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Abstract. We study Dirichlet boundary control of Stokes flows in 2D polygonal domains. We
consider cost functionals with two different boundary control regularization terms: the L2(Γ)-norm
and an energy space seminorm. We prove well-posedness, provide first order optimality conditions,
derive regularity results, and develop finite element discretizations for both problems, and also prove
finite element error estimates for the latter problem. The motivation to study the energy space
problem follows from our analysis: we prove that the choice of the control space L2(Γ) can lead
to an optimal control with discontinuities at the corners, even when the domain is convex. This
phenomenon is also observed in numerical experiments. This behavior does not occur in Dirichlet
boundary control problems for the Poisson equation on convex polygonal domains, and may not
be desirable in real applications. For the energy space problem, we show that the solution of the
control problem is more regular than the solution of the problem with the L2(Γ) regularization.
The improved regularity enables us to prove a priori error estimates for the control in the energy
norm. We present several numerical experiments for both control problems on convex and nonconvex
domains.
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1. Introduction. PDE-constrained optimal control is an active research area
and has been popular for the last several decades. Interest in analysis and computation
for problems in this area has been generated by a wide variety of applications and the
fast development of computational resources. There are already several monographs
and chapters devoted to various aspects of the field, including theoretical analysis,
computational methods, and application areas; see, e.g., [33, 44, 6].

Boundary control problems for PDEs are a very important part of this field since
for many applications control may only be applied at the boundary of the physical
domain. Dirichlet boundary control problems are especially important in application
areas, but the problems can be difficult to analyze mathematically – especially when
the physical domain has a nonsmooth boundary. One of the key points in the study
of Dirichlet boundary control problems is the choice of the control penalty in the
cost functional. A natural goal in many applications is to minimize the “amount”
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of control used, which naturally leads to a boundary control penalty using the L2(Γ)
norm. This also appears to be a reasonable choice from a numerical approximation
point of view. However, in the analysis of such a problem the governing state equation
is typically understood in a very weak sense since the Dirichlet boundary condition is
only in L2(Γ).

Despite this difficulty, many researchers have considered problems using the L2(Γ)
control penalty and developed numerical methods and numerical analysis results for
problems governed by elliptic scalar equations. See [19, 8, 47, 17, 28, 1, 2] for different
advances in the theory and classical finite element methods; in the recent works [10, 12,
36, 25, 11] the hybridizable discontinuous Galerkin (HDG) has been succesfully applied
to problems governed by elliptic scalar equations posed on convex polygonal domains.
We also refer to [23, 26] for error estimates for parabolic Dirichlet boundary control
problems, to [46] for state-constrained problems, and to [7] for a Robin penalization
approach.

On the other hand, H1/2(Γ) appears to be a natural choice to study the state
equation in the standard variational formulation. There are also some numerical
analysis results in this direction. See [49, 48, 53]. In [13, 39] a different formulation of
this method is proposed where the control penalty now involves the harmonic exten-
sion of the control into the domain; a posteriori error estimates and the convergence
of the adaptive finite element method is studied in [27]. There are also other ways
to deal with the inhomogeneous Dirichlet boundary condition. In [41, 42, 43] elliptic
Dirichlet boundary control problems are studied in the energy space setting using
wavelet schemes for the spatial discretization and using a Lagrange multiplier for the
inhomogeneous Dirichlet boundary condition.

Dirichlet boundary control problems are of great interest for applications in fluid
dynamics; see, for example, [20, 21, 31, 30, 34, 35, 16, 37, 51]. Although many
numerical algorithms and simulation results can be found in the literature, there
are very few well-posedness, regularity, and numerical analysis results for Dirichlet
boundary control problems for fluid flows in polygonal domains.

In this work, we study Dirichlet Stokes flow control problems in 2D polygonal do-
mains using both L2 and H1/2 for the control spaces. We give precise well-posedness
and regularity results for both problems, and show that the L2 regularized optimal
control can be discontinuous at the corners of a convex domain. We prove higher reg-
ularity for the energy space control problem. We also develop finite element methods
for both problems, present an efficient way to compute the gradient of the objective
functional and prove a priori error estimates for the energy space problem.

We believe that the present work is the first to give regularity results and also
convergence rates for standard finite element methods for a Dirichlet boundary flow
control problems on polygonal domains. The only other work that we are aware of
that proves convergence rates for a numerical method for a Dirichlet boundary flow
problem on a polygonal domain is our recent work [24], which considers a tangential
Stokes boundary control problem. We improve on this work in a number of ways.
First, we do not restrict to the case of a tangential control. Second, we do not require
the polygonal domain to be convex. Third, we use standard finite element methods for
Stokes flows in this work, instead of the hybridizable discontinuous Galerkin (HDG)
method considered in [24]. HDG methods are very flexible, powerful, and have many
advantages (see [24] for more information); however, standard finite element methods
for Stokes flows are more widely used and are readily available in many existing
software packages.

Below, we give precise formulations of the Dirichlet Stokes control problems we
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consider and give a brief overview of related work.
Let Ω ⊂ R2 be an open bounded domain with polygonal boundary Γ. We let

Hm(Ω) denote the standard Sobolev space with norm ∥ · ∥m,Ω and seminorm | · |m,Ω,
and we use bold font to denote vector valued spaces. Set Hm(Ω) = [Hm(Ω)]2 and
H1

0 (Ω) = {v ∈ H1(Ω); v = 0 on Γ}. We denote the L2-inner products on L2(Ω),
L2(Ω), L2(Γ) and L2(Γ) by

(y, z) =

2∑
j=1

∫
Ω

yjzj , (p, q) =

∫
Ω

pq, (y, z)Γ =

2∑
j=1

∫
Γ

yjzj , (u, v)Γ =

∫
Γ

uv.

We use ⟨·, ·⟩ to denote the duality product between H−s(Ω) and Hs(Ω). We let Hs(Γ)
denote the space of traces of Hs+1/2(Ω) for 0 < s < 3/2, and we note that Hs(Γ) for
1/2 < s < 3/2 is given by Hs(Γ) = {u ∈ Πm

i=1H
s(Γi) : u ∈ C(Γ)}, see [29, Theorem

1.5.2.8]. (This definition does not make sense for s = 3/2.) Here, Γi are the sides of
the polygon. For 0 < s < 3/2, we use ⟨·, ·⟩Γ to denote the duality product between
H−s(Γ) and Hs(Γ).

For the Stokes problem, we use the standard spaces

H(div; Ω) = {v ∈ L2(Ω), ∇ · v ∈ L2(Ω)}, L2
0(Ω) =

{
p ∈ L2(Ω), (p, 1) = 0

}
,

as well as the velocity spaces (see [52, Section 2.1])

V s(Ω) = {y ∈Hs(Ω) : ∇ · y = 0, ⟨y · n, 1⟩Γ = 0}, s ⩾ 0,

which are Banach spaces with the Hs(Ω) norm. For 0 ⩽ s < 3/2, define

V s(Γ) = {u ∈Hs(Γ) : (u · n, 1)Γ = 0},

and let V −s(Γ) denote the dual space. A proper definition of V s(Γ) for all 0 ⩽ s < 3/2
was needed to obtain the regularity results in [24].

For the control problem, consider a target state yd ∈H, a velocity penalty space
H ↪→ L2(Ω), and a control penalty space U ↪→ V 0(Γ). Let α > 0 denote a Tikhonov
regularization parameter, and consider the optimal control problem

(1.1) min
u∈U

J(u) =
1

2
∥yu − yd∥2H +

α

2
∥u∥2U ,

where yu ∈ V 0(Ω) is the unique solution (either in the transposition sense, see Defi-
nition 2.3 below, or standard variational solution) of the Stokes system

−∆y +∇p = f in Ω, ∇ · y = 0 in Ω, y = u on Γ.(1.2)

We note that similar Dirichlet control problems with various choices of the spaces
H and U have been considered in the literature for both the Stokes and Navier-
Stokes equations. The choices H = L4(Ω) and U = V 1(Γ) were used in the early
work [31]. In [16], the spaces H = V 1(Ω) and U = L2(Γ) are used for the objective
functional; however, the optimal control problem looks for admissible optimal controls
in Uad = V 1/2(Γ), which is the natural space for the controls to obtain a variational
solution of the state equation (1.2). In [37], the authors consider a smooth domain
and choose H = V 0(Ω) and U = V 0(Γ). We show in polygonal domains that this
approach leads to optimal controls that are discontinuous at the corners; see Section 3
for the well-posedness and regularity results. However, a better regularity result for
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these spaces is obtained if we consider tangential control, i.e., we impose the condition
u · n = 0 pointwise instead of (u · n, 1)Γ = 0, see [24] for more details.

