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Abstract 18 

Potentially Toxic Elements (PTEs) are contaminants with high toxicity and complex 19 

geochemical behaviour and, therefore, high PTEs contents in soil may affect ecosystems 20 

and/or human health. However, before addressing the measurement of soil pollution, it is 21 

necessary to understand what is meant by pollution-free soil. Often, this background, or 22 

pollution baseline, is undefined or only partially known. Since the concentration of 23 

chemical elements is compositional, as the attributes vary together, here we present a 24 

novel approach to build compositional indicators based on Compositional Data (CoDa) 25 

principles. The steps of this new methodology are: 1) Exploratory data analysis through 26 

variation matrix, biplots or CoDa dendrograms; 2) Selection of geological background in 27 

terms of a trimmed subsample that can be assumed as non-pollutant; 3) Computing the 28 

spread Aitchison distance from each sample point to the trimmed sample; 4) Performing 29 

a compositional balance able to predict the Aitchison distance computed in step 30 

3.Identifying a compositional balance, including pollutant and non-pollutant elements, 31 
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with sparsity and simplicity as properties, is crucial for the construction of a 32 

Compositional Pollution Indicator (CI). Here we explored a database of 150 soil samples 33 

and 37 chemical elements from the contaminated region of Langreo, Northwestern Spain. 34 

There were obtained three Cis: the first two using elements obtained through CoDa 35 

analysis, and the third one selecting a list of pollutants and non-pollutants based on expert 36 

knowledge and previous studies. The three indicators went through a Stochastic 37 

Sequential Gaussian simulation. The results of the 100 computed simulations are 38 

summarized through mean image maps and probability maps of exceeding a given 39 

threshold, thus allowing characterization of the spatial distribution and variability of the 40 

CIs. A better understanding of the trends of relative enrichment and PTEs fate is 41 

discussed.  42 

 43 
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Graphical abstract 47 

 48 

Highlights 49 

 50 

 A novel method to define a baseline for non-polluted soils is proposed. 51 

 A method to build compositional indicators to address soil pollution is proposed. 52 

 Indicators obtained through compositional balances complement expert’s criteria. 53 

 Sequential Gaussian Simulations offer a proper visualization of the indicators. 54 

 55 

 56 



3 
 

1. Introduction 57 

The continuous accumulation of Potentially Toxic Elements (PTEs) in distinct 58 

environmental matrices over time has compromised the health of living organisms and 59 

ecosystem quality, to the point that these substances now pose a major environmental 60 

concern worldwide (Clemens, 2006). In the case of soils, the persistence and non-61 

biodegradability of PTEs (Kabata-Pendias, 2010), have led to a continuous increase in 62 

their concentration in soils, and, consequently, an increased risk to human and 63 

environmental health (Khanam et al., 2020; Cachada et al., 2018). The accumulation of 64 

PTEs can be explained by population growth, accompanied by the development of 65 

industrial activity and housing, which bring with them innumerable sources of pollution 66 

(Kelepertzis et al., 2020; Sánchez de la Campa et al., 2018; Juma et al., 2014; Madrid et 67 

al., 2006). In this context, in recent years, researchers have channeled considerable efforts 68 

into developing methodologies and tools able to offer an accurate characterization of the 69 

spatial distribution of PTEs in soil, as well as to identify geochemical backgrounds or 70 

baselines and their possible enrichment sources (Wang et al., 2021; McIlwaine et al., 71 

2014; Reimann et al., 2005).  72 

Maps are a powerful way to visually represent the spatial distribution of pollutants and 73 

they are a useful tool to support policy-making and vulnerabilities with regard to 74 

environmentally complex scenarios (Lahr and Kooistra, 2010; McKinley et al., 2016). In 75 

soil science, a common strategy to represent the distribution of PTEs consists on mapping 76 

a series of single-component contamination indices or indicators. However, they do not 77 

consider the compositional nature inherent to geochemical data (Filzmoser et al., 2009), 78 

which require to study the geochemical information by means of ratios of proportions 79 

between the chemical elements (Barceló-Vidal and Martín-Fernández, 2016; Pawlowsky-80 

Glahn et al., 2015). In other words, these indices/indicators focus on the study of single 81 
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elements, without considering that the concentration of an individual PTE depends on the 82 

concentrations of the remaining elements, as all of them belong the same whole. The use 83 

of these non-compositional indices is usual in geochemical studies, some of the most 84 

common are the Geoaccumulation Index (Muller, 1969), the Enrichment Factor 85 

(Sucharova et al., 2012), or the Single Pollution Index (SPI) (Hakanson, 1980), and others 86 

recently reviewed in Kowalska et al. (2018). 87 

In the field of geosciences, and particularly in geochemistry, it is well known that 88 

traditional statistical methods directly applied to raw data can fail (Chayes, 1962, 1971). 89 

A solution to those problems was found by Aitchison (1982, 1986) by introducing the 90 

log-ratio approach. Since then, Compositional Data (CoDa) theories have seen a 91 

development towards a better understanding of the sample space of compositional data 92 

and their structure (Pawlowsky-Glahn and Egozcue, 2001). Representations of data in 93 

terms of pwlr (pairwise log ratios), ilr (isometric log-ratio coordinates), clr (centered log-94 

ratio coordinates) and alr (additive log-ratio coordinates) can tackle the compositional 95 

nature of element concentration data (Pawlowsky-Glahn and Egozcue, 2001; Egozcue et 96 

al., 2003; Buccianti and Grunsky, 2014; Kynclova et al., 2017), albeit with different 97 

properties that need to be taken into account. The use of CoDa methodologies has 98 

advanced research in multiple fields of environmental science, including ecotoxicology 99 

