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Habitat characteristics around dens in female brown bears with cubs 
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Abstract
The mechanisms determining habitat use in animal populations have important implications for population dynamics, 
conservation, and management. Here, we investigated how an increase in annual numbers of brown bear females with cubs 
of the year (FCOY) in a growing, yet threatened population, could explain differences in the habitat characteristics around 
reproductive dens. Habitat characteristics around FCOY dens were compared between a low bear density period (1995–2005) 
and a period when the population was increasing (2006–2016). We also compared the distance to the nearest breeding area 
and to all other breeding areas observed during the same year. The results suggested that during the second period, breeding 
areas were closer to rivers, fruit trees, and anthropogenic sources of disturbance (trails, highways) than in 1995–2005. There 
were also shorter distances to the closest neighboring breeding area, while the mean distance among FCOY breeding areas 
increased as the population grew and expanded at the landscape level. These changes may reflect that the best den locations 
were increasingly occupied (i.e., ideal-despotic distribution), and may be further explained by the avoidance of conspecifics 
by FCOY in a critical time of the year, when newborn cubs are most vulnerable. We suggest that both density-dependent 
factors and human-related features of the landscape are crucial to understanding long-term dynamics in the habitat use of 
a threatened species.

Keywords  Denning behavior · Density-dependence · Females with cubs · Human-dominated landscapes · Human-modified 
landscapes · Ursus arctos
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Introduction

The mechanisms determining habitat use in animal popula-
tions have important implications for population dynamics, 
conservation, and management (O’Neil et al. 2020). Habitat 
use of individuals in a population is expected to be function-
ally dependent on population density when individuals are 
distributed in a way that maximizes fitness and minimizes 
competition for resources. Density-dependence is a pivotal 
topic in ecological theory, historically studied in the context 
of population regulation (Gigliotti et al. 2020), particularly 
the effects of density on survival and reproduction (e.g., 
Hassell 1975; Fowler 1981; Murdoch 1994; Wolff 1997; 
Penteriani et al. 2006; Ferrer and Penteriani 2008), as well 
as in relation to recruitment, growth, body size, disease, and 
predation (e.g., Fowler 1987; Sinclair and Pech 1996; Stew-
art et al. 2005; Potapov et al. 2012).

Animals do not distribute randomly in space (Taylor 
et al. 1978). As such, substantial effort has been invested 
into understanding the role of habitat use in determining the 
spatial heterogeneity of population densities and the associ-
ated fitness consequences for individuals (Rosenzweig 1981; 
Morris 1987, 2003). When population density increases, the 
competition for space and resources is amplified (van Beest 
et al. 2014a), typically resulting in changes in the spatial 
behavior of individuals and populations at different scales. 
For instance, home range size (Kilpatrick et al. 2001; Dahle 
and Swenson 2003; Kjellander et al. 2004; Dahle et al. 
2006), dispersal probability and distance (Ims and Andreas-
sen 2005; Matthysen 2005), and fine-grained resource use 
of animals within habitats (van Beest et al. 2014b, a) may 
be altered with increasing density. According to ideal des-
potic distribution or ideal-dominant distribution (Evans and 
Fretwell 1973), the individuals that first occupy a given area 
may monopolize the most suitable habitats, resulting in a 
higher density of individuals occupying less suitable habitat 
as the population increases. While this concept has received 
much theoretical attention, there is little empirical evidence 
to explain patterns of habitat use when individuals com-
pete for limited resources under the ideal-despotic scenario 
(O’Neil et al. 2020; Avgar et al. 2020).

Significant efforts have been invested in understand-
ing how density-dependent phenomena influence coarse-
grained parameters of spatial use and movements of large 
predators (Arditi et al. 2001; Edwards et al. 2002; Støen 
et al. 2006; Delgado et al. 2014; Sjödin et al. 2014; Šálek 
et  al. 2015; Avgar et  al. 2020; Clevenstine and Lowe 
2021), but studies focused on density-dependent effects 
on fine-scale space use are still scarce (but see O’Neil 
et al. 2017; Gigliotti et al. 2020).

