
J
H
E
P
0
6
(
2
0
2
2
)
0
7
1

Published for SISSA by Springer

Received: February 25, 2022
Revised: April 25, 2022

Accepted: May 16, 2022
Published: June 13, 2022

A scaling limit for line and surface defects

D. Rodriguez-Gomez
Department of Physics, Universidad de Oviedo,
C/ Federico García Lorca 18, 33007 Oviedo, Spain
Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA),
C/ de la Independencia 13, 33004 Oviedo, Spain

E-mail: d.rodriguez.gomez@uniovi.es

Abstract: We study symmetry-breaking line defects in the Wilson-Fisher theory with
O(2N + 1) global symmetry near four dimensions and symmetry-preserving surface defects
in a cubic model with O(2N) global symmetry near six dimensions. We introduce a scaling
limit inspired by the large charge expansion in Conformal Field Theory. Using this, we
compute the beta function for the defect coupling which allows to identify the corresponding
Defect Conformal Field Theories. We also compute the correlation function of two parallel
defects as well as correlation functions of certain defect operators with large charge under
the surviving symmetry.

Keywords: Global Symmetries, Renormalization and Regularization, Scale and
Conformal Symmetries

ArXiv ePrint: 2202.03471

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP06(2022)071

mailto:d.rodriguez.gomez@uniovi.es
https://arxiv.org/abs/2202.03471
https://doi.org/10.1007/JHEP06(2022)071


J
H
E
P
0
6
(
2
0
2
2
)
0
7
1

Contents

1 Introduction and conclusions 1

2 Line defects near d = 4 in a scaling limit 4
2.1 The defect profile 6
2.2 Correlators in the defect theory 7
2.3 Correlators of defects 10

3 Surface defects near d = 6 in a scaling limit 11
3.1 The defect profile 13
3.2 Correlators in the defect theory 14
3.3 Correlators of defects 16

A On the evaluation of the on-shell action 17

B Further details on the integrals 18
B.1 Fourier transform formulae 18
B.2 Eq. (2.14) 19
B.3 Eq. (2.36) 19
B.4 Eq. (2.47) 20
B.5 Eq. (3.11) 21
B.6 Eq. (3.30) 21
B.7 Eq. (3.39) 22

1 Introduction and conclusions

The study of defects in Quantum Field Theory — and more specifically in Conformal Field
Theory (CFT) — is very interesting for a number of reasons. For instance, in realistic
Condensed Matter scenarios, defects are often present in the form of impurities. From
a more theoretical point of view, defects in a given bulk CFT allow to probe interesting
Physics which has recently attracted much attention, including the discovery of new central
charges and the study properties of RG flows (see e.g. [1–8] for a very partial list of some
of the most recent developments). Moreover, in gauge theories, defects (or equivalently,
extended operators) play a very important role in understanding central aspects including
the symmetries and phases of a given theory (see e.g. [9, 10]).

When coupled to a CFT, a defect triggers a Renormalization Group (RG) flow which
in many cases ends in a fixed point. This fixed point of the theory hosted on the defect
defines a Defect Conformal Field Theory (DCFT). In this work we will be interested in the
simplest incarnation of this idea in the context of the Wilson-Fisher theory near d = 4 and
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d = 6. We consider a trivial defect in the UV and turn on a certain perturbation which
triggers an RG flow ending in a DCFT. The particular class of perturbation that we will
consider is a relative of the “pinning field defect” studied recently in [7, 8] (see also [11]).

The bulk theory which we consider is the Wilson-Fisher (WF) theory with O(M) global
symmetry near d = 4, 6 (M = 2N + 1 near d = 4 and M = 2N near d = 6). In d = 4− ε
dimensions, the WF theory flows to an IR fixed point where the coupling is proportional to ε.
Formally, this fixed point can be continuated into a UV fixed point at negative ε— that is, to
d = 4 + |ε|. It has been argued in [12] that the appropriate UV completion is a certain cubic
theory whose IR fixed point in d = 6− ε dimensions concides with the UV fixed point of the
quartic theory. Nevertheless the fact that the cubic potential is not bounded from below (or,
alternatively, that the quartic theory at the UV fixed point has negative coupling) ends up
manifesting itself through small imaginary parts in the anomalous dimensions, showing that
the theory is best thought of as complex CFT [13, 14]. To these bulk theories we consider
coupling a trivial defect, supported in a line in the case of d = 4− ε and in a 2d surface in
the case of d = 6−ε. In both cases, we deform by an operator inserted on the defect which is
linear in a bulk field. This triggers in both cases an RG flow ending on a fixed point. There
is a big difference though in that in the d = 4− ε case the defect breaks global O(2N + 1)
symmetry down to O(2N) while in the d = 6−ε case it does not break the O(2N) symmetry.

Along an a priori unrelated line, over the recent past a new manifestation of the
well-known observation that “large quantum numbers simplify things” has bee found. In
particular, it has been realized that the sector of operators of large charge under a global
symmetry in a CFT can be accessed regardless on the coupling g through a new semiclassical
approximation [15–17] (see [18] for a review). In the context of the Wilson-Fisher model
studied in this paper, the emergence of such new semiclassical expansion can be understood
“microscopically” from the path integral [19–21] (see also [22–24]). In particular, the
computation of correlation functions for charge n operators groups itself in such a way that
n−1 plays the role of ~ with λ = g n acting as the coupling, which naturally suggests to
consider the large n limit at fixed λ. From the point of view of the standard expansion
in Feynman diagrams, this limit selects a particular class of diagrams among the many
contribution to correlation functions and thus represents a vast simplification.

Inspired by the large charge philosophy, in this work we export those techniques to the
analysis of DCFT’s. By considering a particular scaling of the defect and bulk couplings we
can study in a simple way aspects of the DCFT. In particular, using these techniques, we
compute the beta function for the defect couplings and identify the relevant fixed point.
We find perfect agreement with the existent literature for line defects in the WF theory
near d = 4 (e.g. [7, 11]). In turn, the analysis of surface defects in the cubic theory near
d = 6 is, to the best of our knowledge, new. Moreover we compute the profile of the defect
recovering the expected functional dependence in both cases. These techniques allow to
easily compute correlation functions for configurations of multiple defects. We illustrate
this with the simplest case of two parallel defects in both cases. We then combine this
approach with more standard large charge techniques to compute correlation functions of
a class of defect operators with large charge under the surviving global symmetry after
including the defect in both cases.
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The limit that we are considering requires us to scale both the defect coupling h and
the bulk coupling(s) — let us generically denoted these by g — so that λ = gna, ν = hn−a

(a = 1 near d = 4, a = 1
2 near d = 6) are kept fixed when n→∞. It then turns out that

the defect coupling beta function — which is computed exactly in ν and perturbative only
in λ — has a zero at ν2a ∼ λ−1 ε. This result holds irrespective of having the bulk theory at
the fixed point. Tuning it to the fixed point sets g

1
a ∼ ε, which implies that ν ∼ n−

1
2 ε

1−a
2a .

Even though in this limit the defect contribution is suppressed in n, it cannot be neglected
as it is its leading effect.

