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Abstract
We present an abstract framework for the eigenvalue approximation of a class of non-
coercive operators. We provide sufficient conditions to guarantee the spectral correctness
of the Galerkin scheme and to obtain optimal rates of convergence. The theory is applied to
the convergence analysis of mixed finite element approximations of the elasticity and Stokes
eigensystems.
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1 Introduction

In many common applications of solid mechanics, mixed formulations derived from the
Hellinger-Reissner variational principle perform better than the standard displacement-based
formulation. They deliver direct and accurate approximations of the stress tensor and they
are free from the locking phenomenon in the nearly incompressible case [11].

The symmetry constraint on the Cauchy stress tensor has been the main difficulty in the
construction of stable conforming discretizations of stress-displacement mixed formulations.
The first important progress in this direction is due to Arnold and Winther [3]. This work
led to further developments in conforming mixed finite elements on simplicial and rectan-
gular meshes for both 2D and 3D; see [1,6,23] and the references therein. However, these
mixed finite elements require the simultaneous imposition of H(div)-conformity and strong
symmetry, which entails too many degrees of freedom and complicates the implementation
of the corresponding Galerkin schemes. Moreover, they are not amenable to hybridization.
To overcome this difficulty one can either consider non-conforming or DG approximations
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[7,20,32] or relax the symmetry constraint as in [2,4,5,14,21,31]. We point out that the lat-
ter alternative, which is the option of choice in this paper, incorporates a further variable
(a Lagrange multiplier called the rotor that approximates the skew-symmetric part of the
displacement gradient) to enforce weakly the symmetry restriction at the discrete level.

The approximation of eigenvalue problems in mixed form has been the object of sev-
eral papers; see part 3 of [8] and the references therein. In particular, it is known from [9]
that the usual stability conditions for discrete mixed source problems (namely the ‘coer-
civity in the kernel’ and the inf-sup conditions) are not sufficient to ensure correct spectral
approximations. Recently, a dual-mixed eigenvalue formulation of the elasticity problem
with reduced symmetry has been considered in [26]. The eigenproblem resulting from this
approach doesn’t fit into any of the previously existing theories for mixed spectral prob-
lems. Nevertheless, the abstract spectral approximation theory of Descloux-Nassif-Rappaz
[16] could be successfully adapted in [26] to show that the Galerkin method based on the
first order Arnold-Falk-Winther element [5] is free from spurious modes and converges at
optimal rates for eigenvalues and eigenvectors. The same strategy has been applied to a pseu-
dostress formulation of the Stokes eigenproblem [28] and to a stress-pressure formulation of
a fluid-structure interaction spectral problem [27].

The aim of this paper is to provide a general theory for the spectral approximation of a
class of symmetric and noncoercive operators, so that the studies carried out in [26–28] all
fit into the same framework. The analysis given here is performed according to the ideas in
[26] and builds on the theory developed in [16,17]. The resulting unified approach reveals
a new criterion (see Assumption 5 below) to determine the spectral correctness of a given
Galerkin approximation. This allows to validate more families of mixed finite elements for
the approximation of the elasticity eigenproblem as mentioned in Remark 6.1.

We also highlight that the analysis considered in [26] relies on the regularity of an auxiliary
elasticity source problem. Here, we can circumvent the use of this property, which allows us
to treat the important case of heterogeneous material coefficients.

The paper is organized as follows: In Sect. 2 we set out the abstract spectral problem
and we describe its continuous Galerkin approximation in Sect. 3. In Sect. 4 we provide
sufficient conditions ensuring the spectral correctness of the approximation in the sense
of [16]. In Sect. 5, we establish rates of convergence for eigenvalues and eigenfunctions.
Section 6 is devoted to applications. We show that the abstract framework can be applied
to the stress formulation with weak symmetry of the elasticity and Stokes eigenproblems.
We present numerical results for the latter example that confirm the theoretical convergence
rates.

2 An abstract eigenproblem

Let H , X be two infinite-dimensional, separable, real Hilbert spaces endowed with inner
products (·, ·)H , (·, ·)X and corresponding norms‖·‖H and‖·‖X .We assume that the inclusion
X ↪→ H is continuous. We let c : X × X → R be a bounded, symmetric and positive
semidefinite bilinear form such that c(·, ·) + (·, ·)H is coercive on X , i.e., there exists α > 0
such that

c(v, v) + ‖v‖2H ≥ α ‖v‖2X , ∀v ∈ X .

We introduce the closed subspace

K := {u ∈ X : c(u, v) = 0, ∀v ∈ X},
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Variational eigenvalue approximation of non-coercive operators... 141

and point out that, as c(·, ·) is semidefinite, we may also write K = {u ∈ X : c(u, u) = 0}.
We do not require K to be finite-dimensional. Finally, we let B : H×H → R be a symmetric
and bounded bilinear form and consider A : X × X → R given by

A(u, v) := c(u, v) + B(u, v).

We are interested in the following eigenvalue problem: find 0 �= u ∈ X and κ ∈ R such that

A(u, v) = κB(u, v), ∀v ∈ X . (2.1)

Our purpose is to introduce a series of assumptions that permit us to solve (in Sect. 2) the
spectral problem (2.1) and to analyse (in Sect. 3) the convergence of the corresponding
Galerkin approximation (3.1).

Assumption 1 We assume that

(i) there exists βA > 0 such that sup
v∈X

A(u, v)

‖v‖X ≥ βA‖u‖X , ∀u ∈ X ,

(ii) and there exists βB > 0 such that sup
v∈K

B(u, v)

‖v‖H ≥ βB‖u‖H , ∀u ∈ K .

Assumption 1(i) and the symmetry of A imply that the linear operator T : X → X
defined, for all u ∈ X , by

A(Tu, v) = B(u, v), ∀v ∈ X , (2.2)

is well-defined and bounded, c.f. [18, Theorem 2.6]. The importance of the source operator T
lies in the fact that its eigenvalues and those of the problem (2.1) are reciprocal to each other
with coincident associated eigenfunctions. A full description of the spectrum of T will then
solve eigenproblem (2.1). It is clear that κ = 1 is an eigenvalue of (2.1) associated with the
eigenspace K , which can also be expressed in terms of the source operator T by the property
ker(I − T ) = K . Consequently, if K is not a finite-dimensional subspace of X (which is the
case in the applications we have in mind) T is not a compact operator.

We introduce the closed subspace

K⊥B := {u ∈ X : B(u, v) = 0, ∀v ∈ K }.
Wepoint out that the orthogonality symbol⊥B is an abuse of notation since B(·, ·) is generally
not an inner product in H . Moreover, the symmetry of A and B imply that T is symmetric
with respect to B, indeed,

B(Tu, v) = B(v, Tu) = A(T v, Tu) = A(Tu, T v) = B(u, T v), ∀u, v ∈ X .

It follows immediately from this fact that K⊥B is T -invariant, namely, T (K⊥B ) ⊂ K⊥B .

Proposition 2.1 If Assumption 1 (ii) is satisfied, the splitting X = K ⊕ K⊥B is direct and
stable.

Proof By virtue of Assumption 1 (ii), for any u ∈ X , there exists a unique u0 ∈ K solution
of

B(u0, v) = B(u, v), ∀v ∈ K ,
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with the a priori estimate (see [18, Theorem 2.6]) ‖u0‖X ≤ ‖u0‖H√
α

≤ ‖B‖√
αβB

‖u‖X , where
‖B‖ stands for the norm of the bilinear form B. It follows that the direct decomposition
u = u0 + u − u0 into components u0 ∈ K and u − u0 ∈ K⊥B is stable. �
As a consequence of Proposition 2.1, there exists a unique continuous projector P : X → X
with range K⊥B and kernel K . We are now going to provide a description of the spectrum
of T under the following conditions.

Assumption 2 We assume that

(i) the inclusion P(X) ↪→ H is compact,
(ii) and the inclusion P(X) ∩ T (X) ↪→ X is compact.

We notice that, as P(X) = K⊥B is T -invariant, the inclusion T (P(X)) ⊂ P(X) ∩ T (X)

holds true and Assumption 2 (ii) implies that T : K⊥B → K⊥B is compact. The following
result is then a consequence of the spectral characterization of compact operators.

Theorem 2.1 Under Assumption 1 and Assumption 2 (ii), the spectrum of T decomposes as
follows: sp(T ) = {0, 1} ∪ {ηk}k∈N, where:
(i) η = 1 is an eigenvalue of T of finite/infinite multiplicity with associated finite/infinite

dimensional eigenspace K ;
(ii) {ηk}k∈N ⊂ (0, 1) is a sequence of finite multiplicity eigenvalues of T that converges to 0

and the corresponding eigenspaces lie in K⊥B ;
iii) if T is non-injective, η = 0 is an eigenvalue of T with associated eigenspace ker(T ).

Remark 2.1 If we assume that A(v, v) �= 0 for all v ∈ K⊥B\{0}, then it can also be shown
that the ascent of each eigenvalue ηk ∈ (0, 1) is 1, c.f. [26, Proposition A.2].