An increase in legislative protection (e.g., Bern Conven-
tion 1982, EU Habitats Directive 1992) and a global shift 

toward conservation-oriented management of large carni-
vores aided by legislation has led to the recovery of several 
populations across parts of North America and Europe 
(Bruskotter and Shelby 2010; Chapron et al. 2014; Boitani 
and Linnell 2015). However, as population densities of 
large predators increase, real or perceived conflicts with 
human activities (Fernández-Gil et al. 2016; Eklund et al. 
2020; Zarzo-Arias et al. 2021) and threats to human lives 
(Penteriani et al. 2016) can increase, particularly if preda-
tors utilize areas closer to human settlements or activities. 
Human-carnivore conflict is one of the key threats to large 
carnivore populations and population recovery. Identify-
ing the mechanisms underlying the variation in the spatial 
behavior of large carnivores is thus essential for provid-
ing adequate management recommendations that will both 
ensure the viability of carnivore populations and prevent 
and/or mitigate conflicts with humans.

Despite the general recovery of large carnivores, small, 
isolated populations are very vulnerable to stochastic events 
and the loss of key individuals (Linnell et al. 2005). The 
Cantabrian brown bear Ursus arctos inhabiting the North 
West Spain is an example of a vulnerable large carnivore 
population that has recently increased in size (Palomero 
et al. 2007; Pérez et al. 2014; Gonzalez et al. 2016). This 
population is isolated from other European bear populations 
and has been studied intensively for over 25 years through 
the monitoring of female bears with cubs of the year (FCOY, 
Palomero et al. 2007; Penteriani et al. 2018b). Monitoring 
FCOY allows for accurate and unduplicated counts, as they 
are easy to identify. Also, their smaller home range com-
pared to solitary bears (Darling 1987; Benson and Cham-
berlain 2007), their tendency not to roam as far as solitary 
bears, and the fact that FCOY are more active during day 
time (Servheen 1983; Mattson 1997; Gardner et al. 2014; 
Penteriani et al. 2020b), make their annual counting an inex-
pensive and non-intrusive method to monitor trends of small 
populations (Ordiz et al. 2007; Penteriani et al. 2018b).

Beyond this population, brown bears are a model spe-
cies to aid in the understanding of interactions between 
large carnivores and humans (e.g., Ordiz et al. 2012, 2013; 
Morales-González et al. 2020), as well as reproductive pat-
terns in species typically considered as non-social and soli-
tary (Støen et al. 2006; Ordiz et al. 2008). Although some 
population ranges are thought to be either stable or recently 
expanding (Chapron et al. 2014; Coogan et al. 2019), bears 
generally avoid humans spatially and temporally (Støen et al. 
2015; Ordiz et al. 2017; Ladle et al. 2019; Penteriani et al. 
2020b; Morales-González et al. 2020). However, as bear 
density increases in further, changes in their distribution 
and habitat use may potentially result in more intense use of 
sub-optimal areas, including those closer to human activity, 
which in turn could increase conflict and additional risks for 
individuals. A better understanding of the response of one 
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of the most important, fitness-related components of bear 
populations—FCOY—to an increase in population density 
is crucial for the conservation of this species, especially if 
the response involves more frequent use of areas closer to 
humans for denning.

The aim of this study is to determine the differences, if 
any, in the spatial use of FCOY in response to an increase in 
population density of the western subpopulation of brown 
bears in the Cantabrian Mountain range. Female brown 
bears with newly born cubs use small areas after abandon-
ing their winter dens, where they give birth to their offspring 
(e.g., Ordiz et al. 2007). Therefore, it is crucial to know the 
habitat characteristics of those small areas used, typically, 
for several weeks during the spring. In particular, we com-
pared the landscape characteristics around reproductive dens 
and the spatial distribution of FCOY between two different 
periods in the evolution of the Cantabrian brown bear popu-
lation from 1995 and 2016: a first period of slow increase 
of FCOY population (from 8 FCOY in 1995 to 12 in 2005) 
and a second period of faster increase of FCOY (from 15 
FCOY in 2006 to 34 in 2016). We hypothesized that the 
observed increase in FCOY, which consequently increased 
population density, would result in (1) differing characteris-
tics of used areas immediately around the reproductive dens 
between those two periods, in support of a potential ideal-
despotic scenario (e.g., closer distance from FCOY breeding 
areas to sub-optimal habitat in closer proximity to human 

infrastructures); and (2) a decrease in the distance between 
FCOY, which may evidence distribution clumping around 
high quality areas.

