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The quantum theory of atoms in molecules (QTAIM), developed by Bader and coworkers, is one of the most
popular ways of extracting chemical insight from the results of quantum mechanical calculations. One of the
basic tasks in QTAIM is to locate the critical points of the electron density and calculate various quantities
(density, Laplacian,...) on them, since these have been found to correlate with molecular properties of interest.
If the electron density is given analytically, this process is relatively straightforward. However, locating the
critical points is more challenging if the density is known only on a three-dimensional uniform grid. A density
grid is common in periodic solids because it is the natural expression for the electron density in plane-wave
calculations. In this article, we explore the reconstruction of the electron density from a grid and its use
in critical point location. The proposed reconstruction method employs polyharmonic spline interpolation
combined with a smoothing function based on the promolecular density. The critical point search based on
this reconstruction is accurate, trivially parallelizable, works for periodic and non-periodic systems, does not
present directional lattice bias when the grid is non-orthogonal, and locates all critical points of the underlying
electron density in all tests studied. The proposed method also provides an accurate reconstruction of the
electron density over the space spanned by the grid, which may be useful in other contexts besides critical
point localization.

I. INTRODUCTION

The quantum theory of atoms in molecules1–5

(QTAIM) is a popular and physically grounded way of
extracting chemical information from a theoretical or ex-
perimental electron density. QTAIM is based on the par-
tition of a molecule or solid into atomic regions known as
basins. These atomic basins are bounded by interatomic
surfaces defined by a zero-flux condition of the electron
density:

∇ρ(x) · n(x) = 0 (1)

which holds for all points on the surface, where n is a vec-
tor normal to the surface. More simply, gradient paths
of the electron density must not cross the atomic basin
boundaries. This zero-flux condition ensures that the
kinetic energy operator is uniquely defined within the
atomic basin, and therefore that the atom can be re-
garded as a proper open quantum subsystem.3 By inte-
gration over the atomic basins, one can calculate atomic
properties such as atomic volumes, electron populations,
and many others. An enormous amount of work has been
devoted to apply and extend QTAIM since its conception,
a work that continues to this day. Because the atomic
basins are completely determined by the electron density,
QTAIM has also been used extensively for chemical bond-
ing analysis using experimental electron densities.6–8

An important aspect of QTAIM is the chemical inter-
pretation of various quantum mechanical properties at
the critical points (CP) of the electron density, given by:

∇ρ(x) = 0 (2)

a)Electronic mail: aoterodelaroza@gmail.com

where 0 is the zero vector. Except for maxima and the
rare cases where degeneracies exist, all critical points of
the density lie on an interatomic surface. In particu-
lar, the first-order saddle points, known as bond criti-
cal points (BCP) in QTAIM, have been used extensively
to characterize intra- and intermolecular properties.1 For
instance, the electron density at the BCPs has been
shown to correlate with interaction strengths of hydro-
gen bonds,6,9–11 as well as other types of non-covalent
bonding interactions.12,13 Recently, BCPs have been used
to benchmark various density functional approximations
regarding the quality of the ground-state electron densi-
ties they produce.14 Two unique gradient paths of the
electron density starting at a BCP connect this crit-
ical point with the adjacent nuclei, forming what is
known as a bond path in QTAIM. The existence of a
bond path is the criterion for the definition of a bond
within QTAIM which usually, but not always, coin-
cides with traditional chemical bonds.15–17 The criti-
cal points of scalar fields other than the electron den-
sity, such as the Laplacian,18,19 the electron localiza-
tion function20,21 (ELF), or the molecular electrostatic
potential22–25 (MESP) can also be used to extract chem-
ical insight.26,27

If the electron density is smooth (there are no artifacts
or discontinuities) and its first and second derivatives are
known analytically, locating all its critical points is rel-
atively straightforward. For scalar fields more complex
than the electron density, more sophisticated approaches
may be required.19,25,28–31 However, it is often the case
that electron densities are given numerically as values
on a uniform grid and no analytical expression is avail-
able. This is the case for periodic densities calculated
using a plane-wave basis set, although electron density
grids can also be encountered in experimental studies.32
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In practice, an electron density grid is also the only op-
tion when the analytical calculation of the density and
its derivatives has not been implemented in the program
that performs the critical point search, as most electronic
structure packages have the ability to calculate and write
the density on a grid. Therefore, although locating crit-
ical points using the analytical derivatives of the scalar
field is the preferred method if possible, it is interesting
to devise alternatives for when the analytical derivatives
are not available.

The use of electron density grids for QTAIM analy-
sis in periodic solids has experienced a surge in pop-
ularity over the past decades thanks to the develop-
ment of grid-based atomic basin integration algorithms
pioneered by Kohout’s implementation in the DGrid
program,33–38 which allow the inexpensive calculation of
all atomic charges and volumes in the system. Meth-
ods for the reliable and automatic location of all criti-
cal points from an electron density grid have been pro-
posed in the literature32,39 and are still a topic of active
research.40 The most natural approach is to extend the
electron density by three-dimensional interpolation us-
ing the values at the grid nodes. This method has been
used in the past,32,33,39,41–44 and the exploration of its
strengths and weaknesses is the subject of this work. The
electron density interpolant itself is also useful because
it provides a reconstruction of the electron density of the
system at points other than the grid nodes, which can
also be used for purposes other than locating CPs, such as
plotting or other chemical bonding analysis techniques.
Therefore, it is important to have a way of accurately
performing this reconstruction.

