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The Quantum Circuit Compilation Problem (QCCP) is challenging to the Artificial Intelligence community. It was 

already tackled with temporal planning, constraint programming, greedy heuristics and other techniques. In this 

paper, QCCP is formulated as a scheduling problem and solved by a genetic algorithm. We focus on QCCP for 

Quantum Approximation Optimization Algorithms (QAOA) applied to the MaxCut problem and consider Noisy 

Intermediate Scale Quantum (NISQ) hardware architectures. Based on the fact that these algorithms apply a set of 

basic quantum operations repeatedly over a number of rounds, we propose a genetic algorithm approach, termed 

Decomposition Based Genetic Algorithm (DBGA), that in each round extends the partial solutions obtained for 

the previous ones. DBGA is compared to the state of the art across a set of conventional instances. The results 

of the experimental study provided interesting insight in the problem structure and showed that DBGA is quite 

competitive with the state of the art. In particular, DBGA outperformed the best current method on the largest 

instances and provided new best solutions to most of them. 
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. Introduction 

It is widely accepted that quantum computing may represent the next

ig step in the field of computation as it could contribute to solve some

xtremely hard problems. Much in the same way as classic computers

perate on logical gates, quantum computing relies on quantum gates

perating on quantum bits (qubits), each qubit representing a quantum

tate (qstate), i.e., a superposition of the two pure qstates, denoted |0 ⟩
nd |1 ⟩. Executing a quantum algorithm on a quantum hardware en-

ails evaluating a set of quantum gates on qubits (one or two in this

tudy) representing the proper qstates, this process being subject to some

onstraints imposed by both the algorithm and the hardware. We con-

ider herein the hardware technology termed Noisy Intermediate Scale

uantum (NISQ) processors [1] . As an example, Fig. 1 shows four NISQ

uantum chip designs inspired by Rigetti Computing Inc. [2] with dif-

erent number of qubits ( 𝑁 = 4 , 8 , 21 , 40 ) distributed in weighted and

ndirected graphs. Each qubit is identified by an integer and it is lo-

ated in a node. Two qubits connected by an edge are adjacent, which

epresents that a 2-qubit gate may be executed on those qubits. The type

f connecting line, either dashed or continuous, has to do with the pro-

essing time of the gates on these qubits. A quantum algorithm may be
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iewed as a series of quantum gates that must be applied on the qubits

ver time (see Fig. 3 (b)). 

Due to the fact that binary gates can only be applied to adjacent

ubits, when a gate must be applied on two particular qstates, we have

o ensure that they are located on adjacent qubits. To this end, it may

e necessary moving qstates from one qubit to another, which is done

y means of swap gates, i.e., gates that just swap the qstates of two

djacent qubits. Furthermore, two gates cannot be applied on the same

ubit at the same time. These facts raise the problem of distributing the

alculations on the specific hardware, which is known in the literature as

uantum Circuit Compilation Problem (QCCP) and may be formulated

n the planning/scheduling framework. 

In this work, we investigate the use of genetic algorithms to solve

he QCCP. In particular, we will focus on the model described by Ven-

urelli et al. in [3] , where the authors proposed a benchmark - called

enturelli’s set herein - and explored the use of temporal planners to

ynthesize compilation plans characterized by minimum makespan (i.e.,

he circuit’s depth). This model was considered in further proposals [4–

] and is characterized by: (i) the class of Quantum Approximate Op-

imization Algorithm (QAOA) applied to the MaxCut problem [7] , and

ii) the specific hardware architecture depicted in Fig. 1 . 
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Fig. 1. Four quantum chip designs with different number of qubits. 
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1 This problem is denoted QCCP-V in [5] . 
2 https://qiskit.org/ 
3 In this paper, the problem is called Quantum Circuit Transformation. 
Due to the fact that QAOA is based on the application of the same set

f gates over a number of rounds, we propose a decomposition based ap-

roach termed Decomposition Based Genetic Algorithm (DBGA), which

uilds solutions incrementally. It runs for a number of rounds and, in

ach one, it applies a genetic algorithm to the subproblem given by the

urrent round, starting from solutions to the previous rounds. Our ap-

roach is quite different in many aspects from the genetic algorithm pro-

osed in [5] for the same problem; among others the chromosome en-

oding, the decoding algorithm, the heuristic population initialization,

he diversification operator or the decomposition strategy are specific

o DBMA. 

One of the key points of DBMA is the coding/decoding schema: in

ach round 𝑟 , a chromosome is composed by the sequence of quantum

ates in the round 𝑟 together with a partial solution to the subproblem

f rounds 1 , … , 𝑟 − 1 . Each gate operates on a pair of qstates, and the

hromosome indicates the pair of adjacent qubits in which it must be

xecuted. The decoding algorithm inserts the minimum number of 𝑠𝑤𝑎𝑝

ates to move the qstates to the corresponding qubits. Other elements

uch as the diversification mechanism or the initialization procedure

lso contributed to the algorithm performance; but it was the decom-

osition approach the element that most clearly contributed to make

BMA an outstanding algorithm. 

In the experimental study, we analysed the contribution of the com-

onents of DBGA and compare it to the best methods in the state of the

rt that, as far as we know, are the genetic algorithm proposed in [5] and

he rollout heuristic proposed in [6] . In these experiments, DBGA shows

etter performance than these two methods; in particular, it reached

ew best solutions for 48 of the 50 largest instances of the considered

enchmark set. 

The remainder of the paper is organized as follows. In the next

ection, a literature review is presented. In Section 3 the formal def-

nition of the QCCP for MaxCut is given. Section 4 describes the De-

omposition Based Genetic Algorithm (DBGA) proposed to solve the

CCP. Section 5 reports the experimental study. The main conclusions

nd some ideas for future research are summarized in Section 6 . Ad-

itionally, we include two appendices. Appendix A describes the ba-

is of the Quantum Approximate Optimization Algorithm (QAOA), and

ppendix B describes how QAOA may be applied to the MaxCut prob-

em. 

. Literature review 

Despite the issue related to the compilation (a.k.a. qubit map-

ing [1] ) of quantum circuits is relatively new, a number of works in

he literature have been published in the recent years, which tackle the

CCP from different perspectives, leveraging different techniques and

argeting different objectives. 

After the approach presented in [3] , temporal planning was also ex-

loited in [8] , where it was combined with Constraint Programming

CP) to produce warm-start solutions. In that paper, the authors con-

idered two variants of the QCCP; the first one accounts for crosstalk
2 
nteractions between qubits (QCCP-X), while the second includes the

bility to arbitrarily initialize qubits (QCCP-I 1 ). The qubit initialization

roblem was also analysed in [9] . 

In [4] the authors proposed a greedy random search heuristic to solve

he same problem, where the main contribution is a lexicographic two-

ey ranking function for quantum gate selection. The first key acts as a

lobal closure metric aimed to minimize the makespan, and the second

ne is a local metric acting as “tie-breaker ” to avoid cycles. This heuristic

mproved the results reported in [3] . 

Later, in [5] , the same authors proposed a genetic algorithm exploit-

ng a novel chromosome encoding, where each gene controls the itera-

ive selection of a quantum gate to be inserted in the solution; to this

nd they used the ranking function proposed in [4] . This genetic algo-

ithm improved the results reported in [4] . Besides, they tackled the two

xtensions QCCP-X and QCCP-I. 

In [6] three approaches were proposed to solve the problem: 1) a

chedule builder guided by a priority rule, which is a variant of that

roposed in [4] ; this rule selects one among the eligible gates in each

teration based on distances between the current qubits of the qstates

nvolved in the eligible p-s gates; 2) a rollout based sequential decision

aking approach, which decides on which operation to schedule next

ased on the makespan projection given by the aforementioned priority

ule, and 3) a stochastic version of the rollout heuristic, which iteratively

witches between rollout and the priority rule in order to improve the

xploration capabilities of the method. As far as we know, this paper

eports the best results to date on the benchmark set proposed in [3] . 

A significant amount of papers in the literature analyze quantum

ompilation algorithms that add swaps to the ideal circuit, focusing on

BM QX architectures, so that the circuit’s behavior can be readily simu-

ated on the IBM’s Qiskit framework. 2 In particular, in [10] the analysis

s targeted at minimizing the number of additional quantum gates nec-

ssary to perform the compilation, the rationale being that the fewer the

ates, the shallower the circuit’s depth. Similarly, depth minimization

s the primary objective of the heuristic-based compilation procedure

roposed in [11] . 

Still focusing on IBM QX architectures, the analysis carried out in

12] aims at minimizing both the number of gates in the final circuit

ealization (leveraging swaps, bridges and reversals ), and the time oc-

urred for the compilation process. In [13] an interesting analysis is

ade about the trade-off between the number of swap gates introduced

o realize the compilation process and the circuit’s depth, highlighting

he fact that the minimization of the number of swaps and the minimiza-

ion of circuit’s depth may be mutually conflicting objectives. In [14] ,

ome approaches to solve the quantum compilation problem using off-

he-shelf MILP solvers, such as Gurobi, have been investigated. Other

euristics were also applied with success to the QCCP as, for example,

imulated annealing and lookahead heuristics [15] . 3 

Another very interesting approach to the quantum circuit compila-

ion problem is to take into account different performance parameters.

n [16] for instance, the authors consider the gate error rates to produce

ircuit realizations that maximize the circuit’s fidelity, while attempting

o minimize the number of swap and/or bridge gates. A similar approach

hat takes into account the analysis of gate error rates has been used

n [17,18] . 

A relatively new approach to quantum circuit compilation is based

n learning. The work [19] presents a procedure to convert the approx-

mate compilation problem into an auxiliary quantum variational algo-

ithm native on the hardware. Whereas in [20] an iterative learning

rocedure is used to solve both the compilation problem and the gate

ynthesis problem. 

https://qiskit.org/
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Fig. 2. MaxCut problem instance on a graph with 7 nodes. Each node is asso- 

ciated with a particular qstate 𝑞 𝑖 and such associations define the compilation 

objectives. The right side of the figure shows the list of p-s and mix quantum 

gates to be planned for and executed, in this case we consider 𝑝 = 2 . 
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Fig. 3. Example of MaxCut instance (a) and one possible solution, considering 

only one round (i.e. 𝑝 = 1 ), represented by a quantum circuit (b), a solution 

graph (c) and a Gantt chart (d). 
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4 In this study, both sets are in fact the same. 
Another recent approach for quantum circuit compilation is that pre-

ented in [21] . The quantum gates are heuristically separated in layers

uch that all gates in the same layer can be concurrently executed, then

 layer ordering is heuristically decided, and finally a compiler backend

ntroduces permutation layers (i.e. swap gates) that move the qstates so

hat the quantum gates of the next layer can be performed. The authors

xtend the study in [22] by proposing the QAIM heuristic to improve the

nitial location of qstates, and different heuristics to perform the layer

rdering, including one that takes into account the reliability of the op-

rations in order to maximize the success probability of the circuit. 

. Quantum circuit compilation problem formulation 

In the QCCP, we are given a tuple 𝑃 = ⟨𝐶 0 , 𝐿 0 , 𝑄𝑀⟩. 𝐶 0 is the input

uantum circuit, which represents the quantum algorithm to solve the

roblem at hand. 𝐿 0 is the initial assignment of qstates to qubits and

𝑀 is a representation of the quantum hardware as a multigraph. 

If the problem at hand is MaxCut, the input quantum circuit

an be defined as 𝐶 0 = ⟨𝑄, P-S , 𝑀 𝐼 𝑋, { 𝑔 𝑠𝑡𝑎𝑟𝑡 , 𝑔 𝑒𝑛𝑑 } , 𝑇 𝐶 0 ⟩, where 𝑄 =
 𝑞 1 , … , 𝑞 𝑁 } is the set of qstates which, from a planning and scheduling

erspective, represent the resources necessary for each gate’s execution.

-S and 𝑀 𝐼 𝑋 are, respectively, the set of p-s and 𝑚𝑖𝑥 gate operations,

or the first one some mathematical formulations are given in Eqs. (B.7) ,

B.8) and (B.9) , while for the second the formulation is that of Eq. (B.6) .

s they operate on two and one qstates respectively, we use the nota-

ions p-s ( 𝑞 𝑖 , 𝑞 𝑗 ) and 𝑚𝑖𝑥 ( 𝑞 𝑖 ) . Two fictitious gates 𝑔 𝑠𝑡𝑎𝑟𝑡 and 𝑔 𝑒𝑛𝑑 are also

onsidered that do not operate on any qstate. Every quantum gate re-

uires the uninterrupted use of the involved qstates during all its pro-

essing time, and each qstate 𝑞 𝑖 can be processed by at most one gate at

 time. 

