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Abstract. The price of copper is unstable but it is considered an important indi-

cator of the global economy. Changes in the price of copper point to higher 

global growth or an impending recession. In this work, the forecasting of the 

spot prices of copper from the New York Commodities Exchange (COMEX) is 

studied using a machine learning method, support vector regression (SVR) cou-

pled with different model schemas (recursive, direct and hybrid multi-step). Us-

ing these techniques, three different time series analysis are built and its per-

formance compared. The numerical results show that the hybrid direct-recursive 

obtains the best results. 

 

Keywords: New York commodity exchange (COMEX), Support vector ma-
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1 Introduction 

Nonferrous metals are essential raw materials that are crucial for measuring the global 

economy. However, these materials, such as fossil fuels, are a limited resource. The 

production of nonferrous metals is strongly affected by several factors: supply, de-

mand and share prices of non-ferrous metal companies. Copper is one of the main 

metal commodities and a nonferrous metal that is traded in the physical futures trad-

ing exchanges [1-3]: the New York Commodity Exchange (COMEX), the London 

Metal Exchange (LME) and the Shanghai Futures Exchange (SHFE). Prices are relat-

ed to the demand and supply of this metal around the world, but they are also affected 

by the price of currencies and movements in investments that are linked to temporary 

price fluctuations that may be affected by variations in the economic cycle. [4-6]. 
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The chemical symbol for copper is Cu and its atomic number is 29. From the phys-

ical point of view it is a ductile, malleable and soft metal that stands out for its high 

electrical and thermal conductivity. The color of pure copper is orange with a pink 

tint. Given its high conductivity, copper is used directly as such in construction. It is 

also used as part of alloys. For example, with silver as a material for jewelry pieces, 

with nickel to make coins and as cupronickel does not corrode in seawater, for various 

elements of marine use. It is frequently used to manufacture mechanical, electrical 

and medical equipment. Copper is third in the ranking of most used metals. The first 

is iron and the second, aluminum, and is used mostly for electrical applications. 

Porphyry copper is the main source of copper in the world.  It is extracted in open-pit 

mines as copper sulfides. Chile is the main copper producer in the world, followed by 

Peru, China, the Democratic Republic of the Congo, and the USA. Copper needs are 

increasing in developing countries, but reserves do not seem able to meet this growing 

demand [4,5]. 

Copper has been in use for 10,000 years, but massive copper mining begun around 

1900, and half of the total has been mined in the last 30 years. Although the amount 

of copper on Earth is very large with approximately 1000 tons in the surface layer of 

the Earth's crust, only a small part is accessible with current techniques. Currently, it 

is estimated that there are copper reserves for 30 years according to some estimates 

while others grant it up to 60 years, at the present rate of consumption growth. Cur-

rently, copper from recycling is a substantial part of the produced copper. This makes 

it difficult to estimate the role it will play in copper production and what part of the 

needs it will be able to cover. (see Fig. 1). 

 

 
Fig. 1. World observed production trend of Copper 

 

Copper appears in sulfides, in particular bornite (Cu5FeS4) and chalcopyrite 

(CuFeS2), but also in chalcocite (Cu2S) and covellite (CuS). But on average, the cop-

per concentration does not exceed 0.6%. To increase their concentration, these miner-

als are crushed and subjected to bioleaching or froth flotation processes, which in-

creases the concentration of Cu up to 15%. Heating the resulting material in flash 

smelting with silica removes much of the iron in the slag. This procedure converts 

https://en.wikipedia.org/wiki/Flash_smelting
https://en.wikipedia.org/wiki/Flash_smelting
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iron sulfides into oxides, which, when reacting with silica, form a silicate that is part 

of the slag. The result is a copper matte that contains Cu2S and that is roasted, obtain-

ing oxides from the sulfides according to the chemical reaction [4,5]: 

2 Cu2S + 3 O2 → 2 Cu2O + 2 SO2 

along with the following chemical reaction: 

2 Cu2O → 4 Cu + O2 

blistering copper is obtained from copper oxide. The so-called Sudbury matting pro-

cess only converts half the sulfur to oxide, but this oxide is used to remove the sulfur 

that was left as oxide. In a later step, the copper is electrolytically refined and gold 

and platinum are obtained from the anode mud because reducing the copper oxide to 

metal is relatively easy. This is done by blowing natural gas to eliminate the remain-

ing oxygen and the product of this process is electro refined to obtain pure copper 

[4,5]: 

Cu2+ + 2 e− → Cu 

 

 
Fig. 2. Scheme of flash smelting process 

 