The difficulties with interpolation methods when used
for CP location have been highlighted before,.39,40 In
a recent article,40 a CP search method (TopoMS) was
proposed based on Forman’s discrete Morse theory,45

and previous extensive work by some of the authors in
the area of computer visualization.46–50 The TopoMS
method works by building a discrete analogue of the den-
sity gradient vector field and then classifying the discrete
grid elements (vertices, edges, etc.) as critical or non-
critical. The set of CPs determined by TopoMS is con-
sistent by construction, which means that the number
and type of critical points respects the appropriate sum
rules (Eqs. 3 and 4). However, consistency does not imply
correctness and, while promising, it has not been shown
that the position and properties of the critical points de-
termined by TopoMS agree with those of the underlying
(non-discrete) electron density, nor that it is able to find
the same full topology as the underlying electron density.
Furthermore, it is unclear from the description in the
article40 how the persistence-based cancellation of con-
nected critical points is applied and whether the method
allows for an automatic (i.e. without user intervention)
and reliable way of finding all critical points from a
smooth electron density grid. Lastly, even though the
theory as presented by Gyulassy et al.46–50 is completely
general, the actual TopoMS implementation51 seems to

be affected by lattice bias, which is a problem for grids in
non-orthogonal periodic solids. This is a recurring prob-
lem for grid-based algorithms, which is discussed in the
next section.
In this article, we explore the use of interpolation meth-

ods to reconstruct the full electron density from values
given on a grid, and their use to find the critical points
in the system. All methods presented in this work were
implemented in the critic243,44 program. In particular,
it is shown that an interpolant based on polyharmonic
splines in combination with a smoothing transformation
using the promolecular density is able to reconstruct the
electron density in the three-dimensional space spanned
by the grid with excellent accuracy. This reconstruction,
which is valuable on its own for other purposes, is ac-
curate enough that a simple CP search based on the re-
peated use of Newton’s method is able to find all critical
points automatically in all test cases. In addition, the
quality of the reconstruction increases with finer grids.
However, the interpolation may suffers if artifacts are
present in the grid, for instance, aliasing errors from a
plane-wave calculation. The proposed interpolation and
CP search method locates all critical points within min-
utes, is trivially parallelizable, works for non-periodic and
periodic, orthogonal and non-orthogonal grids and shows
no lattice bias by construction.

II. FINDING CRITICAL POINTS OF
ELECTRON DENSITY GRIDS

Critical points of the electron density are characterized
by the number of non-zero and the number of positive
minus negative elements of the Hessian matrix diagonal,
respectively known as the rank (r) and signature (s).
Assuming no degeneracies exist (r = 3), there are three
types of critical points: maxima (s = −3), first-order
saddle points (−1), second-order saddle points (1), and
minima (3). In QTAIM, these are commonly referred to
as nuclei, bonds, rings, and cages. The term “nuclei”
for the maxima is a misnomer because non-nuclear max-
ima exist,52–54 but it will be used for simplicity. Each
nucleus generates an atomic basin, and all the other crit-
ical points (bonds, rings, and cages) are located on the
boundaries between those basins. The number and types
of critical points in a periodic system (commonly, a solid)
have to respect the following constraints:

n− b+ r − c = 0 ; n, c ≥ 1 ; b, r ≥ 3 (3)

whereas in non-periodic systems (gas-phase molecules):

n− b+ r − c = 1 (4)

where n, b, r, and c are the number of nuclei, bonds,
rings, and cages, respectively. These conditions are typi-
cally referred to as the Morse (Eq. 3) and Poincaré-Hopf
(Eq. 4) sum rules. Each bond connects two maxima
via unique ascending gradient paths, known as the bond
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paths. The set of all bond paths in the system is the
molecular graph, and the set of all critical points is its
(critical point) topology.

Locating the critical points of an analytical electron
density is relatively easy. For this task, a set of points
(“seeds”) in the system are chosen and Newton’s method
is started on each seed to try to find a critical point in the
vicinity.28,42–44 In Newton’s method, a point sequence is
calculated such that:

xn+1 = xn −H−1
ρ (xn)∇ρ(xn) (5)

where ∇ρ is the gradient and Hρ is the Hessian of the
electron density. This sequence may converge to a critical
point of any kind (not necessarily a minimum), and the
convergence is quadratic when close to the critical point,
although convergence is not guaranteed. Past experience
with the critic2 program43,44 has shown that placing 5
seeds between every pair of atoms at most 15 bohr apart
(in molecules) or at single-level subdivisions of the ir-
reducible Wigner-Seitz cell43,44 (in solids) is enough to
locate the complete set of critical points in most sys-
tems. This seeding strategy is used in all calculations in
this work; the number of seeds can be increased or the
seeding strategy can be altered for particularly difficult
or unusual systems. A point is considered critical when
the norm of the electron density gradient falls below a
user-controlled threshold. The threshold used through-
out this work (and the default in critic2) is 1 × 10−12

atomic units.
Let us assume the electron density is known only at

the nodes of a uniform grid, whose positions are given
by:

xijk = iag + jbg + kcg (6)

where i, j, and k are integers and ag, bg, and cg are the
basis vectors of the grid. The grid is finite and has n =
(na, nb, nc) nodes along each axis so i, j, and k can take
values only from 0 to na−1, nb−1, or nc−1, respectively.
If the density corresponds to a periodic solid, the typical
case is that the grid spans the unit cell, so the lattice
vectors of the crystal (al, bl, cl) are multiple integers of
the grid basis vectors:

al = naag ; bl = nbbg ; cl = nccg (7)

In this case, the density is periodic, ρ(x + R) = ρ(x),
where R is a lattice vector:

R = maal +mbbl +mccl (8)

with ma,mb,mc ∈ Z. Consequently, we assume the grid
extends periodically and indefinitely in all directions, the
integers in Eq. 6 can take any integer value, and the value
of the density at grid node xijk is:

ρijk = ρ(i mod na, j mod nb, k mod nc) (9)

This makes the grid a lattice in R3 and the crystal lattice
one of its sublattices, with the primitive cell volume of

FIG. 1. Critical points and molecular graph for the phenol
dimer from the S22 set.55 Top: calculated using an analyti-
cal density. Bottom: using tricubic interpolation on a grid.
Bonds, rings, and cages are shown as yellow, cyan, and red
small balls, respectively. Bond paths are pink.

the latter being nanbnc times the covolume of the former.
For the sake of simplicity in the discussion, we will con-
sider that electron density grids for gas-phase molecules
are also periodic; critical points found far away from the
molecule can be discarded using a density or distance
threshold. Lastly, it is important to note that solid-state
grids are often non-orthogonal when the crystal lattice is
non-orthogonal. In this case, no orthogonal basis for the
grid (ag, bg, cg) can be chosen.

The challenges associated with searching CPs of the
electron density using interpolation from a uniform
grid have been noted in the seminal work of Vega et
al.,39 where three-dimensional Lagrange interpolation
was used. While this method works, the authors noted
occasional failures in the CP search caused by the deriva-
tive discontinuities as the target point moves and the
nodes on which the interpolation is based change. Vega
et al. also noted the usefulness in interpolating the log-
arithm of the density, rather than the density itself, to
minimize numerical noise, whish is similar to the smooth-
ing transformation presented here (Eq. 20).

To illustrate the difficulties with a CP search using
grid interpolation, consider a simple example: the phenol
dimer from the S22 set.55 The wavefunction has been
calculated using Gaussian1656 and the B3LYP/6-31+G∗
method. The CP search using the default parameters
mentioned above yields 26 nuclei, 29 bonds, 5 rings, and
one cage, for a correct Poincaré-Hopf sum of 1. Figure 1
(top) shows the distribution of critical points and bond
paths in the system. The usual intramolecular bonds
were found, as well as the hydrogen bond and a side
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FIG. 2. One-dimensional interpolation along the O. . . H hydrogen bond line in phenol dimer (Fig. 1). Top: electron density,
middle: electron density gradient, bottom: absolute value of the Laplacian. Left: using various interpolation functions. Right:
using the interpolant proposed in this work.

interaction between the C–H in one phenyl ring and the
oxygen of the hydrogen bond acceptor molecule. The
phenyl ring critical points as well as the ring and cage
critical point structure in the intermolecular region were
also correctly found.

Instead of using the analytical density, a grid was gen-
erated with 0.125 Å per node in each axis (na = 141,
nb = 104, nc = 97). This is a reasonable value because
the analytical density shows that the BCPs along the O-
H bond are as close as 0.19 Å to the hydrogen atom, so
a coarser grid may not be able to capture these critical
points. Using Newton’s method (Eq. 5) requires calculat-
ing the first and second derivatives at arbitrary points,

so three-dimensional interpolation must be used. Four
interpolation methods have been tried:

• Nearest: The density at point x in fractional coor-
dinates is taken as the density of grid node [x · n],
where [·] denotes the integer rounding function.
This interpolant is discontinuous.
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FIG. 3. Two bases are shown for the same grid ag and bg
in red and a′

g and b′g in blue. The lattice vectors for the
corresponding crystal bases are shown in light blue (al and
bl) and light red (a′

l and b′l).

• Trilinear:

ρ(x) =

1∑
ijk=0

ρn+i,m+j,l+k×

× (δi0 − (−1)ix)(δj0 − (−1)jy)(δk0 − (−1)kz)
(10)

where m = (n,m, l) = ⌊x · n⌋, (x, y, z) = x · n −
m, and ⌊·⌋ is the floor function. This function is
continuous but not differentiable.

• Tricubic:57

ρ(x) =

3∑
ijk=0

aijkx
iyjzk (11)

where x = (x, y, z) have the same meaning as in
the trilinear interpolation and the 64 aijk coef-
ficients are determined by 64 constraints involv-
ing the value, first derivatives, and mixed second
and third derivatives of the density at the eight
grid nodes with indices built from combinations of
⌊x ·n⌋ and ⌈x ·n⌉, where ⌈·⌉ is the ceiling function.
The derivatives are calculated using finite differ-
ences between grid nodes. This interpolant is glob-
ally C1 and has continuous mixed second deriva-
tives.

• Trispline: a tricubic spline interpolation based on
the method described in Ref. 58. Cubic splines are
determined for every row of nodes in the three grid
directions and successive interpolations are carried
out on the edges and sides of the parallelepiped en-
compassing the point of interest x. This method
has been proposed for the purpose of electron den-
sity CP location before,32 and the actual code in
critic2 was adapted from the abinit program.59,60

This function is continuous up to the second deriva-
tives.

All four interpolation methods predict the density at the
grid nodes exactly but vary in their smoothness as the
grid nodes from which the density is interpolated, known
as the “stencil”, change.