𝑇 𝐶 0 is a set of precedence constraints imposed on the P-S , 𝑀 𝐼 𝑋 and

 𝑔 𝑠𝑡𝑎𝑟𝑡 , 𝑔 𝑒𝑛𝑑 } sets. Every gate in P-S and 𝑀 𝐼 𝑋 must be executed after

 𝑠𝑡𝑎𝑟𝑡 and before 𝑔 𝑒𝑛𝑑 . According to the number of rounds 𝑝 of the QAOA

lgorithm (see Appendix A ), P-S and 𝑀 𝐼 𝑋 sets are organized into 𝑝 steps

hat must be interleaved as P-S 1 , 𝑀 𝐼 𝑋 1 , P-S 2 , 𝑀 𝐼 𝑋 2 , ..., P-S 𝑝 , 𝑀 𝐼 𝑋 𝑝 . All

he gates belonging to the step P-S 𝑟 ( 𝑀 𝐼 𝑋 𝑟 ) involving a specific qstate 𝑞 𝑖 
ust be executed before all the gates 𝑀 𝐼 𝑋 𝑟 ( P-S 𝑟 +1 ) involving the same

state 𝑞 𝑖 , for 𝑟 = 1 , 2 , … , 𝑝 (for 𝑟 = 1 , 2 , … , ( 𝑝 − 1) ). Therefore, 𝑝 is the

umber of compilation passes. The p-s gates are commutative, so they

ay be executed in any order. Figure 2 (left side) shows an example of a

raph upon which the MaxCut problem is to be executed, corresponding

o the problem instance no. 1 of the subset characterized by 𝑁 = 8 , 𝑢 =
 . 9 and 𝑝 = 2 (see Section 5.1 ). The list of p-s and mix quantum gates

hat must be executed during the compilation procedure is shown on

he right side of the figure. The compilation problem depicted in the

gure requires two compilation passes (i.e. 𝑝 = 2 ). 
𝑄𝑀 is a representation of the quantum hardware as an undirected

raph 𝑄𝑀 = ⟨𝑉 𝑁 , 𝐸 𝑝 − 𝑠 , 𝐸 𝑠𝑤𝑎𝑝 , 𝜏𝑚𝑖𝑥 , 𝜏𝑝 − 𝑠 , 𝜏𝑠𝑤𝑎𝑝 ⟩, where 𝑉 𝑁 = { 𝑛 1 … 𝑛 𝑁 } is
3 
he set of qubits (nodes) of the hardware. 𝐸 𝑝 − 𝑠 and 𝐸 𝑠𝑤𝑎𝑝 are the sets 4 of

ndirected edges ( 𝑛 𝑘 , 𝑛 𝑙 ) which represent adjacent locations where the

states 𝑞 𝑖 and 𝑞 𝑗 of the gates p-s ( 𝑞 𝑖 , 𝑞 𝑗 ) or 𝑠𝑤𝑎𝑝 ( 𝑞 𝑖 , 𝑞 𝑗 ) can be allocated to;

𝑖𝑥 gates can be executed at any node. 𝜏𝑚𝑖𝑥 , 𝜏p-s and 𝜏𝑠𝑤𝑎𝑝 represent the

urations for the different types of gates. In our study, 𝜏𝑚𝑖𝑥 = 1 , 𝜏𝑠𝑤𝑎𝑝 = 2
nd 𝜏𝑝 − 𝑠 is 3 if the gate is executed in a continuous edge and it is 4 when

t is executed in a dashed edge (see Fig. 1 ). 

A feasible solution is a tuple 𝑆 = ⟨𝑆𝑊 𝐴𝑃 , 𝑇 𝐶⟩, which extends the

nitial circuit 𝐶 0 with a set 𝑆𝑊 𝐴𝑃 of 𝑠𝑤𝑎𝑝 gates, added to guarantee

he adjacency constraints for the qstates in P-S gates, and a set 𝑇 𝐶 of ad-

itional precedence constraints such that for each qstate 𝑞 𝑖 a total order
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Fig. 4. Flow chart of DBGA. 
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s imposed among the set of operations requiring 𝑞 𝑖 . 𝑇 𝐶 must guarantee

hat the qstates ( 𝑞 𝑖 , 𝑞 𝑗 ) of all p-s and swap gates are allocated on adja-

ent qubits. The makespan of a solution corresponds to the maximum

ompletion time of the gate operations in 𝑆. 

A schedule may be viewed as a solution graph 𝐺 𝑆 = ( 𝑉 𝑆 , 𝐸 𝑆 ) , where

 𝑆 = { 𝑔 𝑠𝑡𝑎𝑟𝑡 , 𝑔 𝑒𝑛𝑑 } ∪ P-S ∪ SWAP ∪ MIX and 𝐸 𝑆 represents the partial or-

er on the operations in 𝑉 𝑆 defined by 𝑇 𝐶 0 and 𝑇 𝐶. Figure 3 (c) shows

n example, in some cases there are two equivalent arcs between two

odes, this is just to emphasize that they correspond to binary gates

haring the two qstates. The costs in the arcs are the durations of the

perations in the origin. The makespan of the schedule is given by the

ongest path cost from 𝑔 𝑠𝑡𝑎𝑟𝑡 to 𝑔 𝑒𝑛𝑑 , which is called critical path . 

The goal of the QCCP is to find a feasible solution with the minimum

akespan. In [23] QCCP is proven to be NP-hard. 

As an example, consider a toy instance in the chip with 𝑁 = 4
see Fig. 1 (a)), in which the following four gates: p-s ( 𝑞 1 , 𝑞 2 ) , p-s ( 𝑞 1 , 𝑞 3 ) ,
-s ( 𝑞 2 , 𝑞 3 ) and p-s ( 𝑞 3 , 𝑞 4 ) must be executed. Figure 3 a shows a graph of

 MaxCut instance with 4 nodes (the number of nodes must be lower

han or equal to the number of qubits in the quantum chip). Figure 3 b

hows a solution in form of compiled quantum circuit, considering only

ne round, i.e. 𝑝 = 1 (be aware that a 𝑠𝑤𝑎𝑝 gate was required to ensure

djacency compliance). Figure 3 c shows the equivalent solution graph,

hose critical path has cost 16. Notice that p-s and 𝑠𝑤𝑎𝑝 gates have two

redecessor nodes and two successor nodes each (unless they operate

n the same qstates of the predecessor or successor gates, which is rep-

esented by means of double arc, as mentioned), which correspond to

he previous (resp. next) gates executed on the corresponding two qs-

ates. 𝑚𝑖𝑥 gates have only one predecessor and one successor, since they

perate on only one qstate. In any case, if a gate is the first (resp. last)

ne executed on a qstate, then its predecessor (resp. successor) is the

ode 𝑔 𝑠𝑡𝑎𝑟𝑡 (resp. node 𝑔 𝑒𝑛𝑑 ). Finally, Fig. 3 d shows the Gantt chart of

he solution, with makespan 16. 

. The decomposition-based genetic algorithm 

Given the particular structure of the problem, specifically the fact

hat a problem instance is composed by a set of 𝑝 rounds and that in

ach round the same sets of p-s and mix gates must be scheduled, we

ropose an incremental procedure that in each step 𝑟 ∈ {1 , … , 𝑝 } solves

he subproblem defined by the rounds 1 , … , 𝑟 . To be more precise, the

roposed DBGA works in a decomposition-based approach and tries to

ptimize the scheduling of the p-s gates in round 𝑟 , given a number of

olutions to the subproblem defined by rounds 1 , … , 𝑟 − 1 ( mix gates

n round 𝑟 are trivially scheduled after all p-s gates that involve the

orresponding qstate). 

Hence, in each round DBGA takes solutions from the previous round

nd “extends ” them by adding the corresponding gates of the new round.

his is done by means of a genetic algorithm, and so it first creates an

nitial population of solutions, which are evolved by using selection,

ecombination, replacement and diversification operators, until a ter-

ination condition is met. The flow chart of DBGA is depicted in Fig. 4 ,

nd its main components are detailed in the following subsections. 

.1. The coding scheme 

As pointed, one execution of the GA starts from a set of solutions

o the subproblem 1 , … , 𝑟 − 1 calculated in previous steps, and builds

chedules to the subproblem 1 , … , 𝑟 . Therefore, a chromosome has to

nclude a solution to the subproblem 1 , … , 𝑟 − 1 and the encoding of a

andidate schedule for the p-s gates in round 𝑟 . To this end, we propose

ncoding a chromosome by a triplet of the form ( 𝑠𝑔 𝑟 −1 , 𝑐ℎ 1 , 𝑐ℎ 2) , where

𝑔 𝑟 −1 is a solution graph for the subproblem 1 , … , 𝑟 − 1 and 𝑐ℎ 1 and 𝑐ℎ 2
re two chains of symbols; 𝑐ℎ 1 is a permutation of the set of the p-s gates

n round 𝑟 and 𝑐ℎ 2 is a sequence of pairs of adjacent qubits of the same

ength as 𝑐ℎ 1 . This encoding must be understood so as the gate p-s ( 𝑞 𝑖 , 𝑞 𝑗 )
4 
n a position of 𝑐ℎ 1 must be executed on the pair of qubits { 𝑛 𝑘 , 𝑛 𝑙 } in
he same position in 𝑐ℎ 2 ; and the schedule must be built taking into

ccount the earliest starting times of the quantum gates on the qubits

fter the partial solution to the subproblem 1 , … , 𝑟 − 1 , as we will see in

ection 4.3 . 

.2. Recombination and mutation 

Regarding crossover and mutation, any operator devised for permu-

ation encoding may be adapted. The crossover operates on components

ℎ 1 and 𝑐ℎ 2 at the same time to generate two offspring. Each offspring

akes the 𝑠𝑔 component from one parent. In our experiments, we ex-

ended the well-known partial mapping crossover (PMX). This operation

s illustrated in Fig. 5 . Besides, we consider a single mutation ( mut1 ) that

onsists in swapping two positions (the gate and the pair of qubits) cho-

en at random. 
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Fig. 5. Illustration of the crossover operator. A subset of p-s gates with their 

destination qubits are taken from the first parent and put in the same positions 

in one offspring. The remaining p-s gates with their destination qubits are taken 

from the second parent and inserted in the remaining positions of the offspring 

keeping their relative order. 
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With the above operators, only the pairs of qubits allocated to the

-s gates in the initial population would be considered in the evolution-

ry process. So, some other operators should be considered that may

ntroduce new genetic material in the form of new candidate pairs of

ubits for the p-s gates. To this end, we propose using another single

utation ( 𝑚𝑢𝑡 2 ) that changes the pair of qubits for one p-s gate by a

andom pair of adjacent qubits sharing one qubit with the original pair.

hen a chromosome is mutated, one of the operators is chosen with

qual probability. 

.3. The decoding algorithm 

Building a schedule from a chromosome is the most critical issue

iven the particular characteristics of the QCCP. To this end, the decod-

ng algorithm iterates over the 𝑐ℎ 1 component of the chromosome and

akes the actions required to schedule the p-s ( 𝑞 𝑖 , 𝑞 𝑗 ) gate in each position

n the pair of qubits { 𝑛 𝑘 , 𝑛 𝑙 } in the same position in 𝑐ℎ 2 . These actions

ntroduce the necessary 𝑠𝑤𝑎𝑝 gates to move the qstates 𝑞 𝑖 and 𝑞 𝑗 to the

ubits 𝑛 𝑘 and 𝑛 𝑙 . In general there may be many possibilities to do that

nd it is not clear which is the most appropriate in each circumstance.

esides, it is not easy to encode in the chromosome one among the full

et of options. For these reasons, we opted to use a strategy that min-

mizes the number of 𝑠𝑤𝑎𝑝 gates in each scheduling decision. In this

ay, the proposed encoding/decoding schema does not guarantee that

t least one of the feasible chromosomes can encode an optimal schedule

o the p-s gates in round 𝑟 (after a schedule for the subproblem defined

y rounds 1 , … , 𝑟 − 1 ); in other words, the search space is not dominant.

Let 𝐷( 𝑥, 𝑦 ) be the length of the shortest path between the qubits 𝑥 and

 in the quantum hardware 𝑄𝑀 , trivially, this distance is the minimum

umber of 𝑠𝑤𝑎𝑝 gates required to move a qstate in qubit 𝑥 to qubit 𝑦 . 