(Mullineaux et al., 2021), city pollution (Cicchella et al., 2020), water quality control 100 

(Wei et al., 2018), dynamics (Graziano et al., 2020), and health risk assessment 101 

(Tepanosyan et al., 2020), among many others (Pawlowsky-Glahn and Buccianti, 2011; 102 

Filzmoser et al., 2021).  103 

Moreover, CoDa techniques have shown to be a powerful tool to establish pollution 104 

indices with respect to other environmental matrices, like water (Batsaikhan et al., 2021) 105 

or air contamination (Sowden et al., 2020; Jarauta-Bragulat et al., 2016). In the case of 106 



5 
 

soils, the application of the CoDa approach to tackle the pollution issue has only recently 107 

started to be explored (Boente et al., 2020b, c; Zuzolo et al., 2020). There are also few 108 

studies, specifically focusing on compositional indices or indicators, to address soil 109 

pollution by PTEs. They can be found in the literature (Petrik et al., 2018). Certainly, it 110 

is relatively simple to define geochemical backgrounds or baselines and to track the 111 

pollution when the source is clear, as it happens in areas presenting extreme 112 

concentrations of PTEs over a matrix of unaffected soil (Boente et al., 2022); 113 

Hadjipanagiotou et al., 2020). However, in largely industrialized areas, where there are a 114 

mixture of point-source and diffuse pollution sources, it is difficult to discriminate 115 

sources and other approaches to define geochemical baselines are required (Yotova et al., 116 

2018; Peh et al., 2010). In this context, the great advantage of compositional indices that 117 

involve geochemical backgrounds, like the SPI, is that they are scale-invariant and 118 

subcompositionally coherent, implying that a change in units of the concentrations will 119 

not modify the result of the analysis (Pawlowsky-Glahn et al., 2015; Buccianti and 120 

Pawlowsky-Glahn, 2005). 121 

The aim of the present work is to develop a promising methodology to build 122 

compositional soil pollution indicators based on estimated soil background. Out 123 

methodology is exemplified using the composition of 37 elements, including pollutants 124 

(PTEs) and non-pollutants, for 150 topsoil samples collected in the region of Langreo 125 

(Northwestern Spain). Three main indicators (balances) for specific sub-compositions of 126 

PTEs were built and validated in terms of geochemical backgrounds. Two are data-driven 127 

balances and exclusively based on CoDa multivariate statistical analysis, thus deserving 128 

the name CoDa-driven methods. The third is a balance of elements chosen through criteria 129 

proposed by an expert geochemist (expert criteria), albeit respecting the same CoDa 130 

principles. These three balances were computed as indicators to determine whether 131 
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compositional computation can provide or complement criteria proposed by expert 132 

criteria when identifying global pollution, in such a way that any inexperienced person 133 

would be able to perform a preliminary assessment of soil pollution using the 134 

methodology presented here. 135 

2. Materials and methods 136 

 137 

2.1 Characteristics of the data set and the study area 138 

The data set used in this study is located in the region of Langreo, Spain. It is composed 139 

of the chemical composition of 150 samples from the top 25 cm of the soil, a very usual 140 

depth for environmental geochemistry studies as “shallow” and/or recent soils and 141 

sediments as it is a depth range that contains most of the fingerprint of common point-142 

source and diffuse pollution effects. The distribution of the 150 samples is shown in 143 

Figure 1. All samples were categorized attending to their land use as follows: (1) Forest 144 

(54 points); (2) Farming or Agricultural plots (83 points); (3) Residential (plus recreation, 145 

12 points); and (4) Industrial (1 point). Class (4), industrial use, containing only one point, 146 

is worthless for statistical analysis, but it is a reference point where one expects some 147 

industrial pollution. Sampling points were also classified by height above sea level into 148 

three classes: (1) valley, (2) hillside, and (3) mountain. Figure S1 in the Supplementary 149 

materials A.2 shows these classifications. 150 

According to Baragaño et al., 2020, the parent material of the area corresponds mainly to 151 

Carboniferous and Cretaceous (conglomerates and sandstones) covered by alluvial 152 

deposits along the Nalón River, which crosses the area. Geomorphology of the area 153 

corresponds to wide valleys crossed by the mentioned Nalón River which is 154 

perpendicularly crossed by other narrow. Climatic conditions are typical interior oceanic, 155 
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corresponding to abundant precipitations along the year and mild temperatures the whole 156 

year. 157 

With respect to chemistry, the dataset includes PTEs of variable toxicity (Fabian et al., 158 

2014). A set of 37 elements was reported in the 150 sampling points, thus giving a 37-159 

part composition, which is assumed to represent the soil. The chemical elements 160 

considered (in parenthesis, abbreviation and detection limits in ppm) are silver (Ag; 161 

0.002), aluminium (Al; 100), arsenic (As; 0.1), gold (Au; 0.002), boron (B; 20), barium 162 

(Ba; 0.5), bismuth (Bi; 0.02), calcium (Ca; 100), cadmium (Cd; 0.01), cobalt (Co; 0.1), 163 

copper (Cu; 0.01), chromium (Cr; 0.5), iron (Fe; 100), gallium (Ga; 0.1), mercury (Hg; 164 

0.005), potassium (K; 100), lanthanum (La; 0.5), magnesium (Mg; 100), manganese (Mn; 165 

1), molybdenum (Mo; 0.01), sodium (Na; 10), nickel (Ni; 0.1), phosphorus (P; 10), lead 166 

(Pb; 0.01), sulphur (S; 200), antimony (Sb; 0.02), scandium (Sc; 0.1), selenium (Se; 0.1), 167 

strontium (Sr; 0.5), tellurium (Te; 0.02), thorium (Th; 0.1), titanium (Ti; 10), thallium 168 