Figure 2 (left) shows the density, norm of the density
gradient, and absolute value of the Laplacian along the
hydrogen bond in phenol dimer for these four interpola-
tion methods compared to the same properties from the
analytical density. As shown in the plot, the electron
density is reconstructed with relatively good accuracy by
all methods (except nearest) in the bond critical point re-
gion. However, the performance of all methods degrades
both in the regions close to the nuclei and in the calcula-
tion of higher-order derivatives. This is true even in the
case of the trispline interpolation, which has continuous
second derivatives. This problem with the trispline in-
terpolation, which ultimately affects CP location meth-
ods, has already been noted by Palatinus et al.,32 who
suggested interpolating derivatives calculated on the grid
using finite differences. Katan et al. also suggested using
a finer grid.42

The result of the CP search using the tricubic interpo-
lation in combination with Newton’s method is shown in
Figure 1 (bottom). Unsurprisingly given the poor quality
of the density derivatives, many CPs are missing, some
spurious CPs have appeared, and the Poincaré-Hopf sum
rule is violated. While quite a few of the covalent bond
paths have been found, some C-H BCPs are missing as
well as all the intermolecular rings and cages. Clearly
this is not a reliable procedure for general CP location.
Although specialized grid-based techniques could be used
in place of Newton, ultimately the quality of the interpo-
lation will determine the accuracy of the critical point
positions and properties, so it is interesting to try to
find a better alternative for the interpolation method.
A more accurate interpolant also has the added bene-
fit that no grid-specialized algorithms for the CP search
are required, and that it can be used for other purposes
that require calculating the electron densities at points
outside the grid.

There is a more subtle drawback to the interpola-
tion methods presented above, which underlies the “lat-
tice bias” in Henkelman’s grid integration method ob-
served by Tang et al.36 The same grid can be described
with infinitely many bases. This is sketched for a two-
dimensional grid in Figure 3. The four methods above
use an interpolation stencil whose geometry depends on
the choice of grid basis, which is ultimately arbitrary. In
addition, accurate interpolation requires the grid nodes
on the stencil being close in Euclidean distance to the
target point, which may not be the case if the grid basis
is bad, i.e. if the basis vectors are long and the angles
between them are small. Therefore, values interpolated
from the same grid depend on an arbitrary choice of basis
and, in the particular case of non-orthogonal grids, some
directions in space are privileged relative to others, due
to the particular geometry of the interpolation stencil.

This problem affects previously proposed grid-based
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QTAIM algorithms, not only those related to CP loca-
tion. For instance, the EDMA program32 considers the
neighbors of a given grid node to be the 26 adjacent nodes
obtained by adding and subtracting the grid basis vec-
tors: maag + mbbg + mccg with mi = −1, 0, 1, and a
similar approach is taken by Vega et al.39 The identity
and distance between grid nodes chosen in this way, and
therefore the outcome of the method, depend on the ar-
bitrary choice of grid basis. This is also the ultimate
reason why Henkelman’s integration method had to be
revised several times.34–36 In contrast, the Yu and Trin-
kle algorithm37,38 does not have lattice bias by construc-
tion because it considers that the neighbors of a given
grid node are those given by its Voronoi relevant vectors,
which are independent of the grid basis. A grid-based
interpolation or CP search algorithm must not give dif-
ferent results depending on the choice of grid basis or
show any directional bias. This is particularly relevant
in solids because, as mentioned above, solid-state den-
sity grids are often non-orthogonal. In the rest of the
article, we will use the term “lattice bias” to refer to this
problem.

III. POLYHARMONIC SPLINE
INTERPOLATION

It is remarkable that, despite the fact that it is contin-
uous up to the second derivatives, the trispline interpo-
lation fails so badly at reproducing the Laplacian of the
electron density, which ultimately precludes its use in a
Newton-based CP search algorithm.

The method proposed in this work is based on polyhar-
monic spline interpolation61–64 combined with a smooth-
ing transformation. Polyharmonic splines combine opti-
mal smoothing properties with flexible stencil selection.65

A polyharmonic spline interpolant combines radial basis
functions with a low-degree polynomial:

ρ(x) =

N∑
i

wiϕ(|x− xi|) + p(x) (12)

where {xi} are the positions of the N grid nodes used in
the interpolation stencil. The polynomial term is written
as:

p(x) = v · (1,x)T (13)

The w = {wi} and v = (v0, vx, vy, vz) are the N+4 inter-
polation coefficients, which are determined by applying
the following N + 4 constraints:

ρ(xi) = fi (14)

∑
i

wi = 0 (15)

∑
i

wixi = 0 (16)

where the sums run over the stencil grid nodes. The
application of these constraints leads directly to the fol-
lowing matrix equation:

Φ
(
w v

)T
=

(
F C
CT 0

)(
w v

)T
=

(
ρT

0

)
(17)

where ρ = (ρ1, . . . , ρN ) is the vector of electron densities
at the stencil grid nodes. The symmetric F matrix is
defined as:

Fij = ϕ(|xi − xj |) (18)

and row i in matrix C is:

Ci = (1,xi) (19)

The radial function for a polyharmonic spline of degree
2 in three dimensions, ϕ(r) = r3, was used. Polyhar-
monic splines are commonly used for the interpolation of
scattered data.

Figure 1 shows clearly that the main difficulty for the
interpolants lies in accurately reconstructing the electron
density in the regions close to the nuclei, where ρ(x)
changes very quickly. In this work, instead of using the
electron density directly, the interpolation is carried out
on the function resulting from the smoothing transfor-
mation:

f(x) = ln

(
ρ(x)

ρ0(x)

)
(20)

where ρ0(x) is the promolecular density, the sum of
atomic in-vacuo densities at the system geometry. (Note
there is an arbitrariness66 in the choice of reference
atomic densities for building ρ0, but we expect any rea-
sonable reference density will do.) In the critic2 im-
plementation, ρ0(x) is known only numerically but, be-
cause it is calculated as a sum of contributions from one-
dimensional radial functions, its value and its derivatives
at an arbitrary point can be calculated very accurately
using one-dimensional interpolation. The deformation
density (ρ(x) − ρ0(x)), which measures deviations from
the promolecular density, is a popular chemical bonding
indicator because density accumulates in the interatomic
region upon formation of a chemical bond. The function
in Eq. 20 also expresses deviations with respect to the
promolecular density. Since the changes induced in the
electron density by the formation of chemical bonds are
relatively minor compared to the density itself and hap-
pen mostly in the interatomic regions, where the density
varies slowly, f(x) is an excellent candidate for a smooth-
ing transformation.