Materials and methods

Study area and bear population

The focal bear population in NW Spain (hereafter, the Can-
tabrian population) is divided into two subpopulations, west-
ern and eastern, with little gene flow between them (Pérez 
et al. 2010; Gonzalez et al. 2016). The Cantabrian popula-
tion was decimated during the twentieth century, and in the 
decade of 1990, it sustained only 70–5 bears (50–65 bears 
in the western subpopulation and 14–20 in the eastern one; 
Clevenger and Purroy 1991; Naves and Palomero 1993; 
Martínez Cano et al. 2016). In recent years the Cantabrian 
population has increased, in particular the western subpopu-
lation (Pérez et al. 2014; Martínez Cano et al. 2016), which 
is the focus of the present study.

The western subpopulation (range around 7200  km2, 
Fig. 1) contains approximately 250 bears (Pérez et al. 2014) 
and inhabits the provinces of Asturias and León. The hilly 
and rugged study area has an altitude range from 100 to 
2000 m a.s.l. and is characterized by an oceanic climate, 
with average annual temperatures of about 14 °C on the 

Fig. 1   Distribution of the brown 
bear females with cubs repro-
ductive dens in the western sec-
tor of the Cantabrian Mountains 
(north-western Spain) between 
1995 and 2016
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coast and 2–3 °C at the highest altitudes and high humidity. 
The tree layer is mainly dominated by oak (Quercus pet-
raea, Quercus pyrenaica, and Quercus rotundifolia), beech 
(Fagus sylvatica), and chestnut (Castanea sativa) on north 
facing slopes, while drier, south facing slopes, are mainly 
dominated by oak (Q. petraea and Q. pyrenaica) and beech. 
Subalpine bushes (Juniperus communis, Vaccinium uligi-
nosum, Vaccinium myrtillus, and Actostaphylos uva-ursi) 
dominate areas above the tree line, typically above 1700 m 
(Martínez Cano et al. 2016). Hundreds of years of human 
activities have transformed former forests into pastures and 
brushwood (Genista, Cytisus, Erica, and Calluna). Human 
population density is generally low in the area (< 15 inhabit-
ants/km2) and the main economic activity is livestock farm-
ing, followed by mining, tourism, agriculture, and timber 
harvesting (Penteriani et al. 2020b). Areas surrounding this 
core bear range have experienced extensive urban and agri-
culture development, interspersed by an increasing network 
of transport infrastructure (Mateo-Sánchez et al. 2016). The 
closest bear population is in the Pyrenees, located almost 
300 km east.

FCOY data

Since 1989, there has been a long-term monitoring pro-
gram of the Cantabrian population primarily based on 
direct observations and annual counting of FCOY (Pal-
omero et al. 2007; Gonzalez et al. 2016; Penteriani et al. 
2018b, 2020b). The locations of brown bears were obtained 
from (a) direct bear observations georeferenced by person-
nel of the Principado de Asturias and Junta de Castilla y 
León, primarily the Patrullas Osos, that is, the Bear Patrols, 
as well as other guards of both regional governments, by 
the Asturian Foundation for the Conservation of Wild-
life (FAPAS, Fondo para la Protección de los Animales 
Salvajes), the FOA (Fundación Oso de Asturias) and the 
Brown Bear Foundation (FOP, Fundación Oso Pardo); and 
(b) personal georeferenced observations of the authors. 
Direct observations were performed almost daily from 
den exit (the beginning of spring, i.e., late March—begin-
ning of May; González-Bernardo et al. 2020) to the end of 
the mating period (June), generally from sunrise to sunset. 
Viewing points used by rangers and ourselves were evenly 
distributed over the entire bear range in the study area. 
Monitoring principally occurred during the three peaks of 
activity of females with cubs, i.e., around sunrise, between 
12:00 and 15:00 h, and at sunset (González-Bernardo et al. 
2020). Continuous monitoring of known breeding areas 
early in the season and good visibility (reproductive dens 
in the Cantabrian Mountains are generally located in rocky 
areas with sparse vegetation, where bear families are vis-
ible) minimized the delay in observing FCOYs after den 
exit (González-Bernardo et al. 2020). All observations 