The scaling limit presented in this paper can be regarded as a tool to study aspects
of the DCFT. In particular, it allows to easily compute the correlator of parallel defects
separated in transverse space, as well as correlators of defect operators when combined with
large charge techniques (even though the integrals involved are hard to do in general and we
concentrated on operators inserted on the defect, i.e. defect operators). However, it acquires
further interest under the light of [8] (see also [27] for a similar idea in the context of Wilson
lines in gauge theories), which appeared as this note was being prepared. In that reference it
is argued, in the O(3) model in d < 4, that the pinning field defect as studied in this paper is
the effective description of an impurity with large spin. In more mundane terms, this means
that an atom with spin n acting as an impurity in a antiferromagnetic material is effectively
described as an external localized magnetic for large n. This gives a further motivation to
consider the limit presented in this note, as it has a direct physical application.1

This work leaves a number of avenues to explore in the future. To begin with, it would
be interesting to extend our results for correlators of large charge operators to generic
insertion points and study their implications through the generic restrictions imposed by
conformal invariance in the presence of boundaries/defects in e.g. [25, 26]. It would also
be interesting to study more generic correlators of defects, in particular in more generic
arrangements with defects at angles. One could also wonder whether a similar limit can be
defined in gauge theories for Wilson lines in higher representations (for instance, the n-fold
symmetric of the fundamental) by taking large n at fixed g2

YMn — somewhat similarly
to [28] —, and whether such limit would be related in any way to [8, 27]. Another interesting
aspect to study is the potential relation to the convexity conjecture in [29] (see also [30] for
a discussion in a context related to ours) when applied to defects. We leave these aspects
for future studies.

The rest of this paper is organized as follows. In section 2 we study line defects in the
O(2N + 1) Wilson-Fisher theory in d = 4− ε in the scaling limit. These defects break the
symmetry down to O(2N). From the defect partition function we extract the defect beta
function and the location of the defect fixed point. As a by-product we compute the profile of
the defect recovering the expected functional form. We then compute correlation functions
for operators in the n-fold symmetric representation of the surviving O(2N) for large n, as
well as correlation functions for parallel defects. In section 3 we turn to surface defects in the
O(2N) theory near d = 6 using the cubic model in [12]. The defects that we consider preserve

1The defect in the cubic model studied in this paper seems to be on a slightly different footing, as it does
not break the bulk global symmetry. It would be interesting to study whether it also emerges as an effective
description as well.
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the O(2N) global symmetry. In the scaling limit, we compute the defect beta function
and identify a fixed point. The profile of the defect recovers also in this case the expected
functional form. We then compute correlation functions of n-fold symmetric operators for
large n as well as correlation functions for defects themselves. In order not to clutter the
presentation, we relegate to the appendices A and B.2–B.7 the details of the computations.
Moreover, B.1 contains a summary of the relevant Fourier-transformation formulae.

2 Line defects near d = 4 in a scaling limit

The starting point is the theory described by (we work in the euclidean and use conventions
as in [31])

S =
∫ 1

2 |∂~ϕ|
2 + g

4(~ϕ2)2 , (2.1)

where ~ϕ is an O(2N + 1) vector. This theory has an IR fixed point in d = 4− ε at

g? = 8π2

2N + 9ε+O(ε2) . (2.2)

We now consider trivial line defect along the coordinate x1 and deform by including
the symmetry-breaking line operator in the bulk theory path integral

D(~z) = e−h
∫
dτ ϕ2N+1(τ,~z) = e−h

∫
dxϕ2N+1 δT (~x−~z) , (2.3)

where δT (~x− ~z) stands for the delta function in the transverse space — which in this case
is of dimension dT = d− 1 with d = 4− ε — supported at ~z, being ~z the location of the line
defect in the transverse space. In the nomenclature of [8], this is the pinning field defect.
Note that this line defect breaks the O(2N + 1) global symmetry down to O(2N).

The partition function in the presence of D is

〈D(~z)〉 =
∫
e−
∫

1
2 |∂~ϕ|

2+ g
4 (~ϕ2)2+hϕ2N+1 δT (~x−~z) . (2.4)

The presence of the couplings g and h allows for interesting relative scaling limits. In
particular, re-scaling the fields ~ϕ→ h~ϕ, one has

〈D(~z)〉 =
∫
e−h

2
∫

1
2 |∂~ϕ|

2+ gh2
4 (~ϕ2)2+ϕ2N+1 δT (~x−~z) . (2.5)

This motivates to consider the limit in which h → ∞ whith gh2 fixed. This results in
a new semiclassical approximation where h acts as ~−1 and the fixed quantity gh2 acts
as a coupling which allows for a perturbative treatment of the quartic interaction.2 To

2Note that in this limit the defect comes with strength one. Nevertheless, this presents no technical
problem, since, as we will see below, the semiclassical equations of motion can be exactly solved in the
defect. One may imagine an alternative limit, where one re-scales ~ϕ = g− 1

2 ~ϕ and keeps fixed h√g. However
in this limit the leftover coupling controls the defect insertion, and one would need to exactly take into
account the quartic interaction.

– 4 –



J
H
E
P
0
6
(
2
0
2
2
)
0
7
1

systematize the expansion it is useful to introduce a parameter n and write ϕ =
√
nφ, g = λ

n

and h = ν
√
n. Then

〈D(~z)〉 =
∫
e−nSeff , Seff =

∫ 1
2 |∂

~φ|2 + λ

4 (~φ2)2 + νφ2N+1 δT (~x− ~z) . (2.6)

Note that introducing the parameter n allows to make natural contact with [8], where it is
argued that the pinning defect emerges as a large spin limit of an impurity in the O(N) model.

We now take the triple-scaling limit where n to infinity with fixed λ and ν. In this
regime we can approximate the partition function by the saddle point value

〈D(~z)〉 = e−nSeff , (2.7)

where now Seff is to be evaluated on the saddle point, whose identification is our next task.
The saddle point equations for Seff are

∂2φa − λ~φ2 φa − ν δT (~x− ~z)δa,2N+1 = 0 . (2.8)

For a 6= 2N + 1 the solution is φa = 0. In turn, for a = 2N + 1 we need to solve

∂2φ2N+1 − λ(φ2N+1)3 − ν δT (~x− ~z) = 0 . (2.9)

Assuming λ� 1, we can solve this equation in perturbation theory.3 To first order

∂2φ2N+1 − ν δT (~x− ~z) = 0 , (2.10)

whose solution is
φ2N+1 = −ν

∫
dy G(x− y)δT (~y − ~z) . (2.11)

We now need to evaluate the action on-shell. Using the equations of motion Seff can be
massaged into (see appendix A for further details)

Seff = ν

2

∫
φ2N+1 δT (~x− ~z) + λ

4

∫
(φ2N+1)4 . (2.12)

The integrals can be done (see appendix B.2 for details of the computation), finding

Seff =
(
−ν

2

2 + λν4

128π2ε
+ λν4

128π2 (3− γE + log(4π))
) ∫

dx0
∫

dd−1~p

(2π)d−1
1
~p2

− λν4

128π2

∫
dx0

∫
dd−1~p

(2π)d−1
log |p|2

~p2 . (2.13)