(Tl; 0.02), uranium (U; 0.1), vanadium (V; 2), wolfram (W; 0.1), and zinc (Zn; 0.1).  169 

This set of elements encompasses the main pollutants identified in previous studies 170 

(Boente et al., 2020b; 2018), together with trace and major elements useful to identify 171 

both pollution sources and geogenic backgrounds. In general, the dataset contains 172 

information on soils categorized as forests (36% of total samples), farming or agricultural 173 

plots (55%), industrial (1%) and urban/recreational (8%) that were affected by a wide 174 

variety of industrial activities, such as coal mining, metalworking, and chemical factories, 175 

with special mention to those devoted to the production of fertilizers and pharmaceutical 176 

products (Martínez et al., 2014). These industries together with energy production 177 

(thermal power plants) have been operating for more than a century in the area of 178 

Langreo, which is one of the most paradigmatic examples industrialization processes all 179 

along Spain (Prada-Trigo, 2014; Gallego et al., 2016), showing also a remarkable 180 
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pollution imprint in the environmental compartments comparable with similar industrial 181 

areas in Europe (Megido et al., 2017). Following these considerations the area was 182 

recently selected for a wide soil pollution study whose results dataset is used herein; in 183 

this sense a scrupulous description of the sampling campaign design, local geology, and 184 

a comprehensive pollution assessment is detailed in previous studies (Boente et al., 185 

2020b, 2018). 186 

 187 

Figure 1. Location of the 150 samples of the dataset in Langreo (Asturias, Spain). Colour 188 

code indicates the land use (see legend). 189 

 190 

2.2 Nature and requirements of the compositional soil pollution indicator 191 

The definition of a compositional baseline for soil pollution assessment and deviations of 192 

the same requires the consideration of a set of key points: 193 
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 Compositional character (Aitchison, 1986; Eynatten, 2004; Parent et al., 2013; 194 

Mueller and Grunsky, 2016): Soil sample analysis usually reports on 195 

concentrations of chemical elements and/or other chemicals present. These 196 

analyses should be considered compositional, i.e., as a single composition. The 197 

indicators should be coherent with this preliminary assumption. 198 

 Definition of pollution: Pollution is here defined as an anomaly (compositional 199 

difference) of the composition of one sample compared to what is considered a 200 

non-polluted, natural soil, called background. The background should include 201 

elements that experts consider pollutants, as well as non-pollutant components. 202 

 Spatial changes in background: Although it is possible to define a universal 203 

background, it is a very rough estimate (Reimann et al., 2005). It is preferable to 204 

consider a spatially variable background, thus allowing removal of the efects of 205 

geological variations or other natural effects. This means that, in an analysis of 206 

pollution, natural sources of variability should be removed, and human-introduced 207 

changes should be retained. Thus, pollution is intended to account for 208 

geochemical anomalies caused by humans. 209 

 The indicator as a log-contrast: As stated in Tolosana-Delgado et al. (2005), an 210 

indicator is a function of the sample composition. The main principle in 211 

compositional analysis is that summary functions should be scale-invariant, thus 212 

acknowledging the compositional character of the data. Scale-invariant linear 213 

functions on compositions are called log-contrasts. They are linear combinations 214 

of the logarithms of the parts, such that the sum of their coefficients is zero, thus 215 

assuring scale invariance. However, log-contrasts involving many elements can 216 

be difficult to interpret and might not be useful if some of the elements involved 217 

are not reported in the sample. Sparsity and simplicity are therefore desirable 218 
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properties of any indicator. Compositional balances are a general form of 219 

indicators, as they are log-ratios of the geometric means of parts. They attain 220 

simplicity and, if a small number of parts are involved, are also sparse. 221 

 One indicator for each sort of pollution: There are different types of pollution 222 

and distinguishing them may be important. For instance, pollution can derive from 223 

agriculture, water from cities, industry, etc. When compositional samples are 224 

represented in coordinates, these distinct types of pollution are identified with 225 

directions in the sample space. Each of these directions can define a specific 226 

indicator associated with the type of contamination (Tolosana-Delgado et al., 227 

2005). The study of these different types of contamination requires the availability 228 

of samples covering all these types of pollution and qualitative classification of 229 

the types, thus allowing discriminant analyses. 230 

2.3 Compositional data 231 

The early fundamentals on compositional data can be found in the seminal work by 232 

Aitchison (1986). These early contributions are explained and extended in works of 233 

general purpose like Pawlowsky-Glahn et al. (2015); Boogaart and Tolosana-Delgado 234 

(2013); Filzmoser and Hron (2011); Pawlowsky-Glahn and Buccianti (2011); Egozcue 235 

and Pawlowsky-Glahn (2019a). Only specific references on CoDa are cited below.  236 

The analysis of a soil sample, given by its chemical composition, in units like mg/kg, 237 

should be conducted under the assumption that these data are compositional. Indeed, the 238 

conversion of units from mg/kg to g/kg, for instance, or the expression of units in 239 

proportions adding to 1, that is to say by multiplying all elements by 1.000 , or dividing 240 

them by the sum of all observed elements respectively, must not change the information 241 

in the sample. This is summarized in one of the principles of CoDa analysis, named Scale 242 

Invariance Principle. As a result, when performing data analysis, the functions used to 243 
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describe the composition should be invariant under multiplication by a positive constant. 244 

Also, any composition can be expressed in proportions (components adding to 1) without 245 

adding or losing any information and irrespective of the units in which the data were 246 

initially reported. 247 

A second assumption is known as Subcompositional Coherence Principle. When a soil 248 

composition is observed, the elements reported depend on the analytical procedure used 249 

and its accuracy. The whole periodic table is never reported, only a subset of elements is 250 

measured, and this subset can change in time and campaign. The elements observed form 251 

a composition and any subset of the same is a subcomposition, subject again to the Scale 252 

