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Abstract

We present an abstract framework for the eigenvalue approximation of a class of non-
coercive operators. We provide sufficient conditions to guarantee the spectral correctness
of the Galerkin scheme and to obtain optimal rates of convergence. The theory is applied to
the convergence analysis of mixed finite element approximations of the elasticity and Stokes
eigensystems.
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1 Introduction

In many common applications of solid mechanics, mixed formulations derived from the
Hellinger-Reissner variational principle perform better than the standard displacement-based
formulation. They deliver direct and accurate approximations of the stress tensor and they
are free from the locking phenomenon in the nearly incompressible case [11].

The symmetry constraint on the Cauchy stress tensor has been the main difficulty in the
construction of stable conforming discretizations of stress-displacement mixed formulations.
The first important progress in this direction is due to Arnold and Winther [3]. This work
led to further developments in conforming mixed finite elements on simplicial and rectan-
gular meshes for both 2D and 3D; see [1,6,23] and the references therein. However, these
mixed finite elements require the simultaneous imposition of H(div)-conformity and strong
symmetry, which entails too many degrees of freedom and complicates the implementation
of the corresponding Galerkin schemes. Moreover, they are not amenable to hybridization.
To overcome this difficulty one can either consider non-conforming or DG approximations
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[7,20,32] or relax the symmetry constraint as in [2,4,5,14,21,31]. We point out that the lat-
ter alternative, which is the option of choice in this paper, incorporates a further variable
(a Lagrange multiplier called the rotor that approximates the skew-symmetric part of the
displacement gradient) to enforce weakly the symmetry restriction at the discrete level.

The approximation of eigenvalue problems in mixed form has been the object of sev-
eral papers; see part 3 of [8] and the references therein. In particular, it is known from [9]
that the usual stability conditions for discrete mixed source problems (namely the ‘coer-
civity in the kernel’ and the inf-sup conditions) are not sufficient to ensure correct spectral
approximations. Recently, a dual-mixed eigenvalue formulation of the elasticity problem
with reduced symmetry has been considered in [26]. The eigenproblem resulting from this
approach doesn’t fit into any of the previously existing theories for mixed spectral prob-
lems. Nevertheless, the abstract spectral approximation theory of Descloux-Nassif-Rappaz
[16] could be successfully adapted in [26] to show that the Galerkin method based on the
first order Arnold-Falk-Winther element [5] is free from spurious modes and converges at
optimal rates for eigenvalues and eigenvectors. The same strategy has been applied to a pseu-
dostress formulation of the Stokes eigenproblem [28] and to a stress-pressure formulation of
a fluid-structure interaction spectral problem [27].

The aim of this paper is to provide a general theory for the spectral approximation of a
class of symmetric and noncoercive operators, so that the studies carried out in [26-28] all
fit into the same framework. The analysis given here is performed according to the ideas in
[26] and builds on the theory developed in [16,17]. The resulting unified approach reveals
a new criterion (see Assumption 5 below) to determine the spectral correctness of a given
Galerkin approximation. This allows to validate more families of mixed finite elements for
the approximation of the elasticity eigenproblem as mentioned in Remark 6.1.

We also highlight that the analysis considered in [26] relies on the regularity of an auxiliary
elasticity source problem. Here, we can circumvent the use of this property, which allows us
to treat the important case of heterogeneous material coefficients.

The paper is organized as follows: In Sect. 2 we set out the abstract spectral problem
and we describe its continuous Galerkin approximation in Sect. 3. In Sect. 4 we provide
sufficient conditions ensuring the spectral correctness of the approximation in the sense
of [16]. In Sect. 5, we establish rates of convergence for eigenvalues and eigenfunctions.
Section 6 is devoted to applications. We show that the abstract framework can be applied
to the stress formulation with weak symmetry of the elasticity and Stokes eigenproblems.
We present numerical results for the latter example that confirm the theoretical convergence
rates.

2 An abstract eigenproblem

Let H, X be two infinite-dimensional, separable, real Hilbert spaces endowed with inner
products (-, -) g, (-, -) x and corresponding norms ||-|| 7 and |- || x . We assume that the inclusion
X < H is continuous. We let ¢ : X x X — R be a bounded, symmetric and positive
semidefinite bilinear form such that c(-, -) + (-, -) g is coercive on X, i.e., there exists « > 0
such that

c(,v) + w3 > a v}k, YveX.
We introduce the closed subspace

K:={ueX:cu,v)=0 VYvelX}
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and point out that, as c(-, -) is semidefinite, we may also write K = {u € X : c(u, u) = 0}.
We do not require K to be finite-dimensional. Finally, welet B : H x H — R be a symmetric
and bounded bilinear form and consider A : X x X — R given by

A(u,v) :=c(u,v) + B(u, v).
We are interested in the following eigenvalue problem: find 0 # u € X and k € R such that
A(u,v) =«B(u,v), YvelX. 2.1

Our purpose is to introduce a series of assumptions that permit us to solve (in Sect. 2) the
spectral problem (2.1) and to analyse (in Sect. 3) the convergence of the corresponding
Galerkin approximation (3.1).

Assumption 1T We assume that

A
(i) there exists B4 > 0 such that sup @, v) > Ballullx, Yue X,
vex lIvllx
B(u,v)

(ii) and there exists Bp > 0 such that sup

> Bpllully, YueK.
vek lvlla

Assumption 1(i) and the symmetry of A imply that the linear operator T : X — X
defined, for all u € X, by

A(Tu,v) = B(u,v), YvelX, (2.2)

is well-defined and bounded, c.f. [18, Theorem 2.6]. The importance of the source operator T’
lies in the fact that its eigenvalues and those of the problem (2.1) are reciprocal to each other
with coincident associated eigenfunctions. A full description of the spectrum of 7 will then
solve eigenproblem (2.1). It is clear that ¥ = 1 is an eigenvalue of (2.1) associated with the
eigenspace K, which can also be expressed in terms of the source operator 7' by the property
ker(I — T) = K. Consequently, if K is not a finite-dimensional subspace of X (which is the
case in the applications we have in mind) 7 is not a compact operator.
We introduce the closed subspace

K*?:={ueX: Bu,v)=0, YveK}.

We point out that the orthogonality symbol L p is an abuse of notation since B(-, -) is generally
not an inner product in H. Moreover, the symmetry of A and B imply that 7 is symmetric
with respect to B, indeed,

B(Tu,v) =B, Tu) = A(Tv,Tu) = A(Tu, Tv) = B(u, Tv), Vu,v € X.
It follows immediately from this fact that K 18 is T-invariant, namely, T (K L8y c K18,

Proposition 2.1 If Assumption 1 (ii) is satisfied, the splitting X = K @ K8 is direct and
stable.

Proof By virtue of Assumption 1 (ii), for any u € X, there exists a unique ug € K solution
of

B(ug, v) = B(u,v), YveKk,
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1B
. . Vebs .
||B]| stands for the norm of the bilinear form B. It follows that the direct decomposition

u = ug + u — ug into components ug € K and u — ug € K5 is stable. m]

with the a priori estimate (see [18, Theorem 2.6]) |juollx < % < |lu]l x, where

As a consequence of Proposition 2.1, there exists a unique continuous projector P : X — X
with range K18 and kernel K. We are now going to provide a description of the spectrum
of T under the following conditions.

Assumption 2 We assume that

(i) the inclusion P(X) < H is compact,
(i1) and the inclusion P(X) N 7 (X) < X is compact.

We notice that, as P(X) = K8 is T-invariant, the inclusion 7(P (X)) C P(X) N T(X)
holds true and Assumption 2 (i) implies that T : K8 — K-8 is compact. The following
result is then a consequence of the spectral characterization of compact operators.

Theorem 2.1 Under Assumption 1 and Assumption 2 (ii), the spectrum of T decomposes as
Sollows: sp(T) = {0, 1} U {ni }ren, Where:

(i) n = 1is an eigenvalue of T of finite/infinite multiplicity with associated finite/infinite
dimensional eigenspace K ;

(ii) {nklxen C (0, 1) is a sequence of finite multiplicity eigenvalues of T that converges to O
and the corresponding eigenspaces lie in K5

iii) if T is non-injective, n = 0 is an eigenvalue of T with associated eigenspace ker(T).