Regulating the time integral as
∫
dx0 = T , we may write

Seff =
(
−ν

2

2 + λν4

128π2ε
+ λν4

128π2 (3− γE + log(4π))
)
T

∫
dd−1~p

(2π)d−1
1
~p2

− λν4

128π2 T

∫
dd−1~p

(2π)d−1
log |p|2

~p2 . (2.14)

3As discussed above, really the expansion parameter is gh2 = λν2. Thus, to be fully precise we should
demand λν2 � 1.
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Let us now agree to use Minimal Substraction (MS) to renormalize the divergences of
Seff . We then define a renormalized coupling

ν = νR + λν3
R

32π2ε
. (2.15)

Re-storing now the factors of the renormalization scale

ν = µ
ε
2

(
νR + λν3

R

2(4π)2ε

)
. (2.16)

Note that this agrees with [7] upon taking into account the different conventions.
Since ν cannot depend on the arbitrary scale µ, it must be that µ dνdµ = 0. Given that,

to this order, λ = λR and βλ = −ελR this leads to

µ
dνR
dµ

= − ε2νR + λν3
R

(4π)2 . (2.17)

This beta function has a zero at
ν2
R = 8π2

λ
ε , (2.18)

which corresponds to the fixed point of the defect theory.
The defect fixed point given by (2.18) holds irrespective of whether the bulk theory is

tuned to its fixed point. If we do so, using (2.2), one has

ν2
R = 2N + 9

n
. (2.19)

Thus, the leading contribution of the defect gives rise to terms subleading in n. Note that
the computation is exact in ν, and thus it is valid as long as λ provides a good loop counting
parameter.

2.1 The defect profile

From the definition of 〈D〉 it is clear that

1
〈D〉

d

dν
〈D〉 = −n

∫
〈φ2N+1〉 δT (~x− ~z) . (2.20)

In turn, using (2.14) and (2.15), we can explicitly compute the l.h.s. After some massage,
we find∫

dx〈φ2N+1〉δT (~x− ~z) (2.21)

= νR

∫
dx

∫
dd−1~p

(2π)d−1 e
−i~p·~x

{
− 1
~p2 + λν2

R

32π2
3− γE + log(4π)− log |p|2

~p2

}
δT (~x− ~z) .

Of course, the log |~p|2 term has a scale, in which we can re-absorb the finite terms and write

〈φ2N+1〉 = νR

∫
dd−1~p

(2π)d−1 e
−i~p·~x

{
− 1
~p2 −

λν2
R

32π2
log |p|2

~p2

}
. (2.22)

Diagramatically this corresponds to figure 1.
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Figure 1. Diagramatic expansion of (2.22). We denote by a square the vertex associated to the
defect — represented as a thick line — emitting a φ2N+1 field — represented by a dotted line —
and by a dot the bulk interaction vertex.

Eq. (2.22) is the expansion of

〈φ2N+1〉 = −νR
∫

dd−1~p

(2π)d−1
e−i~p·~x

|~p|2−
λν2
R

16π2

. (2.23)

At the defect fixed point we recover the expected scaling, in agrremeent with eq. (21) in [11]

〈φ2N+1〉 = −νR
∫

dd−1~p

(2π)d−1
e−i~p·~x

|~p|2−
ε
2
∼ 1
|~xT |

d−2
2
, (2.24)

where ~xT refers to location in the transverse space.

2.2 Correlators in the defect theory

The defect insertion along φ2N+1 breaks the O(2N + 1) symmetry down to O(2N). Intro-
ducing complex combinations Φi, i = 1 · · ·N so that only a U(N) is manifest, the action
including the defect is

S =
∫ 1

2(∂ϕ2N+1)2 + |∂~Φ|2 + g

4
(
(ϕ2N+1)2 + 2|~Φ|2

)2
+ hϕ2N+1δT (~x− ~z) . (2.25)

We can now consider operators in the [n, 0 · · · 0] of the unbroken O(2N) symme-
try. Following the argument in [31] (see also [32]), their correlator is captured by
〈(Φ1(z1))n(Φ?

1(z2))n〉. The path integral formula is

〈(Φ1(z1))n(Φ?
1(z2))n〉 = 1

〈D〉

∫
e−Seff , (2.26)

where now

Seff =
∫ 1

2(∂ϕ2N+1)2 + |∂~Φ|2 + g

4
(
(ϕ2N+1)2 + 2|~Φ|2

)2

+ hϕ2N+1δT (~x− ~z)− n log Φ1δ(x− z1)− n log Φ?
1δ(x− z2) . (2.27)

We now assume the triple-scaling limit above. Upon re-scaling ϕ2N+1 →
√
nφ, Φi →

√
nΨi

and introducing λ = gn, h =
√
nν

Seff = n

∫ 1
2∂φ

2 + |∂~Ψ|2 + λ

4
(
φ2 +2|~Ψ|2

)2
+νφδT (~x−~z)− log Ψ1δ(x−z1)− log Ψ?

1δ(x−z2) .
(2.28)
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For large n with fixed λ, ν we can use the saddle point approximation. The equations of
motion, to leading order for small λ, are

∂2φ− νδ(~x− ~z) = 0 , (2.29)

and (it is clear that Ψi = 0 for i 6= 1)

∂2Ψ1 + 1
Ψ?

1
δ(x− z2) = 0 , ∂2Ψ?

1 + 1
Ψ1

δ(x− z1) = 0 . (2.30)

The solution to these equations is

φ = −ν
∫
dy G(x− y) δT (~y − ~z) , Ψ1 = G(z − z2)√

G(z1 − z2)
, Ψ?

1 = G(z − z1)√
G(z1 − z2)

. (2.31)

We now need to evaluate the action on-shell. First, note that

Seff = n

∫ 1
2∂φ

2 + λ

4φ
4 + νφδ(~x− ~z) (2.32)

+
∫
|∂~Ψ|2 − log Ψ1δ(x− z1)− log Ψ?

1δ(x− z2) + λ
(
|~Ψ|4 + |~Ψ|2φ2

)
.

The first line gives precisely 〈D〉, and therefore

〈(Φ1(z1))n(Φ?
1(z2))n〉 = e−n S̃eff , (2.33)

where

S̃eff =
∫
|∂~Ψ|2 − log Ψ1δ(x− z1)− log Ψ?

1δ(x− z2) + λ
(
|~Ψ|4 + |~Ψ|2φ2

)
. (2.34)

Up to a constant, this is

S̃eff = − logG(z1 − z2) + λ

∫
|~Ψ1|4 + λ

∫
|~Ψ1|2φ2 . (2.35)

The first integral is the bulk contribution, just as in [19]. The second integral, arising from
the defect interactions, corresponds to the diagram in figure 2. It is clear that this diagram
is suppressed by an extra 1

n with respect to the bulk contribution. This is so because the
bulk contribution in large n is dominated by “kermit” diagrams (see [19]) which involve
merging together 2 lines and so there are O(n (n− 1)) such diagrams, while the number
of those in figure 2 is of order n. Nevertheless, even if subleading in n, it is however the
leading contribution arising from the defect and thus cannot be neglected.