The interpolant built from the polyharmonic spline
(Eq. 13) applied to the smooth density function (Eq. 20)
has analytical first and second derivatives that can be
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readily calculated:

ρ̃ = ρ0 × ef (21)

ρ̃ξ = ρ×
(
fξ +

ρ0ξ
ρ0

)
(22)

ρ̃ξζ = ρ×
(
fξζ +

ρξρζ
ρ2

+
ρ0ξζ
ρ0

− ρ0ξρ0ζ
ρ20

)
(23)

where the ξ and ζ subscripts denote the derivatives with
respect to the Cartesian coordinates (x, y, z) of the corre-
sponding functions. The derivatives of the smooth func-
tion are obtained as the derivatives of the polyharmonic
spline:

f =
∑
i

wiϕ(r) + v · x+ v0 (24)

fξ =
∑
i

wiϕ
′(r)

xξ − xiξ

r
+ vξ (25)

fξζ =
∑
i

wi

[
ϕ′′(r)

(xξ − xiξ)(xζ − xiζ)

r2

+ϕ′(r)

(
δξζr

r
− (xξ − xiξ)(xζ − xiζ)

r3

)]
(26)

with xξ the ξ component of vector x, r = |x − xi|, and
ϕ′(r) = 3r2 and ϕ′′(r) = 6r are the first and second
derivatives of the radial function.

In this work, the number of radial basis functions used
is N = 83 = 512. For a given target point x, the N grid
nodes on which these functions are based are the closest
in Euclidean distance to the nearest grid node x0 (the
“base” node). The use of a base node, instead of simply
taking the N grid nodes closest to the target point, is
important because the stencil geometry and the Φ ma-
trix in Eq. 17 are the same for every target point, which
means they can be pre-computed and stored. More im-
portantly, the fact that the stencil nodes are determined
by Euclidean distance, rather than by linear combina-
tions of the grid basis vectors, eliminates the lattice bias
from the interpolation method since the same grid with
two different bases would give the same stencil for a par-
ticular target point.

As the target point moves from one base node to an-
other, there is a change in stencil, and therefore the in-
terpolant obtained from simply using ρ̃ (Eq. 21) is not
continuous. However, adjacent base nodes share a large
part of their stencils. Therefore, in order to address this
problem, we build our interpolation function as a linear
combination of the interpolants with base nodes in the
vicinity of the target point. Specifically, if x is the target
point, we assign a weight to each grid node xi given by:

wi =

{
exp

(
d3
i

a3(d3
i−a3)

)
, if 0 ≤ di < a

0, if di ≥ a
(27)

where di = |x−xi| and a is a range parameter, which in
this work is taken as twice the longest grid step. This

weight function has a maximum at d = 0 and goes
smoothly to zero at x = a with continuous first and sec-
ond derivatives. The density is then interpolated as:

ρ(x) =

∑
i wiρ̃i(x)∑

i wi
(28)

where ρ̃i(x) is the density predicted by the interpolant
based on node grid i. The first and second derivatives
required for the CP location are calculated straightfor-
wardly from Eqs. 27 and 28. This choice of weight func-
tion makes the proposed interpolation method have con-
tinuous derivatives up to at least second order and devoid
of lattice bias.
The dramatic improvement in the accuracy of the in-

terpolation using the new method can be seen in the
phenol dimer example, Figure 2 (right). The spurious
oscillations in the density and its derivatives have dis-
appeared and the interpolated values are in exceptional
agreement with the analytical density, except for minor
disagreements very close to the nuclei and in the very
steep shell structure of the Laplacian. In the next section,
it is shown that the CP topology of a molecule or solid
can be recovered when this interpolant is used in combi-
nation with Newton’s method, yielding accurate proper-
ties at the critical points and molecular graphs that are
visually indistinguishable from their analytical counter-
parts.
Regarding the practical details, as mentioned above,

the fact that the stencil geometry is independent of the
target point position allows an efficient implementation.
The Φ matrix, the stencil integer offsets, and the pro-
molecular densities and their derivatives on the grid are
precomputed and stored. (In fact, Φ could be saved in
decomposed form to speed up the solution of the system
of linear equations in Eq. 17.) A single evaluation of the
interpolant at an arbitrary target point requires, for every
interpolant ρ̃i appearing in Eq. 28, the retrieval of the N
density values on the grid nodes belonging to the corre-
sponding stencil (right-hand side of Eq. 17), then solving
the system to obtain the interpolation coefficients, and
finally applying Eqs. 21 to 26 to calculate the interpo-
lated density and its derivatives. The cost of the inter-
polant evaluation is independent of the grid size and the
system size, although the previously mentioned prepara-
tory calculations are not. In addition, CP location based
Newton’s method is trivially parallelizable, as Newton
searches launched from different seeds are independent
of each other.

IV. RESULTS

The performance of the proposed method regarding
CP location in molecular systems is examined now. This
performance is gauged by whether the same critical point
topology as the analytical electron density is recovered.
That is, there must be no missing or extra critical points.
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TABLE I. Accuracy in the calculation of critical points and their properties using the proposed interpolation method compared
to the analytical critical points. num: number of critical points of each type (the topology is the same with both methods).
∆x: average distance between CP positions using the interpolation and analytical densities in Å. MAE(x): mean absolute error
for property x in atomic units. MAPE(x) and MaxAPE(x): mean and maximum absolute percent error for property x in %.