involving animals were conducted with the appropriate 
permits and following ASM guidelines (Sikes 2016).

To test our hypotheses, data on FCOY were separated into 
two periods, based on the trend of the western bear subpopu-
lation (Penteriani et al. 2018b): (1) the period from 1995 to 
2005, which showed an increase of 4 FCOY in 10 years, rep-
resenting the beginning of the slow bear population increase 
after its decline; and (2) the period from 2006 to 2016, with 
an increase of 19 FCOY in 10 years (Fig. 2), i.e., the time 
of the marked increase of the western bear subpopulation 
(Penteriani et al. 2020a).

Landscape characteristics around FCOY 
reproductive dens

The average den exit date of FCOYs in the Cantabrian 
Mountains is 28 April ± 11.9  days, with only 19% of 
FCOYs exiting the den during the first half of April, while 
the remaining 32% and 49% of FCOYs leave the den during 
the second half of April and the first half of May, respec-
tively (González-Bernardo et al. 2020). Thus, to describe the 
habitat surrounding reproductive dens (which exact position 
is frequently unknown), we only considered the first obser-
vation of each FCOY in April and until mid-May (n = 116 
locations). Those observations were recorded immediately 
after den exit, i.e., when FCOY are very close to the den 
(Authors’ unpublished data; Gardner et al. 2014). FCOYs 
are individually identified and monitored based on the num-
ber of cubs and color markings (e.g., Ordiz et al. 2007), 
granting that the first observation of each FCOY (i.e., the 
observations that we used for further analyses) actually cor-
responded to a uniquely differentiated FCOY.

To characterize the landscape around each FCOY 
location, we downloaded the DEM (20 m), BTN200, and 
CORINE Land Cover layers (www.​centr​odede​scarg​as.​
cnig.​es) and we calculated (1) altitude; (2) slope orienta-
tion; (3) terrain ruggedness; and (4) minimum Euclidean 
distances to plantation (conifer) trees, crops, fruit trees, 
pastures, forests, shrublands, rocky areas, rivers, paved 
roads, trails and towns, which are landscapes features 
affecting bear habitat use (e.g., Nellemann et al. 2007; 
Ordiz et al. 2014). We classified the above variables into 
three categories (Table 1): landscape structure, landscape 
composition, and human footprint (i.e., landscape vari-
ables associated with humans).

Following Zuur et al. (2010), data were examined for out-
liers in the response and explanatory variables, collinearity 
between explanatory variables, and the nature of relation-
ships between the response and explanatory variables. Four 
of the original 116 observations were removed from the final 
dataset, one due to missing data and three deemed as outliers 
(i.e., values with a high standard deviation and/or identified 
by the Grubb’s Test for Outliers, Grubbs 1969). We assessed 
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collinearity among explanatory variables using Pearson cor-
relation and Variation Inflation Index (VIF), leading to the 
removal of both the distance to buildings and the distance 
to towns (R > 0.7, VIF > 3).

To explore potential differences between the first and 
the second period in the landscape characteristics around 

FCOY reproductive dens, we used a Bernoulli general-
ized linear model (GLM) based on an exponential function 
(and logit link function) for each FCOY location with the 
period as the response variable (0: 1996 to 2005; 1: 2006 
to 2016) and each of the variables defined in Table 1 as 
covariates.