The integral corresponding to the contribution of the defect is very complicated. To
make progress, we restrict to correlators of defect operators, that is, we set ~z1 = ~z2 = ~z

(and take ~z = 0 with no loss of generality). In that case, the result is (see appendix B.3 for
further details on the computation)

Ŝeff = 2
(

1 + λ

8π2 + λν2

16π2

)
log |z0

1 − z0
2 | . (2.36)

– 8 –



J
H
E
P
0
6
(
2
0
2
2
)
0
7
1

Figure 2. Defect correction to the correlation function of defect fields. We denote with solid lines
the Φi (i 6= 2N + 1) fields, whose insertion we put at a generic point for the sake of clarity of
the figure.

Figure 3. Second order corrections to correlators of defect fields.

Therefore, putting all together

〈(Φ1(z1))n(Φ?
1(z2))n〉 ∼ 1

|z0
1 − z0

2 |
2n
(

1+ λ
8π2 + λν2

(4π)2

) . (2.37)

It then follows that

∆[n,0··· ,0] = n

(
1 + λ

8π2 + λν2

(4π)2

)
. (2.38)

Tuning both the defect and the bulk theory to the fixed point, this becomes

∆[n,0··· ,0] = n

(
1 + n

2N + 9ε+ ε

2

)
. (2.39)

Indeed, the defect correction is subleading in n to the bulk contribution. However, to give
full meaning to this expression one should relate ε and n. One could generically assume
λ ∼ εp. Since at the fixed point, λ ∼ εn, this is equivalent to choosing n ∼ εp−1, which is
consistent for p ∈ [0, 1). Tuning p sufficiently far from 0 one can ensure the self-consistency
of the computation above.

It is very interesting however to consider in the detail the second order corrections,
where one would find the diagrams in figure 3.

It is clear that there are of the order of n2 diagrams of type a), which then all together
contribute nν4λ2 ∼ nε2, while of type b) there are of the order of n2 diagrams which all
together contribute n2ν2λ2 ∼ n3ε2. Thus, the p = 0 case (i.e. λ ∼ ε0 � 1 would actually
select the diagrams of type b) above — which are the generalization of the kermit diagrams
in [19] including the defect. While undoubtedly this case would be very interesting, the
relevant integrals are very involved and we have not been able to compute them.
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2.3 Correlators of defects

Instead of considering a single defect, we could consider the insertion of multiple defects
in an arbitrary arrangement. For simplicity, let us consider two parallel defects — that
is, oriented along the same direction — and located, in the transverse space, at ~z1, ~z2
respectively. A quantity of direct interest is the correlation function of two such defects,
that is 〈D(z1)D(z2)〉. The path integral expression is

〈D(z1)D(z2)〉 =
∫
e−
∫

1
2 |∂~ϕ|

2+ g
4 (~ϕ2)2+hϕ2N+1 δT (~x−~z1)+hϕ2N+1 δT (~x−~z2) . (2.40)

Let us now consider the same triple scaling limit as above. Redefining fields and parameters
one finds

〈D(z1)D(z2)〉 =
∫
e−nSeff ,

Seff =
∫ 1

2 |∂
~φ|2 + λ

4 (~φ2)2 + νφ2N+1 δT (~x− ~z1) + νφ2N+1 δT (~x− ~z2) . (2.41)

Taking n→∞ for fixed λ, ν the integral can be done through saddle point. For small λ
the saddle point equations set φa = 0 for a 6= 2N + 1. For φ2N+1 we have

∂2φ2N+1 − ν δT (~x− ~z1)− ν δT (~x− ~z2) = 0 . (2.42)

The solution is

φ2N+1 = ρ1(~x) + ρ2(~x), ρi(~x) = −ν
∫
dy G(x− y)δT (~y − ~zi) . (2.43)

Turning to the on-shell action, it can be re-written as4

Seff = ν

2

∫
ρ1 δT (~x− ~z1) + λ

4

∫
ρ4

1 + ν

2

∫
ρ2 δT (~x− ~z2) + λ

4

∫
ρ4

1 (2.44)

+ ν

2

∫
ρ1δT (~x− ~z2) + ν

2

∫
ρ2δT (~x− ~z1) + λ

2

∫
4ρ3

1ρ2 + 3ρ2
1ρ

2
2 .

We recognize here the contribution of D(zi) alone and then an interaction term. Thus

〈D(z1)D(z2)〉 = 〈D(z1)〉〈D(z2)〉e−nSI , (2.45)

with
SI = ν

2

∫
ρ1δT (~x− ~z2) + ν

2

∫
ρ2δT (~x− ~z1) + λ

2

∫
4ρ3

1ρ2 + 3ρ2
1ρ

2
2 . (2.46)

We recognize here the contribution of the diagrams as in figure 4.
The result of the integrations is (see appendix B.4 for further details)

SI =
[
− ν

2

4π

(
1 + ε log |~z1 − ~z2|+ ε

γE + log(4π)
2

)
+ λν4

64π3ε
+ 3λν4

64π3 log |~z1 − ~z2|

− 3λν4

512π + 3λν4

128π3 (2 + γE + log(4π))
]

T

|~z1 − ~z2|
. (2.47)

4Note that a priori
∫
ρ3

1ρ2 and
∫
ρ1ρ

3
2 seem different. Denoting i(~z1, ~z2) =

∫
ρ3

1ρ2, the other integral is
i(~z2, ~z1) =

∫
ρ3

2ρ1. However by symmetry i(~z1, ~z2) can only involve |~z1 − ~z2|, so i(~z1, ~z2) = i(~z2, ~z1) (this can
be explicitly seen in the result below). Thus these seemingly different contributions are actually equal and
thus can be summed up.
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Figure 4. Diagrams contributing to the correlation function of line defects: a) corresponds to the
O(λ0) terms; b) corresponds to the ρ3

1ρ2, ρ1ρ
3
2 contributions; c) corresponds to the ρ2

1ρ
2
2 contribution.

Using (2.15) to convert the bare couplings in terms of the renormalized couplings, this can
be massaged into

SI =−
(
ν2
R

4π+ 3λν4
R

512π −
λν4

R

64π3 (3+γE+log(4π))
)

T

|~z1−~z2|

(
1−
(
−ε+λν2

R

8π2

)
log |~z1−~z2|

)
.

