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Abstract
In this paper we study the scalar delay differential equation

x ′(t) = α(t)x(t − g1(t)) f (a(t), x(t − g2(t))) − β(t)x(t)

where f is decreasing in both arguments and the coefficients are positive and bounded.
Sufficient conditions for the permanence and global attractivity for a fixed positive solution
are derived.We apply our results to nonautonomous variants of Nicholson’s blowfly equation
and the Beverton–Holt model.

Keywords Mixed Monotonicity · Nicholson’s blowfly equation · Two delays ·
Beverton–Holt model

1 Introduction

Gurney et al. [14] proposed the delay differential equation

x ′(t) = −dx(t) + px(t − τ)e−ax(t−τ) (1.1)

for analyzing the density of the Australian sheep blowfly Lucilia cuprina. With remarkable
accuracy, this model was able to reproduce the population oscillations observed byNicholson
in [17]. The equation

x ′(t) = −dx(t) + px(t − τ)

1 + x(t − τ)γ
(1.2)

with γ ≥ 1 is other marked model with a noteworthy ability to describe real patterns [2]. In
this case, Mackey and Glass explained the oscillations in number of neutrophils detected in
some cases of chronic myelogenous leukimia. From a mathematical point of view, Eqs. (1.1)
and (1.2) share two common features:
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• A “humped” relationship between future states and current states.
• The presence of time delays.

It is broadly accepted that the interplay between these two factors normally produces oscil-
lations in any system [4, 22]. However, this interplay is not well understood yet and many
questions remain to be solved.

Apart from the biological situations mentioned above, delay differential equations have
been employed as suitable models for many problems in ecology, physiology, engineering
and epidemiology [5, 7, 12, 18–20, 22]. Many authors have focused on the analysis of the
general class of equations

x ′(t) = −dx(t) + x(t − τ) f (x(t − τ)) (1.3)

that contains (1.1) and (1.2) as particular examples. See [2, 4, 8, 22] for results on perma-
nence/persistence, nonlinear oscillations, chaotic dynamics and global attractivity for this
equation. We stress that (1.3) can be derived from the McKendrick-von Forester equations

⎧
⎨

⎩

∂u
∂a (a, t) + ∂u

∂t (a, t) = −μ(a)u(a, t)
u(0, t) = M(t) f (M(t))
u(a, 0) = u0(a)

(1.4)

in studying the evolution of the population size of adult individuals M(t) = ∫ +∞
τ

u(a, t)da,
see [15, 22]. Despite its undoubted utility, Eq. (1.3) has two limitations from a biological
point of view. Seasonality is a critical environmental feature in any ecological system [16].
For example, the birth rate of any species depends on the temperature, light, humidity of the
environment and these factors vary with seasons. However, (1.3) is based on the assumption
that there are not temporal variations of the environmental conditions.On the other hand,when
we employ equation (1.3) for analyzing the evolution of an insect population, we implicitly
assume that the lag of the impact on the survival of a previous competition of individuals
takes place at the reproduction stage. Nevertheless, in many applications, e.g. most tick
populations, biological observations indicate that this lag occurs before reproduction [15,
23]. A possible modeling framework that solves the aforementioned limitations is

x ′(t) = α(t)x(t − g1(t)) f (a(t), x(t − g2(t))) − β(t)x(t). (1.5)

Compared with (1.3), the time dependence and the presence of two delays add many diffi-
culties due to the complexity of the mathematical tools to deal with (1.5). We emphasize that
model (1.5) shows dynamical patterns that do not appear in (1.3), see [1, 3]. The reader can
consult [7] for other scalar delay differential equations with multiple delays coming from
real problems.

The purpose of this paper is to extend for nonautonomous equations the results in [9, 10].
Specifically, we will provide criteria of global attractivity for a positive solution in (1.5).
Our results enhance and extend some recent achievements [1, 13, 15] in the literature in the
following directions:

• The time dependence in the model is not necessarily periodic or almost periodic.
• We do not impose that h(x) = x f (x) is monotone or f (x) = e−x .

The structure of the paper is as follows: InSect. 2,wededuce somepermanence/persistence
results for the solutions of (1.5). In Sect. 3, we state themain theorem of this paper. Informally
speaking, we construct a scalar difference equation that codes many dynamical behaviors of
(1.5). In Sect. 4, we apply our approach in some classical models and compare our results
with previous ones in the literature.
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A key ingredient of this paper is the fluctuation lemma. We recall its statement for the
reader’s convenience.

Lemma 1.1 (Lemma A.1 page 154 in [22]) Let f : [a,+∞) −→ R be a map of class C1 and
bounded. Then, there are two sequences {tn} → +∞ and {sn} → +∞ with the following
properties:

• limn→+∞ f (sn) = lim supt→+∞ f (t) with limn→+∞ f ′(sn) = 0.
• limn→+∞ f (tn) = lim inf t→+∞ f (t) with limn→+∞ f ′(tn) = 0.

2 Basic Properties

We consider
x ′(t) = α(t)x(t − g1(t)) f (a(t), x(t − g2(t))) − β(t)x(t) (2.1)

with the following conditions:

(H1) α, a, β : [0,+∞) −→ (0,+∞) are continuous and bounded functions. Moreover,
there is a constant θ > 0 so that θ ≤ α(t), β(t) for all t ∈ [0,+∞).

(H2) g1,g2 : [0,+∞) −→ [0,+∞) are continuous and bounded functions with g2(t) ≤
g1(t) for all t ∈ [0,+∞).

(H3) f : [0,+∞)2 −→ (0,+∞) is of class C1, decreasing in the first argument and
strictly decreasing in the second argument. In addition, for each b > 0, f (b, 0) = 1
and limx−→+∞ f (b, x) = 0.We will denote by f −1

ξ : (0, 1] −→ [0,+∞) the inverse
of the function f (ξ, ·).

(H4) There is a constant ω > 1 so that α(t)
β(t) ≥ ω for all t ∈ [0,+∞).

