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Abstract

In this work we present and analyse a new fully-mixed finite element method for the nonlinear
problem given by the coupling of the Darcy and heat equations. Besides the velocity, pressure, and
temperature variables of the fluid, our approach is based on the introduction of the pseudoheat
flux as a further unknown. As a consequence of it, and due to the convective term involving the
velocity and the temperature, we arrive at saddle point-type schemes in Banach spaces for both
equations. In particular, and as suggested by the solvability of a related Neumann problem to be
employed in the analysis, we need to make convenient choices of the Lebesgue and H(div)-type
spaces to which the unknowns and test functions belong. The resulting coupled formulation is
then written equivalently as a fixed point operator, so that the classical Banach theorem, combined
with the corresponding Babuska-Brezzi theory, the Banach-Necas-Babuska theorem, suitable op-
erators mapping Lebesgue spaces into themselves, regularity assumptions, and the aforementioned
Neumann problem, are employed to establish the unique solvability of the continuous formulation.
Under standard hypotheses satisfied by generic finite element subspaces, the associated Galerkin
scheme is analysed similarly and the Brouwer theorem yields existence of a solution. The respec-
tive a priori error analysis is also derived. Then, Raviart-Thomas elements of order k£ > 0 for the
pseudoheat and the velocity, and discontinuous piecewise polynomials of degree < k for the pres-
sure and the temperature are shown to satisfy those hypotheses in the 2D case. Several numerical
examples illustrating the performance and convergence of the method are reported, including an
application into the equivalent problem of miscible displacement in porous media.
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1 Introduction

In this work we are interested in the distribution of the temperature ¢ of a fluid in a porous medium
occupying a bounded and simply connected Lipschitz-continuous domain Q in R", n € {2, 3}, which is
modelled by the coupling of Darcy’s law with a convection diffusion equation depending on the velocity
u of the fluid. More precisely, letting I' := 02 with unit outward normal vector v, the corresponding
system of equations is given by

ple)u+ Vp=f in Q, div(u)=0 in Q, u-r=0 on I,

(1.1)
—-kAp +u-Vo=f in Q, =0 on T,

where p is the temperature-dependent coefficient (representing the porosity times the dynamic vis-
cosity, divided by the permeability, and from now on simply referred to as scaled viscosity), p is the
pressure, f represents an external vector force, k is the positive thermal conductivity coefficient, and
f stands for an external scalar heat production (per unit volume of the porous medium). Suitable
hypotheses on the data f and f are given throughout the analysis below. In turn, concerning the scaled
viscosity p : R — RT, we assume that this function is uniformly bounded and Lipschitz-continuous,
which means that there exist positive constants p1, p2, and L, such that

pr < p(t) < pe YEER and |u(t) —p(t)] < Lyjt—t] Yt tER. (1.2)

We note that the same set of coupled equations serves as model for the miscible displacement in porous
media [p§].

The coupling of the heat equation (or a general convection-diffusion equation) with diverse models
in fluid mechanics, such as Stokes, Navier-Stokes, Darcy, Darcy-Forchheimer, Brinkman-Darcy, and
others, has been extensively studied in the literature during the last decade by using a variety of
numerical methods, which include finite elements, mixed finite elements, discontinuous Galerkin, aug-
mented formulations, and several other procedures. In particular, for nonlinear transport, Boussinesq,
and heat-Darcy (or related), we refer for instance to the sets of works (and the references therein)
given by [B, 4, 14, 15, 20, b5, b4], [2, 11, 19, 23, 27, b1, 53], and [5, 9, 10, 28, 29], respectively. Re-
garding the latter model, let us first mention that the case of constant viscosity, but with the exterior
force depending on the temperature, has been analysed in [10] by using a spectral method for the
corresponding Galerkin scheme. More recently, the model described by ([l.1)), which assumes a non-
linear viscosity, was considered in [J], where mixed and primal formulations in the Darcy and heat
equations, respectively, were employed within a Hilbertian framework. Then, a countable basis of a
separable Sobolev space embedded in L*°(2), and the Galerkin method induced by it, were utilised
there to prove existence of solution, whereas under smoother exact solution and sufficiently small data,
uniqueness was also established. In addition, two finite element methods, one of them stabilised by a
suitable additional term, and which are solved using Picard successive approximations, were proposed
in [9], and optimal error estimates were derived, all of which was illustrated by several numerical ex-
amples. In turn, the a posteriori error analyses of the methods from [J] were developed in [29] (see also
[1]). Furthermore, the analysis and results from [9] were complemented in [28] by introducing a new
non-stabilised method, and by providing existence and uniqueness of solution without any restriction
on the data, but for sufficiently small meshsizes.

On the other hand, during recent years there has been an increasing development of new mixed finite
element methods arising from Banach spaces-based variational formulations to solve diverse nonlinear
models in continuum mechanics. Among the main advantages of this methodology, we first high-
light the non-necessity of any augmentation procedure, technique commonly used within a Hilbertian
framework in many previous works (see, e.g., [3, 4, L8, 23]), which, while yielding some benefits, also



increases the complexity of the respective continuous and discrete systems. Another advantageous
feature of the Banach framework is given by the fact that the spaces to which the unknowns belong
are the natural ones that arise from the application of the Cauchy-Schwarz and Hélder inequalities to
the terms, suitably tested, of the equations defining the model. From the large amount of works in
this direction, we only refer here to [, 19, 22, 24, B6]. In particular, a dual-mixed formulation for the
Stokes equations, in which, differently from [3], the velocity belongs to L*, is employed in [{7] for the
coupled flow-transport problem originally studied in [3]. As a consequence, the Cauchy stress is sought
in a suitable H(div)-type Banach space, whereas the concentration unknown of the transport equation
lies in H!. In turn, following some ideas from [44, B8], the velocity and a suitable pseudostress tensor
are utilised in [[16] to study a Banach spaces-based dual-mixed momentum conservative method for
the stationary Navier-Stokes problem. Related approaches have been successfully applied as well to
the Boussinesq system in [19, 22, 24], and to fluidised beds in [36].

According to the previous discussion, our goal here is to complement the recent theory on the
numerical analysis of nonlinear problems and address a new Banach spaces-based mixed finite element
formulation for ([L.1). As we are interested in employing mixed formulations in both the Darcy and
heat equations, we now introduce as an auxiliary unknown the pseudoheat flux (the negative sum of
the conductive heat flux and the convective flux)

o :=kVp —pu in €,

which, using the incompressibility condition given by the second equation of the first row of (EI),
implies

div(e) = kAp —u-Vyp in Q.

As a consequence, (@) can be rewritten, equivalently, as the first-order nonlinear system

wp)u+ Vp=£f in Q, div(u)=0 in Q, w-r=0 on I, (13)
kVo —pu=0c in Q, div(e)=—f in Q, ¢=0 on I. '

Note that one of the advantages of using also a mixed scheme in the heat equation is the chance of
computing another variable of physical interest, such as the gradient of temperature, by means of
the simple post-processing formula Vo = £~} (0' + gou), and that the method delivers conservative
approximations. Another important motivation behind the use of this approach will be explained later
on in Section Y.2.

The rest of the paper is organised as follows. At the end of this section we describe standard
notations and functional spaces to be utilised throughout the paper. Then, in Section P we lay out
further details on the governing equations and state preliminary assumptions, and proceed to derive
the continuous formulation and analyse its solvability. More precisely, we first collect some definitions
and preliminary results, establish the fully-mixed scheme arising from ([l.3), and then introduce an
equivalent fixed-point strategy to address its solvability. Next, we employ the Babuska-Brezzi theory in
Banach spaces and the Banach-Babuska-Necas theorem to prove the well-posedness of the uncoupled
Darcy and heat problems that define the fixed-point operator, and finally apply the Banach fixed-point
theorem to conclude the existence of a unique solution. The associated Galerkin scheme, posed in
terms of arbitrary finite element subspaces satisfying suitable hypotheses, is set and investigated in
Section B. Similar analytical tools to those employed in Section E are employed here. They include
a discrete fixed-point strategy, the well-posedness of the respective uncoupled discrete problems, and
the application of the Brouwer theorem to conclude existence of solution. This section ends with the
corresponding a priori error analysis. Next, in Section @ we restrict ourselves to the 2D case and
define specific finite element subspaces, basically Raviart-Thomas spaces of order k > 0 for o and u,



and discontinuous piecewise polynomials of degree < k for p and ¢, which are shown to satisfy the
abstract assumptions introduced in Section J. The latter reduce to the discrete inf-sup conditions
for each one of the bilinear forms involved in our continuous and discrete formulations. To this end,
we need to collect several preliminary results, namely approximation properties of projection and
interpolation operators, Li-stability of the Ritz projector and of the projector on a discrete kernel, a
Neumann regularity result, and further properties of the Raviart-Thomas interpolator. For sake of a
more concise presentation, some of the above are gathered in three appendices. Section Y concludes
with the rates of convergence of the Galerkin method. We highlight here that, because of the unusual,
though natural, norms of the finite element subspaces involved, the discrete inf-sup conditions that are
proved have an intrinsic value by themselves since most likely they will be useful in other models. In
this regard, we also remark that along the way we identify the only one of them whose validity is, up to
our knowledge, an open issue in 3D. Finally, several numerical examples illustrating the performance
of the method and confirming the theoretical rates of convergence, are presented in Section f.

In what follows, given a Lipschitz-continuous domain O with boundary I', we adopt standard
notations for Lebesgue spaces L!(O) and Sobolev spaces W5 () and Wg’t((’)), with £ > 0 and t €
[1,400), whose corresponding norms and seminorm, either for the scalar or vectorial case, are denoted
by || - oo, || - llero and | - |or.0, respectively. Note that WO(O) = L{(0), and if t = 2 we write
H*(0) instead of W52(0), with the corresponding norm and seminorm denoted by || - ||s.0 and | - |40,
respectively. In addition, letting ¢’ be the conjugate of ¢, that is such that 1/t+1/t' = 1, we denote by
WL/YH(T) the trace space of WHE(O), and let W1/ #(T) be the dual of W'/*(T") endowed with the
norms || - [|_yy p;r and || - || 4,0, respectively. Furthermore, given a generic scalar functional space
S, we denote by S its vectorial version, examples of which are L{(0Q) := [L}(0)]* and W5(0) :=
[WE(O)]™. Finally, we employ C and c, with or without subscripts, bars, tildes or hats, to denote
generic positive constants independent of the discretisation parameters, which may take different
values at different places.

2 The continuous formulation

In this section we introduce and analyse a suitable weak formulation for (@) To this end, we first
collect some results that will be employed later on, first to derive the right spaces of the continuous
formulation, and then to prove some of the inf-sup conditions required along the analysis.

2.1 Preliminary results

We begin by recalling from [39] a theorem that establishes the W17 (2)-solvability, with r in a suitable
range contained in (1,400), of the Poisson equation with Neumann boundary conditions.

Theorem 2.1 Let Q2 be as stated at the beginning of Section m, and let g € L"(Q), g € L"(Q), and
gy € WYr (D), with r € (1, +00), such that g and g satisfy the compatibility condition

/9 = (gn, )r, (2.1)
Q

where (-,-\p stands for the duality pairing between W=/ (T') and W'/™(T'), and s € (1,+00) is the
conjugate of v, that is + +1 = 1. Then, for each r € [4/3,4] when n = 2, and for each r € [3/2,3]
when n = 3, there exists u € W (Q), unique up to a constant, such that

Au = g+div(g) in Q, (Vu—g) v =gy on T. (2.2)



Moreover, there exists a constant C' > 0, depending only on n, r, and €, such that
ulre < C{llgllorn + lglore + lowl-1mmr} (23)

Proof. 1t follows by applying [B9, Theorem 1.2] to the particular case of the Laplacian operator, and
by restricting the full ranges provided for r, which are (4/3 —¢,4+¢) and (3/2—¢,3+¢) for n = 2 and
n = 3, respectively, with a constant € > 0 that arises from the proof, to the present closed intervals.

O

In particular, defining for each 7 in the ranges specified by Theorem @ the space
Wir(Q) = {v e W (Q) : /v - 0}, (2.4)
Q

we deduce that there exists a unique u € WLT(Q) solution of (@) Moreover, since || - ||1,.0 and

| - |1,r0 are equivalent in Wl”’(Q), which follows from the generalised Poincaré inequality (cf. [46,
Theorems 5.11.2 and 5.11.3]), the a priori estimate (@) becomes

lullire < Cr {llglore + lglore + lonll-1mer - (2:5)

with a constant C,. > 0 depending only on n, r, and {2, as well. In addition, the corresponding weak
formulation of (@) reduces to: Find u € WH"(Q) such that

/Vu'Vv = /g‘Vv — /gv + (9N, v)r Voe WH(Q). (2.6)
Q Q Q

functions v since, in doing so, and thanks to the compatibility condition ( , both sides of ( are
nullified. Hence, according to the decomposition W*(Q2) = W1#(Q) @ R, we conclude that (.6) is
equivalent to stating

In this regard, we notice that actually there is no need to impose the foregoﬁ testing against constant
)

Q Q Q

Now, it is important to stress that r lies in the ranges indicated in the statement of Theorem @ if
and only if s does as well, and therefore the conclusion of that theorem and the above discussion on
the respective weak formulations, remain valid if 7 and s are swapped.

Furthermore, given an arbitrary t € (1, +00), we define for each z € L!(£2) the function

t—2 .
Ti(z) = { |z|' = ifz+#0, 27)

0 otherwise,
and establish next the mapping properties of the resulting operators J;.
Lemma 2.2 Let r, s € (1,400) such that 1 +1 = 1. Then, for each z € L"(Q) there hold

z; == Jr(z) € L*(Q), z = Js(zs), and (2.8a)

/z-zS = ||z
Q

so that J, : L"(Q) — L*(Q) and Js : L*(Q2) — L"(Q) become bijective and inverse to each other.

om0 = Zsl5s0 = lIzlloralzslose (2.8b)



Proof. 1t follows straightforwardly from (@) and simple algebraic manipulations. U

Next, we recall two integration by parts formulae that will be employed later on, for which, given
r € (1,+00), we first introduce the Banach spaces

H(div,;; ) = {7 € LAQ):  div(r) e L")}, (2.92)
H' (div,; Q) = {T cL'(Q): div(r) e LT(Q)} , (2.9b)
which are endowed with the natural norms defined, respectively, as
[T llaivse = [ITlloq + div(T)llome V7 € H(div,; Q), (2.10a)
17 llrdive0 = ITllore + ldiv(T)lore V7 e H(div,; Q). (2.10Db)

Then, proceeding as in [B5, eq. (1.43), Section 1.3.4] (see also [17, Section 4.1], [22, Section 3.1]), one
can prove that for each r > HQ—J:LZ there holds

(T -v,0) = /Q {7’ -Vu + 'UdiV(T)} Y (7,v) € H(div,; Q) x H(Q), (2.11)

where (-, -) stands for the duality pairing between H~/2(I") and H'/?(T"). In turn, given r, s € (1, 400)
such that 1 + 1 =1, there also holds (cf. [32, Corollary B. 57])

(T -v,u)r = / {T -V + vdiv(r)} V(7,v) € H" (div,; Q) x Wh(Q), (2.12)
Q
where, as indicated in the statement of Theorem @, (-,-)r stands for the duality pairing between

W=/ () and WY/5(T).