Here we focus on the energy space method for the problem in polygonal domains.
In Section 4 we formulate the Dirichlet boundary control problem of Stokes equation
with velocity space H = V 0(Ω) and control space U = V 1/2(Γ), and we derive
the first order optimality condition by using the Steklov-Poincaré operator. Higher
regularity of the solutions is shown compared to the L2(Γ) setting. In Section 5 we
give finite element approximations and error estimates for the energy space method.
Numerical experiments are carried out in Section 6 for both choices U = V 0(Γ) and
U = V 1/2(Γ) in both convex and nonconvex polygonal domains.

As can be seen in the numerical experiments, our estimates are not sharp. Sharp
error estimates for Lagrange linear elements have been obtained for the case of the
Poisson equation in [2] for L2-regularization and in [53] for H1/2-regularization using
a detailed study of the regularity of the adjoint state: a splitting into a regular plus
a singular part in the first reference and regularity in the weighted Sobolev space
W 2,∞

α (Ω) in the second one. We have noticed that, for problems governed by the
Stokes equation, orders of convergence higher than the ones that could be obtained
using those techniques are possible using higher order elements; see Table 2. We do
not attempt those techniques in this paper and defer its study to a future work.

Remark 1.1. For f ∈ H−1(Ω), if we let yf ∈ V 1(Ω) ∩ H1
0 (Ω) be the unique

solution of (1.2) for u = 0 and redefine yd := yd−yf , we can formulate an equivalent
problem to (1.1) with f = 0, in the sense that the optimal control will be the same
for both problems and the optimal states will differ by yf . Thus, in the rest of the
work, we assume f = 0.

Remark 1.2. The introduction of control constraints does not lead to any differ-
ences in the regularity of the solutions or the rates of convergence. Control constrained
problems can be treated by means of variational inequalities instead of equalities and
there are plenty of examples about this in the literature. We focus on the uncon-
strained problem in order to avoid additional technicalities.

2. Regularity results. We first summarize the result we presented in [24] about
the concept of solution for Dirichlet data in V 0(Γ) and its precise regularity.

To introduce the definition of solution of the state equation, we first need some
results about the following compressible Stokes equation. For data (g, h) ∈H−1(Ω)×
L2

0(Ω), we say that (zg,h, qg,h) ∈H1
0 (Ω)× L2

0(Ω) is a solution of

(2.1) −∆z +∇q = g in Ω, ∇ · z = h in Ω, z = 0 on Γ

if

(∇zg,h,∇ζ)− (qg,h,∇ · ζ) = ⟨g, ζ⟩ ∀ζ ∈H1
0 (Ω),

(χ,∇ · zg,h) = (h, χ) ∀χ ∈ L2
0(Ω).

Following [15], we define ξ, the singular exponent for the Stokes operator, as the
smallest nonzero real part of all roots of the equation

(2.2) (λ− 1)−1λ−2
(
sin2(λω)− λ2 sin2 ω

)
= 0,

where ω denotes the greatest interior angle of Γ. It is known (see page 80 of [15]) that
ξ > π/ω when ω ∈ (0, π) and ξ < π/ω when ω ∈ (π, 2π). Let

s⋆ = min{ξ − 1/2, 1/2}.(2.3)
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Theorem 2.1. [15, Theorem 5.5 (a)] Let s satisfy −1/2 < s < s⋆. If g ∈
Hs−1/2(Ω) and h ∈ Hs+1/2(Ω) ∩ L2

0(Ω), then Equation (2.1) has a unique solution
(zg,h, qg,h) ∈ [H3/2+s(Ω) ∩H1

0 (Ω)]× [H1/2+s(Ω) ∩ L2
0(Ω)]. Moreover, we have

∥zg,h∥H3/2+s(Ω) + ∥qg,h∥H1/2+s(Ω)/R ⩽ C
(
∥g∥Hs−1/2(Ω) + ∥h∥Hs+1/2(Ω)/R

)
.(2.4)

It is important to note that Theorem 2.1 only holds for s < 1/2. This means,
even in convex domains one cannot expect in general to have H2(Ω) regularity of z.
Later, we also require a regularity result for the case h ≡ 0 in a convex domain. Let
(z(g), q(g)) denote the solution of (2.1) for h = 0, i.e., z(g) = zg,0 and q(g) = qg,0.

Theorem 2.2. [15, Theorem 5.5(b)(c)] Suppose g ∈Ht−1(Ω) for some 0 ⩽ t < ξ
and h = 0. Then equation (2.1) has a unique solution z(g) ∈ V t+1(Ω) ∩H1

0 (Ω),
q(g) ∈ Ht(Ω) ∩ L2

0(Ω), and there exists a constant C > 0 independent of g such that

∥z(g)∥H1+t(Ω) + ∥q(g)∥Ht(Ω) ⩽ C∥g∥Ht−1(Ω).

Below, we define transposition solutions of the state equation (1.2) with f = 0
(see Remark 1.1) in the case u ∈ V −s(Γ) for 0 < s < s⋆. Elements of this space do
not necessarily satisfy any condition analogous to (u ·n, 1)Γ = 0. In order to account
for the constants, we follow [52, Eq. (2.2)] and for (z, q) ∈ H3/2+s(Ω) ×H1/2+s(Ω)
with s > 0 we define the constant

(2.5) λ(z, q) =
1

|Γ|
(∂nz · n− q, 1)Γ.

This constant satisfies

∥∂nz − qn∥L2(Γ)/R = ∥∂nz − qn− λ(z, q)n∥L2(Γ),

and we have

∂nz − (q + λ(z, q))n ∈ V 0(Γ).

This fact, the continuity of the normal trace inH3/2+s(Ω), the continuity of the trace
in Hs(Ω), and (2.4) give that for 0 < s < 1/2 we have

(2.6) ∥∂nzg,h − (qg,h + λ(zg,h, qg,h))n∥Hs(Γ) ⩽ C
(
∥g∥Hs−1/2(Ω) + ∥h∥Hs+1/2(Ω)/R

)
.

This allows us to give the following well-defined notion of transposition solution for
the state equation (again, with f = 0).

Definition 2.3. Suppose 0 ⩽ s < s⋆ and u ∈ V −s(Γ). We say that yu ∈ V 0(Ω),

pu ∈
(
H1(Ω) ∩ L2

0(Ω)
)′

is a solution in the transposition sense of

−∆y +∇p = 0 in Ω, ∇ · y = 0 in Ω, y = u on Γ(2.7)

if

(2.8) (yu, g)− ⟨pu, h⟩ = ⟨u,−∂nzg,h + (qg,h + λ(zg,h, qg,h))n⟩Γ,

for all g ∈ L2(Ω) and h ∈ H1(Ω) ∩L2
0(Ω), where (zg,h, qg,h) ∈H1

0 (Ω)×L2
0(Ω) is the

unique solution of (2.1) and λ(zg,h, qg,h) is the constant given in (2.5).
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Furthermore, this definition can be rewritten in different forms when u is more
regular. First, if u ∈ V 0(Γ), then (u, λn)Γ = 0 for every constant λ ∈ R and therefore
(2.8) can be written as

(yu, g)− ⟨pu, h⟩ = (u,−∂nzg,h + qg,hn)Γ.(2.9)

Second, if u ∈ V 1/2(Γ), then the transposition solution is the variational solution of
the problem: Find (yu, pu) ∈H1(Ω)× L2

0(Ω) satisfying

(∇yu,∇ζ)− (pu,∇ · ζ) = 0 ∀ζ ∈H1
0 (Ω),

(χ,∇ · yu) = 0 ∀χ ∈ L2(Ω)/R,
yu = u on Γ.

(2.10)

Next, we give a regularity result for the state equation (2.7) on polygonal domains
from [24, Theorem 2.2].

Theorem 2.4. If u ∈ V s(Γ) for −s⋆ < s < s⋆ + 1, then the solution of (2.7)
satisfies

yu ∈ V s+1/2(Ω) and pu ∈

{
Hs−1/2(Ω)/R if s ⩾ 1/2,(
H1/2−s(Ω)/R

)′
if s ⩽ 1/2.

