformation by 

deregulating the cell cycle135. However, it has been shown that CCND1 overexpression 

is not sufficient to induce B-cell transformation, requiring the accumulation of additional 

oncogenic events172. This might explain the big difference between the two subtypes 

when tumor transformation is initiated by the same initial event.  
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To understand which other driver events might contribute to MCL development, 

we performed mutation calling of somatic mutations in these cases, followed by 

statistical analysis to identify genes with a significant number of mutations. We were 

able to discover genes altered in important mechanisms such as cell cycle regulation 

(CDKN1B), DNA replication (SAMHD1), RNA processing (HNRNPH1) or chromatin 

modification (SMARCB1), among others. In total, this resulted in the identification of 30 

driver genes, 5 more than previously described121. An interesting fact is that, despite the 

increase statistical power to identify novel driver genes due to the larger number of 

analyzed cases, the number of novel driver genes identified was somehow modest, in 

comparison to other tumor types such as CLL. However, the parallel analysis of structural 

alterations in those WGS cases revealed the presence of numerous recurrent 

alterations, including several targeting specific genes, such as deletion of 13q14 (RB1) 

and 9p21 (CDKN2A) or amplification of 8q24 (MYC). These data suggest that contrary to 

other B-cell neoplasias such as CLL, MCL transformation appears to be more dependent 

on the accumulation of structural variants affecting genes involved in cell cycle, 

proliferation, and DNA damage repair, and less on point mutations in specific genes. 

From a chromosomal perspective, CLL is a very quiet entity, with four mayor 

chromosomal alterations (trisomy of chromosome 12, deletion of 13q14 and 6q15-21, 

and deletion of TP53 or ATM at chromosomes 17 or 11, respectively). And at a minor 

frequency, t(14;18), t(14;19) and t(2;14)155. On average, each CLL tumor contains 2 

structural variants at diagnosis. In contrast, MCL tumors have a higher number of 

structural variants (average 13) and with increase complexity, including alterations such 

as chromothripsis, kataegis or chromoplexia. The biological reason for this difference is 

currently unknown. Future studies could focus on timing their appearance in order to 

better understand the effect they have on tumor transformation.  

In conclusion, this analysis has contributed to reveal the complexity of MCL and 

to explain at the genomic level the differences seen in disease progression between the 

two subtypes. Moreover, the identification of new driver genes and the mechanisms by 

which they are altered, opens the door to develop novel strategies and/or drugs for their 

treatment. 
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Improving the detection of somatic mutations 

The identification and further revision of mutations in MCL whole genomes 

allowed us to identify weaknesses and potential room for improvement of some of the 

bioinformatics programs used for somatic mutation calling. In order to avoid program-

specific bias, international groups usually combine several tools and keep the common 

results from all of them. This approach, while providing more accurate datasets, 

represents a very costly procedure both in time and computing resources, resulting in a 

somehow redundancy that increases the economic cost of this fundamental process of 

mutation calling. Nevertheless, the application of NGS techniques for clinical diagnosis 

in tumor samples requires procedures that provide enough sensitivity and specificity, 

while at the same time do not require large computing resources to achieve the analysis 

in a reasonable amount of time and under a tight economic budget. To increase 

accuracy, a final step of manual review through visual inspection is usually carried out 

for mutations that might be clinically informative. This manual revision increases the 

specificity, but at the cost of a labor intensive process. Recent advances in machine 

learning approaches are suitable to incorporate features that experts consider when 

distinguishing between bona fide mutations and false positives. However, most 

available programs that use machine learning approaches for somatic mutation calling 

have been trained with high depth of coverage WES, using in silico99,100 or orthogonal 

validated mutations101 and cannot be used for whole-genome analysis. 

