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Abstract
If p and q are primes, and G is a p-solvable finite group, it is possible to detect that a 
q-Sylow normalizer is contained in a p-Sylow normalizer using the character table of G. 
This is characterized in terms of the degrees of p-Brauer characters. Some consequences, 
which include yet another generalization of the Itô–Michler theorem, are also obtained.
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1  Introduction

If G is a finite group and � is a set of primes, let Irr�(G) be the subset of the irreducible 
complex characters � of G such that all the primes dividing the degree �(1) lie in � . It 
is fair to say that the interaction between Irr�(G) and the structure of G is one of the 

This research is supported by Ministerio de Ciencia e Innovación PID2019-103854GB-I00 and FEDER 
funds. The third and fourth authors are also supported by Generalitat Valenciana AICO/2020/298. The 
third author also acknowledges support by Ministerio de Ciencia e Innovación PID2020-118193GA-I00 
and “Convocatoria de contratación para la especialización de personal investigador doctor en la UPV/
EHU (2019)”. The second author thanks G. Malle for the example after Theorem A. This work was 
done, while the first author visited the University of Valencia.

 *	 Gabriel Navarro 
	 gabriel@uv.es

	 Lorenzo Bonazzi 
	 lorenzo.bonazzi@unifi.it

	 Noelia Rizo 
	 rizonoelia@uniovi.es

	 Lucía Sanus 
	 lucia.sanus@uv.es

1	 Dipartimento di Matematica e Informatica U. Dini, Università degli Studi di Firenze, 
50134 Firenze, Italy

2	 Departament de Matemàtiques, Universitat de València, 46100 Burjassot, València, Spain
3	 Departamento de Matemáticas, Universidad de Oviedo, 33007 Oviedo, Spain

http://orcid.org/0000-0002-5632-7382
http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-022-01210-0&domain=pdf


2576	 L. Bonazzi et al.

1 3

recurrent problems in character theory. Recently, in [12], we have asked if it is possible 
to characterize group-theoretically when Irr�(G) = Irr�(G) for sets of primes � and �.

In this paper, we fix a prime p, and we turn our attention to p-Brauer characters, 
within the universe of finite p-solvable groups. (Degrees of modular representations in 
characteristic p outside p-solvable groups are usually deemed an intractable subject.) If 
G is a p-solvable finite group and IBr(G) is the set of the irreducible p-Brauer characters 
of G, we let IBr�(G) be the subset of � ∈ IBr(G) such that all the primes dividing �(1) 
lie in � . As usual, if r is a prime, r′ denotes the set of primes different from r.

The following is our first main result.

Theorem A  Let G be a finite p-solvable group, and let q be a prime. Then, 
IBrq� (G) ⊆ IBrp� (G) if and only if there are Q ∈ Sylq(G) and P ∈ Sylp(G) such that 
�G(Q) ⊆ �G(P).

Theorem A was the main result of [1], assuming that G is both p-solvable and q-solv-
able. To better understand our this new situation, we invite the reader to consider, for 
instance, G = PSL2(3

5).5 , for p = 5 . If q = 2 , then �G(P) = �G(Q) for some p ∈ Sylp(G) 
and Q ∈ Sylq(G) . Of course, G is p-solvable, but not q-solvable. There are families of 
almost-simple groups like this, and we are able to deal with this new situation thanks to 
the main result of [6]. In particular, the proof of Theorem A depends on the Classifica-
tion of Finite Simple Groups.

From Theorem A, and using McKay bijections for Brauer characters in p-solvable 
groups together with the recent proof of the divisibility of degrees between Glauberman 
correspondents by M. Geck in [2], we can prove our second main result.

Theorem B  Let G be a finite p-solvable group, and let q be a prime different from p. 
Then IBrp� (G) = IBrq� (G) if and only if there are P ∈ Sylp(G) and Q ∈ Sylq(G) such that 
�G(P) = P�G(Q) and Q is abelian.

As the reader can easily check, in the trivial case where p does not divide |G|, Theo-
rem B is yet another restatement of the Itô–Michler theorem.

As happens with complex irreducible characters (see [12]), it does not seem easy 
to group-theoretically characterize when IBr�(G) = IBr�(G) for arbitrary sets of primes 
� and � , even if G is p-solvable. In the case, for instance, where � = ℙ is the set of all 
primes and � = q� , where q is a prime, this constitutes Problem 3.2 of [9]. (This problem 
was studied long before in [8] and more recently in [5].) It has now been conjectured 
that IBrq� (G) = IBr

ℙ
(G) if and only if the number of p-regular classes of G is the num-

ber of p-regular classes of �G(Q)∕Q
� , where Q ∈ Sylq(G) . This is a consequence of the 

Inductive McKay conjecture, and it seems difficult to obtain a direct proof. (See Conjec-
ture D in [7].)