Remark 2.1 If we assume that A(v, v) # O forall v € KLB\{O}, then it can also be shown
that the ascent of each eigenvalue n; € (0, 1) is 1, c.f. [26, Proposition A.2].

3 A continuous Galerkin discretization

We introduce a family {Xj},>¢ C X of finite dimensional subspaces of X. The continuous
Galerkin discretization of the variational eigenproblem 2.1 reads as follows: find 0 # uy €
X, and «;, € R such that

A(up,v) = kpB(up, v), Yv e Xj. 3.1)
We will use the notation
S(u, W) = u%lelgvllu —wllx,
for the distance in X between an element u and a closed subspace W C X.
Assumption 3 We assume that K, C K, where Kj, := {v, € Xp; c(vp, vp) = 0}.

We consider Khl“ = {up € Xp : B(up,vp) =0, Yvy € Kj}. It is important to notice
that K hl % is generally not a subspace of K 8. To proceed with the analysis of problem (3.1)
we need the following discrete inf-sup conditions.

Assumption 4 We assume that

A(u,v
(i) there exists 8, > 0 independent of A such that sup (@, v) > Bullullx, Yu € Xp,

veXy U”X
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B(u,
(ii) and there exists 8, > Oindependentof i such that sup (@, v)

> Byllullg, Yu € K.
vek, vlla

Under Assumption 3 and Assumption 4 (ii), we can prove (as in Proposition 2.1) that the
splitting X, = K, & K ,j‘ B is direct and uniformly stable with respect to #. We can also
associate to this direct decomposition a unique projector P, : X — X with range K ,ﬂ‘ B
and kernel K}, which is uniformly bounded with respect to /.

Moreover, thanks to Assumption 4 (i), the linear operator fh : X — X, defined, for all
u € X, by

A(Tpu, v) = B(u,v), Vv e Xp, (3.2)

is well-defined and uniformly bounded with respect to /. Moreover, we have the Céa estimate
(c.f. [18, Lemma 2.28])

- A
ITu — Thullx < (1 + ”ﬁ,”)é(Tu, Xn), VYuelX. (3.3)
A
We point out that 7;, := f’hl x,, reduces to the identity on Kj, which means that 1 is

an eigenvalue of 7 with associated eigenspace Kj. Moreover, «; # 0 is an eigenvalue
of Problem (3.1) if and only if n, = 1/kj, is an eigenvalue of 7, and the corresponding
eigenspaces are the same. Finally, here again, the symmetry of 7}, with respect to B implies
that K hl B is Tp-invariant, i.e., T (K hL By c K hL B We are then in a position to provide the
following spectral decomposition of 7j,.

Theorem 3.1 The spectrum of Ty, consists of m = dim(X},) eigenvalues, repeated accord-
ingly to their respective multiplicities. Under Assumptions 3 and 4, it holds sp(Tp) =
{1}y {r]hk}znil, with my = m — dim(Ky). Moreover,

(i) the eigenspace associated to ny, = 1 is Kj;
(ii) ”hﬁ e (0,1, k=1,...,my—dim(ker(7y)), are eigenvalues with eigenspaces lying in
K B.
h »
(iii) if Ty, is non-injective, ny, = 0 is an eigenvalue with corresponding eigenspace ker(T,).

Proof The result follows from the decomposition X;, = K; & K & the fact that T} K, -
K, — Kj, is the identity and the inclusion 7}, (KhJ‘B)CK;‘B. O

Remark 3.1 Here again (see Remark 2.1), if A(v,v) # O forall v € K,f-\{O} then, the
eigenvalues n;x € (0, 1) are non-defective.

4 Correctness of the spectral approximation

Henceforth, given any positive functions Fj, and G depending on the parameter /, the
abbreviation F, < Gy, means that F, < C Gy with a constant C > 0 independent h.

Moreover, the norm of a linear and continuous operator L : Vi — V, between two Hilbert
spaces V1 and V; is denoted

LN covy, v = sup [ Lv]ly,.
veVi,lolly, =1

When Vi = Vo = V we simply write ||L||z(v) for [[L]lzv,v).
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The spectral approximation theory developed in [16] for non-compact operators relies
essentially on the condition

Lim |7 — Thllzcx,,x) =0, 4.1)
h—0

to prove that 7j, : Xj; — X}, provides a correct spectral approximation of 7" (in a sense that
will be precised in Theorem 4.1 below). The aim of this section is to show that the following
key assumption guarantees (4.1).

Assumption 5 There exists a linear operator Z, : K8 — X}, satisfying
(i) there exits a constant C > 0 independent of & such that
- - 1L
IEnvllg = Cllvlg and [|Epvllx < Cllvllx  Yve K7,

(i) limp—oll(/ — Ep)Pv[x =0, Vv € X,
(i) and (I — B, P)Xp C Kp.

Lemma 4.1 If Assumptions 1, 3 and 4 are satisfied, the following estimate holds true

S(T Puy, Xp)
IT = Tullcoxnx) S WP = Pullcexy,x) + sup —————
0£upex,  lunllx

Proof Taking into account that T — T}, vanishes identically on K;, C K we obtain,
(T = Ty)un = (T = Ty) Pyup = (T — Tp)(Puus, — Pup) + (T = Tp) Puy,  Vuy, € Xp,.
Next, we deduce from the triangle inequality and Céa estimate (3.3) that
(T — Tp)upllx < (“T”E(X) + ||Th||[1(X)) (P — Pyupllx + (T — Tip) Puy |l x
S (”T”L(X) + ||Th||L(X)) (P — Pruplx + 8 (T Pup, Xp), Yup € Xj
and the uniform boundedness of 7, with respect to i gives the result. O
To achieve (4.1), let us first prove the following auxiliary result.

Lemma 4.2 Under Assumptions 1 (ii), 3, 4 (i1) and 5 (iii) it holds,
Bl
Ps

Proof Let us first notice that, by virtue of Assumption 5 (iii),

P — Pullcix,,x) < (1 + ) (I = En)Plleixy,H)-

Pyup, — By Pup, = (up, — B Pup) — (up, — Ppup) € Ky, Vup € X, 4.2)
The triangle inequality yields

(P = Prupllx < | Prun — EnPupllx + 11 = Ep)Puplix

1 ~ ~ 4.3)
=7 (N Prup — EpPuplly + 11 — Ep) Puplla),
where the last estimate is a consequence of (4.2), Assumption 5 (iii) and the fact that (I —
Ep)Pup = up — B Pup, — (up — Pup) € K. Next, we use the inf-sup condition provided
by Assumption 4 (ii) to deduce from (4.3) and Assumption 3 that
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1P — Pryunlly < — Bl = EnPun ) Ly ;) P
— Ip)upllx = sup — — &p)CupllH
VaBy vek, lvlle NG
1 B(Pup — EpPup, v) 1
= sup + —=II — Ep) Pupllr
\/aﬂ;; veK) lvllz «/&
1 < B ||)
< (I — &En)Puplla,
\/>
and the result follows. ]

Lemma 4.3 Under Assumptions 1-5 it holds
lim |7 — T; =0.
hILI})H nll o, x)
Proof Let us first notice that

8(T Pup, Xp) - w T Pup — EpT Puyllx

su =
0£upex,  lunllx 0£up e Xy e |l x

< =ENTPlcx-

Combining Lemma 4.1 and Lemma 4.2 with the last estimate yields

IT = Tullcoxyx) ST = ENTPlexy + 11 — EDPllex,my- 4.4)

Now, by virtue of Assumption 2 (ii) and Assumption 5 (i)—(ii), T P : X — X is compact and
the operator I — By, : (K+5, ||-]lx) — X is uniformly bounded and converges pointwise to
zero. Hence, (I — E,)T P : X — X converges uniformly to zero; namely,

fm[(/ = 8T Pl =0 (4.5)