In this work, we have taken advantage of a manually curated dataset of real 

mutations with features that an expert curator might consider when manually reviewing 

a mutation in a research or clinical context. Thus, we have achieved a high sensitivity to 

detect SSNVs and small indels, while at the same time maintaining a low footprint, with 

low CPU and RAM consumption, being able to analyze a whole genome in less than 5 

hours. Even more, this time can be reduced up to 3 hours when analyzing more than 

one case at the same time, since RFcaller has been designed to process multiple samples 

in parallel instead of analyzing them independently. This feature has not been seen in 

other variant callers and is very useful when analyzing many cases simultaneously. 

Another characteristic of RFcaller is the use of basic filters such as the minimum number 
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of reads, both wild-type and mutated, that have to appear to consider a mutation. These 

filters have two objectives, to eliminate false positives in the first steps in order to 

accelerate the pipeline, and to remove mutations for which we would not be sure they 

are real, even after manual review. In this sense, there are programs that identify a 

mutation with total coverages of 4 or 5 reads or when there are only 1 or 2 mutated 

reads. Despite the potential advantage of detecting those mutations, the use of those 

calls in the clinical practice should be supported by stronger evidence, and if the 

evidence is too scarce for an expert to make a call, the inclusion in a final report is 

somehow debatable. 

Moreover, although RFcaller has been trained with WGS data, it has shown a 

good performance in exome samples. In fact, after manually revision of some of the false 

negatives, we saw that the main problem originates from the first call made with 

bcftools and not from the RFcaller regression algorithm. Upon further exploration we 

detected that most errors were due to a very high coverage of the region, which made 

it impossible to identify the mutation. Although the number of false negatives detected 

by WES was not very high, being able to improve the detection of mutations in this type 

of regions would be a great advance, not only for WES analysis but also to be able to use 

RFcaller with other techniques such as target deep-sequencing. 

On the other hand, even though our selected features are often used by similar 

programs, most of them process SSNVs and indels following the same rules, when clearly 

the two types of mutations have different characteristics. In this regard, we analyzed 

SSNVs and indels separately, which allowed us to detect indels with higher accuracy 

without affecting the ability to detect SSNVs. Indeed, we have shown that RFcaller 

performance is similar to that of a combination of complex pipelines used in the PCAWG 

project to detect clonal mutations, with the ability to detect new ones. In fact, some of 

them have been found in driver genes, what might contribute to improve the detection 

of actionable mutations or mutations with clinical prognosis significance173. 

Furthermore, we showed that RFcaller was able to detect mutations even in the 

presence of some tumor contamination in the normal sample, a common problem in 

some hematological tumors that usually leads to false negatives with other pipelines. 
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However, in solid tumors, where the purity of the sample was not so high, RFcaller lost 

some sensitivity. This was caused by the fact that, due to the presence of normal DNA 

in tumor sample, the VAF of the mutations was slightly lower than when tumor purity is 

100%. Therefore, some mutations were not detected or were detected with a very low 

quality. When compared to other pipelines, we demonstrated that most RFcaller false 

negatives were subclonal mutations with very low VAF, whose analysis might require 

additional tools and might not be as critical for taking clinical decisions. The most likely 

explanation for this loss of sensitivity in subclonal mutations in solid tumors is probably 

the fact that the training was performed using MCL samples with close to 100% tumor 

purity. Therefore, in order to recover this type of mutations in future versions of the 

tool, it could be trained using this reviewed set of subclonal mutations, so it can work in 

parallel to that of SSNVs and indels. 

Additionally, an important point that tends to be ignored when evaluating a 

program is the difficulty of installing it and using it. In this sense, many of the programs 

used during this thesis were tedious to install, had requirements that were incompatible 

with other programs already installed or with newer versions of the operative system, 

had hardly any documentation or even did not work correctly and modifications in the 

source code were needed, modifications that are not suitable to the average user. In the 

last decade, tools such as Conda, which allows the creation of private environments with 

the needed requirements for the program to work, have been emerging. Another 

alternative that has become very popular is the use of containers such as Docker. This is 

based on the idea of creating a container, which can be understood as an independent 

virtual machine with its own lightweight operating system, that comes with all the 

requirements pre-installed along with the program. So, just by downloading this image, 

the program is ready to use, independently of the operative system or program versions 

installed in the machine where it is going to be executed. 