Let τ = sup{g1(t) : t ∈ [0,+∞)}. We denote by C+
0 = C([−τ, 0], [0,+∞)) and C+ =

C([−τ, 0], (0,+∞)) the space of the continuous functions defined on the interval [−τ, 0]
and taking values on [0,+∞) and (0,+∞), respectively. Given a function φ ∈ C+

0 , there is
a unique (local) solution x(t) = x(t, φ) of (2.1) that satisfies x(t) = φ(t) for all t ∈ [−τ, 0]
and Eq. (2.1) for t ≥ 0, see [4, 22] . From

d

dt

(
x(t)e

∫ t
0 β(s)ds

)
= e

∫ t
0 β(s)dsα(t)x(t − g1(t)) f (a(t), x(t − g2(t))), (2.2)

we can obtain an useful representation of the solutions, namely,

x(t) = x(0)e− ∫ t
0 β(s)ds + e− ∫ t

0 β(s)ds
∫ t

0
e
∫ s
0 β(r)drα(s)x(s− g1(s)) f (a(s), x(s− g2(s)))ds.

(2.3)
Using that f , α and β are bounded (see (H1) and (H3)), we easily deduce that the solutions
of (2.1) with initial function in C+

0 are defined for all t ≥ 0 from the method of steps. We
refer to the solutions with initial function in C+ as positive solutions. Notice that if x(t) is
a positive solution, then x(t) > 0 for all t ≥ 0. To see this property, we observe that all
elements within the integral in (2.3) are strictly positive, (see (H1) and (H3)). On the other

hand, given x(t) a positive solution, z(t) = x(t)e
∫ t
0 β(s)ds is strictly increasing, (see (2.2)).

We repeatedly use this property along the paper.

Proposition 2.1 Assume that (H1), (H2), (H3) and (H4) hold. Then, for any positive solution
x(t) of (2.1), x(t) is bounded and lim inf t→+∞ x(t) > 0.
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Proof We split the proof into two steps:
Step 1: The positive solutions of (2.1) are bounded.
Assume, by contradiction, that there is an unbounded positive solution x(t). Then, we can
find a sequence {sn} ↗ +∞ with the following properties:

(Q1) x(sn) = max{x(t) : t ∈ [0, sn]} for all n ∈ N.
(Q2) x ′(sn) ≥ 0 for all n ∈ N.
(Q3) limn→+∞ x(sn) = +∞.

The construction of this sequence is as follows: Take m = max{x(t) : t ∈ [−τ, 0]}. Define
sn = min{t ∈ [0,+∞) : x(t) = n · (m + 1)} with n ∈ N.

Using the expression of Eq. (2.1) together with (Q2), we deduce that

β(sn)

α(sn)
x(sn) ≤ x(sn − g1(sn)) f (a(sn), x(sn − g2(sn))) (2.4)

for all n ∈ N. Using (Q1), we get that

β(sn)

α(sn)
≤ f (a(sn), x(sn − g2(sn))) (2.5)

for all n ∈ N. Let

� = inf

{
β(t)

α(t)
: t ∈ [0,+∞)

}

∈ (0, 1), (2.6)

(see (H4)) and

δ = inf{a(t) : t ∈ [0 + ∞]} ≥ 0.

We observe that by (H3),

f (a(sn), x(sn − g2(sn))) ≤ f (δ, x(sn − g2(sn))) (2.7)

for all n ∈ N. Combining (2.5), (2.6) and (2.7), we conclude that

� ≤ f (δ, x(sn − g2(sn))),

or, equivalently, by (H3),
x(sn − g2(sn)) ≤ f −1

δ (�) (2.8)

for alln ∈ N.Notice thatwecandefine f −1
δ (�)because f (δ, 0) = 1and limx−→+∞ f (δ, x) =

0. On the other hand, using that x(t)e
∫ t
0 β(s)ds is strictly increasing and (H2), we have that

x(sn − g1(sn))e
∫ sn−g1(sn )

0 β(s)ds ≤ x(sn − g2(sn))e
∫ sn−g2(sn )

0 β(s)ds

for all n ∈ N. Thus,

x(sn − g1(sn)) ≤ x(sn − g2(sn))e
∫ sn−g2(sn )

sn−g1(sn )
β(s)ds

for all n ∈ N. By (H1), (H2) and (2.8), it is clear that x(sn − g1(sn)) is bounded. Since
{x(sn − g1(sn))} and {x(sn − g2(sn))} are bounded, we conclude easily from (2.4) that x(sn)
is bounded as well. This is a contradiction with (Q3).

Step 2: The positive solutions of (2.1) are bounded apart from 0.
Assume, by contradiction, that there is a positive solution x(t) so that

lim inf
t→+∞ x(t) = 0.

Then, we can find a sequence {tn} ↗ +∞ with the following properties:
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(P1) x(tn) = min{x(t) : t ∈ [0, tn]} for all n ∈ N.
(P2) x ′(tn) ≤ 0 for all n ∈ N.
(P3) limn→+∞ x(tn) = 0.