2 � Proof of theorem A

Our notation for Brauer characters follows [9]. The deepest part of the proof of Theorem 
A comes from the main result in [MN].
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Theorem 2.1  Let G be a finite �-separable group. Let H be a Hall �-subgroup, let K be a �
-complement of G, and let q be a prime. Then, every � ∈ Irrq� (H) extends to G if and only if 
there is Q ∈ Sylq(H) such that �G(Q) ⊆ �G(K).

Proof  This is Theorem A of [6]. 	�  ◻

A very useful result to deal with the hypotheses in this paper appears in Suzuki’s 
book.

Theorem 2.2  Let G be a p-solvable group, and let q be a prime. Let � = {p, q} . Then, G 
has a unique conjugacy class of Hall �-subgroups, and every �-subgroup of G is contained 
in one of them.

Proof  This follows from 5.3.13 of [14]. 	�  ◻

For the reader’s convenience, let us prove the following standard result.

Lemma 2.3  Let G be a finite group. Let Q be a Sylow q-subgroup of G and let N be a nor-
mal subgroup of G. If � ∈ IBrq� (G) , then �N has a Q-invariant irreducible constituent and 
any two of them are �G(Q)-conjugate.

Proof  Let � ∈ IBrq� (G) and let � ∈ IBr(N) be an irreducible constituent of �N . Let G� be 
the stabilizer of � in G. By Clifford’s theorem (see Corollary 8.9 of [9], for instance), we 
have that |G ∶ G�| divides �(1) , and hence, it is a q′-number. It follows that there is an ele-
ment g ∈ G such that Qg is contained in G� . Hence, Q ⊆ G

g−1

𝜃
= G

𝜃g
−1 and �g−1 is a Q-invari-

ant irreducible constituent of �N.
Now, suppose that � and � are two Q-invariant irreducible constituents of �N . Again by 

Clifford’s theorem we have that there is an element g ∈ G such that � = �g . It follows that 
Q and Qg are contained in G� , and hence, there is an element x ∈ G� such that Q = (Qg)x . 
Therefore gx ∈ �G(Q) and �gx = (�g)x = �x = � , as wanted. 	�  ◻

The following result implies Theorem A. In its proof, we shall use Fong characters of 
Brauer characters, and we refer the reader to Chapter 10 of [9] for their main properties. 
(The term Fong character was coined by I. M. Isaacs after some results of P. Fong.) We 
also use the fact that if G is p-solvable, H is a p-complement of G, and � ∈ IBr(G) has 
degree not divisible by p, then �H ∈ Irr(H) . (See Theorem 10.9 of [9].) A complication 
when dealing with Brauer characters is that we do not have any form of Frobenius reci-
procity, even in favorable conditions. For instance, in the previous situation where H is a 
p-complement of a p-solvable group G, if � ∈ Irr(H) , and � is an irreducible constituent 
of p′-degree of the induced Brauer character �G , then � needs not be the irreducible char-
acter �H ; a fact that would simplify our proof below. (If G = �4 , p = 2 , and H = �3 , then 
the Brauer character (1H)G = 21G + �1 + �2 , where �i are distinct linear Brauer characters. 
Now take � = 1H and � = �i.)

Theorem 2.4  Let G be a p-solvable group, let IBr(G) be the set of irreducible Brauer char-
acters of G, and let q ≠ p be a prime. Let P ∈ Sylp(G) and Q ∈ Sylq(G) such that U = PQ 
is a subgroup of G. Suppose that H is a p-complement of G containing Q. Then, the follow-
ing are equivalent. 
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(a)	 IBrq� (G) ⊆ IBrp� (G).
(b)	 �G(Q) ⊆ �G(P).
(c)	 Every � ∈ Irrq� (H) extends to G.

Proof  Set � = {p, q} . By Theorem  2.2, notice that we can find P ∈ Sylp(G) and 
Q ∈ Sylq(G) such that U = PQ is a Hall �-subgroup of G. (In fact, given a Hall �-subgroup 
U of G, then U = PQ for every P ∈ Sylp(U) and Q ∈ Sylq(U).)

Assume (a). We prove (b) by induction on |G|. If K is a minimal normal subgroup of G, 
then we have that �G(Q) ⊆ �G(P)K , by using induction in G/K. Since G is p-solvable, then 
K is either a p-group or a p′-group. In the first case, �G(P)K = �G(P) and we are done. So 
we assume that K is a p′-group.