Furthermore, RFcaller has been uploaded to the GitHub public repository 

allowing its use by other researchers and facilitating its improvement and addition of 

novel capabilities by building them upon existing versions. In conclusion, we have 

developed a pipeline called RFcaller, that is provided under a Docker system, which 
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allows its easy and fast installation without version incompatibilities. This tool allows the 

identification of clonal mutations with the same efficiency as state-of-the-art pipelines, 

but with a smaller footprint in computing resources, which might facilitate its 

implementation for clinical usage. 

Improving the monitoring of pediatric MB tumors 

Although RFcaller was still under development when we carried out this project 

in collaboration with Drs. Laura Escudero and Joan Seoane, it represents a good example 

of why it is necessary to have sensitive and specific mutational callers. Thus, during this 

thesis we tried to improve the diagnosis and follow-up of patients with pediatric 

medulloblastoma by analyzing the circulating tumor DNA present in the cerebrospinal 

fluid, and its comparison to WES of the primary tumor and normal DNA. Nowadays, the 

molecular characterization of MB provides the most accurate classification of this 

disease. The ability to detect those alterations before surgery would constitute a step 

forward in the management of these patients. 

The analysis of WES mutations obtained from CSF-derived ctDNA and its 

comparison to WES from primary MB tumors revealed that ctDNA alterations 

recapitulated the main genomic alterations detected in the primary tumor, such as 

mutations in TP53 and PTCH1, MYCN and GLI2 amplifications, SUFU deletion or loss of 

17p. This ctDNA was sufficient to detect not only point mutations (SSNVs and indels), 

but also copy number alterations. Furthermore, we were able to observe the same 

subclonal genomic landscape, which would allow the characterization of the 

intratumour heterogeneity, and the detection of germline mutations in known cancer 

genes. The data derived from these analyses provided sufficient information for MB 

molecular diagnosis and risk stratification, obtaining the same results as after direct 

analysis of tumor samples. This procedure has the advantage of using a much less 

invasive method that can be performed before surgery, as most of those patients have 

hydrocephalus and routine CSF extraction is performed, allowing a rapid diagnosis that 

can help to plan surgery. 
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On the other hand, WES analysis of CSF ctDNA also allowed us to characterize 

two cases with relapses. In fact, in one of the patients, who suffered from Li-Fraumeni 

syndrome, we were able to identify a completely new primary tumor that did not share 

somatic mutations with the original tumor. This fact is very important, since common 

follow up procedures, based on more targeted approaches such as RT-qPCR or droplet-

digital PCR, will follow a particular mutation or a small set of mutations detected in the 

primary tumor. The presence of a completely novel tumor will be missed by these 

molecular approaches, but can be readily identified by WES from CSF-ctDNA. Therefore, 

being able to observe tumor evolution would allow us to identify new therapeutic 

targets, which would greatly benefit patients by offering more personalized therapies 

with fewer side effects. 

Being able to classify tumors by CSF ctDNA prior to surgery has its advantages. In 

this way those patients with a better prognosis could benefit from a more conservative 

tumor resection followed by chemo- and radiotherapy, while in those with a shorter 

progression-free survival it would be much more important to achieve a complete tumor 

resection. We have also demonstrated that the analysis of sequential CSF ctDNA 

samples after surgery is useful for disease monitoring, as this would allow us to follow 

tumor evolution and adapt the intensity and duration of treatment. In this way, we 

detected two cases with minimal residual disease, not seen by radiologic imaging, which 

would allow them to be monitored more closely. 