System CP type num ∆x ρ ∇2ρ
MAE MAPE MaxAPE MAE MAPE MaxAPE

Phenol dimer nucleus 26
bond 29 0.000 812 6.416× 10−5 0.0204 0.2645 1.580× 10−2 1.3153 10.6415
ring 5 0.000 190 1.040× 10−6 0.0061 0.0301 1.243× 10−4 0.1186 0.2200
cage 1 0.000 047 2.650× 10−9 0.0001 0.0001 3.473× 10−6 0.0233 0.0233

C60 nucleus 60
bond 90 0.000 114 1.271× 10−5 0.0042 0.0439 4.427× 10−3 0.5736 3.7203
ring 32 0.000 208 4.688× 10−6 0.0148 0.0301 4.799× 10−4 0.2369 0.7967
cage 1 0.000 001 9.970× 10−11 0.0003 0.0003 4.833× 10−8 0.0459 0.0459

S12L 4b complex nucleus 158
bond 225 0.000 422 2.442× 10−5 0.0086 0.1655 6.861× 10−3 0.7472 9.3189
ring 78 0.000 301 2.502× 10−6 0.0086 0.0284 4.294× 10−4 0.2149 0.8154
cage 10 0.000 094 3.399× 10−8 0.0010 0.0019 9.086× 10−6 0.0669 0.1121

Water hexamer nucleus 18
bond 21 0.001 672 3.375× 10−4 0.1037 0.3348 7.596× 10−2 4.0819 12.4118
ring 5 0.000 123 7.102× 10−8 0.0022 0.0044 2.368× 10−5 0.0919 0.1697
cage 1 0.000 081 3.433× 10−8 0.0022 0.0022 9.200× 10−6 0.1416 0.1416

KB49 set bond 0.001 097 1.009× 10−4 0.0342 0.5998 3.000× 10−2 5.6095 259.3543
ring 0.000 267 5.463× 10−7 0.0029 0.0207 1.342× 10−4 0.3186 2.0845
cage 0.000 278 5.342× 10−8 0.0013 0.0050 6.388× 10−5 0.4393 1.3025

Another important performance measure is the accuracy
of the properties calculated at the critical points found,
particularly the electron density and Laplacian.

Four molecules and supramolecular complexes with in-
creasing complexity are examined: the phenol dimer from
the S22 set55 used in Section II, a water hexamer in the
prism geometry,67 a C60 fullerene,68,69 and complex 4b
(a C70 catcher complex) from the S12L set.70 All calcu-
lations were carried out at the geometries reported in the
literature using Gaussian1656 and the B3LYP/6-31+G∗
method. (We do not expect significant changes in perfor-
mance with the level of theory, see Table 1 in the Suppor-
ing Information.) The analytical wavefunction was used
to generate orthogonal grids with 0.125 Å per node in
each axis. The critical point search was carried out in ex-
actly the same way with the analytical and interpolated
densities. Critical points with density lower than 1×10−5

atomic units were discarded to prevent the appearance of
degenerate critical points far from the molecules.

The resulting CP topologies and molecular graphs are
shown in Figure 4, and the accuracy in the calculated CP
positions and properties for the density and the Lapla-
cian compared to the same quantities from the analytical
density are shown in Table I. The calculation of the CP
topology took 1 m (water prism), 1.5 m (phenol dimer),
10.5 m (C60), and 41 m (C70 pincer) on a modern desktop
PC. Further optimizations and fine-tuning to the code
can be implemented to speed up the calculations (for in-
stance, the pre-decomposition of the Φ matrix mentioned
in Section III).

The number and type of critical points found using the

interpolated densities are the same as with the analytical
densities, and the Poincaré-Hopf sum rule holds in both
cases. Combined with the lack of spurious features of the
interpolated topology and bond paths in Figure 4, this
result strongly suggests that the polyharmonic interpola-
tion in combination with Netwon’s method was successful
in recovering all critical points in these systems.

Table I also shows that the CP positions were recovered
from the polyharmonic interpolation with high accuracy,
considering the distance between grid nodes along a given
axis is as high as 0.125 Å. The average distance between
the analytical and interpolated CP positions are in the
range of approximately 1 × 10−4 Å to 1 × 10−3 Å, with
the bonds in water hexamer showing the highest devia-
tion at 0.0017 Å. For reference, these values are about
two orders of magnitude lower than the average devia-
tion in CP positions between common density functional
approximations and CCSD.14

The accuracy in the prediction of properties at the
critical points is also good according to Table I. Densi-
ties predicted at the critical points by the interpolation
method are at most around 1× 10−4 atomic units (0.1%
error), and more typically in the range of 0.01% to 0.001%
errors, depending on system and critical point type. As
in the case of the positions, this level of accuracy is about
2 orders of magnitude lower than the typical agreement
between density functional approximations and CCSD
densities.14 For the Laplacian, the MAE in the worst case
is in the range of 1× 10−2 atomic units (1 to 6% error),
but typically much lower, showing that, same as with the
other interpolation method, higher-order derivatives suf-
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(a) Phenol dimer (b) C60 fullerene

(c) C70 pincer complex (4b) (d) water hexamer (prism)

FIG. 4. Critical point topology and molecular graph of four relatively complex molecules calculated using the proposed
interpolation method. Bonds, rings, and cages are shown as yellow, cyan, and red small balls, respectively. Bond paths are
pink.