The price of copper is unstable but it is considered an important indicator of the 

global economy. The price of basic resources is directly affected downward when 

demand expectations fall in times of crisis. Changes in the price of copper point to 

higher global growth or an impending recession. Several methodologies have been 

used for metal price forecasting. Dooley and Lenihan [7] used two time-series fore-

casting techniques to conclude that the forecast obtained with ARIMA method gives 

better results than lagged forward price modelling. Cortazar and Eterovic [8] pro-

posed multicommodity models that forecasted long term prices for silver and copper. 
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On the other hand, Khashei et al. [9] prefer artificial neuronal networks for time series 

forecasting. Ma et al. [10] proposed a grey model, optimized by particle swarm algo-

rithm, to forecast iron ore import and consumption in China. Kriechbaumer et al. [11] 

decompose time series into its frequency and time domain to capture this cyclic be-

haviour dominant in the metal market. Finally, Sánchez Lasheras et al. [12] examine 

the forecasting performance of ARIMA model and two different neuronal networks to 

forecast the COMEX copper spot price. 

In this article, a new methodology to foretell the COMEX copper spot price has 

been built and implemented. This paper introduces a novel methodology to estimate, 

the copper price by means of support vector machine regression (SVR) used for time 

series analysis [13,14] coupled with three different schemas: recursive multi-step, 

direct multi-step, and direct-recursive hybrid. The proposed method uses a kernel-

penalized optimization of all hyperparameters in SVR identifying nonlinear input 

features with success.  

2 Materials and methods 

2.1 The dataset 

Data from this study are the COMEX price of copper [15] in the period of time that 

starts in January 1960 and finishes in October 2019. 

 

2.2 Support vector regression (SVR) for time series analysis 

This section presents  − SVR [16,17] for time series analysis. Given a set of time 

series data, a training set consisting of a continuous dependent variable 

, 1, 2, ...,y i mi   = and covariates x , 1, 2,...,
p

i mi   = can be constructed by 

taking p lags of yi . The method  − SVR constructs a function ( )x w x
T

f b= + ,

w
n

 , b  that has at most a deviation of   from iy  for all x i , and is as flat as 

possible [16-19]. Flatness is encouraged by minimising the Euclidean norm of w, 

while model fit is achieved by penalising the sum of the deviations higher than . 

The  − SVR method aims at solving the following optimisation problem [16-19]: 

( )
1 2

wmin
12w, ,ξ,ξ

m
C i i

ib

 


+ +
=

  (1) 

such that 
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( )

w x , 1, 2, ...,

w x , 1, 2, ...,

*
, 0, 1, 2, ...,

T
y b i mi i i

T
b y i mi i i

i mi i
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
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  

 (2) 

where the slack variables ξ, ξ
m

 are introduced for each training vector in or-

der to allow deviations higher than , but penalising this deviations in the objective 

function. The parameter C controls the trade-off between model fit and complexity 

reduction [16-19]. 

Nonlinear model estimation can be obtained by mapping the data to a higher di-

mensional feature space H. Instead of using a projection function, expressions (1) and 

(2) can be represented in its dual form, where the data points appear only in the form 

of dot products. The mapping is performed by a kernel function ( )x , xi jK which 

defines an inner product in H [19]. Once applying the Karush–Kuhn–Tucker (KKT) 

conditions, the following dual formulation is obtained: 

( ) ( ) ( )( ) ( )1
x , xmax

1 1 , 12α,α

m m m
y Ks si i i i i i i i j

i i i s
        

   
− − + − − −  

= = =
 (3) 

such that 

( ) 0
1

0 , 1, 2, ...,

0 , 1, 2, ...,

m

i i
i

C i mi

C i mi

 






− =

=

  =


  =

 
 
 
 
 
  

  (4) 

The decision rule ( )xf  for a new sample x is thus: 

( ) ( ) ( )x x, x
1

m
f K bi i i

i
 


= − +
=

  (5) 

Several usual functions used as kernels [16–19] are: 

 

• Polynomial: 

  

( ) ( ),
b

K ai j i j=  +x x x x  

 

• Radial basis function (RBF): 
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( )
2

,
i j

K ei j

− −
=

x x
x x  

 

• Sigmoid: 

  

( ) ( ), tanhK ai j i j=  +x x x x  

Among a variety of kernel functions available, the radial basis function (RBF) ker-

nel is chosen in many applications and in this research due to its superior performance 

[17-19].  

Moreover, representative parameters of the SVM approach can be summarized as 

[16,19]: 

• Regularization constant (C): also term cost function. This factor defines bal-

ance between the margin, that defines the model flatness and the importance 

of the slack variables and is linked to the training error.  Furthermore, this 

constant C must be chosen a priori, being a parameter of the machine learn-

ing. 