The construction of this sequence is analogous to {sn} of the previous step.
By expression of (2.1) together with (P2), we deduce that

β(tn)

α(tn)
x(tn) ≥ x(tn − g1(tn)) f (a(tn), x(tn − g2(tn))) (2.9)

for all n ∈ N. Using (P1), we get that

β(tn)

α(tn)
≥ f (a(tn), x(tn − g2(tn))) ≥ f (ã, x(tn − g2(tn))) (2.10)

for all n ∈ N with ã = sup{a(t) : t ≥ 0}, (use (H3) in the second inequality). By (H4), we
know that

1

ω
≥ β(t)

α(t)
(2.11)

for all t ∈ [0,+∞) with ω > 1. Inserting (2.11) in (2.10), we arrive at

1

ω
≥ f (̃a, x(tn − g2(tn)))

or equivalently, by (H3),

x(tn − g2(tn)) ≥ f −1
ã

(
1

ω

)

(2.12)

for alln ∈ N.Notice thatwecandefine f −1
ã ( 1

ω
)because f (ã, 0) = 1and limx−→+∞ f (ã, x) =

0. On the other hand, using that x(t)e
∫ t
0 β(s)ds is strictly increasing and g2(t) ≥ 0, we have

that

x(tn)e
∫ tn
0 β(s)ds ≥ x(tn − g2(tn))e

∫ tn−g2(tn )

0 β(s)ds

for all n ∈ N. Thus,

x(tn) ≥ x(tn − g2(tn))e
− ∫ tn

tn−g2(tn )
β(s)ds

for all n ∈ N. Using (2.12), (H1) and (H2) in the previous inequality, we observe that x(tn)
does not converge to zero as n → +∞. This is a contradiction with (P3). 	

Now we provide uniform bounds for the upper and lower limits of the positive solutions of
(2.1). We write these bounds using the next notation:

ϕ = lim sup
t→+∞

∫ t

t−g2(t)
β(s)ds, (2.13)

ϕ̃ = lim sup
t→+∞

∫ t−g2(t)

t−g1(t)
β(s)ds, (2.14)

a∗ = lim sup
t→+∞

a(t), (2.15)

a∗ = lim inf
t→+∞ a(t), (2.16)

and

� = lim inf
t→+∞

β(t)

α(t)
. (2.17)
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These quantities are meaningful by (H1), (H2) and (H4) and satisfy ϕ, ϕ̃ ≥ 0; a∗ ≥ a∗ ≥ 0;
and 1 > � > 0.

Proposition 2.2 Assume that (H1), (H2), (H3) and (H4) hold. Then,

lim inf
t→+∞ x(t) ≥ e−ϕ f −1

a∗

(
1

ω

)

for any positive solution x(t) of (2.1).

Proof Take x(t) a positive solution of (2.1). By Proposition 2.1 and applying the fluctuation
lemma (see Lemma 1.1), we can find a sequence {tn} ↗ +∞ so that

lim inf
t→+∞ x(t) = lim

n→+∞ x(tn) = L > 0

with limn→+∞ x ′(tn) = 0. Evaluating (2.1) at tn , we obtain

x ′(tn) = α(tn)x(tn − g1(tn)) f (a(tn), x(tn − g2(tn))) − β(tn)x(tn)

or, equivalently,

x ′(tn)
α(tn)

+ β(tn)

α(tn)
x(tn) = x(tn − g1(tn)) f (a(tn), x(tn − g2(tn))). (2.18)

By (H1), (H2) and (H4), it is not restrictive, after taking subsequences, to assume that
α(tn) −→ α1 > 0; a(tn) −→ a1 with a1 ≤ a∗; β(tn)

α(tn)
−→ η with η ≤ 1

ω
; x(tn − g1(tn)) −→

L1, x(tn − g2(tn)) −→ L2 with L1, L2 ≥ L . Recall that x(t) is bounded by Proposition 2.1.
Making n −→ +∞ in (2.18), we arrive at

ηL = L1 f (a1, L2).

As mentioned previously, η ≤ 1
ω
and a1 ≤ a∗. Thus, by (H3), we deduce

1

ω
L ≥ L1 f (a

∗, L2).

Now, using L1 ≥ L , we have that

1

ω
≥ f (a∗, L2).

Applying the inverse of f (a∗, ·) above (see (H3)),

L2 ≥ f −1
a∗

(
1

ω

)

. (2.19)

On the other hand, using that x(t)e
∫ t
0 β(s)ds is increasing and g2(t) ≥ 0, we obtain that

x(tn − g2(tn))e
∫ tn−g2(tn )

0 β(s)ds ≤ x(tn)e
∫ tn
0 β(s)ds,

what implies

x(tn − g2(tn)) ≤ x(tn)e
∫ tn
tn−g2(tn )

β(s)ds
. (2.20)

Since g2(t) ≥ 0 and β(t) are bounded (see (H1) and (H2)), it is not restrictive to suppose that
limn→+∞

∫ tn
tn−g2(tn)

β(s)ds exists and limn→+∞
∫ tn
tn−g2(tn)

β(s)ds ≤ ϕ, (see (2.13)). Making
n −→ +∞ in (2.20), we conclude that

L2 ≤ Leϕ.
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Finally, by (2.19), it is clear that

e−ϕ f −1
a∗

(
1

ω

)

≤ L.

	

Proposition 2.3 Assume that (H1), (H2), (H3) and (H4) hold. Then,

lim sup
t→+∞

x(t) ≤ eϕ̃

�
f −1
a∗ (�)

for any positive solution x(t) of (2.1).

Proof Take x(t) a positive solution of (2.1). By Proposition 2.1 and applying the fluctuation
lemma (see Lemma 1.1), we can take a sequence {sn} ↗ +∞ so that

lim sup
t→+∞

x(t) = lim
n→+∞ x(sn) = S

with limn→+∞ x ′(sn) = 0. Evaluating (2.1) at {sn}, we obtain
x ′(sn) = α(sn)x(sn − g1(sn)) f (a(sn), x(sn − g2(sn))) − β(sn)x(sn)

or, equivalently,

x ′(sn)
α(sn)

+ β(sn)

α(sn)
x(sn) = x(sn − g1(sn)) f (a(sn), x(sn − g2(sn))). (2.21)

It is not restrictive, after passing to subsequences, to assume that α(sn) −→ α2 > 0;
a(sn) −→ a2 with a2 ≥ a∗; β(sn)

α(sn)
−→ μ with 1 > μ ≥ �; x(sn − g1(sn)) −→ S1,

x(sn − g2(sn)) −→ S2 with 0 < S1, S2 ≤ S. Recall that lim inf t→+∞ x(t) > 0 by Proposi-
tion 2.1 and α(t) > 0, (see also (H1), (H2) and (H4)). Making n −→ +∞ in (2.21),

μS = S1 f (a2, S2).

