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ABSTRACT

A new method for evaluating aircraft engine monitoring data is proposed. Commonly, prognostics and health
management systems use knowledge of the degradation processes of certain engine components together with
professional expert opinion to predict the Remaining Useful Life (RUL). New data-driven approaches have
emerged to provide accurate diagnostics without relying on such costly processes. However, most of them
lack an explanatory component to understand model learning and/or the nature of the data. To overcome this
gap we propose a novel approach based on variational encoding. The model consists of a recurrent encoder
and a regression model: the encoder learns to compress the input data to a latent space that serves as a
basis to build a self-explanatory map that can visually evaluate the rate of deterioration of aircraft engines.
Obtaining such a latent space is regularized by a new cost function guided by variational inference and a
term that penalizes prediction errors. Consequently, not only an interpretable assessment is achieved but
also a remarkable prognostic accuracy, outperforming most of the state-of-the-art approaches on the popular
simulation dataset C-MAPSS from NASA. In addition, we demonstrate the application of our method in a
real-world scenario with data from actual Turbofan engines.

1. Introduction

Prognostic technologies are crucial in any physical system. In air-
craft engines this is a must since throughout their life cycle they are
subjected to different conditions that cause degradation and ultimately
lead to failure. For this reason, data is routinely collected from various
built-in sensors to monitor performance and avoid operating in unde-
sirable conditions. Over the years, the amount of information collected
has increased and this has paved the way for making more complex
analyses in favor of maintenance that extends the useful life of these
systems. However, traditional strategies such as scheduled preventive
maintenance or corrective maintenance of failures [1] are increasingly
unable to meet growing industrial demand in terms of efficiency and
reliability. In this regard, Prognostics and Health Management (PHM)
technologies are proving to have promising capabilities for application
in industries [2]. As a result, metrics like remaining useful life (RUL) of
systems have been established as key elements to improve maintenance
schedules and avoid engineering, safety and reliability failures. Conse-
quently, this would make it possible to determine engine deterioration,
increase engine flight time and reduce maintenance costs.
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1.1. Literature review

In the last decade, several techniques have been proposed to model
the degradation of these complex systems, from which two currents
arise: model-based approaches and data-driven approaches. Among
the former, works such as [3,4] stand out, although these techniques
require extensive prior knowledge about the physical systems, infor-
mation that is often not available in practice. Precisely for this reason,
data-driven approaches have become so popular in recent years, as
they are able to model degradation features based purely on historical
records from which the underlying causalities and correlations can be
modeled. That is, knowledge can be inferred from sensor data to predict
valuable system information such as RUL [5].

Especially, the use of Machine Learning models has had a great
impact given that they are able to model highly nonlinear, complex
and multi-dimensional systems with little prior prognostic experience.
If we focus on RUL estimation, initial work was oriented towards the
application of multi-layer perceptrons (MLP) as in [6], where the au-
thors reported higher prediction results than model-based approaches.
In [7,8] both diagnostics and prognostics were approached with PCA
and hidden Markov models. Over the years, other techniques have
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been also explored: some researchers have integrated fuzzy logic to
capture more information for Engine Health Monitoring (EHM) [9,10],
others applied Support Vectors [11] or Gradient Boosting trees [12].
Nevertheless, despite being all of them considered relevant work for
the sake of RUL estimation, the greater impact has undoubtedly been
produced by the use of Deep Learning models [13]. This is due to
the fact that the raw data obtained from machine health monitoring
share a high dimensionality, similar to that of other problems in which
these models have had a significant impact and are known to perform
remarkably well, especially in Computer Vision and Natural Language
Processing (NLP).

Certainly, RUL estimation is a hot-topic, partly thanks to the appli-
cation of these new deep models where two trends clearly stand out:
the use of Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN). High-impact work can be easily found in both direc-
tions, calling for the use of CNNs for feature extraction [14-16] and
recurrent networks for modeling the temporal nature of the data [17-
19]. From there, promising modifications have been proposed [20-22],
where both architectures are combined for better prediction capa-
bilities. In addition, approaches that go beyond RUL estimation are
beginning to emerge such as [23] where a semi-supervised method is
developed to avoid relying on data labeling or [24] where the authors
present a model to mine different levels of degradation trends.

However, there is a clear gap between all Deep Learning oriented
approaches: although they do achieve remarkable results, models are
treated as black boxes where inputs are used to obtain some output, in
this case, the RUL. It is challenging to find algorithms that go beyond
providing good numerical performance and this is vitally important.
Despite the fact that the current is to dispense with prior knowledge
about the system to be monitored, in the end, these models are designed
to be used by people outside academia. Therefore, it is of great interest
to be able to provide a tool that gives certain interpretability of the
models’ decisions as well as some insights about the nature of the data.
In fact, these are attributes of particular interest, if not demanded, for
decision making in safety-critical applications [25].

1.2. Suitable approaches and limitations

To meet the goals stated one can think of unsupervised learning
techniques as a possible way to approach this. Especially, when it
comes to reveal insights about the nature of the data, Representation
Learning approaches such as autoencoders come in handy. Autoen-
coders are models designed to reconstruct the input data while learning
a compressed representation of it, the so-called latent space. Their
applications are quite widespread in anomaly diagnosis, being the
most common case that in which the probability distribution of non-
anomalous data is learned in order to detect, through reconstruction
errors, patterns that do not correspond to that distribution [26-28].