On the other hand, the following lemma introduces a suitable operator mapping L*(€2) into itself.

Lemma 2.3 Letr, s € (1,+00) such that % + % =1, with r (and hence s) satisfying the ranges given
by Theorem R.1|. Then there exists a linear and bounded operator Dy : L*(Q2) — L*(Q2) such that

div(Ds(w)) =0 in Q and Dg(w)-v =0 on T Vw e L°(Q). (2.13)

In addition, for each z € L"(Q) such that div(z) = 0 in Q and z-v = 0 on T, there holds
/z-Ds(w) = /z-w Vwe L°(Q). (2.14)

Q Q
Proof. Given w € L*(Q), we let u € WLS(Q) (ct. (@)) be the unique solution of problem (@) with
g=0,g=w, and gy = 0, that is:
Au = div(w) in Q, (Vu—-w)-vr =0 on T, /u:O. (2.15)
Q

Then, the continuous dependence result of () (cf. (@)) guarantees the existence of a constant

Cs > 0 such that ||ul1,s0 < Cs||wlo,s:0, and hence, defining Dy(w) := w — Vu € L*(Q2), we have
that Dy is clearly linear and satisfies

1Ds(W)llo.s2 < (14 Cs) [Wllo.se

which shows that Dy is bounded. In addition, it is readily seen from () that Dg(w) satisfies the
required conditions in () Moreover, given z as indicated in the statement of the lemma, the
integration by parts formula () applied to z € H"(div,; Q) and u € W'¥(Q), yields

/Z-Vu = —/udiv(z) + (z-v,u)yr =0,
Q Q

whence () is obtained, thus completing the proof. O




2.2 The fully-mixed formulation

We begin by testing the first equation of the second row of () against a vector function 7, which

formally yields
/O’-T—I{/V@'T—I—/QOU'T:O. (2.16)
Q Q Q

Then, using the Cauchy-Schwarz and Holder inequalities, we find that for all £, € (1,4+00) such that
% +1 =1, there holds
J
‘ / pu-T
Q

which shows that the third term on the left hand side of () makes sense for ¢ € L¥(Q), u € L¥(Q),
and 7 € L?(2). Then, knowing where 7 belongs, the first and second terms on the left hand side of
(R.16) are finite if o0 € L2(Q) and Vi € L?(), respectively. In addition, in order to be able to apply
(R.11)) to 7 and ¢, so that we obtain

< lello,2e:0 lallo.2s:0 |7 llo.0 (2.17)

/QV<p-7' = —/ngdiv(T) + (t-v,p) = —/ngdiv(r), (2.18)

with 7-v € H/2(T) and (-, -) denoting the duality pairing between H~'/2(T") and H'/?(T"), it suffices
to assume that div(7) € L9 (Q), where (2¢) := % is the conjugate of 2¢, and that H(f) is
continuously embedded in L?(Q). The later is guaranteed for 2/ € [1,400) when n = 2, which is
always satisfied, and for 2¢ € [1,6] when n = 3 (cf. [B2, Corollary B.43]). On the other hand, since
Theorem will be applied later on to r = 27 or r = (2)’, which will be required to establish some
continuous inf-sup conditions, we need that 2j lies in the corresponding ranges specified there, that
is 29 < 4 when n = 2, and 25 < 3 when n = 3 (note that the respective lower bounds are already
satisfied). Then, it is readily seen that 2y < 4 (respectively 27 < 3) if and only if 2¢ = jQ_—Jl >4
(respectively 2¢ = f_—]l > 6). Thus, from the restrictions on 2¢ when n = 3, we deduce that there must

hold 2¢ = 6, which yields 2y = 3, (2¢)' = 6/5, and (27)" = 3/2, so that defining
p=20, o= 20, r=2y, and s = (29, (2.19)
we find that the only possible setting for the 3D case is

(p,0) := (6,6/5) and (rys) = (3,3/2). (2.20)

In turn, noting that 2¢ > 4 is the only restriction on 2¢ when n = 2, at this point we do not consider
any particular choice and continue our analysis with a generic value for ¢, and hence (cf. ()) for p,
o, r and s as well. We just observe that, being (p, 0) and (r, s) pairs of conjugate to each other with
p, > 2, there necessarily holds o, s € (1,2). In addition, it is readily seen that p > r when p > 4.
According to the above discussion, from now on we look for ¢ € L°(Q2) and u € L"(2), whereas the
test function 7 € L%(Q) is such that div(7) € L(£2). Later on in Section .4, and in order to complete
our discrete analysis, we will impose a sharper range for s.

Next, replacing the resulting expression from (Ela) into (ﬁ), and taking into account the defini-

tion (), we arrive at

/0"7' + m/ ediv(T) + / pu-7 =0 VT e H(divy; Q) . (2.21)
Q Q Q




Furthermore, testing now the second equation of the second row of () against ¢ € LP(Q), which
implicitly imposes the unknown o to belong to H(div,; ), assuming that the datum f € L2(Q), and
multiplying by the constant k, we obtain

/-1/ Ydiv(e) = —/{/ f Vi € LP(Q). (2.22)
Q Q
Therefore, given u € L"(2), and setting

H := H(div,; ) and Q := L°(Q), (2.23)

the weak formulation of the convection diffusion model reduces to (EQI) and (525), that is: Find
(o,) € H x Q such that

a(o-,r)+b(7',<,0)+/ﬂcpu~7' = 0 VreH, 1)
Mow) = = [ fo Yeeq. |

where a : Hx H— R and b : H x Q — R are the bilinear forms defined by
al¢r) = [ ¢or veT) eHxH, (2.950)
Q
b(r, ) = n/ Ypdiv(r)  Y(r,v) e HxQ. (2.25b)
Q

It is easily seen that a and b are bounded with respect to the usual norms of H := H(div,; Q) (cf.
()) and Q := L”(Q), and that the corresponding boundedness constants are

la]| =1  and b = &. (2.26)

On the other hand, knowing already that u must belong to L"(€2), and bearing in mind the incom-
pressibility and boundary conditions, we introduce appropriate trial and test spaces

Xo = Hy(div,; Q) := {W e H (div,;2): w-v =0 on F}, (2.27a)
X1 = Hi(divy; Q) == {v € H'(div;Q): v-v =0 on r}, (2.27b)
which are endowed with the corresponding norms defined by () Indeed, given ¢ € LP(2), and

assuming that the datum f lies in L"(€2), we test the first equation of the first row of ([l.3) against
v € X1, so that applying () to v € H*(div,; Q) and p € WL (Q), we obtain

/,u(go)u-v - /pdiv(v) = /f-v Vv e X. (2.28)
Q 0 Q

We notice here that the resulting second term on the left hand side of (R.28) vanishes when p is
constant, and hence for sake of uniqueness of solution, the pressure unknown is sought from now on
in the space

My = LI(Q) = {qu(Q): /Qq - o}.

In connection to the above, and thanks to the decomposition L*(©2) = L§(€2) & R and the boundary
condition satisfied by u, we realise that testing the incompressibility condition (second equation of the



first row of (@)) against ¢ € L*(12) is equivalent to doing it against ¢ € L§(€2), so that the associated
test space is set as My := L§(€2). Consequently, the weak formulation of Darcy’s problem reads: Find
(u,p) € X9 x M; such that

ag(u,v) + bi(v,p) = /f-v Vv e Xy,
Q

bg(u,Q) =0 vquQa

(2.29)

where, given ¢ € LP(Q), ay : Xox X1 — R, by : X1 x M7 — R and by : Xo x Ma — R are the bilinear
forms defined as

ay(w,v) = / p)w-v V(w,v) € Xy x X1, (2.30a)
Q
bi(v,q) = —/qdiv(v) V(v,q) € X; x My, Vie{l,2}. (2.30b)
Q
Similarly as for a and b, we observe that, under the assumptions on p (cf. (@)), ay is bounded
with boundedness constant |lay|| = po for all ¢ € LP(Q), and by and by are bounded as well with
[ba]] = Iz = 1.

We summarise the previous discussion by stating from (M) and (M) the weak formulation of
the whole coupled problem (B) Find (o,¢) € H x Q and (u,p) € X5 x Mj such that

a(a’,7’)—|—b(7’,<p)+/<pu-7’ = 0 VreH,
Q
Mow) = - [ fo vvea,
a (2.31)
ag(u,v) + bi(v,p) = /f-v Vv e Xy,
Q
ba(u,q) = 0 Vqe M.

2.3 The fixed point strategy

In this section we follow similar approaches developed in, e.g., [[7, 22, 86, B7], and make use of the
variational formulations (R.24)) and (R.29) to introduce a fixed-point strategy addressing the solvability
of () Indeed, we first let T : LP(Q) — X2 x M; be the operator defined for each ¢ € LP(€) as
T(y) = (%),Tg(w» := (u,p), where (u,p) € X2 x M is the unique solution (to be confirmed

below) of (R.29) with 1 instead of ¢, that is
ap(Q,v) + bi(v,p) = /Qf-v Vv e X, (2.32)
bo(u,q) = 0 Vge M.

In turn, we let 7 : L"(Q) — H x Q be the operator defined for each w € L7(Q) as T(w) =

(T (w), To(w)) := (&,3), where (&,3) € H x Q is the unique solution (to be confirmed below as
well) of (R.24) with w instead of u, that is

a(o, ) + b(T,9) +/§5W-’r =0 VT eH,
9 (2.33)
Wew) = —n [ fo Veeq.



Thus, defining the composite operator T': Xo — Xo as

T(w) == T1(Ta(w)) Vwe Xy, (2.34)
we notice that solving () is equivalent to seeking a fixed point of T', that is u € X5 such that
T(u) = u. (2.35)

We end this section by remarking that the above setting certainly requires that both operators T
and T be well defined, that is that the uncoupled problems () and (@) be well-posed, which is
precisely the main goal of the following section.

2.4 Well-posedness of the uncoupled problems
2.4.1 Preliminary abstract results

In this section we recall two abstract results that will be applied in what follows. The first one is the
classical Babuska-Brezzi theorem, but in Banach spaces.

Theorem 2.4 Let Hi, Ho, Q1, and Qo be real reflexive Banach spaces, and let a : Ho x Hi — R
and b; - H; x Q; — R, i € {1,2}, be bounded bilinear forms with boundedness constants given by ||al|
and ||bi||, i € {1,2}, respectively. In addition, for each i € {1,2}, let K; be the kernel of the operator
induced by b;, that is

Ki = {veHiz bi(v,q) =0 VqGQi}.

Assume that

i) there exists a > 0 such that

a(w,v
sup (w, v) > a||lw|| g, Vwe Ky,
vEKy [v]l a,
v#£0

ii) there holds

sup a(w,v) > 0 Yoey, v#£0,
weko

iii) for each i € {1,2} there exists 3; > 0 such that

bi v
sup H(H LN > Billallg;, VqgeQi.

veH;

v;éO

Then, for each (F,G) € H| x QY there exists a unique (u,p) € Hy X Q1 such that
a(u,v) +bi(v,p) = F(v) VveH,

(2.36)
ba(u,q) = Glg) VqgeQq,
and the following a priori estimates hold:
1 a

s < = 1Pl ﬁ (1+ 1) 1clay.

(2.37)
< F ”a” 1 M' G
IpllQ, < 1E | + Gl

Moreover, 1), ii), and iii) are also necessary conditions for the well-posedness of ()
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Proof. See [8, Theorem 2.1, Corollary 2.1, Section 2.1] for details. In turn, for the particular case
given by Hy; = Ha, Q1 = Q2, and by = by, we also refer to [32, Theorem 2.34]. O

We stress here that, instead of the pair of assumptions given by i) and ii), one could consider the
equivalent one arising after exchanging there the roles of K; and ICa (cf. [§, egs. (2.10) and (2.11)]).
Furthermore, it is important to remark that ( is equivalent to an inf-sup condition for the bilinear
form arising after adding the left hand sides of (), which means that there exists a constant C' > 0,
depending only on «, 51, B2, and ||a||, such that

sp A ENOGDIEDD - G p)yg, V(up) € Hax @i (239)

(v,9)€EH1 XQ32 H(v’q)||H1><Q2
(v,q)#0

The second result is given by the Banach-Necas-Babuska Theorem (also know as the generalised
Lax-Milgram Lemma), which is stated as follows.

Theorem 2.5 Let H and QQ be Banach spaces such that Q is reflexive, and let A: H X Q — R be a
bounded bilinear form. Assume that

i) there exists o > 0 such that

A
supMEQHwHH Vwe H,
veq |lvllQ
v#£0

ii) there holds
sup A(w,v) > 0 VoeQ, v#0.
weH
Then, for each F € Q' there exists a unique uw € H such that
A(u,v) = F(v) VveQ, (2.39)
and the following a priori estimate holds
Julln < IFler (2.40)
Moreover, i) and ii) are also necessary conditions for the well-posedness of ()
Proof. See [32, Theorems 2.6] O

2.4.2 Well-definedness of the operator T

In order to prove that the operator T is well-defined, we plan to employ some of the preliminary results
provided in Section @, and then apply Theorem @ To this end, we first let K;, i € {1,2}, be the
kernel of the bilinear form b; (cf. ()), that is

K= {VEX,-: bi(v,q) = 0 VqEMZ},
which, according to the definitions of X7 (cf. ()), Xo (cf. ()), and b; (cf. ()), yields
Ky = {v € H3(divy; Q) :  div(v) =0 in Q} (2.41a)
Ky = {w € Hi(div,; Q) :  div(w) =0 in Q} (2.41b)

Then, we have the following continuous inf-sup conditions.