The use of sequencing technologies also allowed us to detect individuals with 

germline mutations in cancer predisposition genes. Thus, we discovered 10 mutations 

in 5 genes (TP53, PTCH1, BRCA1, BRCA2 and BLM) related to hereditary cancer 

syndromes. In this regard, it was already known that mutations in TP53, PTCH1 and 

BRCA2 were associated with an increased predisposition to MB174. Specifically, 

mutations in TP53 give rise to Li-Fraumeni syndrome, a syndrome that increases the 

predisposition to suffer various types of cancer at a very young age. On the other hand, 

alterations in BLM give rise to Bloom syndrome, which causes various pathologies and 

increases the risk of developing different types of tumors175. Recently, two cases with 

mutations in this gene were detected in a study of more than 1,000 patients with MB. 
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Due to its low prevalence, this gene was not considered to be related to a greater 

predisposition to MB176. However, in our study three patients with mutated BLM were 

detected. Taking into account that our cohort corresponded entirely to pediatric 

patients, where the importance of genetic predisposition is supposed to be higher, and 

that germline mutations in this gene have also been detected in other cohorts, our 

results suggest that BLM should be included as a predisposition gene for MB. Finally, we 

found a case that presented a germline mutation in BRCA1, a gene that has not been 

found to be related to an increased predisposition to MB. Nevertheless, this same 

patient also had a germline mutation in TP53, making it difficult to link BRCA1 with an 

increased predisposition to MB. Finally, 2 of the 3 patients presenting germline 

mutations in BRCA2 also had mutated BLM. In this sense, although the number of cases 

is too small to be able to confirm it, it seems that there is a relationship between 

mutations in these two genes and the probability of developing MB. 

In summary, this work demonstrated that CSF ctDNA analysis is a non-invasive 

and accurate strategy for the characterization, including subtyping and risk 

stratification, and monitoring of pediatric patients with MB. Therefore, its application to 

other neoplasias of the central nervous system could impact the diagnosis and 

management of these patients. 

Characterization of non-coding mutations in CLL 

The search for driver mutations and structural alterations constitutes the initial 

step in our understanding of cancer at the molecular level. However, as important as 

identifying driver mutations is understanding the mechanism of action and the effects 

they will have on the biology of the cell. The last decade has seen an exponential 

increase in the number of cancer driver genes identified thanks to the advances in 

sequencing. However, only a tiny fraction of those statistically significant genes has been 

studied experimentally. In addition, these regions tend to be studied more often, since 

mutations in the coding sequence usually suggest a straightforward explanation, while 

the mechanism of action of non-coding mutations is more complex. 
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During this thesis, we have identified a recurrent mutation in U1, a repetitive and 

non-protein coding gene that codes for a snRNA that is part of the spliceosome. 

Interestingly, a recent study by our group has identified mutations in another repetitive 

and non-protein coding gene (U2), that also encodes a snRNA that is part of the 

spliceosome177. This highlights the importance of analyzing these type of regions, which 

had been excluded until now due to the difficulty in analyzing them and the more 

protein-centric approach when trying to interpret the plethora of mutations present in 

tumor genomes. 

The mutations detected in U1 are located in the third base of the transcript, 

modifying the 5' splice site recognition sequence. As expected, these mutations 

generated a global change in the splicing pattern of the cells, both in vivo and in vitro. 

Although the interpretation of mutations located in non-coding regions is a non-trivial 

process, our first hypothesis was that the g.3A>C mutation in U1 could represent a gain 

of function mutation. This was supported by the recurrent mutation of the same base in 

many independent tumors, as well as for the existence of a large number of wild-type 

transcripts that continued to be expressed. Thus, the mechanism of action appears to 

be abnormal splicing. Recognition of the 5'SS is given by complementarity between 

bases 3-10 of U1 and the last two bases of the exon together with the first six bases of 

the intron178 (Figure 27). As we have seen in the results of the RNA-seq analysis, these 

mutations modified the preference for base 6 of the intron (complementary to the third 

base of U1), favoring a C for the U1g.3A>G mutation detected in MB or a G in the case of 