The key element of these models is that their performance is based
directly on internal representations, which in turn can be used to
better understand the problem itself. Accordingly, they have been used
to identify anomalous elements within a set of systems with similar
characteristics, such as fleets of vehicles or aircraft engines [29,30]. In
these cases, the compression capacity of the autoencoder is exploited,
thus enhancing the interpretability of the latent space: assuming that
anomalies are infrequent, those points in the latent space furthest away
from the most populated clusters can be identified as such. However,
the main limitation is that, unlike other dimensionality reduction meth-
ods like PCA [31,32], the relative distances between the input patterns
are not necessarily preserved in the projection of the encoder, therefore
this cluster analysis is not always possible. This problem was solved
with Variational Autoencoders (VAESs). In VAESs, variational inference is
added to the error function through the Kullback-Leibler term, which
guarantees that data with similar patterns will also be encoded nearby
in the latent space. VAEs are a recent but well-known alternative with
numerous applications in anomaly analysis [33-35].
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The problem of determining the RUL of a system, on the other hand,
has been studied in less depth. This problem has many points in com-
mon with the diagnosis of anomalies and has also been solved by using
autoencoders [36,37]. Despite these similarities, both problems have a
fundamental difference: in anomaly diagnosis, the aim is to look for
individuals in unlikely areas of the latent space. In RUL prediction, on
the contrary, the objective for a complete and interpretable diagnosis
should be to project the evolution of the system in the latent space
over time in order to know how fast it is moving towards anomalous
zones. The presence of anomalies is indeed correlated with the RUL
since anomalous latent states usually correspond to low RUL values.
However, two systems can be in the same initial condition but have a
different temporal evolution, so that the successive states of the system
cannot be studied independently as is done in anomaly detection.
Instead, RUL estimation must be linked to the temporal analysis of
complete state trajectories in the latent space.

In this line of research, we have recently proposed a new VAE
architecture where the input and output layers are recurrent [38], as
VAE applications are mainly oriented to the image domain and not so
much to time series data, which is the case of RUL estimation. This
architecture allows obtaining projections of state sequences and solves
to some extent the problem of applying VAEs to RUL estimation since
variational inference guarantees that systems with similar degradation
patterns are going to be projected in close areas of the latent space. The
recurrent VAE thus allows differentiation of systems with anomalous
trajectories, however, this method is not a complete solution to the RUL
estimation problem, mainly for two reasons:

1. It does not produce a numerical estimation of the system life-
time. It only separates low RUL systems from high RUL systems,
but does not quantify what the RUL value is at each time step.

2. There is no guarantee that the time evolution of the trajectory
projections are correctly separated (see Fig. 1), so it does not
provide a solution to the problems of fleet health prognosis.

Concerning the second reason, it should be noted that RUL esti-
mation, in real-world cases, is an online process: the useful life of
each system is continuously updated as new data is received. For this
reason, it is not enough that the new points are located in the vicinity
of the previous ones: the successive projections of each system in the
latent space, as time progresses, must form a continuous trajectory,
which can be extrapolated into the future. In this way, it will be
possible to diagnose continuous degradations over time (such as wear,
efficiency losses, etc.) that affect the RUL, but which do not correspond
to occasional events and therefore cannot be identified by anomaly
detection analysis.

In this study, we solve the two open problems mentioned above by
the combined use of a new neural architecture based on a recurrent
variational encoder and a fresh way of regularizing training. To this
end, we propose a new cost function related to the association of the
Kullback-Leibler term with a second term that favors that the projec-
tions of successive states of the engines in the latent space constitute a
continuous trajectory. This second term, as will be further explained,
penalizes the successive RUL prediction errors over time, having a
positive influence both on the ability of the new network to predict
the lifetime of the engines and on the quality of the latent space.
Thus, we take full advantage of the use of novel recurrent network
architectures without giving up Representation Learning properties due
to the construction of a latent space with suitable properties to provide
a visual, hence explainable and interpretable diagnosis. The method
is first validated with the popular C-MAPSS dataset from NASA and
subsequently tested on a real environment.

The structure of this paper is organized as follows: Section 2 in-
troduces the settings carried out to approach this problem. A detailed
description of the proposed method for achieving an explainable di-
agnosis of aircraft engines is described in Section 3. The experimen-
tal set-up is explained in Section 4. Experimental results concerning
both a benchmark problem and a real-world problem are presented in
Section 5 while conclusions are drawn in Section 6.
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Fig. 1. In a vanilla VAE, training is regularized to prioritize generative purposes. This
results in a dispersed latent projection of the system trajectory as in the figure on
the left, in which there is no clear evolution between the state of the equipment at
the beginning (white dot) and at the end of evaluation (red dot). On the contrary, a
projection like the one in the figure on the right is what we are aiming for.

2. Problem settings

Before delving into the details of the model and results, it is of
particular interest to highlight some important issues which are of
great impact in achieving optimal performance and will help to better
understand the problem itself.