3 A continuous Galerkin discretization

We introduce a family {Xh}h≥0 ⊂ X of finite dimensional subspaces of X . The continuous
Galerkin discretization of the variational eigenproblem 2.1 reads as follows: find 0 �= uh ∈
Xh and κh ∈ R such that

A(uh, v) = κh B(uh, v), ∀v ∈ Xh . (3.1)

We will use the notation

δ(u,W ) := inf
w∈W‖u − w‖X ,

for the distance in X between an element u and a closed subspace W ⊂ X .

Assumption 3 We assume that Kh ⊂ K , where Kh := {vh ∈ Xh; c(vh, vh) = 0}.
We consider K⊥B

h := {uh ∈ Xh : B(uh, vh) = 0, ∀vh ∈ Kh}. It is important to notice

that K⊥B
h is generally not a subspace of K⊥B . To proceed with the analysis of problem (3.1)

we need the following discrete inf-sup conditions.

Assumption 4 We assume that

(i) there exists β ′
A > 0 independent of h such that sup

v∈Xh

A(u, v)

‖v‖X ≥ β ′
A‖u‖X , ∀u ∈ Xh ,
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(ii) and there existsβ ′
B > 0 independent of h such that sup

v∈Kh

B(u, v)

‖v‖H ≥ β ′
B‖u‖H , ∀u ∈ Kh .

Under Assumption 3 and Assumption 4 (ii), we can prove (as in Proposition 2.1) that the
splitting Xh = Kh ⊕ K⊥B

h is direct and uniformly stable with respect to h. We can also

associate to this direct decomposition a unique projector Ph : Xh → Xh with range K⊥B
h

and kernel Kh , which is uniformly bounded with respect to h.
Moreover, thanks to Assumption 4 (i), the linear operator T̃h : X → Xh defined, for all

u ∈ X , by

A(T̃hu, v) = B(u, v), ∀v ∈ Xh, (3.2)

is well-defined and uniformly boundedwith respect to h. Moreover, we have the Céa estimate
(c.f. [18, Lemma 2.28])

‖Tu − T̃hu‖X ≤
(
1 + ‖A‖

β ′
A

)
δ(Tu, Xh), ∀u ∈ X . (3.3)

We point out that Th := T̃h |Xh reduces to the identity on Kh , which means that 1 is
an eigenvalue of Th with associated eigenspace Kh . Moreover, κh �= 0 is an eigenvalue
of Problem (3.1) if and only if ηh = 1/κh is an eigenvalue of Th and the corresponding
eigenspaces are the same. Finally, here again, the symmetry of Th with respect to B implies
that K⊥B

h is Th-invariant, i.e., Th(K
⊥B
h ) ⊂ K⊥B

h . We are then in a position to provide the
following spectral decomposition of Th .

Theorem 3.1 The spectrum of Th consists of m := dim(Xh) eigenvalues, repeated accord-
ingly to their respective multiplicities. Under Assumptions 3 and 4, it holds sp(Th) =
{1} ∪ {ηhk}m0

k=1, with m0 = m − dim(Kh). Moreover,

(i) the eigenspace associated to ηh = 1 is Kh;
(ii) ηhk ∈ (0, 1), k = 1, . . . ,m0 − dim(ker(Th)), are eigenvalues with eigenspaces lying in

K⊥B
h ;

(iii) if Th is non-injective, ηh = 0 is an eigenvalue with corresponding eigenspace ker(Th).

Proof The result follows from the decomposition Xh = Kh ⊕ K⊥
h , the fact that Th |Kh :

Kh −→ Kh is the identity and the inclusion Th(K
⊥B
h )⊂K⊥B

h . �

Remark 3.1 Here again (see Remark 2.1), if A(v, v) �= 0 for all v ∈ K⊥
h \{0} then, the

eigenvalues ηhk ∈ (0, 1) are non-defective.

4 Correctness of the spectral approximation

Henceforth, given any positive functions Fh and Gh depending on the parameter h, the
abbreviation Fh � Gh means that Fh ≤ C Gh with a constant C > 0 independent h.
Moreover, the norm of a linear and continuous operator L : V1 → V2 between two Hilbert
spaces V1 and V2 is denoted

‖L‖L(V1,V2) := sup
v∈V1,‖v‖V1=1

‖Lv‖V2 .

When V1 = V2 = V we simply write ‖L‖L(V ) for ‖L‖L(V ,V ).
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144 S. Meddahi

The spectral approximation theory developed in [16] for non-compact operators relies
essentially on the condition

lim
h→0

‖T − Th‖L(Xh ,X) = 0, (4.1)

to prove that Th : Xh → Xh provides a correct spectral approximation of T (in a sense that
will be precised in Theorem 4.1 below). The aim of this section is to show that the following
key assumption guarantees (4.1).

Assumption 5 There exists a linear operator �h : K⊥B → Xh satisfying

(i) there exits a constant C > 0 independent of h such that

‖�hv‖H ≤ C‖v‖H and ‖�hv‖X ≤ C‖v‖X ∀v ∈ K⊥B ,

(ii) limh→0‖(I − �h)Pv‖X = 0, ∀v ∈ X ,
(iii) and (I − �h P)Xh ⊂ Kh .

Lemma 4.1 If Assumptions 1, 3 and 4 are satisfied, the following estimate holds true

‖T − Th‖L(Xh ,X) � ‖P − Ph‖L(Xh ,X) + sup
0 �=uh∈Xh

δ(T Puh, Xh)

‖uh‖X .

Proof Taking into account that T − Th vanishes identically on Kh ⊂ K we obtain,

(T − Th)uh = (T − Th)Phuh = (T − T̃h)(Phuh − Puh) + (T − T̃h)Puh, ∀uh ∈ Xh .

Next, we deduce from the triangle inequality and Céa estimate (3.3) that

‖(T − Th)uh‖X ≤
(
‖T ‖L(X) + ‖T̃h‖L(X)

)
‖(P − Ph)uh‖X + ‖(T − T̃h)Puh‖X

�
(
‖T ‖L(X) + ‖T̃h‖L(X)

)
‖(P − Ph)uh‖X + δ (T Puh, Xh) , ∀uh ∈ Xh

and the uniform boundedness of T̃h with respect to h gives the result. �
To achieve (4.1), let us first prove the following auxiliary result.

Lemma 4.2 Under Assumptions 1 (ii), 3, 4 (ii) and 5 (iii) it holds,

‖P − Ph‖L(Xh ,X) ≤
(
1 + ‖B‖

β ′
B

)
‖(I − �h)P‖L(Xh ,H).

Proof Let us first notice that, by virtue of Assumption 5 (iii),

Phuh − �h Puh = (uh − �h Puh) − (uh − Phuh) ∈ Kh, ∀uh ∈ Xh . (4.2)

The triangle inequality yields

‖(P − Ph)uh‖X ≤ ‖Phuh − �h Puh‖X + ‖(I − �h)Puh‖X
≤ 1√

α
(‖Phuh − �h Puh‖H + ‖(I − �h)Puh‖H ) ,

(4.3)

where the last estimate is a consequence of (4.2), Assumption 5 (iii) and the fact that (I −
�h)Puh = uh − �h Puh − (uh − Puh) ∈ K . Next, we use the inf-sup condition provided
by Assumption 4 (ii) to deduce from (4.3) and Assumption 3 that
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Variational eigenvalue approximation of non-coercive operators... 145

‖(P − Ph)uh‖X ≤ 1√
αβ ′

B

sup
v∈Kh

B(Phuh − �h Puh, v)

‖v‖H + 1√
α

‖(I − �h)Puh‖H

= 1√
αβ ′

B

sup
v∈Kh

B(Puh − �h Puh, v)

‖v‖H + 1√
α

‖(I − �h)Puh‖H

≤ 1√
α

(
1 + ‖B‖

β ′
B

)
‖(I − �h)Puh‖H ,

and the result follows. �
Lemma 4.3 Under Assumptions 1–5 it holds

lim
h→0

‖T − Th‖L(Xh ,X) = 0.

Proof Let us first notice that

sup
0 �=uh∈Xh

δ(T Puh, Xh)

‖uh‖X ≤ sup
0 �=uh∈Xh

‖T Puh − �hT Puh‖X
‖uh‖X ≤ ‖(I − �h)T P‖L(X).