Invariance Principle. Analyses performed on the initial composition or a subcomposition 253 

should lead to consistent conclusions describing the role of common elements. 254 

Historically, the most frequent violation of these principles is the spurious correlation 255 

phenomenon: correlation between the concentrations of two elements normalized to 256 

proportions in a composition and a subcomposition can give distinct correlation values, 257 

sometimes dramatic, including change of signs. These principles were initially formulated 258 

in Aitchison (1986) and then rephrased and explained elsewhere (e.g. Barceló-Vidal and 259 

Martín-Fernández, 2016; Egozcue and Pawlowsky-Glahn, 2018). 260 

There are cases in which some elements are given as a percentage of major oxides and 261 

trace elements in mg/kg or atomic weight. Then, it is recommended to express the 262 

concentrations in homogenous units, for instance, changing all units to mg/kg. The 263 

conversion of units consists of multiplying each element in the initial composition by a 264 

positive coefficient, which may be different for each element. This operation is called 265 

perturbation (Aitchison, 1986) and it plays the role of an addition between compositions 266 

(the coefficients for the change of units are again a composition). The simplex, 267 

complemented with an operation with real scalars, called powering, and an inner product, 268 
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becomes a Euclidean vector space (Pawlowsky-Glahn and Egozcue, 2001; Billheimer et 269 

al., 2001) (see also previous references in this section). This geometry for CoDa is known 270 

as Aitchison geometry. 271 

An important consequence of the Aitchison geometry is that compositions can be 272 

represented in Cartesian orthogonal coordinates, usually known as isometric log-ratio or 273 

orthonormal log-ratio coordinates (ilr, olr) (Egozcue et al., 2003; Martín-Fernández, 274 

2019), which can be treated as usual in an Euclidean space (Mateu-Figueras et al., 2011). 275 

A practical way of representing compositions by their ilr coordinates is choosing a basis 276 

of the simplex by means of a contrast matrix V. Assume that compositions have D 277 

components, called parts, then V is a (D;D-1)-matrix such that 278 

VTV = ID−1 and VVT = ID − (
1

D
) 11T, (1) 

where (∙)𝑇 denotes matrix transposition, 𝐼𝐷 is the unit matrix of D components and 1 is a 279 

D-vector with all its components equal to one. An intermediate to define ilr-coordinates 280 

is to obtain the so called centered logratio transformation, clr, of the composition 𝑥 =281 

 (𝑥1, 𝑥2, … , 𝑥𝐷)𝑇 defined as 282 

clr(x) = (ln
x1

gm(x)
, ln

x2

gm(x)
, … , ln

xD

gm(x)
)

T

, gm(x) = ∏ xi
1/D

D

i=1

 . (2), 

Then, the ilr-coordinates with respect the basis defined by the contrast matrix V are 283 

𝐳 = ilr(x) = VTclr(x), Cx = ilr−1(z) = Cexp(Vz), (3) 

where the second equality is the recovery of a closed composition from its ilr-coordinates. 284 

The Aitchison distance between compositions x and y can be computed in different ways, 285 

particularly using ilr-coordinates, or the respective clr's: 286 
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da(x, y) = (∑(clri(x) − clri(y))2

D

i=1

)

1/2

= (∑(ilri(x) − ilri(y))2

D−1

i=1

)

1/2

. (4) 

In the exploratory analysis of soil samples, assumed compositional, elementary statistics 287 

change accordingly to the Aitchison geometry of the simplex. The center or 288 

compositional mean is estimated as a compositional average, which is the geometric mean 289 

along the parts of the sample, possibly closed to a constant. The total variance of the 290 

sample can be computed in at least three ways: using the variances of the pairwise log 291 

ratios, the variances of the clr coefficients, or the variances of the ilr-coordinates. Let 𝐗 =292 

[𝑥𝑖𝑗], 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … , 𝐷, be the compositional data matrix; the columns of X, 293 

called parts in the sample, are denoted Xj. Then, the total variance of X is 294 

totVar[𝐗] =
1

2𝐷
∑ ∑ 𝑉𝑎𝑟 [ln (

𝑋𝑗

𝑋𝑘
)]

𝐷

𝑘=1

𝐷

𝑗=1

 

= ∑ 𝑉𝑎𝑟[𝑐𝑙𝑟𝑗(𝑋)]

𝐷

𝑗=1

 

= ∑ 𝑉𝑎𝑟[𝑖𝑙𝑟𝑘(𝑋)]

𝐷−1

𝑘=1

, 

(5) 

where ilr(𝐗), clr(𝐗), are matrices obtained after applying ilr, respectively clr, to the rows 295 

of X. The Var[ilrk(𝐗)] (Var[clrk(𝐗)] is the variance across the sample of the k-th ilr-296 

coordinate (the k-th clr coefficient). The (𝐷, 𝐷)- matrix with entries 𝑉𝑎𝑟 [ln (
𝑋𝑖

𝑋𝑗
)] is called 297 

the variation matrix and each entry compares two parts of the compositional sample. 298 

Interestingly, small values in the variation matrix indicate that the parts are near to 299 

proportionality. This is called linear association for compositional parts (Lovell et al., 300 

2015; Egozcue et al., 2018), and it suggests that information in these parts is almost 301 

equivalent. To make variation matrices comparable, the following normalization is used 302 
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Tjk =
(D − 1)Var [ln (

Xj

Xk
)]

2 totVar[𝐗]
. (6) 