11



Lemma 2.6 There exists a > 0 such that for each v € LP(Q) there hold

sup V) S Gk, Vw € Ko, (2.42a)
very |[VIIx,
v#0

and
sup ay(w,v) > 0 Vvek;, v#0. (2.42D)
wekKo

Proof. Given ¢ € LP(Q)), we first consider w € Iy (cf. ()), w # 0. Then, recalling that s is
the conjugate exponent of r, we let w, := Js(w) € L*(Q) as defined in (R.7) and Lemma P.2, which
satisfies

/W'Ws = [[wllom [Wsllo,s6 -
Q

Thus, applying the lower bound for u (cf. (@)) and Lemma @, we find that

‘aw(w,Ds(ws))‘ > 1 /QW'DS(WS) = M1 /QW'WS = M1 ||WH0,T;Q HWsHo,s;Q,

and hence, using that Ds(ws) € Ky (cf. Lemma @ and ()), we deduce that

sp aw(W,V) - ‘aw(W,Ds(WS))‘ _ ‘aw(W,Ds(Ws))‘ > M1 HWHO g = L”WHX

> = = sl — ’
wry M = D) T IDwlosa 1D 1]
v

which proves () with a = m. In turn, we now take v € Kléﬁ ()), v # 0, and let
.3,

v, = Jp(v) € L"(Q2). In this way, employing again (), Lemmas and R.3, and the fact that
D, (v;) € K (cf. ()), we obtain

Sup ay(w,v) > i / D,(v,)-v = / vo-v = m |Vl > 0,
wekKso Q Q

which shows () and finishes the proof of the lemma. O

We now establish the continuous inf-sup conditions for the bilinear forms b;, i € {1,2}.

Lemma 2.7 There exist Bl, Eg > 0 such that for each i € {1,2} there holds

bi<v7 Q)

vex, [[Vllx,

v#0

> Billala, Vg€ M. (2.43)

Proof. 1t suffices to prove for i = 1, since the proof for i = 2 follows verbatim by exchanging the roles
of r and s. We begin by stressing that (@) and Lemma @ are certainly valid for the corresponding
scalar version of the operator [J;, t € (1, 400), which we use next. In fact, given ¢ € M; = L{(£2), we
first set g5 := J,(q) € L¥(Q) and ¢ := q5 — ﬁ Jo s € L§(€2), and then let u € WI’S(Q) be the unique
solution of problem (@) with g = ¢°, g = 0, and gy = 0, that is:

S

Au=¢"> in Q, Vu-vr=0 on T, /u:(). (2.44)
Q

Then, the continuous dependence result for () (cf. (@)) implies the existence of a constant
Cs > 0 such that ||u|;s0 < Cs 1¢% 0,5:0- In turn, there also exists a constant Cy > 0 such that

12



190,50 < Cs llgsllo.s:o. Next, defining v := — Vu € L¥(Q), we have that div(v) = —¢® in Q and
v-v=0onT, whence v € X; (cf. (@)) and
Vlix, = [¥lsaivee < (1+Co) lallose < (1+Co)Cs lgslloso -

In this way, using that fQ qqd = fQ q qs, it follows that

_ /QQS ~
bi(v,q) - b1(v,q) _ Jo _ llgllo,rs l1gslo,s:0 > ((1+CS)CS)_1 lgllorq

vex, [VIx, = IVlxe Vi 1vlx,
v#0

which proves () for i = 1 with 8; = (1+ Cs)@)*l. As stated at the beginning of this proof, the
inf-sup condition for by is proved by taking now ¢ € My = L§(Q), setting ¢, := Js(¢) € L"(Q2) and
@ = q — ﬁ Jo @ € Lj(R2), and then letting u € WH"(Q) be the unique solution of problem ()
with g = ¢°, g = 0, and gy = 0. We omit further details. O

Next, we let F € X| be the functional given by the right hand side of the first equation of (),

that is F(v) := / f-v Vv e X, which satisfies |[F||x; < ||f[jor0. Then, we have the following
Q

result establishing that the operator T' (cf. (2.32)) is well defined.

Theorem 2.8 For each 1) € LP(Q) there exists a unique (W,p) = T(¥) € Xo x My solution to ()
Moreover, there hold

171 () ||x, = [T,

IN

1

= [fllo  and

a

(2.45)

~ ~ 1 2
1)l = 1810 < = (1+22) IElloe-
B «

Proof. Thanks to Lemmas @ and @, and bearing in mind that the bilinear forms a,, for each
P € LP(Q), by, and by are all bounded, as well as that X7, X9, M7, and M, are all reflexive Banach
spaces, the proof reduces simply to a straightforward application of Theorem P.4. In particular, the a
priori estimates provided by (%) follow from (), the upper bound for ||F'[| x; indicated previously
and the fact that the right hand side of the second row of (@) is the null functional. (]

2.4.3 Well-definedness of the operator T

In this section we use a suitable combination of Theorems @ and @ to prove that the operator T is
well-defined. More precisely, we first apply Theorem to a perturbation of (), and then employ
Theorem to conclude that the whole problem ( ) is well-posed. To this end, we begin by letting
V be the null space of the operator induced by the bilinear form b, that is

V= {TEH: b(r,) =0 Vi eQ},
which, according to the definitions of b (cf. ()) and the spaces H and Q (cf. ()), yields
Vo= {r € H(divy; Q) :  div(r) = 0}.

Then, it is straightforward to see from the definitions of a (cf. ()) and the norm of H(div,; )

(cf. ()) that there holds

G(T,T) = ||T”(21iVQ;Q VT e Va (246)
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from which one easily deduces that a satisfies the assumptions i) and ii) of Theorem @, the first one
with constant a = 1.

Furthermore, we prove now that the bilinear form b satisfies the assumption iii) of Theorem @
Indeed, while the corresponding proof is basically already available in the literature (see, e.g. [16,
Lemma 3.4], [17, Lemma 2.1], and [36, Lemma 3.5]), we provide it anyway next for sake of completeness
of the presentation.

Lemma 2.9 There exists B > 0, depending only on €, such that

b —~
T s Bl vwea. (2.47)
7o 1M

Proof. We begin by using again the scalar version of the operator J;, t € (1,400), for which (@)
and Lemma @ are valid as well. In fact, given ¢ € Q := LP(Q), we set 1, := J,(¢) € L2(2), which
satisfies

/QU”/)Q = [[Yllo,p:2 |Y0ll0,0:02 - (2.48)

Then, we consider the boundary value problem

—Aw =1, in Q, w=0 on T, (2.49)

whose variational formulation, which follows from () applied to Vw € H(div,; Q) and z € H}(Q),
becomes: Find w € H{(2) such that

/Vw~Vz = /wgz Vze H(9). (2.50)
Q Q

We remark that, thanks to Hélder’s inequality and the continuous injection i, : H'(2) — L°(€2), the
right hand side of () defines a functional in H}(€2)". Consequently, a straightforward application
of the classical Lax-Milgram Lemma implies the existence of a unique solution w € H}(2) to ()
(equivalently to ()) Moreover, it follows from () that

lwle < ep llipll [¥ello. s (2.51)

where cp is the positive constant, depending only on (2, that establishes that ||v|1.0 < cp|v|1q for
all v € H}(Q), also known as the Poincaré inequality. Then, defining 7 := —Vw € L?(f2), we notice
that div(7T) =1, in , which says that actually 7 € H(div,; Q) (cf. ()), and then, using (),

we get

IFllaivee = [Tlloq + Idiv(T)lloee = [whe+ [Yeloee < (1+cpllill)IYelo.ea- (2.52)

In this way, employing now (), we find that

brv) _ bFEY) L2 1ol Islogn

sup > = = - (2.53)
ren [TllH T ITlaiveae (1T laivee 17 llaivp:0
T#0
which, together with (), yields () with 3 := (1+cp Hz'p||)_1.
(]
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We now let A : (H X Q) X (H X Q) — R be the bounded bilinear form arising from () after
adding the left hand sides of the equations, but without including the term depending on the given
w, that is

A((C,(b),(T,w)) = CL(C,T) —+ b<7—7¢) + b(Cﬂb) (2'54)

for all (¢,¢), (7,v¢) € HxQ. Note that the boundedness of A follows from those of a and b (c))
Then, denoting by A € E(H x Q, (H x Q) ) the operator induced by A, and knowing from () and
Lemma that a and b satisfy the hypotheses of Theorem @ with H1 = Hy = H, Q1 = Q2 = Q, and
b1 = by = b, we conclude from a straightforward application of this abstract result that A is bijective.
Moreover, it follows from () that A satisfies a global inf-sup condition on H x Q, which means that
there exists a positive constant as, depending only on @, B, and ||al|, such that

A((C0). (1,9)
T x V(¢ HxQ. 9.55
(?S%EXOQ [T, ¥)laxq  — az [|(¢, 9)l[uxq (¢, ¢) € Hx Q (2.55)

Next, we let Ay : (H X Q) X (H X Q) — R be the bounded bilinear form that results after adding the
full left hand sides of the equations of (), that is

Aw((€,0), (7 8)) = A((C0), (r,0 / pw T (2.56)

for all (¢, ¢), (r.v) € H x Q. We remark that the boundedness of Ay follows from that of A and
the estimate (R.17). Furthermore, the formulation () can be rewritten, equivalently, as: Find
(6,9) € H x Q such that

Aw((@,9), (T,9)) = G((T,v)) V(r,y) e HxQ, (2.57)

where G € (H x Q)’ is defined as
G((r,v)) = —/{/f?/) V(T,9) e Hx Q. (2.58)

Then, it follows from (l‘m), (m), and (m) that

A((€0)(T8) _ .
s SRR 2 ap (6o ia — Bélloge W lora
(T)#0

= {O‘T - ||W”0,1’;Q} 1(¢;P)luxq V(¢ ¢) € HxQ,

a/\
and hence, assuming that ||w|jg,.q < —L, we arrive at
) ,T 2 )

AW((C7¢)7(77¢)) > s
Y ) X v (C, H . 2 59
o 9l ~ 2 (¢ @)lnxa  V(¢.0) € HxQ (259)

Analogously, noting that A is symmetric, and employing again (553) and (Elﬂ), we find that

Aw((C.0). (1) _
coenxa (€ 0)Hxq = a7 (7, ¥) luxq I llo. lwllo,ro
(¢,8)#0

> Loz~ [wlore} I ¥)lixe ¥(rv) € HxQ,
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from which, under the same assumption ||w||g.0 < Tf’ we obtain
AW (C7¢)7 (Taw) az
Sup ( ) > L (r,¥)luxq  V(T,¢) € Hx Q. (2.60)
coenxq (€ D)llnxq 2
(¢,9)#0

Thanks to the foregoing analysis, we are in position to establish next that the operator T (cf. ())
is well-defined.

an .
Theorem 2.10 For eachw € L"(2) such that ||w|or0 < 7T, there exists a unique (&,p) = T(w) €

H x Q solution to () (equivalently ()) Moreover, there holds

2
000 S — || HfH(lQ;Q ‘ (2.61)
Qarp

IT(W)llaxq = [[Fllaive:0 + I

Proof. Tt is clear from (M) and (M) that A, satisfies the hypotheses i) and ii) of Theorem @,

o=
the first one with o = 7T Hence, bearing in mind that Q := L*(Q) is a reflexive Banach space, the

proof reduces to a straightforward application of the aforementioned result. In particular, the a priori
estimate () follows from () and the fact that, according to () and Hoélder’s inequality, there
holds |G| < [~ [|.f[lo,e:0- O

2.5 Solvability analysis

Knowing that the operators T , f, and hence T as well, are well defined, in this section we address the
solvability of the fixed point equation () To this end, in what follows we verify the hypotheses
of the respective Banach Theorem. We begin the analysis by establishing a sufficient condition under
which T" maps a closed ball of X5 into itself. Indeed, from now on we let

O

S = {WGXQ: Iwllx, < 7T} (2.62)

Then we have the following result.

Lemma 2.11 Assume that
aos
llore = —— (2.63)

Then T(S) C S.

Proof. Given w € S, we know from Theorem that T (w) is well defined. Then, using the a priori
estimate for 77 (cf. ()) we have that

IT)lx, = I (F W)l < = 6

‘O,T‘;Q )

which, according to the assumption (), yields T'(w) € S and ends the proof. O

Next, we aim to prove the continuity of 7', which will follow from similar properties for the operators
T and T'. We begin with the corresponding result for 7T'.

Lemma 2.12 There exists a positive constant Lz, depending only on oz, such that

IT(w) = T(2)lluxq < Lg 5| | flogo W —zlore  Yw,z€S. (2.64)
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Proof. Given w, z € S, we let T(w) := (5,3) € Hx Q and T(2) := (&,%) € H x Q, which satisfy
( ) with w itself and with w = z, respectively. Then, subtracting the corresponding first and
second equations of these systems, we obtain

W6 —&,7) + b(r,P— @) — /Q

(cﬁz—(ﬁw)-f VreH,

and
which, together with the definitions of A (cf. (£.54)) and Ay (cf. (R.56)), yield
A(5.9) - (6.), (r.0)) = /Q (pz—Gw) T

and

= /Qgp(z—w)-r V(r,¥) e HxQ.