(2.48)
We can regard this as the small λ expansion of

SI = −
(
ν2
R

4π + 3λν4
R

512π −
λν4

R

64π3 (3 + γE + log(4π))
)

T

|~z1 − ~z2|
1+
(
−ε+

λν2
R

8π2

) . (2.49)

This result agrees, upon turning off the interaction, with [33]. At the defect fixed point the
result simplifies, and one finds

SI = −
(
ν2
R

4π + 3λν4
R

512π −
λν4

R

64π3 (3 + γE + log(4π))
)

T

|~z1 − ~z2|
. (2.50)

3 Surface defects near d = 6 in a scaling limit

Let us consider in d = 6− ε the theory with O(2N) global symmetry (we follow conventions
of [31])

S =
∫ 1

2 |∂~ϕ|
2 + 1

2∂η
2 + g1

2 η |~ϕ|
2 + g2

6 η
3 . (3.1)

As shown in [34] (see also [12]), this theory admits, in perturbation theory, an IR fixed
point for 2N larger than a critical Ncr ∼ 1038. The precise location of the fixed point is

g1 ? =

√
6 (4π)3

2N ε

(
1 +O

( 1
N

))
, g2 ? = 6

√
6 (4π)3

2N ε

(
1 +O

( 1
N

))
. (3.2)

The IR fixed point of the cubic theory above has been conjectured to correspond to the
completion of the UV fixed point of the quartic theory (2.1) in d = 4 + ε dimensions [12].
This is best studied performing a Hubbard-Stratonovich transformation and then tuning to
the fixed point. The resulting model is described by an action

Squartic =
∫
∂~ξ2 + σ ~ξ2 , (3.3)

– 11 –



J
H
E
P
0
6
(
2
0
2
2
)
0
7
1

where ~ξ is a O(N) vector and σ a field with a propagator of the form 〈σ(x)σ(x)〉 ∼ |x|−4. In
this guise, the conjectured equivalence between the IR/UV fixed point of the cubic/quartic
theory has passed several non-trivial checks, including in the sector of large charge operators
as in [31] (see also [35, 36] and [14]). Nevertheless, the fact that the potential is cubic —
and hence not bounded below — or, alternatively from the quartic model point of view,
has negative coupling at the fixed point, ends uf manifesting in the existence of instanton
corrections giving imaginary parts to anomalous dimensions [13].

In the cubic theory (3.1) we can imagine inserting a trivial surface defect (that is,
supported on a 2d space). Let us consider our defect along (x4, x5) at ~x = (x0, x1, x2, x3) = 0.
We will denote with the subscript || the directions parallel to the defect — the worldvolume
— and with T the directions transverse to the defect. In this case dT = d− 2 with d = 6− ε.
Then, one may deform the otherwise trivial defect theory with the insertion of

D = e−h
∫
d2x η . (3.4)

Note that the defect does not break the O(N) symmetry present in the original theory, and
is, in that respect, different from the pinning field defect in the nomenclature of [8]. It is
natural to guess that it corresponds, in the quartic theory avatar in eq. (3.3), to a defect
operator Dquartic = exp(−ĥ

∫
d2x ~ξ2).

One could imagine deforming instead with the symmetry-breaking insertion
D′ = exp(−h′

∫
d2xϕ2N ), which is the direct analog of the deformation in d = 4 − ε

(which is, properly speaking, the pinning field defect in the nomenclature of [8]). However,
since there is no potential for ~ϕ alone, this defect would behave as in the free theory (up to
higher corrections in n−1). For this reason, we restrict to the symmetry-preserving defect
operator in eq. (3.4).

The defect VEV is
〈D〉 =

∫
e−Seff , (3.5)

with
Seff =

∫ 1
2 |∂~ϕ|

2 + 1
2∂η

2 + g1
2 η |~ϕ|

2 + g2
6 η

3 + hη δT (~x) . (3.6)

Just as in the 4d case, the couplings gi, h allow for interesting limits when the couplings scale
relatively in the appropriate way. The most interesting such scaling is when (~ϕ, η)→ h(~ϕ, η)
while keeping gih fixed, where a new semiclassical limit with h−1 ∼ ~ emerges controlling
gih the cubic interactions and thus allowing for a systematic perturbative expansion. Just
as in the 4d case, it is useful to introduce a parameter n and scale now ~ϕ =

√
n~φ, η =

√
nρ

while introducing gi
√
n = hi, h = ν

√
n. Then

Seff = n

∫ 1
2 |∂

~φ|2 + 1
2∂ρ

2 + h1
2 ρ |

~φ|2 + h2
6 ρ

3 + νρ δT (~x) . (3.7)

In large n with hi, ν fixed, we can use the saddle point approximation. Moreover, we
will assume h1 ∼ h2 � 1.5 Then, the saddle point equations set ~φ = 0. As for ρ, for small
hi, we can keep to leading order

∂2ρ− νδT (~x) = 0 . (3.8)
5Just as in the 4d case, strictly speaking, the expansion parameter is hiν � 1.
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The solution is
ρ = −ν

∫
dz G(x− z)δT (~z) . (3.9)

To evaluate the on-shell action, we need to evaluate, on the saddle point solution (see
appendix A for further details)

Seff = n
ν

2

∫
ρ δT (x) + n

h2
6

∫
ρ3 . (3.10)

The result is (see appendix B.5 for details)

Seff = −nV
{(

ν2

2 + h2ν
3

48π2
1
ε

)∫
d~pT

(2π)dT
1
~p2
T

− h2ν
3

48π2

∫
d~pT

(2π)dT
log |~pT |
~p2
T

}
, (3.11)

where
∫
d~x|| = V . Using MS to re-absorb divergences, we introduce

ν = νR −
h2ν

2
R

16π2ε
. (3.12)

Recovering explicitly the dependence on the renormalization scale, this is

ν = µ
ε
2

(
νR −

h2ν
2
R

16π2ε

)
. (3.13)

Using that βh2 = − ε
2h2 + · · · , we find

βν = − ε2νR −
h2ν

2
R

16π2 . (3.14)

This has a fixed point at

νR = −8π2ε

h2
. (3.15)

The presence of the defect fixed point holds irrespective of the bulk theory being at its fixed
point. If in addition we tune it to the fixed point

νR = −

√
πN ε

108n . (3.16)

We again see that the contributions of the defect are subleading in n.
As a by-product, we can also compute the dimension of ρ̂ following the trick in [7, 37],

finding
∆(ρ̂) = 2 + ∂β

∂ν

∣∣∣
νR

= 2 + ε

2 +O(ε2) . (3.17)

3.1 The defect profile

We can compute the profile of the defect following the same strategy as in eq. (2.20). To
begin with, in terms of the renormalized couplings we have

Seff = −nV
{
ν2
R

2

∫
d~pT

(2π)dT
1
~p2
T

− h2ν
3
R

48π2

∫
d~pT

(2π)dT
log |~pT |
~p2
T

}
. (3.18)
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Figure 5. Diagramatic expansion of (3.19). We denote by a square the vertex associated to the
defect — represented as a thick line — emitting a ρ field — represented by a dotted line — and by
a dot the bulk interaction vertex.

Therefore, using the same trick as in (2.20), we now find

∫
dx 〈ρ〉 δT (~x) = −V νR

∫
d~pT

(2π)dT

(
1
~p2
T

− h2νR
16π2

log |~pT |
~p2
T

)
. (3.19)

Diagramatically this corresponds to figure 5.
From eq. (3.19) we can read off

〈ρ〉 = −νR
∫

d~pT
(2π)dT

ei~pT ·~xT

|~pT |2+h2νR
16π2

. (3.20)

At the fixed point we recover the expected scaling

〈ρ〉 = −νR
∫

d~pT
(2π)dT

ei~pT ·~xT

|~pT |2−
ε
2
∼ 1
|~xT |

d−2
2
. (3.21)

3.2 Correlators in the defect theory

We can consider operators in the [n, 0 · · · 0] of the unbroken O(2N) symmetry. By the
argument in [31] (see also [32]), their correlator, in the presence of the defect is captured by
〈(Φ1(z1))n (Φ?