The idea is to compare the entry of the variation matrix with an ideal variation matrix 303 

with identical non-null entries. Then 𝑇𝑗𝑘 ≥ 1 indicates that parts 𝑋𝑗 and 𝑋𝑘 are not linearly 304 

associated. Values 𝑇𝑗𝑘 < 1 do not exclude association, and a rule-of-thumb is that only 305 

𝑇𝑗𝑘 < 0.2 suggests effective linear association (see Table S1 in supplementary material). 306 

The CoDa-biplot is a simultaneous representation of the observations and the clr-307 

transformed components (Aitchison, 1983; Aitchison and Greenacre, 2002). It is obtained 308 

from the singular value decomposition (svd) of the clr transformation of the centered 309 

sample, that is, a principal component analysis of clr(X) after centering, also known as 310 

CoDa-PCA. The loading matrix is a contrast matrix and the principal components are ilr 311 

coordinates. Compared to the principal component analysis applied to raw data and its 312 

biplots, the interpretation of the CoDa-biplot differs in the sense that attention is paid to 313 

the links between the rays corresponding to the clr variables. Some examples are given 314 

in Section 3.1. 315 

The CoDa-PCA is not the only way to obtain an orthogonal basis and its ilr coordinates. 316 

A sequential binary partition (SBP) of the composition (Egozcue and Pawlowsky-Glahn, 317 

2005, 2006) also provides an orthogonal basis. The corresponding ilr coordinates are a 318 

special type of log ratio called balances. For composition x, a balance is of the form 319 

𝐵 (
𝐺

𝐻
) = √

𝑁𝐺𝑁𝐻

𝑁𝐺 + 𝑁𝐻
ln

𝑔𝑚(𝐺)

𝑔𝑚(𝐻)
, (7) 

where G and H are two non-overlapping groups of parts included in x, and 𝑁𝑔, 𝑁ℎ are the 320 

number of parts included in G and H, respectively. Recall that 𝑔𝑚(∙) stands for the 321 

geometric mean as defined in Equation (2). The square root in front of the balance is a 322 
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normalizing constant. In this way, the norm of the element of the basis is unitary, thus 323 

accounting for the number of elements in each group. Balances are important because 324 

they are simple, as parts in each group are treated in a homogeneous way, and, when the 325 

groups G and H include a small number of elements, they are also sparse. Principal 326 

balances (Martín-Fernández et al., 2018) are techniques that attempt to approximate 327 

CoDa-PCA by balances which constitute an ilr basis. The result is an SBP that can be 328 

represented by a tree structure in a dendrogram. In addition to the structure of the SBP, 329 

the CoDa dendrogram shows the decomposition (vertical bars) of the total variance in 330 

variances of ilr coordinates (Eq. 5), and the mean values of the ilr balances, which are 331 

represented by the fulcrum of each vertical bar. If there are two or more classes of 332 

samples, vertical bars corresponding to each class compare the mean and variance of each 333 

balance with the mean and variance of the whole sample. This approach allows an 334 

intuitive comparison of classes of samples. All balances performed and their predictions 335 

were evaluated through linear regression. Statistical applications and CoDa analysis were 336 

performed using R software (R Development Core Team, 2009) and R-package 337 

compositions (Boogaart et al., 2009). 338 

2.4 Spatial modelling – geostatistical approach 339 

The three indicators (CI1, CI2 and CI3), as regionalized variables, were computed 340 

following a two-step geostatistical modelling methodology: 341 

1. The three indicators went through structural analysis and experimental variograms 342 

were then computed. The variogram is a directional function used to compute the 343 

spatial variation structure of regionalized variables (Matheron, 1971; Journel and 344 

Huijbregts, 1978; Pawlowsky-Glahn and Serra, 2019). 345 

2. Sequential Gaussian Simulation (SGS) was used as a stochastic simulation 346 

algorithm over a 100x100 m grid mesh. SGS starts by computing the univariate 347 
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experimental distribution of values and performing a normal score transformation 348 

of the original values to a standard normal distribution. Normal scores at grid node 349 

locations are then simulated sequentially using normal score data through simple 350 

kriging (SK) with  zero mean, assessed by a leaving out cross-validation, as 351 

specified in Goovaerts (1997). Once all normal scores have been simulated they 352 

were back-transformed to their original units. For the computation, the Space-Stat 353 

Software V. 4.0.18, Biomedwere, was used (Albuquerque et al., 2014). 354 

The outcome of a simulation is always a random version of the estimation process, 355 

reproducing the statistics of the known data and building a realistic picture of reality. The 356 

associated spatial uncertainty is visualized through the construction of probability maps 357 

and validated overlapping the geochemical results obtained in each collected point 358 

sample. If multiple sequences of simulation are computed, it is possible to obtain reliable 359 

probabilistic maps. The mean image (MI), together with the representation of the 360 

probability of exceeding a previously defined threshold, allows broad discussion of the 361 

spatial patterns of indicators and the identification of hazard clustering. The Jenks natural 362 

break classification (Jenks, 1967) was used to create ten distinct classes to determine the 363 

best arrangement of values, seeking a reduction in the variance within classes and 364 

maximization of the variance between classes. 365 

3. Results and discussion 366 

3.1 Variation matrix: Looking for associations 367 

The definition of a compositional baseline for soil pollution assessment and deviations of 368 

the same requires the consideration of a set of key points: Table S1 shows the normalized 369 

variation matrix (Egozcue and Pawlowsky-Glahn, 2019b; Egozcue et al., 2018; 370 

Pawlowsky-Glahn et al., 2015) for the chemical parts. Variations larger than 1.0 indicate 371 
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a lack of linear association between the elements. Only values smaller than 0.2 (marked 372 

in blue) suggest a linear association or proportionality. Clear proportionality normally 373 

corresponds to values less than 0.1. Examination of this table reveals that the minimum 374 

value is 0.09 for the association between Fe and Cr. This implies that linear associations 375 

between chemical elements are, in general, weak in this data set. The larger variability 376 

comes from the relation of Ca relative to most elements. The sum of the elements of the 377 

variation matrix over 2D, D = 37 being the number of chemical elements, is the total 378 

variance of the data set, which is 9.77. The lack of strong associations between elements 379 

indicates that it is difficult to identify distinct types of pollution. 380 

3.2 Exploratory analysis 381 

The sampling points shown in Figure 1 were classified according to described in section 382 