fer a penalty to the accuracy in the interpolation. Still,
the average errors for in Table I indicate that the inter-
polated Laplacian would be perfectly usable for chemical
bonding analysis.1

The CP topology and the molecular graphs calculated
using the interpolation method are shown in Figure 5.
The calculation time was less than 2 minutes in all cases
on a desktop PC. The number of nuclei, bonds, rings,
and cages found, respectively, were: MoS2 (6, 18, 20, 8),
quartz (9, 18, 18, 9), and urea (16, 26, 18, 8). The Morse
sum is zero in all cases, and the critical point positions are
consistent with the crystal space groups. The number of
critical points of each type in the asymmetric unit were:
MoS2 (2, 2, 3, 3), MoS2 (2, 4, 3, 3), and urea (5, 7, 4, 3).
The complete CP topology seems to have been found in

the three solids.

In order to verify the robustness of the proposed in-
terpolation method, we calculated the CP topology of all
49 dimers in the Kannemann-Becke set (KB49),71,72 typ-
ically used for fitting the parameters in the exchange-hole
dipole dispersion model (XDM).73 The CP topologies
and positions of the critical points calculated by inter-
polation from the grid agree with the analytical electron
density in all 49 systems. Table I also shows the aver-
age deviation in the CP position, density, and Laplacian
between the interpolated and the analytical densities for
the KB49 set. The results are similar to the other hy-
drogen bonded systems (hydrogen bonds are abundant
in the KB49 set), with an average error in the position of
about 1× 10−3 Å for bonds and 3× 10−4 Å for the other
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(a) MoS2 (b) Quartz (c) Urea

FIG. 5. Critical point topology and molecular graph of three periodic solids calculated using the proposed interpolation method.
Bonds, rings, and cages are shown as yellow, cyan, and red small balls, respectively. Bond paths are pink.

FIG. 6. Left: 0.001175 a.u. density isosurface in urea calculated using Quantum ESPRESSO. Right: the critical point topology
and molecular graph are also shown. Bonds, rings, and cages are shown as yellow, cyan, and red small balls, respectively. Bond
paths are pink.

CPs. Errors in the density and Laplacian are similarly
small, and comparable to the molecules studied above.

Next, the application of the proposed interpolation
method is illustrated in a few orthogonal and non-
orthogonal periodic solids. The electron densities of urea
(space group P4̄21m), MoS2 (P63/mmc), and quartz
(P3221) were calculated using the abinit program, ver-
sion 9.6.2,59,60 at their experimental geometries. The
projector augmented wave (PAW) method74 was used
with datasets from the JTH library.75 An energy cut-

off of 20 Ha was used for the plane waves and 40 Ha was
used for the double grid. k-point grids of 4× 4× 4 (urea
and quartz) and 5×5×2 (MoS2) were employed. The va-
lence density was reconstructed using the PAW transfor-
mation, and augmented with the core contributions using
critic2’s atomic density tables. The grids generated us-
ing abinit’s default options had approximately 0.09 Å per
node in MoS2 and quartz and 0.17 Å per node in urea.

Lastly, a potential problem that can arise when find-
ing CPs of electron densities in periodic solids from plane
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wave calculations comes from noise in the low-density re-
gions of the calculated electron densities. For instance, if
the PAW calculations for the three crystals above are re-
peated with Quantum ESPRESSO (QE)76 using 100 Ry
and 1000 Ry cutoffs for the plane-waves and density and
datasets from the pslibrary,77 the correct Morse sum is
found in all three crystals, and the CP topology is the
same as with abinit for MoS2 and quartz. However, for
urea, even though the Morse sum is zero, extra CPs are
found, as shown in Figure 6 (right). The spurious crit-
ical points appear on the long N-N intermolecular bond
path and they do not disappear if higher cutoffs are used
for the density and orbitals. This region has a relatively
slowly varying density, so it is possible that the electron
density calculated by QE is slightly noisy, possibly as a
result of minor aliasing errors. This is suggested by ex-
amining the relevant isosurface of the electron density
(Figure 6, left), which reveals small oscillations in the
region corresponding to this bond critical point. While
these ripples in the density are unlikely to affect the en-
ergy calculated by QE in any meaningful way, they do
generate a number of spurious CPs.

V. APPLICATION TO OTHER SCALAR
FIELDS

In this section, we briefly explore the idea of apply-
ing the proposed interpolation method to other scalar
fields. One particularly relevant scalar field is the molec-
ular electrostatic potential (MESP):

V (r) =
∑
A

ZA

|r −RA|
−
∫

ρ(r′)

|r − r′
dr′ (29)

where A runs over atoms, and RA are the atomic
positions. Extensive work by Gadre and co-
workers22–25,30,78,79 has shown that the MESP contains a
wealth of chemical information. The MESP has maxima
at the nuclear positions and no non-nuclear maxima.23

The first-order saddle points mostly coincide with the
bond critical points of the density, and the MESP min-
ima indicate regions of local electron density concentra-
tion, indicating the presence of lone pairs or electrophilic
sites in the molecule.24 The location of CPs in the MESP
(and the density) can be carried out from analytical
densities with the DAMQT program of López and co-
workers.25,30,31,80,81

Here, we are interested in showing that the CPs of the
MESP can also be located from a discrete grid of values
using the interpolation method proposed above. This is a
less efficient method than using analytical expressions30

but, as in the case of the electron density, this method
can be applied to any MESP regardless of source and
also in cases where an analytical expression is not avail-
able (for instance, if the MESP comes from a plane-wave
calculation).