1(z2))n〉, which can be computed as

〈(Φ1(z1))n (Φ?
1(z2))n〉 = 1

〈D〉

∫
e−Seff , (3.22)

where (Φ1 ≡ Φ. Moreover, with no loss of generality, we consider the defect at the origin)

Seff = n

∫ 1
2 |∂Φ|2 + 1

2∂ρ
2 + h1

2 ρ |Φ|
2 + h2

6 ρ
3 + νρ δT (x)− log Φδ(x− z1)− log Φ?δ(x− z2) .

(3.23)
At weak coupling the relevant saddle point equations are

∂2Φ + 1
Φ?
δ(x− z2) = 0 , ∂2Φ? + 1

Φδ(x− z1) = 0 , (3.24)

and
∂2ρ− νδ(x)− h1

6 |Φ|
2 = 0 . (3.25)
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Figure 6. Defect correction to the correlation function of defect fields. We denote with solid lines
the Φ fields, whose insertion we put at a generic point for the sake of clarity of the figure.

The solution to these equations is

Φ = ΦC , Φ? = Φ?
C , ρ = ρD + ρC , (3.26)

with ΦC , Φ?
C and ρC the solutions in [31]. Recall that ρC is itself of order h1. Moreover,

ρD is given by (3.9), which in position space reads

ρD = − ν

4π2
1
|~xT |2

. (3.27)

Evaluating the action one finds, to leading order in hi

Seff = SCeff + SDeff + h1n

2

∫
ρD|ΦC |2 + nν

∫
ρCδT , (3.28)

where SC,Deff stands for the action evaluated on the C,D fields, respectively. Therefore

〈(Φ1(z1))n (Φ?
1(z2))n〉 = e−S

C
eff−

h1n
2

∫
ρD|ΦC |2−nν

∫
ρCδT . (3.29)

Diagramatically, the defect contribution to the correlation function is coming from the
diagram in figure 6. Because of the same reason as above, it is clear that this diagram
is subleading in n when compared to the bulk contribution. Yet, as it is the leading
contribution arising from the presence of the defect it cannot be neglected.

The contribution of the defect is a complicated integral. To make progress, we con-
centrate on defect operators by taking ~zi,T = 0. Then, doing the integrals one finds (see
appendix B.6 for further details)

〈(Φ1(z1))n (Φ?
1(z2))n〉 ∼ 1

|~z1|| − ~z2|||
2n
(

2−
h2

1
64π3−

3h1ν
32π2

) . (3.30)

This suggests that

∆[n,0···0] = n

(
2− h2

1
64π3 −

3h1ν

32π2

)
. (3.31)

Note that at the fixed point ν < 0, so the second term is actually positive. Tuning the
theory to the bulk and defect fixed points

∆[n,0···0] = n

(
2− 3n

N
ε+ ε

8

)
. (3.32)

Note that the same remarks as in the d = 4 case above apply.
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Figure 7. Diagrams contributing to the correlation function of line defects: a) corresponds to the
O(h0

i ) terms; b) corresponds to the ρ2
1ρ2 contribution.

It would be very interesting to study the convexity properties of the DCFT under
the light of [29] (see also [30] for a discussion in a context related to ours). The defect
interaction contributes oppositely to the bulk piece, but is suppressed so as to be able to
compensate for it. It would be interesting to study whether for N sufficiently large there
is a regime where the defect contribution can change the convexity properties and the
implications of this for the weak gravity conjecture.

3.3 Correlators of defects

Let us consider now two parallel defects, located in transverse space one at ~z1T and the
other at ~z2T . Their correlator is computed as

〈D(~z1T )D(~z2T )〉 = 1
〈D(~z1T )〉〈D(~z2T )〉

∫
e−Seff , (3.33)

with

Seff = n

∫ 1
2 |∂

~φ|2 + 1
2∂ρ

2 + h1
2 ρ |

~φ|2 + h2
6 ρ

3 + νρ δT (~z1T ) + νρ δT (~z2T ) . (3.34)

To leading order in the h’s, the saddle point solution is

ρ = ρ1 + ρ2, ρi = −ν
∫

ddT ~pT
(2π)dT

ei~pT ·(~xT−~ziT )

~p2
T

. (3.35)

Evaluating the action on-shell gives

Seff = nS
(1)
eff + nS

(2)
eff + n

∫ 3h2
6 ρ2

1ρ2 + 3h2
6 ρ2

2ρ1 + 1
2νρ2 δT (~z1T ) + 1

2νρ1 δT (~z2T ) , (3.36)

where S(i)
eff is the on-shell action for defect i. Hence

〈D(~z1T )D(~z2T )〉 = e−nSeff , Seff =
∫
h2ρ

2
1ρ2 + νρ2 δT (~z1T ) . (3.37)

We recognize here the contribution of the diagrams as in figure 7 below.
Doing the integrals, one finds (see appendix B.7 for details)

Seff = −
(
ν2
R

4π2 + ν3
Rh2

64π4 (2 + γE + log π)
)

V

|~z1T − ~z2T |
2−
(
ε+h2νR

8π2

) . (3.38)
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Upon putting the defect theory at the fixed point using (3.15), one finds

Seff = −
(
ν2
R

4π2 + ν3
Rh2

64π4 (2 + γE + log π)
)

V

|~z1T − ~z2T |2
. (3.39)

It is interesting to note that in this computation the diagrams corresponding to the
anomalous dimension of the scalars are suppressed.6 Indeed, going to the next order in
perturbation theory one would have 3 diagrams: one which is two copies of that in figure 7b);
one which is a “ladder” (two copies like figure 7a) connected by an intermediate line) and the
one-loop self-energy of the exchanged field in figure 7a). To understand those, it is perhaps
easiest to use the Feynman rules from the original lagrangian. The first two diagrams
would contribute ∼ h4g2

2 ∼ nh2
2ν

2 while the last would contribute ∼ h2g2
2 ∼ h2

2ν
2. As

a consequence, the self-energy diagram would actually be suppressed. This can also be
understood “combinatorially”: in terms of m ∼

√
n, the defect is akin to m defects of

coupling ν. Then, hanging 2 lines on one such defect can be done in ∼ m2 ways, while
hanging only one line can be done in m ways. As a consequence, the one-loop diagram is to
be expected to be suppressed by a factor of m2 = n with respect to the other 2 diagrams.
In this respect, our limit is in fact selecting a subset of diagrams. Note however that the
fixed point is found at small values of the double-scaling parameter. Thus, it would be
interesting to further study higher orders.
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A On the evaluation of the on-shell action

In this appendix we provide further details on the computation of the on-shell action. To
cover both the d = 4, 6 cases, consider the action

S =
∫
dx

1
2∂φ

2 + λ

nq
φn + ν φ δ(~x− ~z) . (A.1)

Upon suitably choosing the parameters n, λ, q, ν here, this is the relevant part of the action
for both cases. The equation of motion is

∂2φ− λ

q
φn−1 − ν δ(~x− ~z) = 0 . (A.2)

Let us solve this equation in perturbation theory to order λ. Writting φ = φ0 +λφ1, one has