2.1. RUL estimation

RUL stands for Remaining Useful Life and is a popular metric in
prognostics, especially in aircraft monitoring [39]. Normally, sensors
such as turbine pressure or compressor temperature are used to collect
flight information about the engine. This data form a multi-valued
series. The jth element of the series is a vector of h elements, each
of which is the reading of one of the available sensors taken at the
jth time instant. Having this information for several engines, a dataset
could be formed from which to train a model to estimate the number
of remaining time cycles in which a new unseen aircraft works well
before failure, i.e its RUL.

In this paper, the proposed method is evaluated on the popular
NASA’s engine degradation dataset [40], known as C-MAPPS. Although
it was published several years ago, it is still relevant today, (perhaps
motivated by the fact that there are hardly any other similar datasets in
the field), being the standard problem on which to test new RUL estima-
tion models. This dataset contains simulated data of Turbofan engines
produced by Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS), a model-based simulation program. It is composed of multi-
variate temporal data obtained from twenty-one sensors and is further
divided into 4 sub-datasets. As can be seen in Table 1, in each sub-
dataset a training set and a test set are provided, from which there is
a slight difference. The training set comprises run-to-failure data. That
is, although each engine unit starts with different degradation states
that are unknown, these are considered healthy and as time progresses,
the engine units degrade to failure, therefore the last data sample
corresponds to the time cycle in which the engine unit is declared
unhealthy (RUL = 0). On the contrary, sensor records in the test sets
terminate at some point before system failure and the actual RUL value
for these engines is provided. The aim of this problem is to estimate the
RUL of each engine in the test sets. It should be noted that training
on a particular sub-dataset might be not applicable on another sub-
dataset because the operating and failure conditions are different. There
are promising approaches such as [41] in which adaptive methods are
adopted to avoid these differences between training and test sets and
thus avoid offline training. However, this is out of the scope of this
work. Since there are four different sub-datasets, we train our model
on each training set and evaluate on the test sets as they have exactly
the same conditions.
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Table 1
Data sets details.
FD0O01 FD002 FD003 FD004
Train trajectories 100 260 100 249
Test trajectories 100 259 100 248
Operating conditions 1 6 1 6
Fault conditions 1 1 2 2
250
— True RUL
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Fig. 2. RUL target function.

2.1.1. RUL target function

In prognostic problems, as the system always tends to deteriorate,
it is quite usual to assume degradation behavior. Thus, a target RUL
can be constructed based on these assumptions to guide the model
training and enhance its predictions in a supervised manner. The most
naive approach would be to assume that RUL decreases linearly over
time, however, when analyzing the sensor signals, there is a common
pattern: many sensors seem rather constant at the beginning until a
breakpoint occurs that makes the engine degrade linearly with usage.
The piecewise linear degradation model proposed in [42] follows this
idea and is the most extended target function used in the literature. It
simply limits the maximum value of the RUL function as illustrated in
2. We use this degradation model to obtain the RUL label with respect
to each training sample at each time-step. The maximum RUL is set
at 125 cycles. This is used to make fair comparisons with respect to
other models that used the same methodology, but it should be noted
that this is just a guideline value. Different equipment in the system
has different lifetimes and different degradation trajectories, therefore
this value may be too high or too low for different individuals. In [43]
the authors propose a new methodology to construct the target RUL for
each individual in order not to rely on a single value. However, there is
still no consensus on the best way to teach the algorithm the behavior
of the system. Precisely, this can be considered a bottleneck and that is
why it is desirable to provide learning that does not depend exclusively
on this function. In this work, we learn the nature of the data in an
unsupervised manner with variational inference and fine tune it with
the labels to improve predictions. Thereby, what the model learns is
guided more by the nature of the data than by the labels themselves.

2.2. Metrics

In order to establish a fair comparison with the rest of the ap-
proaches the same metrics used in most similar works are chosen. On
the one hand, there is the original metric proposed by NASA in PHM
2008 Data Challenge, which is described in Eq. (1), where N is the
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number of engines in the test set, S is the computed score, and d =
(Estimated RUL - True RUL).
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The main objective of this function is to differentiate late predictions
from early predictions. The former are more penalized because it is
understood that it is too late to perform maintenance while early
predictions are not a major problem. Although maintenance resources
could be wasted, priority is given to penalizing false negatives. This
has some drawbacks since, if there is an outlier leading to a late
prediction, this would dominate the overall performance score, thus
masking the true overall accuracy of the algorithm. In addition, the
level of confidence with which the algorithm is able to estimate the
RUL value before the failure point is also not taken into account.

Due to these shortcomings, the use of RMSE is also proposed as it
gives equal weight to early and late predictions:

RMSE = 2)

The use of RMSE together with the scoring function (Eq. (1))
would avoid favoring an algorithm that artificially lowers the score by
underestimating, which is quite likely due to the reasons exposed, by
resulting in a higher RMSE. In summary, both metrics complement each
other by providing more information about the accuracy of the model.

3. Model

The proposed model consists of three components: an encoder net-
work, a regression model and a latent space. The encoder learns to
compress the data into the latent space so that it is described by
the parameters that initialize the probability distribution to which
the data belongs. Variational inference is added to the loss function
through the Kullback-Leibler divergence, which measures how much
one probability distribution diverges from another, to learn the above-
mentioned parameters. A second term is also added to penalize wrong
estimations of the regression model. In the end, all this allows a latent
space to be learned in which similar data is located in nearby areas
from which to efficiently perform other tasks.