Combining Lemma 4.1 and Lemma 4.2 with the last estimate yields

‖T − Th‖L(Xh ,X) � ‖(I − �h)T P‖L(X) + ‖(I − �h)P‖L(X ,H). (4.4)

Now, by virtue of Assumption 2 (ii) and Assumption 5 (i)–(ii), T P : X → X is compact and
the operator I − �h : (K⊥B , ‖·‖X ) → X is uniformly bounded and converges pointwise to
zero. Hence, (I − �h)T P : X → X converges uniformly to zero; namely,

lim
h→0

‖(I − �h)T P‖L(X) = 0. (4.5)

On the other hand, thanks to Assumption 2 (i) and Assumption 5 (i)–(ii), P : X → H is
compact and I − �h : (K⊥B , ‖·‖H ) → X is uniformly bounded and converges pointwise
to zero, due to the continuous embedding of X in H . Consequently, (I − �h)P : X → H
converges uniformly to zero, i.e.,

lim
h→0

‖(I − �h)P‖L(X ,H) = 0, (4.6)

and the result follows by using (4.5) and (4.6) in (4.4). �
For the sake of completeness, we finalize this section by adapting the results of [16] (see

also [26]) to show that Assumptions 1–5 are sufficient to ensure the correctness of the spectral
approximation. Let us first recall that the resolvent the operator of T is given by

Rz(T ) := (z I − T )−1 : X −→ X , z ∈ C\ sp(T ). (4.7)

Themapping z �→ ‖Rz(T )‖L(X) is continuous for all z /∈ sp(T ) and goes to zero as |z| → ∞.
Consequently, it is bounded on any compact subset F ⊂ C satisfying F∩sp(T ) = ∅, namely,
there exists a constant CF > 0 such that

‖Rz(T )‖L(X) ≤ CF , ∀z ∈ F . (4.8)

It is shown in [26, Lemma 1] that the same property holds true uniformly in h for the resolvent
Rz(Th) := (z I − Th)−1 : Xh → Xh of the discrete source operator Th . We recall this result
below.
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146 S. Meddahi

Lemma 4.4 Let F ⊂ C be an arbitrary compact subset such that F ∩ sp(T ) = ∅. Then, if
Assumptions 1-5 are satisfied, there exists h0 > 0 such that ∀h ≤ h0,

‖Rz(Th)‖L(Xh ,X) ≤ 2CF , ∀z ∈ F,

where CF > 0 is the constant appearing in (4.8).

Proof We deduce from the decomposition (z I − Th)vh = (z I − T )vh + (T − Th)vh and
(4.8) that

‖(z I − Th)vh‖X ≥
(
C−1
F − ‖T − Th‖L(Xh ,X)

)
‖vh‖X , ∀vh ∈ Xh

and the result follows from Lemma 4.3. �
Remark 4.1 Lemma 4.4 means that given an arbitrary compact set F ⊂ C\ sp(T ) there exists
h0 > 0 such that for all h ≤ h0 it holds F ⊂ C\ sp(Th), whichmeans that, for h small enough,
the Galerkin scheme (3.1) does not introduce spurious modes.

For E and F closed subspaces of X , we set

δ(E, F) := sup
u∈E : ‖u‖X=1

δ(u, F) and δ̂(E, F) := max {δ(E, F), δ(F, E)}

the latter being the so called gap between subspaces E and F .
Let F ⊂ C\{0, 1} be a compact set whose boundary 	 is a smooth Jordan curve not

intersecting sp(T ). It is well known [24] that the linear and bounded operator

E := 1

2π i

∫
	

Rz(T ) dz : X −→ X

is a projector onto the finite dimensional space E(X) spanned by the generalized eigen-
functions associated with the finite set of eigenvalues of T contained in 	. It follows from
Lemma 4.4 that, for h small enough, the linear operator

Eh := 1

2π i

∫
	

Rz(Th) dz : Xh −→ Xh

is uniformly bounded in h. Likewise, Eh is a projector onto the Th-invariant subspace Eh(Xh)

corresponding to the eigenvalues of Th : Xh → Xh contained in 	. The aim now is to
compare Eh(Xh) to E(X) in terms of the gap δ̂. The following auxiliary result is essential for
this purpose.

Lemma 4.5 If Assumptions 1–5 are satisfied, there exists h0 > 0 such that

‖E − Eh‖L(Xh ,X) � ‖T − Th‖L(Xh ,X), ∀h ≤ h0. (4.9)

Proof We reproduce here the proof given in [26, Lemma 2]. By virtue of Lemma 4.4, there
exists h0 > 0 such that the resolvent identity

Rz(T ) − Rz(Th) = Rz(T )(T − Th)Rz(Th), ∀z ∈ 	, ∀h ≤ h0, (4.10)

is satisfied. Hence, for any vh ∈ Xh ,

‖(E − Eh)vh‖X ≤ 1

2π

∫
	

‖(Rz(T ) − Rz(Th)) vh‖X |dz|

= 1

2π

∫
	

‖Rz(T )(T − Th)Rz(Th)vh‖X |dz|
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≤ 1

2π

∫
	

‖Rz(T )‖L(X)‖T − Th‖L(Xh ,X)‖Rz(Th)‖L(Xh ,X)‖vh‖X |dz|

and the result follows from (4.8) and Lemma 4.4. �
Lemma 4.6 Assume that Assumptions 1–5 are satisfied. There exists h0 > 0 such that

δ̂(E(X), Eh(Xh)) � ‖T − Th‖L(Xh ,X) + δ(E(X), Xh), ∀h ≤ h0. (4.11)

Proof As Eh : Xh → Xh is a projector, it holds Ehuh = uh for all uh ∈ Eh(Xh). Hence,
there exists h0 > 0 such that

δ(uh, E(X)) ≤ ‖Ehuh − Euh‖X ≤ ‖Eh − E‖L(Xh ,X)‖uh‖X , ∀uh ∈ Eh(Xh), ∀h ≤ h0.

Combining the last estimate with (4.9) gives

δ(Eh(Xh), E(X)) � ‖T − Th‖L(Xh ,X). (4.12)

Using this time that Eu = u for all u ∈ E(X) yields

‖u − Ehvh‖X ≤ ‖E(u − vh)‖X + ‖(E − Eh)vh‖X
≤ ‖E‖L(X)‖u − vh‖X + ‖(E − Eh)‖L(Xh ,X)‖vh‖X
≤ (‖Eh‖L(Xh ,X) + 2‖E‖L(X)

) ‖u − vh‖X + ‖E − Eh‖L(Xh ,X)‖u‖X , ∀vh ∈ Xh .

Consequently, by virtue of the uniform boundedness of Eh : Xh → Xh , there exists h0 > 0
such that

δ(u, Eh(Xh)) � δ(u, Xh) + ‖E − Eh‖L(Xh ,X), ∀u ∈ E(X), ‖u‖X = 1, ∀h ≤ h0.

It follows that

δ(E(X), Eh(Xh)) � δ(E(X), Xh) + ‖E − Eh‖L(Xh ,X), ∀h ≤ h0,

and the result is a consequence of the last estimate, Lemma 4.5 and (4.12). �
We are now in a position to establish the convergence properties of the eigenvalues and

eigenfunctions.

Theorem 4.1 Assume that Assumptions 1–5 are satisfied. Let F ⊂ C\{0, 1} be an arbitrary
compact set with smooth boundary 	 satisfying 	∩ sp(T ) = ∅. We assume that there are m
eigenvalues ηF

1 , . . . , ηF
m of T (repeated according to their algebraic multiplicities) contained

in 	. We also consider the eigenvalues ηF
1,h, . . . , η

F
m(h),h of Th : Xh → Xh lying in F and

repeated according to their algebraic multiplicities. Then, there exists h0 > 0 such that
m(h) = m for all h ≤ h0 and

lim
h→0

max
1≤i≤m

|ηF
i − ηF

i,h | = 0.

Moreover, if E(X) is the T -invariant subspace of X spanned by the generalized eigenfunctions
corresponding to the set of eigenvalues {ηF

i , i = 1, . . . ,m} and Eh(Xh) is the Th-invariant
subspace of Xh spanned by the eigenspaces corresponding to {ηi,h, i = 1, . . . ,m} then
δ̂(E(X), Eh(Xh)) → 0 as h → 0.

Proof We deduce from Lemma 4.6, Lemma 4.3 and Assumption 5 (ii) and from the fact that
E(X) ⊂ P(X) is a finite dimensional subspace of X that

lim
h→0

δ̂(E(X), Eh(Xh)) � lim
h→0

‖T − Th‖L(Xh ,X) + lim
h→0

δ(E(X), Xh) = 0.
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148 S. Meddahi

As a consequence, E(X) and Eh(Xh) have the same dimension provided h is sufficiently
small, c.f. [24]. Finally, as the eigenvalues {ηF

1 , . . . , ηF
m } are isolated, for a sufficiently small

ε > 0, we can consider D = ∪m
i=1DηF

i
⊂ F , where DηF

i
⊂ C, i = 1, . . . ,m are disjoint

closed disks centered at ηF
i of radius ε. The previous analysis shows that there exists h(ε) > 0

such that ηF
1,h, . . . , η

F
m,h are all inside of D for h ≤ h(ε), which means that

lim
h→0

max
1≤i≤m

|ηF
i − ηF

i,h | = 0.

�

5 Asymptotic estimates for the eigenvalue and eigenfunction error

We proved in Sect. 4 that, under Assumptions 1–5, the Galerkin scheme (3.1) does not
pollute the spectrum of T with spurious modes. Moreover, we established the convergence
of eigenvalues and eigenfunctions with correct multiplicity. However, in practice the space
Eη(X) of generalized eigenfunctions corresponding to a given isolated eigenvalue η �= 1
enjoys individual smoothness properties. Therefore, in order to be able to claim that the
Galerkin method (3.1) has optimal convergence rates we need to estimate the error for a
particular eigenvalue η �= 1 and for the corresponding eigenspace Eη(X) only in terms of
δ(Eη(X), Xh). This question has been addressed in [17] for noncompact operators under the
condition of coercivity for the bilinear form A. In this section we extend the results to the
abstract framework we are considering here.