In this way, applying the global inf-sup condition () to (¢, ¢) = (o,9) — (F,¢), and then em-
ploying the foregoing identity and the Cauchy-Schwarz and Holder inequalities, the latter with ¢ and
j conjugate to each other so that p = 2¢ and r = 2j, we find that

o Aw((8,9) — (6,9), (1,9))

L |[(7,2) — (6,)|luxq < sup — A

3 16:8) - (@@l < sw 107, 9)llixq
(T,9)#0

Aw@—wff

= sup < [1@llo.pe W = 2llor0
wwenxa (T ¥)][ExQ ’ '
(T)#0
from which, using the bound for ||@[ .0 = ||T\2(Z)H0,p;g provided by (), we arrive at () with
Lz = . O

T =

ﬂ%\" -

On the other hand, in order to establish a continuity property for T, we need further regularity
assumptions on the solutions of the problems defining the operators 7" and T. More precisely, from
now on we suppose that there exists ¢ > % and constants C¢, C; > 0, such that

(RA;) for each w € S there holds T(w) := (Ti(w), To(w)) € (H(Q) NH) x W*(Q), and

1T (W)lle.0 + T2 (W)l < Ce |6l ([ fllo.00 (2.65)

(RA.) for each ¢ € WSP(Q) there holds T(¢) := (Ti(¢), Ta(8)) € (WS"(Q) N Xa) x (W' (Q) N M),
and

Hfl((ﬁ)ue,r;ﬂ + HTQ(@ €,m;8 < 55 HfHO,T;Q' (2-66)

The exact reason of the stipulated range for ¢ will be clarified along the subsequent analysis.
Furthermore, we recall that the embedding theorem between fractional Sobolev spaces (cf. [33, The-
orem 6, Section 5.6], [41, Theorem 1.4.5.2, part e)]) establishes that whenever re < n there holds
Wer () ¢ LE(Q), with continuous injection

nr

ic : WT(Q) = L (Q),  where &= (2.67)

n—re
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Note that re < n is compatible with € > % when p > 4 since in this case there holds p > r.

We are now in position of proving a continuity property for the first component Ty of T , which,
together with the estimate given by Lemma , will allow us later on to show that the fixed point
operator T is Lipschitz continuous.

Lemma 2.13 There erists a positive constant Lz, depending only on o, Ly, |ic|, C., 1Q|, n, e, and
p, such that B B
T2 (%) = Ti( @) xo < Lz lfllora v = dllope YV, o € WHP(Q). (2.68)

Proof. Given ¢, ¢ € W=P(Q), we proceed similarly to the proof of Lemma and let f(d)) =
(W,p) € Xy x My and T(¢) := (u,p) € Xy x M, which satisfy () with ¢ itself and with ¢ = ¢,
respectively. Then, from the corresponding second equations of these systems we have that both u
and 1, and hence u — u as well, belong to Ky. In this way, applying the inf-sup condition () to
the present ¥ and to w = 1 — @, we get
alli-alx, < sup 2B BY)

veky ||V||X1
v#0

(2.69)

where, according to the respective first equations and the definition of a, (cf. ()), we have
ap(u—1u,v) = / f-v—ay(a,v)=a4(0,v)—ay(a,v)

@ (2.70)

= [{uo-uwlav vver.

Then, employing the Lipschitz-continuity of u (cf. (@)), and applying Holder’s inequality, first with
(rf sg, and then with an arbitrary pair of conjugates to each other denoted by (¢, j), we obtain from

(.70)

jay(@—a,v)| < Lu/Q [ =gl [all vl < Ly ¥ = dllog0 ltlloree [[v]ose, (2.71)

which, replaced back into (), gives
Gl —tlx, < Lyl — Bllossia [Glores. (2.72)
Next, choosing ¢ such that r¢ = ¢* (cf. ()), we get ¢ = =, which yields rj = % = 7, and

hence, recalling that u = T1(¢), it follows from the foregoing inequality, the boundedness of i, (cf.
()), and the regularity estimate (), that

ala—alx, < Lyl = dllonea ITi(@)loeme < Ly licll 1 = llomea IT1(4)

< Lyl Ce [[Ellor 1Y = dllon/sa -

Finally, in order to bound [[t) — @||g5/e;0 in terms of [[1) — ¢[o p, it suffices to require that % < p,
that is e > %, which is precisely our assumption on € for (RA;) and (RA3). Thus, a simple algebraic
computation shows that |9 — ¢[lg5/e;0 < ]Qﬁ?izn 1Y — él|o,p:2, which, together with (), leads to

ep—n

the required inequality () with Lz := a1 L, ||ic|| C.|Q| o . O

e,r;82

(2.73)

We stress here that, while it is not necessary for the rest of our analysis, it is also possible to prove
the Lipschitz-continuity of T5. To this end, it suffices to apply the inf-sup condition for by (cf. ()),
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the first equation of the problem defining 7' (cf. ()), and Lemma . It is also important to
remark here that if the viscosity is constant, then the regularity assumptions specified above are not
required anymore since the expression that yields (), namely ay(a — @, v) (cf. ()), actually
vanishes in this case. In other words, the Darcy and heat equations are not coupled, and hence they can
be solved sequentially. However, if we keep a constant viscosity and, say for instance, the source term
of the Darcy equations is supposed to depend on the temperature, then the model becomes coupled
again, but still no extra regularity is needed either in this other case for the respective analysis.

Having proved Lemmas and , we are able to establish now the Lipschitz-continuity of our
fixed point operator 7" in the closed ball S of X5 (cf. ())

Lemma 2.14 There exists a positive constant L, depending only on Lz and Lz, such that

IT(w) =T (2)llx, < Lrlfllorelalfllogollw—2zlx, Vw,zes. (2.74)

Proof. Given w, z € S, we first observe, thanks to the regularity of T (cf. (RA}1)), that fg(w)
and Ty(z) belong to W=#(€). Then, according to the definition of T (cf. (2.34)), and employing the
Lipschitz-continuity of T} (cf. Lemma ) and T (cf. Lemma ), we deduce that

IT(w) = T(@)|x, = |Ti(To(w)) — T1 (T2(2)) | x.

LT ”fHO,r;Q HT\2(W) — T\Q(z)

IN

0,p;92

N

> LT ||f”0,r;§2 Lf || HfHO,Q;Q [w — Z”O,T;Q )

which yields (2.74) with Ly := Lz L. 0

Consequently, the main result of this section is stated as follows.

Theorem 2.15 Assume (RA7), (RA3), and that the data satisfy

[6xe 7%=

[Elloro < =+ and L lf]orolsl|lf

Then, our coupled problem () has a unique solution (o,p) € Hx Q and (u,p) € Xo x My with
u € SN Xy. Moreover, there hold

0,000 < 1. (2.75)

2 1
e, o)llnxq = ——&lllflloge,  llullx, = = [flone,
T

L (2.76)
and |pl, < = (1+2) |€or0.
S)1 «

Proof. We begin by recalling from Lemma that the first assumption in ( M) guarantees that T’
maps S into itself. Hence, in virtue of the equivalence between (@I) and (2.39), and bearing in mind
the Lipschitz-continuity of 7' (cf. Lemma @) and the second hypothesis in (R.75), a straightforward
application of the Banach fixed point Theorem implies the existence of a unique solution of ()
with u € S. In addition, the fact that (u,p) = T(p) and (o,¢) = T(u), together with the a priori
estimates provided by () and (), yield (@) and conclude the proof. O
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3 The Galerkin scheme

In order to approximate the solution of our fully-mixed variational formulation (), we now proceed
to introduce and analyse an associated Galerkin scheme. Analogue tools and techniques to those used
in Section P will be employed here. We begin by considering arbitrary finite element subspaces Hp C H,
Qn € Q, Xop C Xo, My € M, X1 C Xy, and My C My, whose specific choices satisfying all
the required stability conditions will be introduced later on in Section @ Then, the Galerkin scheme
associated with (@) reads: Find (o, ¢p) € Hy, x Qp and (up,pp) € Xop x My, such that

a(oh, Th) + b(Th, pn) + /Q‘Phuh""h =0 VT, € Hy,
blon,vn) = —/‘i/ fin Y €Qp,
Q (3.1)
g, (Up, Vi) + b1(Vh,pn) = /f'Vh Vvy € X1,
Q
ba(up,qn) = 0 Van € Moy, .

3.1 The discrete fixed point strategy

Here we adopt_the discrete analogue of the continuous approach applied in Section @ to analyse the
solvability of (@) Thus, we now let T}, : Qp — Xap, X My j, be the operator defined for each 1)y, € Q4

as Tp(Yn) = (fl,h(wh)yTZh(wh)) := (A, pn), where (Up,pp) € Xop X My is the unique solution (to
be confirmed below) of the last two equations of (B.1]) with 1)y, instead of ¢y, that is

ay, (Wn,vp) + b1(vh,pn) = / f-vip  Vvye Xy,
Q
be(Up,qn) = 0 Van € My, -

(3.2)

In addition, we also let T\h : X9, — Hp x Qp be the operator defined for each wy, € Xy 3, as T\h(wh) =

~

(ﬁ,h(wh),@,h(wh)) := (&, Pn), where (6,.9) € Hy x Qp is the unique solution (to be confirmed
below as well) of the first two equations of (,ﬁ) with wy, instead of uy, that is

a(Oh, Th) + b(Th, ) + /@hwh'Th =0 V1, € Hy,
Q (3.3)
b(on,n) = —/”v/Qfﬂ}h Yy € Qs

In this way, we now introduce the operator 1}, : X9, — Xap, as
Th(Wh) = Tl,h (Tg’h(wh)) VWh c X27h, (3.4)
and realise that solving (@) is equivalent to seeking a fixed point of 7}, that is u;, € X5, such that

Th(up) = uy. (3.5)

3.2 Well-posedness of the operators Th and fh

In this section we apply the discrete versions of Theorems @ and @ to prove that problems (@)
and (@) are well-posed, equivalently that the discrete operators T}, and T}, are well-defined. To this
end, we need to introduce certain hypotheses concerning the arbitrary spaces Hy, Qn, Xon, Moy,
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Xi,n, and My p,, and the discrete kernels associated with the bilinear forms by, b2, and b, respectively,
that is

ICl,h = {Vh S Xl,h : bl(vh,qh) =0 th S Ml,h} s (36&)
Kop = {Wh €Xop: ba(Whgn) =0 Vgue MQ,h} , (3.6b)
Vy = {Th e Hy, : b(Th,’lﬁh) =0 Vi/)h S Qh} . (3.6C)

Specific finite element subspaces satisfying the conditions to be described in what follows will be
defined later on in Section ¢.2. More precisely, from now on we assume the following:

(H.1) there exists a constant aq > 0, independent of h, such that for each ¢, € Q) there hold

a Wp.,.V ~
sup L VBVE) o G Ywa € Ko,
Vh,EKl,h ”VhHXl
vy #0

and

sup awh(wh,vh) >0 Vv, €Kip, vih, #0,
Whe’CQJL

(H.2) there exist constants Elﬂd, 52,01 > 0, independent of h, such that for each i € {1,2} there holds

bi(Vh, qn ~
sup bi(vh, 4n) > Biallanl m; Van € M;p,
VhEXi,h thHXz
Vh750

(H.3) there holds div(Hy) C Qp,

(H.4) there exists Ed > 0, independent of h, such that

b Th ¢h >
sup AT0U) S B nla Ve € Qu
men,  ||ThllE
T}ﬁéo

Then, as a straightforward consequence of (H.1) and (H.2), we can establish the following result.

Theorem 3.1 For each vy € Qp, there exists a unique (Up,pp) = f(@/}h) € Xop X My, solution to
(@) Moreover, there hold

- ~ 1
1710 (0n)llxy = [[Uallx, < gdllf|!0,r;ﬂ and

(3.7)

~ _ 1 12
Hﬂmwmzmwms~@+~wwmw
B1,a Qq

Proof. Thanks to (H.1) and (H.2), the proof reduces to a straightforward application of the discrete
version of Theorem (see, e.g. [8, Corollary 2.2]). In particular, the a priori estimates in (B.1)
follow from the discrete analogue of () (see, e.g. [R.egs. (2.24), (2.25)]), the upper bound for
||| x; provided right before the statement of Theorem @, and the fact that the right hand side of
the second row of %@) is the null functional. O
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Next, according to (H.3), it readily follows from () that
Vy, = {Th € Hy: div(ry) = 0},
which yields the discrete analogue of (), that is
a(thTh) = |Tuldiv,e  Y7Th € Vi,

and hence the assumptions i) and ii) of the discrete version of Theorem @ (see, e.g. [B, egs. (2.19),
(2.20)]) are satisfied, the first of them with the constant ag = 1. In this way, this fact together with
(H.4) guarantee the global inf-sup condition for A (cf. (@d)) when restricted to Hy, x Qp,, equivalently
the discrete analogue of (), which means the existence of a positive constant aﬁ 4> depending only

on Qg, B4, and ||a|, such that

A((Cha d)h)v (Tha zﬂh))

(T ) €EHE XQp, ||(7'h,7/}h)||H><Q
(Th,¥n)#0

Moreover, proceeding analogously to the analysis developed after () in Section , we find that

Q@
Td , there holds

> ag g (G dn)llaxq Y (Chidn) € Hpx Q. (3.8)

for each wy, € Xy, such that ||[wp|o0 <

A (RN CALD)

(Th ) €HE XQp, ”(Thﬂ/}h)HHxQ
(Th,¥n)#0

AT 4
= = lChdn)llnxq Y (Chidn) € Hnx Qu. (3.9)

In this way, we conclude that the operator 7}, (cf. (@)) is well-defined.

AT 4

Theorem 3.2 For each wj, € Xy such that |[wpllor0 < , there exists a unique (G, Pp) =

\]

fh(wh) € Hy, x Qy, solution to (@), equivalently
Av, (@ h: 1), (Thytn)) = G((Thyvn)) YV (Th,¥n) € Hy X Qp.

Moreover, there holds

. R R 9
1Th(wWn)llExQ = [[Fhlldiv,: + [[@nllopa < F|”| fll0,0:62 - (3.10)
T4

Proof. Similarly to the proof of Theorem , it follows from the fact that Ay, satisfies the hypotheses

of the discrete version of Theorem (see, e.g. [32, Theorem 2.22]). Indeed, the latter reduces
equivalently to fulfil only the corresponding inf-sup condition i), which is precisely (B.9) in this case.
We omit further details. O

3.3 Discrete solvability analysis

Having established that the discrete operators th, T\h, and hence T}, are all well defined, we now
address the solvability of the corresponding fixed point equation (B.5). For this purpose, we first let

a4
Sh = {Wh S X27h : ||Wh”X2 < 5 }, (3.11)

and provide a sufficient condition under which 7} maps S}, into itself. More precisely, we have the
following result.
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Lemma 3.3 Assume that

Q4 Oéf7d

2

[fllo.r < (3.12)

Then Th(Sy) € Sh.