The workflow followed for this problem is depicted in Fig. 3. The
model is trained with data from aircraft engines to learn a simplified
representation of their trajectories. Thus, the resulting encoder acts as
a feature extractor compressing into the latent space the data according
to their properties, which are different stages of degradation in the
engines. The latent space contains the compressed representation of the
aircraft, particularly in 2 dimensions. This representation will be used
after training is completed to visually evaluate the degradation patterns
of the engines. Finally, a numerical prediction of the RUL that best
represents each engine that is fed to the model is provided by training a
regression model directly with the features learned in the latent space.
This section explains the main differences between our model and a
VAE and how the encoder output can be leveraged to create the visual
diagnosis we propose. Emphasis is placed on the implementation of the
recurrent architecture for dealing with time series, as well as how latent
features lead to perform RUL estimation.

3.1. Variational encoding
Variational encoding refers to the process of compressing input data

based on variational inference, a key element in our research, as stated
in the introduction. This process is the basis for the operation of VAEs,
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therefore it is important to know how they work in order to clarify the
differences with respect to our model. In a VAE the training process is
regularized to avoid overfitting and to ensure that the latent space has
the necessary properties that enable the generative process. To obtain
them, the encoder must map the data in the latent space in such a way
that similar data is close to each other. This allows the decoder not only
to reconstruct the data efficiently but also to generate new instances
from points in the latent space that do not correspond to the encoding
of any training sample.

VAEs compress the input data into a latent vector, which is a
simplified representation, described as p(x) = p(x|z)p(z)dz, where the
domain of z is continuous and therefore intractable. For this reason
variational inference is used since this intractability can be solved via
the lower bound of the log-likelihood [44], £

Loge = E%(z\x)[log[?g(xh)] — Dy (q4(z|%)||py(2)) 3

The first term is the reconstruction of x that tends to make the
coding-decoding scheme as efficient as possible by maximizing the
log-likelihood log py(x|z) with sampling from g,4(z|x), modeled by the
encoder, whose output is the parameters of a multivariate Gaussian: a
mean and a diagonal covariance matrix. In other words, the main goal
of the encoder is to map the input data into a lower-dimensional space,
acting as a feature extractor. The second term tends to regularize the
organization of the latent space by causing the distributions returned
by the encoder to approach a standard normal. It regularizes the latent
variables (represented by z) by minimizing the KL divergence between
the variational approximation and the prior distribution of z.

The data is reconstructed from the conditional probability distri-
bution p(x-z), learned by the encoder. For generative purposes, the
regularization produced in the latent space facilitates random sampling
and interpolation for the creation of new data. This is why VAEs are
understood as generative models and their use is widespread as such.

Nevertheless, we do not strive to generate new aircraft data, but
to diagnose it by making use of latent representations. VAEs latent
space, in contrast, is not usually used for clustering or visualization
despite it has promising properties for this. In fact, there are works
in which this has been taken advantage of, as in [45] in what they
refer to as the latent-feature discriminative model. The authors trained
a VAE and then fed a classifier with the outputs obtained from the
resulting encoder. Still, this is not further explored in the literature
since VAEs are mainly oriented to generative tasks and this causes the
regularization of the latent space to lead the encoder to project the data
as compressed as possible, resulting in obvious overlaps.

This is a barrier to our objectives because these overlaps make
it difficult to estimate the RUL. First visually: although aircraft with
similar RUL values will be close on the map, they will not be clearly
differentiated from those that are far away. Then, because any model
built on top of this will be guided by this representation and will most
likely result in prediction failures. Therefore, a vanilla VAE does not
meet our needs and we must adapt the use of variational inference
for our problem: what we want is to enhance the latent organizational
properties of variational encoding by using a regressor, not a classifier,
and not once the model is trained, but while it is being trained.

The image on the left in Fig. 4 represents why the approach men-
tioned in [45] is not suitable for the problem at hand. It corresponds
to the latent space the encoder learns after training the model without
any restrictions thence the regularization of the latent space for the
generation of new data is prioritized. This causes the input data to be
placed in areas where instances whose features are not similar (differ-
ent RUL values) are not clearly differentiated or even overlap. As this
approach suggests, a simple regressor was trained on the frozen encoder
weights, however, this overlap severely penalizes the performance in
RUL estimation, making it unable to compete with other state-of-the-
art methods. There are promising works that propose to solve this by
including regression errors in the training process as in [46], although
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Fig. 3. Workflow followed for the proposed approach: aircraft data is fed into the encoder, which learns a latent representation based on deterioration patterns in order to build
a graphical map reflecting the evolution of their trajectories. The regressor directly influences obtaining such a latent space and allows to report numerically the RUL of each

engine.

Fig. 4. Latent representations learned by the encoder for FDOO1. The figure on the left shows the regular training of a VAE, while the figure on the right shows the result with
our model, which does not include the decoder but a regression model that adds a penalty for wrong predictions.

the decoder is still used, which may wrongly interfere with our ultimate
goal: the diagnosis of the aviation history of the engines.