Also, the control-to-state mapping u 7→ yu is continuous from V s(Γ) to V s+1/2(Ω).

We also recall here the concept of stress force on the boundary as used in [32]. Let
(ψ, ϕ) be the solution of the incompressible Stokes system with source g ∈ L2(Ω) and
Dirichlet data u ∈ V 1/2(Γ), i.e., ψ = z(g)+yu and ϕ = q(g)+pu, where (z(g), q(g))
is the solution of (2.1) with h = 0, and (yu, pu) is the solution of (2.10).

For g and u as above, we define the stress force on the boundary t(g,u) related
to (ψ, ϕ) to be the unique solution in H−1/2(Γ) of the variational problem:

⟨t(g,u), ζ⟩Γ = (∇ψ,∇ζ)− (ϕ,∇ · ζ)− (g, ζ) ∀ζ ∈H1(Ω).(2.11)

Notice that for u ∈ V r+1/2(Γ) with r > 0, integration by parts shows that

t(g,u) = ∂nψ − ϕn.(2.12)

For 0 ⩽ s < s⋆ + 1, we define the solution operator E : V s(Γ) → L2(Ω) by

Eu = yu.(2.13)

Directly from (2.9) with h = 0 and (2.12), the adjoint E⋆ : L2(Ω) → V −s(Γ) is
defined by

E⋆g = −∂nz(g) + q(g)n = −t(g,0).(2.14)

By Theorem 2.4 we know that E : V s(Γ) → L2(Ω) is bounded and hence E⋆ :
L2(Ω) → V −s(Γ) is also bounded. Therefore, E⋆E : V s(Γ) → V −s(Γ) is bounded.
Furthermore, setting s = 1/2, [32, Theorem 4] gives that for all u ∈ V 1/2(Γ) we have

∥E⋆Eu∥H−1/2(Γ) ⩽ C∥u∥H1/2(Γ).(2.15)
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3. Stokes Dirichlet boundary control in V0(Γ). In this section, we investi-
gate the case U = V 0(Γ). For yd ∈ L2(Ω) and α > 0, our control problem reads

(3.1) min
u∈V 0(Γ)

J0(u) =
1

2
∥yu − yd∥2L2(Ω) +

α

2
∥u∥2L2(Γ),

where yu ∈ V 0(Ω) is the solution of the state equation (2.9). By (2.13) we have

J0(u) =
1

2
(E⋆Eu,u)Γ − (E⋆yd,u)Γ +

cΩ
2

+
α

2
∥u∥2L2(Γ) =: F (u) +

α

2
∥u∥2L2(Γ),

(3.2)

where cΩ = ∥yd∥2L2(Ω) and F (u) = 1
2 (E

⋆Eu,u)Γ − (E⋆yd,u)Γ +
cΩ
2

is the tracking

term. Notice that here we have used the solution operator defined in (2.13) for s = 0:
E : V 0(Γ) → L2(Ω). It is straightforward to prove that

F ′(u)v = (E⋆Eu,v)Γ − (E⋆yd,v)Γ ∀u ∈ V 0(Γ) and v ∈ V 0(Γ).(3.3)

Although we are mainly interested in this work in regularization in the energy
space V 1/2(Γ), the solution properties of the problem with V 0(Γ)-regularization are
also of interest in order to more clearly see the advantages and disadvantages of energy
space control problem. It is also interesting to see the differences between the Dirichlet
boundary control of the Poisson equation (cf. [1]) and of the Stokes system.

Using the strict convexity of the functional and the continuity of the control-to-
state mapping, which follows from Theorem 2.4, it is standard to prove the existence
of a unique solution u0 ∈ V 0(Γ) of problem (3.1). We also prove regularity results
below, and show that the optimal control can be discontinuous at the corners of a
convex polygonal domain.

Theorem 3.1. Let ξ be the singular exponent for the Stokes operator and let s⋆

be the exponent defined in (2.3). Suppose yd ∈ Hm(Ω) for some 0 ⩽ m < s⋆ and let
u0 ∈ V 0(Γ) be the solution of problem (3.1). Then u0 ∈ V s(Γ) for all 0 ⩽ s < s⋆ and
there exist y0 ∈ V s+1/2(Ω), p0 ∈ (H1/2−s(Ω) ∩ L2

0(Ω))
′, z0 ∈ V 1+t(Ω) ∩H1

0 (Ω) and
q0 ∈ Ht(Ω) ∩ L2

0(Ω) for all t ⩽ 1 +m such that t < ξ, that satisfy the state equation

(3.4) −∆y0 +∇p0 = 0 in Ω, ∇ · y0 = 0 in Ω, y0 = u0 on Γ

the adjoint state equation

(3.5) −∆z0 +∇q0 = y0 − yd in Ω, ∇ · z0 = 0 in Ω, z0 = 0 on Γ

and the optimality condition

(αu0 − (∂nz0 − q0n),v)Γ = 0 ∀v ∈ V 0(Γ).(3.6)

Moreover, there exists λ0 ∈ R such that

u0 =
1

α
(∂nz0 − (q0 + λ0)n),

and

u0 ∈
n∏

i=1

Ht−1/2(Γi) for all t ⩽ m+ 1 such that t < ξ.

Finally, if m > 0 and Ω is convex, then u0 is continuous at a corner xj if and only
if q0(xj) + λ0 = 0.
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Here, the state equation must be understood in the transposition sense (2.9), while
the adjoint state equation must be understood in the variational sense.

Proof. By the definition of J0(u) in (3.2) and (3.3), the derivative of the objective
functional J0(u) for u,v ∈ V 0(Γ) can be written as

J ′
0(u)v = (αu+E⋆Eu,v)Γ − (E⋆yd,v)Γ = (αu+E⋆(Eu− yd),v)Γ

= (αu− (∂nz(yu − yd)− q(yu − yd)n),v)Γ,

where we used (2.13) and (2.14) in the last equality. The optimality conditions follow
in a standard way. For v ∈ V 0(Γ) we have that (λn,v)Γ = 0 for any λ ∈ R. Taking
λ0 to equal the constant λ(z(y0−yd), q(y0−yd)), which is defined in (2.5), and using
(3.6) and we also have that

(αu0 − (∂nz0 − (q0 + λ0)n),v)Γ = 0 ∀v ∈ V 0(Γ).

This implies that αu0 is the L2(Γ)-projection of ∂nz0 − (q0 + λ0)n onto V 0(Γ).
Since ∂nz0 − (q0 + λ0)n ∈ V 0(Γ), we have

u0 =
1

α
(∂nz0 − (q0 + λ0)n).

The regularity follows from a bootstrapping argument: From Theorem 2.4 we
have that y0 ∈ V 1/2(Ω). Using this and taking into account that yd ∈ Hm(Ω), we
have from Theorem 2.2 that z0 ∈ V 1+t(Ω), q0 ∈ Ht(Ω)∩L2

0(Ω) for all t ⩽ 1+m such
that t < ξ.

From trace theory, and since 1/2 < t, it is clear that

∂nz0 − (q0 + λ0)n ∈
n∏

i=1

Ht−1/2(Γi) for all t ⩽ m+ 1 such that t < ξ.

For t < 1, and taking s = t−1/2, we have that s < s⋆ and that
∏n

i=1H
s(Γi) =H

s(Γ).
Therefore, (3.6) gives that u0 ∈ Hs(Γ) for all s < s⋆. The regularity of the optimal
state follows from Theorem 2.4.

If m > 0 and Ω is convex, then the gradient of the dual pressure q0 is a function
in Ht−1(Ω) with t−1 > 0. So we have that each component zi, i = 1, 2 of z0, satisfies
∆zi ∈ Ht−1(Ω) and zi = 0 on Γ. Therefore, we have that ∂nz

i(xj) = 0, i = 1, 2,
for every convex corner xj (cf. [7, Appendix A]); also, from [7, Lemma A2] and the
Sobolev imbedding theorem we have that the normal derivative of z0 is a continuous
function. For the pressure, the situation is slightly different. From trace theory we
have that q0 ∈ Ht−1/2(Γ), and by Sobolev imbeddings we know q0 is a continuous
function. Nevertheless, the vector n is discontinuous at the corners, and hence the
(q0 + λ0)n can only be continuous at xj if q0(xj) = −λ0.