U1g.3A>C in CLL and HCC. Furthermore, among the different categories in which 

alternative splicing can occur, the mutations only caused changes in the cryptic 5'SS with 

an increased excision. That is, mutations caused the recognition of novel 5'SS, without 

participating in the selection of the 3'SS or other previously annotated sites, nor fails to 

recognize the canonical 5'SS. This confirmed the gain-of-function hypothesis, as the 

changes observed at the global level were very specific. 
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As we have already mentioned, both mutations cause a major change in the 

splicing pattern. However, if random dysregulation of multiple proteins through splicing 

were responsible for tumor transformation, we would not have seen that specificity of 

U1g.3A>G in MB or U1g3.A>C in CLL and HCC, but would expect to find both mutations in all 

three types of tumors. This suggests that what is important is not the overall 

deregulation of splicing, but the alteration of specific genes in each of the diseases. In 

this regard, just as in a tumor where driver and passenger mutations exist, mutations in 

U1 will also generate driver and passenger aberrant splicing events. For example, in MB 

with the U1g.3A>G mutation, several driver genes were found deregulated for this tumor 

type (PTCH1, GLI2, PAX5, CCND2), whose alterations were not detected when we looked 

at RNA-seq data with the U1g.3A>C mutation. In addition to changes in splicing, the 

expression of multiple genes was also altered. Nevertheless, this is more an indirect 

effect of mutations in U1, since it is logical that dysregulation at the splicing level of so 

many proteins also translates into changes in the expression of many other genes. It 

would be necessary to carry out a more exhaustive analysis of the data to verify 

whether, additionally to any driver gene with altered splicing, there are others whose 

activation mechanism is due to direct changes in their expression. 

To demonstrate that all these changes observed in patients were due to U1 

mutations, different cell lines were transfected or infected with U1g.3A>G or U1g.3A>C 

mutations, respectively. We saw the same change in the splicing pattern, as well as many 

deregulated genes. However, the percentage of altered genes that overlapped in both 

splicing and differential expression analyses between cell lines and patients was not very 

high. These results could be explained by the fact that there were not many patients 

with RNA-seq data, and they were not homogeneous, since each of them presented 

different driver mutations in addition to those in U1. This means that deregulated genes 

may appear or disappear due to the mutational background already present in each 

patient and not solely due to the effects of U1. Although the cell lines also exhibit other 

alterations, we use the same cells as controls in the experiments, whereas in the case of 

patients the controls are other cases with a very different mutational background. 
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In order to determine if the U1g.3A>C mutation could confer an advantage to cell 

lines over those with U1wt, proliferation and apoptosis assays were performed. 

However, and similar to other mutations in splicing genes179,180, no significant 

differences were found. There are several reasons to explain these results. First, we 

were using previously stablished cell lines that contained and depended on other driver 

events for their growth and survival. Therefore, introduction of a novel mutation, such 

as the U1g.3A>C, might not result in an effect as the cell lines were already dependent on 

other pathways181. Second, it is possible that tumor growth depends on different stimuli 

while growing in vitro vs in vivo, and the U1 mutation might be required only for certain 

processes not recapitulated in vitro. We were surprised not to observe differences in 

cell death when cells were treated with proteasome inhibitors. Thus, due to the large 

number of aberrant splicing transcripts formed in U1g.3A>C cells, it is very likely that the 

amount of truncated proteins to be degraded by the proteasome would be higher in 

U1g.3A>C cells when compared to control cells. Therefore, proteasome inhibition should 

generate some toxicity in the cells. However, the absence of differences suggests that 

some compensatory mechanisms might be acting. In this regard, when we compared 

differentially expressed genes caused by U1g.3A>C, we observed that pathways related to 

protein synthesis and apoptosis were downregulated in CLL patients, suggesting that 

this compensatory mechanism could attenuate the expected toxicity generated by the 

inhibition of the proteasome. However, these changes were not observed in cell lines, 

suggesting that other, as yet unknown mechanism, might be responsible for this 

unexpected tolerance to proteasome inhibition. 