Proof. It proceeds analogously to the proof of Lemma , noting now from ()~ and Theorem @
that Tj,(wp,) is well defined for each wy, € Sj,, and using the a priori estimate for T3 5, (cf. (B.7)) and
the assumption () O

Next, we look at the continuity properties of T, n and Th, and hence at that of Tj,. In fact, we first
observe that, proceeding analogously to the proof of Lemma , but now using the discrete inf-sup
condition (@I)) and the a priori bound (), we find that

170 (wn) = Th(zn)llixaq < Lag 6l Fllogo [Wh = 2nlloro VWi, 24 € Sh, (3.13)

4 ~
——. In turn, for the continuity of 77 j; we basically follow the same reasoning of the

where L+
T aZ

7d_

proof of Lemma m, except that, not being the regularity assumptions (RA;) and (RAz) applicable
in the present context, we only employ the L™/ —L™ —L# argument from (R.71]), but with different values
for j and ¢, to estimate the discrete version of () More precisely, we apply the aforementioned
tool with j and ¢ conjugate to each other such that rj = p. As a consequence, given ¥y, ¢p € Qp,

and denoting T3, (vp) := (Up,pn) € Xop X My and fh(gbh) = (ay,pr) € Xop X My p, the discrete

analogue of ) becomes
aal[n —anllx, < Ly llvn — dnllope [Bnlloren
. . L, .
which, denoting Lz ; := —, yields
bl ad
1T (on) — Tun(on)lx, < L, T4 (dn) oo [¥h — Shllope Y ¥n, é1 € Qn. (3.14)

In this way, bearing in mind (|31Z4) and (|314l), it follows from the definition of T}, (cf. (@)) and the
fact that ||wy, — zpll0r0 < ||Wh — 21 x,, that

|Th(wn) — Th(zn)llx, < Lralsll[fllo.go |Th(za)lloreo lWwn — 2zrllx,  YWh, 2 € Spy (3.15)

with Lrg := Lz 4 Ly . We stress here that () proves continuity of T}, but, due to the lack of
control of the term ||T},(zx)0,re:0, it does not necessarily yield neither Lipschitz-continuity and hence
nor contractivity of this operator. As a consequence, we are only able to conclude existence but not

necessarily uniqueness of a fixed point of T},.

According to the above, the main result of this section is established as follows.

Qg g g ,
Theorem 3.4 Assume that ||f|o,.0 < 5 =. Then, the Galerkin scheme (@) has at least one

solution (on, pp) € Hy x Qp and (up,py) € Xop x My, with uy, € Sy. Moreover, there hold

2 1
lon en)llaxq < —— &l floge,  lunllx, < = Iflloma,
AT a Qq
’ 1 (2 (3.16)
and ||ph||M1 < = <1 + ~) Hf 0,78 -
P14 Qq

)

23



Proof. We first notice from Lemma @ that the assumption on |[/f||o,.o guarantees that 7}, maps
Sy, into itself. Then, the aforementioned continuity of T}, the equivalence between (B.1)) and (@3),
and a straightforward application of the Brouwer Theorem (cf. [21, Theorem 9.9-2]) implies the
existence of at least one solution of (@) with uy, € Sp,. Finally, recalling that (up,pp) = th(goh) and
(oh,¢n) = Th(uy), and thanks to the a priori estimates (@) and (), we obtain (@) O

3.4 A priori error analysis

In this section we derive an a priori error estimate for the Galerkin scheme (@) with arbitrary
finite element subspaces satisfying the hypotheses introduced in Section B.2J. More precisely, we are
interested in establishing a Céa estimate for the error

o —onllu+lle = enllq + lu—unllx, + llp — pallar

where ((o,¢), (u,p)) € (Hx Q) x (X2 x M) is the unique solution of g) with u € S (cf. ()),
and ((Jh,goh), (uh,ph)) € (Hh X Qh) X (X2,h X Ml,h) is a solution of (B.1) with uy_€ Sy (cf. (B.11))
To this end, and in order to employ corresponding Strang estimates, we rewrite ) and () as
the pairs given by a continuous formulation and its associated discrete one, that is

alo, ) + b(T,¢) = FpulT) VreH,
o) = —m/fz/) Vo eQ,
(3.17)
(O'h,Th) + b(Th7 Sph) = gﬂh,uh ) VT}L S Hh7
b(on, ¥n) = —fi/fil)h Vn € Qn,
where
Fou(T) = —/ pu-T VreH, and F,, 4, (Th):= —/ ppup - T VTR € Hy,
Q Q
and
ap(u,v) + bi(v,p) = f-v Vv e X,
Q
bg(u,Q) =0 vquZ?
(3.18)
ag, (Up,vy) + bi(vh,pn) = Qf v Vv e Xy,
ba(up,qn) = 0 Van € Map .
In what follows, given a subspace Zj, of a generic Banach space (Z, | - ||z), we set for each z € Z

dist(z, Zp,) :== Zilelg |z — znllz -
h h

Then, applying the Strang a priori error estimate from [8, Proposition 2.1, Corollary 2.3, and
Theorem 2.3] (see also [22, Lemma 6.1]) to the context given by (@), we deduce that there exists a
positive constant Cs, depending only on &g = 1, (4, |la|| = 1, and ||b|| = ||, such that

lo = anllin+ lle = enll < Cs {dist(or, Hy) + dist(p, Qu) + [ Fps = Fopu i, - (3:19)
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Next, adding and subtracting ppu, applying the Cauchy-Schwarz and Hélder inequalities, similarly as
done in the last part of the proof of Lemma P.12, and then employing the a priori estimates for ||¢||q

(cf. (2.7d)) and |[uplx, (cf. (B.16)), we obtain

[{en—orm+omm-w}-,

Fou — F /= sup
H pu soh,uh”Hh ety ||7'h||H
Th7#0
< funllor lle = enllopa + llellope lu—unllore

1 2
< = |fllore lly = enllopa + — [l flloge lu—un
Qg (6%~

T

0,758 »

which, replaced back into (), yields

lo = anlli + e~ wnlla < Cs {dist(or, Hy) + dist(, Qn) }

és 26’5 (3.20)
+ = HfHOJ’;Q e — n 0,00 T —— || HfHO,@;Q [u— uhHO,T;Q ‘
(%] Oé,f

In turn, applying again the Strang a priori error estimate from [8, Proposition 2.1, Corollary 2.3, and
Theorem 2.3], but now to the context given by (), and performing some algebraic manipulations
in the consistency term determined by a, — a,,, we find that there exists a positive constant Cj,

depending only on &a, f1a, Bza; |l = lag, | = pz2, and [b1]| = [[b2]] = 1, such that

= willx, + o = pallr, < Cs {dist(w, Xa) + dist(p, Mip) + [ (@ — g, )(w, x| (3:21)

Then, proceeding as in the last part of the proof of Lemma (cf. ()), and using in particular
the regularity estimate (), we get

(1() — plen)) u-vy

l(a — ap,)(u, )lx;, = sup < Lsliflomn lle — enllopa,  (3:22)

vhexl’h ”VhHXl
Vh750

where Lg := L, il C. |Q\EZ%n In this way, replacing () back into (), we arrive at
Ju—wnllx, + lIp = pallas, < Cs {dist(u, Xo) + dist(p, M) }
_ (3.23)
+ CsLs|flloralle = enllopa-
0,r;0 in () by the right hand side of (), the former inequality becomes

lo = onlli + e = enll < Cs {dist(or, Hy) + dist(p, Q1) }

Thus, bounding ||lu—uy,

+ Crs {dist(u, Xp) + dist(p, My ) } (3.24)

+ {623 If]lome + Cas &l fllo,e0 ||f”0,7’;Q} llo — @nllo,p0 s

where

2C5C, - _¢C  20sGsE
U8 el 1 flloga, Cas = =2, and Oyg = 2257858

Cl,S = N N
OéT aq O(T

According to the previous analysis, we are now in a position to establish the announced Céa estimate.
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Theorem 3.5 In addition to the hypotheses of Theorems and @, assume that

62,8 || £ (3.25)

N |

lorsa + Cas el fllo.gnllfllore <

Then, there exists a constant C > 0, depending only on 6’3, Cs, Ls, ag, k], || f]
such that

0,0;25 and ||f||0ﬂ"§97
||0' — Uh”H + ||g0 — (,OhHQ + ||11 — uh”Xg + Hp _thMl
< C {dist(a, Hy) + dist(, Qn) + dist(u, Xop) + dist(p, Ml,h)} .

Proof. 1t suffices to employ the assumption () in (), and then combine the resulting estimate
with (B.23). O

4 Specific finite element subspaces

In this section we restrict ourselves to the 2D case and define specific finite element subspaces
H,CH, Q,CQ, XopCXo, My CMy, X1,CX1, and M, C M,

satisfying the abstract assumptions (H.1), (H.2), (H.3), and (H.4) that were introduced in Section
for the well-posedness of our Galerkin scheme.

4.1 Preliminaries

We first let {ﬁ}h>0
diameters hg, and define the meshsize h := max {h k: Ke Th}, which also serves as the index of
Th. Next, given an integer k > 0 and K € Tj, we let Pr(K) be the space of polynomials of degree < k
defined on K with vector version denoted by Py (K). In addition, we let RT(K) := Pp(K)®P(K)x
be the local Raviart-Thomas space of order k£ defined on K, where x stands for a generic vector in
R2. In turn, we let Py(74) and RTx(T,) be the corresponding global versions of Py(K) and RTy(K),
respectively, that is

be a regular family of triangulations of 2, which are made of triangles K of

Pu(Th) = {an € LX) ¢ anlx € Pu(K) VK € Thf.

and
RT. () := {rh cH(div:Q): 7alx € RTH(K) VK € Th}.

H!(div; Q) (cf. ()), for all ¢ € [1,+o00], which is i;nplicitly employed below in Section to
define our specific finite element subspaces. Before doing that, in what follows we provide some useful
properties concerning Py (7p,) and RTy(7,). To this end, we now introduce for each t € (1,+00) the

space

Note that there also hold P(7,) C L{(Q), RTk(7n) € H(divs; Q) (cf. ()), and RTk(@ -

H, — {T € H'(div; Q) UH(divi; Q) 7l € WH(K) VK € n} :

and let H’fL : Hy — RT(7;) be the global Raviart-Thomas interpolation operator (cf. [[12, Section
2.5], [35, Section 3.4]). Then, we recall from [12, Proposition 2.5.2 and eq. (2.5.27)] (see also [35,
Lemma 3.7]) the commuting diagram property

div(Ilf(r)) = Pr(div(r)) V7 eH,, (4.1)
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where PF : L1(Q) — Px(7p,) is the usual orthogonal projector with respect to the L2()-inner product,
that is, given w € L*(2), Pk (w) is the unique element in Py(7) satisfying

/Qp}lf(w)% = /quh Van € Pr(Th) .

Similarly, letting I'y, be the set of edges e C T' that are induced by 7, and denoting by P (T';,) the
subspace of L?(I") given by the piecewise polynomials of degree < k on each e € I'j,, the following
property also holds (cf. [12, eq. (2.5.10) in Example 2.5.3|, [35, eq. (3.36) in Lemma 3.18))

I (r)-v = Qf(r-v) on T VT eHy, (4.2)

where QF : L1(TI') — P(I'),) is the orthogonal projector with respect to the L2(T')-inner product. On
the other hand, employing the W™ version of the Deny-Lions Lemma (cf. [32, Lemma B.67]) with
integer m > 0 and ¢t € (1,400), the associated scaling estimates (cf. [32, Lemma 1.101]), and the
regularity of {’7}}}»0, we deduce the existence of constants C7, Cy > 0, independent of h, such that
for integers ¢ and m satisfying 0 < £ < k+ 1 and 0 < m < £, there hold

lw — PF(w)|mra < CrA ™™ wlpro Yw e WH(Q), (4.3a)
and
|div(T) — div(IIE (7)) o < CLA ™ |div(T) | V7 € WH(Q) with div(T) € WH(Q),  (4.3b)
whereas for integers ¢ and m satisfying 1 </ < k+ 1 and 0 < m < £, there holds
|7 =T (7)o < Coh' ™™ |7l V7T € WH(Q). (4.3¢c)

In particular, note that () actually follows from (@) and a straightforward application of ()
to w = div(7). In addition, we remark that () is first derived for 1 < ¢ < k + 1, and then using
only the scaling estimates one proves the stability of P,lf:, that is the existence of a constant ¢ > 0,
independent of h, such that

IPr)llose < clwlose  YweLY(9Q). (4.4)

In turn, employing the triangle inequality and () with £ = 1 and m = 0, we readily deduce the
existence of a constant C' > 0, independent of h, such that

I (Dlose < Clitlhee VT eWH(Q). (4.5)

Furthermore, taking in particular (m,t) = (0,2) in () and m = 0 in (), we readily find that
there exists a constant C'5 > 0, independent of h, such that for 1 < ¢ < k + 1 there holds

I = T ()l < Cshf{Irleq + 1div(T)leua } (4.6)

for all 7 € HY(Q) with div(7) € W5(Q). In turn, taking now m = 0 in () and (), we deduce
the existence of a constant Cy > 0, independent of A, such that for 1 < ¢ < k + 1 there holds

7~ () oo < Gk [l + [div(r)esn) (4.7)
for all 7 € W54(Q) with div(T) € W5(Q).
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4.2 The finite element subspaces

Our specific finite element subspaces are defined as

Hy, = H(div,; Q) NRT4(T) = {rh € H(divy; Q) :  7hlx € RTH(K) VK € n}, (4.8)
Qu = L@ NPu(Th) = {Un €17(Q): nli € Ph(K) VK €Ty}, (4.8b)

Xop = Xo NRTR(Th) = {wh € Hi(div,; Q) :  whlx € RTy(K) VK € n} (4.8¢)
My = TH(Q) N Pu(T) = {an € L§(©@):  anlic € Py(K) VK €Tr}, (4.84)

X14 = X1 NRTL(T;) = {vh € H3(divy; Q) :  valx € RTW(K) VK € Th}, (4.8¢)
My = L) NPy(Th) = {an € L5(@):  anlx € P(K) VE € Ti}. (4.81)

Regarding the above definitions, we first observe that div(Hy) C Qp, which confirms the verification of
the hypothesis (H.3). In turn, while the pairs (Hp, Qp), (X2.4, Ma ) and (X1 5, M p,) are topologically
different, we stress that they do coincide algebraically. This fact implies that the stiffness matrices
associated to the bilinear forms b, b, and by are exactly the same, except for the constant factor
 of b, and that those of a and a, differ only by the factor u(¢). The above, being certainly very
relevant from the computational point of view, constitutes another advantage of having used a mixed
formulation in the heat equation as well.