Hereafter, we focus on a particular isolated eigenvalue η �= 1 of T of algebraicmultiplicity
m and let Dη ⊂ C be a closed disk centered at ηwith boundary γ such that Dη ∩sp(T ) = {η}.
We denote by Eη := 1

2π i

∫
γ
Rz(T ) dz : X → X the projector onto the eigenspace Eη(X) of

η and we define, for h small enough, the projector by Eη,h := 1
2π i

∫
γ
Rz(Th) dz : Xh → Xh

onto the Th-invariant subspace Eη,h(Xh) corresponding to the m eigenvalues of Th : Xh →
Xh contained in γ .

We begin our analysis by proving an analogue of Lemma 4.4 for Rz(T̃h) := (z I − T̃h)−1 :
X −→ X .

Lemma 5.1 Assume that Assumptions 1–5 are satisfied. Let F ⊂ C be an arbitrary compact
subset such that F ∩ sp(T ) = ∅. There exist C ′

F > 0 and h0 > 0 such that,

‖Rz(T̃h)‖L(X) � C ′
F , ∀z ∈ F, ∀h ≤ h0.

Proof Given u ∈ X we let u∗
h = T̃hu ∈ Xh . We deduce from the identity

(z I − Th)u
∗
h = T̃h(z I − T̃h)u

and from Lemma 4.4 that

‖u∗
h‖X ≤ 2CF ‖(z I − Th)u

∗
h‖X ≤ 2CF ‖T̃h‖L(X)‖(z I − T̃h)u‖X , ∀h ≤ h0.

The last estimate and the triangle inequality yield

|z|‖u‖X ≤ ‖u∗
h‖X + ‖(z I − T̃h)u‖X ≤

(
1 + 2CF‖T̃h‖L(X)

)
‖(z I − T̃h)u‖X , ∀u ∈ X

and the result follows from the uniform boundedness of ‖T̃h‖L(X). �
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It follows from Lemma 5.1 that, for h small enough, Rz(T̃h) : X −→ X is linear and
bounded uniformly in h for all z ∈ γ . Hence, the linear operator

Ẽη,h := 1

2π i

∫
γ

Rz(T̃h) dz : X −→ X

is uniformly bounded as well. It is straightforward that Rz(T̃h)|Xh = Rz(Th). It follows that
we also have Ẽη,h |Xh = Eη,h . Moreover, if η̃ ∈ Dη is an eigenvalue of T̃h , as η̃ �= 0, the
corresponding eigenspace is a subspace of Eη,h(Xh) and η̃ should necessarily coincide with
one of the eigenvalues {ηi,h, i = 1, . . . ,m} of Th . We conclude that Ẽη,h(X) = Eη,h(Xh) is
the eigenspace corresponding to the eigenvalues of Th contained in γ .

Theorem 5.1 Under Assumptions 1–5 and for h small enough, it holds

δ̂
(
Eη(X), Eη,h(Xh)

)
� δ(Eη(X), Xh). (5.1)

Proof Thanks to Lemma 5.1, there exists h0 > 0 such that

Rz(T ) − Rz(T̃h) = Rz(T̃h)(T − T̃h)Rz(T ), ∀z ∈ γ, ∀h ≤ h0.

Hence, recalling that Eη(X) is invariant for T and hence also for Rz(T ) (i.e. Rz(T )Eη(X) ⊂
Eη(X)), we have

‖Eη − Ẽη,h‖L(Eη(X),X) ≤ 1

2π

∫
γ

‖Rz(T ) − Rz(T̃h)‖L(Eη(X),X)|dz|

= 1

2π

∫
γ

‖Rz(T̃h)(T − T̃h)Rz(T )‖L(Eη(X),X)|dz|

≤ 1

2π

∫
γ

‖Rz(T̃h)‖L(X)‖T − T̃h‖L(Eη(X),X)‖Rz(T )‖L(Eη(X),X)|dz|

� ‖(T − T̃h)‖L(Eη(X),X).

(5.2)

Now, due to the fact that Eη(X) ⊂ K⊥B is finite dimensional and T -invariant, we deduce
from (5.2), Céa estimate (3.3) and Assumption 5 (ii) that

‖Eη − Ẽη,h‖L(Eη(X),X) � δ(Eη(X), Xh) → 0, as h → 0. (5.3)

It follows that

δ
(
Eη(X), Eη,h(Xh)

)
= δ

(
Eη(X), Ẽη,h(X)

)
≤ ‖Eη − Ẽη,h‖L(Eη(X),X) � δ(Eη(X), Xh).

(5.4)

On the other hand, we also deduce from (5.3) that the operator Ẽη,h : Eη(X) → Eη,h(Xh)

converges uniformly to the identity, which proves that it is invertible, for h small enough.
We denote its inverse 	η,h : Eη,h(Xh) → Eη(X). It is straightforward that, if h0 > 0 is such
that

‖I − Ẽη,h‖L(Eη(X),X) ≤ 1/2, (∀h ≤ h0)

then ‖	η,h‖L(Eη,h(Xh ),X) ≤ 2 and, again by (5.3),

δ
(
Eη,h(Xh), Eη(X)

)
= δ

(
Ẽη,h(X), Eη(X)

)
≤ ‖I − 	h‖L(Eη,h(Xh ),X)

= ‖(Ẽη,h − I
)
	h‖L(Eη,h(Xh ),X)
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≤ 2‖Ẽη,h − I‖L(Eη(X),X) = 2‖Ẽη,h − Eη‖L(Eη(X),X) � δ(Eη(X), Xh).

The result follows from the last estimate and (5.4). �

We recall that κ = 1/η an eigenvalue of Problem 2.1 with the same m-dimensional
eigenspace Eη(X). Analogously, if ηi,h , i = 1, . . . ,m, are the eigenvalues of Th (repeated
accordingly to their respective algebraic multiplicities) that converge to η then, κi,h = 1/ηi,h
are the eigenvalues of Problem 3.1 converging to κ and the corresponding generalized eigen-
functions span Eη,h(Xh). The last step of this section is the following theorem, in which we
establish a double order of convergence for the eigenvalues. To this endwe need the following
assumption.

Assumption 6 Assume B(u, u) > 0 for all u ∈ Eη(X)\{0}.

Theorem 5.2 Under Assumptions 1–6, there exists h0 > 0 such that,

max
1≤i≤m

|κi,h − κ| � δ(Eη(X), Xh)
2, ∀h ≤ h0.

Proof We denote by ui,h an eigenfunction corresponding to κi,h satisfying ‖ui,h‖X = 1.
There exists an eigenfunction u ∈ Eη(X) satisfying

‖ui,h − u‖X = δ(ui,h, Eη(X)) ≤ δ̂(Eη,h(Xh), Eη(X)) � δ(Eη(X), Xh) → 0 as h → 0.

(5.5)

It follows that, for h small enough, ‖u‖X is bounded from below and above by a constant
independent of h. Furthermore, Assumption 6 and the fact that Eη(X) is finite-dimensional
imply the existence of c > 0, independent of h, such that B(u, u) ≥ c‖u‖X for all u ∈
Eη(X). Using (5.5) and the uniform boundedness of ‖u‖X , it is straightforward deduce that
B(uih, uih) ≥ c

2 for h sufficiently small. We can now use the identity

A(u − ui,h, u − ui,h) − κB(u − ui,h, u − ui,h) = (
κi,h − κ

)
B(ui,h, ui,h)

to obtain the estimate

c

2
|κi,h − κ| ≤ |Ah(u − ui,h, u − ui,h)| + |κ||B(u − ui,h, u − ui,h)|

� ‖u − ui,h‖2X � δ(Eη(X), Xh)
2, ∀i = 1, . . . ,m

and the result follows. �

6 Applications

We present two applications of the abstract theory developed in the previous sections. They
concern dual mixed formulations for the elasticity and Stokes eigensystems.

We denote the space of real matrices of order d × d by M, and define S := {τ ∈
M; τ = τt} and K := {τ ∈ M; τ = −τt} as the subspaces of real symmetric and
skew symmetric matrices, respectively. The component-wise inner product of two matrices
σ , τ ∈ M is defined by σ : τ := tr(σtτ ), where tr τ := ∑d

i=1 τi i and τt := (τ j i ) stand for
the trace and the transpose of τ = (τi j ), respectively. We also introduce the deviatoric part
τD := τ − 1

d (tr τ ) I of a tensor τ , where I stands here for the identity inM.
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Along this paper we convene to apply all differential operators row-wise. Hence, given
regular tensors σ : � → M and vector fields u : � → R

d , we set the divergence div σ :
� → R

d , the gradient ∇u : � → M, and the linearized strain tensor ε(u) : � → S as

(div σ )i :=
∑
j

∂ jσi j , (∇u)i j := ∂ j ui , and ε(u) := 1

2

[∇u + (∇u)t
]
.

Let D be a polyhedral Lipschitz bounded domain of Rd (d = 2, 3), with boundary ∂D.
For s ∈ R, Hs(D, E) stands for the usual Hilbertian Sobolev space of functions with domain
D and values in E, where E is either R, Rd or M. In the case E = R we simply write
Hs(D). The norm of Hs(D, E) is denoted ‖·‖s,D indistinctly for E = R,Rd ,M. We use
the convention H0(D, E) := L2(D, E) and let (·, ·)D be the inner product in L2(D, E), for
E = R,Rd ,M, namely,

(u, v)D :=
∫
D
u · v, ∀u, v ∈ L2(D,Rd), (σ , τ )D :=

∫
D

σ : τ , ∀σ , τ ∈ L2(D,M).