On the other hand, thanks to Assumption 2 (i) and Assumption 5 (i)-(ii), P : X — H is
compact and I — Ep, : (KL8, |- lg) = X is uniformly bounded and converges pointwise
to zero, due to the continuous embedding of X in H. Consequently, (I — E,)P : X - H
converges uniformly to zero, i.e.,

lim ||({ — Ep)Pllcex.ny =0, (4.6)
h—0
and the result follows by using (4.5) and (4.6) in (4.4). ]

For the sake of completeness, we finalize this section by adapting the results of [16] (see
also [26]) to show that Assumptions 1-5 are sufficient to ensure the correctness of the spectral
approximation. Let us first recall that the resolvent the operator of T is given by

R(T):=@G@I-T)"': X — X, zeC\sp(I). A7

The mapping z — || R (T)|| z(x) is continuous for all z ¢ sp(7’) and goes to zero as |z] — oo.
Consequently, it is bounded on any compact subset F C C satisfying FNsp(7) = 4, namely,
there exists a constant Cr > 0 such that

IR:(T)llcx)y < Cr, VzeF. (4.8)

Itis shown in [26, Lemma 1] that the same property holds true uniformly in % for the resolvent
R (Ty) := (zI — Th)’l : Xp — Xj, of the discrete source operator 7;,. We recall this result
below.
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Lemma4.4 Let F C C be an arbitrary compact subset such that F N sp(T) = (. Then, if
Assumptions 1-5 are satisfied, there exists hy > 0 such that Vh < hy,

IR (Ti)llcx,.x) <2CF, Vze€eF,
where Cr > 0 is the constant appearing in (4.8).

Proof We deduce from the decomposition (zI — Tp)vy = (zI — T)vy, + (T — Tj)vy, and
(4.8) that

11 = Twwallx = (C&' = IT = Tull oo ) lvallx, - Von € X
and the result follows from Lemma 4.3. ]

Remark 4.1 Lemma 4.4 means that given an arbitrary compact set F' C C\ sp(7') there exists
ho > Osuchthatforallh < hgitholds F C C\ sp(7},), which means that, for 4 small enough,
the Galerkin scheme (3.1) does not introduce spurious modes.

For E and F closed subspaces of X, we set

S(E,F):= sup 8, F) and 8(E,F):=max{8(E, F),8(F, E)}

uek: ullx=1

the latter being the so called gap between subspaces E and F.
Let F C C\{0, 1} be a compact set whose boundary A is a smooth Jordan curve not
intersecting sp(7'). It is well known [24] that the linear and bounded operator

1
8::—,/RZ(T)dz:X—>X
2wi Ja

is a projector onto the finite dimensional space £(X) spanned by the generalized eigen-
functions associated with the finite set of eigenvalues of 7' contained in A. It follows from
Lemma 4.4 that, for & small enough, the linear operator

1
Eh = 7/ Rz(Th)dZ . Xh —> Xh
2mi A

is uniformly bounded in /. Likewise, &, is a projector onto the 7}, -invariant subspace £, (X})
corresponding to the eigenvalues of 7), : X, — X contained in A. The aim now is to
compare &, (Xp) to £(X) in terms of the gap 3. The following auxiliary result is essential for
this purpose.

Lemma 4.5 If Assumptions 1-5 are satisfied, there exists hog > 0 such that

1€ = Enllccxn ) ST = Thlloxy.x).  Yh < ho. 4.9

Proof We reproduce here the proof given in [26, Lemma 2]. By virtue of Lemma 4.4, there
exists hg > 0 such that the resolvent identity

R:(T) = R:(Tp) = R(T)(T = Tp)R(Th), Vz e A, Vh < ho, (4.10)

is satisfied. Hence, for any v;, € X,
1
1€ = Enunlix = 5 [ IRAT) = Re(Th) il laz
T JA

1
= f IR(T)(T — Th) R (Th)vpll x |dz]
T JA
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1
=0 /Alle(T)llc(X)llT = Trllcxp. ) IR (T) L e x0 o Il x 1d 2]
and the result follows from (4.8) and Lemma 4.4. ]

Lemma 4.6 Assume that Assumptions 1-5 are satisfied. There exists ho > 0 such that
S(EX). E/(Xn) ST = Thllccxyx) + 8(E(X), Xp).  Vh < ho. (4.11)

Proof As &, : X, — X is a projector, it holds Eyuy, = uy, for all u;, € &,(X;). Hence,
there exists 4y > 0 such that

S(up, E(X)) < N&pup — Eupllx < & — Ellcx,, xylunllx, Yup € Ep(Xp), Yh < hy.
Combining the last estimate with (4.9) gives

§E(Xn), EX)) ST = Tl ey, x)- (4.12)
Using this time that Eu = u for all u € £(X) yields

lu — Epvnllx < NE@ —v)llx + 1€ — Evnllx
< €lceollu —vnllx + 1€ = Ellcxn.ollvallx
< (1€l zcxn, ) + 21EN ) Nl — vallx + 1€ = Enllcx xolullx, VYon € Xp.

Consequently, by virtue of the uniform boundedness of &, : X; — X, there exists g > 0
such that

S(u, En(Xn)) S8, Xp) + 1€ = Enllcix,,x), Yu € EX), llullx =1, Vh < ho.
It follows that
S(E(X), En(Xn)) S 8(EX), Xp) + 1€ = Enllccxy,x)»  Yh = ho,
and the result is a consequence of the last estimate, Lemma 4.5 and (4.12). ]

We are now in a position to establish the convergence properties of the eigenvalues and
eigenfunctions.

Theorem 4.1 Assume that Assumptions 1-5 are satisfied. Let F C C\{0, 1} be an arbitrary
compact set with smooth boundary A satisfying A Nsp(T') = @. We assume that there are m

eigenvalues nf, cee r],lz of T (repeated according to their algebraic multiplicities) contained
in A. We also consider the eigenvalues nfh, ey nli(h) p Of T o Xp — Xy lying in F and

repeated according to their algebraic multiplicities. Then, there exists hg > 0 such that
m(h) = m forallh < hg and

lim max [nf —nf,|=0.
h—01<i<m |771 nl’h|

Moreover, if £(X) is the T -invariant subspace of X spanned by the generalized eigenfunctions
corresponding to the set of eigenvalues {nf, i=1,...,m}and E,(X}y) is the Ty-invariant
subspace of X, spanned by the eigenspaces corresponding to {n; p, i = 1,...,m} then
S(E(X), En(Xp)) — 0ash — 0.

Proof We deduce from Lemma 4.6, Lemma 4.3 and Assumption 5 (ii) and from the fact that
E(X) C P(X) is a finite dimensional subspace of X that

lim 3(E(X), & (X)) S Tm 1T — Tyl 2o, + lim 8EX), Xp) = 0.
h—0 h—0 h—0
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As a consequence, £(X) and &,(X},) have the same dimension provided # is sufficiently
small, c.f. [24]. Finally, as the eigenvalues {nf e, 1;,1;} are isolated, for a sufficiently small

€ > 0, we can consider D = U;”Zanp C F, where D,/F c C,i =1,...,m are disjoint
1 1

closed disks centered at niF of radius €. The previous analysis shows that there exists 2(e) > 0
such that nfh, R nyi,h are all inside of D for i < h(e), which means that

lim max [nf —»nf, | =0.
h—01<i<m |771 m'h|

5 Asymptotic estimates for the eigenvalue and eigenfunction error

We proved in Sect. 4 that, under Assumptions 1-5, the Galerkin scheme (3.1) does not
pollute the spectrum of 7 with spurious modes. Moreover, we established the convergence
of eigenvalues and eigenfunctions with correct multiplicity. However, in practice the space
&,(X) of generalized eigenfunctions corresponding to a given isolated eigenvalue 1 # 1
enjoys individual smoothness properties. Therefore, in order to be able to claim that the
Galerkin method (3.1) has optimal convergence rates we need to estimate the error for a
particular eigenvalue n # 1 and for the corresponding eigenspace &£,(X) only in terms of
8(&;(X), Xp,). This question has been addressed in [17] for noncompact operators under the
condition of coercivity for the bilinear form A. In this section we extend the results to the
abstract framework we are considering here.