Instead, the path we decide to take includes the omission of the
decoder to focus learning on obtaining an interpretable latent space.
Thereby, the main difference with respect to a VAE is that we replace
the decoder with a regression model, as shown in Fig. 3, and the
training is done differently. Our proposed model is trained to minimize
a loss function composed of two objectives:

L, = =Dy (44z[X)||pp(2)) + RMSE 4

The first objective corresponds to the regularization of the latent
space through variational inference, as explained before in Eq. (3)
and the second one is the Root Mean Square Error (RMSE) between
the known RULs and the RULs predicted by the model. Including the
regressor optimization in the loss function adds a constraint to the

model, as it will strive not only for a continuous latent space, but
also for a space in which different types of trajectories, and so with
different associated RUL values, are sufficiently separated to be clearly
differentiated so that the evolution of degradation in an aircraft can
be observed. The right part of Fig. 4 demonstrates the effectiveness
of training the model in this way. The architecture of the regressor is
simple: on top of the encoder base, a fully connected layer with a tanh
activation function and another layer with a single neuron containing
the RUL prediction are added.

As for the encoder, we decide to implement it with recurrent
networks given that most recent studies make use of them to model
the time complexity of historical aircraft data [47,48]. Among the
different types of RNNs that can be found, LSTM networks are the
most popular. These networks process data from backward to forward
conserving information from the past through hidden states. However,
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Bidirectional LSTM networks are in high demand because they provide
not only information about the past but also about the future: data
is first processed from past to future and then from future to past,
thus preserving the information from both periods. This is quite helpful
because the network is aware of what the data may look like in its
future stages, which helps it to understand what kind of information to
predict (different stages of engine deterioration). All in all, we decide
to implement the model with this type of network.

In summary, the encoder, built with bidirectional LSTMs, approx-
imates the Gaussian distribution p,(z) by feeding the output into two
linear modules to estimate its mean and covariance. This means that
the compression of the engine data by the encoder results in a two-
dimensional latent space whose axes would be the mean and covariance
of the approximate distribution. Consequently, the learned latent space
is expected to group engine trajectories into different clusters accord-
ing to their underlying nature, illustrating a simplified representation.
Furthermore, the regressor influences directly over the organization of
the latent space and can report explicitly which RUL value is the one
that best represents the cycles belonging to each engine unit that is fed
to the model.

3.2. Interpretable diagnosis

The diagnostic tool introduced in this work is a map that shows the
actual state of the engine and also the rate of change from healthy to
deteriorated. What we pursue is a map in which each point represents
the status of an engine associated with a window of events during
its flight history so that points of degraded aircraft are grouped in
nearby areas and, on the contrary, points belonging to healthy aircraft
are located in more distant areas. As the actual health status of the
training aircraft will be known, since we used the RUL target function,
a color scale can be established to clearly differentiate healthy aircraft
from deteriorated or totally deteriorated aircraft, coloring each point
according to its corresponding RUL. Thinking about how variational
inference works, this can be easily put into practice: once the model
has been trained with the engine data, each input can be encoded
into the latent space, being represented in terms of the mean and
variance of the approximate distribution learned. This means that the
data can be projected into the latent space and each point will be
clustered near those with a similar degradation pattern. An example
of one of the maps produced by this algorithm is shown in Fig. 4,
right side. Aircraft with high RUL values are painted in yellow while
aircraft with low RUL values are painted in dark purple. It can be
observed that there is a clear progression in the colors along the map
since events with no or low deterioration are located in the upper
part of the map (high RUL values) while the most deteriorated ones
are located in the lower part (low RUL values). This representation
can be used later: when new unseen engine events are used as inputs,
the encoder will place them according to their characteristics, giving
information about their RUL depending on the proximity to other
nearby points whose diagnosis is known. This is why it is considered
explainable, since the method’s decisions are based entirely on the
learned representation and can therefore be justified; and interpretable,
because a simple glance at the map gives insight into the status of each
engine unit. Other Deep Learning methods can also reveal interpretable
information in intermediate layers, however, extra processing is needed
in order to find the most suitable layers or to transform the content
of these layers into human readable information. An example of this
is the embedding projector of tensorflow [49], which applies different
dimensionality reduction methods such as UMAP, T-SNE or PCA to
provide a visualization of the embedding layer. In contrast to this, our
method provides a direct 2-D compression, which does not need any
further processing. More details on the interpretation of this map are
given in the following section.
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4. Experimental design

Table 1 shows the different levels of difficulty of the datasets
according to the last two rows. Each dataset can operate under dif-
ferent operating conditions and the system failure can be caused by
two components: the turbine and the compressor. Thus, FD001 and
FDO03 operate under the same conditions although FD003 includes
engines whose failure could be caused by either of the two mentioned
components. Then, FDO02 operates under 6 operating conditions as
does FD0O04, while in FD004, as in FD003, the failure conditions cover
both turbine and compressor failure. In this sense, it is believed that
according to their characteristics, the level of difficulty of the datasets,
in increasing order, is: FD0O01, FD003, FD002, FD004. Some studies
focus on a particular dataset [50,51] and others explore in detail the
impact of different hyperparameters such as the number of sensors to
use or the upper limit for the target function for each dataset [43].
Still, this is a benchmark problem and the interest lies in finding a pre-
processing procedure that can be applied to similar problems, rather
than finding the ideal series of steps for a particular dataset.