We denote by H(div, D,M) the space of functions in L2(D,M) with divergence in
L2(D,Rd). We equip this Hilbert space with the norm ‖τ‖2div,D := ‖τ‖20,D + ‖div τ‖20,D .
Finally, H(div0, D,M) stands for the subspace of divergence free tensors in H(div, D,M),
i.e.,

H(div0, D,M) := {τ ∈ H(div, D,M), div τ = 0 in D}.

6.1 Stress formulation of the elasticity eigenproblemwith reduced symmetry

6.1.1 The continuous problem

Let � ⊂ R
d (d = 2, 3) be a bounded Lipschitz polygon/polyhedron representing a linearly

elastic body with mass density � ∈ L∞(�) satisfying �(x) ≥ �0 > 0 a.e. in �. For
simplicity, we assume that the structure is fixed at the boundary ∂�. We denote by A(x) :
M → M the symmetric and positive-definite 4th-order tensor (known as the compliance
tensor) that relates the Cauchy stress tensor σ to the strain tensor through the linear material
law A(x)σ = ε(u).

Our aim is to find natural frequencies ω ∈ R such that div σ + ω2�(x)u = 0 in �.
Here, we opt for combining this equilibrium equation with the constitutive law to eliminate
the displacement field u and impose σ as a primary variable. This procedure leads to the
following grad-div eigensystem: Find 0 �= σ : � → S, 0 �= r : � → K and eigenmodes
ω ∈ R such that,

−∇ (
�−1 div σ

) = ω2 (Aσ + r) in �,

�−1 div σ = 0 on ∂�.
(6.1)

We notice that we introduced above the skew symmetric tensor r := 1
2

[∇u − (∇u)t
]
(the

rotation) by writing Hooke’s law Aσ = ∇u − r . This additional unknown will act as a
Lagrange multiplier for the symmetry restriction.

The variational formulation of the spectral problem (6.1) can be cast into the abstract
framework presented in Sect. 2 by defining problem (2.1)with κ = 1+ω2, H := L2(�,M)×
L2(�,M), X := H(div,�,M)×L2(�,K) andwith bounded and symmetric bilinear forms
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B : H × H → R, c : X × X → R and A : X × X → R given by

B((σ , r), (τ , s)) :=(Aσ , τ )� + (r, τ )� + (s, σ )�, c((σ , r), (τ , s))

:=(�−1 div σ ,div τ )�

A((σ , r), (τ , s)) :=c((σ , r), (τ , s)) + B((σ , r), (τ , s)),

c.f. [26] for more details. The Hilbert spaces H and X are endowed with the norms

‖(τ , s)‖2H := ‖τ‖20,� + ‖s‖20,�, ‖(τ , s)‖2X := ‖τ‖2div,� + ‖s‖20,�. (6.2)

We point out that the continuous inclusion X ↪→ H is not compact.
We proceed now to check out Assumption 1 and Assumption 2.We begin by noticing that

K :=
{
(τ , s) ∈ X , c((τ , s), (τ , s)) = 0

}
= H(div0,�,M) × L2(�,K)

is not a finite dimensional subspace of X . It is well-known that the bilinear form (τ , (v, s)) �→
( div τ , u)�+(τ , s)� satisfies the inf-sup condition for the pair {H(div,�,M), L2(�,Rd)×
L2(�,K)}, which can be equivalently formulated as follows, (c.f. [10, Proposition 2] ).

Lemma 6.1 There exists a linear and bounded operator � : L2(�,Rd) × L2(�,K) →
H(div,�,M) such that(
div�(v, s), v

)
�

+
(
�(v, s), s

)
�

= ‖v‖20,�+‖s‖20,� ∀(v, s) ∈ L2(�,Rd) × L2(�,K).

Corollary 6.1 Assumption 1 is satisfied.

Proof It follows from Lemma 6.1 that

sup
τ∈H(div,�,M)

(τ , s)�
‖τ‖div,� ≥ sup

τ∈H(div0,�,M)

(τ , s)�
‖τ‖0,� ≥ (�(0, s), s)�

‖�(0, s)‖0,� = ‖s‖20,�
‖�(0, s)‖0,�

≥ 1

‖�‖‖s‖0,�, (6.3)

for all s ∈ L2(�,K). This means that the bilinear form (τ , s)� satisfies the inf-sup condition
for the pair {H(div0,�,M), L2(�,K)} and also for the pair {H(div,�,M), L2(�,K)}.
Moreover, we have that (σ , τ ) �→ (Aσ , τ )� is coercive on H(div0,�,M) while (σ , τ ) �→
(Aσ , τ ) + (�−1 div σ ,div τ )� is coercive on the whole space H(div,�,M). By virtue of
the Babuška-Brezzi theory [11], for all L ∈ X ′, the saddle point problem: find (σ , r) ∈ X
such that

A((σ , r), (τ , s)) = L((τ , s)), ∀(τ , s) ∈ X ,

is well-posed, which implies that Assumption 1 (i) is satisfied. Likewise, for all L0 ∈ K ′,
the saddle point problem: find (σ , r) ∈ K = H(div0,�,M) × L2(�,K) such that

B((σ , r), (τ , s)) = L0((τ , s)), ∀(τ , s) ∈ K ,

is well-posed. Consequently, Assumption 1 (ii) also holds true. �
Thanks to Corollary 6.1, we can define the source operator T : X → X in terms of

problem (2.2). We recall that ker(I − T ) = K and that the symmetry of T with respect to
B(·, ·) yields T (K⊥B ) ⊂ K⊥B . In addition, the direct and stable splitting X = K ⊕ K⊥B

holds true. Our aim now is to characterize the unique projector P : X → X with range K⊥B

and kernel K associated to this splitting.

123



Variational eigenvalue approximation of non-coercive operators... 153

For any (σ , r) ∈ X , we consider P(σ , r) := (σ̃ , r̃) with σ̃ = A−1ε(̃u) and
r̃ := 1

2

[∇ ũ − (∇ ũ)t
]
, where ũ is the unique solution of the classical displacement based

variational formulation of the elasticity problem in � with volume load div σ , namely,
ũ ∈ H1

0 (�,Rd) solves

(A−1ε(̃u), ε(v))� = ( div σ , v)�, ∀v ∈ H1
0 (�,Rd). (6.4)

We point out that div σ̃ = div σ by construction. In addition, Korn’s inequality provides the
stability estimate

‖ũ‖1,� ≤ C‖div σ‖0,�, (6.5)

which ensures the continuity of P : X → X . Now, it is clear that P ◦ P = P and ker P = K .
Besides, for any (σ , r) ∈ X ,

B(P(σ , r), (τ , s)) = B((σ̃ , r̃), (τ , s)) = (∇ ũ, τ )� = 0, ∀(τ , s) ∈ K ,

which proves that P(X) ⊂ K⊥B . Finally, we notice that (I − P)X ⊂ K , and hence,
K⊥B = P(K⊥B ) + (I − P)K⊥B = P(K⊥B ) ⊂ P(X). We conclude that P : X → X is
indeed the unique continuous projector corresponding to the direct and stable decomposition
X = K ⊕ K⊥B .

Lemma 6.2 Assumption 2 is satisfied.

Proof Let {(σ n, rn)}n be a weakly convergent sequence in X . As P ∈ L(X), the sequence
{(σ̃ n, r̃n)}n := {P((σ n, rn))}n is also weakly convergent in X . By definition, σ̃ n =
A−1ε(̃un) and r̃n := 1

2

[∇ ũn − (∇ ũn)t
]
, where ũn ∈ H1

0 (�,Rd) solves (6.4) with right-
hand side div σ n . It follows from (6.5) that ũn is bounded in H1

0 (�,Rd) and the compactness
of the embedding H1(�,Rd) ↪→ L2(�,Rd) implies that {̃un}n admits a subsequence
(denoted again {̃un}n ) that converges strongly in L2(�,Rd). Next, we deduce from the
Green identity

(A(σ̃ p − σ̃ q), σ̃ p − σ̃ q)� = (ε(̃up − ũq), σ̃ p − σ̃ q)� = −(̃up − ũq ,div(σ̃ p − σ̃ q))�,

that {σ̃ n}n is a Cauchy sequence in L2(�,M). Moreover, the identity

(A(σ̃ p − σ̃ q), τ )� + (τ , r̃ p − r̃q)� = 0, ∀τ ∈ H(div0,�,M)

and the inf-sup condition (6.3) yield

‖̃r p − r̃q‖0,� ≤ ‖�‖ sup
τ∈H(div0,�,M)

(τ , r̃ p − r̃q)�
‖τ‖0,� ≤ ‖�‖‖A(σ̃ p − σ̃ q)‖0,�.

The last estimate ensures that {̃rn}n is also a Cauchy sequence in L2(�,M). We then come to
the conclusion that the image under P of any bounded sequence in X contains a converging
subsequence in H , which proves that Assumption 2 (i) is satisfieded.