Fig. 2   Population of observed 
brown bear females with cubs 
(FCOY) in the western sector 
of the Cantabrian Mountains 
(north-western Spain) from 
1995 to 2016. Hollow circles 
indicate a first period of stable 
FCOY population (from 8 
FCOY in 1995 to 12 in 2005) 
and solid dots indicate a second 
period of faster increase of 
FCOY (from 15 FCOY in 2006 
to 34 in 2016)

Table 1   Independent variables used for the analyses of FCOY reproductive den habitat in the Cantabrian Mountains

Types of variables Variables Description Range

Structural Altitude The altitude of the bear observation (m) 321–1803
Orientation Downslope direction (degrees) 23–356
Ruggedness Calculated as the total length (in meters) of contour lines within a 500 m buffer around 

each bear location
1757–8909

Landscape composition Conifer Minimum Euclidian distance to conifer trees (m) 216–14,768
Fruit Minimum Euclidian distance to fruit trees (m) 0–5591
Pasture Minimum Euclidian distance to pasture areas (m) 0–6689
Forest Minimum Euclidian distance to forest areas (m) 0–812
Shrubland Minimum Euclidian distance to shrub areas (m) 0–843
Rocks Minimum Euclidian distance to rocky areas (m) 0–4685
River Minimum Euclidian distance to the river (m) 12–2188
Crops Minimum Euclidian distance to the river (m) 0—5993

Human footprint Paved Road Minimum Euclidian distance to paved roads (primary, secondary and tertiary paved roads, 
but no national roads or motorways) (m)

19—5614

Highways Minimum Euclidian distance to national roads and motorways (m) 5806–43,096
Trail Minimum Euclidian distance to unpaved roads (roadways, forest roads and paths) (m) 177–5773
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Variations in FCOY proximity

We investigated any differences in the closest and mean 
proximity between neighboring FCOY within the same 
year between the two time periods (Ordiz et al. 2008). We 
removed two of the 112 locations as no other FCOY were 
observed in the same year. We used a Mann–Whitney U test 
to assess differences in the proximity between neighboring 
FCOY between the two periods.

All the statistical analyses were carried out in R 4.0.2 (R 
Development Core Team 2020) using arm (version 1.12.2), 
lme4 (version 1.1.28), lawstat (version 3.4), outliers (ver-
sion 0.14), and pROC (version 1.18.0). The extraction of 
environmental variables and GIS analyses were conducted 

in both QGIS 3.12.3 (QGIS.org 2020) and ArcGIS 10.7.1 
(ESRI 2019).

Results

FCOY den landscape

The Bernoulli GLM showed that FCOY reproductive dens 
were located significantly closer to rivers, trails, highways, 
and fruit trees during the period 2006–2016 than during 
the period 1995–2005 (Table 2, Figs. 3 and 4). Although 
lower altitudes are associated with these landscape features, 
the actual altitude covariate was marginally significant 

Table 2   Summary of the GLM 
model for the characterization 
of the FCOY reproductive den 
habitat between the two periods 
of bear population dynamics 
(1995–2005 vs. 2006–2016). 
Negative significant values of 
the estimates (underlined) mean 
that FCOY dens were closer 
to rivers, trails, highways, and 
fruit trees in 2006–2016 than in 
1995–2005

Estimate SE 95% CI P value

Intercept  + 2.19 0.47 (1.27, 3.11)  < 0.001

Distance to Rivers -1.10 0.40 (− 1.88, − 0.32)  < 0.01
Trails -0.68 0.34 (− 1.35, − 0.01)  < 0.05
Paved roads -0.58 0.41 (− 1.38, 0.22) 0.16
Highways -0.89 0.45 (− 1.77, − 0.01)  < 0.05
Forest -0.36 0.33 (− 1.01, 0.29) 0.26
Shrubs -0.26 0.35 (− 0.95, 0.43) 0.47
Rocks  + 0.24 0.37 (− 0.49, 0.97) 0.50
Conifers  + 0.72 0.49 (− 0.24, 1.68) 0.15
Fruit trees -1.11 0.36 (− 1.82, − 0.40)  < 0.01
Pastures -0.13 0.35 (− 0.82, 0.56) 0.70
Crops  + 0.75 0.47 (− 0.17, 1.67) 0.11