For this reason, the decision we make, since the different failure
conditions do not have a major impact on pre-processing, is to focus
on those samples where the operating conditions are different. In
those cases, even a simple exploratory analysis would yield little or
no information concerning the signals because apparently operating
conditions change between cycles, which makes analyzing and pre-
dicting RUL much more complex. It is important to take this into
account when normalizing data, although it is something that seems to
be overlooked in other papers since min—-max normalization is usually
used [15]. Instead, we take another path by using a condition-based
standardization. With this approach, all records of the same operating
condition are grouped together and scaled using a standard scaler.
The application of this type of scaling will bring the average of the
grouped operating conditions to zero. As this technique is applied for
each operating condition separately, all signals will receive an average
of zero, making them comparable [52].

On the other hand, although sensor data have a general trend, it is
known that they are subject to local oscillations, mainly caused by high-
frequency sensors, which lead to noise [23,43]. To ease the processing
of the series, an exponential weighted moving average is carried out.
It takes the current value and the previous filtered value into account
when calculating the filtered value:

X =axX;+(1-a)*X]_|

where X j’ is the filtered value of X; and « the strength of the filter.
Lower values for a« will have a stronger smoothing effect and conse-
quently, stationarity is lost. Nevertheless, stronger smoothings lead to
better model performance. It is important to note that what we intend
to model is not the detection of failure points, but the changes in the
degradation rate, i.e. those breakpoints where after some time, the
engine parts deteriorate at a different rate than they did before. For
this reason, the smoothing we apply does not adversely affect the data.
Furthermore, the sole purpose of the filter is to reduce oscillations in
the sensor measurements, therefore in no case is smoothing applied that
would compromise the trend of the data.

In time series problems it is quite recurrent to split the data into
sequences for better prediction performance. That is, multivariate series
are not processed for each engine but are sliced into fixed-size windows
as shown in Fig. 5. At each time step, data is picked from sensors within
the time window to form a high-dimensional feature vector used as
inputs to the network to predict the RUL. Thus, each input sample in
our network contains thirty single-cycle data which is extracted from
the following six sensors: T30, T50, P30, EPRA, PS30, phi and the aim
is to find patterns in those time-windows that can lead to an adequate
RUL estimation. There may be cases in which the partitioning of the
sequences for a particular engine in the last few cycles may not have
enough data to complete the length of the window. In those cases a
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Fig. 5. Time window framing.

masked value is used and will be treated in the first layer of the model
by simply ignoring those values. In this way, as much information as
possible is used.

In the experiments performed, although there are not so many
hyperparameters to adjust, the impact of those that are present is
very noticeable in the final performance of the model. Thus, the time
window length, the intensity of smoothing or the internal number
of neurons of the recurrent layers are key elements. Hyperparameter
tuning is an arduous task that in this case was driven by our own
experience along with the use of the Hyperopt Bayesian optimization
library [53] to find the final configuration. On the other hand, an
accurate choice of the LR is particularly essential to improve the
optimization process, therefore for this parameter an adaptive LR opti-
mizer, Adam, and the Cyclic Learning Rate technique proposed in [54]
were used to help to select the optimal LR with which to start the
training. In addition, to achieve the best possible performance of our
model, we used callbacks to customize our experiments in terms of
relegating the training stop condition to the validation error instead
of the number of epochs. These tweaks led us to find the best results
for the functions to be optimized.

The choice of the sensors is not arbitrary, we only use the following
six: T30, T50, P30, EPRA, PS30 and phi, which are precisely the ones
available in the real problem we introduce later on. Note that in both
datasets the engines are Turbofan aircraft engines. Surprisingly, we
found that out of the twenty-one provided sensors, of which most of
them are used in similar works, using only these not only reduces com-
putational costs but also gives sufficient information to predict the RUL
efficiently. Moreover, for datasets FDOO1 and FD0O03 the EPRA sensor
is not necessary since it measures the engine thrust under different
operating conditions while FDOO1 and FD0O3 operate under the same
condition and so this sensor does not provide relevant information, the
captured values simply remain constant.

Finally, 20% of the training data was used for validation, resulting
in 17692 training samples and 4128 validation samples for FDOO1 and
FDO003, 37432 training samples and 8787 validation samples for FD002
and finally 43523 training samples and 10505 validation samples for
FDO004. All models and experiments were implemented in TensorFlow.
Further details regarding the experimental setup and the source code to
reproduce the experimental results are available in the following pub-
lic git repository: https://github.com/NahuelCostaCortez/Remaining-
Useful-Life-Estimation-Variational

5. Experimental results

The experimental validation of the proposed framework has two
parts. First, C-MAPSS datasets are used to compare our framework
with other state-of-the-art approaches for RUL estimation. Secondly,
C-MAPSS engines as well as actual engines from the real problem we
present are diagnosed based on their projections in the latent space.
We begin by introducing the numerical results, the diagnostic map
achieved is then presented and finally, the experimental validation is
discussed.
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5.1. Results on C-MAPSS

In this section we demonstrate that our framework can compete
with state-of-the-art methods for RUL estimation. Both the training and
test sets used are the same for all methods, since both sets are provided
in the original dataset, as stated in Table 1. It is worth mentioning
that the baseline methods we present, which collect the most impactful
approaches to date, do not provide any representation of the data, but
merely predict the RUL corresponding to the next time step. This makes
us appreciate the importance of Representation Learning as it provides
a piece of more illustrative information than a simple numerical or
categorical result.