On the other hand, testing (2.2) with (τ , 0) and choosing the components of τ : � → M

indefinitely differentiable and compactly supported in�, we readily obtain that, if (σ ∗, r∗) :=
T ((σ , r)) then

∇(�−1 div σ ∗) = A(σ ∗ − σ ) + r∗ − r ∈ L2(�,M).

Consequently,

T (X) ∩ P(X) ⊂ {(σ , r) ∈ P(X); �−1 div σ ∈ H1(�,Rd)},
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and the compactness of the embedding T (X) ∩ P(X) ↪→ X follows. We conclude that
Assumption 2 (ii) is fulfilled. �

Finally, we notice that for all 0 �= (σ , r) ∈ P(X),

A((σ , r), (σ , r)) ≥ B((σ , r), (σ , r)) = (Aσ , σ )� > 0, (6.6)

where we used that σ is symmetric and that {0} × L2(�,K) ⊂ K .
We can invoke now Theorem 6.1 and Remark 2.1 to conclude that we have the following

spectral characterization for the source operator T .

Proposition 6.1 The spectrum sp(T ) of T is given by sp(T ) = {0, 1} ∪ {ηk}k∈N, where
{ηk}k ⊂ (0, 1) is a sequence of finite-multiplicity eigenvalues of T that converges to 0. The
ascent of each of these eigenvalues is 1 and the corresponding eigenfunctions lie in P(X).
Moreover, η = 1 is an infinite-multiplicity eigenvalue of T with associated eigenspace K
and η = 0 is not an eigenvalue.

6.1.2 The discrete problem

We consider a family {Th}h of shape regular simplicial meshes of �̄ satisfying the standard
finite element conformity assumptions. We denote by hK the diameter of triangles/tetrahedra
K ∈ Th and let the parameter h := maxK∈Th {hK } be the mesh size of Th .

Hereafter, given an integer m ≥ 0 and D ⊂ R
d , Pk(D, E) is the space of functions with

domain D and values in E, where E is either Rd ,M or K, and whose scalar components are
polynomials of degree at mostm. Likewise, the spaces of E-valued functions with piecewise
polynomial scalar components of degree ≤ m relatively to Th are defined by

Pm(Th, E) := {
v ∈ L2(�, E); v|K ∈ Pm(K , E)

}
, for E = R

d ,M or K.

For k ≥ 0, we define Problem (3.1) with Xh := Wh × Pk(Th,K), where Wh :=
Pk+1(Th,M) ∩ H(div,�,M). We point out that the set {Wh,Pk(Th,Rd),Pk(Th,K)} con-
stitutes the mixed finite element of Arnold-Falk-Winther [5] for linear elasticity. The key
property ensuring the stability of this triplet of spaces is given by the following result, c.f.
[5, Theorem 7.1].

Lemma 6.3 There exists a linear operator �h : Pk(Th,Rd) × Pk(Th,K) → Wh that is
uniformly bounded with respect to h and that satisfies(

div�h(vh, sh), vh
)

�
+

(
�h(vh, sh), sh

)
�

= ‖vh‖20,� + ‖sh‖20,�
for all (vh, sh) ∈ Pk(Th,Rd) × Pk(Th,K).

We point out that Kh = W0
h × Pk(Th,K) ⊂ K where W0

h := Wh ∩ H(div0,�,M).
The same procedure used in the proof of Corollary 6.1 can be used verbatim to deduce from
Lemma 6.3 that Assumption 4 is satisfied. Moreover, as {0} × Pk(Th,K) ⊂ Kh , for all
0 �= (σ h, rh) ∈ Ph(Xh) = K⊥B

h it holds

B((σ h, rh), (0, sh)) = (
σ h, sh

)
�

= 0, ∀sh ∈ Pk(Th,K).

Consequently, the discrete counterpart of (6.6) is satisfied. Indeed, for all 0 �= (σ h, rh) ∈
Ph(Xh) we have that

A((σ h, rh), (σ h, rh)) ≥ B((σ h, rh), (σ h, rh)) = (Aσ h, σ h)� > 0. (6.7)

We deduce from Theorem 3.1 and Remark 3.1 the following result.
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Proposition 6.2 The spectrum of Th consists of m := dim(Xh) eigenvalues, repeated
accordingly to their respective multiplicities. It holds sp(Th) = {1} ∪ {ηhk}m0

k=1, with
m0 = m − dim(Kh). The eigenspace associated to ηh = 1 is Kh. The real numbers
ηhk ∈ (0, 1), k = 1, . . . ,m0, are non-defective eigenvalues with eigenspaces lying in K⊥B

h
and ηh = 0 is not an eigenvalue.

Let us now recall some well-known approximation properties of the finite element spaces
introduced above. Given s > 1/2 the tensorial version of the canonical interpolation operator
�h : Hs(�,M) → Wh associated with the Brezzi-Douglas-Marini (BDM) mixed finite
element [12], satisfies the following classical error estimate, see [11, Proposition 2.5.4],

‖τ − �hτ‖0,� ≤ Chmin{s,k+2}‖τ‖s,� ∀τ ∈ Hs(�,M), s > 1/2, (6.8)

Moreover, we have the well-known commutativity property,

div�hσ = Uh div σ , ∀σ ∈ Hs(�,M) ∩ H(div,�,M), s > 1/2. (6.9)

where Uh stands for the L2(�,Rd)-orthogonal projection onto Pk(Th,Rd). Therefore, if
div τ ∈ Hs(�,Rd), we obtain

‖div(τ − �hτ )‖0,� = ‖div τ −Uh div τ‖0,� ≤ Chmin{s,k+1}‖div τ‖s,�. (6.10)

Finally, if Sh represents the L2(�,M)-orthogonal projection onto Pk(Th,K), for any s > 0,
it holds

‖s − Sh s‖0,� ≤ Chmin{s,k+1}‖s‖s,� ∀s ∈ Hs(�,K). (6.11)

Wepoint out that one can actually extend the domainof the canonical interpolationoperator
�h to H(div,�,M) ∩ Hs(�,M), for any s > 0. In the case of a constant function � and
a constant tensor A, classical regularity results [15,22] ensure the existence of ŝ ∈ (0, 1]
(depending on � on the boundary conditions and on the Lamé coefficients) such that the
solution ũ of problem (6.4) belongs to H1+s(�,Rd) ∩ H1

0 (�,Rd) for all s ∈ (0, ŝ). This
implies that P(X) ⊂ [Hs(�,M) ∩ H(div,�,M)] × Hs(�,M). In such a case, we can
directly define the operator linear operator �h : K⊥B → Xh by �h(σ , r) := (�hσ , Sh r)
and deduce (as shown below) that Assumption 5 is satisfied. However, instead of relying on
regularity results that are difficult to establish for the elasticity system in the case of general
domains, boundary conditions and material properties, we resort to the quasi-interpolation
operator constructed in [13,19,25] by combining the BDM interpolation operator �h with
a mollification technique. The resulting projector has domain H(div,�,M) and range Wh

and preserves all the properties of �h listed above. More precisely, we will use tensorial
version of the following result [19, Theorem 6.5] (see also [13,25]).

Theorem 6.1 There exists a bounded and linear operator Jh : H(div,�,M) → Wh such
that

(i) Wh is point-wise invariant under Jh

(ii) The exists C > 0 independent of h such that

‖σ − Jhσ‖0,� ≤ C inf
τ h∈Wh

‖σ − τ h‖0,�, ∀σ ∈ H(div,�,M)

iii) divJhσ = Uh div σ for all σ ∈ H(div,�,M).

Lemma 6.4 The linear operator �h : X → Xh defined by �h(σ , r) := (Jhσ , Sh r) satisfies
Assumption 5.
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Proof For an arbitrary (σ h, rh) ∈ Xh we let (σ̃ , r̃) = P(σ h, rh) ∈ K⊥B . It holds

(σ h, rh) − �h P(σ h, rh) = (σ h − Jh σ̃ , rh − Sh r̃) ∈ Kh = W0
h × Pk(Th,K).

Indeed, by virtue of property (iii) of Theorem 6.1 and because div σ̃ = div σ h , we have that

div (σ h − Jh σ̃ ) = div σ h −Uh div σ̃ = div σ h −Uh div σ h = 0.

This provesAssumption 5 (iii).On the other hand, using this time property (ii) of Theorem6.1,
we deduce that, if we let (σ̃ , r̃) = P(σ , r) ∈ K⊥B for an arbitrary (σ , r) ∈ X , we obtain

‖(I − �h)P(σ , r)‖2H = ‖σ̃ − Jh σ̃‖20,� + ‖̃r − Sh r̃‖20,�
� inf

τ h∈Wh
‖σ̃ − τ h‖20,� + ‖̃r − Sh r̃‖20,�,

(6.12)

and again by property (iii) of Theorem 6.1

‖(I − �h)P(σ , r)‖2X = ‖(I − �h)P(σ , r)‖2H + ‖div(σ̃ − Jh σ̃ )‖20,�
� inf

τ h∈Wh
‖σ̃ − τ h‖20,� + ‖div σ̃ −Uh div σ̃‖20,� + ‖̃r − Sh r̃‖20,�.

(6.13)

It follows immediately from (6.12)–(6.13) and the triangle inequality that Assumption 5 (i)
is satisfied. Moreover, the error estimates (6.8), (6.10) and (6.11) and classical density results
ensure that Assumption 5 (ii) is a consequence of (6.13). �

We conclude that the Galerkin method (3.1) provides a correct spectral approximation of
the eigenproblem (6.1) in the sense of Theorem 4.1.