Altitude -0.67 0.39 (− 1.43, 0.09) 0.09
Orientation  + 0.01 0.31 (− 0.60, 0.62) 0.99
Ruggedness  + 0.21 0.34 (− 0.46, 0.88) 0.54

Fig. 3   Odds ratios of variables 
included in the Bernouilli GLM 
model for the characterization 
of the FCOY reproductive den 
habitat between the two periods 
of bear population dynamics 
(1995–2005 vs. 2006–2016). 
Solid dots indicate odd ratios 
and whiskers their 95% confi-
dence intervals
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(P = 0.09). The overall model showed a pseudo R2 = 0.34 
and its performance on correctly classifying the observa-
tions as belonging to the first or second period is considered 
acceptable (area under the receiver operating characteristic 
curve, AUC = 0.78, DeLong et al. 1988; Mandrekar 2010).

Variation in FCOY proximity

The mean closest distance to another FCOY in 1995–2005 was 
11.7 km (median = 14 km), while it was 7.4 km in 2006–2016 
(median 6.6 km), i.e., there was a significant decrease in the 
closest distance to a neighboring FCOY observed during the 
same year during the second period (Fig. 5), compared to the 
first one (W = 1454, N = 110, P < 0.01). On the contrary, the 
mean distance from a FCOY to all FCOY observed during the 
same year was 22.8 km in 2006–2016 (median = 22.5 km), while 
it was 20.0 km in 1995–2005 (median = 17.8 km), i.e., there was 
a significant increase in the distance among FCOY observed 
during the same year during the second period (Fig. 5), com-
pared to the previous one (W = 746, N = 110, P < 0.05).

Discussion

Many studies have focused on modeling and understanding 
large carnivore habitat use. However, the effect of increasing 
densities on individuals’ spatial behavior is poorly understood. 
Our study highlights clear differences in brown bear habitat 
use of breeding areas between periods of different popula-
tion densities. During the period of higher density, FCOYs 
selected areas closer to rivers, to anthropogenic sources of dis-
turbance (trails, highways), and with higher densities of fruit 
trees, all typically associated with lower altitudes. There were 
shorter distances to the closest, neighboring breeding area 
in response to increasing bear numbers, while the mean dis-
tance among all (not only the closest) FCOY breeding areas 
increased in the second study period. In the latter period, the 
population not only increased locally (higher density), but 
also expanded at the landscape level (Zarzo-Arias et al. 2019).

A potential explanation for our results is a density-
dependent mechanism driving habitat use of breeding areas 
by the most important segment of a brown bear population 
(adult, reproductive females) in the increasing, yet threatened 

Fig. 4   Mean fitted probability (solid line) of the distance from brown 
bear females with cubs reproductive dens to rivers, highways, trails 
and fruit trees during the two study periods. Data were modeled using 

a Bernoulli GLM. Black dots are observed data and shaded area is the 
95% confidence intervals of the model
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population of the Cantabrian Mountains. FCOY habitat use 
patterns seem consistent with the ideal-despotic scenario, 
indicating preemptive use of breeding areas by FCOY. 
Preemptive behavior typically results in areas of higher 
quality being held earlier by more experienced or dominant 
individuals, allowing them to achieve higher fitness than 
those forced to occupy lower quality territories (Pulliam and 
Danielson 1991). Habitat use patterns following the ideal 
pre-emptive or ideal-dominant distributions are likely for 
recolonizing large carnivores in North America and Europe 
(Carter and Linnell 2016), and may include the potential 
for source–sink structured populations (O’Neil et al. 2020). 
Indeed, source-sink systems have the potential to determine 
that excess individuals emigrate from source areas during 
their lifetime and gather in sink areas, where their reproduc-
tive performances and survival are lower than in areas of 
higher quality (Timus et al. 2017). However, source–sink 
population dynamics are generally not considered in the con-
servation and management of brown bears and other large 
carnivores (Penteriani et al. 2018b; Morales-González et al. 
2020; O’Neil et al. 2020), despite the fact that human-caused 
mortality for brown bears typically increases with closer 
proximity to human infrastructure (Steyaert et al. 2016b).