Let 𝑛 ( 𝑞) be the qubit holding the qstate 𝑞 at a given time. To move

he qstates 𝑞 𝑖 and 𝑞 𝑗 from their current qubits 𝑛 ( 𝑞 𝑖 ) and 𝑛 ( 𝑞 𝑗 ) to the tar-

et qubits 𝑛 𝑘 and 𝑛 𝑙 we choose the option that minimizes the overall

umber of 𝑠𝑤𝑎𝑝 gates; namely 𝑞 𝑖 is moved to 𝑛 𝑘 and 𝑞 𝑗 is moved to 𝑛 𝑙 if

( 𝑛 ( 𝑞 𝑖 ) , 𝑛 𝑘 ) + 𝐷( 𝑛 ( 𝑞 𝑗 ) , 𝑛 𝑙 ) < 𝐷( 𝑛 ( 𝑞 𝑖 ) , 𝑛 𝑙 ) + 𝐷( 𝑛 ( 𝑞 𝑗 ) , 𝑛 𝑘 ) and the alternative

s taken otherwise. The chosen paths are called a pair of minimal paths .

he number of 𝑠𝑤𝑎𝑝 gates required is given by the length of these paths

s it is proven in the following result, where 𝑑( 𝑞 𝑖 ) and 𝑑( 𝑞 𝑗 ) denote the

destination ” qubits of qstates 𝑞 𝑖 and 𝑞 𝑗 respectively. 

roposition 1. Let 𝑛 ( 𝑞 𝑖 ) , … , 𝑑( 𝑞 𝑖 ) and 𝑛 ( 𝑞 𝑗 ) , … , 𝑑( 𝑞 𝑗 ) be a pair of mini-

al paths chosen to move the qstates 𝑞 𝑖 and 𝑞 𝑗 from the qubits 𝑛 ( 𝑞 𝑖 ) and

 ( 𝑞 𝑗 ) to the qubits 𝑛 𝑘 and 𝑛 𝑙 , then the number of 𝑠𝑤𝑎𝑝 gates required is

( 𝑛 ( 𝑞 𝑖 ) , 𝑑( 𝑞 𝑖 )) + 𝐷( 𝑛 ( 𝑞 𝑗 ) , 𝑑( 𝑞 𝑗 )) . 

roof sketch. If the two paths are disjoint, i.e., they have not any qubit

n common, the result fulfils trivially as each path is translated into a set
5 
f gates that is independent from the gates of the other path. However, if

oth paths have some qubit in common, it is possible that one 𝑠𝑤𝑎𝑝 gate

n one path involves two qubits holding 𝑞 𝑖 and 𝑞 𝑗 , which could prevent

ne of these qubits from being moved with just the minimum number

f swaps. However, if this were the case, instead of scheduling a gate

wapping 𝑞 𝑖 and 𝑞 𝑗 , we may change their destinations instead, and so

he 𝑠𝑤𝑎𝑝 gate is not actually necessary and the qubits may go to the new

estinations with no additional swaps. □

Algorithm 1 shows the decoding algorithm that is applied to a chro-

osome ( 𝑠𝑔 𝑟 −1 , 𝑐ℎ 1 , 𝑐ℎ 2) to obtain a schedule (a solution graph 𝑠𝑔 𝑟 ) to

he subproblem defined by the rounds 1 , … , 𝑟 . It iterates on the p-s ( 𝑞 𝑖 , 𝑞 𝑗 )
ates in 𝑐ℎ 1 and each one is scheduled in the pair of qubits { 𝑛 𝑘 , 𝑛 𝑙 } in
he same position in 𝑐ℎ 2 . To do that, it starts calculating a pair of mini-

al paths 𝑝𝑎𝑡ℎ 1 and 𝑝𝑎𝑡ℎ 2 from the current qubits of the qstates 𝑞 𝑖 and

 𝑗 to the destination qubits 𝑛 𝑘 and 𝑛 𝑙 . Then, the arcs in these paths are

onsidered following the order in each path, and for each one the as-

ociated 𝑠𝑤𝑎𝑝 gate is introduced in the partial solution. In this process

he arcs from the two paths may be interleaved trying to avoid revers-

ng two adjacent qubits holding 𝑞 𝑖 and 𝑞 𝑗 . However, if in one iteration

his is the only option then the remaining paths from the qstates to

heir destinations are swapped instead of swapping the qubits. In this

ay, the number of 𝑠𝑤𝑎𝑝 gates can be maintained to the minimum (see

roposition 1 ). 

Figure 6 depicts the decisions that could be taken by Algorithm 1 in

he case of a single p-s ( 𝑞 𝑖 , 𝑞 𝑗 ) gate such that the destination pair of ad-

acent qubits is { 𝑛 3 , 𝑛 2 } , 𝑝𝑎𝑡ℎ 𝑖 = 𝑛 8 → 𝑛 5 → 𝑛 3 → 𝑛 2 and 𝑝𝑎𝑡ℎ 𝑗 = 𝑛 5 → 𝑛 3
graphically represented by the dashed lines), in a 8-qubit quantum ma-

hine (see Fig. 1 (b)). Let us suppose that the first swap to be selected

y the algorithm brings 𝑞 𝑗 from qubit 𝑛 5 to qubit 𝑛 3 ( Fig. 6 (b)), and the

econd swap brings 𝑞 𝑖 from qubit 𝑛 8 to qubit 𝑛 5 ( Fig. 6 (c)). It is now

vident that the condition { 𝑛 3 , 𝑛 2 } = { 𝑛 ( 𝑞 𝑖 ) , 𝑛 ( 𝑞 𝑗 )} holds (if 𝑞 𝑖 continued

ts path towards qubit 𝑛 2 , it would have to swap its position with 𝑞 𝑗 ,

hus reversing the latter’s position); therefore, the algorithm enters the

else ” branch performing a destination swap ( Fig. 6 (d)), ultimately dis-

atching 𝑞 𝑗 to qubit 𝑛 2 ( Fig. 6 (e)) and 𝑞 𝑖 to qubit 𝑛 3 ( Fig. 6 (f)). 

After introducing all the p-s gates, the 𝑚𝑖𝑥 gates are inserted on each

ubit holding a qstate. 

We have also implemented a small improvement in the described

ecoding procedure: each time a swap gate is inserted, we check if one

f the involved qstates has executed a mix gate that ends just when

he swap gate starts (see Fig. 7 (a)). If that is the case, we reverse the

rder of the mix and the swap gates (see Fig. 7 (b)), as in this way we

ay be able to improve the makespan (if 𝑆𝑊 𝐴𝑃 𝑗 of Fig. 7 (b) is on the
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Fig. 7. Additional improvement step within the decoding procedure of 

Algorithm 1 : in case (a) the reversal of the gates 𝑀 𝐼 𝑋 and 𝑆𝑊 𝐴𝑃 𝑖 may im- 

prove the makespan (see subfigure (b)) if 𝑆𝑊 𝐴𝑃 𝑗 is on the critical path of the 

resulting solution. Whereas in case (c) the makespan might be worse if the 𝑀 𝐼 𝑋

gate is on the critical path of the resulting solution, as subfigure (d) shows. 
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ritical path of the resulting solution) as much as the duration of the

ix gate. However, the described reversal is only performed if the last

ate executed by the other involved qstate ends at a time lower than or

qual to the starting time of the mix gate (see Fig. 7 (a)), as in that case

e can ensure that the makespan cannot be worse. On the contrary,

ig. 7 (c) shows a case where the above described reversal might not

e convenient (see Fig. 7 (d)), particularly if that 𝑀 𝐼 𝑋 gate is on the

ritical path of the resulting solution. 

.4. General structure of DBGA 

The general structure of the proposed DBGA is shown in Algorithm 2 .

equire: A QCCP problem instance P with a set of qstates 𝑄 , 𝑝 rounds

and P-S 𝑟 and SWAP 𝑟 sets of gates in each round 𝑟 ∈ 1 , … , 𝑝 . The quan-

tum hardware 𝑄𝑀 . The set of 𝑃 𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 of the GA: 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 , 𝑃 𝑐 , 𝑃 𝑚 .

nsure: A schedule H for instance P on circuit 𝑄𝑀 . 

Distribute the qstates in 𝑄 on the qubits of 𝑄𝑀 ; 

𝑆𝐺 0 ← set of 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 initial solution graphs; 

for r = 1 to p do 

𝑆 𝐺 𝑟 ← 𝐺𝐴 ( 𝑆 𝐺 𝑟 −1 , P-S 𝑟 , MIX 𝑟 , 𝑃 𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ) ; 
end for 

return The best schedule in 𝑆𝐺 𝑝 ; 

lgorithm 2 : The Decomposition-Based Genetic Algorithm. It builds a

chedule to a QCCP instance 𝑃 iterating on the rounds 1 , … , 𝑝 of 𝑃 . In

ach iteration 𝑟 it builds schedules for round 𝑟 compatible with partial

olutions of the subproblem 1 , … , 𝑟 − 1 . 

t takes as input a QCCP instance 𝑃 having 𝑝 rounds and a quantum

ardware 𝑄𝑀 , and produces a schedule 𝐻 for 𝑃 on 𝑄𝑀 . The algorithm

tarts distributing the qstates on the qubits; here we assume that the

nitial distribution is the same for all candidate solutions. Then the initial

olution graphs 𝑆𝐺 0 are calculated. These are trivial solution graphs of

he form 𝑔 𝑖𝑛𝑖𝑡 → 𝑔 𝑒𝑛𝑑 representing solutions of the fictitious round 0. The

lgorithm iterates on the number of rounds, and in each iteration it calls
6 
he genetic algorithm (GA) to extend the solutions from round 𝑟 − 1 to
ound 𝑟 . DBGA returns the best solution graph obtained in the last round.

.5. The genetic algorithm 

Algorithm 3 shows the GA proposed to obtain solutions in each round

equire: A set 𝑆𝐺 𝑟 −1 of 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 solution graphs for subproblem

1 , … , 𝑟 − 1 , the sets of gates P-S 𝑟 and MIX 𝑟 . The 𝑃 𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 : 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 ,

𝑃 𝑐 , 𝑃 𝑚 . The quantum circuit 𝑄𝑀 . 

nsure: A set 𝑆𝐺 𝑟 of 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 solution graphs for subproblem 1 , … , 𝑟 . 

Initial Population: for each 𝑠𝑔 𝑟 −1 ∈ 𝑆𝐺 𝑟 −1 generate an initial chromo-

some ( 𝑠𝑔 𝑟 −1 , 𝑐ℎ 1 , 𝑐ℎ 2) , where 𝑐ℎ 1 is a random permutation of the gates

in P-S 𝑟 and 𝑐ℎ 2 is a set of connections in 𝑄𝑀 , which may be calculated

either at random or by some heuristic; 

Evaluation: The decoding algorithm is applied to the initial chromo-

somes to extend the solution graphs 𝑠𝑔 𝑟 −1 to the first series of solution

graphs 𝑠𝑔 𝑟 in accordance with components 𝑐ℎ 1 and 𝑐ℎ 2 in each chro-

mosome; 

while not Termination Condition do 

Selection: The chromosomes in the population are organized into

random pairs; 

Recombination: Each pair of chromosomes is mated and the off-

springs mutated in accordance with probabilities 𝑃 𝑐 and 𝑃 𝑚 respec-

tively; 

Evaluation: The decoding algorithm is applied to the offsprings to

extend the solution graphs 𝑠𝑔 𝑟 −1 to new solution graphs 𝑠𝑔 𝑟 ; 

Replacement: for each pair of two parents and its two offspring, the

two best solutions are selected for the next population; 

Diversification: After a number of generations without improve-

ment, some of the chromosomes sharing the same fitness are mu-

tated a number of times; 

end while 

𝑆𝐺 𝑟 ← solution graphs 𝑠𝑔 𝑟 of the 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 chromosomes in the popu-

lation; 

return The set of solution graphs 𝑆𝐺 𝑟 ; 

lgorithm 3 : The Genetic Algorithm. It builds a number of schedules

or round 𝑟 of a QCCP instance 𝑃 after partial solutions to the subprob-

em defined by the rounds 1 , … , 𝑟 − 1 . 