Remark 3.2. This regularity of the optimal control in a convex domain is essen-
tially different from the regularity achieved by the optimal control of problems related
to the Poisson equation. The solution of a problem governed by the Poisson equation
must be a continuous function, which is also zero at the corners. In our case, the opti-
mal control may show discontinuities. See Figure 2 for an example with a continuous
control and Figure 3 for a problem example with discontinuous control.

Remark 3.3. Notice that the pressure is determined up to a constant. We choose
the pressure such that (q0, 1) = 0, but any other representative is of course possible.
The value of λ0 would change accordingly, so that q0 + λ0 does not vary.
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4. Stokes Dirichlet boundary control in the energy space. Next, we con-
sider Stokes Dirichlet boundary control with a different regularization term:

min
u∈V 1/2(Γ)

J1/2(u) =
1

2
∥yu − yd∥2L2(Ω) +

α

2
|u|2H1/2(Γ),(4.1)

where again we assume yd ∈ L2(Ω) and α > 0.
There are different kinds of definitions for the H1/2(Γ)-norm, e.g., one may use

the Sobolev-Slobodeckii norm or the Fourier transform. The key point to the study
of the optimization problem (4.1) is to find an appropriate representation for the
H1/2(Γ)-norm that enables us to derive the first order optimality condition. Here we
follow the idea of [49] and introduce a Stokes version of the Steklov-Poincaré operator
(cf. [3, 18]) associated with (2.9).

It follows from Theorem 2.4 that for any given control u ∈ V 1/2(Γ), there exists
a unique state (yu, pu) ∈ V 1(Ω)× L2

0(Ω) that satisfies

∥yu∥H1(Ω) + ∥pu∥L2(Ω) ⩽ C∥u∥H1/2(Γ).(4.2)

Given u ∈ V 1/2(Γ), we define Du ∈H−1/2(Γ) by

⟨Du,v⟩Γ = (∇yu,∇Rv)− (pu,∇ ·Rv) ∀v ∈H1/2(Γ),(4.3)

where R is any continuous extension operator from H1/2(Γ) to H1(Ω).

Lemma 4.1. The definition of D is independent of the chosen extension R and

Du = t(0,u),(4.4a)

∥Du∥H−1/2(Γ) ⩽ C∥u∥H1/2(Γ) ∀u ∈ V 1/2(Γ).(4.4b)

Proof. First of all, writing the partial differential equation in divergence form as

−∇ ·
(
(∇+∇T )yu − puI

)
= 0

gives (∇+∇T )yu − puI ∈H(div; Ω), and so this function has a well defined normal
trace in H−1/2(Γ). It is remarkable too that it is possible to define a variational
normal derivative ∂nyu ∈H−1/2(Γ), cf. [7, Lemma A6], and hence pun is also a well
defined element in H−1/2(Γ).

Next, for all u,v ∈H1/2(Γ), integrating by parts in the definition of Du gives

⟨Du,v⟩Γ =

∫
Ω

(
∇yu∇Rv − pu∇ ·Rv

)
(4.5)

=

∫
Ω

(
−∆yu +∇pu

)
Rv + ⟨∂nyu − pun,v⟩Γ = ⟨∂nyu − pun,v⟩Γ,

where we used −∆yu+∇pu = 0. This proves that the definition of D is independent
of the chosen extension R, and (4.4a) holds by (2.12) and (4.5).

Finally, we prove (4.4b). Using the definition of D in (4.3), the bound in (4.2),
and the continuity of R :H1/2(Γ) →H1(Ω) gives

∥Du∥H−1/2(Γ) = sup
0 ̸=v∈H1/2(Γ)

⟨Du,v⟩Γ
∥v∥H1/2(Γ)

⩽ C sup
0̸=v∈H1/2(Γ)

(∥yu∥H1(Ω) + ∥pu∥L2(Ω))|Rv|H1(Ω)

∥v∥H1/2(Γ)

⩽ C(∥yu∥H1(Ω) + ∥pu∥L2(Ω))

⩽ C∥u∥H1/2(Γ).
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Lemma 4.2. The mapping ⟨Du,u⟩1/2Γ is a seminorm in V 1/2(Γ) equivalent to
the H1/2(Γ) seminorm.

Proof. Let Q be the projection of H1/2(Γ) onto V 1/2(Γ) and set Rv = yQv.
Notice that ∇ ·Rv = 0 and if v ∈ V 1/2(Γ) then Rv = yv. By (4.3) we have

⟨Du,v⟩Γ = (∇yu,∇yv) ∀v ∈ V 1/2(Γ),(4.6)

and thus we have that ⟨Du,u⟩1/2Γ is a seminorm in V 1/2(Γ) equivalent to theH1/2(Γ)
seminorm.

Proceeding similarly to the derivation of (3.2), the precise formulation of our
control problem is given by

min
u∈V 1/2(Γ)

J1/2(u) =
1

2
∥yu − yd∥2L2(Ω) +

α

2
⟨Du,u⟩Γ =

1

2
⟨Tu,u⟩Γ − ⟨w,u⟩Γ +

cΩ
2
,

(4.7)

where cΩ = ∥yd∥2L2(Ω) and

T = αD +E⋆E, w = E⋆yd ∈ V −1/2(Γ).(4.8)

Notice that here we have used the solution operator defined in (2.13) for s = 1/2:
E : V 1/2(Γ) → L2(Ω). The functional being convex and coercive implies that problem
(4.7) has a unique solution ū ∈ V 1/2(Γ).

We also note that, by (4.6), an alternative way to write the functional for u ∈
V 1/2(Γ) is

J1/2(u) =
1

2
∥yu − yd∥2L2(Ω) +

α

2
∥∇yu∥2L2(Ω).

Lemma 4.3. There exist constants C1, C2 > 0 such that for every u,v ∈ V 1/2(Γ)

⟨Tu,v⟩Γ ≤ C1∥u∥V 1/2(Γ)∥v∥V 1/2(Γ)

and
⟨Tu,u⟩Γ ≥ C2∥u∥2V 1/2(Γ).

Proof. The first property follows immediately from the definition of T . Notice
that D maps V 1/2(Γ) into H−1/2(Γ) which is continuously embedded in V −1/2(Γ)
by duality.

Next, by (4.8), (2.13) and (4.6) we have

⟨Tu,u⟩Γ = ∥Eu∥2L2(Ω) + α⟨Du,u⟩Γ = ∥yu∥2L2(Ω) + α∥∇yu∥2L2(Ω)

⩾ min(1, α)∥yu∥2H1(Ω) ⩾ C2∥u∥2H1/2(Γ) = C2∥u∥2V 1/2(Γ),

where we used the trace theorem in the last inequality.

Next, we give more insights into the structure of the solution to problem (4.7).
The functional J1/2 in problem (4.7) is Fréchet differentiable with respect to u. Fur-

thermore, for all u,v ∈ V 1/2(Γ), by (4.7) and (4.8) we have

J ′
1/2(u)v = ⟨Tu−w,v⟩Γ = ⟨αDu+E⋆(Eu− yd),v⟩Γ

= ⟨α(∂nyu − pun)− (∂nz(yu − yd)− q(yu − yd)n),v⟩Γ,

where we used (4.5), (2.13) and (2.14) in the last equality.
Now we are in the position to derive the regularity of the solution to the mini-

mization problem (4.7).
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Theorem 4.4. Let ξ be the singular exponent for the Stokes operator defined in
Section 2. Assume yd ∈Hm(Ω) for some 0 ⩽ m < min{2, 1+ξ}, and let ū ∈ V 1/2(Γ)
be the optimal solution of problem (4.7). Then ū ∈ V 1/2+r(Γ) for all r < min{1, ξ}
and there exist ȳ ∈ V 1+r(Ω), p̄ ∈ Hr(Ω) ∩ L2

0(Ω), z̄ ∈ V 1+t(Ω) ∩H1
0 (Ω) and q̄ ∈

Ht(Ω) ∩ L2
0(Ω) for all t ⩽ 1 +m such that t < ξ that satisfy the state equation

−∆ȳ +∇p̄ = 0 in Ω, ∇ · ȳ = 0 in Ω, ȳ = ū on Γ,

the adjoint state equation

−∆z̄ +∇q̄ = ȳ − yd in Ω, ∇ · z̄ = 0 in Ω, z̄ = 0 on Γ,

and the optimality condition

⟨α(∂nȳ − p̄n)− (∂nz̄ − q̄n),v⟩Γ = 0 ∀v ∈ V 1/2(Γ).