The comparison results of the proposed framework with other pop-
ular approaches on the test sets are listed in Table 2 where the selected
metrics of all methods, included ours, labeled as RVE (Recurrent Vari-
ational Encoder), are listed for every dataset. Results in which our
method outperforms the others are highlighted in bold. It can be
quickly noted that with datasets FDOO1 and FDO003, although the
metrics are considered good, they are not the best. However, the
interest lies mostly in FD002 and FD004 as the increasing number of
operating conditions and failure modes make these two datasets contain
more complicated multiscale degradation features. RVE significantly
improves prediction accuracy in these two for both Score and RMSE,
due to its good feature extraction capability in the face of these complex
fault prediction problems. The comparison also includes a row labeled
“VAE+RNN”, which corresponds to the adaptation of a recurrent VAE
to this problem. The superiority of our model can be clearly seen.
Although both use variational inference, the numerical differences are
explained by the different latent spaces obtained: one dispersed and
the other one continuous (recall Figs. 1 and 4), allowing the latter to
improve the predictive capabilities of the model.

RUL estimations for the life-time of some testing engine units cor-
responding to the different datasets are shown in Fig. 6. It is very
common to see figures like these in papers working with C-MAPSS,
exhibited to obtain an understanding of the model’s performance. The
RUL constructed from the piece-wise function is represented in orange,
of which C-MAPSS provides the RUL corresponding to the last cycle.
RUL values predicted at each time instant by our method are presented
in blue. It is clearly seen that the network is able to model this
degradation to, finally, accurately predict the real RUL of the engine.
However, this is not enough to explain the performance of the model
and this is where we differ from other methods.

These kind of figures seem very clear and promising but despite
being good predictions, there is a gap when it comes to explainability
of the model’s decisions and internal representations. A gap that can
be filled with techniques such as the one we propose. As explained
in Section 3, the latent space build by the encoder serves as a basis
for creating a map that allows us to understand the evolution of the
data over time and Fig. 7 is a sample of this. Each map represents the
latent space obtained for the set of cycles traveled by each aircraft
shown in Fig. 6. That is, for example, for plane #7 the compressed
representation of the first thirty cycles corresponds to the first upper
left red dot, while the compressed representation of the last thirty
would be the last lower right red dot. The remaining points correspond
to the representations of each data sample seen during training. The
encoder learns to locate in the latent space each data window passed
to it according to its characteristics. Thus, in all the exposed maps, in
which the RUL is labeled in the color bar, it can be seen that when
the airplane is operating in favorable conditions (high RUL values), its
latent representation is located in the upper left zone and, as it begins to
degrade, this location moves to the right until the data indicating that
the airplane is degraded (low RUL) are located in the lower rightmost
area.

In this way, a model that can be fed with data from the trajectories
of an aircraft that has flown at least thirty cycles is achieved. From
there, the model can be fed each time a new data sample is available
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Fig. 6. Four examples of life-time RUL predictions for testing units: #34 corresponding to FD0O01, #7 corresponding to FD002, #99 corresponding to FD003 and #40 corresponding

to FDOO04.

in order to obtain the two diagnostics we are looking for. First, a visual
diagnosis is presented in which, based on the proximity to samples
whose condition is known, the state of the aircraft at that particu-
lar moment is perceived. In https://github.com/NahuelCostaCortez/
Remaining-Useful-Life-Estimation- Variational /tree/main/images/gifs

there are some gifs available corresponding to the engines from Figs. 6
and 7 in which the speed of deterioration suffered by these airplanes
along the cycles can be appreciated. Second, a quantitative diagnosis

is obtained that explicitly reports the RUL value that determines the
remaining life time of the aircraft.

5.2. Results on a real-world problem

To illustrate how the proposed model may work in a more realistic
context, an example for actual engines is presented below. The data
is sampled on Turbofan engines under actual conditions of use. Un-
fortunately, for confidentiality reasons, we are unable to disclose the
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Fig. 7. Latent predictions for every time-step of the samples presented in 6.

name of the company or make the data set public. Nevertheless, a brief
description of the engines is provided in Table 3.

The pre-processing applied is the same as the one explained in
Section 4. The objective is to convert the data from each engine into
inputs that can be processed by the network. During training, as in
the NASA’s dataset, the model learns different deterioration patterns
which leads the encoder to project the engine units into the latent
space according to their degradation, maintaining coherence in the

distances between healthy and compromised engines. This projection
is again used as a basis to find out, given undiagnosed units, how
their degradation evolves as the number of flights increases. Fig. 8, as
the above-mentioned gifs, pictures this idea: six airplanes have been
chosen to project their state into the latent space in two different time
steps: t = 0 would correspond to feeding the network with the data
corresponding to the cycles from 0 to windows length and so it is the
same with t = 1000, starting from data corresponding to the cycle 1000.