Let V be any subgroup of G containing KQ and let � ∈ IBrq� (V) . By Lemma 2.3, there 
exists a Q-invariant irreducible constituent � ∈ IBr(K) of the restriction �K (using that 
Q ∈ Sylq(V) ). We claim that � is also P-invariant. By Corollary 8.7 of [9], we have that � 
is an irreducible constituent of the induced Brauer character �V . Now consider the Brauer 
character �G , which has degree |G ∶ V|�(1) , which is not divisible by q. Hence, there exists 
an irreducible constituent � ∈ IBr(G) of �G of degree not divisible by q. By hypothesis, we 
have that � has degree not divisible by p. Now, � is an irreducible constituent of �G , and 
therefore, � is an irreducible constituent of the restriction �K , again by Corollary 8.7 of [9]. 
If I = G� is the stabilizer of � in G, and � ∈ IBr(I) is the Clifford correspondent of � over 
� , we have that |G : I| is a �′-number. Therefore, using Theorem 2.2, we have that U ⊆ Ig 
for some g ∈ G . Then, � and �g are Q-invariant constituents of � , and thus, by Lemma 2.3, 
we have that �g = �x , for some x ∈ �G(Q) ⊆ K�G(P) . Hence, we may assume that �g = �y 
for some y ∈ �G(P) . Then, Igy−1 = I , Uy−1 ⊆ I , and we conclude that P = Py−1 ⊆ I . In other 
words, � is P-invariant, as claimed.

Now, let V = �G(P)K . We claim that IBrq� (V) ⊆ IBrp� (V) . Let � ∈ IBrq� (V) . By the 
claim in the previous paragraph, let � ∈ IBr(K) be PQ-invariant under � . By Theorem 8.11 
of [9], there is a unique 𝜏 ∈ IBr(KP) over � , extending � , and we conclude that � lies 
over 𝜏 . Now, KP ⊲ V  , V/KP is a p′-group, and we have that 𝛿(1)∕𝜏(1) divides |V : KP| by 
Theorem 8.30 of [9]. Since �(1) is not divisible by p, we conclude that � has p′-degree, 
as claimed. By induction, we may assume that V = G . That is, KP ⊲ G . We want to use 
Theorem 2.1.

Next, we show that every � ∈ Irrq� (H) extends to G. By Lemma 2.3, let � ∈ Irr(K) be 
Q-invariant under � . By the claim in the third paragraph, we have that � is P-invariant too. 
By Corollary 6.28 of [3], we have that � has a canonical extension � ∈ Irr(KP) . Using the 
uniqueness of � , we easily check that G� ∩ H = H� . By Isaacs restriction theorem (Lemma 
6.8(d) of [11]), the Clifford correspondence and Mackey’s theorem (Theorem  1.16 of 
[10]), we have that � extends to G. If �0 = p� is the set of primes dividing |G| different 
from p, by Theorem 2.1 applied to �0 , we conclude that there is Q1 ∈ Sylq(H) such that 
�G(Q1) ⊆ �G(P) . In particular, P ⊲ PQ1 . By Theorem 2.2, PQ1 and PQ are G-conjugate. 
Hence P ⊲ PQ and therefore Q,Q1 ∈ Sylq(�G(P)) . Hence, Qz

1
= Q for some z ∈ �G(P) , 

and �G(Q) = �G(Q1)
z ⊆ �G(P).

We have that (b) implies (c), by Theorem 2.1 applied to �0 = p�.
Finally, we prove that (c) implies (a) by using Fong characters. Suppose now that every 

� ∈ Irrq� (H) extends to G. We show that IBrq� (G) ⊆ IBrp� (G) . Let � ∈ IBrq� (G) , and 
let � ∈ Irr(H) be an irreducible constituent of �H such that �(1) = �(1)p� (using Theo-
rem 10.18 of [9].) In other words, � is a Fong character for � . Then, �(1) is not divisible 
by q, and by hypothesis, we have that � extends to some � ∈ Irr(G) . Then, the Brauer 
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character � = �0 ∈ IBr(G) extends � . (Indeed, if �0 = �1 + �2 for Brauer characters �i of 
G, then the irreducible character � would be written as (�1)H + (�2)H .) By Theorem 10.17 
of [9], we have that � = � , and �(1) = �(1) = �(1) has degree not divisible by p. 	�  ◻

3 � Proof of theorem B

If N is a normal subgroup of G and � ∈ IBr(N) , we write IBr(G | �) to denote the set of 
irreducible Brauer characters � of G such that � is an irreducible constituent of �N . We 
write IBrp� (G | �) = IBrp� (G) ∩ IBr(G | �).