Using that μ ≥ � and a2 ≥ a∗ together with (H3), we obtain that

�S ≤ S1 f (a∗, S2). (2.22)

From this inequality, we get

� ≤ f (a∗, S2)

because S1 ≤ S. Applying the inverse of f (a∗, ·) above (see (H3)), we have that

S2 ≤ f −1
a∗ (�). (2.23)

On the other hand, using that x(t)e
∫ t
0 β(s)ds is increasing and g1(sn) ≥ g2(sn) for all n ∈ N

(see (H2)), we deduce that

x(sn − g1(sn)) ≤ x(sn − g2(sn))e
∫ sn−g2(sn )

sn−g1(sn )
β(t)dt

. (2.24)

Since g1(t), g2(t) andβ(t) are bounded (see (H1) and (H2)), it is not restrictive to assume that
limn→+∞

∫ sn−g2(sn)
sn−g1(sn)

β(t)dt exists and limn→+∞
∫ sn−g2(sn)
sn−g1(sn)

β(t)dt ≤ ϕ̃, see (2.14). Making
n −→ +∞ in (2.24) and using (2.23), we obtain that

S1 ≤ f −1
a∗ (�)eϕ̃ . (2.25)

Finally, the conclusion follows directly by (2.22), (2.25) and (H3) because S2 ≥ 0 and
f (a∗, 0) = 1. 	
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3 Main Results

In this section we fix a positive solution x∗(t) of (2.1). Our aim is to establish sufficient
conditions for the global attractivity of x∗(t). Specifically, we want to prove that, for any x(t)
positive solution of (2.1),

lim
t→+∞[x(t) − x∗(t)] = 0.

To this task, we define

y(t) = x(t)

x∗(t)
.

By Proposition 2.1, for any positive solution x(t), 0 < lim inf t→+∞ y(t) and lim supt→+∞
y(t) ∈ (0,+∞). After simple computations, y(t) satisfies the equation

y′(t) = b(t)
(
y(t − g1(t)) f (a(t), x∗(t − g2(t))y(t − g2(t))) − y(t) f (a(t), x∗(t − g2(t)))

)

(3.1)
with

b(t) = α(t)x∗(t − g1(t))

x∗(t)
. (3.2)

Lemma 3.1 Assume that (H1), (H2), (H3), (H4) hold. If there exists y(t) a solution of (3.1)
so that limt→+∞ y(t) = ζ , then ζ = 1.

Proof First we notice that by (H1) and Propositions 2.2 and 2.3, there are two strictly positive
constants �1 and �2 so that

�1 ≤ b(t) ≤ �2 (3.3)

for all t ∈ (0,+∞). Next we take y(t) a solution of (3.1) so that limt→+∞ y(t) = ζ . Since
y(t) is bounded apart from zero (in an uniform manner), we deduce that ζ > 0. Then, there
exists a sequence {tn} → +∞ so that y′(tn) → 0. It is not restrictive, after passing to
subsequences if necessary, to assume that a(tn) → a0 ≥ 0 and x∗(tn − g2(tn)) → �0 > 0
as n → +∞. Evaluating Eq. (3.1) at tn we arrive at

y′(tn) = b(tn)
(
y(tn − g1(tn)) f (a(tn), x∗(tn − g2(tn))y(tn − g2(tn)))

−y(tn) f (a(tn), x∗(tn − g2(tn)))
)
.

Making n → +∞ and using (3.3), we conclude that

ζ f (a0, �0ζ ) = ζ f (a0, �0).

Finally, by (H3), we conclude that ζ = 1. 	

Since x(t), x∗(t) are bounded and bounded apart from zero; and

x(t) − x∗(t) = x∗(t)
(

x(t)

x∗(t)
− 1

)

,

we note that

lim
t−→+∞ y(t) = 1 ⇐⇒ lim

t−→+∞[x(t) − x∗(t)] = 0.

From now on we focus on the analysis of limt−→+∞ y(t).
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In the rest of the section, the map

F : (0,+∞)3 −→ (0,∞)

F(λ1, λ2, x) = f (λ1, λ2x)

f (λ1, λ2)

plays a critical role. We assume the following conditions:

(F1) ∂F
∂λi

(λ1, λ2, x) ≥ 0 for all λi > 0, x ∈ (0, 1), and i = 1, 2.

(F2) ∂F
∂λi

(λ1, λ2, x) ≤ 0 for all λi > 0, x > 1, and i = 1, 2.

We stress that F is strictly decreasing in the third variable by (H3).

Proposition 3.1 Assume that (H1), (H2), (H3), (H4) and (F1), (F2) hold. Consider a positive
solution x(t) with L = lim inf t→+∞ y(t) and S = lim supt→+∞ y(t). Then, there are four
positive constants L1,L2,S1,S2 with the following properties:

(C1) L1,L2,S1,S2 ∈ [L,S].
(C2) S2 ≤ 1 ≤ L2.
(C3) L ≥ L1F(a∗, λ∗,L2) and S ≤ S1F(a∗, λ∗,S2) with λ∗ a constant so that λ∗ ≥

lim supt→+∞ x∗(t), (see (2.15) for the definition of a∗).

Proof By the fluctuation lemma (Lemma 1.1), we can take {tn} and {sn} tending to +∞ so
that

lim
n→+∞ y(tn) = L and lim

n→+∞ y′(tn) = 0

lim
n→+∞ y(sn) = S and lim

n→+∞ y′(sn) = 0.