Hereafter, we focus on a particular isolated eigenvalue n # 1 of T of algebraic multiplicity
m and let D, C Cbe aclosed disk centered at » with boundary y such that D, N\sp(T) = {n}.
We denote by &, := ﬁ fy R,(T)dz : X — X the projector onto the eigenspace &,(X) of
n and we define, for 7 small enough, the projector by &, , = 2—;1 fy R (Tp)dz : X — Xp
onto the Tj,-invariant subspace &, ,(X},) corresponding to the m eigenvalues of 7j, : X; —
X, contained in y.

We begin our analysis by proving an analogue of Lemma 4.4 for R.(T},) := (zI —T;)~" :
X — X.

Lemma 5.1 Assume that Assumptions 1-5 are satisfied. Let F C C be an arbitrary compact
subset such that F N sp(T) = (. There exist C},- > 0 and ho > 0 such that,

IR:(T)llccxy S Cpo V2 € F, Vh < ho.
Proof Givenu € X we let uZ = Thu € Xp,. We deduce from the identity
(e = Ty, = Ty(zl — Tyu
and from Lemma 4.4 that
lupllx <2Cr 11— Tujlx < 2Ck 1 Tullcooll@I = Tullx, Vh < ho.

The last estimate and the triangle inequality yield
lelllallx < Nl llx + 1T = Tullx < (1+2Ce I Talleco ) 1T = Toullx, Vue X

and the result follows from the uniform boundedness of || Ty lzox)- ]
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It follows from Lemma 5.1 that, for 2 small enough, RZ(Th) : X —> X is linear and
bounded uniformly in £ for all z € y. Hence, the linear operator

1 -
Enn = 7./ R (Tp)dz: X — X
2wi J,

is uniformly bounded as well. It is straightforward that R, (Th)| x,, = R;(Ty). It follows that
we also have gr;,h|Xh = &, n. Moreover, if 7 € D, is an eigenvalue of T, as n # 0, the
corresponding eigenspace is a subspace of &, ,(X},) and 7 should necessarily coincide with
one of the eigenvalues {n; », i =1, ..., m} of T;,. We conclude that f,,,h(X) =Epn(Xp)is
the eigenspace corresponding to the eigenvalues of 7, contained in y .

Theorem 5.1 Under Assumptions 1-5 and for h small enough, it holds
5(E9(X), Eyn(Xn)) < 8(EH(X). Xn). 6.1
Proof Thanks to Lemma 5.1, there exists g > 0 such that
R.(T) — R.(Ty) = R.(Ty)(T — Ty)R.(T), Vzey, Yh<hy.
Hence, recalling that &,(X) is invariant for T and hence also for R, (T') (i.e. R, (T)&,(X) C
&y(X)), we have

~ 1 -
1€y — Ennlleie,x).x) < > / 1R(T) — R (Tl (g,x). x)ldz]
Y

1 . 8
=5 / I R(Th)(T — Tp) R (T) || e, (x). )1z
14

1 . .
<o / IR T Lo IT = Tillece, 00,0 I R(D 2c, 030 1d2]
Y
ST = Tl e, 0.
5.2)

Now, due to the fact that £,(X) C K 15 is finite dimensional and T-invariant, we deduce
from (5.2), Céa estimate (3.3) and Assumption 5 (ii) that

1€y = Ennllcie,x).x) S 8(ENX), Xp) — 0, ash — 0. (5.3)
It follows that
8(£400. £, (X)) = 8(8,00), £.4(0) = 1€y = Epnllece, 0.0 S DE 0, Xo).
(5.4)

On the other hand, we also deduce from (5.3) that the operator 5,,, h Eg(X) = Eyn(Xn)
converges uniformly to the identity, which proves that it is invertible, for 4 small enough.
We denote its inverse Ay, : Ey n(Xp) = £,(X). Itis straightforward that, if g > 0is such
that

11— Epnllcie, 0. < 1/2, (Yh < ho)

then || Ay nll e, nxp).x) < 2 and, again by (5.3),

8(E0 (X, £,00) = 8(€,0(0), £,00) = I = Al e, xi.x0

= 1(Epn = 1) Al i, nixi.x
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<20Epn — iz, 00.x = 20E00 — Exllzie, 0.0 S 8(EH(X), Xa).

The result follows from the last estimate and (5.4). ]
We recall that k = 1/n an eigenvalue of Problem 2.1 with the same m-dimensional
eigenspace &,(X). Analogously, if n; 5, i = 1, ..., m, are the eigenvalues of 7}, (repeated

accordingly to their respective algebraic multiplicities) that converge to n then, k; , = 1/n;
are the eigenvalues of Problem 3.1 converging to « and the corresponding generalized eigen-
functions span &, ;, (Xj). The last step of this section is the following theorem, in which we
establish a double order of convergence for the eigenvalues. To this end we need the following
assumption.

Assumption 6 Assume B(u, u) > 0 forall u € £,(X)\{0}.

Theorem 5.2 Under Assumptions 1-6, there exists hg > 0 such that,

max i p — «| S 8(Ey(X), Xp)?, Yh < ho.
1<i<m

Proof We denote by u; j an eigenfunction corresponding to «; j satisfying [lu; pllx = 1.
There exists an eigenfunction u € &, (X) satisfying

i — ullx = 8in. £,(X)) < 8(Epn(Xn), Ey(X)) S 8(Ey(X), Xp) > 0 ash — 0.
(5.5)

It follows that, for 7 small enough, |||/ x is bounded from below and above by a constant
independent of . Furthermore, Assumption 6 and the fact that &, (X) is finite-dimensional
imply the existence of ¢ > 0, independent of &, such that B(u,u) > c|lu|x for all u €
&y(X). Using (5.5) and the uniform boundedness of |lu]| x, it is straightforward deduce that
B(uip, uip) > 5 for h sufficiently small. We can now use the identity

A —ujpou—uip) — KB —uipu—uip) = (kip — k) Bujp,uip)
to obtain the estimate
Sl — sl = 1A = i = i) |+ ell B = i = g )]
Sllu—uipll% < 8ENX), Xp)?, Vi=1,....,m

and the result follows. ]

6 Applications

We present two applications of the abstract theory developed in the previous sections. They
concern dual mixed formulations for the elasticity and Stokes eigensystems.

We denote the space of real matrices of order d x d by M, and define S := {r €
M; T =t} and K := {t € M; 7 = —t*} as the subspaces of real symmetric and
skew symmetric matrices, respectively. The component-wise inner product of two matrices
o, T € Misdefinedbyo : 7 :=tr(o°7), where tr 7 := Z?ZI rjjand Tt = (7;i) stand for
the trace and the transpose of T = (t;;), respectively. We also introduce the deviatoric part

=7 — 5 (tr t) I of a tensor T , where / stands here for the identity in M.
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Along this paper we convene to apply all differential operators row-wise. Hence, given
regular tensors o : 2 — M and vector fields u : Q2 — RY, we set the divergence divo :
Q — R, the gradient Vu : Q — M, and the linearized strain tensor e(u) : 2 — S as

1
ive); ;=Y dj0i;, (Vu);j:=0dju;, and e(u):= 3 [Vu + (Va)©].
j

Let D be a polyhedral Lipschitz bounded domain of R? (d = 2, 3), with boundary 3 D.
Fors € R, H*(D, E) stands for the usual Hilbertian Sobolev space of functions with domain
D and values in E, where E is either R, RY or M. In the case E = R we simply write
H*(D). The norm of H*(D, E) is denoted ||-||s,p indistinctly for £ = R, R4, M. We use
the convention H%(D, E) := L%*(D, E) and let (-, -) p be the inner product in L*(D, E), for
E =R, R M, namely,

(u,v)p ::/ u-v, Vu,v € LZ(D,Rd), (o,7T)p ::/ o:17,Vo,T € LZ(D,M).
D D

We denote by H(div, D, M) the space of functions in L*(D, M) with divergence in
L3*(D,RY). We equip this Hilbert space with the norm ”T”tzliv.D = ||r||(% p T lldiv 'r||(2) D
Finally, H (divo, D, M) stands for the subspace of divergence free tensors in H (div, D, M),
ie.,

H(div’, D, M) := {r € H(div, D, M), divt = 0 in D}.