•  parameter: this factor controls the width of the error margin allowed. The 

second term of the objective function (see Eqs. (1) and (2)) is known as em-

pirical error determined by means of the  − insensitive loss function, which 

indicates that it does not disregard errors below   (i.e. to a distance   of 

the true value). 

•  a, b and  : these factors determine the expression of the different kernels 

in the subsequent model. 

 

 

2.3 Computational procedure and numerical schemes 

The training dataset comprises the data from January 1960 to August 2018 while 

the forecasted monthly prices start in September 2018 and end in August 2019. Thus, 

in this particular case, we must forecast twelve steps ahead. Thus, we will be perform-

ing multi-step forecasting. Three different strategies for the building of the training 

data will be used: 

1. Direct multi-step forecast; 

2. Recursive multi-step forecast; and 

3. Direct-recursive hybrid forecast. 

We have started using only one variable. The obvious variable is the copper price 

in previous years. Once this model is constructed, we have tried to improve the best 

model adding new variables from the dataset but no significant improvement was 

observed and thus, we have not included these other models in this study. Next, we 

are going to describe below the three different strategies for this problem of multi-step 

forecast. 
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Direct multi-step forecast  

In this scheme, we construct different models for the different ahead forecasting: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1   1 ,  1 , ,  

2   2 ,  1 , ,  

12   12 ,  1 , ,  

...

pred t model obs t obs t obs t s

pred t model obs t obs t obs t s

pred t model obs t obs t obs t s

+ = −  −

+ = −  −

+ = −  −

 (6) 

As we can see, the training set ( ) ( ) ( )( ),  1 , ,  obs t obs t obs t s−  − is the same for 

all the models but twelve different models have been constructed, one for each predic-

tion. These models depend on five parameters: the first one is the lag, that is, the time 

period of observations used for each sample in the training set. In this case, we use 

s+1 observations per model. The observations in a given time can comprise one or 

more variables. We have started with only one variable, the copper price. The second 

parameter is the number of samples used. It depends on how much we go back in time 

taking samples into account to construct our model. Sometimes, the behavior of a 

variable changes with time and the model benefits from dropping samples during the 

first years. Finally, the last three parameters are those related with the method used, in 

this case, SVR technique with RBF kernel. 

 

Recursive multi-step forecast 

In this case, we construct only a model that could be the same as model1 of the 

previous method. Then, at each step, we forecast only the next value. Then, we incor-

porate the predicted value, drop the oldest value and predict the next value. Thus, 

once the model has been constructed, the prediction process will be as follows: 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1   ,  1 , ,  

2   1  , ,  1 , ,  1

3   2 ,  1  , , ,  2

12   11 ,  10  , ,  1

(7)

2

pred t model obs t obs t obs t s

pred t model pred t obs t obs t obs t s

pred t model pred t pred t obs t obs t s

pred t model pred t pred t obs t s

+ = −  −

+ = + −  − +

+ = + +  − +



+ = + +  − +

 

As we can see, we have a unique model.  When we are predicting we move for-

ward one step, incorporate the last prediction and drop the oldest observation. We 

have the same parameters as in the previous case. 

 

Direct-recursive hybrid forecast 

This numerical scheme is a mixture of the two previous ones. We create a different 

model for each prediction but, in the predicting stage, the models are able to incorpo-

rate the predicted values one by one. In this case, the lag for each model increases as 
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we advance in the prediction. That is, if we start with s+1 observations for the first 

model, the second model will use one observation more, as it incorporates (in the 

forecasting stage) the newly predicted value. 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1   1 ,  1 , ,  

2   2 1  , ,  1 , ,  

3   3 2 ,  1  , ,  1 , ,  

12   12 11 ,  10  , ,

( )
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pred t model obs t obs t obs t s

pred t model pred t obs t obs t obs t s

pred t model pred t pred t obs t obs t obs t s

pred t model pred t pred t obs t s

+ = −  −

+ = + −  −

+ = + + −  −



+ = + +  −

 

In this case, we incorporate the predictions but we do not drop old observations as we 

advance in the prediction. 

3 Results and discussion 

For the three numerical schemes, only a variable (copper price) has been used. All 

the available data has been used as training data. The available data set for training 

consist in the monthly copper prices between January 1960 and August 2017. The 

data between September 2017 and August 2018 has been used as validation set to 

optimize the hyperparameters with the grid-search method. Different models where 

created with the training data and the optimal hyperparameters were obtained with the 

grid-search method, using the validation set. The number of training samples varies 

with the lag. The shorter the lag, the greater the number of available samples, as a 

sample uses less observations and they span for a shortest period of time, allowing 

more samples with the same data. As the aim is to forecast monthly prices from Sep-

tember 2018 till August 2019, all the data related with this period of time (and the 

following one) have not been used during the training phase.  