We recall that η ∈ (0, 1) is an eigenvalue of T with multiplicitym if and only if κ = 1/η is
an eigenvalue of Problem2.1with the samemultiplicity and the corresponding eigenfunctions
coincide. Analogously, ηi,h , i = 1, . . . ,m, are the eigenvalues of Th (repeated accordingly
to their respective multiplicities) that converge to η if and only if κi,h = 1/ηi,h are the
eigenvalues of Problem 3.1 converging to η. Moreover, the corresponding eigenfunctions
coincide. Taking into account that Assumption 6 is satisfied because of (6.6), the following
rates of convergence for the eigenfunctions and eigenvalues are a direct consequence of
Theorem 5.1, (6.6) and Theorem 5.2, together with the interpolation error estimates (6.8),
(6.10) and (6.11).

Theorem 6.2 Let η �= 1 be an eigenvalue of T of algebraic multiplicity m and let Eη(X)

be the corresponding eigenspace. There exists h0 > 0 such that for all h ≤ h0, Th admits
exactly m eigenvalues ηi,h, i = 1, . . . ,m, repeated according to their respective multiplicity,
such that

lim
h→0

δ̂
(
Eη(X), Eη,h(Xh)

) = 0 and lim
h→0

max
1≤i≤m

|η − ηi,h | = 0,

where Eη,h(Xh) is the Th-invariant subspace of Xh spanned by the eigenspaces of {ηi,h, i =
1, . . . ,m}. Moreover, if we assume that the eigenfunctions are piecewise regular with respect
to a partition � = ∪J

j=1� j of � into polyhedral/polygonal subdomain � j , namely, if there
exists r > 1/2 such that

Eη(X) ⊂ {(τ , s) ∈ Hr (∪J
j=1� j ,M) × Hr (∪J

j=1� j ,K); div τ ∈ Hr (∪J
j=1� j ,R

d)},
then, for h small enough,

δ̂
(
Eη(X), Eη,h(Xh)

)
� hmin{r ,k+1} and max

1≤i≤m
|κ − κi,h | �

(
hmin{r ,k+1})2 . (6.14)
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Remark 6.1 For the sake of brevity and clarity of exposition, we only considered here an
approximation based on the Arnold-Falk-Winther element [5]. However, we could equally
have defined the Galerkin method in base of the families of mixed finite elements introduced
by Cockburn-Gopalakrishnan-Guzmán (CGG(k)) in [14] and by Gopalakrishnan-Guzmán
(GG(k)) in [21] for k ≥ 1. Indeed, the sameBDMquasi-interpolation operatorJh can be used
in the proof of Assumption 5 for GG(k) and the quasi-interpolation operator corresponding
to the Raviart-Thomas element can be used instead for CGG(k).

6.2 Stress formulation of the Stokes eigenproblemwith reduced symmetry

6.2.1 The continuous problem

We are interested in the following eigenvalue problem for the Stokes system posed in a
connected Lipschitz domain � ⊂ R

d : find (λ, u, p), with u �= 0 and λ ∈ R such that,

−div (ε(u) − pI ) = λu in �,

div u = 0 in �,

u = 0 on ∂�.

(6.15)

It is interesting to notice that, in the two dimensional case, problem (6.15) is equivalent to
the following buckling problem for a uniformly compressed clamped Kirchhoff plate (see
[29]): find λ ∈ R and 0 �= ψ ∈ H2

0 (�) such that

−�2ψ = 2λ�ψ, in �,

ψ = ∇ψ · n = 0 on ∂�,

where n represents the unit outward normal vector to ∂�. The eigenvalue 2λ represents in
this case the buckling coefficient. The plate transverse displacementψ is related to the Stokes
velocity field by 1

2u = curlψ := (∂2ψ,−∂1ψ)t.
Our aim is to employ a dual-mixed approach to derive a variational formulation of this

problem. To this end, we introduce the stress tensor σ := ε(u) − pI and notice that the
incompressibility condition implies that σD = ∇u − r , with r := 1

2

[∇u − (∇u)t
]
. We can

then reformulate the problem above in terms of σ as follows: find λ ∈ R, 0 �= σ : � → S,
and 0 �= r → K such that,

−∇ (div σ ) = λ
(
σD + r

)
in �,

div σ = 0 on ∂�.
(6.16)

We point out that the pressure p and the velocity field u disappeared from the formulation
but once σ is known they can be recovered (and also post-processed at the discrete level) by
u = − 1

λ
div σ and p = − 1

d tr(σ ).
The variational formulation (6.16) fits into the abstract framework of Sect. 2 by taking in

problem (2.1) κ = 1 + λ, H := L2(�,M) × L2(�,M), X := H(div,�,M) × L2(�,K)

(endowedwith their natural norms (6.2)) and by defining the bounded and symmetric bilinear
forms B : H × H → R, c : X × X → R and A : X × X → R as follows:

B((σ , r), (τ , s)) := (σD, τD)� + ( tr(σ ), 1)� ( tr(τ ), 1)� + (r, τ )� + (s, σ )�,

c((σ , r), (τ , s)) := ( div σ ,div τ )�, A((σ , r), (τ , s)) := c((σ , r), (τ , s))

+ B((σ , r), (τ , s)).

(6.17)
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We point out that testing problem (2.1) with (I , 0) ∈ X gives ( tr(σ ), 1)� = 0 for κ �= 1.
This corresponds to the zero mean value restriction on the pressure p ∈ L2

0(�) := {q ∈
L2(�); (q, 1)� = 0} that is usually imposed to enforce uniqueness. Here, we opt for a
variational insertion of this restriction in order to free the space X from the cumbersome
constraint ( tr(τ ), 1)� = 0.

The following Poincaré-Friedrichs inequality is essential in our analysis.

Lemma 6.5 There exists α > 0 depending only on � such that

α ‖τ‖20,� ≤ ‖τD‖20,� + ‖div τ‖20,�, ∀τ ∈ H(div,�,M), ( tr(τ ), 1)� = 0.

Proof See [11, Proposition 9.1.1]. �
Corollary 6.2 The bilinear form

(σ , τ ) → (σD, τD)� + ( tr(σ ), 1)� ( tr(τ ), 1)� + ( div σ ,div τ )�

is coercive on H(div,�,M).

Proof Using the L2(�,M)-orthogonal decomposition τ = τ 0 + 1
d|�| ( tr(τ ), 1)� I , we

deduce from Lemma 6.5 that

‖τ‖2div,� =‖τ 0‖20,� + 1

d|�| ( tr(τ ), 1)2� + ‖div τ‖20,�

≤max

{
1 + 1

α
,

1

d|�|
} (‖τD‖20,� + ( tr(τ ), 1)2� + ‖div τ‖20,�

)
,

∀τ ∈ H(div,�,M),

and the result follows. �
We point out that Corollary 6.2 also implies the coerciveness of the bilinear form

(σ , τ ) → (σD, τD)� + ( tr(σ ), 1)� ( tr(τ ), 1)�

on H(div0,�,M). Consequently, following the same steps given in the proof ofCorollary 6.1
we deduce that Assumption 1 is satisfied. Hence, the source operator T : X → X defined
by problem (2.2) is bounded and symmetric with respect to B(·, ·). In addition, we have
the direct and stable splitting X = K ⊕ K⊥B , where K := H(div0,�,M) × L2(�,K) is
the eigenspace corresponding to the essential eigenvalue η = 1 of (2.1). We also have that
T (K⊥B ) ⊂ K⊥B . It is important to notice that T is not one-to-one. Indeed, if (σ , r) ∈ X is
such that B((σ , r), (τ , s)) = 0 for all (τ , s) ∈ X then σ = σt, (σ , 1)� = 0 and

(σD, τ )� + (r, τ )� = 0, ∀τ ∈ H(div,�,M). (6.18)

Taking τ = σD in (6.18) we deduce that σD = 0. This condition holds true if and only if
σ = pI , with p = 1

d tr(σ ) ∈ L2(�) and ∇ p = div σ ∈ L2(�,Rd). Testing now (6.18)
with skew symmetric tensors and using a density argument we deduce that r = 0. It follows
that

ker(T ) = {q I ; q ∈ H1(�) ∩ L2
0(�)} × {0}

is the eigenspace corresponding to the eigenvalue η = 0 of T .
The characterization of the projector P : X → X associated to this decomposition follows

the same pattern of last section. For any (σ , r) ∈ X , we consider P(σ , r) = (σ̃ , r̃) ∈ X with
σ̃ := ε(ũ) − p̃ I and r̃ := 1

2

[∇ ũ − (∇ ũ)t
]
, where (ũ, p̃) ∈ H1

0 (�,Rd) × L2
0(�) is the
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unique solution of the classical velocity-pressure variational formulation of Stokes problem
in � with load −div σ , i.e.,

(ε(ũ), ε(v))� − (div ũ, q)� − (div v, p̃)�
= −(div σ , v)�, ∀(v, q) ∈ H1

0 (�,Rd) × L2
0(�), (6.19)

We know [11] that there exists a constant C > 0 such that

‖ũ‖1,� + ‖ p̃‖0,� ≤ C‖div σ‖0,�, (6.20)

moreover, div σ̃ = div σ by construction. This ensures the continuity of P : X → X .
Besides, it is clear that P ◦ P = P , ker P = K , and for any (σ , r) ∈ X ,

B(P(σ , r), (τ , s)) = (∇ ũ, τ )� = 0, ∀(τ , s) ∈ K ,

which proves that P(X) ⊂ K⊥B . The inclusion K⊥B ⊂ P(X) is a consequence of (I −
P)X ⊂ K . We conclude that P : X → X is the unique continuous projector associated to
the direct and stable decomposition X = K ⊕ K⊥B .