 . It starts from a set 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 of solution graphs 𝑆𝐺 𝑟 −1 for the subprob-

em 1 , … , 𝑟 − 1 and produces a set of solution graphs 𝑆𝐺 𝑟 of the same size

or the subproblem 1 , … , 𝑟 . Initially, it builds the initial 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 chro-

osomes of the form ( 𝑠𝑔 𝑟 −1 , 𝑐ℎ 1 , 𝑐ℎ 2) , for each 𝑠𝑔 𝑟 −1 in 𝑆𝐺 𝑟 −1 ; taking in

rinciple 𝑐ℎ 1 as random permutations of the p-s gates of round 𝑟 and 𝑐ℎ 2
s a sequence of the same length as 𝑐ℎ 1 of random pairs of connected

ubits in 𝑄𝑀 (in Section 4.5.1 we will see a heuristic alternative). The

nitial chromosomes are evaluated to obtain the first candidate solution

raphs 𝑠𝑔 𝑟 for each one. Each chromosome registers its own solution

raph 𝑠𝑔 𝑟 along the algorithm’s iterations. 

Then, GA iterates until the Termination Condition is fulfilled. This con-

ition being that there is no improvement in a given number of consec-

tive generations. In each iteration, the chromosomes in the population

re organized into random pairs, which are then mated and mutated.

he resulting offsprings are evaluated ( Algorithm 1 ) to obtain new so-

ution graphs 𝑠𝑔 𝑟 . Finally, in the replacement step two chromosomes

re selected using tournament between each two parents and their two

ffspring. 

We have observed in some preliminary experiments that sometimes

he algorithm tends to converge prematurely. So, we introduced a di-

ersification step in which after a number of consecutive generations

ithout improvement, all but one of the chromosomes with the same

tness value are mutated a number of times in order to reintroduce va-

iety in the population. 
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5 https://ti.arc.nasa.gov/m/groups/asr/planning-and- 

scheduling/VentCirComp17_data.zip 
Finally, GA returns a set of 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 solution graphs 𝑆𝐺 𝑟 which will

e used as input values for the next iteration, if 𝑟 < 𝑝 , or they represent

olutions to the whole problem, if 𝑟 = 𝑝 . 

.5.1. Heuristic initial population 

Random generation of initial chromosomes is able to obtain diver-

ity in the genetic material of the population, but it often happens those

andom chromosomes are so bad that a genetic algorithm can hardly

onverge to good solutions after a large number of generations. For this

eason, it could be better to exploit some heuristic to seed at least some

art of the population with individuals representing good solutions. This

ay help reaching better solutions quickly, at the risk of premature

onvergence. In any case, heuristic seeding demonstrated to be good in

ome well-known problems as Travelling Salesman Problem [24] , where

he Nearest-Neighbour heuristic is exploited, or the Job Shop Schedul-

ng Problem [25] , where the authors used variable and value ordering

euristics for some specific types of instances. 

We propose to use here a kind of Nearest-Neighbour heuristic to

uild the 𝑐ℎ 2 component of the chromosomes. The idea is quite simple:

he p-s gates in 𝑐ℎ 1 are visited from left to right and each gate p-s ( 𝑞 𝑖 , 𝑞 𝑗 )
s allocated to one of the closest pair of adjacent qubits ( 𝑛 𝑘 , 𝑛 𝑙 ) , consid-

ring the notion of minimal pair of paths as distance between pairs of

ubits; so the candidate destination qubits are of the form 

 𝑛 𝑘 , 𝑛 𝑙 ) = 𝑎𝑟𝑔𝑚𝑖𝑛 { 𝑚𝑖𝑛 ( 𝐷( 𝑛 ( 𝑞 𝑖 ) , 𝑛 ) + 𝐷( 𝑛 ( 𝑞 𝑗 ) , 𝑛 ′) , 

𝐷( 𝑛 ( 𝑞 𝑖 ) , 𝑛 ′) + 𝐷( 𝑛 ( 𝑞 𝑗 ) , 𝑛 )) , ( 𝑛, 𝑛 ′) ∈ 𝐸 𝑝 − 𝑠 } 

In case of ties, a continuous edge of the graph is chosen, as the p-s

ate takes lower execution time. 

It is clear that in general the candidate destination is not unique, in

hat case one of them is chosen at random. Besides, we may give priority

o arcs joining qubits not selected previously to favour parallel execution

f gates. In this way, the initialization procedure may obtain a diversity

f heuristic 𝑐ℎ 2 components. 

.6. Analysis of DBGA 

As mentioned, we believe that the key point of DBGA that makes

 difference w.r.t. previous methods is that of decomposition. In do-

ng so, DBGA tries a number of solutions for round 𝑟 that are created

rom evolved solutions to the subproblem 1 , … , 𝑟 − 1 ; therefore it has

ore chance of success when evolving good solutions to the subprob-

em 1 , … , 𝑟 than a greedy heuristic as stochastic rollout, which only tries

 solution for round 𝑟 after each partial solution for the subproblem

 , … , 𝑟 − 1 . On the other hand, as the decomposition approach is a kind

f local optimum strategy that reduces the search space, it is different

rom other strategies as the rollout heuristic proposed in [6] or the ge-

etic algorithm (GA) proposed in [4] that consider the whole problem at

nce, and so it may lead to suboptimal solutions. We believe that this is-

ue has to be clarified through experimental study. Another point that is

orth mentioning is the encoding/decoding schema used in DBGA. The

ouble chain encoding allows a p-s gate to be executed on any pair of

djacent qubits disregarding the current positions of its qstates. Clearly,

his may lead to really bad solutions if the initial chains 𝑐ℎ 1 and 𝑐ℎ 2
re uniformly generated. For this reason, we have proposed a heuristic

trategy that tries to locate the p-s gates in the proximity of the current

ositions of their qstates. Then, from this initial situation, DBGA has the

exibility to move the p-s gates towards more convenient qubits that

ight be in farther locations. 

. Experimental study 

In order to analyse the components of the proposed DBGA and to

ake a comparison with the state of the art, we performed an experi-

ental study trying to follow good practices and recommendations out-

ined in [26] , as for example that of considering multiple independent
7 
uns so that statistical methods can deliver significant conclusions, or

hat of publishing results in public repositories. Our algorithms were im-

lemented in C++ and the target machine was Intel Core i5-7400 CPU

t 3.00 GHz with 16 GB RAM. As the proposed algorithms are stochas-

ic, we performed 10 independent runs per instance in order to obtain

tatistically significant results. For each run we registered the best solu-

ion reached and the time taken. Hence, for each instance we report the

verage makespan and some dispersion measure, as the standard devi-

tion, or the best and worst of the 10 solutions, as well as the average

ime taken in one run. 

In the next subsection we describe the benchmark instances consid-

red. Then we detail the running parameters of DBGA and analyze the

ontribution and effectiveness of each of its components. Afterwards,

e compare the results from DBGA with those of the best state-of-the-

rt methods, which as far as we know are those reported in [6] and [5] .

inally, we also compare our method with those presented in [21] and

22] . 

.1. Benchmark set 

The experimental study was carried out across the instances pro-

osed in [3] , which may be downloaded from the web. 5 The benchmark

onsists of instances of several sizes, depending on the number of qubits

f the quantum chip considered ( 𝑁 ∈ {4 , 8 , 21 , 40} (see Fig. 1 )). For each

hip size, different utilization levels ( 𝑢 ∈ {0 . 9 , 1 . 0} ) and number of re-

uired compilation passes ( 𝑝 ∈ {1 , 2} ) are considered. The benchmark

ncludes 50 instances for each combination of { 𝑁, 𝑝, 𝑢 } ; each instance is

epresentative of a graph 𝐺 to be partitioned by the MaxCut procedure.

he instances with utilization level 𝑢 = 0 . 9 are built randomly choosing

0% of the available qstates to allocate over the 𝑁 qubits of the instance

raph 𝐺, while the instances with 𝑢 = 1 . 0 are built by possibly allocat-

ng all the qstates over the 𝑁 qubits of the graph 𝐺. In our experimental

tudy we only consider those instances with utilization level 𝑢 = 1 . 0 and

equired compilation passes 𝑝 = 2 , as they are the most challenging. 

.2. Running parameters 

From some preliminary experiments, we propose the following set of

arameters for DBGA for all instances: population size of 1000 chromo-

omes, crossover rate 𝑃 𝑐 = 100% and mutation rate 𝑃 𝑚 = 5%. The heuristic

ethod described in Section 4.5.1 for initializing the population is ap-

lied to all chromosomes. 

To establish the remaining parameters, we looked at the experiments

erformed in [6] , where the proposed rollout heuristic was implemented

n Matlab and run on Intel i7 processor, 16GB RAM and Windows 7

perating system. In [6] , all runs for instances with 𝑁 = 8 were limited

o a maximum of 60 s, whereas for all remaining instances a maximum

ime limit of 300 s was imposed. The genetic algorithm proposed in

5] was implemented in Java and given 60, 300 and 600 s for instances

f size 8, 21 and 40 respectively. 

In order to take similar or less time than the above values, the stop-

ing condition for each compilation pass was established to 800 con-

ecutive generations without improving the best solution found so far.

inally, the diversification operator is performed every 10 generations

ithout improvement, considering a maximum of 5 mutations per chro-

osome. 

Although we have to be aware that, as pointed in [26] , the time com-

lexity can be influenced by multiple factors, including the hardware

n which the experiments are run and the software of the implementa-

ion in use, such as the operating system, the programming language

nd/or the compiler/interpreter. A change in any of these factors could

ignificantly alter the performance estimation of the algorithms under

omparison, and so making a totally fair comparison is difficult. 

https://ti.arc.nasa.gov/m/groups/asr/planning-and-scheduling/VentCirComp17_data.zip
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Table 1 

Results of DBGA compared with versions without problem decomposition and/or without the diversification 

procedure. 

DBGA no dec. no div. DBGA no dec. DBGA no div. DBGA 

Instance Avg. 𝜎 Time Avg. 𝜎 Time Avg. 𝜎 Time Avg. 𝜎 Time 

𝑁 = 8 Instances 

1 37.0 0.0 3.1 37.0 0.0 3.6 37.0 0.0 4.1 37.0 0.0 4.9 

2 34.6 0.7 3.5 35.1 1.1 3.9 34.8 0.63 4.1 34.7 1.16 5.2 

3 32.2 0.42 3.0 32.2 0.42 3.7 32.2 0.42 4.2 32.0 0.0 5.2 

4 33.0 0.82 3.3 33.3 0.95 3.8 33.4 0.7 4.2 32.9 0.57 5.2 

5 28.0 0.0 3.2 28.0 0.0 4.0 29.2 0.92 4.1 28.2 0.42 5.1 

6 33.6 0.84 3.2 34.2 1.03 3.9 34.0 0.0 4.3 34.3 0.48 5.0 

7 30.9 0.32 3.0 30.6 0.52 3.7 31.0 0.0 4.0 30.4 0.52 5.0 

8 33.3 0.48 3.4 33.3 0.48 4.3 34.0 0.0 4.6 33.7 0.48 5.3 

9 35.8 0.92 3.9 36.1 0.99 4.5 36.2 1.03 4.6 35.1 0.32 5.5 

10 35.9 0.74 4.1 35.1 0.32 4.7 34.0 0.0 4.7 35.8 1.32 5.7 

# 𝑏𝑒𝑠𝑡 5 3 2 5 

𝑁 = 21 Instances 

1 56.1 4.93 37.2 53.3 2.21 40.4 48.6 2.17 37.4 47.6 1.07 53.9 

2 51.5 2.55 31.7 52.1 2.33 33.5 50.3 1.57 34.0 48.7 1.64 43.8 

3 53.3 2.06 42.5 50.3 3.30 47.7 46.7 1.42 38.6 46.9 1.52 48.1 

4 48.0 3.59 34.0 45.9 2.69 35.7 48.1 2.56 37.2 47.6 1.96 54.5 

5 56.0 3.86 32.7 56.7 3.53 39.3 52.3 2.00 38.4 50.9 2.28 56.1 

6 50.7 2.26 32.6 50.6 2.72 34.5 49.8 2.78 36.0 51.4 1.96 41.2 

7 61.0 2.94 34.4 61.8 5.65 36.6 55.8 2.57 39.6 55.0 3.02 47.4 

8 52.8 4.76 35.1 48.7 2.83 38.5 47.4 0.84 36.4 47.4 1.51 45.6 

9 57.6 2.01 31.7 54.6 2.37 36.6 52.9 2.08 36.0 53.1 2.02 44.3 

10 63.1 4.15 37.5 59.4 3.37 40.8 54.1 2.73 40.9 55.2 2.15 47.1 

# 𝑏𝑒𝑠𝑡 0 1 5 5 

𝑁 = 40 Instances 

1 84.0 4.42 122.9 73.3 7.76 146.4 68.0 4.37 127.2 62.3 3.13 151.7 

2 96.3 4.81 151.7 90.9 6.23 203.4 80.3 6.41 148.8 72.5 2.72 177.1 

3 100.3 7.04 157.7 84.1 9.27 158.4 78.2 6.63 152.3 70.2 3.43 170.5 

4 106.7 10.98 184.7 95.3 6.17 177.7 86.2 8.73 146.6 75.4 6.06 198.4 

5 100.9 8.72 149.2 88.7 6.11 172.3 81.1 3.78 143.4 72.0 5.44 183.1 

6 110.2 8.89 136.6 96.1 10.19 166.5 90.4 6.59 147.3 78.7 5.06 189.6 

7 100.0 8.60 153.9 91.3 10.58 155.8 80.4 7.49 140.1 70.9 4.91 172.1 

8 88.2 3.43 146.4 78.9 8.29 152.3 76.0 4.88 124.2 65.3 3.47 151.8 

9 99.3 7.90 162.8 83.1 9.69 179.1 77.4 5.85 139.8 67.9 2.42 178.8 

10 102.7 6.15 136.9 86.3 8.51 154.5 84.7 4.08 131.2 75.8 6.11 188.0 

# 𝑏𝑒𝑠𝑡 0 0 0 10 

We mark in bold the lowest average result in each instance. 
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.3. Analysis of DBGA 