∂2φ0 = ν δ(~x− ~z) , ∂2φ1 = 1
q
φn−1

0 . (A.3)

6Similar comments apply for the computation of the defect profile in eq. (3.21). Also the discussion could
be extended to the 4d case in the previous section, although in that case the anomalous dimension of the
exchanged field enters at 2 loops.
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The solution for φ0 is
φ0 = ν

∫
dy G(x− y) δ(~x− ~y) . (A.4)

In addition, the solution for φ1 is

φ1 = 1
q

∫
dyG(x− y)φn−1

0 (y) . (A.5)

Let us now go back to S. Using the full eom. one has

Sos =
∫
dxν φ δ(~x− ~z)−

∫
dxλ

n− 2
2nq φ

n . (A.6)

Plugging here the solution to order λ

Sos = ν

2

∫
dxφ0 δ(~x− ~z) + λν

2

∫
dxφ1 δ(~x− ~z)−

∫
dxλ

n− 2
2nq φ

n
0 . (A.7)

Now ∫
dxφ1 δ(~x− ~z) = 1

q

∫
dx

∫
dyG(x− y)φn−1

0 (y) δ(~x− ~z)

= 1
q

∫
dy φn−1

0 (y)
∫
dxG(x− y) δ(~x− ~z) . (A.8)

Up to a ν−1, we recognize here φ0, so∫
dxφ1 δ(~x− ~z) = 1

νq

∫
dy φn0 (y) . (A.9)

So

Sos = ν

2

∫
dxφ0 δ(~x−~z)+ λ

2q

∫
dxφn1−

∫
dxλ

n− 2
2nq φ

n = ν

2

∫
dxφ0 δ(~x−~z)+ λ

nq

∫
dxφn1 .

(A.10)
Thus, all in all we find the on-shell action as described in the main text.

B Further details on the integrals

B.1 Fourier transform formulae

For Fourier transforms we use

1
(x2)α =

(4π)
d
2 Γ

(
d
2 − α

)
4αΓ(α)

∫
ddp

(2π)d
e−ipx

(p2)
d
2−α

. (B.1)

In particular one has

G(x) =
∫

ddp

(2π)d
e−ipx

p2 =
Γ(d2 − 1)

4π
d
2

1
(x2)

d−2
2
. (B.2)
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B.2 Eq. (2.14)

In this appendix we compile details of the derivation of (2.14) starting with (2.12). Fourier-
transforming the first term in (2.12) gives

ν

2

∫
φ2N+1 δ(~x− ~z) = −ν

2

2

∫
dx0

∫
dd−1~p

(2π)d−1
1
~p2 . (B.3)

As for the second term, upon Fourier transforming and appropriately shifting the
integration variables, we find

λ

4

∫
(φ2N+1)4 = λν4

4

∫
dx0

∫
dd−1~p1
(2π)d−1

1
~p2

1

∫
dd−1~p2
(2π)d−1

∫
dd−1~p3
(2π)d−1

1
~p2

2 (~p3 + ~p1)2 (~p2 − ~p3)2

(B.4)

Using eq. 2.8 in [38] with n1 = 0, n2 = 1, n3 = 1, n4 = 0 and n5 = 1

λ

4

∫
(φ2N+1)4 = πd−1

(2π)2d−2G(0, 1, 1, 0, 1)λν
4

4

∫
dx0

∫
dd−1~p1
(2π)d−1

1
(~p2

1)5−d . (B.5)

Using (2.10) in that reference, in d = 4− ε dimensions one finds

G(0, 1, 1, 0, 1) = G(1, 1)G
(

1, 2− d− 1
2

)
= 2π

ε
+ (3− γE)2π . (B.6)

Therefore
λ

4

∫
(φ2N+1)4 = λν4

128π2

(1
ε

+ 3− γE + log(4π)
)

×
∫
dx0

∫
dd−1~p

(2π)d−1
1
~p2 −

λν4

128π2

∫
dx0

∫
dd−1~p

(2π)d−1
log |p|2

~p2 . (B.7)

B.3 Eq. (2.36)

In this appendix we describe the derivation of (2.36). The starting point is (2.35). The first
integral corresponds to the bulk contribution, and can be borrowed from [19]

λ

∫
|~Ψ1|4 = λ

4π2 log |z1 − z2| . (B.8)

The integral corresponding to the defect interaction is much more involved. To make further
progress, let us assume ~z1 = ~z2 = ~z (and, with no loss of generality, set ~z = 0). Note that this
means that we are computing correlation functions of defect fields. The integral reduces to

λ

∫
|~Ψ1|2φ2 = λν2

256π6G(z1 − z2)

∫
dx0

∫
dd−1~x

1
(x0 − (z0

1 − z0
2))2 + ~x2

1
(x0)2 + ~x2 (B.9)

This can now be done by brute force. Introducing a cut-off so that |~x| ∈ (εx,∞), one finds

λ

∫
|~Ψ1|2φ2 = λν2

8π2 log |z
0
1 − z0

2 |
2εx

. (B.10)

In the following we will assume the appropriate choice of cut-off and simply keep

λ

∫
|~Ψ1|2φ2 = λν2

8π2 log |z0
1 − z0

2 | . (B.11)
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B.4 Eq. (2.47)

In this appendix we drive (2.47) starting with (2.46). For the O(λ0) terms

ν

2

∫
ρ1δT (~x− ~z2) + ν

2

∫
ρ2δT (~x− ~z1) = −ν2

∫
dx0

∫
dd−1~p

(2π)d−1
e−i~p·(~z1−~z2)

~p2 (B.12)

Fourier transforming in d = 4− ε dimensions we find

ν

2

∫
ρ1δ(~x−~z2)+ ν

2

∫
ρ2δ(~x−~z1) =− ν

2

4π
T

|~z1−~z2|

(
1+ε log |~z1−~z2|+ε

γE +log(4π)
2 · · ·

)
,

(B.13)
where T =

∫
dx0.

In turn, for the O(λ) terms, the first integral is

λ

4

∫
ρ3

1ρ2 = λν4

4

∫
dx0

∫
dd−1~p1
(2π)d−1

ei~p1·(~z1−~z2)

~p2
1

∫
dd−1~p2
(2π)d−1

∫
dd−1~p3
(2π)d−1

1
~p2

2 ~p
2
3 (~p1 − ~p2 − ~p3)2 .

(B.14)
Using eq. 2.8 in [38] with n1 = 0, n2 = 1, n3 = 1, n4 = 0 and n5 = 1∫

dd−1~p2
(2π)d−1

∫
dd−1~p3
(2π)d−1

1
~p2

2 ~p
2
3 (~p1 − ~p2 − ~p3)2 = πd−1

(2π)2d−2 (~p2
1)d−4G(0, 1, 1, 0, 1) . (B.15)

Hence

λ

4

∫
ρ3

1ρ2 = λν4

4
πd−1

(2π)2d−2 G(0, 1, 1, 0, 1)
∫
dx0

∫
dd−1~p1
(2π)d−1

ei~p1·(~z1−~z2)

(~p2
1)5−d . (B.16)

Fourier transforming

λ

4

∫
ρ3

1ρ2 = λν4

512π3ε

T

|~z1 − ~z2|
+ 3λν4

512π3 log |~z1 − ~z2|
T

|~z1 − ~z2|

+ 3λν4

1024π3 (2 + γE + log(4π)) T

|~z1 − ~z2|
. (B.17)

As for the remaining integral, it reads

λ

4

∫
ρ2

1ρ
2
2 = λν4

4

∫
dx0

∫
dd−1~p1
(2π)d−1 e

i~p1·( ~z1−~z2)
∫

dd−1~p2
(2π)d−1

∫
dd−1~p3
(2π)d−1

1
(~p2 +~p1)2 (~p3 +~p1)2 ~p2

2 ~p
2
3
.