6.1 Stress formulation of the elasticity eigenproblem with reduced symmetry
6.1.1 The continuous problem

Let Q C R? (d = 2, 3) be a bounded Lipschitz polygon/polyhedron representing a linearly
elastic body with mass density o € L% (R2) satisfying o(x) > o9 > 0 a.e.in Q. For
simplicity, we assume that the structure is fixed at the boundary 9$2. We denote by A(x) :
M — M the symmetric and positive-definite 4th-order tensor (known as the compliance
tensor) that relates the Cauchy stress tensor o to the strain tensor through the linear material
law A(x)o = e(u).

Our aim is to find natural frequencies @ € R such that dive + w?o(x)u = 0 in Q.
Here, we opt for combining this equilibrium equation with the constitutive law to eliminate
the displacement field u and impose o as a primary variable. This procedure leads to the
following grad-div eigensystem: Find 0 #2 ¢ : @ — S, 0 # r : @ — K and eigenmodes
w € R such that,

-V (Q_l diva) =w? (Ao +r) inQ,

e 6.1)
0 'divo =0 onaf.
We notice that we introduced above the skew symmetric tensor r := % [Vu — (Vu)t] (the
rotation) by writing Hooke’s law A0 = Vu — r. This additional unknown will act as a
Lagrange multiplier for the symmetry restriction.
The variational formulation of the spectral problem (6.1) can be cast into the abstract
framework presented in Sect. 2 by defining problem (2.1) withx = 14+w?, H := L2(Q, M) x
L2(§2, M), X := H(div, 2, M) x L2(§2, K) and with bounded and symmetric bilinear forms

@ Springer



152 S. Meddahi

B: HxH—->R,c: XxX—>RandA: X x X — R given by
B((o,r), (z,5)) :=(Ao,T)q + (r,T)qg + (s, 0)q, c((o,1),(7,5))
=(o 'dive, div)g
A(o,r), (T,5)) :=c((o,r),(T,s)) + B((a,r), (z,5)),
c.f. [26] for more details. The Hilbert spaces H and X are endowed with the norms
I 13 = Tl o+ sl a. 1@ D% = ITlzy.q + I515.q- (6.2)

We point out that the continuous inclusion X < H is not compact.
We proceed now to check out Assumption 1 and Assumption 2. We begin by noticing that

K = {(r, s) € X, c((z,9), (t,5)) = 0} = H@iv’, Q, M) x L2(Q,K)

is not a finite dimensional subspace of X. It is well-known that the bilinear form (7, (v, 5)) —
(div 7, u)o+(t, §)g satisfies the inf-sup condition for the pair { H (div, 2, M), L?(Q, R?) x
L?($2, K)}, which can be equivalently formulated as follows, (c.f. [10, Proposition 2] ).

Lemma 6.1 There exists a linear and bounded operator © : L2(Q, R x L3(Q,K) —
H (div, Q, M) such that

(aivew.s).v) +(0@.s).s) =la+islie Yo.5) LR R) x L@, K).
Corollary 6.1 Assumption 1 is satisfied.

Proof 1t follows from Lemma 6.1 that

(1.9)q (T.5)q _ (©(0,5),)q Is115. .
p ==  sup > =
rer@iv.2.M) 1Tldiv.e ~ ccp@nt o ITloe — 100, s)loe 100, )]0
1
> —|lsllo.@, (6.3)
101

foralls € L2(2, K). This means that the bilinear form (t, §)q satisfies the inf-sup condition
for the pair {H(divo, Q, M), LZ(Q, K)} and also for the pair {H (div, 2, M), LQ(Q, K)}.
Moreover, we have that (o, 7) — (Ao, T)g is coercive on H(div®, , M) while (o, 7) —
(Ao, T) + (0~ dive, div T)q is coercive on the whole space H (div, 2, M). By virtue of
the Babuska-Brezzi theory [11], for all L € X’, the saddle point problem: find (o, r) € X
such that

A((o,r), (t,8)) = L((z,s)), V(r,s) € X,

is well-posed, which implies that Assumption 1 (i) is satisfied. Likewise, for all Ly € K’,
the saddle point problem: find (o, r) € K = H(div®, ©, M) x L?($2, K) such that

B((a,1),(z,5)) = Lo((7,s)), V(r,5) €K,
is well-posed. Consequently, Assumption 1 (ii) also holds true. O

Thanks to Corollary 6.1, we can define the source operator 7 : X — X in terms of
problem (2.2). We recall that ker(/ — T) = K and that the symmetry of 7 with respect to
B(-, ) yields T(K18) c K18, In addition, the direct and stable splitting X = K & Kis
holds true. Our aim now is to characterize the unique projector P : X — X with range K -5
and kernel K associated to this splitting.

@ Springer



Variational eigenvalue approximation of non-coercive operators... 153

For any (o,r) € X, we consider P(o,r) := (¢,7) with & = A le@®) and
= % [Vi — (V)] where % is the unique solution of the classical displacement based
variational formulation of the elasticity problem in  with volume load div o, namely,
uc HOl (€2, RY) solves

(A7 le(@), e(v))g = (dive,v)g, Vv e Hl(Q,RY). (6.4)

We point out that div e = div o by construction. In addition, Korn’s inequality provides the
stability estimate

l7ll1,e < Clidivo|o,q. (6.5)

which ensures the continuity of P : X — X.Now, itisclearthat Po P = P andker P = K.
Besides, for any (o, r) € X,

B(P(o,r), (7,s)) = B((¢,7), (t,8)) = (Vi, 1) =0, V(r,s) €K,

which proves that P(X) C K L5, Finally, we notice that (/ — P)X C K, and hence,
Kt8 = P(K+8) 4+ (I — P)K+58 = P(K'5) C P(X). We conclude that P : X — X is
indeed the unique continuous projector corresponding to the direct and stable decomposition
X=K®K?'s.

Lemma 6.2 Assumption 2 is satisfied.

Proof Let {(0,,r,)}, be a weakly convergent sequence in X. As P € L(X), the sequence
(@1, 7))}, = {P((0,, 1))}, is also weakly convergent in X. By definition, &, =
A~ 'e(i,) and 7, == 1 [V, — (Vii,)®], where %, € H] (Q,R?) solves (6.4) with right-
hand side div o ,. It follows from (6.5) that ,, is bounded in H(; (€2, RY) and the compactness
of the embedding H LQ, R — LE(Q,RY) implies that {u,}, admits a subsequence
(denoted again {u,}, ) that converges strongly in L2(©2, RY). Next, we deduce from the
Green identity

(A(@)p —04), 0, —0Cya=(e,—uy),0,—04)q=—, U, div(c, —0,))q,
that {&,,},, is a Cauchy sequence in L2(€2, MI). Moreover, the identity

(A@) —Gy), Do + (1,7 —Fa =0, Yt e H(div’,Q, M)
and the inf-sup condition (6.3) yield

(17717 _7(1)

~ ~ Q ~ ~
Iy —rFgllo.e < IO sup < [IO[lIA(@ p — ) ll0.-

cen@.om ITloe

The last estimate ensures that {F, },, is also a Cauchy sequence in L2(§2, M). We then come to
the conclusion that the image under P of any bounded sequence in X contains a converging
subsequence in H, which proves that Assumption 2 (i) is satisfieded.

On the other hand, testing (2.2) with (7, 0) and choosing the components of 7 : 2 — M
indefinitely differentiable and compactly supported in €2, we readily obtain that, if (o*, r*) :=
T ((o,r)) then

Ve~ 'dive*) = A(6* — o) +r* —r € L*(2, M).
Consequently,

T(X)NP(X) C{(o,r) € P(X); 0" 'dive € H (2, R%)},
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and the compactness of the embedding 7(X) N P(X) < X follows. We conclude that
Assumption 2 (ii) is fulfilled. O

Finally, we notice that for all 0 # (o, r) € P(X),
A((o,r),(o,r)) > B((o,r), (o,r)) = (Ac,0)q > 0, (6.6)

where we used that ¢ is symmetric and that {0} x L*(Q,K) C K.
We can invoke now Theorem 6.1 and Remark 2.1 to conclude that we have the following
spectral characterization for the source operator 7.