Before summarizing the full results from the experimental study, we

ill visualize some results with regards to the contribution of the com-

onents of DBGA to its performance. To analyse the performance of the

ecomposition strategy and the diversification strategy, we have run

hree variants of DBGA on the first 10 instances in each subset with

 = 1 . 0 and 𝑝 = 2 , considering 𝑁 = 8 , 𝑁 = 21 and 𝑁 = 40 . In the first

ariant, the problem is not decomposed into 𝑝 rounds but it is solved at

nce, in the second one the diversification phase is removed, and in the

hird one neither decomposition nor diversification are exploited. In ei-

her case, the stopping condition was adjusted in order to obtain similar

unning times. The results of these experiments are reported in Table 1 .

n particular, we show the average makespan obtained in the 10 runs,

hich is arguably the most relevant performance measure in order to

ompare variants, and also the standard deviation and the average time

n seconds taken in one run. 

We can see that both the diversification operator and the problem

ecomposition strategy get DBGA to perform better and better with in-

reasing size of the instances, as the average result generally improves

hile the standard deviation is comparable or even lower. The fact that

ecomposing the problem produces better results than solving the prob-

em at once suggests that the difficulty of the whole problem is really

igh. 

Regarding the diversification operator, Fig. 8 (a) and (b) show the

volution of two executions of DBGA for the instance no. 4 of the subset

haracterized by 𝑁 = 40 , 𝑢 = 1 . 0 and 𝑝 = 2 with and without using this
8 
peration. As we can see, when it is not used, the average and best

akespan tend to be quite similar after a number of generations in each

ound. However, the diversification operator produces clear differences

etween average and best values, in turn improving the final solution.

otice the large jump in makespan around generation 1600, which is

aused by the algorithm switching from the first round to the second. 

Figure 8 (c) shows the convergence pattern for the same instance

hen the whole problem is solved at once, i.e., without decomposition

n two steps. In this case, the encoding includes two permutations 𝑐ℎ 11
nd 𝑐ℎ 12 of p-s gates and two permutations 𝑐ℎ 21 and 𝑐ℎ 22 of pairs of

estination qubits for the first and second rounds respectively, and the

rossover operates on the permutations of each round. We can observe

hat the algorithm is unable to converge over the first 200 generations,

nd that finally it reaches a worse solution than the original DBGA. 

Finally, Fig. 8 (d) shows the convergence pattern with neither diver-

ification nor decomposition. In this case both the convergence pattern

nd the final solution reached are the worst of the four versions. 

.4. Comparison to the state of the art: GA and RH 

As pointed, the best results so far on the considered instances are

hose produced by the genetic algorithm (GA) proposed in [5] and the

ollout heuristic (RH) proposed in [6] . 

Tables 2 , 3 and 4 summarize the best, average and worst makespan in

0 runs obtained by GA, RH and DBGA on instances with 𝑁 = 8 , 𝑁 = 21
nd 𝑁 = 40 respectively. Besides, we show the average time taken (in

econds) for each algorithm in one run. 
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Table 2 

Detailed results (in makespan) from GA, RH and DBGA on the instances with 𝑁 = 8 . For GA 

and DBGA, the values marked in bold are better or at least equal than the values obtained 

by RH. The time limit for RH and GA is 60 s. 

GA RH DBGA 

Inst. Best Worst Avg. Best Worst Avg. Best Worst Avg. Time 

1 35 39 37.6 35 35 35.0 37 37 37.0 5.1 

2 33 37 34.7 36 36 36.0 33 35 34.5 5.2 

3 32 34 32.7 31 31 31.0 32 33 32.1 5.0 

4 32 33 32.7 32 34 33.8 32 34 33.1 5.2 

5 27 28 27.6 27 27 27.0 28 29 28.1 5.1 

6 33 36 34.1 35 35 35.0 34 35 34.1 5.0 

7 31 32 31.9 31 31 31.0 30 31 30.3 5.0 

8 32 33 32.9 34 34 34.0 33 34 33.8 5.3 

9 37 41 38.4 35 35 35.0 35 35 35.0 5.5 

10 37 40 38.3 38 38 38.0 34 37 34.6 5.6 

11 36 40 37.2 38 38 38.0 39 40 39.2 5.7 

12 36 38 37.0 33 33 33.0 34 37 34.8 5.3 

13 30 33 31.8 32 32 32.0 32 33 32.1 5.4 

14 31 32 31.9 32 32 32.0 32 32 32.0 4.9 

15 33 36 34.3 35 36 35.5 34 34 34.0 5.5 

16 31 34 32.1 32 32 32.0 32 32 32.0 4.8 

17 36 38 37.3 36 36 36.0 32 32 32.0 5.2 

18 29 30 29.9 29 30 29.2 29 31 30.4 5.1 

19 31 33 32.0 32 32 32.0 32 32 32.0 5.2 

20 31 32 31.9 31 32 31.1 30 30 30.0 5.3 

21 25 27 26.4 27 27 27.0 26 28 27.0 5.0 

22 44 45 44.8 39 39 39.0 40 41 40.9 5.3 

23 36 37 36.6 35 37 36.0 36 37 36.9 5.5 

24 33 35 34.6 32 32 32.0 33 35 33.8 5.9 

25 37 40 38.5 38 39 38.3 37 38 37.3 5.7 

26 26 30 28.3 29 29 29.0 29 29 29.0 5.2 

27 35 39 36.6 34 34 34.0 36 37 36.3 5.6 

28 30 32 30.6 32 32 32.0 30 30 30.0 5.1 

29 37 38 37.7 35 37 35.1 37 37 37.0 5.6 

30 32 33 32.9 31 32 31.2 30 31 30.9 5.8 

31 33 36 33.6 32 32 32.0 32 34 32.3 5.6 

32 35 40 37.3 35 37 35.9 35 38 35.5 5.5 

33 41 44 42.9 42 42 42.0 42 45 43.8 5.7 

34 34 37 36.2 35 35 35.0 34 34 34.0 5.5 

35 34 39 36.1 38 38 38.0 39 39 39.0 5.5 

36 27 29 28.7 28 29 28.2 30 32 31.2 5.7 

37 34 37 35.7 35 35 35.0 35 36 35.6 5.4 

38 28 30 29.1 29 30 29.9 28 30 28.8 5.3 

39 29 32 31.3 30 30 30.0 28 32 30.6 5.5 

40 44 45 44.5 37 38 37.1 39 39 39.0 5.5 

41 33 40 37.2 35 35 35.0 36 39 36.7 5.9 

42 31 33 32.2 33 34 33.1 33 33 33.0 5.4 

43 33 35 34.1 32 34 33.1 32 32 32.0 5.1 

44 39 42 40.8 39 41 39.9 40 43 42.2 6.0 

45 36 39 37.3 38 38 38.0 36 37 36.9 5.1 

46 32 35 33.5 34 34 34.0 34 34 34.0 5.3 

47 41 43 42.0 38 39 38.8 37 38 37.8 5.2 

48 32 33 32.9 33 33 33.0 33 33 33.0 5.0 

49 37 40 38.5 36 37 36.1 38 40 38.4 5.5 

50 31 33 32.2 30 32 31.3 31 33 31.8 5.2 

# 𝑏𝑜𝑙𝑑 35 18 32 26 
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At a first glance, we can observe that the three methods produce

imilar makespan values on the instances with 𝑁 = 8 , and that RH and

BGA are better than GA in the remaining instances. Besides, DBGA

eems comparable to RH on the instances with 𝑁 = 21 . 
Regarding the largest instances ( 𝑁 = 40 ), Table 4 shows that DBGA

unning with the parameters given in Section 5.2 (last columns in the

able) produces the best results. In this case, DBGA established new best

olutions for 48 out of the 50 instances of the set and reached the best

nown solution for one more instance. However, given the differences in

he implementations (RH is implemented in Matlab and DBGA is imple-

ented in C++) the time taken by DBGA may not be comparable to the

ime limit given to RH. Therefore, to establish a fairer comparison be-

ween the methods, we performed new experiments on these instances

iving DBGA about 10% of the time given to RH in [6] . To do that,

e reduced the population size to 800 chromosomes and the number
9 
f consecutive generations without improving the best solution to 200.

he results of these experiments are reported in the columns labeled

DBGA (less running time) ” of Table 4 ; even though they are slightly

orse than before, we can see that they are still better than the results

rom RH. 

We have performed some statistical tests to better analyze the dif-

erences between DBGA and RH (as GA clearly obtains overall worse re-

ults than those other methods). As we have multiple-problem analysis,

e used non-parametric statistical tests, as suggested in [26] . First, we

an a Shapiro-Wilk test to confirm the non-normality of the data. Then

e used paired Wilcoxon signed rank tests to compare DBGA and RH on

ach set of instances, depending on the chip size. In these tests, the level

f confidence used was 95% and the alternative hypothesis was “the dif-

erence between DBGA and RH is lower than 0 ”. The 𝑝 - value obtained

ith this test was 0.0000004929 for 𝑁 = 40 (when giving DBGA its full
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Table 3 

Detailed results (in makespan) from GA, RH and DBGA on the instances with 𝑁 = 21 . For 

GA and DBGA, the values marked in bold are better or at least equal than the values 

obtained by RH. The time limit for RH and GA is 300 s. 