In order to apply our method, a smoothing function
different from Eq. 20 has to be chosen, since the MESP

can take zero or negative values. The smoothing function
used here was:

f(x) = ln

(
a+ V (x)

a+ V0(x)

)
(30)

where a is a positive constant value lower than the mini-
mum value taken by the MESP (in this work, a = 1 a.u.)
and V0 is the sum of atomic in-vacuo electrostatic poten-
tials. The rest of the method works as described in the
previous sections.
As a simple illustration, the interpolation method for

MESP grid was applied to four molecules (CO2, NH3,
H2CO, and C2H4). The calculations were carried out
at the same level as in Ref. 31 (M06-L/6-311++G(d,p)
for CO2 and H2CO, MP2/6-311++G(d,p) for NH3 and
MP2/6-31++G(d,p) for C2H4), where the MESP CP
topology was found using an approximate analytical ex-
pression for the MESP. Same as for previous examples,
grids with 0.125 Å per node were generated and the CP
search was carried out inside the 0.0001 a.u. density iso-
surface, in order to remove spurious critical points from
the vacuum region.
The resulting topologies are shown in Figure 7 and Ta-

ble II. The calculated topologies, including the Poincaré-
Hopf sum, as well as the CP positions, are the same as
those reported using the DAMQT program.31 The min-
ima of the MESP in these molecules, shown in red in Fig-
ure 7 reveals the position of the lone pairs and the center
of the π system in acetylene.24 The value of the MESP at
these points is a relevant quantity, which has been shown
to correlate with the intermolecular interaction energy in
lone pair-π interactions.79 Table II also shows the values
of the MESP at the calculated minima positions obtained
by interpolation (V interp.

min ) and analytically (V anal.
min ). The

agreement between the two is excellent, to about 5 sig-
nificant digits.
While the smoothing function in Eq. 30 is probably

not optimal, these results exemplify that the proposed
approach can be applied to the analysis of any scalar field
whose values are available only on a three-dimensional
grid, provided a suitable smoothing function can be found
and the grid is fine enough to capture enough details of
the underlying scalar function.

VI. CONCLUSIONS

Electron densities and other scalar fields given on a
grid are a common occurrence in practical computational
chemistry. In this work, two topics are explored: the re-
construction of the electron density from a uniform grid
by interpolation and the location of its critical points.
The latter is important in the application of the quan-
tum theory of atoms in molecules (QTAIM) to solid-state
densities, as the popular plane-wave methods work exclu-
sively with density grids and no analytical representation
of the electron density is available.
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FIG. 7. Critical point topologies of the molecular electrostatic potential in CO2 (top left), ammonia (top right), ethylene
(bottom left), and formaldehyde (bottom right). First-order saddles, second-order saddles, and minima are shown as yellow,
cyan, and red small balls, respectively. The gradient paths associated with the first-order saddle points are shown in pink.

TABLE II. Critical point topologies of the molecular electrostatic potential in four molecules calculated using the proposed
interpolation method. The number of maxima (n), first-order saddles (b), second-order saddles (r), and minima (c) as well as
the Poincaré-Hopf relation (Eq. 4) are shown. The last two columns show the value of the MESP at the minima calculated by

interpolation (V interp.
min ) and analytically (V anal.

min ).

n b r c PH V interp.
min V anal.

min

CO2 3 2 0 2 -1 −2.268 49× 10−2 −2.268 66× 10−2

NH3 4 3 1 2 0 1.066 71× 10−2 1.066 72× 10−2

−1.236 28× 10−1 −1.236 20× 10−1

C2H4 6 5 0 2 -1 −3.512 84× 10−2 −3.512 82× 10−2

H2CO 4 3 1 2 0 −6.282 57× 10−2 −6.282 61× 10−2

In this work, it was shown that the naive application
of common interpolation methods to an electron density
grid fails to accurately reproduce its features in the steep
regions close to the nuclei and also in the calculation of
higher-order derivatives. In addition, these interpolation
methods are affected by lattice bias, the fact that the out-
come of the interpolation depends on the arbitrary choice
of basis for the grid. Lattice bias is an important prob-
lem because solid-state grids are often non-orthogonal,
and this grid basis dependence introduces preferential
directions in the system. Lattice bias affects previously
proposed grid-based QTAIM algorithms, most notably
atomic basin integration methods.

A new reconstruction method for the electron density
is proposed based on three-dimensional polyharmonic
spline interpolation combined with a smoothing transfor-
mation using the promolecular density. The new method
has been shown to accurately reproduce the analytical

electron density and its derivatives and is not affected
by lattice bias. The new interpolant can be used when-
ever the electron density is required outside the grid,
for instance, when plotting or carrying out density-based
chemical bonding analysis studies.

The proposed interpolant was then used to perform
critical point searches in various molecular and solid-state
systems in combination with Newton’s method, which re-
quires accurate first and second derivatives to give mean-
ingful results. It was shown that, for most systems, the
complete CP topology of the system was recovered and
that the CP positions and their density and Laplacian
matched their analytical counterparts with high accu-
racy. In addition, the new CP search method is trivially
parallelizable and, because the polyharmonic interpolant
is not affected by lattice bias, can be applied to non-
orthogonal crystals without introducing spurious direc-
tional bias. One potential source of problems identified
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in solid-state CP topology calculations is noise from the
electronic structure method, possibly originating from
aliasing error. In summary, this work is a step forward in
the development of a CP search method for scalar fields
on a grid that is robust, automatic, and accurate.

VII. SUPPLEMENTAL MATERIAL

Table containing the critical point topology and
properties for water dimer using B3LYP/6-31+G∗ and
CCSD/aug-cc-pVTZ.
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