Moreover, there exists λ̄ ∈ R such that

(4.9) α(∂nȳ − p̄n) = ∂nz̄ − (q̄ + λ̄)n.

Here, both the state equation and the adjoint state equation must be understood in
the variational sense.

Proof. The minimization problem, being a convex problem, is equivalent to the
following Euler-Lagrange equation

J ′
1/2(u)v = ⟨Tu−w,v⟩Γ = 0 ∀v ∈ V 1/2(Γ).(4.10)

The existence of a unique solution follows immediately from the Lax-Milgram theorem
and Lemma 4.3. First order optimality conditions follow in a standard way. Taking
λ̄ = λ(z̄, q̄), we deduce relation (4.9) as we did for the L2(Γ)-regularized problem.

Since ū ∈ V 1/2(Γ), by Theorem 2.4 we have that ȳ ∈ V 1(Ω). From Theorems 2.1
and 2.2, we obtain z̄ ∈ V 1+t(Ω) and q̄ ∈ Ht(Ω) ∩ L2

0(Ω) for all t ⩽ min{2, 1 + m}
with t < ξ. Using the trace theorem (see [29, Theorem 1.5.2.1]) we arrive at

e := ∂nz̄ − (q̄ + λ̄)n ∈
n∏

i=1

Ht−1/2(Γi) ⊂
n∏

i=1

Hr−1/2(Γi) ∀r < min{1, ξ}.

From the trace theorem again on polygons, see [29, Theorem 1.5.2.1] and also
[22, Remark 1.1, Chapter 1], we know that there exists some Y ∈H1+r(Ω) such that
∂nY = e/α on Γ. So we have that F = ∆Y ∈Hr−1(Ω) and H = −∇ · Y ∈ Hr(Ω).
Using the state equation and the optimality condition (4.9), we deduce that the pair
(ȳ − Y , p̄) satisfies

−∆(ȳ − Y ) +∇p̄ = F in Ω, ∇ · (ȳ − Y ) = H in Ω, ∂n(ȳ − Y )− p̄n = 0 on Γ.

This problem has a variational solution, which is unique up to a constant. Noticing
that the singular exponents for the Stokes problem with Neumann boundary con-
ditions are the same as those for Dirichlet boundary conditions, see e.g. [50, pp.
191–192], we deduce from Theorem 2.1 that ȳ ∈ H1+r(Ω). From the standard trace
theorem, we have that ū ∈Hr+1/2(Γ).

Remark 4.5. In this case, the optimal control is a continuous function even for
problems posed on nonconvex domains; see the second subfigure of Figure 4 in Ex-
ample 6.3 below.
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In order to use the Aubin-Nitsche technique to obtain error estimates in L2(Γ)
for the control variable, we are also going to study, for any given η ∈ L2(Γ), the
regularity of the unique solution uη ∈ V 1/2(Γ) of the problem

⟨Tuη,v⟩Γ = (η,v)Γ ∀v ∈ V 1/2(Γ).

A straightforward computation using the definitions of T , D and E, gives

⟨Tuη − η,v⟩Γ = ⟨α(∂nyuη − puηn)− (∂nz(yuη )− q(yuη )n)− η,v⟩Γ

for all v ∈ V 1/2(Γ). So we have that there exists some λ ∈ R such that (yuη , puη )
solves the following Neumann problem

−∆yuη +∇puη = 0 in Ω, ∇ · yuη = 0 in Ω,

α(∂nyuη − puηn) = ∂nz(yuη )− (q(yuη ) + λ)n+ η on Γ.

Now we can follow the reasoning of Theorem 4.4. In this case

e := ∂nz(yuη )− (q(yuη ) + λ)n+ η ∈ L2(Γ),

so we are in the same situation as before, but with t = 1/2, which leads to uη ∈H1(Γ).
Notice that we do not need convexity to obtain this result.

5. FEM for the Stokes Dirichlet energy space control problem. In this
section, we consider finite element approximations to the optimal control problem
(4.7). We also briefly mention finite element approximations to the problem (3.1) in
Remarks 5.5, 5.6, and 5.12.

5.1. Discretization of the problem. First, we assume that the finite dimen-
sional spaces Yh ⊂ H1(Ω) and Wh ⊂ L2(Ω) satisfy the inf-sup condition: For each
ph ∈ Wh there exists a yh ∈ Yh such that∫

Ω

ph∇ · yhdx = ∥ph∥2L2(Ω) and ∥yh∥H1(Ω) ⩽ C∥ph∥L2(Ω).

It is well known that the P1+ bubble -P1 “Mini” element or the Pk+1 − Pk, k ⩾ 1,
“Taylor-Hood” element satisfy the inf-sup condition.

Let Y 0
h := Yh ∩H1

0 (Ω), W
0
h = Wh ∩L2

0(Ω) and Yh(Γ) ⊂H1/2(Γ) be the trace of
Yh. Let the discrete control space be given by

Uh := {uh ∈ Yh(Γ) : (uh · n, 1)Γ = 0}.(5.1)

Next, we define the discrete optimization problem:

(5.2) min
uh∈Uh

Jh(uh) =
1

2
∥Ehuh − yd,h∥2L2(Ω) +

α

2
(Dhuh,uh)Γ,

where yd,h ∈ Yh is a suitable approximation of yd in the sense that ∥yd,h−yd∥L2(Ω) ⩽
Chr, and the discrete operators Dh and Eh are given below. Here, and in the rest of
the paper, r < min{1, ξ} is the exponent obtained in Theorem 4.4.

We define the operators Eh :H1/2(Γ) → L2(Ω) and Ph :H1/2(Γ) → W 0
h by

Ehu = yh, Phu = ph.(5.3)
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Here (yh, ph)∈ Yh ×W 0
h is the finite element approximation of (yu, pu), i.e., (yh, ph)

satisfies

(∇yh,∇ζh)− (ph,∇ · ζh) = 0 ∀ζh ∈ Y 0
h ,

(χh,∇ · yh) = 0 ∀χh ∈ W 0
h ,

yh = Qhu on Γ,

(5.4)

where Qhu is the L2 projection of u onto Uh.
Next, we give the discrete approximation of the stress force on the boundary, as

introduced in [32, Section 3]. For any g ∈ L2(Ω), we define (zh(g), qh(g)) ∈ Y 0
h ×W 0

h

to be the unique solution of

(∇zh(g),∇ζh)− (qh(g),∇ · ζh) = (g, ζh) ∀ζh ∈ Y 0
h ,

(χh,∇ · zh(g)) = 0 ∀χh ∈ W 0
h .

For g ∈ L2(Ω) and u ∈ V 1/2(Γ), let ψh = zh(g) +Ehu and ϕh = qh(g) + Phu. We
define th(g,u) ∈ Yh(Γ) as the approximation of the stress force on the boundary of
the pair (ψh, ϕh):

(th(g,u), ζh)Γ = (∇ψh,∇ζh)− (ϕh,∇ · ζh)− (g, ζh) ∀ζh ∈ Yh.(5.5)

Notice that this is exactly the concept of discrete normal derivative; see [8] or,
better suited for our purposes, [53].

Remark 5.1. It is also important to notice that, for vh ∈ Yh(Γ), we have that

(th(g,u),vh)Γ = (∇ψh,∇Rhvh)− (ϕh,∇ ·Rhvh)− (g,Rhvh) ∀vh ∈ Yh(Γ)
(5.6)

for any linear extension operator Rh : Yh(Γ) → Yh. For instance, Rh could be the
discrete harmonic extension, the operator Eh as in Lemma 5.3, or the zero extension,
which we use in Section 5.2.

For u ∈ V 1/2(Γ) we define Dh as the approximation of the stress force on the
boundary of the pair (Ehu, Phu):

Dhu = th(0,u).(5.7)

Lemma 5.2. The mapping uh 7→ (Dhuh,uh)
1/2
Γ is a seminorm in Uh.