GA RH DBGA 

Inst. Best Worst Avg. Best Worst Avg. Best Worst Avg. Time 

1 51 59 55.5 49 53 51.2 46 50 47.6 53.9 

2 53 60 56.9 50 55 52.9 47 52 48.7 43.8 

3 47 55 50.0 42 48 45.7 44 49 46.9 48.1 

4 48 50 49.0 44 48 45.6 45 51 47.6 54.5 

5 52 60 56.6 52 54 53.0 47 54 50.9 56.1 

6 51 58 53.9 50 55 52.9 48 54 51.4 41.2 

7 58 65 61.5 55 57 56.5 50 60 55.0 47.4 

8 50 59 54.4 49 52 50.4 45 51 47.4 45.6 

9 58 64 60.3 54 56 54.4 51 56 53.1 44.3 

10 56 64 59.9 54 60 56.7 52 60 55.2 47.1 

11 46 53 49.9 47 51 48.9 43 51 47.1 40.5 

12 60 67 62.2 56 62 58.7 53 57 55.1 38.9 

13 46 49 47.4 43 45 44.4 42 50 44.0 39.7 

14 48 56 52.1 46 48 46.2 46 57 51.4 41.9 

15 48 54 50.9 46 48 47.4 43 46 44.3 37.3 

16 63 71 66.1 57 64 60.3 52 58 55.2 41.3 

17 57 62 59.3 50 52 50.7 52 56 53.3 44.3 

18 57 64 58.9 54 61 59.4 50 55 52.4 39.0 

19 57 64 61.1 56 62 59.3 49 57 53.1 42.3 

20 55 63 59.4 50 53 51.8 51 58 53.3 40.3 

21 54 61 58.4 51 54 51.7 52 58 55.0 48.7 

22 55 62 58.7 54 55 54.5 51 57 53.5 41.6 

23 54 59 56.1 48 51 50.1 49 56 52.3 41.1 

24 50 60 56.0 50 55 53.7 49 57 52.9 45.2 

25 53 60 56.4 50 53 50.7 51 59 55.7 43.7 

26 52 56 54.0 46 52 47.8 43 50 45.9 41.4 

27 63 73 67.7 61 66 62.7 56 68 64.3 44.2 

28 46 55 51.8 47 51 49.8 46 57 50.1 46.6 

29 49 60 54.2 47 50 48.6 47 55 50.0 40.2 

30 54 65 57.9 53 56 55.0 51 57 54.2 42.3 

31 57 64 60.9 52 57 55.5 55 61 58.4 42.8 

32 51 60 54.4 52 52 52.0 47 50 48.4 38.8 

33 52 62 56.9 52 57 55.8 49 56 50.7 41.0 

34 57 61 58.2 51 56 53.7 53 56 54.2 39.2 

35 48 56 52.0 45 51 48.6 45 52 46.9 40.5 

36 51 60 56.1 49 55 52.3 49 58 53.2 42.6 

37 56 64 59.4 51 54 52.9 52 56 53.0 38.3 

38 57 65 61.4 53 55 53.6 53 57 55.8 43.0 

39 55 65 60.1 50 55 52.1 50 64 58.0 38.4 

40 54 61 57.5 48 57 52.9 50 55 51.9 39.2 

41 52 56 54.4 49 53 50.9 47 49 48.6 36.3 

42 52 60 55.5 50 53 51.0 49 54 51.5 39.8 

43 45 56 52.0 47 51 48.5 50 54 51.5 43.3 

44 50 56 53.2 47 52 49.4 47 50 48.9 39.0 

45 44 53 48.8 40 47 43.9 44 49 46.3 42.1 

46 42 47 45.0 42 46 44.3 43 48 45.2 41.6 

47 53 57 54.8 52 53 52.1 51 55 53.8 41.8 

48 47 56 51.1 43 47 46.4 45 53 49.1 40.7 

49 60 67 62.6 54 58 57.3 54 62 57.4 46.3 

50 53 61 56.7 53 57 54.7 50 56 52.7 42.7 

# 𝑏𝑜𝑙𝑑 9 1 35 26 
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6 Repository section in http://di002.edv.uniovi.es/iscop 
unning time), or 0.004589 (with reduced run time), showing that there

xist statistically significant differences in the average makespan be-

ween DBGA and RH, in both short and long runs of DBGA. The 𝑝 - value

or 𝑁 = 21 instances was 0.242 (0.761 if we consider the opposite al-

ernative hypotheses), and so in these intermediate instances there are

ot statistically significant differences between the results of both meth-

ds. Finally, in instances with 𝑁 = 8 the 𝑝 - value is 0.9034 (0.0988 if we

onsider the opposite alternative hypotheses), and so in these small in-

tances the differences are again not statistically significant. In conclu-

ion, in large instances DBGA is significantly better than the previous

tate-of-the-art methods, whereas in small and intermediate instances

t is not worse. Moreover, we argue that the results in larger instances

re more relevant, as the size of the future quantum hardware will be

rogressively larger. 
10 
The detailed schedules of the best solutions found by DBGA for all

nstances considered in this experimental study are openly available on

he web 6 

As an example, Fig. 9 shows the Gantt chart of the best schedule

btained by DBGA to the instance no. 2 of the subset characterized by

 = 8 , 𝑢 = 1 . 0 and 𝑝 = 2 . This schedule has a makespan of 33, which is

ower than the makespan of 36 reported in [6] for the same instance. 

Regarding all previous experiments, it can be argued that the ob-

ained makespans are not realistic, as typically a p-s gate requires at

east 2 native gates and 𝑠𝑤𝑎𝑝 requires at least 3 native gates, whereas in

revious experiments we assumed 𝜏𝑠𝑤𝑎𝑝 = 2 and 𝜏𝑝 − 𝑠 = 3 or 4. For this

http://di002.edv.uniovi.es/iscop
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Table 4 

Detailed results (in makespan) from GA, RH and DBGA on the instances with 𝑁 = 40 . For GA and DBGA, the values marked 

in bold are better or at least equal than the values obtained by RH. The time limit for RH is 300 s and for GA is 600 s. 

GA RH DBGA (less running time) DBGA 

Inst. Best Worst Avg. Best Worst Avg. Best Worst Avg. Time Best Worst Avg. Time 

1 77 87 81.4 65 70 69.3 61 69 64.7 31.3 58 68 62.3 151.7 

2 92 107 98.0 74 77 75.9 67 78 73.2 35.6 69 77 72.5 177.1 

3 83 98 89.2 71 77 74.5 68 84 74.5 32.7 65 75 70.2 170.5 

4 87 104 93.9 74 82 77.3 71 97 80.3 42.0 68 86 75.4 198.4 

5 84 99 93.6 78 78 78.0 67 89 77.9 37.1 66 82 72.0 183.1 

6 87 103 96.3 81 83 82.1 76 89 81.5 37.8 72 86 78.7 189.6 

7 86 98 93.4 79 83 80.8 63 84 73.7 33.8 63 80 70.9 172.1 

8 74 90 83.0 68 77 73.7 63 80 70.3 30.3 61 73 65.3 151.8 

9 77 95 89.5 66 67 66.9 67 81 73.9 34.7 64 72 67.9 178.8 

10 88 101 95.8 80 80 80.0 69 88 79.4 36.4 69 86 75.8 188.0 

11 80 99 84.5 68 72 70.5 64 79 70.9 34.5 67 81 72.7 155.7 

12 85 98 90.9 74 77 75.6 70 81 75.9 34.6 70 89 78.3 162.7 

13 75 88 81.3 62 65 64.5 65 72 67.1 29.9 59 74 65.5 131.9 

14 89 98 93.1 74 84 78.9 72 86 78.9 32.4 68 79 73.7 139.0 

15 84 96 89.3 78 78 78.0 69 84 75.4 31.2 67 75 72.0 165.7 

16 82 94 87.4 77 78 77.9 68 81 74.6 35.6 65 84 72.5 164.1 

17 87 96 91.5 78 78 78.0 67 79 72.1 34.2 67 82 73.3 151.8 

18 90 108 99.3 79 82 80.4 73 92 81.6 32.7 72 84 78.5 155.2 

19 70 85 81.2 70 71 70.9 62 73 66.3 31.6 61 70 65.1 130.8 

20 87 105 97.9 78 85 81.5 68 104 83.2 38.0 73 93 82.0 197.7 

21 79 97 86.9 77 81 79.9 69 86 76.6 37.2 68 81 73.8 172.4 

22 79 98 90.0 76 81 78.3 64 85 75.1 35.2 67 80 74.6 160.1 

23 74 86 79.8 63 67 65.0 66 79 74.5 34.8 66 82 72.3 156.1 

24 83 92 88.1 80 80 80.0 61 71 66.6 31.6 63 73 67.0 157.0 

25 75 95 86.5 71 75 74.7 71 86 76.5 33.6 64 76 71.6 146.0 

26 90 100 94.3 81 84 82.1 67 79 72.4 31.3 63 78 69.6 167.8 

27 89 100 93.0 81 81 81.0 72 90 79.7 30.5 72 86 75.8 134.1 

28 93 105 100.3 88 88 88.0 68 86 76.2 36.4 70 83 76.5 165.0 

29 74 91 84.0 77 77 77.0 62 71 66.8 30.1 64 72 66.9 137.2 

30 79 92 85.1 72 75 73.4 64 77 70.6 31.6 60 73 67.3 141.3 

31 81 98 92.0 69 74 71.7 71 85 75.2 37.2 66 80 72.7 149.3 

32 66 78 73.9 62 68 65.5 56 64 60.7 28.9 53 62 58.4 132.1 

33 84 92 89.8 73 75 73.8 64 73 68.4 29.5 60 75 65.6 137.5 

34 79 93 86.1 73 75 70.8 66 82 74.6 35.6 60 75 68.2 147.4 

35 75 90 85.5 70 74 71.3 66 81 72.5 28.9 63 77 70.9 149.1 

36 95 107 101.0 80 88 86.5 74 83 79.4 33.8 73 83 76.7 162.6 

37 82 96 89.8 73 77 74.7 69 86 77.3 36.5 70 79 75.5 152.8 

38 72 88 83.8 72 77 73.9 65 71 67.9 29.6 62 72 66.5 142.7 

39 82 103 93.8 82 82 82.0 69 79 73.4 34.0 66 81 74.9 158.4 

40 79 92 87.1 69 76 72.6 67 80 73 31.2 64 81 71.7 152.4 

41 98 105 101.5 76 76 76.0 75 91 82 30.8 68 84 74.8 138.0 

42 81 91 85.9 65 68 67.1 66 74 69.4 33.6 61 83 70.9 154.5 

43 81 96 89.1 72 75 73.6 63 76 70.5 31.4 63 77 68.1 142.1 

44 78 97 90.3 68 82 76.0 65 85 75.9 32.1 65 82 75.6 166.3 

45 89 101 95.9 69 81 73.4 72 84 77.6 31.1 69 85 75.4 153.6 

46 91 99 95.1 78 78 78.0 68 82 73.6 32.5 65 75 70.0 154.3 

47 89 105 99.2 78 82 78.3 76 83 78.5 31.4 69 79 74.1 147.8 

48 69 91 83.9 75 77 76.5 66 82 72.1 34.1 63 75 69.6 149.5 

49 89 101 93.3 73 83 80.1 70 88 76.9 30.0 71 88 77.5 145.2 

50 78 95 87.6 74 85 76.1 66 78 70 31.9 64 79 69.3 142.0 

# 𝑏𝑜𝑙𝑑 5 0 44 32 49 40 
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eason, we have redone the experiments with DBGA using 𝜏𝑠𝑤𝑎𝑝 = 3 in
rder to see the differences in makespan. Table 5 shows the obtained

akespans, and we do not show the computational times for clarity, as

hey are similar to those reported in Tables 2, 3 and 4 . As expected,

he best makespan reached is worse in 149 of 150 instances (being the

ame in the other instance). It is also remarkable that the best makespan

btained is in average 10.6% worse in 𝑁 = 8 instances, 17.7% worse in

 = 21 instances, and 23.7% worse in 𝑁 = 40 instances. This makes

ense, as bigger quantum architectures usually require more swaps, as

states travel longer distances, and so increasing 𝜏𝑠𝑤𝑎𝑝 from 2 to 3 pro-

uces the most difference. 

.5. Comparison to the state of the art: CFH 

In this section we compare the performance of the proposed DBGA

lgorithm with the performance obtained by several configurations of
11 
he methods proposed in [21] and [22] , denoted CFH (Compilation Flow

euristics) in the following. Table 6 shows the results obtained by using

hree different sets of 5 adapted instances (a total of 15 instances) taken

espectively from the three benchmark sets introduced in Section 3 and

haracterized by the values 𝑁 = 8 , 21 , 40 , 𝑢 = 1 . 0 , and 𝑝 = 2 . It should

e noted that, as opposed to our approach which is based on an ab-

tract representation of the quantum gates (whose durations are generic

nd not related to any particular quantum architecture), the approach

sed in [21,22] is built on top of the Qiskit 7 framework and therefore

ollows a specific gate model in which the used gates ( p-s, swap , and

ix ) are expressed in terms of sequences of native gates made available

y the Qiskit backend simulator, where each native gate has a conven-

ional unit time duration. In particular, all p-s and swap gates are ex-

https://qiskit.org/
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Table 5 

Detailed results (in makespan) of DBGA when using 𝜏𝑠𝑤𝑎𝑝 = 3 instead of 𝜏𝑠𝑤𝑎𝑝 = 2 . 

𝑁 = 8 Instances 𝑁 = 21 Instances 𝑁 = 40 Instances 

Inst. Best Worst Avg. Best Worst Avg. Best Worst Avg. 