Furthermore, it is also clear that diV(Xi’h) C M;y for all © € {1,2}. As a consequence, the
corresponding discrete kernels of the bilinear forms b and by (cf. (), ()) coincide as well, and

it is easily seen that they become the space
Kk = {vh ERTL(T): va-r=0 on I and div(vy) =0 in Q} . (4.9)

In this way, we now let ©F : L1(Q2) — KF be the L?(Q)-orthogonal projector, that is, given w € L*(12),
©F(w) is the unique element in KF satisfying

/@ﬁ(w)'vh = /W-Vh Vv, € KF. (4.10)
Q Q

This operator plays a key role in what follows. Indeed, in order to prove one of the inf-sup conditions
required by our discrete analysis, we need to establish a particular stability estimate for @’fL in terms
of || - |lo,z0, with ¢ € (1,400). This result is provided next in Section @, for which we make use of
the related estimates for the Ritz projection that are collected in Appendix |Al.

4.3 LY(Q)-stability of OF

In this section we first characterise the kernel KF in terms of Pjiq.(75) (cf. (@) in Appendix @),
and then establish for each ¢ € (1, +00) the L!(2)-stability of @fl when restricted to the space

HY (divy; Q) = {V € H(div; Q) :  div(v) =0 in Q}
More precisely, these results are given by the following two lemmas, whose proofs follow very closely

those of [B1, Lemma 2.1] and [31, Theorem 3.1], respectively.
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Lemma 4.1 There holds
ICfL = curl(Pk+17C(7ﬁ)). (4.11)

Proof. Let vy, € lC,’j, that is v, € RTk(7Tr), div(vy) = 0 in 2, and vi -v = 0 on I'. It follows (see,
e.g. [B5, proof of Theorem 3.3|) that v,|x € Py(K) for all K € Tp. In addition, since € is simply
connected, we deduce from [40, Theorem 1.3.1] and the null normal trace of v;, on I' that there exists
¢ € H(Q) such that v, = curl(¢). Hence, for each K € Ty, there holds curl(¢)|x = vi|ik € Pr(K),
which implies that ¢|x € Pr11(K). In this way, ¢ € Piy1,(7s), and therefore v, € Curl(PkH’c(ﬁ)).
Conversely, let vy, € curl(PkH,c(Th)), that is v, = curl(¢y) with ¢, € Pry1c(7Tn). It follows that
vilx = curl(¢p) |k € Pr(K) C RT,(K) for all K € Ty, and certainly div(vy) =0in Q and v, -v =0
on I', which shows that vj, € Kﬁ. O

Lemma 4.2 Given t € (1,+00) and an integer k > 0, there holds

195 (W)lose < o [Wlose — Vw € Hi(divi;©), (4.12)
where
CcF if Q is convex,
k= CF {- log(h)}|l_2/t| if  is non-conver and k =0, (4.13)
CF if Q is non-convex and k > 1.

Proof. Given t € (1,+00), an integer k > 0, and w € ﬁg(divt;Q), we employ again [40, Theorem
1.3.1] and the fact that the normal trace of w vanishes on I', to deduce that there exists ¢ € Wé’t(ﬂ)
such that w = curl(y) in . In turn, according to the identity () (cf. Lemma W{.1]), there exists
©n € Pii1.c(Th) such that ©F(w) = curl(y,), and hence the characterisation () of ©F(w) becomes

/ curl(pp) - curl(ep) = / curl(¢p) - curl(ep) Vén € Pria,o(Th), (4.14)
Q Q

where () has also been utilised to replace the test functions vj, of () by curl(¢y), with ¢, €
Pry1,6(Th). Next, it is readily seen that, due to the relation between curl and V in the 2D case, (4.14)
can be rewritten as

/ Ven-Von = / Vo -Vén  Yon € Priie(Th). (4.15)
Q Q

which, invoking (@), says that o5, = RE (). In this way, bearing in mind again the aforementioned
relation, it follows that

105 (W)llo.se = lleurl(en)llose = [Venlosa = IVRE(@)llose (4.16)
and
[Wllo.s0 = lleurl()llo.no = Velosa, (4.17)
so that these identities, together with (@) and (@), yield () - () and complete the proof.
O

At this point_we remark that in 3D, (M) and (Ela) do not coincide, and the second equalities of
the identities (|41d) and (|417|) do not hold either, which stops us of extending the proof of Lemma
to an eventual three-dimensional version. Indeed, up to our knowledge, the respective stability
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estimate () remains as an open problem in this case, which explains that the discrete inf-sup
condition for ay, , to be established below in Lemma {.3 by making use of () only holds in 2D. In
other words, this latter fact is actually the only reason why the present Section { has been restricted
to a two-dimensional domain 2 since all the other discrete inf-sup conditions that are required for the
discrete analysis, can be proved to be valid in both dimensions.

4.4 The discrete inf-sup conditions for Th and fh

In this section we employ the main results provided in Appendices E and @ to verify that the specific
finite element subspaces that were introduced in Section @ satisfy the assumptions (H.1), (H.
and (H.4). In other words, in what follows we establish the discrete analogues of Lemmas @ a
and E, for which we suitably adapt their respective proofs to the present context. We begin with
the discrete inf-sup condition for ay, , where 1, is taken in Q.

Lemma 4.3 For each ¥, € Qp, there hold

Ay, (Whs Vi)

sup > g ||Wh x, Ywy, € KF, (4.18)
wert Vallx,
v #0
with ag = p1/(c¥||Dsl|) (cf. (@), Lemmas @ and @), and
sup Gy, (Wp,vp) > 0 Vv, € /C}1§7 v #0. (4.19)
WhEKﬁ
Proof. Given ¢y, € Qp, we consider wy, € KF, wy, # 0. define (cf. (@)) = Jr(wy) € L*(€2), and
let v, := OF(Ds(wp)) € K. Then, thanks to (@), () (cf. Lemma @ and Lemma P.2, we
observe that
/Wh‘gh = /Wh~D5(Wh7s) = /Wh‘ (4.20)
Q Q Q

from which it follows that necessarily v;, # 0. Furthermore, the stability estimate () (cf. Lemma
@) and the boundedness of D (cf. Lemma @) yield

Wallose < & IDsll whsllosi- (4.21)

Thus, employing the lower bound for u (cf. (@)), (), and (), we find that

/Wh Vh

Sup awh(Wh,Vh) > |ar¢)h(Wh,Vh /’Ll HW}LHOTQ
- - T3 )

vjekk vhllx HVhHO 59 ClsC | Ds|l

v, #0

which yields ({.1§) with the indicated constant ag. Similarly, given vy, € ICQ, vy, # 0, we define (cf.
(@)) Vhr :—és(vh) € L"(Q), set Wy, := OF(Dy(vs,)) € KF, and utilise again ([.2), ‘), (R.14),

and Lemma P.2, to deduce that

—

Sup  ay, (Wh, Vi) > ay, (Wn, Vi) > i1 /VNVh'Vh
WhGIC]fL Q

= M / Dr(vh,r) *Vh = [1 thHS,s;Q >0,
Q
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which proves () and concludes the proof. O

We stress here that, only when € is non-convex and k = 0 is utilised, the discrete inf-sup constant
a4 depends on the meshsize h, though in a very inoffensive manner. In fact, it is clear from () (cf.

Lemma @) that in that case agq = pu1/(C¥ {—log(h)}uﬂ/s| | Ds||), where the h-dependent term given

by { —log(h)}'l_Q/ °l grows very slowly as h — 0, and hence it actually remains reasonably bounded for

very small values of h. In particular, taking for instance s = % (in Lemma below we show that any

s € (3,2) is a feasible choice) and h > 1073, then there holds { —log(h)}|1_2/s‘ = { —log(h)}1/4 < 3.

It is also important to highlight at this point_that the proof of Lemma @ induces a discrete
version of the operator D, provided by Lemma PR.3. In fact, it suffices to define Dy : L¥(Q2) — ICfL
by Dsp(w) := OF(Ds(w)) for all w € L*(Q), which satisfies [, wp, - D p(W) = [, Wy - w for all
wy, € Xop, such that div(wy) =0in Q and wy,-v =0o0n I

The discrete inf-sup conditions for the bilinear forms b;, ¢ € {1,2}, are provided next.

Lemma 4.4 There exist 51,d7 §27d > 0, independent of h, such that for each i € {1,2} there holds

bA Vh,4h =
sup VB S g o V€ M. (4.22)
VhEXi,h thHXz
Vh750

Proof. We prove first for i = 1. In this way, given gy € My, we set s == Jp(qn) € L*(2) and
(1275 = Qhs — |ﬁ1| Joans € L§(Q), and let u € W5 () be the unique solution of (@) with g = q2787
g =0, and gy = 0, that is

Au:qgvs in Q, Vu-v=0 on I, /u—(). (4.23)
Q

If 2 is convex, then we deduce from [45, Theorem 1.1] that actually u € W*(2) N WI’S(Q) and that
there exists a positive constant C(s) such that

lullz.0 < C(s) lldhsllo,ssa - (4.24)

Then, defining v := —Vu € Wh¥(Q), we have v-v =0 on T, div(v) = —¢) _ in (2, and, using (),

Wlise < llul2se < C)llgsllosn- (4.25)

Thus, letting vj_:= Hz (v) and employing the identities satisfied by the Raviart-Thomas interpolator
I (cf. (@3, (}@)), we observe that v, -v = II§(¥) - v = OF(v - v) = 0 on I, which proves that
v € Xl,ha and

div(vy) = div(IIf(v)) = Pr(div(v)) = Pf(-q,) in Q. (4.26)

In addition, applying the stability estimates of II¥ (cf. (@)) and PF (cf. (@)), and thanks to ()
and (), we find that

allose = M@ lose < Cl¥lsn < Cllé Joso (1.27)
Idiv(@n) lose = IPE@osa < cladlose, (4.27h)

from which it follows that (cf. ())
[¥allx, = [¥alloss + 4V losa < Cliilosa < CClamslosas  (428)
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where C, ¢, C, and C, are positive constants independent of h, the latter being specified within the

proof of Lemma P.7. In this way, bearing in mind () again, the fact that [y qnq) , = [ anan.s,
the scalar version of (), and the estimate (), we obtain

—/thiv(vh) /thf]f(qg,s)
Q Q

bl(Vh,C]h) _
VhEXI,h th||X1 o thHXl ”vthl
vL7#0 (429)
_ S ™™ Jadoralanslose o 1
1¥nllx, 1¥nllx: elo T

which yields (), for i =1 and a convex polygonal domain 2, with BLd =

cCs”
In turn, if © is non-convex, and bearing in mind that s € (1,2), we observe from Lemma @

(cf. (@)) that the solution u of () belongs to WT95(Q) N Whs(Q) for all § € (0,8,), with

6o =min {2 — 2 I} and that there exists a positive constant C(s,d) such that

s w

lulli+sse < C(s,0) llai s

0,5, - (4.30)

Thus, defining v := —Vu € W%(Q), we have v-v =0 on I, div(v) = —q) . in ©, and, using (),
[Vlss0 < C(s,0) g sllos:0 - (4.31)

Next, proceeding as in the convex case, we define v, := H v) and realise again that v, € X, and
that div(vy) = ’P,’f(—&). Now, in order to apply () tot = s and 7 = v, which requires,

according to Lemma (cf. (@)), that 0 > %, we need to impose that &g > %, or equivalently
2 — % > % and 7 > %, that is s > % and w < sm._In this way, under these assumptions on s and the
maximum interior angle w of €, and thanks to ( .12b|) and ( .3]]), we get

[¥alose = I @losa < e {I¥lssa + b’ [divllosa} < et +C(s.6)) lgh oo

where we have simply bounded h® by 1. The foregoing inequality together with () yield the
bound for ||V x, in terms of ||gxs|lo.s.0 (cf. ()), and then the rest of the derivation of the discrete
inf-sup condition for b; follows as (4.29).

On the other hand, for i = 2 we consider g, € May, set qn, = Js(qn) € L7(Q) and ¢) . =
Ghyr — ﬁ Jo anr € Lg(), and let w € WLT(Q) be the unique solution of

AU:qu in Q, Vu-vr =0 on F, /U—O, (432)
Q

so that in the convex case the proof is almost verbatim to the one for i = 1.

In turn, if Q is non-convex, the fact that = > % > 11— % when s > % (equivalently, when r < 3)

allows us to apply Lemma to t = r without further restrictions. In this way, we conclude that the
solution u of (4.32) belongs to W0 (Q) N WL (Q) for all § € (0, ), and it satisfies the analogue of
() Note that the hypothesis of Lemma (cf. (IC.3)) is clearly satisfied in this case as well. The
rest of the proof proceeds as for the non-convex case of i = 1. We omit further details. O

It is important to remark here, as noticed within the previous proof, that in the case of a non-convex
), the discrete inf-sup condition for b1, and hence our whole discrete analysis, is restricted to s > %
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and to those polygonal regions with largest interior angle w < sm. Nevertheless, as illustrated by the
numerical results reported later on in Section f, which even consider s = % and domains with w > s,
the above constraints seem to be only technical issues of the analysis rather than limitations of the
applicability of the method.

We end this section with the discrete analogue of Lemma @ Indeed, while this result is a simple
modification of [22, eq. (5.64)], which in turn corresponds essentially to the vector version of [22,
Lemma 5.5], in what follows we provide its full proof for sake of completeness of our analysis. Moreover,
irrespective of the fact that p and its conjugate o are now subject in 2D to the restriction p > 4,
we prove the aforementioned inequality assuming arbitrary p € (2,+00) and ¢ € (1,2) such that
1/p+1/0 = 1. To this end, we first invoke [22, Lemma 5.4] (with local choices there given by p = p,
¢ =0, and n = 2) to deduce that there exists a constant Cy > 0, independent of h, such that

|7 =T (T) oo < Coh?L VI |7| .0 VT e Whe(Q). (4.33)

The announced discrete inf-sup condition for our bilinear form b is proved next.