 

Evaluating the forecast accuracy 

 

It is crucial to be sure that we can rely on forecasting. The choosing, construction, and 

interpretation of forecast evaluation statistics are just as important as making fore-

casts. For using the forecasts, is the accuracy of the "future" forecast that is most im-

portant [20].  

 

The evaluation of forecast accuracy is based on the measurement of the errors, con-

sidering by an “error” the difference between the predicted value and real value. The 

fundamental forecast evaluation statistics that we can use to test our predictive model, 

and to evaluate the forecast accuracy, are: the mean absolute error (MAE), the root 

mean square error (RMSE), the mean percentage error (MPE), the mean absolute 

percentage error (MAPE) [21,22]. The MAE and RMSE statistics deals with measures 

of accuracy whose size depends on the scale of the data. Thus, they use absolute error 

measures and do not facilitate comparison across different time series and time inter-
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vals. To make a comparison like these, we need to work with relative or percentage 

error measures, as MPE and MAPE [23]. 

 

Table 1 indicates the accuracy forecast statistics (absolute, MAE and RMSE, and 

relative, MAPE and MPE, error measures) for the three different numerical schemes. 

 

Table 1. Accuracy forecast statistics for the three different numerical schemes. 

Numerical scheme MAE RMSE MPE(%) MAPE(%) 

Direct multi-step 569.76 660.16 -9.3513 9.4621 

Recursive multi-step 343.33 400.26 -0.9502 5.7013 

Direct-recursive hybrid 144.21 170.15 -0.7971 2.3647 

 

The greater accuracy of the forecast, the lower the values of these statistics. There-

fore, we can see that the direct-recursive hybrid scheme has the greatest forecast accu-

racy. 

 

These relative measures (MPE and MAPE) give equal weight to all errors in con-

trast to the RMSE, which squares the errors and thereby emphasizes large errors. It 

would be helpful to have a measure that considers both the disproportionate cost of 

large errors and provides a relative basis for comparison with naïve methods. 

Measures that have these characteristics are the U-statistics developed by Theil [20]. 

Table 2 indicates the Theil’s U-statistics for the three different numerical schemes. 

 

Table 2. Theil’s U-statistics for the three different numerical schemes. 

Numerical scheme U1 U2 

Direct multi-step 0.0517 3.3909 

Recursive multi-step 0.0333 2.1172 

Direct-recursive hybrid 0.0139 0.8448 

 

The greater accuracy of the forecast, the lower the values of the U1 and U2 statistics. 

Therefore, the values obtained for each of the methods used allow us to conclude that 

the direct-recursive hybrid scheme is the method with the best performance and great-

est forecast accuracy. 

 

Finally, Fig. 3 indicates observed and predicted COMEX copper spot price values 

using as predictor the SVR technique with a RBF kernel for the three different 

schemes 
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(a) 

 
(b) 

 
(c) 

Fig. 3. Observed and predicted COMEX copper spot price values using as predictor the 

SVR technique with a RBF kernel for the following multi-step schemas: (a) Direct;  (b) Recur-

sive; and (c) Direct-recursive hybrid.  

 



11 

4 Conclusions 

According to the numerical results of the present research obtained with public da-

ta of copper in the COMEX market, it can be stated using as predictor the SVR tech-

nique that the performance level of the direct-recursive hybrid scheme is higher than 

those achieved by the recursive multi-step and direct multi-step schemes when ana-

lyzed in terms of statistics such as the mean absolute error (MAE). In this case, the 

direct multi-step method is the one that performs worst. 

Forecasting applications across industries observe an increase in time series fre-

quency, from daily retail sales to hourly call centre volumes, half-hourly electricity 

demand, minute-by-minute internet traffic load, copper spot price and so on. Such 

high-frequency time series pose increasing challenges to forecasting methodologies, 

not only in the volume and velocity of each series, but in the need to model nonlinear 

interactions of exogenous variables not prevalent in monthly, quarterly, or yearly 

data. As a result, nonlinear algorithms from machine learning have seen an increasing 

popularity in forecasting, such as the support vector regression (SVR) used here based 

on kernel methods. 

Finally, we believe there is a promising future for those lines of research combin-

ing hybrid models that are able to take full advantage of SVR models, creating models 

that combine machine learning techniques. 
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