1 39 39 39.0 53 60 56.1 74 85 79.7 

2 37 39 38.0 52 62 57.0 83 94 88.8 

3 36 37 36.7 51 60 56.3 83 101 91.3 

4 35 36 35.5 55 61 57.3 87 115 99.6 

5 33 33 33.0 59 68 62.5 81 99 88.4 

6 38 38 38.0 55 61 57.9 87 107 99.6 

7 33 33 33.0 61 71 65.6 85 107 94.8 

8 37 37 37.0 55 61 57.1 79 92 84.3 

9 41 41 41.0 58 68 62.9 78 108 89.9 

10 37 37 37.0 60 68 63.7 86 111 98.0 

11 44 45 44.5 51 57 55.1 76 102 85.4 

12 39 40 39.9 61 68 64.1 87 109 94.0 

13 36 37 36.4 50 54 51.1 72 90 78.1 

14 36 37 36.2 55 69 59.9 85 99 92.0 

15 36 36 36.0 50 53 51.4 82 97 89.0 

16 36 36 36.0 63 68 65.9 82 99 90.8 

17 33 33 33.0 60 62 60.8 78 108 89.1 

18 33 34 33.8 58 67 61.5 85 98 92.3 

19 35 36 35.1 59 73 65.4 70 92 77.4 

20 32 33 32.2 58 67 62.8 90 111 100.4 

21 30 30 30.0 55 69 63.3 81 102 91.5 

22 46 47 46.8 61 65 62.9 83 92 87.8 

23 40 43 40.3 59 64 62.0 86 96 91.3 

24 34 37 34.9 57 66 61.2 74 89 80.3 

25 39 41 40.2 60 67 64.0 76 99 89.0 

26 31 31 31.0 53 60 56.0 79 89 85.5 

27 38 39 38.6 72 80 74.8 85 94 89.5 

28 32 32 32.0 56 63 58.2 90 102 94.7 

29 37 39 37.2 55 62 59.1 72 90 81.3 

30 33 35 34.2 57 68 63.5 79 89 83.0 

31 34 37 35.2 62 72 68.6 87 107 94.5 

32 40 43 40.5 55 61 57.7 68 83 72.9 

33 45 47 46.5 54 67 59.4 77 92 83.6 

34 39 40 39.3 62 66 64.1 84 94 89.2 

35 42 42 42.0 52 60 56.5 78 96 85.3 

36 34 35 34.7 59 68 63.6 90 106 97.2 

37 39 39 39.0 60 65 62.0 83 97 90.8 

38 32 33 32.5 61 68 64.6 78 94 81.9 

39 32 37 33.7 62 74 69.1 86 95 90.1 

40 44 45 44.9 59 65 60.0 81 96 88.5 

41 39 43 40.8 53 57 54.2 83 102 91.8 

42 37 37 37.0 56 63 59.4 76 90 82.3 

43 37 37 37.0 59 65 60.9 76 103 86.9 

44 43 44 43.9 58 60 58.5 82 101 91.2 

45 39 40 39.2 51 56 52.9 82 102 92.7 

46 40 40 40.0 49 56 52.7 77 94 87.3 

47 41 41 41.0 61 66 63.2 84 102 91.7 

48 37 37 37.0 53 60 56.2 79 100 87.7 

49 42 43 42.9 68 79 72.2 85 110 93.1 

50 35 37 35.3 61 65 62.3 77 88 83.6 
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“

ressed in terms of 3 native gates (and hence their duration is equal

o 3), while all mix gates are expressed in terms of one native gate.

herefore, in order to allow for a fair comparison with CFH (the code

s available at https://github.com/mahabubul- alam/QAOA- Compiler ),

e had to make some modifications to the instances used for the

omparison, adapting the gate durations used in our model to the

nes used in Qiskit and described above. By allowing for the previ-

us modifications on our side, the value of the circuit’s depth coin-

ides with the circuit’s makespan, and the obtained results can be fairly

ompared. 

Moreover, given that our approach does not entail any initial map-

ing decision process during the compilation (i.e., the 𝑖 -th qstate is sup-

osed to rest on the 𝑖 -th qubit at the beginning) we decided to introduce

n additional initial mapping option in the CFH’s code that allows for

he same initial conditions. We called this new option dummy initial-

zation. Table 6 compares DBGA with the six different solving strate-

ies proposed in [21,22] . In particular, we consider two different initial
12 
apping methods: (i) dummy , which sets each qubit 𝑖 = 1 …𝑁 to the

orresponding qstate 𝑖 , and (ii) QAIM, which applies an heuristic proce-

ure described in [22] . All benchmark instances have been solved using

he following solving strategies: IP, IC and IterC. 

In order to make the two solving approaches comparable with re-

ard the CPU time, we have considered the most CPU intensive solv-

ng configuration, that is the solving method IterC and QAIM as initial

apping, and we have empirically determined the following minimal

nteger upper bounds in the CPU time: 2 s for 𝑁 = 8 instances, 5 s

or 𝑁 = 21 instances and 20 s for 𝑁 = 40 instances. To achieve simi-

ar CPU times, we set the population size of DBGA to 400 chromosomes

nd the stopping condition at 200 generations (for each compilation

ass) without improving the best solution found so far. The results with

his configuration are shown in columns “DBGA (less running time) ”.

dditionally, results with the standard set of parameters described in

ection 5.2 take longer computational time and are shown in columns

DBGA ”. 

https://github.com/mahabubul-alam/QAOA-Compiler
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Fig. 8. Convergence graphs of different versions of the genetic algorithm. 

Require: A QCCP problem instance 𝑃 with 𝑝 rounds. The quantum 

hardware 𝑄𝑀 . A chromosome ( 𝑠𝑔 𝑟 −1 , 𝑐ℎ 1 , 𝑐ℎ 2) . 𝑠𝑔 𝑟 −1 is a solution 

graph for the subproblem 1 , … , 𝑟 − 1 , 𝑐ℎ 1 is a permutation of the p-s 

gates in round 𝑟 . 𝑐ℎ 2 is a chain of connections in 𝑄𝑀 of the same 

length as 𝑐ℎ 1 . 
Ensure: A solution graph 𝑠𝑔 𝑟 for subproblem 1 , … , 𝑟 on circuit 𝑄𝑀

𝑠𝑔 𝑟 ← 𝑠𝑔 𝑟 −1 
for each p-s ( 𝑞 𝑖 , 𝑞 𝑗 ) in 𝑐ℎ 1 (and { 𝑛 𝑘 , 𝑛 𝑙 } in 𝑐ℎ 2 ) from left to right do 

Let 𝑝𝑎𝑡ℎ 𝑖 ← 𝑛 ( 𝑞 𝑖 ) ⇝ 𝑑( 𝑞 𝑖 ) and 𝑝𝑎𝑡ℎ 𝑗 ← 𝑛 ( 𝑞 𝑗 ) ⇝ 𝑑( 𝑞 𝑗 ) be a pair of min- 

imal paths from { 𝑛 ( 𝑞 𝑖 ) , 𝑛 ( 𝑞 𝑗 )} to { 𝑛 𝑘 , 𝑛 𝑙 } in 𝑄𝑀 ; 

while { 𝑛 ( 𝑞 𝑖 ) ≠ 𝑑( 𝑞 𝑖 )} or { 𝑛 ( 𝑞 𝑗 ) ≠ 𝑑( 𝑞 𝑗 )} do 

( 𝑛, 𝑛 ′) ← ( 𝑛 ( 𝑞 𝑖 ) , 𝑠𝑢𝑐 𝑐 ( 𝑛 ( 𝑞 𝑖 )) or ( 𝑛 ( 𝑞 𝑗 ) , 𝑠𝑢𝑐 𝑐 ( 𝑛 ( 𝑞 𝑗 )) if possible such 

that { 𝑛, 𝑛 ′} ≠ { 𝑛 ( 𝑞 𝑖 ) , 𝑛 ( 𝑞 𝑗 )} ; 
if { 𝑛, 𝑛 ′} ≠ { 𝑛 ( 𝑞 𝑖 ) , 𝑛 ( 𝑞 𝑗 )} then 

insert a 𝑠𝑤𝑎𝑝 gate on qubits { 𝑛, 𝑛 ′} and update 𝑠𝑔 𝑟 ; 

𝑛 ← 𝑛 ′; // advance in 𝑝𝑎𝑡ℎ 1 or in 𝑝𝑎𝑡ℎ 2 
else 

swap in 𝑝𝑎𝑡ℎ 1 and 𝑝𝑎𝑡ℎ 2 the subpaths from the current qubits 

𝑛 and 𝑛 ′ to their destination qubits, so that the new paths 

become 𝑛, 𝑛 ′ ⇝ 𝑛 𝑏 and 𝑛 ′ ⇝ 𝑛 𝑎 if the old paths were 𝑛, 𝑛 ′ ⇝ 𝑛 𝑎 
and 𝑛 ′ ⇝ 𝑛 𝑏 respectively; 

end if 

end while 

insert a p-s gate on qubits { 𝑛 𝑘 , 𝑛 𝑙 } (where qstates { 𝑞 𝑖 , 𝑞 𝑗 } are now 

hold) and update 𝑠𝑔 𝑟 ; 

end for 

insert a 𝑚𝑖𝑥 gate on each qubit holding a qstate; 

return The solution graph 𝑠𝑔 𝑟 ; 

Algorithm 1 : Decoding algorithm. Given a chromosome in round 𝑟 , it 

produces a solution graph for the subproblem defined by rounds 1 , … , 𝑟 . 

𝑠𝑢𝑐 𝑐 ( 𝑛 ( 𝑞 𝑘 )) denotes the successor of qubit 𝑛 ( 𝑞 𝑘 ) in 𝑝𝑎𝑡ℎ 𝑘 . 
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13 
Inspecting Table 6 , we observe that within the imposed CPU times,

he makespans 8 produced by the DBGA algorithm are always better than

hose obtained by CFH (even those of the “less running time ” configura-

ion); the greater the size of the benchmark sets, the larger the improve-

ent obtained by DBGA. In our opinion the main reasons for the DGBA

dvantage are the following: (i) all the solving strategies proposed in

21] and [22] are heuristic single-pass strategies, whereas DBGA adopts

 single-pass strategy at decoding level and uses a genetic-based opti-

ization strategy (described in Fig. 4 ) to effectively explore the search

pace and find better quality solutions; (ii) the methodology proposed

n [21,22] follows a loosely coupled approach, in which the p-s gate

cheduling (in terms of assignment to the different layers) and the swap

ate synthesis and insertion are performed in two different and sepa-

ate steps, whereas in other approaches proposed in the literature (e.g.,

4,5] ) the previous two solving phases are inherently interleaved (and

ence, one can take advantage of the decisions made by the other at all

imes during the solving process). 

Last but not least, an element that may significantly affect the dura-

ion of the compiled circuit is the number of swap gates. We have ob-

erved the best solutions obtained by CFH (in terms of number of swap

ates), compared with our DBGA solutions (considering the “less run-
8 In the case of the algorithms described in [21] and [22] in order to calcu- 

ate comparable makespan values with DBGA, we have generated a set of read- 

ble instances for the code available at https://github.com/mahabubul-alam/ 

AOA-Compiler . For each obtained solution represented as set of native gate for 

he used Qiskit backend simulator, we have subtracted the value 2 to the pro- 

uced depth value; indeed, the depth represents the longest sequence of native 

ates in the output solution (each one has a conventional unitary duration) and 

he value 2 corresponds to the duration of the circuit’s first and last layer, where 

he first layer is used to realize the initial mapping and the last layer is used to 

erform the measurement operations. In fact, such devices are not considered 

n the model proposed in Section 3 . 

https://github.com/mahabubul-alam/QAOA-Compiler
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Table 6 

Results of DBGA compared with those obtained by several configurations of the CFH proposed in [21] and [22] . 

CFH + Dummy CFH + QAIM DBGA (less running time) DBGA 

Instance IP IC IterC IP IC IterC Best Worst Avg. Time Best Worst Avg. Time 

𝑁 = 8 Instances 

1 51 44 41 62 47 53 32 32 32.0 0.5 32 32 32.0 4.7 

2 61 41 54 62 44 50 32 35 34.1 0.6 32 35 32.6 5.5 

3 43 38 42 52 56 42 32 32 32.0 0.5 32 32 32.0 5.2 

4 76 50 54 67 47 55 38 38 38.0 0.6 38 38 38.0 5.4 

5 53 32 42 49 38 33 29 32 30.7 0.6 29 31 29.2 5.2 

𝑁 = 21 Instances 

1 126 152 112 143 125 101 53 59 55.4 3.0 50 59 54.0 22.5 

2 128 152 102 123 149 113 53 59 54.5 3.2 53 56 53.3 20.4 

3 138 107 105 103 125 103 56 74 60.5 3.8 50 62 56.7 27.1 

4 108 119 110 116 116 110 53 62 57.3 3.1 53 56 54.2 23.9 

5 120 104 100 157 128 101 50 62 55.9 3.0 50 59 54.8 21.4 

𝑁 = 40 Instances 

1 184 152 140 209 149 159 65 86 77.4 12.6 62 83 73.2 71.4 

2 227 185 171 214 176 186 83 110 95.8 15.9 76 91 83.5 94.1 

3 182 164 178 219 188 163 77 94 88.9 15.1 74 85 80.3 80.6 

4 218 194 193 195 125 180 83 107 92.9 17.4 76 101 86.7 92.1 

5 226 221 186 219 200 187 91 119 98.4 14.9 77 92 85.3 83.6 

We mark in bold the best result in each instance. 