Lemma 4.5 There exists Bd > 0, independent of h, such that

b(Th, ~
sup TR S B slle Ve € Q. (4.34)
‘f'he;géb ||Th||H
Th

Proof. Given vy, € Qp,, we let O be a convex domain contaning €, and set

bt ma,
7 0 in O\Q,

which is easily seen to belong to L2(Q), with ||gllo,c.0 = l|gll0,e:0 = ||¢h||g;.1ﬂ. It follows from [34,
Corollary 1] that there exists a unique z € W22(0) N W(l)’g((’)) solution of
Az =g in O, z=0 on 00, (4.35)
and there exists a constant Creg > 0, depending only on O, such that
-1
122,00 < Chreg llgllo.c:2 = Creg ¥nl5 02 - (4.36)

Next, we let ¢ := Vz|g € Wh2(Q2) and notice from (4.35) and () that

div(¢) = [P 2 in Q@ and [{|l1,00 < Creg ¥

[y (4.37)

Thus, defining ¢, := I1¥(¢) € Hy, applying (4.33) with £ =1, n = 2, and g € (1, +00), and employing
the continuous injection i, of W¢(Q2) into L?(2), and the inequality from (), we deduce that

0.0 < Co p2(1-1/e) ¢

Lo T H’Lg” ||C”1,Q;Q

I<nlloe < 1€ —TIE (Ol + 1I¢
B (4.38)

< (Co+liglD lICl1g2 < (Co+ lligl) Creg 1Un5 02
where h2(1=1/0) has been simply bounded by 1. In turn, we have
div(¢p) = Py (div(€)) = Pr(lvnl’ " vn).,
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so that proceeding exactly as for the derivation of (), we find that
Idiv(¢u)llo,e < Clllvnl~2 4
which, together with (), give

I<hllaivee < ((Co+ llig)Creg + C) Inllf o (4.39)

A~ —1

Finally, bounding below with ¢; and using the orthogonality property of P,’f , we conclude that

k —2
b(Th, Yn) > b(Cp,n) . K/gz¢hph(|wh|p ¥n) . "wahHg,p;Q

e, NTalle = Cull 1<hllaiv,:0 ~ Chllaivge
‘rh;éO
from which, making use of (), we arrive at () with Bq = £((Co + ||io])Creg + 6)‘1. O

4.5 The rates of convergence

In this section we provide the rates of convergence of our Galerkin scheme (@) with the specific finite
element subspaces introduced in Section . For this purpose, we first collect the approximation
properties of Hy, Qn, Xop, and My, (cf. Section @), which follow from () (for m = 0 and
t = p,r), (@) (for t = o), (@) (for t = r), and interpolation estimates of Sobolev spaces. More
precisely, we have:

(APY) there exists C' > 0, independent of h, such that for each £ € [1,k + 1], and for each T € HY(Q)
with div(7) € W5(Q), there holds

dist(r,Hy) = _inf |7 = ol < CA {Imlee + [div(m)lepe } -
h h

(APY) there exists C > 0, independent of h, such that for each ¢ € [0, k+1], and for each ¢ € WP (Q),
there holds

diSt(wa Qh) = inf ||¢ - whHO,p;Q <C hé H’QZ)HK,/);Q .
YrhE€QH

(AP}) there exists C' > 0, independent of h, such that for each ¢ € [1, k+1], and for each v € W (Q)
with div(v) € W57(Q), there holds

dist(v, Xop) := inf |lv = va|rdiv0 < Chz{llVllz,r;Q + HdiV(V)He,r;ﬂ}-

VhGngh

(AP?) there exists C > 0, independent of h, such that for each ¢ € [0, k+ 1], and for each ¢ € W™ (Q2),

there holds
dist(q, Mip) := it [lg—anllome < Ch llgllermo-
qrn€Mip

Hence, we can state the following main theorem.
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Theorem 4.6 _Let ((o,¢),(u,p)) € (H x Q) x (Xz x My) be the unique solution of () with
uecsS (. ()), and let ((oh,¢n), (Wn,pn)) € (Hp x Qn) x (Xop X Myy) be a solution of (@)
with uy, € Sy, (cf. ()), whose_existences are guaranteed by Theorems and B.4, respectively.
Assume that (@) (¢f. Theorem B.H) holds, and that there exists £ € [1,k + 1] such that & € H'(Q),
div(e) € Wh2(Q), o € WEP(Q), u € W (Q), div(u) € WH(Q), and p € WH"(Q). Then, there exists
a constant C' > 0, independent of h, such that

lo = ol +[le = enllq + v —anlx, + P = pallan
e (4.40)
< Oh'{llolg + laiv(o)legn + o

0+ Lo + [div() oo + [Pl }

Proof. 1t follows straightforwardly from Theorem @ and the above approximation properties. O

5 Numerical results

We now address the numerical verification of the convergence properties of the proposed scheme (as
stated in Section {.5), as well as the usability of this new method in problems of applicative interest. In
all results reported in this section the linear systems emanating from the Newton-Raphson linearisation
have been solved with the unsymmetric multifrontal direct method for sparse matrices (UMFPACK).

The condition of zero-average for pressure needed in () and () is imposed through a real
Lagrange multiplier.

5.1 Test 1: accuracy verification on different domains

The choice of s and the geometry of the underlying domain play key roles in the discrete analysis of
the method. More precisely, as pointed out after the proof of Lemma {.4, the theoretical estimates
require in 2D that s be greater than % and the largest interior angle w be less than s7; and the proofs
of stability do not extend readily to 3D domains, as discussed after the proof of Lemma {.2. In this
example we explore these aspects numerically by considering s = % and s = %, that is (cf. (R.19))

(p,o,7,8) =(6,6/5,3,3/2) and (p,o,7,s)=(8,8/7,8/3,8/5), (5.1)

respectively, and using as domains a square (g, an L-shaped domain , (having an inner angle of
37/2), a domain with an inner angle larger than 87/5, Qy, and the unit cube Q. Following a
manufactured solution approach, first we construct a sequence of successively refined unstructured
partitions of the given domain (with h tending to zero), and consider the following closed-form syn-
thetic solutions to ([l.3) (in all of which we use the specification for temperature-dependent scaled

viscosity p(¢) = po + spop(1 — @)

in Qg := (—m,m)%: ¢ =0.5(x? +x3) — 0.25sin(x1) cos(z2), k=0.1, puy=0.5 pu =10,

cos(z1) sin(z) _ 1 —0.1z12s B o
<_ sin(z1) cos(xs) ) P=1 sin(z1x2)e , o=krVy—opu;

: ¢ =1+sin(xy)sin(zz), k=0.05 puo=0.1, u =5,

wo (i) )

_ sin(z1) cos(x2) p=1x]— Ty O =krVp—ou
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Figure 5.1: Test 1. Error history for pseudoheat flux, temperature, velocity, and pressure, showing
convergence of the mixed finite element method on the domains g (top left and top right), Q, (bottom
left), Qv (bottom centre), and Q¢ (bottom right).

1 1

in Qv i= (0,102 \ A((5:5): (1), (.5

3
3 3)), =1+~ COS(EIliL‘Q), k=0.01, po=0.05, p =3,

4 4

\/\\4 " <sin2(7m:1) sin?(7xy) cos(mao)

—Lsin(2m2) sin®(7ra2) ) P =sin(@iey) cos(zizy), o = rVe - pu;
3

2

sin(mxy) cos(mxa) cos(mxs)
u = | —2cos(mxy)sin(mxs) cos(mxs) | , p = sin(zizoxs)e
cos(mx) cos(mxy) sin(mxs)

1 1
in Qc:=(0,1)%: o= (22 + 23 +23) — 1 sin(zq) cos(zo) cos(xs), w=0.1, po=1, p =10,

—0.1x1x023

, 0 =kVp—pu.

Source terms (and for the cases that require it, also the non-homogeneous boundary conditions for the
normal trace of velocity that are prescribed essentially, and for temperature pp which are prescribed
weakly by adding the contribution —k(T - v, pp)r) are imposed using these exact solutions.

The finite element spaces are specified as in (@) In addition to RT elements composing (),
(), (), we have also tested the convergence with BDM elements, and no substantial differences
are observed. We therefore refer only to RT-based families in the plots below.

In Figure @ we collectively show the error history for each case, including computed errors on
each refinement level, for two different polynomial degrees kK = 0,1, and separating each individual
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Figure 5.2: Test 2. Porous enclosure heated from the side, with Ra = 1500. Approximate pseudoheat
flux and line integral contour, temperature, velocity magnitude with line integral contour, and pressure
distribution at ¢t = 0.5.

contribution to the total error

(@) :=llo—onlln, e(@):=llv—wnllq, e(m):=lu—ulx,, ep):=Ilp—palu-

And these errors are computed in the norms that use the values from (@) For Qg we use the two
sets of values, whereas for Qr,, Qv, Q¢ we use the second set of values (with s = 8/5).

The plotted accuracy trends in the top-left panel demonstrate numerically the optimal convergence
order anticipated by Theorem {.6, and a similar conclusion is drawn when testing the accuracy in the
domains for which the analysis does not carry over. As usual, a local error decay rate can be obtained,
for a generic pair of individual errors e, € generated by the mixed method on meshes associated with
meshsizes h and h, as rate = log(e(+)/e(+)) [log(h/h)]!, and then an average value can be taken for
each error history. Alternatively, one can visually compare the convergence against the optimal values
in the solid lines of each panel. For instance, for the 3D domain Q¢ we can infer a slightly higher
convergence for pressure (of about O(h!4°)). For all these runs, the maximum number of iterations
required over the course of the Newton-Raphson loop (which is terminated once the nonlinear residual
discrete norm drops below a relative tolerance of 107%) was 5.

5.2 Test 2: application to buoyancy-driven flow in porous media

In order to study an application into heat and fluid flow in non-isothermal porous media, we extend the
model to the classical pseudo-steady case, by adding the rate of change of temperature to the left-hand
side of the thermal energy conservation equation: dyp +u- Ve — kAp = f (or —0yp + div(e) = —f
in the context of ([.3)). After non-dimensionalisation, the system regime can be fully described
by the Rayleigh number Ra (combining the effects of gravity, permeability, characteristic length,
viscosity, and thermal conductivity), and the temperature-dependent viscosity is () = exp(p). The
momentum equation has an additional term on the right-hand side, depending on temperature (due to

. . . . . 0 .
the Boussinesq approximation relating density and temperature), f = ¢ L The test configuration

and parameter values are taken from [@], where a square porous layer is held between differentially
heated sidewalls. The four walls are impermeable, resulting in the condition u - v = 0 everywhere
on the boundary, and therefore a Lagrange multiplier is used to enforce pressure uniqueness. The
temperature boundary conditions adopted for this test are of mixed type, and they differ from those
in (@) on the left and right sidewalls, normalised temperatures of ¢ = 1 and ¢ = 0 are imposed,
respectively; whereas on the top and bottom walls we set o - v = 0. The fully-discrete problem
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Figure 5.3: Test 3A. Evolution of the concentration in viscous fingering at ¢t = 5,10, 15s (left panels),
and snapshots of total flux, velocity, and pressure at the final time (right column).

resulting from a simple backward Euler time discretisation with constant time step, adopts a form
similar to (B.l]). The computational domain is the unit square, discretised into a uniform mesh of 40K
triangles, and for the lowest-order scheme the method has 320801 DoFs. We use a constant time step
At = 0.01 and prescribe a Rayleigh number of 1500, and the approximate solutions on the enclosure
heated from the left side, after 50 time steps are shown in Figure p.9.

5.3 Test 3: applications to Darcian miscible displacement and viscous fingering

To conclude we note that if ¢ is understood as a species concentration rather than temperature, then
equations (@) can be used to describe flow displacement in Hele-Shaw cells (see, e.g., [B, @]) where
one injects water into another viscous fluid of different viscosity (and with viscosity ratio of r = 2).
Starting from the initial distribution of concentration ¢(z1,x2,0) = £2[1 + erf( ﬁlx_lg‘_oi)], eventually
the existing fluid is displaced and so-called viscous fingering instabilities are formed (for this there
is no need to prescribe a random perturbation, as the unstructured mesh is sufficient to onset the
required instabilities near the initial interface between the two fluids). The computational domain is
the channel Q = (0,0.08) x (0,0.02) m%. The field ¢ is now interpreted as concentration of the fluid
to be displaced (and measured in mol/m?). The left side of the domain is the inlet boundary where
we impose u - v = —0.001m/s as inlet velocity and ¢ = 0 as inlet concentration (since the second
fluid, water, is being injected from that segment). On the horizontal walls of the channel we impose
u-v =0 -v =0 and on the outlet (the right end of the channel) we set p = 0 and zero diffusive flux
(implying that [o 4+ ¢u] - v = 0). The model parameters are (see, e.g., [B, @])

k=4 x 10_8 mQ/S, lporo = 0-57 lmob = 27 lvisc =1 mPa'S7 lperm = 10_6 mz’
lvi
p2 = 6500mol/m”, () = 7= exp(lmovsp/i92),
perm

and they represent diffusivity, porosity, log-mobility ratio, viscosity of the displacing fluid, permeability
of the porous medium, reference concentration of the displaced solute, and concentration-dependent
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Figure 5.4: Test 3B. Evolution of the concentration in miscible displacement in porous media at
adimensional times ¢ = 10, 30,90 (top), and snapshots of total flux, velocity, and pressure at the final
time (bottom).

Arrhenius viscosity law (scaled with permeability), respectively. We use an unstructured mesh of
37745 triangles, set a constant timestep of At = 0.01s and run the simulations until ¢ = 10s.

Next we conduct a very similar test but the displaced fluid is water and a fluid with higher viscosity
is injected. The domain is an annular region (of radii 0.2 and 5, in adimensional units) with many
holes of random location and size. The inlet and outlet are the inner and outer circles, respectively.
We prescribe an inlet velocity u-v = —1 and inlet concentration ¢ = 1, on the outlet we set zero
pressure p = 0 and zero diffusive flux [o+¢u]-v = 0, and on the remainder of the boundaries the fluids
are allowed to slip, and zero total flux is imposed o - v = 0. The set of equations is in dimensionless
form, depending on the Péclet number Pe= 750, from which k = 1/Pe, and the scaled viscosity follows
a quarter-power mixing rule u(p) = 1+ (p+1.18(1 — ¢))~%. The mesh has 34683 triangular elements,
the timestep is At = 0.5 and the computation is evolved until ¢ = 100.