2.1. Their spatial distribution does not show any interesting feature, thus suggesting 383 

predominant air transport of contaminants rather than direct deposition. After a CoDa-384 

PCA, Figure 2 shows the covariance and form biplots of the chemical data set. The larger 385 

relative variability of the clr component of Ca is visible in the length of the ray 386 

corresponding to the clr-Ca component, labeled Ca for readability in Figure 2. In fact, all 387 

links from Ca to those of other elements are large in the covariance biplot. The first and 388 

second principal components (ilr coordinates) are log-contrasts whose loadings are shown 389 

in Table 1. For the first principal coordinate, Ca participates with the largest loading, but 390 

many other elements are positively and negatively involved, thereby hindering the 391 

interpretation. A more complex situation appears with the second principal coordinate. 392 

The larger loadings correspond to Th (positive) and Sb (negative), but many other 393 

elements participate with comparable loadings (see Table 1). For the first principal 394 

coordinate, Ca participates with the largest loading, but many other elements are 395 

positively and negatively involved, making the interpretation difficult. Remember that 396 
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the sum of all loadings is necessarily null. A more complex situation appears with the 397 

second principal coordinate. The larger loadings correspond to Th (positive) and Sb 398 

(negative), but many other elements participate with comparable loadings (see Table 1). 399 

FIGURE 2 400 

Table 1. Loadings of the two principal coordinates in the CoDa-PCA, explaining 49.3% of the total 401 
variance. They are the clr components of the principal element of the ilr-basis. As clr representations of 402 
compositions, the sum of these coefficients is zero. The difficulty to interpret the data is obvious in this 403 
case, as many of the loadings are of a similar magnitude. 404 

  pc1 pc2   pc1 pc2   pc1 pc2 

Ag -0.15 -0.14 Ga -0.15 0.12 Sc 0.04 0.19 

Al -0.07 0.19 Hg -0.16 -0.15 Se -0.21 0.06 

As -0.12 -0.05 K 0.01 0.12 Sr 0.31 -0.12 

Au -0.11 -0.46 La -0.08 0.07 Te -0.08 0.06 

B -0.09 0.08 Mg 0.22 0.24 Th -0.05 0.32 

Ba 0.17 -0.13 Mn 0.17 0.17 Ti -0.05 -0.25 

Bi -0.08 -0.03 Mo -0.13 -0.03 Tl -0.15 0.05 

Ca 0.67 -0.17 Na 0.01 0.05 U 0.00 0.05 

Cd 0.10 -0.10 Ni 0.10 0.17 V -0.13 0.08 

Co 0.15 0.21 P 0.13 -0.05 W -0.12 -0.15 

Cr -0.06 0.12 Pb -0.11 -0.19 Zn 0.07 -0.06 

Cu 0.10 -0.08 S -0.01 -0.04    

Fe -0.06 0.15 Sb -0.07 -0.32    
 405 

The most appealing feature of the biplots is that the first principal component seems to 406 

separate the class of forest sample points (green) from the residential plot points (orange). 407 

However, the separation is not clear enough to discriminate every individual point, as 408 

some orange/green points are intercalated. This observation suggests that large ratios of 409 

Ca over other elements is a differential feature between the mentioned classes colored in 410 

green (forest) and yellow/violet (plots/residential). Other features like the association 411 

between Fe and Cr, visible in Table S1, are also discernible in the covariance biplot 412 

(Figure 2). 413 

The difficulties encountered when interpreting principal coordinates suggest that 414 

principal balances (Martín-Fernández et al., 2018) would be useful to identify simple and 415 
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sparse balances approaching principal coordinates and linearly associated elements. A 416 

clustering of the chemical elements based on the variation matrix provides a sequential 417 

binary partition which is visualized in the CoDa-dendrogram in Figure 3 (Pawlowsky-418 

Glahn and Egozcue, 2011). The clustering of variables is seen (short vertical bars 419 

correspond to linear associations). Moreover, the colored bars correspond to different 420 

populations, classified as forest (green), non-residential plots (yellow), and residential 421 

plus recreational-leisure areas (violet). The CoDa-dendrogram in Figure 3 shows the 422 

differences in the mean of the balances for these three classes. Discrimination of the forest 423 

class seems quite reasonable based on some balances shown in Figure 3. Again, Ca is 424 

involved in two balances, placed on the right of the dendrogram, that distinguish between 425 

forest and the other two classes. 426 

A relatively complex balance seems to separate the class corresponding to residential-427 

recreational areas. This balance can be identified in Figure 3 as two groups of elements: 428 

Group A,  including elements starting at Th and running to Te, which includes major non-429 

toxic elements, or not highly toxic elements like K, Na, Al, Fe, associated to the geogenic 430 

elements of the area; and Group B, running from Au to W, which includes PTEs like Hg, 431 

Pb, As and Sb, which are more abundant in the residential-recreational sample points as 432 

reported in previous studies (Boente et al., 2018). This observation again suggests the 433 

predominance of air transportation of major PTEs. 434 

 435 
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 436 

Figure 3. CoDa-dendrogram corresponding to (approximate) principal balances. It was obtained by 437 
clustering parts (chemical elements). The length of vertical bars over horizontal bars is proportional to the 438 
fraction of total variance associated with the split in the sequential binary partition defining the basis of 439 
balances. 440 