Another interesting observation is that mutations in U1 and SF3B1 were mutually 

exclusive. As both genes are involved in the splicing process, recognizing the 5'SS and 

the 3'SS respectively, we explored the effect of inhibition of SF3B1 on cell survival in the 

presence or absence of the U1g.3A>C mutation. However, we did not observe major 

differences between U1-mutated and –wild-type cells in response to PladB, suggesting 

that mutations in U1 and SF3B1 might be mutually exclusive because they impact a 

similar pathway, and not because of synthetic lethality. 
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The main role of U1 is the identification of the 5'SS, so it is logical to think that 

mutations in this gene will mainly affect splicing. However, it is known that this snRNA 

also has other functions on RNA transcriptional regulation by suppressing premature 

cleavage and polyadenylation182,183. Thus, mutations in U1 could also be altering the 

expression of certain genes through these mechanisms. For example, the selection of 

premature cleavage sites may result in the degradation of some transcripts through the 

nonsense-mediated decay pathway184. On the other hand, the selection of alternative 

polyadenylation sites by the mutated U1 can give rise to 3'UTRs of different lengths. 

Thus, in case of generating longer 3'UTRs, transcripts could present new motifs 

recognized by RNA biding proteins or miRNAs that might inhibit their expression, or on 

the contrary, these sites could disappear, increasing the stability of the transcripts185. 

Although the study of these processes would have improved our understanding of                 

the mechanism of action of these mutations, the available data were not suitable for 

this type of analysis. Future experiments with other sequencing strategies could help us 

with this purpose. 

Moreover, it has recently been described that U1 also causes the arrest of some 

lncRNAs in chromatin, a process dependent on residues 3-10 of U1 and associated with 

the number of U1 recognition sequences present in each lncRNA165. Based on this study, 

the presence of the g.3A>C mutation in U1 could result in the recognition of additional 

lncRNAs that might be retained in the chromatin. However, we were unable to identify 

differences in lncRNA chromatin localization induced by U1g.3A>C. The fact that the 

presence of a limited number of new U1 recognition sites may not be sufficient to cause 

chromatin retention, could explain why we did not detect any new chromatin-

associated lncRNAs in cells with U1g.3A>C. 

One of the most interesting consequences of the U1g.3A>C mutation is the 

potential generation of novel antigens derived from its major alteration of splicing in 

numerous genes. Due to the relevance of tumor neoantigens in immunotherapy186,187, 

U1 mutations could constitute a relevant marker for this novel therapeutic approach, as 

despite U1 being non-coding, it has an impact on many different proteins, and they 

should be similar in different patients. During this thesis we were able to perform a 
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preliminary approach by using serum from patients with U1wt or U1g.3A>C against protein 

extracts from three cell lines (JVM3, HG3 and MEC1) either expressing U1wt or U1g.3A>C. 

The absence of patient antibodies specifically recognizing proteins in these cell lines 

indicates that either the amount of proteins with neoepitopes produced by these cell 

lines is too low to be detected by this technique, or that there is not a B-cell response to 

the potential neoantigens generated by these tumors. Further studies aimed at 

characterizing the T-cell response in these patients might provide additional information 

regarding the immune response generated by the U1g.3A>C mutation. 

In addition to the mutations detected in U1, during this thesis we have also 

validated a series of mutations located in a highly conserved region of the 3'UTR of 

NFKBIZ in CLL. This hotspot was first identified by Dr. Gutiérrez-Abril after analysis of the 

3'UTR regions in two cohorts of more than 1,000 patients with CLL77. More recently, 

Arthur et al. also detected mutations in this same region in cases with diffuse large B-

cell lymphoma188. Because these mutations did not generate changes in transcript levels 

or mRNA stability, a more direct assay was necessary to see that the effect of, at least, 

the most recurrent mutation was the de-repression of translation by ribosomes77. 