Proposition 6.1 The spectrum sp(T) of T is given by sp(T) = {0, 1} U {ni}ren, where
{nk} € (0, 1) is a sequence of finite-multiplicity eigenvalues of T that converges to 0. The
ascent of each of these eigenvalues is 1 and the corresponding eigenfunctions lie in P(X).
Moreover, n = 1 is an infinite-multiplicity eigenvalue of T with associated eigenspace K
and n = 0 is not an eigenvalue.

6.1.2 The discrete problem

We consider a family {7}, },, of shape regular simplicial meshes of  satisfying the standard
finite element conformity assumptions. We denote by 4 ¢ the diameter of triangles/tetrahedra
K € 7T, and let the parameter i := maxke7;, {h g} be the mesh size of 7j,.

Hereafter, given an integer m > 0 and D C R, Pr(D, E) is the space of functions with
domain D and values in E, where E is either R?, M or K, and whose scalar components are
polynomials of degree at most m. Likewise, the spaces of E-valued functions with piecewise
polynomial scalar components of degree < m relatively to 7j, are defined by

Pu(Th, E) := {v € LX(Q, E); vk € Pu(K,E)}, for E=R? MorK.

For k > 0, we define Problem (3.1) with X;, := W), x Pr (7}, K), where W), =
Pr+1(7n, M) N H(div, 2, M). We point out that the set {W},, Px (7, R?), Py (T, K)} con-
stitutes the mixed finite element of Arnold-Falk-Winther [5] for linear elasticity. The key
property ensuring the stability of this triplet of spaces is given by the following result, c.f.
[5, Theorem 7.1].

Lemma 6.3 There exists a linear operator Oy : Py (Tp, RYY x Pu(Th, K) — Wy, that is
uniformly bounded with respect to h and that satisfies

(divOnn s o)+ (Ontonssi)sn) = lonld o+ sl g

forall (v, si) € Pe(Th, RY) x Pr(Tp, K).

We point out that K, = WY x Pr(7;, K) C K where W := W, N H(div°, 2, M).
The same procedure used in the proof of Corollary 6.1 can be used verbatim to deduce from
Lemma 6.3 that Assumption 4 is satisfied. Moreover, as {0} x Px (75, K) C K, for all
0 # (o5, r1) € Py(Xp) = K;® it holds

B((op. ). (0.51) = (04.50) =0, Vs, € Pe(Tp. K).

Consequently, the discrete counterpart of (6.6) is satisfied. Indeed, for all 0 # (o, ry) €
P, (X}) we have that

A(op,rp), (op,1h) = B((op, 1p), (0h, 1) = (Ao, 0p)q > 0. (6.7)

We deduce from Theorem 3.1 and Remark 3.1 the following result.
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Proposition 6.2 The spectrum of Ty, consists of m := dim(Xy) eigenvalues, repeated
accordingly to their respective multiplicities. It holds sp(T,) = {1} U {Uhk}zlip with
mo = m — dim(Ky). The eigenspace associated to n, = 1 is Ky. The real numbers
nwe € (0, 1), k =1, ..., mo, are non-defective eigenvalues with eigenspaces lying in KhlB
and np, = 0 is not an eigenvalue.

Let us now recall some well-known approximation properties of the finite element spaces
introduced above. Given s > 1/2 the tensorial version of the canonical interpolation operator
I, : H* (2, M) — W), associated with the Brezzi-Douglas-Marini (BDM) mixed finite
element [12], satisfies the following classical error estimate, see [11, Proposition 2.5.4],

Iz = Myl < CA™™ izl 0 Ve H(@Q.M), s>1/2, (68
Moreover, we have the well-known commutativity property,
divIlyo = Updive, Vo € H*(2,M)N H(div, 2, M), s> 1/2. (6.9)

where U, stands for the L2(S2, Rd)-orthogonal projection onto Py (7}, R?). Therefore, if
divt € H5(Q2, R?), we obtain

Idiv(t — I1,7)lo.q = [|divt — Up divt]o.q < CA™™* D divr|,q. (6.10)

Finally, if Sj, represents the L3(Q, M)-orthogonal projection onto Py (7, K), for any s > 0,
it holds

s — Susllo.o < CA™M K g1 0 Vs € HS(Q,K). (6.11)

We point out that one can actually extend the domain of the canonical interpolation operator
Iy, to H(div, 2, M) N H*(2, M), for any s > 0. In the case of a constant function o and
a constant tensor A, classical regularity results [15,22] ensure the existence of § € (0, 1]
(depending on €2 on the boundary conditions and on the Lamé coefficients) such that the
solution # of problem (6.4) belongs to H7*(Q, RY) N HJ (2, RY) for all s € (0, §). This
implies that P(X) C [H*(2, M) N H(div, 2, M)] x H*(2, M). In such a case, we can
directly define the operator linear operator Ej : Kis — X, by En(o,r) := (ITyo, Spr)
and deduce (as shown below) that Assumption 5 is satisfied. However, instead of relying on
regularity results that are difficult to establish for the elasticity system in the case of general
domains, boundary conditions and material properties, we resort to the quasi-interpolation
operator constructed in [13,19,25] by combining the BDM interpolation operator I1;, with
a mollification technique. The resulting projector has domain H (div, 2, M) and range W,
and preserves all the properties of I1;, listed above. More precisely, we will use tensorial
version of the following result [19, Theorem 6.5] (see also [13,25]).

Theorem 6.1 There exists a bounded and linear operator J, : H(div, 2, M) — W), such
that

(i) Wy is point-wise invariant under Jy
(ii) The exists C > 0 independent of h such that

lo —Thollo,e < C inf o — 14,0, Yo € H(div, 2, M)
THEW),
iii) div J,o = Uy divo forall 6 € H(div, 2, M).

Lemma 6.4 The linear operator B, : X — X, defined by By (o, r) := (Jp0, Sypr) satisfies
Assumption 5.
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Proof For an arbitrary (o, ;) € X, we let (G, 7) = P(oy, ry) € K58 It holds
(@h, ) — EnP(an,ry) = (04 — TnG, 1 — SiF) € Ki = W) x Pr(Th, K).
Indeed, by virtue of property (iii) of Theorem 6.1 and because div e = div o, we have that
div (6, — J,0) =dive, — Uy dive =dive, — U, dive, = 0.

This proves Assumption 5 (iii). On the other hand, using this time property (ii) of Theorem 6.1,
we deduce that, if we let (o7, 7) = P(o,r) € K=+B for an arbitrary (o, r) € X, we obtain

— 2 ~ ~2 ~ =112
(I =B Po, Ny =l = Tnollgq+ IIF = SkFllp o

. ~ 2 ~ ~i2
S _inf |l — Tallgq + IF — SaFlg q
ThEWh ’ ’

(6.12)

and again by property (iii) of Theorem 6.1
I = En P, Nk =1 — En) P, rF + I1div@ — 7:6)5 o
inf (|6 — 745, + Idive — Up dive [§ o + IF — SiFl§ -

TheEWi
(6.13)

A

It follows immediately from (6.12)—(6.13) and the triangle inequality that Assumption 5 (i)
is satisfied. Moreover, the error estimates (6.8), (6.10) and (6.11) and classical density results
ensure that Assumption 5 (ii) is a consequence of (6.13). ]

We conclude that the Galerkin method (3.1) provides a correct spectral approximation of
the eigenproblem (6.1) in the sense of Theorem 4.1.