3.3 Looking for background for pollution assessment 441 

Quantifying the pollution of soils, or other media like air or water requires a full 442 

understanding of the term pollution-free soil. This background is commonly undefined or 443 

only partially known. An idea of the background in the Langreo case could be achieved 444 

as follows. As an external assessment of pollutants, the official admissibility thresholds 445 

for some chemical elements in soils (BOPA, 2014) were considered. These thresholds for 446 

some PTEs are given as an upper limit admissible value (in mg/kg). Moreover, the 447 

thresholds are specified depending on the land use. Table 2 shows these values in the 448 

columns on the left-hand side. Thresholds for other (Oth.) land uses are, in general, the 449 

most restrictive. 450 

 451 

Table 2. Official thresholds (mg/kg) for some PTEs depending on the land use (labelled Ind. (Industrial), 452 
Urb. (Urban), Oth. (Other), and Recr. (Recreational)). On the left part of the Table, backgrounds (mg/kg) 453 
obtained: the column med is the element-wise median along the whole sample; columns labeled with a 454 
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value correspond to the center of the sample trimmed to different values of the reduction coefficient. Non-455 
available values are marked with - . 456 

Element Ind. Urb. Oth. Recr. med α = 1 α = 0.8 α = 0.6 

Ag 200 20 2 20 0.10 0.10 0.10 0.10 

Al - - - - 11400 10913 10598 11084 

As 200 40 40 40 18.40 17.30 16.90 15.40 

Au - - - - 0.00 0.00 0.00 0.00 

B - - - - 20.00 20.00 20.00 20.00 

Ba 10000 10000 1540 10000 66.80 60.10 55.60 59.30 

Be 205 30 20 140 - - - - 

Bi - - - - 0.40 0.40 0.40 0.30 

Ca - - - - 2500 2212 2133 2029 

Cd 200 20 2 20 0.30 0.30 0.30 0.20 

Co 300 25 25 105 9.80 8.30 8.20 8.00 

Cu 4000 400 55 400 22.70 18.30 17.10 16.40 

Cr 10000 10000 10000 10000 18.60 17.10 16.50 16.60 

Fe - - - - 27150 25719 25391 24120 

Ga - - - - 4.10 3.80 3.70 3.50 

Hg 100 10 1 10 0.30 0.30 0.20 0.20 

K - - - - 1100 1073 1100 1213 

La - - - - 9.50 9.00 8.90 9.10 

Mg - - - - 1300 1237 1197 1239 

Mn 9635 2135 2135 4970 545 442 436 414 

Mo 600 60 6 60 0.90 0.80 0.70 0.70 

Na - - - - 60 56 54 56 

Ni 6500 650 65 4150 16.40 15.20 14.60 14.30 

P - - - - 590 532 508 493 

Pb 800 400 70 400 52.20 43.10 37.90 32.30 

S - - - - 500 446 424 376 

Sb 295 25 5 120 0.60 0.50 0.50 0.50 

Sc - - - - 2.90 2.60 2.50 2.40 

Se 2500 250 25 1740 0.80 0.70 0.70 0.60 

Sn 10000 10000 4360 10000 - - - - 

Sr - - - - 16.60 15.40 14.90 15.00 

Te - - - - 0.04 0.04 0.04 0.03 

Th - - - - 2.90 2.90 3.00 2.90 

Ti 10 1 1 3 20.00 20.10 18.60 19.60 

Tl - - - - 0.20 0.20 0.20 0.20 

U - - - - 1.10 1.00 1.00 1.00 

V 1505 190 50 845 27.00 25.30 24.40 23.60 

W - - - - 0.10 0.10 0.10 0.10 

Zn 10000 4550 455 4550 107 92 83 77 

 457 

Since we are looking for non-contaminated soil, it would be reasonable to take the Other 458 

land use thresholds (column Oth. In Table 2) as a reference. This set of thresholds for 459 
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each element is denoted t1. The non-available thresholds for elements for each element is 460 

denoted t1. The non-available thresholds for elements in the Table (marked with -) are set 461 

to 106 mg/kg, thus meaning that everything is admissible. We can be more restrictive by 462 

multiplying these thresholds by a reduction coefficient like 0.9, 0.6 or similar. The 463 

procedure to find a background consists of filtering out samples that have one element or 464 

more over the selected threshold, thus extracting a reduced or trimmed sample. 465 

Considering 𝑡𝛼 = 𝛼 ∙ 𝑡1 for 𝛼 = 1.00, 0.95, 0.90; … ; 0.50 (11 𝛼 values) the corresponding 466 

trimmed samples are obtained. The number of remaining samples after filtering is 95, 85, 467 

81, 76, 71, 60, 49, 35, 25, 13, 6, out of the 150 initial samples, respectively. The 468 

compositional center (geometric mean for each element in mg/kg) can then be taken as 469 

representative for each trimmed sample. The element-wise median value of the 470 

concentrations in the sample is labelled med and is reported in Table 2. The center of the 471 

trimmed sample for some values (left columns, labelled with the value) is also shown in 472 

Table 2. The compositional center of each trimmed sample can then be taken as 473 

representative of a non-polluted background. 474 

To visualize the backgrounds in Table 2, the centers of the trimmed samples were 475 

considered as a compositional sample and the corresponding biplots are shown in Figure 476 