It is not restrictive (after passing to sub-sequences if necessary) to assume that there are
four positive constants L1,L2,S1,S2 ∈ [L,S] so that limn→+∞ y(tn − g1(tn)) = L1,
limn→+∞ y(tn − g2(tn)) = L2, limn→+∞ y(sn − g1(sn)) = S1 and limn→+∞ y(sn −
g2(sn)) = S2. We can also suppose that there are other four positive constantsA1,A2, ν1, ν2
with ν1, ν2 ≤ λ∗ and A1,A2 ≤ a∗ so that limn→+∞ a(tn) = A1, limn→+∞ a(sn) = A2,
limn→+∞ x∗(tn − g2(tn)) = ν1 and limn→+∞ x∗(sn − g2(sn)) = ν2. Evaluating (3.1) at {tn}
and {sn} respectively, we obtain that

y′(tn) = b(tn)
(
y(tn − g1(tn)) f (a(tn), x∗(tn − g2(tn))y(tn − g2(tn)))

−y(tn) f (a(tn), x∗(tn − g2(tn)))
)

and

y′(sn) = b(sn)
(
y(sn − g1(sn)) f (a(sn), x∗(sn − g2(sn))y(sn − g2(sn)))

−y(sn) f (a(sn), x∗(sn − g2(sn)))
)
.

Observe that, by Proposition 2.1 and (H1), b(t) ≥ ξ > 0 for all t > 0 with ξ a suitable
positive constant (see (3.2) for the precise definition of b(t)). Making n −→ +∞ in the
previous expressions, we deduce that

{L1 f (A1, ν1L2) − L f (A1, ν1) = 0
S1 f (A2, ν2S2) − S f (A2, ν2) = 0,
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what implies {L = L1F(A1, ν1,L2)

S = S1F(A2, ν2,S2). (3.4)

Since L1,S1 ∈ [L,S], we have that
{
1 ≥ F(A1, ν1,L2)

1 ≤ F(A2, ν2,S2). (3.5)

We know that F(λ1, λ2, 1) = 1 for all (λ1, λ2) ∈ (0,+∞)2 and that F(λ1, λ2, x) is strictly
decreasing in the third component for all (λ1, λ2, x) ∈ (0,+∞)3, (see (H3) and the definition
of F). Thus, S2 ≤ 1 ≤ L2. Using these inequalities together with A1,A2 ≤ a∗; ν1, ν2 ≤ λ∗
and (F1), (F2), we deduce from expression (3.4) that

{L ≥ L1F(a∗, λ∗,L2)

S ≤ S1F(a∗, λ∗,S2). (3.6)

	

The next result is a refinement of Proposition 3.1. Before its statement, we fix a positive
constant κ so that

lim sup
t→+∞

b(t) f (a(t), x∗(t − g2(t))) ≤ κ. (3.7)

Let
σ = lim sup

t→+∞
g2(t). (3.8)

Remark 3.1 Assume that (H1), (H2), (H3), (H4) and (F1), (F2) hold. If σ = 0, we directly
have thatL2 = L andS2 = S, (see the proof of Proposition 3.1). Therefore, from (C2), we can
deduce that L = S = 1 and so, for any positive solution x(t), limt→+∞[x(t) − x∗(t)] = 0.
Informally speaking, we have proved that in the absence of the delay g2, the delay g1 is
harmless on the convergence of x(t) − x∗(t) to zero.

By the previous remark, it is enough to analyze the case σ > 0.

Proposition 3.2 Assume that (H1), (H2), (H3), (H4) and (F1), (F2) hold. Suppose that
there exists a positive solution x(t) so that L < S with L = lim inf t→+∞ y(t) and
S = lim supt→+∞ y(t). Then, there are four positive real constants Ã1, Ã2, S̃1, S̃2 with
the following properties:

(R1) Ã1, Ã2, S̃1, S̃2 ∈ [L,S].
(R2) S̃2 ≤ 1 ≤ Ã2.
(R3) L ≥ e−κσ +(1−e−κσ )Ã1F(a∗, λ∗, Ã2) and S ≤ e−κσ +(1−e−κσ )S̃1F(a∗, λ∗, S̃2)

with λ∗ a constant so that λ∗ ≥ lim supt→+∞ x∗(t), (see (2.15) for the definition of
a∗).

Proof Let
c(t) = b(t) f (a(t), x∗(t − g2(t))). (3.9)

From the definition of b(t), the results in Sect. 2 and (H1), (H3), c(t) is uniformly bounded
and bounded apart from zero. We can write Eq. (3.1) as

y′(t) = b(t)y(t − g1(t)) f (a(t), x∗(t − g2(t))y(t − g2(t))) − c(t)y(t), (3.10)
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(see (3.2) for the definition of b(t)). Using the variation of the constant formula, we deduce
that

y(t) = y(t − g2(t))e
− ∫ t

t−g2(t) c(s)ds + e− ∫ t
0 c(s)ds A(t) (3.11)

with

A(t) =
∫ t

t−g2(t)
e
∫ s
0 c(r)dr b(s)y(s − g1(s)) f (a(s), x∗(s − g2(s))y(s − g2(s)))ds.

After multiplying and dividing by f (a(s), x∗(s − g2(s))) within the integral, we realize that

A(t) =
∫ t

t−g2(t)

d

ds
(e

∫ s
0 c(r)dr )y(s − g1(s))F(a(s), x∗(s − g2(s)), y(s − g2(s)))ds.

(3.12)
Evaluating (3.11) at the sequence {sn} given in Proposition 3.1, we have that

y(sn) = y(sn − g2(sn))e
− ∫ sn

sn−g2(sn )
c(s)ds + e− ∫ sn

0 c(s)ds A(sn).