Next is the version for Brauer characters and p-solvable groups of Theorem A of [13], 
which we shall need to prove Theorem B. It is worth mentioning that its proof uses the 
recent proof of the divisibility of the degrees of the Glauberman correspondence in [2].

Theorem  3.1  Let G be a p-solvable group, and P ∈ Sylp(G) , then there is a bijection 
f ∶ IBrp� (G) → IBrp� (�G(P)) such that f (�)(1) divides �(1) for all � ∈ IBrp� (G) . Further-
more, �(1)∕f (�)(1) divides |G ∶ �G(P)|.

Proof  We argue by induction on |G|. Since �p(G) is in the kernel of every � ∈ IBr(G) , by 
induction we may assume that �p(G) = 1 and hence K = �p� (G) > 1 . Let S∕K = �p(G∕K) 
and notice that P0 = P ∩ S is a Sylow p-subgroup of S. By the Frattini argument, we have 
that G = K�G(P0) . Notice also that �G(P0) < G since �p(G) = 1.

Let �1,… , �s be a complete set of representatives of the orbits of the action of �G(P) on 
the P-invariant irreducible characters of K. By Lemma 2.3, we have that

is a disjoint union. Fix �i ∈ Irr(K) , P-invariant, and observe that �i is also P0-invari-
ant. Let �∗

i
∈ Irr(�K(P0)) = IBr(�K(P0)) be the Glauberman correspondent of �i and let 

Ti = G�i
 be the stabilizer of �i in G. Since the Glauberman correspondence and the action 

of �G(P0) commute (see Lemma 2.10 of [10]), it follows that �Ti
(P0) = Ti ∩ �G(P0) is 

the stabilizer of �∗
i
 in �G(P0) . By Dade’s theorem (see Theorem (6.5) of [15]), we have 

that (Ti,K, �i) and (�Ti
(P0),�K(P0), �

∗
i
) are isomorphic character triples. In particular, 

there is a bijection Δ ∶ Irr(Ti|�i) → Irr(�Ti
(P0)|�

∗
i
) such that �(1)∕�i(1) = Δ(�)(1)∕�∗

i
(1) 

for all � ∈ Irr(Ti|�i) . Now using Δ and Lemma 3.12 of [4] we can construct a 
bijection ∗ ∶ IBr(Ti | �i) → IBr(�Ti

(P0) | �
∗
i
) such that �(1)∕�i(1) = �∗(1)∕�∗

i
(1) 

for all � ∈ IBr(Ti | �i) , and since �i(1) and �∗
i
(1) are p′-numbers we have that 

∗ ∶ IBrp� (Ti | �i) → IBrp� (�Ti
(P0) | �

∗
i
) is a bijection.

Let � ∈ IBrp� (G) and let �i ∈ IBr(K) = Irr(K) be such that � ∈ IBrp� (G | �i) . By the 
Clifford correspondence (Theorem 8.9 of [9]), we have that there is � ∈ IBrp� (Ti | �i) such 
that �G = � . Since �Ti

(P0) is the stabilizer of �∗
i
 in �G(P0) , again by the Clifford cor-

respondence we have that (�∗)�G(P0) ∈ Irr(�G(P0)) . Furthermore, since P ⊆ �Ti
(P0) , we 

have that

is a p′-number. Hence, we define

IBrp� (G) = IBrp� (G | �1) ∪⋯ ∪ IBrp� (G | �s)

(�∗)�G(P0)(1) = |�G(P0) ∶ �Ti
(P0)|�

∗(1)
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by g(�) = (�∗)�G(P0).
Since �1,… , �s is a complete set of representatives of the action of �G(P) on the 

P-invariant characters of K and the Glauberman correspondence commutes with the action 
of �G(P) ⊆ �G(P0) , we have that �∗

1
,… , �∗

s
 is a complete set of representatives of the 

action of �G(P) on the P-invariant irreducible characters of Irr(�K(P0)) = IBr(�K(P0)) . 
By Lemma 2.3, we have that

is a disjoint union and it follows that g is a bijection.
Let � ∈ IBrp� (G|�i) and let � ∈ IBrp� (Ti|�i) with �G = � . Then �(1) = �∗(1)�i(1)∕�

∗
i
(1) 

and, since �∗
i
(1) divides �i(1) (by the recent main theorem of [2]), we have that �∗(1) 

divides �(1) . Since G = �G(P0)K we have that g(�)(1) = |�G(P0) ∶ �Ti
(P0)|�

∗(1) divides 
|G ∶ Ti|�(1) = �(1).