We recall that n € (0, 1) is an eigenvalue of T with multiplicity m if and only if « = 1/nis
an eigenvalue of Problem 2.1 with the same multiplicity and the corresponding eigenfunctions
coincide. Analogously, n; », i = 1, ..., m, are the eigenvalues of 7, (repeated accordingly
to their respective multiplicities) that converge to n if and only if «; , = 1/n; are the
eigenvalues of Problem 3.1 converging to n. Moreover, the corresponding eigenfunctions
coincide. Taking into account that Assumption 6 is satisfied because of (6.6), the following
rates of convergence for the eigenfunctions and eigenvalues are a direct consequence of
Theorem 5.1, (6.6) and Theorem 5.2, together with the interpolation error estimates (6.8),
(6.10) and (6.11).

Theorem 6.2 Let n # 1 be an eigenvalue of T of algebraic multiplicity m and let £,(X)
be the corresponding eigenspace. There exists hg > O such that for all h < hy, T}, admits

exactly m eigenvalues n; p, i = 1, ..., m, repeated according to their respective multiplicity,
such that

lim 8(&,(X), E,1(X1)) =0 and lim max |n— n; | =0,

Py ( (XD, En.n( h)) P 7 — ninl

where £y 1 (X},) is the Ty-invariant subspace of Xy spanned by the eigenspaces of {n; , i =
1, ..., m}. Moreover, if we assume that the eigenfunctions are piecewise regular with respect
to a partition Q = Ujj.zlﬁj of Q into polyhedral/polygonal subdomain Q2 j, namely, if there
exists r > 1/2 such that

E(X) C{(z,5) € H’(ujz,szj,M) X H’(u/f.zlszj, K); divt € H’(u/f.zlszj,Rd)},

then, for h small enough,

—~ . . 2
B(Ey(X), Epn (X)) S AT and max [k — ki 4l S (hmm{”k“}) . (6.14)

1<i<m
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Remark 6.1 For the sake of brevity and clarity of exposition, we only considered here an
approximation based on the Arnold-Falk-Winther element [5]. However, we could equally
have defined the Galerkin method in base of the families of mixed finite elements introduced
by Cockburn-Gopalakrishnan-Guzmén (CGG(k)) in [14] and by Gopalakrishnan-Guzman
(GG(k))in[21] fork > 1.Indeed, the same BDM quasi-interpolation operator 7, can be used
in the proof of Assumption 5 for GG(k) and the quasi-interpolation operator corresponding
to the Raviart-Thomas element can be used instead for CGG(k).

6.2 Stress formulation of the Stokes eigenproblem with reduced symmetry
6.2.1 The continuous problem

We are interested in the following eigenvalue problem for the Stokes system posed in a
connected Lipschitz domain 2 C R4: find (X, u, p), withu # 0 and A € R such that,

—div (e(u) — pI) = Au inQ,
dive =0 in Q, (6.15)
u=0 ond.

It is interesting to notice that, in the two dimensional case, problem (6.15) is equivalent to
the following buckling problem for a uniformly compressed clamped Kirchhoff plate (see
[29]): find 2 € Rand 0 # ¢ € HZ () such that

—A%y =2)AY, inQ,
Y =Vy-n=0 ondQ,

where n represents the unit outward normal vector to d€2. The eigenvalue 2X represents in
this case the buckling coefficient. The plate transverse displacement v is related to the Stokes
velocity field by %u = curl ¥ := (3, —31y)".

Our aim is to employ a dual-mixed approach to derive a variational formulation of this
problem. To this end, we introduce the stress tensor ¢ := &(u) — pl and notice that the
incompressibility condition implies that 6° = Vu — r, with r := § [Vu — (Vu)*]. We can
then reformulate the problem above in terms of ¢ as follows: find L € R,0 # 0 : @ — S,
and 0 # r — K such that,

—V{dive)=A(¢"+r) inQ,

. (6.16)
dive =0 ondQ.

We point out that the pressure p and the velocity field u disappeared from the formulation
but once o is known they can be recovered (and also post-processed at the discrete level) by
u= —% dive and p = —é tr(o).

The variational formulation (6.16) fits into the abstract framework of Sect. 2 by taking in
problem (2.1) k = 1+ A, H := L%(2, M) x L*(2, M), X := H(div, 2, M) x L2(22, K)
(endowed with their natural norms (6.2)) and by defining the bounded and symmetric bilinear
forms B: Hx H—>R,c: XxX —>RandA: X x X — R as follows:

B((0,r),(1,5)) := (6", 7)q + (tr(0), Dg (tr(x), g + (r, T)q + (5, 0)q,
c((o,r), (t,s)) :=(dive,divt)g, A((o,r), (t,5)) :=c((o,r),(T,5)) (6.17)
+ B((o,r), (1,5)).
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We point out that testing problem (2.1) with (7, 0) € X gives (tr(¢), 1)g = 0 forx # 1.
This corresponds to the zero mean value restriction on the pressure p € L%(Q) = {q €
L%(Q); (g, 1)q = 0} that is usually imposed to enforce uniqueness. Here, we opt for a
variational insertion of this restriction in order to free the space X from the cumbersome
constraint (tr(z), 1)g = 0.

The following Poincaré-Friedrichs inequality is essential in our analysis.

Lemma 6.5 There exists o > O depending only on Q2 such that
altlfo < IT°15.q + ldivel§ o, YT € H(div, 2, M), (tr(z), 1)g =0.
Proof See [11, Proposition 9.1.1]. O
Corollary 6.2 The bilinear form
(0.7) = (6°, %) + (tr(0), Dg (tr(1), Do + (dive, divt)g
is coercive on H(div, 2, M).

Proof Using the LQ(Q,M)-orthogonal decomposition T = T + ﬁ(tr(r), Dql, we
deduce from Lemma 6.5 that

2 _ 2 1 2 . 2
||T||div,9 —||TO||0,Q + rlﬂl (tr(7), Dg + ||d1VT||(),Q

1 2 2 . 2
< max {1 + e m} (||TD||0,Q + (tr(7), Dg + ”leT”QQ) ,

VT € H(div, 2, M),
and the result follows. ]

We point out that Corollary 6.2 also implies the coerciveness of the bilinear form
(0,7) = (67, 1) + (tr(0), D (tr(2), Dg

on H(div®, Q, M). Consequently, following the same steps given in the proof of Corollary 6.1
we deduce that Assumption 1 is satisfied. Hence, the source operator 7 : X — X defined
by problem (2.2) is bounded and symmetric with respect to B(-, -). In addition, we have
the direct and stable splitting X = K & KL8, where K := H(diVO, Q, M) x L2(S2, K) is
the eigenspace corresponding to the essential eigenvalue n = 1 of (2.1). We also have that
T(K'8) c K18 It is important to notice that T is not one-to-one. Indeed, if (o, r) € X is
such that B((o', r), (t,s)) = Oforall (z,s) € X theno = 0", (6, 1) = 0 and

(6P, g+ (r,1)g =0, Vr e H(div, 2, M). (6.18)

Taking T = o in (6.18) we deduce that ¢® = 0. This condition holds true if and only if
o = pl,with p = étr(a) e L%() and Vp =diveo € L2(Q, RY). Testing now (6.18)
with skew symmetric tensors and using a density argument we deduce that r = 0. It follows
that

ker(T) = {gI; ¢ € H'(2) N L3(Q)} x {0}

is the eigenspace corresponding to the eigenvalue n = 0 of 7.

The characterization of the projector P : X — X associated to this decomposition follows
the same pattern of last section. For any (o, r) € X, we consider P (o, r) = (6,7) € X with
6 :=¢)— pland 7 := %[Vﬁ — (Vﬁ)t], where (&, p) € HO1 (Q,RY) x L(Z)(Q) is the
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unique solution of the classical velocity-pressure variational formulation of Stokes problem
in Q with load —divo, i.e.,

(e(@), e(v)g — (divir, g)g — (divy, p)g
= —(dive,v)g, Y(v,q) € Hj (2, RY) x L3(Q), (6.19)
We know [11] that there exists a constant C > 0 such that
lallie + 1Pllo.e < Cldivoo.q. (6.20)

moreover, dive = divo by construction. This ensures the continuity of P : X — X.
Besides, it is clear that P o P = P, ker P = K, and for any (o, r) € X,

B(P(o,r),(t,8)) = (Vu,1)g =0, VY(r,s) €K,

which proves that P(X) C K+8. The inclusion K18 ¢ P(X)is a consequence of (I —
P)X C K. We conclude that P : X — X is the unique continuous projector associated to
the direct and stable decomposition X = K @ K15.