Extension of these assays to six other mutations detected in this hotspot confirmed the 

same results, except for the g.10157830304G>A mutation, which neither altered mRNA 

stability nor led to increased protein expression. This difference might be due to the fact 

that while all the other mutations destroyed the SL1, this one was located in SL3 and it 

was not predicted to affect its structure (Figure 40). Similar results were obtained by 

CRISPR-Cas9-generated mutations, suggesting that alteration of SL1 within the 3'UTR of 

NFKBIZ is the target of those recurrent mutations detected in hematological tumors. 

The fact that upon stimulation with IL1 there was an overexpression of IκBζ, with 

the same effect as mutations in its 3'UTR, made us explore in more detail the implication 

of MYD88 signaling pathway, as this is one of the most important pathways activated by 

interleukins. Furthermore, MYD88 is one of the most frequent driver genes in CLL. Thus, 

a previous work has demonstrated that IRAK1 and TRAF6, two downstream members of 

MYD88 signaling pathway, were essential for such activation189. However, IRAK1 is a 

kinase and TRAF6 is an E3 ubiquitin ligase without RNA-binding domains, so they cannot 
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be the proteins that are ultimately blocking IκBζ translation. Therefore, other strategies, 

such as non-hypothesis driven experiments, should be designed in order to clarify which 

proteins participate directly in IκBζ repression. Together, this suggests that both, 

mutations in MYD88 and in the 3'UTR of NFKBIZ, are acting through the same pathway. 

This can also be supported by the fact that mutations in MYD88 and NFKBIZ are mutually 

exclusive in DLBCL188, where MYD88 is also considered a driver gene. 

On the other hand, mutations described in CLL for the 3'UTR of NFKBIZ were 

detected in only one of the two cohorts comprising the study. Specifically, these 

mutations appeared in a series associated with patients in progression and/or 

participating in a clinical trial, which might imply that they were associated with worse 

prognosis or with a more advanced stage of the disease. This would make sense if we 

consider that the mechanism by which mutations in MYD88 and NFKBIZ act are related, 

as it has been described that mutant MYD88 is associated with unfavorable prognosis190–

192, although other studies show that it is of favorable prognosis, suggesting that its role 

is still unclear. This, together with the fact that mutations in this same region have been 

detected in DLBCL, may suggest that NFKBIZ is a gene involved in disease progression. 

In summary, during this doctoral thesis we have contributed not only to increase 

our knowledge about the molecular mechanisms involved in cancer development by 

defining driver genes in a malignant lymphoma, such as MCL, or developing novel tools 

for the identification of somatic mutations in tumor genomes, but also to improve the 

diagnosis and management of patients with MB thanks to the use of liquid biopsies. In 

this regard, the generation of affordable pipelines for the analysis of tumor genomes 

with enough sensitivity and specificity fulfills a recurrent problem, by most medium size 

laboratories and most clinical centers, when attempting to use NGS strategies for 

diagnosis. Finally, we have attempted to characterize the molecular mechanism by 

which mutations in non-protein coding regions might contribute to tumorigenesis. A 

precise understanding of these processes might lead to the development of novel 

therapeutic approaches, including those based on immunotherapy, that could help 

some of these patients with bad prognosis mutations.
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1. Analysis of mantle cell lymphoma genomes has provided insight into the complex 

genomic landscape of these tumors, confirming that the main driving events of this 

disease are structural alterations, rather than the accumulation of point mutations as 

is the case in other hematologic tumors. 

2. RFcaller is a fast and low computational demanding tool that allows the detection of 

somatic mutations in whole genomes with the same precision as that obtained with 

a combination of several of the most commonly used callers. 

3. The sensitivity of RFcaller increases with tumor purity, and most of its false negatives 

correspond to subclonal mutations. 