(B.18)

Using eq. 2.8 in [38] with n1 = 1, n2 = 1, n3 = 1, n4 = 1 and n5 = 0, and given that
G(1, 1, 1, 1, 0) = π3, this is

λ

4

∫
ρ2

1ρ
2
2 = −λν

4

256

∫
dx0

∫
dd−1~p1
(2π)d−1

ei~p1·( ~z1−~z2)

~p2
1

. (B.19)

Then, Fourier transforming

λ

4

∫
ρ2

1ρ
2
2 = − λν4

1024π
T

|~z1 − ~z2|
. (B.20)
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B.5 Eq. (3.11)

In this appendix we describe the computation of (3.11) starting with (3.10). The O(h0
2)

part is

n

∫
ν

2ρ δT (x) = −nν
2

2

∫
d~x||

∫
d~pT

(2π)dT
1
~p2
T

. (B.21)

In turn, the O(h2) term is

n

∫
h2
6 ρ

3 = −nh2
6 ν

3
∫
d~x||

∫
d~pT

(2π)dT
1
~p2
T

∫
d~qT

(2π)dT
1

~q2
T (~qT − ~pT )2 . (B.22)

The ~qT integral is easily done. Introducing Feynman parameters and shifting the integration
variable∫

d~qT
(2π)dT

1
~q2
T (~qT − ~pT )2 =

∫ 1

0
dx

∫
d~qT

(2π)dT
1

(~q2
T + ∆)2 , ∆ = x(1− x)~p2

T . (B.23)

The integral is easily doable. Writing now dT = d− 2, in d = 6− ε dimensions we have

∫
d~qT

(2π)dT
1

~q2
T (~qT − ~pT )2 = 2π

dT
2

Γ(dT2 )
1

(2π)dT
2− dT

4
π

sin(dT π2 )

∫ 1

0
dx∆

dT
2 −2 = 1

8π2 ε
− log |~pT |

8π2 .

(B.24)
(here log |~pT |2 = log(e−2+γE−log(4π)µ|~pT |2)).

B.6 Eq. (3.30)

In this appendix we describe the evaluation of the integrals in the exponent in (3.29) leading
to (3.30). The contribution of SCeff can be borrowed from [31]. As for the first contribution
in the remaining terms∫

ρD|ΦC |2 = − ν

(4π2)(4π3)2G(z1 − z2)

∫
dx

1
|x− z1|4 |x− z2|4 |~xT |2

. (B.25)

To make further progress, we will assume that ~ziT = 0, so that we are computing correlators
of defect fields. Then∫

ρD|ΦC |2 = − ν

(4π2)(4π3)2G(z1 − z2)

∫
d~xT

∫
d~x||

1
((~x|| − ~z||)2 + ~x2

T )2
1

(~x2
|| + ~x2

T )2
1
~x2
T

,

(B.26)
where ~z|| = ~z1|| − ~z2||. The integral is (that the same remarks concerning the regularization,
using a cut-off in position space, of the integrals apply as in the case in appendix B.3)∫

d~xT

∫
d~x||

1
((~x|| − ~z||)2 + ~x2

T )2
1

(~x2
|| + ~x2

T )2
1
~x2
T

= π3

z4 log |~z||| . (B.27)

Therefore
h1n

2

∫
ρD|ΦC |2 = −n h1ν

32π2 log |~z1|| − ~z2||| . (B.28)

As for the second contribution, it reads∫
ρCδT = − h1

G(z1 − z2)

∫
dx

∫
dy G(x− y)G(y − z1)G(y − z2)δT (x) . (B.29)
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This can be re-arranged as follows∫
ρCδT = h1

ν

∫
dy

(
−ν

∫
dxG(y − x)δT (x)

)
G(y − z1)√
G(z1 − z2)

G(y − z2)√
G(z1 − z2)

. (B.30)

We recognize here ρD, ΦC and Φ?
C . Thus∫
ρCδT = h1

ν

∫
ρD |ΦC |2 . (B.31)

Hence, borrowing the previous results

nν

∫
ρCδT = −nh1ν

16π2 log |~z1|| − ~z2||| . (B.32)

B.7 Eq. (3.39)

In this appendix we give details of the computation of (3.39) starting with the integral
in (3.37). The O(h0

2) term in (3.37)

ν

∫
dxρ2 δT (~z1T ) = −ν2

∫
d~x||

∫
ddT ~pT
(2π)dT

ei~pT ·(~z1T−~z2T )

~p2
T

(B.33)

Doing the Fourier transform

ν

∫
dxρ2 δT (~z1T ) = −ν2V

(
1

4π2~z2
T

+ ε

8π2~z2
T

(γE + log π) + ε

4π2
log |~zT |
~z2
T

)
. (B.34)

The O(h2) term is∫
dxρ2

1ρ2 = −ν3V

∫
ddT ~pT
(2π)dT

ei(~pT+~qT )·(~z1T−~z2T )

~p2
T

∫
ddT ~qT
(2π)dT

1
~q2
T (~pT + ~qT )2 . (B.35)

Doing the ~qT integral∫
dxρ2

1ρ2 = − ν
3V

8π2ε

∫
ddT ~pT
(2π)dT e

i(~pT+~qT )·(~z1T−~z2T )
(

1
~p2
T

− ε log |~pT |
~p2
T

)

− ν3V

16π2 (2− γE + log(4π))
∫

ddT ~pT
(2π)dT

ei(~pT+~qT )·(~z1T−~z2T )

~p2
T

. (B.36)

This can be regarded as the expansion of∫
dxρ2

1ρ2 = − ν
3V

8π2ε

∫
ddT ~pT
(2π)dT e

i(~pT+~qT )·(~z1T−~z2T ) 1
(~p2
T )1+ ε

2

− ν3V

16π2 (2− γE + log(4π))
∫

ddT ~pT
(2π)dT

ei(~pT+~qT )·(~z1T−~z2T )

~p2
T

. (B.37)

Fourier-transforming7∫
dxρ2

1ρ2 =− ν
3V

8π2ε

(
1

4π2~z2
T

+ε
3γE+log π

4
8π2~z2

T

+ ε

2π2
log |~zT |
~z2
T

)

− ν3V

16π2 (2−γE+log(4π))
(

1
4π2|~zT |2

+ ε

4π2
log |~zT |
~z2
T

+εγE+logπ
8π2~z2

T

)
. (B.38)

7I would like to thank the referee for spotting a mistake in the numerical coefficient of the last term in the
first line which lead to an incorrect result for the correlator in eq. (3.39) in a previous version of this paper.
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