Lemma 6.6 Assumption 2 is satisfied.
Proof Let {(o,,r,)}, be aweakly convergent sequence in X. The continuityof P : X — X
implies that {(G,, 7))}, = {(P(on. 1)}, = {(Vity — pul. 5 [Vity — (Vity)t]) }, also
converges weakly in X, where (., p,) € HJ (2, RY) x L2(S2) solves (6.19) with datum
—divo,. As a consequence of (6.20), {@,}, is bounded in H'(Q, RY). In turn, we deduce
from the identities —Vp, = dive, = divo, that {p,}, is also bounded in HY(Q).
The compactness of the embedding H' (2, RY) x H'(Q) — L?(Q,R?) x L?(Q) imply
that {6, pn}, admits a subsequence (also denotes {d,, p,},) that converges strongly in
L2(Q2, RY) x L2(2). Next, it follows from (6.19) and a Green formula that
(e @y —ity), &) — (divo, pp — Pyl = —(div(e, — 0y), V)g. Vv € Hy (2, RY).
Taking v = ), — 6, in the last identity yields
le (@tp — i) 15,0 = —(div(o, — 0). ity — itg)g.
which proves that {e (i&,,)},, is a Cauchy sequence in L2(2, M). Moreover, testing the identity
Vu,—ug) =0, —04°+F, —F, witht € H(div®, , M) yields
(@) - o+ Fp—Fg. 1o =0, Yz e Hdiv’',Q, M).

We can now use the inf-sup condition (6.3) as in Lemma 6.2 to deduce that {F,}, is also
a Cauchy sequence in L?($2, M). We conclude that {(G,, )}, = {P(on, ry)}, admits a
subsequence that converges strongly in H and Assumption 2 (i) follows.

Let us denote by (6%, r*) := T (g, r) the image of any (0, r) € X by the source operator
T. Testing (2.2) with (1, 0) € X we deduce that (6*, 1) = (0, 1)g. Testing now the same
equation with (t, 0), and choosing the entries of 7 : & — M indefinitely differentiable and
compactly supported in €2, we deduce that

V(dive*) = (6* — o)’ +r* —r e L*(Q, M)

Therefore, the subspace

T(X)NP(X) C{(o,r) € P(X); dive € H'(Q,R%)},

is compactly embedded in X and Assumption 2 (ii) is also satisfied. O
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Before we provide the spectral description of 7' given by Theorem 6.1, we point out that
for n ¢ {0, 1} is an eigenvalue of T with eigenspace &£,(X) then

A({(o,r),(o,r)) > B((o,r), (0,r)) = ||(7D||(2)’Q >0, V(o,r)e&X) (621

where we used that o is symmetric and satisfies the restriction (o, 1) = 0 together with the
fact that {0} x L?(22,K) C K and &,(X) ¢ ker(T).

Proposition 6.3 The spectrum sp(T) of T admits the decomposition sp(T) = {0, 1}U{nk}ren
where {ni}, C (0, 1) is a sequence of finite-multiplicity eigenvalues of T that converges to
0. The ascent of each of these eigenvalues is 1 and the corresponding eigenfunctions lie in
P(X). Moreover, n = 1 is an infinite-multiplicity eigenvalue of T with associated eigenspace
K and n = 0 is an eigenvalue of with eigenspace ker(T).

6.2.2 The discrete problem

The Galerkin scheme (3.1) is based on the same finite element spaces used in the last sec-
tion. Namely, for k > 0, we take X;, := Wy x Px(Zp, K), with Wy, 1= Pry1 (7, M) N
H (div, 2, M) and here again Kj, = Wg X Pr(Tn, K) C K.Itfollows easily from Lemma 6.3
that Assumption 4 holds true.

Proposition 6.4 The spectrum of Ty consists of m = dim(Xy) eigenvalues, repeated
accordingly to their respective multiplicities. It holds sp(T,) = {1} U {nhk}kmﬁp with
mo = m—dim(K},). The eigenspace associated ton, = 1is Ky,. The eigenvalues npi ¢ {0, 1}
are non-defective and the corresponding eigenspaces lie in K ;‘ B Moreover, n, = 0 is an
eigenvalue with eigenspace ker(Ty,).

Remark 6.2 1t is straightforward that ker(7,) = {gnl; qn € Vip} x {0} where the space
Vi = Prv1(Tn) N H 1(Q) N L(Z)(Q) of continuous and piecewise polynomial functions of
degree < k + 1.

We define E, : X — X} as in Lemma 6.4, which ensures Assumption 5 and guaranties
by the way that the Galerkin method (3.1) provides a correct spectral approximation of the
stress formulation of the Stokes eigenproblem (2.1) in the sense of Theorem 4.1. Moreover,
Assumption 6 is satisfied thanks to (6.21). We can then rely on Theorem 5.2 to obtain the
following rates of convergence for the eigenfunctions and eigenvalues.

Theorem 6.3 Let 1 ¢ {0, 1} be an eigenvalue of T of algebraic multiplicity m and let £,(X)
be the corresponding eigenspace. There exists hg > 0 such that for all h < hg, T}, admits
eigenvalues n; p, i = 1, ..., m, repeated according to their respective multiplicity, such that

lim 8(&,(X), &y 1 (Xp)) =0 and i —ninl =0,
lim 8(&)(X). €5.4 (X)) =0 and _ lim max | —ni,s|

where £,y (Xy,) is the Ty-invariant subspace of Xy, spanned by the eigenspaces of {n; p, i =
1, ..., m}. Moreover, under the piecewise regularity assumption

Ey(X) Cl(x, )€ H' (U]_ Q) M)x H' (U]_ ;. K); divee H (U]_,Q;, R}, r>1/2,
for h small enough,

~ . . 2
S(EC0). £ (Xw) S B and - max [ — ki) S (RRE)T(622)

1<i<m
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Remark 6.3 The analysis given in this section can be adapted to deal with Dirichlet-Neumann
boundary conditions for eigenproblems (6.1) and (6.15) by defining the space X as in [26]
and by employing the quasi-interpolation operator with partial boundary conditions recently
introduced by Licht in [25, Theorem 6.3].

6.2.3 Numerical results

On the unit disk, the eigenvalues of the Stokes eigenproblem (6.15) are given by the sequence
{%sz}nzl, ¢>1, where ;¢ is the £-th positive zero of the Bessel function J, of the first kind
of order n. Accurate approximations of the first 4 eigenvalues are given by

241 = Ji; =~ 14.681970642124
20 =223 = j3; = 26.374616427163 (6.23)
204 = 3 == 40.706465818200.

We use the open-source finite element software Netgen/NGSolve [30] to implement
the Galerkin method (3.1) of the Stokes eigenproblem (6.15). We take advantage of the
Netgen/NGSolve support for curved mixed finite elements of arbitrary order to base the con-
struction of X on an H (div)-conforming BDM-parametric element associated to an exact
triangulation 7;, of the unit disk. We notice that this leads to a conforming finite element
approximation X of X.

We denote by A j; the approximation of A ; computed by solving problem 3.1 with A and
B given by (6.17). We introduce the experimental rates of convergence

i log(aj = Ajnl/IAj =200
ry = = :
" log(h/h)

, j=1,....,4 (6.24)

where /1 and /1 are two consecutive mesh sizes.

We present in Table 1 the first four eigenvalues computed on a series of exact partitions of
the unit disk Q with decreasing mesh sizes /4, and for polynomial degrees k + 1 =1, 2, 3, 4.
We also report in the same table the arithmetic mean of the experimental rates of convergence
obtained for each eigenvalue via (6.24). We observe that a convergence of order 2(k + 1) is
attained for each eigenvalue, as predicted by the error estimate given in (6.22).
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