The results of both tests are collected in Figures @—@, showing snapshots of concentration at
different times, as well as examples of total fluxes, velocities and pressures at the final time. And we
emphasize that a key benefit offered by the proposed mixed-mixed formulation is the conservativity
of the resulting scheme.
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A LY(Q)-stability of the Ritz projection

Given an integer k > 0, we let Py .(75) be the space of continuous piecewise polynomials of degree
< k+1, that is

Prire(Th) = {on € BHQ): dnl € Pra(K) YK € Th}, (A1)
and consider the Ritz projection RY : Hy(Q) — Pji1..(75) associated with the Poisson equation

under homogeneous Dirichlet boundary conditions. In other words, given ¢ € H}(Q), Rﬁ((ﬁ) is the
unique element in Pyyq.(75) satisfying

/ VRE(9) - Vn = / Vé-Vén  Von € Porio(Th), (A2)
Q Q

and hence

IVRE(@®)llo < IVlloq- (A.3)

Note that the fact that Pgy1.(75) is contained in WHt(Q) for all ¢ € [1, +0oc], guarantees that R
is actually well-defined in each one of these spaces as well. In this regard, we stress that stability
estimates as (JA.3), but measured with respect to || - ||o.1.0, t # 2, though less known, are also available
in the literature. One of the first results in this direction goes back to [62, Theorem|, where the
aforementioned estimate is established for £k = 0 and ¢ € [2,400] in the 2D case. More precisely, if
Q) is a convex polygonal region of R?, then for each t € [2,+00] there exists a positive constant C},
independent of h, such that

IVRA(@)lloso < CP IVollosa Vo€ Wy'(Q). (A4)

Actually, this result is provided in [52, Theorem] in terms of ||R)(¢)| 1.0 and ||¢|l1,10, which, due to
the equivalence between | - [|1 40 and | - |1 40 in W§'(Q), becomes (@) In addition, employing a
duality argument (as explained for instance in [[13, Section 8.5]), it is not difficult to show that (@)
is also valid for ¢ € (1,2]. In turn, for the corresponding extension of all the above to any integer
k > 1, we refer to [13, Theorem 8.5.3], whose proof, based on a suitable regularity assumption (cf.
[13, egs. (8.1.2) and (8.1.3)]), follows basically the same technique from [52]. However, whereas the
aforementioned hypothesis is satisfied for an arbitrary convex polygonal region in R2, it requires a
maximum interior angle condition in R3. This difficulty is overcome in [42, egs. (1.2) and (1.3)] by
employing_arguments based on Green’s functions, which yields the respective stability for t = +oo
(see also [48]). In this way, the interpolation of the latter with (@) implies the result for ¢ € [2, +00],
and the same duality argument from [13, Section 8.5] allows to extend it to ¢ € (1,2]. Summarising,
thanks to the analysis and results from [13], [42], and [52], we know that, given an integer k£ > 0 and
a convex polygonal (resp. polyhedral) region 2 of R? (resp. R3), for each ¢ € (1, +o0] there exists a
positive constant CF, independent of h, such that

IVRE(D)loso < CFIIVellosn Vo€ Wy (). (A.5)

For further results on the stability of RE in convex polygonal regions of R?, we refer for instance to
the recent works [47] and [49], which consider the cases of mixed boundary conditions and graded
meshes, respectively.

40



On the other hand, in the case of arbitrary polygonal domains €2 in R?, not necessarily convex, one
easily proves, starting from [56, eq. (0.7), Theorem 2], that, given an integer k > 0, there exists a
positive constant C% , independent of h, such that

IVRE(@)lo.0e0 < CE { —log(h)} ™ [Volomn Vo€ WE™(Q), (A.6)

1 ifk=0
0 ifk>1
there exists a positive constant C’f, independent of h, such that

where r(k) = { . Then, interpolating (@) with (@) we find that for each ¢ € [2, +0o0]

IVRE@)llosn < CF{ —1og(m) Y™ P Vgloa Vo e WH(Q). (A.7)

Moreover, applying again the duality argument from [13, Section 8.5], we deduce that for each ¢ € (1, 2]
there exists a positive constant CF, independent of h, such that

IVRE@)losa < CF{ —1og(h) ™ ™ T 1 Vglona Vo e WH(9Q), (A.8)

so that we summarise (@) and (@) by simply stating that for each ¢t € (1,+oc] there exists a
positive constant CF, independent of h, such that

IVRE(@)llose < CF{ —1ogm) Y™ M 1Volona Vo e W' (Q). (A.9)

B A Neumann regularity result on non-convex domains

We now let Q be a non-convex polygonal region of R?, and establish, with § > 0 and ¢ € (1, 4+00),
a WIHot(Q)-regularity result for the Poisson problem with source term in L(Q) and homogeneous

Neumann boundary conditions. More precisely, defining H! () := {v e H'(Q) :  [qv= 0}, and

letting N : ﬁli(l)’ — HY(Q) be the bounded linear operator that assigns to f € H () the unique
solution uy € HY(2) of the problem

/Vuf‘Vfu = f(v) Vo e HY(Q),
Q

we are interested in providing conditions under which there exists § > 0 such that A can also be
continuously defined from L§(2) into W'+%¢(Q). Note that this means that for each ¢ € L§(€2) there
exists a unique weak solution u € W'T%(Q) N Wh(Q) of the boundary value problem

Au=¢q in Q, Vu-vr=0 on I, /u:O,
Q

which satisfies
lullivsee < [N gllose -

In order to prove this regularity result we basically follow [26] and make use of 25, Corollary (23.5)],
which says that A is continuous from H*~1(Q) to H*"!(Q) for each s € [0, Z), where w stands for the
largest interior corner angle of €. Indeed, we have the following result.

Lemma B.1 Assume that t € (1,+00) is such that

2
—>1—= f t>2 B.1
- > ; if t>2, (B.1)
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and set
min{l,w+2—1} if t>2,
5o i= @ ;W (B.2)
min{2—t,} if te(1,2).

w

Then N : LE(Q) — WIH9H(Q) is continuous for each & € (0,8).

Proof. Let us first assume that ¢t > 2. Then the continuous embeddings ig : L5(Q) — L?(Q2) and
is : L2(Q) — H*71(Q), for s < 1, are straightforward. In addition, employing the aforementioned
regularity result for AV, and noting that for the non-convex domain € there holds = < 1, we deduce the
continuity of N : L§(Q) — H*1(Q) for each s € [0, ), which is depicted by the following sequence

LL(Q) 22 12(Q) 2 1) 25 meti).

In turn, according to the embedding between fractional Sobolev spaces (cf. [33, Theorem 6, Section
5.6], [41, Theorem 1.4.5.2, part e)]), we know that is : Ht1(Q) — WH9#(Q) is continuous if

2
s = 1+6_¥ and s > .
The former holds for some § > 0 if s > 1— %, whereas the later is guaranteed by the former and
the fact that ¢ > 2. Hence, bearing in mind our hypothesis on ¢, the feasible range for s becomes the
interval (1 — %, T), equivalently § := s — (1 — %) €(0,Z+ % — 1), which, together with the fact that

0 < s<1,yields 0 € (0,dp), and hence the required continuity of N follows from the diagram
L4 (Q) 25 1ot () 5 witt(q) |

Furthermore, given ¢t € (1,2), we employ again [33, Theorem 6, Section 5.6] (see also [41, Theorem
1.4.5.2, part e)]) to observe that the injection i, : L§(€)) — H™*(Q) is continuous if s > 2 — 1,
that is 1 —s < 2— 2. In turn, N : H™%(Q) — H?*75(Q) is continuous if 1 — s € [0, Z), whereas
H27%(Q) is continuously embedded in H!TH(Q) if 2 — s > 1+ 4, that is 1 — s > §. Hence, noticing
from the present range of ¢ that H!™*(Q) is continuously embedded in W'*%%(Q), we conclude that
is : H275(Q) — WIT%(Q) is continuous as well. In this way, the announced continuity of A" follows

from the above constraints on 1 — s and ¢, and the sequence

LE(Q) 2o 1) s 125 () 22 Wity

C Further properties of the Raviart-Thomas interpolators

In this appendix we establish additional stability and approximation properties of the local and global
RaviAart—Thomas interpolation operators. To :c\his end, we now denote the reference triangle of T
by K, so that, given K € 7}L,Awe let Fx : K — K be the bijective affine mapping defined by
Fr(x) := Bxx+ by Vx € K, with B € R?*? invertible and bx € R2. Next, given an integer
k >0 and a side F of BI?, we let dj and {@ﬁ}jil be the dimension and a basis of Py, (ﬁ), respectively.
Similarly, when k& > 1, we let r; be the dimension of Pk,l(l? ) and denote by {17)5}?: , & corresponding
basis. Then, for each T € WU(IA(), with ¢ € (1, +00), we formally define the F-moments for k > 0 as

my 5(T) = /ﬁ?'”@gﬁ Vie{1,2,... d}, (C.1)
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whereas the K-moments for k > 1 are given by
m, 7 (T) 3:/A?'777’£ V€€{1,2,...,rk}.
’ K
In addition, gathering all the F and K moments in the set of linear functionals mj, j € {1, 2, Nk},
with N, := 3dj, +ry, for each i € {1, 2,... ,Nk} we let 7; be the unique function in RTk([?) such that
’r/f\LJ(?Z) = (Sij Vi € {1,2,...,Nk},

and introduce the reference Raviart-Thomas interpolation operator H% : Wl’t(l? ) — RT% (IA( ) as
N
e (7) =Y m;(F)7; V7eWH(K). (C.2)
j=1

Proceeding analogously, one defines on each K € T, the local Raviart-Thomas interpolation operator
1% Wht(K) — RTx(K), which is related to H’;A( through the identity

% (F) = I (1) = |det(Bk)| Bg' (1) o Fx V1€ WH(K),
where ~ denotes from now on the Piola transformation.

The stability and approximation properties of H’;(, measured with respect to W™!(K)-norms, with
integer m > 0 and t € (1, +00), are well-known for sufficiently smooth functions (see, e.g. Section
for the corresponding global versions of them). Here we are interested in establishing similar estimates
measured in L{(K )-norms, but for less smooth functions. For this purpose, we need the result provided
by the following lemma.

Lemma C.1 Lett € (1,400), t # 2, and 6 € [0,1] such that

5>% if te(1,2),

(C.3)

0>0 if t€(2,40).

Then, there exists a constant C > 0, independent of h, such that
HH’;A((?)HO,t;IA( <C {H?H&t;f( + ”div(?)Ho,t;f(} V7 e WO(K) nH (divy; K) . (C.4)

Proof. We first realise that the moments m;, j € {1,2, e ,Nk}, are well-defined and constitute
bounded linear functionals in WO (K) N H(divi; K). In fact, the above is straightforward for the
K-moments since m, » is clearly linear for each £ € {1, 2,..., rk}, and, thanks to Holder’s inequality,
there holds R R R

e 2P < 17l 1Bellgpe V7 € WH(R) A B! (divi; ), (C.5)

where t' is the conjugate of ¢. In turn, for the case of the F -moments, which are all linear as well,
we separate the analysis according to (@) If t € (1,2) and § > 1, then the trace theorem (cf.
[41, Theorem 1.5.1.2]) establishes that 7|, € W‘S_%’t(ﬁlff) for all 7 € W%(K). Hence, given
le {1, 2,... ,dk}, it follows from Holder’s inequality, the continuous embedding of W‘s_%’t(@f( ) into

L' (8K), and the trace inequality for W5 (K), that

Imy 2P < NTllo 2 190 Bllowp < 1Tl ok 190 #llo7 o

P
< C 7l 107 18l < C 1750 180 3l o
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Next, we take t € (2, +00) and § > 0, so that, in particular, ¢’ € (1,2). Then, given ¢ € {1, 2,... ,dk},
and noticing that certainly @, » € Wit (A), it follows from [41, Theorem 1.5.2.3, part (a)] that its

extension by zero to OK\F, say @ Agﬁ, belongs to W%’t,(af? ), and therefore we can redefine m,  (cf.

(c.)) as

0,F
m, (7)== (T-v. @) o VT e H(divs K), (C.7)

where (-,-),5 denotes the duality pairing between Wf%’t((?f( ) and W%’t/(aff ). Moreover, applying

now [41, Theorem 1.5.1.3], we deduce the existence of U, z € Wl’tl(f?) such that v, 5|, = (ﬁgﬁ and
HvZF”lt’K = C”Sogp”lt/ OK - (08)

In this way, starting from (@), and then employing the integration by parts formula (), the
Holder inequality, and the trace estimate ([C.§), we find that

my 7P| = (70,3 pogl = 0.5, 2ogl = | [ {7 Vo0 + paiv@)}] o)

< ClFly v,z Pl nie < CIF N aivesie 190 212 o

Finally, given 7 € W (K) N H!(div;; K), we have from (@)

k
M lloz < Z|ma Tl 4z -

which, together with the bounds (@), (@), and (@), and the fact that H?HO”{ < W7 llsezs
yield the required estimate (@) with C depending on the sets {HWHOt,K Py {HT]HOtK}J 1
{HS% #llos. F}e 1> and {||g0Z A||1 t';aK}ézp for all the sides F' C 9K. O

Having proved Lemma @, we now establish an approximation property of H’;(. More precisely, we
have the following result.

Lemma C.2 Assume thatt and § are as stated in Lemma @ Then, there exists a constant C > 0,
independent of h, such that for each K € Ty, there holds

7 — 15 (P o < C’h%{\ﬂ@t;[( n \|div(7’)H07t;K} Ve WO(K) N HY (dive: K).  (C.10)

Proof. 1t proceeds analogously to the proof of [35, Lemma 3.19], using now the estimate (@), and
employing the Deny-Lions Lemma for fractional Sobolev spaces (cf. [3(, Theorem 6.1]), and the scaling
properties of the corresponding semi-norms (cf. [43, Lemmas 2.8 and 2.9]). We omit further details.

O

As a straightforward consequence of the triangle inequality, (), and the fact that both, |- [/osk
and |- |54k, are bounded by || - |54k, we readily deduce the existence of a constant ¢ > 0, independent
of h, such that for each K € T}, there holds

I () losk < e { Il + B lldiv(rllosx b ¥ € WH(K) nH(divi ). (C11)
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Finally, it is not difficult to see that the global versions of () and () become

N

7 — T () o < Ct hé{yr\g,t;g n Hdiv(ﬂuow} Ve WO(Q) N Hi(divi; Q),  (C.12a)

I (Mlloee < a{liTlsee + B Idivimlosa} ¥ e WH(@Q) N H(divii ), (C.12b)

respectively, with constants C;, ¢; > 0, independent of h, but depending on t.
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