Notice that

A(sn) ≤ Mn

(∫ sn

sn−g2(sn)

d

ds
(e

∫ s
0 c(r)dr )ds

)

= Mn

(

e
∫ sn
0 c(r)dr − e

∫ sn−g2(sn )

0 c(r)dr
)

with

Mn = max{y(s − g1(s))F(a(s), x∗(s − g2(s)), y(s − g2(s))) : s ∈ [sn − g2(sn), sn]}.
Inserting this inequality above, we obtain

y(sn) ≤ y(sn − g2(sn))e
− ∫ sn

sn−g2(sn )
c(s)ds +

(
1 − e

− ∫ sn
sn−g2(sn )

c(s)ds
)
Mn . (3.13)

Next we take a sequence ξn ∈ [sn − g2(sn), sn] so that

Mn = y(ξn − g1(ξn))F(a(ξn), x∗(ξn − g2(ξn)), y(ξn − g2(ξn)))

for all n ∈ N. Since y(t), c(t), x∗(t) are bounded and bounded apart from zero, (see Propo-
sition 2.1, (H1), (H2), (H4)), we can suppose that

y(ξn − g1(ξn)) −→ S̃1
y(ξn − g2(ξn)) −→ S̃2

with S̃1, S̃2 ∈ [L,S];
a(ξn) −→ ã2

with ã2 ≤ a∗ = lim supt→+∞ a(t); and

x∗(ξn − g2(ξn)) −→ γ2

with 0 < γ2 ≤ lim supt→+∞ x∗(t) ≤ λ∗. Regarding the sequence {sn}, we know by Propo-
sition 3.1 that

y(sn − g2(sn)) −→ S2
with S2 ≤ 1. Moreover, since c(s) is bounded and bounded apart from zero and g2(t) ≥ 0 is
bounded (see (H2)), it is not restrictive to assume that

∫ sn

sn−g2(sn)
c(s)ds −→ κ2
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with 0 ≤ κ2 ≤ κσ , (see (3.7) and (3.8)). We stress that by (C1) and (C2) in Proposition 3.1,
S ≥ 1. Collecting the above information and making n → +∞ in (3.13), we arrive at

S ≤ S2e−κ2 + (1 − e−κ2)S̃1F (̃a2, γ2, S̃2). (3.14)

We remark that S2 ≤ 1 and S̃1 ≤ S. Arguing in a similar manner with the sequence {tn} of
Proposition 3.1 instead of {sn}, we obtain

L ≥ L2e
−κ1 + (1 − e−κ1)Ã1F (̃a1, γ1, Ã2) (3.15)

with 0 ≤ κ1 ≤ κσ ; L ≤ 1; L2 ≥ 1; Ã1, Ã2 ∈ [L,S]; ã1 ≤ lim supt→+∞ a(t) = a∗; and
γ1 ≤ lim supt→+∞ x∗(t) ≤ λ∗. Now we distinguish between two cases:
Case 1: Assume that κ1 > 0 and κ2 > 0.
Using that S ≥ 1, S2 ≤ 1 and S̃1 ≤ S, we deduce from (3.14) that

F (̃a2, γ2, S̃2) ≥ 1

and
S̃1F (̃a2, γ2, S̃2) ≥ 1. (3.16)

We know that F (̃a2, γ2, 1) = 1 and F is strictly decreasing in the third variable (see (H3)).
Hence, S̃2 ≤ 1. On the other hand, by (F1) and γ2 ≤ λ∗, ã2 ≤ a∗, we obtain that

F (̃a2, γ2, S̃2) ≤ F(a∗, λ∗, S̃2). (3.17)

Inserting (3.17) in (3.14), we arrive at

S ≤ S2e−κ2 + (1 − e−κ2)S̃1F(a∗, λ∗, S̃2). (3.18)

A simple computation of the derivative of P(x) = e−x + (1− e−x )S̃1F(a∗, λ∗, S̃2) together
with (3.16) show that P is increasing. Thus, since κ2 ≤ κσ and S2 ≤ 1, we have that

S ≤ e−κσ + (1 − e−κσ )S̃1F(a∗, λ∗, S̃2).
The inequality L ≥ e−κσ + (1 − e−κσ )Ã1F(a∗, λ∗, Ã2) can be proved analogously using
(3.15).
Case 2: Assume that κ1 = 0 or κ2 = 0.
Let us prove that this case can not occur. Suppose, for instance, that κ2 = 0. Then, by (3.14),
we have that S ≤ S2. We can conclude that S = 1 because we knew by Proposition 3.1 that
S2 ≤ 1, S2 ≤ S and S ≥ 1. On the other hand, by Proposition 3.1 and S = 1, we deduce
that L2 = 1. Now, (3.15) writes as

L ≥ e−κ1 + (1 − e−κ1)Ã1F (̃a1, γ1, Ã2) (3.19)

Since 1 ≥ L and Ã1 ≥ L, we obtain that F (̃a1, γ1, Ã2) ≤ 1. Using that F (̃a1, γ1, 1) = 1
and F is strictly decreasing in the third component, we get that Ã2 ≥ 1. As 1 = S ≥ Ã2, we
also obtain that Ã2 = 1. Therefore, (3.19) becomes

L ≥ e−κ1 + (1 − e−κ1)Ã1.

Note that this expression implies that

L ≥ e−κ1 + (1 − e−κ1)L
because Ã1 ≥ L. Now, it is clear that L = 1 because L ≤ 1. At this moment we have proved
that L = S = 1. This is a contradiction because L < S by assumptions. 	
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Remark 3.2 Assume that (H1), (H2), (H3), (H4) and (F1), (F2) hold. Given x(t) a positive
solution,

lim inf
t→+∞ y(t) = lim inf

t→+∞
x(t)

x∗(t)
> e−κσ .

To see this inequality we argue as follows: If lim supt→+∞ y(t) > lim inf t→+∞ y(t), then
the conclusion is clear by Proposition 3.2. If lim supt→+∞ y(t) = lim inf t→+∞ y(t), then
limt→+∞ y(t) = 1 by Lemma 3.1.

The following result is stated in terms of the global attraction of a suitable difference equation.
We recall that a fixed point x̄ of H : (�,+∞) −→ (�,+∞)with� ∈ [−∞,+∞) is globally
attracting in (�,+∞) for the difference equation

xn+1 = H(xn)

if, for all x0 ∈ (�,+∞), Hn(x0) → x̄ as n → +∞ with Hn = H ◦ ..n).. ◦ H .