Proof. Notice that for uh ∈ Uh ⊂ V 1/2(Γ), using that Ehuh ∈ Yh and Phuh ∈
W 0

h , by (5.7), (5.3) and (5.5) we have

(Dhuh,uh)Γ = (th(0,uh),Ehuh)Γ = (∇Ehuh,∇Ehuh)− (Phuh,∇ ·Ehuh)

= (∇Ehuh,∇Ehuh),

where we used (qh,∇ ·Ehuh) = 0 for all qh ∈ W 0
h in the last equality. The assertion

now follows trivially from the linearity of Eh.

Lemma 5.3. For every g ∈ L2(Ω) and vh ∈ Uh, we have that

(g,Ehvh) = (−th(g,0),vh)Γ,

and the adjoint of the restriction of Eh to Uh is given by

E⋆
hg = −th(g,0).(5.8)
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Proof. We define Ghg as the discrete approximation of the negative stress force
on the boundary of the pair (zh(g), qh(g)):

Ghg = −th(g,0).

Consider vh ∈ Uh, notice that Ehvh ∈ Yh and by definition it equals vh on the
boundary. Using (5.6) for Rh = Eh, the facts qh(g), Phvh ∈ W 0

h , which imply that
both (qh(g),∇ ·Ehvh) = 0 and (Phvh,∇ · zh(g) = 0, we obtain

(Ghg,vh)Γ = −(∇zh(g),∇Ehvh) + (qh(g),∇ ·Ehvh) + (g,Ehvh)

= −(Phvh,∇ · zh(g)) + (g,Ehvh)

= (g,Ehvh)

and the proof is complete.

Lemma 5.4. Problem (5.2) has a unique solution ūh.

Proof. By Lemma 5.2, it is standard to deduce that Jh is coercive in Uh. Since
it is also strictly convex, problem (5.2) has a unique solution ūh.

Following the same notation in Section 4, we define

Th = αDh +E⋆
hEh, wh = E⋆

hyd,h.(5.9)

Then the problem (5.2) can be rewritten as:

Jh(uh) =
1

2
(Thuh,uh)Γ − (wh,uh)Γ +

1

2
∥yd,h∥2L2(Ω),(5.10)

and the unique solution ūh of the discrete problem satisfies the first order optimality
condition

(Thūh,vh)Γ = (wh,vh)Γ ∀vh ∈ Uh.(5.11)

Remark 5.5. The discretization of the problem (3.1) is done in the same way. The
solution of the discrete problem satisfies

(αu0h +E⋆
hEhu0h,vh)Γ = (wh,vh)Γ ∀vh ∈ Uh.

Thanks to the remarkable result [4, Theorem 5.2], the approximation of the trans-
position solution can be done using the discrete weak formulation given to compute
Eh.

5.2. Efficient computation of the gradient of the objective functional.
Define N = dimYh, M = dimWh and NΓ = dimYh(Γ). Let T ∈ RNΓ×NΓ be the
matrix representation of Th, i.e., v

TT u = (Thuh,vh)Γ for all uh and vh ∈ Yh(Γ).
Let M denote the mass matrix representing the standard inner product in L2(Ω),

and let K denote the stiffness matrix representing the vector Laplace operator on the
finite element space Yh. Additionally, B denotes the matrix representation of the
divergence operator on the involved finite element spaces Yh and Wh. We impose the
condition pM = 0, and instead of B, we use the corresponding B̃ eliminating row M .
For X ∈ {M,K, B̃, B̃T }, denote X00, XΓΓ, XΓ0, X0Γ, respectively, the submatrices
whose entries are indexed in interior and/or boundary nodes and, following Matlab
colon notation X0:,X:0, XΓ: and X:Γ denote the submatrices whose row or column
indexes, are interior or boundary respectively. Finally, we denote SΓΓ the mass matrix
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representing the standard inner product in L2(Γ). Notice also that we will use the
conventions B̃T

0: = (B̃:0)
T and B̃T

Γ: = (B̃:Γ)
T .

Let w ∈ RNΓ be the vector representation of wh, and define b = SΓΓw, so that,
uT b = (wh,uh)Γ for all uh ∈ Yh(Γ). Since the normal vector n is piecewise constant,
we know that there exists c ∈ RNΓ such that uT c = (uh,n)Γ for all uh ∈ Yh(Γ).
Then the problem (5.10) is equivalent tomin

1

2
uTT u− uT b,

u ∈ RNΓ , uT c = 0.
(5.12)

We show how to compute b and T u.
Given u, the vector representation of uh ∈ Yh(Γ), its related state and pressure

can be computed by solving for (y
I
, p̃)

K00yI + B̃T
0:p̃ = −KT

Γ0u, B̃:0yI = −B̃:Γu,

and recovering y = (y
I
, u)T . Given y, the vector representation of yh ∈ Yh, the dual

state and pressure (zh(yh), qh(yh)) can be computed by solving

K00z + B̃T
0:q̃ = M0:y, B̃:0z = 0.

For an efficient computation, it is important to consider the discrete extension
operator Rhvh ∈ Yh such that Rhvh = vh on Γ and Rhvh = 0 in the interior nodes
of Ω; see Remark 5.1.

By the definition of wh in (5.9) and using (5.8) and (5.6) we have

(wh,vh)Γ = (E⋆
hyd,h,vh)Γ

= −(∇zh(yd,h),∇Rhvh) + (qh(yd,h),∇ ·Rhvh) + (yd,h,Rhvh)

= (−KΓ0zd − B̃T
Γ:q̃d +MΓ:yd) · v,

where (zd, q̃d) is the vector representation of (zh(yd,h), qh(yd,h)). In the same way,
using (5.3) and denoting (z, q̃) the vector representation of (zh(yh), qh(yh))

(E⋆
hEhuh,vh)Γ = (E⋆

hyh,vh)Γ = (−KΓ0z − B̃T
Γ:q̃ +MΓ:y) · v.

Finally, to obtain the matrix representation of the perturbed Steklov-Poincaré oper-
ator Dh we use (5.7) and (5.6) to obtain

(Dhuh,vh)Γ = (∇Ehuh,∇Rhvh)− (Phuh,∇ ·Rhvh) = (KΓ:y + B̃T
Γ:p̃) · v.

The Lagrange multiplier related to the constraint, which plays a role in the case
of L2(Γ)-regularization (see Remark 3.3), can also be recovered by means of

λ =
cT (T u− b)

cT c
.

Remark 5.6. To solve the L2-regularized problem, the procedure is very similar.
The only difference, cf. [45], is the computation of T u, which is done in the following
way

T u = αSΓΓu+MΓ:y −KΓ0z − B̃T
Γ:q̃.

An approximation of the quantity λ0 can be done using the Lagrange multiplier by
means of λ0 = −λ/|Γ|.
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5.3. Error analysis. Now, we state the main result in this section.

Theorem 5.7. Let ū ∈ V r+1/2(Γ), with r < min{1, ξ}, be the unique solution
of problem (4.7) and let ūh ∈ Uh be the solution of (5.2). If the conditions in
Theorem 4.4 are all fulfilled, then

∥ū− ūh∥H1/2(Γ) ⩽ Chr∥ū∥Hr+1/2(Γ).

We recall that ξ is the singular exponent for the Stokes operator defined in Section 2.
To prove Theorem 5.7, we assume that the following approximation properties

are satisfied (see [22, Chapter II. Section 1.3]):
(H1) There exists an operator rh ∈ L(H2(Ω),Yh) such that

∥y − rhy∥H1(Ω) ⩽ Ch∥y∥H2(Ω) ∀y ∈H2(Ω),

rh preserves the boundary conditions, and

∥u− rhu∥H1/2(Γ) ⩽ Ch∥u∥Πn
i=1H

3/2(Γi) ∀u ∈ trace H2(Ω).

(H2) There exists an operator Sh ∈ L(L2(Ω),Wh) such that

∥p− Shp∥L2(Ω) ⩽ Ch∥p∥H1(Ω) ∀p ∈ H1(Ω).

These assumptions are satisfied by typical finite element spaces used to solve the
Stokes equation, such as the P1+ bubble -P1 “Mini” element or the Pk+1−Pk, k ⩾ 1,
“Taylor-Hood” element; see [22, Chap. II, Secs. 4.1 and 4.2], where we take rh to
be the corresponding Lagrange interpolation operator and Sh the L2(Ω) projection.
We note also that, for r ≤ 1, the L2(Γ)-projection Qh satisfies the following standard
estimate

∥Qhu− u∥H1/2(Γ) ⩽ Chr∥u∥Hr+1/2(Γ) ∀u ∈ V r+1/2(Γ).(5.13)

Lemma 5.8. There exists a constant C > 0 independent of h such that for any
g ∈ L2(Ω) and v ∈ V 1/2(Γ) we have

∥th(g,v)∥H−1/2(Γ) ⩽ C(∥g∥L2(Ω) + ∥v∥H1/2(Γ)).