Fig. 9. Gantt representation of the best solution to the instance no. 2 of the subset characterized by 𝑁 = 8 , 𝑢 = 1 . 0 and 𝑝 = 2 . 
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ing time ” configuration). As an example, the values for the five 𝑁 = 40
nstances are as follows: 

• Instance 1: 191 Vs. 110 (+ 73.6%) 

• Instance 2: 223 Vs. 155 (+ 43.8%) 

• Instance 3: 205 Vs. 165 (+ 24.2%) 

• Instance 4: 181 Vs. 174 (+ 4.0%) 

• Instance 5: 223 Vs. 174 (+ 28.1%) 

From the previous values it is possible to conjecture that one of the

easons that explain the good results obtained with DBGA is the rela-

ively lower number of swap gates compared with solutions from CFH. 

. Conclusions and future work 

We have seen that Constraint Optimization is a suitable framework to

ormulate the Quantum Circuit Compilation Problem (QCCP); this prob-

em may be naturally defined as a scheduling problem where qstates rep-

esent resources and gates are operations that require the exclusive use

f one or more qstates to be performed. We focused in the class of Quan-

um Approximate Optimization Algorithms (QAOA), in which the same

et of quantum gates must be applied for a number of rounds. This fea-

ure allowed us to develop a Decomposition Based Genetic Algorithms

DBGA) that proved to be quite competitive with the state of the art.

o do that, we had to devise a suitable encoding/decoding mechanism,

hich was not an easy task. Due to the extreme difficulty of the prob-

em, a coding scheme that may represent any problem solution becomes

mpractical. So, we opted by a simplified encoding that fixes the qubits
14 
here the qstates of a (binary) gate must be for the gate to be executed.

his raised the issue of how to move two qstates from a pair of qubits to

nother pair of destination qubits. This may be done in many ways and

e opted here to design an algorithm that minimizes the moves, i.e.,

he number of swap gates required, which may not be a globally opti-

al strategy. In spite of that, the proposed encoding/decoding schema

roved to be really good. This is justified by the fact that it was able to

utperform some of the best methods in the state of the art. 

In our opinion, the key point of the proposed DBGA is that it exploits

he fact that the QAOA is composed by a sequence of rounds, in each of

hich the same set of gates must be scheduled. Therefore, the algorithm

terates on the number of rounds and, in each one, it searches for a

chedule of the gates in the current round. Of course, this is a local

ptimal strategy that do not necessarily converge to a global optimum.

owever it empirically showed to be very efficient, and it is expected

hat it will scale up better in the number of rounds than other strategies

ealing with the whole problem at once. 

This work leaves open some lines for future research. For example,

ore expressive coding schemas and new decoding algorithms and ge-

etic operators could help to better explore the search space. Besides,

evising neighbourhood structures to improve the solutions built by

he decoding algorithm could help to reach new and hopefully better

olutions that are not reachable with the current enconding/decoding

chema. These structures may then be exploited in Local Search (LS)

lgorithms that may in turn be combined with the GA into a Memetic

lgorithm [27–29] . Memetic Algorithms demonstrated to be good in

olving a variety of extremely hard combinatorial problems as, for ex-
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mple, the travelling salesman problem [30] , or a number of scheduling

roblems [31–35] , and so they are expected to be efficient in solving the

CCP as well. 

It will be also interesting to consider the application of QAOA to

roblems other than MaxCut, as for example to the Graph Coloring Prob-

em, which was already considered in [36] . 

However, the most interesting line for future work is probably to

onsider the mentioned extensions of the problem, initially proposed in

8] , and also considered in [5] . These extensions are: 1) variable initial-

zation of qstates (QCCP-I) and 2) crosstalk constraints (QCCP-X). The

ariable initialization of qstates makes the problem harder to solve, as

he initial positions of qubits would be additional decision variables. On

he other hand, the crosstalk constraint forbids the concurrent execution

f two gates on neighbouring qubits. The motivation is to avoid possi-

le interferences that may be produced between qubits and so to devise

ore robust solutions. 

Finally, it is worth to remark that quantum computing technologies

re quickly evolving, and so an essential line of future work is to adapt

he solving methods to the newly developed hardware architectures and

merging technologies. 
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ppendix A. Quantum approximate optimization algorithm 

QAOA as proposed in [7] leverages quantum-gate based computing

o solve combinatorial optimization problems expressed as: 

aximize: 

𝑚 ∑
𝛼=1 

𝐶 𝛼( 𝐳) (A.1) 

here 𝐶 𝛼( 𝐳) are clauses on a vector of decision binary variables 𝐳 =
 𝑧 1 , … , 𝑧 𝑛 ) . So, the goal is to find the assignment of 𝑧 𝑖 ∈ {0 , 1} , 1 ≤ 𝑖 ≤ 𝑛,

hat maximizes the number of clauses that are satisfied. 

To apply QAOA to solve this problem, the user has to translate the

lauses 𝐶 𝛼( 𝑧 ) into equivalent quantum Hamiltonians 𝐂 𝛂, by promoting

ach variable 𝑧 𝑖 to a quantum spin, i.e., a qubit, and then select a number

f rounds 𝑝 and two angles 0 ≤ 𝛽 ≤ 𝜋 and 0 ≤ 𝛾 ≤ 2 𝜋 for each round.

hen, starting from the 𝑛 qubits in a qstate 

+ ⟩ = 

1 √
2 
|0 ⟩ + 

1 √
2 
|1 ⟩, (A.2) 

he following problem Hamiltonian 

 𝐶 = 

𝑚 ∑
𝛼=1 

𝐂 𝛂 (A.3) 
15 
nd the mixing Hamiltonian 

 𝐵 = 

𝑛 ∑
𝑗=1 

𝐗 𝐣 (A.4)

here 

 𝐣 = 

( 

0 1 
1 0 

) 

(A.5) 

s the standard Pauli matrix 𝐗 , are applied alternatively over the 𝑝

ounds to generate the final state 

𝜓 𝑝 ( ⃗𝛾, 𝛽) ⟩ = 

𝑝 ∏
𝑟 =1 

𝑒 − 𝑖𝛽𝑟 𝐻 𝐵 𝑒 − 𝑖𝛾𝑟 𝐻 𝐶 |+ ⟩⊗𝑛 (A.6) 

here 

 

− 𝑖𝛽𝑟 𝐻 𝐵 = 

𝑛 ∏
𝑗=1 

𝑒 − 𝑖𝛽𝑟 𝐗 𝐣 (A.7) 

nd 

 

− 𝑖𝛾𝑟 𝐻 𝐶 = 

𝑚 ∏
𝛼=1 

𝑒 − 𝑖𝛾𝑟 𝐂 𝛂 (A.8) 

This state is measured to obtain an approximate solution to the prob-

em defined in Eq. (A.1) , whose expectation value is given by 

𝜓 𝑝 ( ⃗𝛾, 𝛽) |𝐻 𝐶 |𝜓 𝑝 ( ⃗𝛾, 𝛽) ⟩ (A.9) 

If the values of 𝑝 , 𝛽 and 𝛾 are well selected, the state of the qubits

fter this transformation will represent a good solution to the problem

efined in Eq. (A.1) with high probability, and the quality of the solution

ncreases with the number of rounds. The selection of 𝛽 and 𝛾 is not a

rivial issue and there are some proposals in the literature [7] . A usual

pproach is starting from some initial values and then perform simplex

r gradient based optimization. 

ppendix B. QAOA applied to MaxCut 

The MaxCut problem is a paradigm in combinatorial optimization

hat is particularly advantageous for QAOA for two reasons: (i) all

lauses in the objective function have the same structure, hence only

ne quantum Hamiltonian needs to be designed, and (ii) the clauses

nvolve only two decision variables. 

In the MaxCut problem, we are given an undirected graph 𝐺 =
 𝑉 , 𝐸) , where 𝑉 = {1 , … , 𝑛 } is a set of nodes and 𝐸 is the set of arcs.

he goal is to establish a partition of the set 𝑉 into two subsets 𝑉 +1 and

 −1 so that the number of arcs in 𝐸 connecting nodes of the two subsets

s maximized, in other words, the goal is 

aximize: 
∑

( 𝑖,𝑗)∈𝐸 

1 
2 
(1 − 𝜎𝑖 𝜎𝑗 ) (B.1) 

𝑘 = 

{ 

−1 if 𝑘 ∈ 𝑉 −1 
1 if 𝑘 ∈ 𝑉 +1 

(B.2) 

Note that a single transformation 𝑧 = ( 𝜎 + 1)∕2 converts the variables

rom the 𝜎 ∈ {−1 , +1} space to the 𝑧 ∈ {0 , 1} space. 

In this case, we have a Hamiltonian 𝐂 𝛂 for each arc ( 𝑖, 𝑗) , which

epends on just these two variables, so it may be denoted as 𝐂 𝐢 , 𝐣 , and

iven that it operates on a 2-qubit state it has size 4 × 4 . From Eq. (B.1) ,

he computational basis { |00 ⟩, |01 ⟩, |10 ⟩, |11 ⟩} may be considered as qs-

ates of a physical system with energies 0,1,1,0 respectively; therefore,

ollowing [37] the Hamiltonian may be represented by the matrix 

 𝐢 , 𝐣 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
0 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(B.3) 
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hich can be written as 

 𝐢 , 𝐣 = 

1 
2 
( 𝐈 − 𝐙 𝑖 ⊗ 𝐙 𝑗 ) (B.4) 

here 𝐙 𝐢 and 𝐙 𝐣 are both the Pauli matrix 

 = 

( 

1 0 
0 −1 

) 

(B.5)

Therefore, the exponential terms in Eqs. (A.7) and (A.8) can be ex-

anded considering that 

 

− 𝑖𝛽𝑟 
⎛ ⎜ ⎜ ⎝ 
0 1 
1 0 

⎞ ⎟ ⎟ ⎠ = 

( 

cos ( 𝛽𝑟 ) − 𝑖 sin ( 𝛽𝑟 ) 
− 𝑖 sin ( 𝛽𝑟 ) cos ( 𝛽𝑟 ) 

) 

(B.6) 

nd 

 

− 𝑖𝛾𝑟 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
1 0 0 0 
0 𝑒 − 𝑖 𝛾𝑟 0 0 
0 0 𝑒 − 𝑖 𝛾𝑟 0 
0 0 0 1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(B.7) 

The operators in Eqs. (B.6) and (B.7) have to be implemented by

eans of the set of quantum gates available in the target quantum com-

uter. In particular, in the Rigetti architectures 9 the first one could be

mplemented as RX( 2 𝛽𝑟 ) and the second by means of the composition of

he two 2-qubit gates CPHASE01(- 𝛾𝑟 ) CPHASE10(- 𝛾𝑟 ). 

Alternatively, in [22] the phase separator operator is synthesized by

wo CNOT gates and a RX( 𝛾∕2 ) operator on the second qubit in between

hem yielding the matrix 

 

 

 

 

 

 

𝑒 − 𝑖𝛾𝑟 ∕4 0 0 0 
0 𝑒 𝑖 𝛾𝑟 ∕4 0 0 
0 0 𝑒 𝑖 𝛾𝑟 ∕4 0 
0 0 0 𝑒 − 𝑖𝛾𝑟 ∕4 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(B.8) 

Furthermore, in [38] the phase separators are performed by the

 𝑍𝑍 ( 𝛾) operator with the following equivalent matrix 

 

 

 

 

 

 

𝑒 − 𝑖𝛾𝑟 ∕2 0 0 0 
0 𝑒 𝑖 𝛾𝑟 ∕2 0 0 
0 0 𝑒 𝑖 𝛾𝑟 ∕2 0 
0 0 0 𝑒 − 𝑖𝛾𝑟 ∕2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(B.9) 

As mentioned, to execute a binary gate on two qstates, these states

ust be located on adjacent qubits. For this purpose, the use of a number

f 𝑠𝑤𝑎𝑝 gates is generally necessary; a 𝑠𝑤𝑎𝑝 gate operates on two qubits

wapping their qstates by implementing the following operator 

 

 

 

 

 

 

1 0 0 0 
0 0 1 0 
0 1 0 0 
0 0 0 1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
(B.10) 

hich is performed by the SWAP gate in Rigetti systems, and may be

mplemented by three consecutive CNOT gates, the second one taking

he second qubit as control and the first as target. 
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