Theorem 3.1 Assume that (H1), (H2), (H3), (H4) and (F1), (F2) hold. With the notation of
Proposition 3.2, suppose that

F(a∗, λ∗, e−κσ ) <
1

1 − e−κσ
. (3.20)

If 1 is globally attracting in (e−κσ ,+∞) for the difference equation

xn+1 = H(xn) (3.21)

with

H(x) = e−κσ

1 − (1 − e−κσ )F(a∗, λ∗, x)
,

then, x∗(t) is globally attracting, that is, for any positive solution x(t) of (2.1),

lim
t−→+∞[x(t) − x∗(t)] = 0.

Proof Firstweobserve that by (3.20) and (H3),H is strictly decreasing andH((e−κσ ,+∞)) ⊂
(e−κσ ,+∞). Since 1 is globally attracting in (e−κσ ,+∞) for the difference equation (3.21),
then there is no a non-trivial compact interval I ⊂ (e−κσ ,+∞) so that I ⊂ H(I ), see
Lemma 4.1 in [6]. After this preliminary fact, we assume, by contradiction, that there is a
positive solution x(t) so that y(t) = x(t)

x∗(t) � 1 as t → +∞. Set L = lim inf t→+∞ y(t)
and S = lim supt→+∞ y(t). By Proposition 2.1, we know that 0 < L and S ∈ (0,+∞). By
Lemma 3.1, we deduce that L < S. By the previous proposition, we conclude that σ > 0
and that there are four positive constants Ã1, Ã2, S̃1, S̃2 so that

L ≥ e−κσ + (1 − e−κσ )LF(a∗, λ∗, Ã2)

and

S ≤ e−κσ + (1 − e−κσ )SF(a∗, λ∗, S̃2).
After simple manipulations, we obtain that

L ≥ e−κσ

1 − (1 − e−κσ )F(a∗, λ∗, Ã2)
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and

S ≤ e−κσ

1 − (1 − e−κσ )F(a∗, λ∗, S̃2)
,

what implies H(S̃2) ≥ S and H(Ã2) ≤ L with S̃2, Ã2 ∈ [L,S]. We can deduce that
[L,S] ⊂ H([L,S]). We have obtained a contradiction with the comments at the beginning
of the proof. We note that L > e−κσ by Remark 3.2. 	

If the coefficients of (2.1) are T -periodic andweknow in advance the existence of a positive T -
periodic solution x∗(t) for Eq. (2.1), Theorem 3.1 guarantees that x∗(t) is globally attracting.
The reader can consult [11] for nice results on the existence of positive T -periodic solutions
of (2.1) when the coefficients are T -periodic.

4 Examples

In this section we apply Theorem 3.1 in two classical models: A nonautonomous variant of
Nicholson’s blowfly equation and a nonautonomous model of Beverton–Holt type. We will
show that the assumptions introduced previously are satisfied for the usual nonlinearities
f (a, x) = e−ax and f (a, x) = 1

1+ax .
Next, for the reader’s convenience, we recall a well-known criterion for global attractivity

of an equilibrium in scalar difference equations, (see [6]).

Proposition 4.1 Assume that ϕ : (c,+∞) −→ (c,+∞) is a decreasing function of class C3
with negative Schwarzian derivative, that is,

(Sϕ)(x) = ϕ′′′(x)
ϕ′(x)

− 3

2

(
ϕ′′(x)
ϕ′(x)

)2

< 0, f or all x > 0

provided ϕ′(x) �= 0. If x̄ ∈ (c,+∞) is the equilibrium of

xn+1 = ϕ(xn) (4.1)

and |ϕ′(x̄)| ≤ 1, then x̄ is globally attracting in (c,+∞) for the difference equation (4.1).

We stress that if G(x) = F(a∗, λ∗, x) is a map of class C3 with negative Schwartzian
derivative in (e−κσ ,+∞) and (3.20) is satisfied, then H has negative Schwartzian derivative
in (e−κσ ,+∞) as well. This is a consequence of the results in [21] because H(x) = � ◦ G
with �(x) = e−κσ

1−(1−e−κσ )x and the Schwartzian derivative is negative for both functions.

4.1 A Nonautonomous Nicholson’s Blowfly Equation with Two Different Delays

Consider
x ′(t) = α(t)x(t − τ1)e

−ax(t−τ2) − β(t)x(t) (4.2)

with the following conditions:

(A1) a > 0, α, β : [0,+∞) → (0,+∞) are continuous and bounded. Moreover, there is
a constant θ > 0 so that θ ≤ α(t), β(t) for all t ∈ [0,+∞).

(A2) 0 ≤ τ2 ≤ τ1.
(A3) There is a constant ω > 1 so that α(t)

β(t) ≥ ω for all t ∈ [0,+∞).
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In (4.2), τ1 represents the lag of the impact on the survival and/or reproduction of a previous
competition of individuals and τ2 is the maturation time. When τ1 = τ2, the impact takes
place at the reproduction stage. However, in many applications, e.g. most tick populations,
experimental results suggest that τ2 ≤ τ1, see [23].

Under (A1), (A2) and (A3), conditions (H1)-(H4) of Sect. 3 are satisfied for Eq. (4.2).
Notice that g1(t) = τ1, g2(t) = σ = τ2, f (a, x) = e−ax and F(λ1, λ2, x) = eλ1λ2(1−x).
Thus, it is clear that (F1) and (F2) hold. It is worth mentioning that for each λ1, λ2;
F(λ1, λ2, x) has negative Schwartzian derivative. As mentioned above, this implies that

H(x) = e−κτ2

1 − (1 − e−κτ2)F(a, λ∗, x)
has negative Schwartzian derivative as well.