4. The analysis of circulating tumor DNA derived from cerebrospinal fluid in pediatric 

medulloblastoma tumors is a minimally invasive technique that allows 

characterization, monitoring and detection of minimal residual disease in these 

patients, as well as intratumor heterogeneity. 

5. U1 snRNA has been identified as a novel cancer driver gene, it is recurrently mutated 

in multiple tumor types and results in transcriptome-wide splicing changes. 

6. Mutations at position 3 of U1 recognize new splicing donor sites, allowing the 

formation of cryptic 5' sites in the introns of multiple genes. 

7. Chronic lymphocytic leukemia cell lines expressing the U1 mutant do not exhibit 

changes in growth, apoptosis, or resistance to proteasome or splicing inhibitory drugs 

when compared to wild-type cells. 

8. Mutations in the 3'UTR of NFKBIZ destroy a highly conserved structure involved in 

translational repression, resulting in overexpression of the protein, but does not 

affect the stability of its mRNA. 

9. Overexpression of NFKBIZ alters the expression of multiple genes, activating the NF-

κB signaling pathway in HEK-293T cells. 

10. Mutations in the 3'UTR of NFKBIZ mimic the effect of IL1 stimulation regarding 

translational repression of IκBζ, suggesting that these mutations act through the 

MYD88/IRAK1 pathway. 
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1. El análisis de genomas de linfoma de células del manto ha permitido comprender el 

complejo panorama genómico de estos tumores, confirmando que el principal 

evento conductor de esta enfermedad son las alteraciones estructurales, y no la 

acumulación de mutaciones puntuales como ocurre en otros tumores hematológicos. 

2. RFcaller es una herramienta rápida y con bajos requerimientos computacionales que 

permite la detección de mutaciones somáticas en genomas completos, con la misma 

precisión que la obtenida con la combinación de varias de las herramientas más 

utilizadas. 

3. La sensibilidad del RFcaller aumenta con la pureza del tumor, y la mayoría de los 

falsos negativos se corresponden con mutaciones subclonales. 

4. El análisis del ADN tumoral circulante derivado del líquido cefalorraquídeo en 

tumores pediátricos de meduloblastoma constituye una técnica poco invasiva y que 

permite la caracterización, monitorización y detección de enfermedad mínima 

residual en estos pacientes, así como la heterogeneidad intratumoral. 

5. Se ha identificado U1 como nuevo gen conductor del cáncer, se encuentra 

recurrentemente mutado en múltiples tipos tumorales y provoca cambios de splicing 

a nivel de todo el transcriptoma. 

6. Las mutaciones en la posición 3 de U1 provocan el reconocimiento de nuevos sitios 

donadores de splicing, lo que permite la formación de sitios 5' crípticos en los 

intrones de múltiples genes. 

7. Las líneas celulares de leucemia linfática crónica que expresan la mutación g.3A>C de 

U1 no muestran alteraciones en el crecimiento, apoptosis ni resistencia a fármacos 

inhibidores del proteasoma o del splicing cuando se comparan con células control. 

8. Las mutaciones en el 3'UTR de NFKBIZ destruyen una estructura altamente 

conservada implicada en la represión de la traducción, lo que da lugar a la 

sobreproducción de la proteína sin afectar a la estabilidad de su mRNA. 

9. La sobreexpresión de NFKBIZ altera la expresión de múltiples genes, activando la ruta 

de señalización de NF-κB en células HEK-293T.  

10. Las mutaciones en el 3'UTR de NFKBIZ provocan un efecto similar al ejercido por la 

estimulación con IL1 en cuanto a la represión traduccional de IκBζ, sugiriendo que 

estas mutaciones actúan a través de la vía de MYD88/IRAK1.
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splicing (PTCH1 and GLI2). 

o Perform RNA-seq to confirm causal effect of the U1g.3A>G mutation on 

splicing. 
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medulloblastoma. 

o Search for both somatic and germline mutations and copy number 

alterations. 

o Assist with the molecular classification of these patients, using previously 
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