N. Costa and L. Sdnchez

Reliability Engineering and System Safety 222 (2022) 108353

Table 2
Evaluation metrics of different approaches for RUL estimation on C-MAPSS datasets.
FDO001 FD002 FD003 FD004
RMSE Score RMSE Score RMSE Score RMSE Score
MLP [17] 37.56 18000 80.03 7800000 37.39 17 400 77.37 5620000
SVR [17] 20.96 1380 42.00 590000 21.05 1600 45.35 371000
RVR [17] 23.80 1500 31.30 17 400 22.37 1430 34.34 26500
CNN [17] 18.45 1299 30.29 13600 19.82 1600 29.16 7890
Deep LSTM [17] 16.14 338 24.49 4450 16.18 852 28.17 5550
Semi-supervised [23] 12.56 231 22.73 3366 12.10 251 22.66 2840
DCNN [55] 12.61 273.7 22.36 10412 12.64 284.1 23.31 12466
MS-DCNN [55] 11.44 196.22 19.35 3747 11.67 241.89 22.22 4844
VAE+RNN 15.81 326 24.12 4183 14.88 722 26.54 5634
RVE 13.42 323.82 14.92 1379.17 12.51 256.36 16.37 1845.99

Table 3
Summary of the main properties of the engines provided by the manufacturer.

Model/properties Type I engine Type II engine

Thrust ratings between 14,750 and between 14,000 and
15,000 1b 21,500 1b

Flying hours 11m+ 11m+

N° fans 1 2
Fan diameter 48 in. 58 in.
Two-shaft, high-bypass-ratio Yes Yes
engine

The RUL provided by the model is shown in the colorbar. Fixing the
latent projection obtained after training gives us some insight into the
progression of the health status of these units: The latent projection of
engine el, e2, e3 and e4 during the time steps shown remain over the
upper left quadrant, next to other aircraft with similar characteristics:
RUL around two hundred cycles, with no signs of near degradation. On
the contrary, there is a clear progression in samples e5 and e6, which
move clearly downward, being placed together with engine units close
to their end of life (low values of RUL), thus obtaining an accurate and
explainable diagnosis beyond a possible label indicating the predicted
health.

In the figure presented only two time steps have been selected to
show the update of the health status of the engines according to the
data from their sensors. However, it is noteworthy that once enough
data is available to be fed into the network in each subsequent trip this
update can be performed because we are using recurrent networks. This
is where the interest really lies because this update allow us coping
with the non-stationarity of the data distribution and in the end this
can be used as a diagnostic tool. As mentioned in the introduction, this
is an online process, being the useful life of each system continuously
monitored. Particularly in the company, these motors have periodic
maintenance cycles and also have parallel systems that warn in case
of detecting any anomalous operation. The fact of having a diagnostic
system of these characteristics, however, represents an invaluable eco-
nomic saving for the company. This is because the aim of the method is
to prevent such anomalies from occurring. To this end, the degradation
speed of the engines is modeled, so that the acceleration in the normal
degradation speed of an engine can be easily detected. In this way,
the probability of the aircraft having an unexpected event is highly
reduced.

An example of interpretation of the method is as follows: Arrows
were used in Fig. 8 to depict the evolution of each sample, but as
demonstrated in the previous sub-section, a footprint of every step is
recorded (that is, a latent projection is available for t = 1, t = 2, t
= 3 and so on) so there is a clear evolution over time and the rate
of these updates may trigger alerts in a real-world scenario: as long
as the engine projection remains in the healthy range, its evolution
will be considered positive; on the contrary, if the projection moves
towards the red zone rapidly, it may be a clear sign of deterioration,
information that will be used by the mechanics to make a decision
regarding its follow-up, either to make it more exhaustive or to take

10

the aircraft to the workshop for a more complete overhaul, to name
some alternatives. This translates into a prolongation of the useful life
of these engines by being able to anticipate the breaking point at which
severe deterioration may occur.

6. Concluding remarks and future work

We have proposed a novel architecture based on variational encod-
ing with a new way of regularizing latent representations to address
aircraft engine diagnostics. These are obtained through variational
inference and are shaped by a term in the cost function that penal-
izes erroneous RUL estimates. The result is a latent space capable of
projecting the history of engines trajectories continuously and without
abrupt jumps, like other models such as VAEs. As a consequence, the
latent space learned by the encoder is used as a diagnostic tool. It
learns a two-dimensional representation of engine data with different
deterioration stages to, given an unseen engine, project its encoding
near engines with similar degradation patterns. Thus, prevailing an
explainable diagnosis.

We have demonstrated that, besides providing a visual assessment
of the rate of degradation in aircraft engines, our method can also
accurately estimate the RUL. To this end, we used the popular C-MAPSS
simulation dataset on which we outperformed most of the current state-
of-the-art methods. We have shown that the learned latent space can
comprehensively model aircraft degradation history and consequently
improve prediction capabilities. Furthermore, we include a report of
its application to data belonging to actual engines to illustrate its
performance in a real-world scenario.

Lastly, in future works we aim to explore the suitability of the
model in other areas related to condition monitoring and predictive
maintenance. Additionally, it would be of interest to motivate the
model to learn latent features that, beyond differentiating the stages
of degradation, can also explain the different causes of failure.
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Fig. 8. RUL evolution of six selected engines. As the cycles progress, the aircraft are placed in areas close to other aircraft with similar degradation patterns whose diagnosis is
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