Moreover, if v ∈ V r+1/2(Γ), with r < min{1, ξ}, we have the error estimate

∥t(g,v)− th(g,v)∥H−1/2(Γ) ⩽ Chr(∥g∥L2(Ω) + ∥v∥Hr+1/2(Γ)).

Proof. The results follow directly from [32, Proposition 17] and Theorems 2.2
and 2.4.

In the next lemma, we collect the approximation properties of Eh, E
⋆
h and Dh

that will be used to obtain the final error estimate.

Lemma 5.9. The approximate solution operators Eh : V 1/2(Γ) → L2(Ω), E⋆
h :

L2(Ω) → V −1/2(Γ), Dh : H1/2(Γ) → H−1/2(Γ) are bounded, i.e., there exists a
constant C > 0 independent of h such that

∥Ehu∥L2(Ω) ⩽ C∥u∥H1/2(Γ),(5.14a)

∥E⋆
hg∥H−1/2(Γ) ⩽ C∥g∥L2(Ω),(5.14b)

∥Dhu∥H−1/2(Γ) ⩽ C∥u∥H1/2(Γ).(5.14c)
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Moreover, for u ∈ V r+1/2(Γ) and g ∈Hr(Ω), with r < min{1, ξ}, the following error
estimates hold:

∥Eu−Ehu∥L2(Ω) ⩽ Chr∥u∥Hr+1/2(Γ),(5.15a)

∥E⋆g −E⋆
hg∥H−1/2(Γ) ⩽ Chr∥g∥Hr(Ω),(5.15b)

∥Du−Dhu∥H−1/2(Γ) ⩽ Chr∥u∥Hr+1/2(Γ).(5.15c)

Proof. The boundness of Eh and the approximation error follow directly from
[32, Theorem 15] and the continuous embedding H1(Ω) ↪→ L2(Ω). The remaining
estimates can be easily obtained by Lemma 5.8, (5.8), and (5.7).

Next, we introduce the following auxiliary problem: find ûh ∈ Uh such that

⟨T ûh,vh⟩Γ = ⟨w,vh⟩Γ ∀vh ∈ Uh,(5.16)

where w = E⋆yd ∈ V −1/2(Γ).

Lemma 5.10. Let ū ∈ V r+1/2(Γ), with r < min{1, ξ}, be the unique solution of
problem (4.7) and ûh ∈ Uh be the solution of (5.16). If the conditions in Theorem 4.4
are all fulfilled, then

∥ū− ûh∥H1/2(Γ) ⩽ Chr∥ū∥H1/2+r(Γ).(5.17)

Proof. First, by (4.10), (5.16), and Uh ⊂ V 1/2(Γ), we have

⟨T (ū− ûh),vh⟩Γ = 0 ∀vh ∈ Uh.(5.18)

Next, by Lemma 4.3, we know that T is V 1/2(Γ)-elliptic and continuous. For any
u⋆
h ∈ Uh, the error estimate follows in a standard way:

c∥ū− ûh∥2H1/2(Γ) ⩽ ⟨T (ū− ûh), ū− ûh⟩Γ = ⟨T (ū− ûh), ū− u⋆
h)⟩Γ

⩽ ∥T (ū− ûh)∥V −1/2(Γ)∥ū− u⋆
h∥H1/2(Γ)

⩽ C∥ū− ûh∥H1/2(Γ)∥ū− u⋆
h∥H1/2(Γ).

Therefore, there exists C > 0 such that

∥ū− ûh∥H1/2(Γ) ⩽ C inf
u⋆

h∈Uh

∥ū− u⋆
h∥H1/2(Γ).

The result follows by interpolation (see e.g. [5, Theorem (14.3.3)]), taking u⋆
h = Qhu

and using the regularity of ū stated in Theorem 4.4 and estimate (5.13).

Now we give the proof of Theorem 5.7.

Proof of Theorem 5.7. Due to Lemma 5.10, it is enough to obtain the error esti-
mate for ∥ūh − ûh∥H1/2(Γ).

By the definition of Th in (5.9) and Lemma 5.2, we know that Th is coercive on
Uh. By the first order conditions satisfied by ûh and ūh in (5.16) and (5.11) and by
Cauchy-Schwarz inequality, we know that there exists a constant κ independent of h
such that

κ∥ūh − ûh∥2H1/2(Γ) ⩽ ⟨Th(ūh − ûh), ūh − ûh⟩Γ
= ⟨wh −w, ūh − ûh⟩Γ + ⟨(T − Th)ûh, ūh − ûh⟩Γ
⩽ ∥wh −w∥H−1/2(Γ)∥ūh − ûh∥H1/2(Γ)

+∥(T − Th)ûh∥H−1/2(Γ)∥ūh − ûh∥H1/2(Γ)
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Hence, dividing by ∥ūh − ûh∥H1/2(Γ) and using the definitions of T and Th in (4.8)
and (5.9) we have

κ∥ūh − ûh∥H1/2(Γ) ⩽ ∥wh −w∥H−1/2(Γ) + ∥(T − Th)ûh∥H−1/2(Γ)

⩽ ∥wh −w∥H−1/2(Γ) + ∥(D −Dh)ûh∥H−1/2(Γ)

+ ∥(E⋆E −E⋆
hEh)ûh∥H−1/2(Γ)

= S1 + S2 + S3.

For the first term S1, using the approximation properties of yd,h, (4.8), (5.9),
(5.15b) and (5.14b), we get

S1 = ∥wh −w∥H−1/2(Γ) = ∥E⋆
hyd,h −E⋆yd∥H−1/2(Γ)

⩽ ∥(E⋆
h −E⋆)yd∥H−1/2(Γ) + ∥E⋆

h(yd,h − yd)∥H−1/2(Γ) ⩽ Chr.

For the second term S2, by the definition of Dh in (5.7) we know that DhQh =
Dh, where Qh is the L2 projection. We have

S2 = ∥(D −Dh)ûh∥H−1/2(Γ)

⩽ ∥D(ûh − ū)∥H−1/2(Γ) + ∥Dū−DhQhū∥H−1/2(Γ) + ∥Dh(Qhū− ûh)∥H−1/2(Γ)

⩽ C∥ûh − ū∥H1/2(Γ) + ∥Dū−Dhū∥H−1/2(Γ) + C∥Qhū− ûh∥H1/2(Γ),

where we used (4.4b) and (5.14c) in the last inequality. Next, by (5.17), (5.15c), and
(5.13) we have

S2 ⩽ C∥ûh − ū∥H1/2(Γ) + ∥Dū−Dhū∥H−1/2(Γ) + C∥ū− ûh∥H1/2(Γ)

+ C∥Qhū− ū∥H1/2(Γ)

⩽ Chr∥ū∥Hr+1/2(Γ).

Next, for the term S3 we proceed similarly to S2. Using the fact that EhQh = Eh,
we have

S3 = ∥(E⋆E −E⋆
hEh)ûh∥H−1/2(Γ)

⩽ ∥E⋆E(ûh − ū)∥H−1/2(Γ) + ∥(E⋆ −E⋆
h)Eū∥H−1/2(Γ)

+ ∥E⋆
h(Eū−EhQhū)∥H−1/2(Γ) + ∥(E⋆

hEh(Qhū− ûh)∥H−1/2(Γ)

⩽ C∥ûh − ū∥H1/2(Γ) + Chr∥Eū∥Hr+1(Ω) + C∥Eū−Ehū∥L2(Ω)

+ C∥Qhū− ûh∥H1/2(Γ),

where we used (2.15), (5.15b), (5.14b), and (5.14a) in the last inequality. By (5.17),
(5.15a) and (5.13) we have

S3 ⩽ C∥ûh − ū∥H1/2(Γ) + Chr∥Eū∥Hr+1(Ω) + C∥Eū−Ehū∥L2(Ω)

+ C∥Qhū− ū∥H1/2(Γ)

⩽ Chr∥ū∥Hr+1/2(Γ).