Finally, since �G(P0) < G , we apply induction to obtain a bijection

such that h(�)(1) divides �(1) and �(1)∕h(�)(1) divides |�G(P0) ∶ �G(P)| for all 
� ∈ IBrp� (�G(P0)) . Let f = gh = h◦g . Clearly, f is a bijection and f (�)(1) divides �(1) 
for all � ∈ IBrp� (G) . Now, since g(�)(1)∕h(g(�))(1) divides |�G(P0) ∶ �G(P)| , we have 
that �(1)∕f (�)(1) divides |�G(P0) ∶ �G(P)|�(1)∕�∗(1) = |�G(P0) ∶ �G(P)|�i(1)∕�

∗
i
(1) . 

By Problem  13.2 of [3], �i(1)∕�∗i (1) divides |K ∶ �K(P0)| = |G ∶ �G(P0)| . Hence, 
�(1)∕f (�)(1) divides |G ∶ �G(P)| . 	�  ◻

The following is Theorem B.

Theorem 3.2  Suppose that G is a p-solvable finite group and let q be a prime different from 
p. Then

if and only if there is a Sylow p-subgroup P of G and a Sylow q-subgroup Q of G, such that 
�G(P) = P�G(Q) and Q is abelian.

Proof  Suppose that IBrq� (G) = IBrp� (G) . By Theorem 2.4, we have that there is a Sylow 
p-subgroup of G and a Sylow q-subgroup of G such that �G(Q) ⊆ �G(P) . We claim that

First, we notice that Theorem 2.4 applied to �G(P) shows IBrq� (�G(P)) ⊆ IBrp� (�G(P)) . Let 
� ∈ IBrp� (�G(P)) . By Theorem 3.1, there is � ∈ IBrp� (G) such that �(1) divides �(1) which 
is a q′-number. Hence, we conclude � ∈ IBrq� (�G(P)) . Then IBrq� (�G(P)) = IBrp� (�G(P)) , 
as claimed.

Therefore, we may assume, arguing by induction that P ⊲ G . Then, we have that 
IBr(G) = IBr(G∕P) = Irr(G∕P) and

g ∶ IBrp� (G) → IBrp� (�G(P0))

IBrp� (�G(P0)) = IBrp� (�G(P0) | �
∗
1
) ∪⋯ ∪ IBrp� (�G(P0) | �

∗
s
)

h ∶ IBrp� (�G(P0)) → IBrp� (�G(P))

IBrp� (G) = IBrq� (G)

IBrp� (�G(P)) = IBrq� (�G(P)) .

Irrq� (G∕P) = IBrq� (G) = IBrp� (G) = Irrp� (G∕P) = Irr(G∕P).
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By the Itô-Michler theorem, we know that G/P has a normal and abelian Sylow q-subgroup 
PQ/Q. Hence, Q is abelian and PQ ⊲ G . Then G = P�G(Q) by the Frattini’s argument.

Conversely, suppose that there is P ∈ Sylp(G) and Q ∈ Sylq(G) such that 
�G(P) = P�G(Q) and Q is abelian. Notice that since �G(Q) ⊆ �G(P) by Theorem  2.4 
we have that IBrq� (G) ⊆ IBrp� (G) . We only need to prove the reverse containment. 
If �G(P) < G , arguing by induction, we have that IBrq� (�G(P)) = IBrp� (�G(P)) . Let 
� ∈ IBrp� (G) and let f ∶ IBrp� (G) → IBrp� (�G(P)) be the bijection given in Theo-
rem  3.1. Hence �(1)∕f (�)(1) divides |G ∶ �G(P)| which is not divisible by q. Since 
IBrq� (�G(P)) = IBrp� (�G(P)) , we have that f (�)(1) is not divisible by q and thus 
� ∈ IBrq� (G).

Hence, we may assume that P is a normal subgroup of G and then IBr(G) = Irr(G∕P) . 
Also G = �G(Q)P and hence PQ is normal in G. Then, PQ/P is an abelian normal Sylow 
q-subgroup of G/P. By Itô’s theorem, we have that Irr(G∕P) = Irrq� (G∕P) . It follows that

and we are done. 	�  ◻

To prove the assertion in the Abstract, it is enough to notice that in p-solvable groups, 
the ordinary character table of G uniquely determines the Brauer characters of G, by using 
the Fong–Swan theorem. (See Theorem 10.1 and Corollary 10.4 of [9].)

Finally, using Isaacs �-characters, the Glauberman–Isaacs correspondence, and some ad 
hoc arguments, it is possible to replace in Theorems A and B of this paper p′ by � , p-solva-
ble groups by �-separable groups, and Sylow p-subgroups by Hall �-complements.
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