Lemma 6.6 Assumption 2 is satisfied.

Proof Let {(σ n, rn)}n be a weakly convergent sequence in X . The continuity of P : X → X
implies that {(σ̃ n, r̃n)}n := {P(σ n, rn)}n = { (∇ ũn − p̃n I ,

1
2

[∇ ũn − (∇ ũn)t
]) }n also

converges weakly in X , where (ũn, p̃n) ∈ H1
0 (�,Rd) × L2

0(�) solves (6.19) with datum
−div σ n . As a consequence of (6.20), {ũn}n is bounded in H1(�,Rd). In turn, we deduce
from the identities −∇ p̃n = div σ̃ n = div σ n that { p̃n}n is also bounded in H1(�).
The compactness of the embedding H1(�,Rd) × H1(�) ↪→ L2(�,Rd) × L2(�) imply
that {σ̃ n, p̃n}n admits a subsequence (also denotes {σ̃ n, p̃n}n) that converges strongly in
L2(�,Rd) × L2(�). Next, it follows from (6.19) and a Green formula that

(ε
(
ũp − ũq

)
, ε(v))� − ( div v, p̃p − p̃q)� = −( div(σ p − σ q), v)�, ∀v ∈ H1

0 (�,Rd).

Taking v = ũp − ũq in the last identity yields

‖ε (
ũp − ũq

)‖20,� = −( div(σ p − σ q), ũp − ũq)�,

which proves that {ε(ũn)}n is a Cauchy sequence in L2(�,M). Moreover, testing the identity
∇(up − uq) = (σ̃ p − σ̃ q)

D + r̃ p − r̃q with τ ∈ H(div0,�,M) yields

((σ̃ p − σ̃ q)
D, τD)� + (̃r p − r̃q , τ )� = 0, ∀τ ∈ H(div0,�,M).

We can now use the inf-sup condition (6.3) as in Lemma 6.2 to deduce that {̃rn}n is also
a Cauchy sequence in L2(�,M). We conclude that {(σ̃ n, r̃n)}n := {P(σ n, rn)}n admits a
subsequence that converges strongly in H and Assumption 2 (i) follows.

Let us denote by (σ ∗, r∗) := T (σ , r) the image of any (σ , r) ∈ X by the source operator
T . Testing (2.2) with (I , 0) ∈ X we deduce that (σ ∗, 1)� = (σ , 1)�. Testing now the same
equation with (τ , 0), and choosing the entries of τ : � → M indefinitely differentiable and
compactly supported in �, we deduce that

∇ (
div σ ∗) = (σ ∗ − σ )D + r∗ − r ∈ L2(�,M)

Therefore, the subspace

T (X) ∩ P(X) ⊂ {(σ , r) ∈ P(X); div σ ∈ H1(�,Rd)},
is compactly embedded in X and Assumption 2 (ii) is also satisfied. �
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Before we provide the spectral description of T given by Theorem 6.1, we point out that
for η /∈ {0, 1} is an eigenvalue of T with eigenspace Eη(X) then

A((σ , r), (σ , r)) ≥ B((σ , r), (σ , r)) = ‖σD‖20,� > 0, ∀(σ , r) ∈ Eη(X) (6.21)

where we used that σ is symmetric and satisfies the restriction (σ , 1)� = 0 together with the
fact that {0} × L2(�,K) ⊂ K and Eη(X) �⊂ ker(T ).

Proposition 6.3 The spectrum sp(T )of T admits the decomposition sp(T ) = {0, 1}∪{ηk}k∈N,
where {ηk}k ⊂ (0, 1) is a sequence of finite-multiplicity eigenvalues of T that converges to
0. The ascent of each of these eigenvalues is 1 and the corresponding eigenfunctions lie in
P(X). Moreover, η = 1 is an infinite-multiplicity eigenvalue of T with associated eigenspace
K and η = 0 is an eigenvalue of with eigenspace ker(T ).

6.2.2 The discrete problem

The Galerkin scheme (3.1) is based on the same finite element spaces used in the last sec-
tion. Namely, for k ≥ 0, we take Xh := Wh × Pk(Th,K), with Wh := Pk+1(Th,M) ∩
H(div,�,M) and here again Kh = W0

h×Pk(Th,K) ⊂ K . It follows easily fromLemma6.3
that Assumption 4 holds true.

Proposition 6.4 The spectrum of Th consists of m := dim(Xh) eigenvalues, repeated
accordingly to their respective multiplicities. It holds sp(Th) = {1} ∪ {ηhk}m0

k=1, with
m0 = m−dim(Kh). The eigenspace associated to ηh = 1 is Kh. The eigenvalues ηhk /∈ {0, 1}
are non-defective and the corresponding eigenspaces lie in K⊥B

h . Moreover, ηh = 0 is an
eigenvalue with eigenspace ker(Th).

Remark 6.2 It is straightforward that ker(Th) = {qh I ; qh ∈ Vh} × {0} where the space
Vh := Pk+1(Th) ∩ H1(�) ∩ L2

0(�) of continuous and piecewise polynomial functions of
degree ≤ k + 1.

We define �h : X → Xh as in Lemma 6.4, which ensures Assumption 5 and guaranties
by the way that the Galerkin method (3.1) provides a correct spectral approximation of the
stress formulation of the Stokes eigenproblem (2.1) in the sense of Theorem 4.1. Moreover,
Assumption 6 is satisfied thanks to (6.21). We can then rely on Theorem 5.2 to obtain the
following rates of convergence for the eigenfunctions and eigenvalues.

Theorem 6.3 Let η /∈ {0, 1} be an eigenvalue of T of algebraic multiplicity m and let Eη(X)

be the corresponding eigenspace. There exists h0 > 0 such that for all h ≤ h0, Th admits
eigenvalues ηi,h, i = 1, . . . ,m, repeated according to their respective multiplicity, such that

lim
h→0

δ̂
(
Eη(X), Eη,h(Xh)

) = 0 and lim
h→0

max
1≤i≤m

|η − ηi,h | = 0,

where Eη,h(Xh) is the Th-invariant subspace of Xh spanned by the eigenspaces of {ηi,h, i =
1, . . . ,m}. Moreover, under the piecewise regularity assumption

Eη(X)⊂{(τ , s)∈Hr (∪J
j=1� j ,M)×Hr (∪J

j=1� j ,K); div τ ∈Hr (∪J
j=1� j ,R

d )}, r >1/2,

for h small enough,

δ̂
(
Eη(X), Eη,h(Xh)

)
� hmin{r ,k+1} and max

1≤i≤m
|κ − κi,h | �

(
hmin{r ,k+1})2 . (6.22)
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Remark 6.3 The analysis given in this section can be adapted to deal with Dirichlet-Neumann
boundary conditions for eigenproblems (6.1) and (6.15) by defining the space X as in [26]
and by employing the quasi-interpolation operator with partial boundary conditions recently
introduced by Licht in [25, Theorem 6.3].

6.2.3 Numerical results

On the unit disk, the eigenvalues of the Stokes eigenproblem (6.15) are given by the sequence
{ 12 j2n�}n≥1, �≥1, where jnk is the �-th positive zero of the Bessel function Jn of the first kind
of order n. Accurate approximations of the first 4 eigenvalues are given by

2λ1 = j211 � 14.681970642124

2λ2 = 2λ3 = j221 � 26.374616427163

2λ4 = j231 � 40.706465818200.

(6.23)

We use the open-source finite element software Netgen/NGSolve [30] to implement
the Galerkin method (3.1) of the Stokes eigenproblem (6.15). We take advantage of the
Netgen/NGSolve support for curved mixed finite elements of arbitrary order to base the con-
struction of Xh on an H(div)-conforming BDM-parametric element associated to an exact
triangulation Th of the unit disk. We notice that this leads to a conforming finite element
approximation Xh of X .

We denote by λ jh the approximation of λ j computed by solving problem 3.1 with A and
B given by (6.17). We introduce the experimental rates of convergence

r j
h := log (|λ j − λ jh |/|λ j − λ j ĥ |)

log(h/ĥ)
, j = 1, . . . , 4, (6.24)

where h and ĥ are two consecutive mesh sizes.
We present in Table 1 the first four eigenvalues computed on a series of exact partitions of

the unit disk �̄ with decreasing mesh sizes h, and for polynomial degrees k + 1 = 1, 2, 3, 4.
We also report in the same table the arithmetic mean of the experimental rates of convergence
obtained for each eigenvalue via (6.24). We observe that a convergence of order 2(k + 1) is
attained for each eigenvalue, as predicted by the error estimate given in (6.22).
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