Collecting all the estimates completes the proof.
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Remark 5.11. The application of the Aubin-Nitsche technique to the intermediate
problem leads easily to

∥ū− ûh∥L2(Γ) ⩽ Chr+1/2∥u∥Hr+1/2(Γ).

However, using this to obtain error estimates in L2(Γ) for ūh is not immediate because
ūh satisfies a problem with a perturbed operator and perturbed second member.
Following [14, Remark 26.1], the error would be of the same order as

∥(T − Th)ūh∥H−1/2(Γ) + ∥w −wh∥H−1/2(Γ).

Using the improved error estimate for the discrete approximation of the stress
force on the boundary for regular solutions in [32, Proposition 17], we find that the
convergence order r + 1/2 for those terms can be achieved under the following two
assumptions: first, that yd ∈Hr−1/2(Ω), which is quite reasonable; but also that ūh

is bounded in H1+r(Γ). But this second assumption requires a higher regularity of
the optimal solution; in such a case the order of convergence in H1/2(Γ) would be
increased by another 1/2.

In numerical experiments, this is the behavior usually observed with the “Mini”
finite element: order 3/2 in H1/2(Γ) and order 2 in L2(Γ).

Remark 5.12. Although the discretizations of the L2 regularized problem and the
H1/2 regularized problem are very similar, the error analysis performed for the second
case cannot be carried out for the first because of the lack of regularity of the solution
u0 ∈Hs(Γ) for 0 ⩽ s < s⋆, where s⋆ = min{1/2, ξ − 1/2}.

Using the general discretization error estimate of [2, Theorem 3.2], we see that the
error is bounded by the best approximation error in the space, the error related to the
discretization of the state equation, and the error related to the discrete approximation
of the stress force on the boundary. While we have no results for the last two ones,
the first one is determined by the Sobolev exponent s, so one cannot expect more
than hs for the error.

6. Numerical experiments. In this section we carry out some numerical ex-
periments to compare the solutions of the two control problems (3.1) and (4.7), and
also illustrate how the convergence orders can vary due to the shape of the domain
and the problem data. We present two examples in a square domain, the first one
having a very regular solution, and one example in an L-shaped domain. We dis-
cretize each problem using the “Mini” finite element [40] and a family of meshes
of size hi = 2−i

√
2 obtained by regular refinement of an initial coarse mesh of size

h0 =
√
2. For one problem, we also discretize using Taylor-Hood elements. Since we

do not have the exact solution, we compare the obtained solutions for i = 2, . . . , I − 2
with the reference solution obtained for i = I, where I = 9 for the square (a mesh
with 2 × 22×9 = 524288 elements) and I = 8 for the L-shaped domain (a mesh with
6× 22×8 = 393216 elements).

Let eh = u − uh, we report the L2(Γ)-norm error and the H1/2(Γ)-seminorm
error, both computed using the equivalent mesh-independent discrete norms obtained
in [9].

Example 6.1. We consider the unit square domain Ω = (0, 1)2 and set the reg-
ularization parameter α = 1.0e − 3. We choose the forcing f = (1, 1), and for the
target state we choose the large vortex given in [38],

yd = 200× [x2
1(1− x1)

2x2(1− x2)(1− 2x2);−x1(1− x1)(1− 2x1)x
2
2(1− x2)

2],
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Fig. 1. Left is the target of Example 6.1, middle is the target of Example 6.2, right is the target
of Example 6.3.

Fig. 2. Solution of Example 6.1: The first two subfigures are for H1/2(Γ) regularization, the
last two subfigures are for L2(Γ) regularization.

see the left of Figure 1. For a related example using tangential boundary control, see
[24]. The data size in terms of the tracking functional can be measured as F (0) =
0.302339. Notice that ∇ · yd = 0 and yd = 0 on Γ, but it cannot be the solution of
the Stokes problem with data f = (1, 1) since f +∆yd is not a conservative field.

For theH1/2(Γ) regularization, we obtain a value for the tracking term of F (ū) =
0.112264, while for theL2(Γ) regularization we obtain a slightly smaller value F (u0) =
0.111576. A graph of the state, the optimal control in the energy space, and the
solution of the L2(Γ) regularized problem can be found in Figure 2. In this case, u0

is a continuous function. Numerically, we find that |q0(xj) + λ0| < 3 × 10−8 for all
four corners xj .

The value of the singular exponent for this domain is ξ = 2.740; see [15, Table 1].
This means that the exponent giving the order of convergence of the energy regularized
problem in theH1/2(Γ)-norm is r ≈ 1 and the exponent giving the best possible order
of convergence of the L2(Γ) regularized problem in the L2(Γ) norm is s ≈ 0.5. We
obtain the results summarized in Table 1 for the optimal control problem with H1/2

regularization and with L2(Γ) regularization. In this case the solution is very regular,
the results are similar for both approaches and better than predicted by the general
theory. This high regularity can also be noticed in the orders of convergence found
for the other variables using higher order Taylor-Hood elements; see Table 2.

Example 6.2. Set Ω = (0, 1)2, α = 1, f = 0 and yd = (x1;x2 − x1). The data
size is F (0) = 0.25, and the target does not belong to V 0(Ω). A graph of the target
field is sketched in the middle of Figure 1.

For the energy regularization, we find F (ū) = 0.117607; see the first two subfig-
ures of Figure 3. For the L2(Γ)-regularized problem, we have that F (u0) = 0.158279.
The control is discontinuous at the corners, see the last subfigure of Figure 3, and
hence is not in H1/2(Γ). Finite element error results are summarized in Table 3.
Again we have r ≈ 1 and s ≈ 0.5. In this case, the observed experimental order of
convergence for the L2(Γ) error of the L2(Γ)-regularized problem is quite close to s.
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Table 1
Errors and experimental order of convergence for Example 6.1.

i
H1/2 regularization

∥eh∥H1/2(Γ) Rate ∥eh∥L2(Γ) Rate
2 4.93E+0 - 8.37E-01 -
3 1.62E+0 1.61 2.56E-01 1.71
4 4.82E-01 1.75 6.80E-02 1.91
5 1.39E-01 1.79 1.75E-02 1.96
6 4.07E-02 1.78 4.37E-03 2.00

i
L2 regularization

∥eh∥H1/2(Γ) Rate ∥eh∥L2(Γ) Rate
2 6.17E+0 - 9.78E-01 -
3 2.01E+0 1.62 3.03E-01 1.69
4 6.37E-01 1.65 8.00E-02 1.92
5 1.87E-01 1.77 2.01E-02 1.93
6 5.54E-02 1.75 5.31E-03 1.98

Table 2
Errors and experimental order of convergence for the state and adjoint state for Example 6.1.

i
∥y − yh∥L2(Ω) ∥u− uh∥H1/2(Γ) ∥z − zh∥L2(Ω)

Error Rate Error Rate Error Rate

P2 − P1

1 1.73E-03 - 2.36E-02 - 2.03E-03 -
2 2.76E-04 2.65 8.14E-03 1.54 3.79E-04 2.42
3 3.69E-05 2.90 2.20E-03 1.89 5.13E-05 2.89
4 5.12E-06 2.85 6.16E-04 1.83 6.61E-06 2.95
5 7.36E-07 2.80 1.81E-04 1.76 1.81E-07 2.98

P3 − P2

1 4.54E-04 - 9.56E-02 - 6.28E-03 -
2 4.17E-05 3.45 1.70E-03 2.49 5.67E-04 3.47
3 4.39E-06 3.25 3.98E-03 2.10 4.45E-05 3.67
4 6.50E-07 2.75 1.26E-04 1.65 3.75E-06 3.57
5 9.61E-08 2.76 3.85E-04 1.72 3.20E-07 3.55

Example 6.3. We take the same data as Example 6.2, but now consider the L-
shaped domain Ω = (−1, 1)2 \ (0, 1)2. The results on this domain are F (0) = 1.75,
F (ū) = 1.107016, F (u0) = 1.044080. Graphs of the data and the solutions can be
found in the right Figure 1 and the first two subfigures of Figure 4. Experimental
orders of convergence are in Table 4. The singular exponent for this domain is ξ =
0.544, so r ≈ 0.544 and s ≈ 0.044. The observed orders of convergence are higher.

One remarkable fact is that for the L2(Γ)-regularized problem the optimal control
need not tend to ∞ at a nonconvex corner, as happens with Dirichlet optimal control
problems governed by the Poisson equation in a nonconvex polygonal domain.
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