Fix x∗(t) > 0 a positive solutions of (4.2). By Propositions 2.2 and 2.3,

lim sup
t→+∞

x∗(t) ≤ eϕ̃

�

(− ln�

a

)

lim inf
t→+∞ x∗(t) ≥ e−ϕ

(
lnω

a

)

with � = lim inf t→+∞ β(t)
α(t) , ϕ = lim supt→+∞

∫ t
t−τ2

β(s)ds, ϕ̃ = lim supt→+∞
∫ t−τ2
t−τ1

β(s)ds.Next we identify a constant κ so that κ ≥ lim supt→+∞ b(t) f (a, x∗(t − τ2)), (recall

that b(t) = α(t)x∗(t−τ1)
x∗(t) ). Notice that

lim sup
t→+∞

α(t)
lim supt→+∞ x∗(t)
lim inf t→+∞ x∗(t)

≥ lim sup
t→+∞

b(t) f (a, x∗(t − τ2)).

By the previous estimates, if α∗ = lim supt→+∞ α(t), we can take

κ = α∗
eϕ̃+ϕ

�

(− ln�

lnω

)

and

λ∗ = eϕ̃ (− ln�)

�a
.

Oncewe have an estimate of the elements involved in Theorem 3.1, we analyze the conditions

F(a, λ∗, e−κτ2) <
1

1 − e−κτ2
(4.3)

and the global attractivity of 1 in (e−κτ2 ,+∞) for the difference equation

xn+1 = H(xn)

with

H(x) = e−κτ2

1 − (1 − e−κτ2)F(a, λ∗, x)
.

UsingProposition 4.1 and assuming (4.3), the global attractivity for 1 is guaranteed if H ′(1) ≥
−1. On the other hand, we observe that

H ′(1) = −(eκτ2 − 1)
eϕ̃ (ln�)

�
= −(eκτ2 − 1)aλ∗ ≥ −1 (4.4)
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implies (4.3). Indeed, observe that (4.4) leads to

(1 − e−κτ2)aλ∗ ≤ e−κτ2 .

On the other hand, after taking logarithms, (4.3) writes as

(1 − e−κτ2)aλ∗ < − ln(1 − e−κτ2).

Since e−κτ2 < − ln(1 − e−κτ2), it is clear that (4.3) implies (4.4). Collecting the above
discussion, we can deduce the following result:

Theorem 4.1 Assume that (A1), (A2) and (A3) hold. If

(eκτ2 − 1)
eϕ̃ (ln�)

�
≤ 1

then, for any pair of positive solutions x(t), x∗(t) of (4.2),

lim
t→+∞[x(t) − x∗(t)] = 0.

Nonautonomous Nicholson’s blowfly models with a single delay has been extensively
analyzed in the literature [4, 8, 22]. However, the global analysis for (4.2) has been recognized
to be challenging and there are few available results in the literature. The reader can consult
[13, 15] for nice results on global attraction for the equation

x ′(t) = β(t)(Px(t − g1(t))e
−ax(t−g2(t)) − δx(t)). (4.5)

If we applied Theorem 3.1 for studying the global attractivity of the equilibrium
ln P

δ

a for Eq.
(4.5), we should impose g2(t) ≤ g1(t) for all t ∈ [0,+∞) to recover Theorem 3.1 in [13].
In other words, we need a condition not required in [13]. However, our approach has two
advantages in comparison with [13]:

• It is not restricted to Nicholson’s blowfly equations.
• We can derive global attractivity criteria for non-constant solutions.

4.2 A Nonautonomous Beverton–Holt Equation with Two Different Delays

Consider

x ′(t) = α(t)
x(t − τ1)

1 + x(t − τ2)
− β(t)x(t) (4.6)

with the following conditions:

(B1) α, β : [0,+∞) → (0,+∞) are continuous and bounded. Moreover, there is a constant
θ > 0 so that θ ≤ α(t), β(t) for all t ∈ [0,+∞).

(B2) 0 ≤ τ2 ≤ τ1.
(B3) There is a constant ω > 1 so that α(t)

β(t) ≥ ω for all t ∈ [0,+∞).

Under (B1), (B2) and (B3), conditions (H1)-(H4) of Sect. 3 are satisfied for Eq. (4.6). Notice
that g1(t) = τ1, g2(t) = σ = τ2, f (a, x) = 1

1+x and f −1
a (x) = 1

x − 1. It is clear that (F1)

and (F2) are satisfied because F(λ1, λ2, x) = 1+λ2
1+λ2x

. Fix x∗(t) > 0 a positive solutions of
(4.6). By Propositions 2.2 and 2.3, we deduce that

lim inf
t→+∞ x∗(t) ≥ e−ϕ(ω − 1)
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and

lim sup
t→+∞

x∗(t) ≤ eϕ̃ 1 − �

�2

with� = lim inf t→+∞ β(t)
α(t) ,ϕ = lim supt→+∞

∫ t
t−τ2

β(s)ds, ϕ̃ = lim supt→+∞
∫ t−τ2
t−τ1

β(s)ds.
Arguing as in (4.2), we take

κ = α∗eϕ̃+ϕ

(
1 − �

�2(ω − 1)

)

and

λ∗ = eϕ̃ 1 − �

�2

with α∗ = lim supt→+∞ α(t).
Now we define

H(x) = e−κσ

1 − (1 − e−κσ )F(a∗, λ∗, x)
.

This function has negative Schwartzian derivative and H ′(1) = −(eκσ − 1) λ∗
1+λ∗ .

After straightforward computations, we can deduce that

F(a∗, λ∗, e−κσ ) = 1 + λ∗
1 + λ∗e−κσ

<
1

1 − e−κσ
⇐⇒ (eκσ − 1)

λ∗
1 + λ∗

< 1.

Thus, as a direct consequence of Theorem 3.1 and Proposition 4.1, we arrive at the following
result:

Theorem 4.2 Assume that (B1), (B2) and (B3) hold. If

(eκσ − 1)
λ∗

1 + λ∗
< 1

then, for any pair x(t), x∗(t) of positive solutions of (4.6),

lim
t→+∞[x(t) − x∗(t)] = 0.
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