Preference for high-altitude, rugged terrain is likely a 
behavioral adaptation aimed at reducing FCOY movements, 
disturbance, and infanticide risk by conspecifics (the less 
FCOY move, the lower chances of meeting other bears), and 
favor increased survival in human-modified landscapes (Pen-
teriani et al. 2020b). Restricted habitat availability due to 

density-dependent constraints and human encroachment in the 
Cantabrian human-modified landscape, together with the pres-
ence of male bears searching for reproductive opportunities, 
may promote encounters among bears during the mating sea-
son. This can, in turn, lead to a higher prevalence of infanticide 
events. Our finding that FCOY used areas closer to settlements 
and human activity in the second period of study, when the 
bear population has increased more rapidly, can also reflect that 
FCOY use areas closer to humans to segregate spatially from 
adult male bears, which are thought to avoid such areas (Nelle-
mann et al. 2007). Although the lack of simultaneous positions 
of FCOY and adult bears does not allow to test this human-
shield hypothesis, habitat selection is shown to be important 
for offspring survival of Scandinavian brown bears by helping 
to avoid infanticide by conspecifics (Steyaert et al. 2016a, b).

Litter size and cub mortality in the Cantabrian brown bear 
population have remained stable over the years (Penteriani 
et al. 2018b, 2020a), potentially linked to different key fac-
tors. First, the availability of main food resources in our 
study area might be considered relatively homogeneous over 
the breeding areas occupied by FCOY. As a result, even at 
times of high FCOY density, there likely is not high compe-
tition for food resources. Second, similar to other carnivores, 
common optimal litter sizes of Cantabrian brown bears do 
not vary according to environmental conditions (Gaillard 
et al. 2014; Gigliotti et al. 2020).

It is crucial to monitor long-term dynamics of spatial 
distribution and landscape use of threatened populations 
inhabiting human-modified landscapes. In such settings, 

Fig. 5   Differences in the 
distance to the closest brown 
bear females with cubs (FCOY) 
reproductive den (left panel) 
and the mean distance to other 
FCOY reproductive den (right 
panel) between the two study 
periods (1995—2005 vs. 
2006—2016)
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key components of populations, such as FCOY, are chal-
lenged both by intra-specific and human-related factors. 
Namely, by an increasing density of conspecifics in areas 
characterized by heavy human encroachment. Improving 
our knowledge on bear habitat use in human-modified 
landscapes is essential to inform both managers and the 
general public. For example, managers and public should 
understand that seasonal, spring observations of FCOY 
nearby human settlements do not necessarily denote 
habituation to people (Ordiz et al. 2019), but just spatial 
avoidance of conspecifics in a scenario of sexual conflict 
(Steyaert et al. 2016a).

Indeed, our study has revealed that conservation and 
management of small and endangered populations must be 
based on long-term series of data and a careful considera-
tion of the biology and population dynamics of the target 
species. The identification of differences in habitat use as a 
response to population density, such as those shown in our 
study, can be useful for predicting future densities and poten-
tial expansions of large carnivore populations (O’Neil et al. 
2017, 2020). Furthermore, our study builds upon earlier 
research suggesting that population regulation mechanisms 
(e.g., reproductive suppression) that are typically attributed 
to group-living mammals also play a role in the population 
dynamics and space use of so-called solitary species, such 
as brown bears (Ordiz et al. 2008).

From a conservation-oriented perspective, our results 
inform the management of threatened species that are par-
tially recovering former ranges in human-modified land-
scapes. In our case, an intraspecific factor (population den-
sity) interacts with sub-optimal habitat availability found 
closer to human settlements and activities. These interact-
ing factors should be taken into account jointly in order to 
infer future population dynamics. This is crucial for land-
scape management and designations of critical habitat, i.e., 
to avoid displacement of FCOY at a critical period of the 
year, and for promoting awareness of potential wildlife-
human conflicts.
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