S2 in the Supplementary materials. Note that the origin of rays in the plot corresponds to 477 

the center of the different backgrounds used in the plot and has no particular interest. Note 478 

also that these sets of thresholds, here called backgrounds, are not comparable to soil 479 

compositions and are considered here for their visualization. These biplots support 480 

discussion on the selection of a trimmed sample; see Supplementary materials. 481 

The backgrounds obtained for different 𝛼s can also be compared jointly plotting their clr. 482 

Figure S3 in Section A.4 in Supplementary materials shows this comparison, which does 483 
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not provide further insight into the characteristics of the backgrounds. After examining 484 

Figure S2 and based on the discussion of it in the Supplementary materials,  485 

 𝛼 = 0.6 was selected to choose a convenient background representing non-polluted soil. 486 

3.4 Aitchison distance to background spread sample 487 

Once a trimmed sample and its center are available, a first approach consists of computing 488 

the Aitchison distances of each point in the whole sample to the center of the (non-489 

polluted) background. These distances define a preliminary contamination indicator: zero 490 

corresponds to the center of the background while large distances correspond to 491 

increasingly more polluted sites. These distances can then be transformed monotonically 492 

to obtain more scalable values. However, the mentioned Aitchison distances do not 493 

behave as expected. There are points within the reference trimmed sample whose 494 

Aitchison distance to the center is in the third quartile of distances in the whole sample. 495 

This finding is somewhat disappointing: samples in the trimmed sample assumed not to 496 

be polluted show distances of the order of other samples considered polluted. This is 497 

possible if the trimmed sample is compositionally dispersed. Figure S4 in Supplementary 498 

materials shows the geographical locations of the trimmed sample for 𝛼 = 0.6 marked 499 

with a plus sign. The crosses are spread over the whole region where fluctuations in 500 

geology are expected. The alternative is to consider that the background is not defined by 501 

the center of the trimmed sample, which is a single composition, but rather by the whole 502 

trimmed sample. In this way, the background can be thought of as a geological fluctuation 503 

described by the trimmed sample. 504 

Then, the Spread Aitchison distance or pollution size is defined as 505 

𝑆𝑎(𝑥𝑖) = min
𝑥𝑡𝑟

𝑑𝑎(𝑥𝑖, 𝑥𝑡𝑟), 
(8) 
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Where 𝑥𝑡𝑟 spans all the points in the trimmed sample and 𝑥𝑖 moves over the available 506 

sample. When 𝑥𝑖 belongs to the trimmed sample 𝑆𝑎(𝑥𝑖) = 0 is, the point is considered 507 

not polluted. Figure S4 (Supplementary materials) shows the sampling points coloured 508 

following the quantiles of 𝑆𝑎 (see caption). All points in the trimmed sample, marked 509 

with a plus sign, correspond to the first quartile of 𝑆𝑎 (green points).  510 

3.5 Balances as proxies of 𝑺𝒂: Compositional Pollution Indicators 511 

The major inconvenience of 𝑆𝑎 as pollution size is that it depends on all elements reported 512 

in the sample and also on the selection of the trimmed sample. It is therefore convenient 513 

to simplify the expression of 𝑆𝑎 so that the selected proxy contains only a few elements 514 

commonly reported in samples and corresponding to the requirements enumerated in 515 

Section 2.  516 

Three approaches were explored for the chemical sample: the first taking into account the 517 

whole observed composition; the second only a subcomposition, as suggested in Boente 518 

et al. (2018), which reports elements such as Na, K, Ca, Al, Mg, Fe as non-pollutant 519 

elements (mainly natural sources), and Cu, Pb, Zn, As, Sb, Hg as pollutants (mainly 520 

anthropogenic sources); and the third based on expert opinion using elements in the 521 

above-mentioned subcomposition. These approaches provide balances (Eq. 7) as 522 

Compositional Pollution Indicators (CIs), thus satisfying the requirements for Cis 523 

explained in Section 2.1. However, the characteristics of the Langreo region and the 524 

available data set do not allow distinctions between different sources of pollution. For the 525 

first indicator, CI1, the strategy is to look for a balance optimally predicting 𝑆𝑎 based on 526 

the whole observed composition. This can be done using the selbal procedure for the 527 

prediction of 𝑆𝑎 as a continuous response (Rivera-Pinto et al., 2018). In the analysis of 528 

the complete composition, the result obtained was the balance 529 
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𝐶𝐼1 = √
2

3
(ln

𝑆𝑏

(𝐾 ∙ 𝐴𝑙)
1
2

 ), (9) 

which optimally predicts 𝑆𝑎 after excluding the zero-distances corresponding to the 530 

trimmed sample. The linear regression gives R2 = 0.6, which is not very high but still 531 

large enough to consider CI1 a good proxy for pollution size. A predicting balance can be 532 

selected in several ways. For instance, taking logarithms on 𝑆𝑎 after removing the zeros; 533 

not removing zeros of 𝑆𝑎; and not taking logs on Sa. In all cases, Sb appears in the 534 

numerator of the balance, and in the denominator, there is K or Al, or both. Figure 4 (left 535 

panel) shows the regression line when CI1 is used to predict the spread Aitchison distance 536 

to the trimmed sample representing the background denoted 𝑆𝑎. In the analysis of the 537 

subcomposition, the balance considered optimal after cross-validation in the selbal 538 

procedure is different, but it includes Sb in the numerator and (Al; K) in the denominator. 539 

The optimal balance, using the subcomposition, is then 540 

𝐶𝐼2 = √
9

6
ln (

(𝑆𝑏 ∙ 𝑃𝑏 ∙ 𝐻𝑔)1/3

(𝐾 ∙ 𝐴𝑙 ∙ 𝑍𝑛)
1
3

) , (10) 

This balance was obtained after removing the zero distances to elements of the trimmed 541 

sample and predicting ln(𝑆𝑎). When predicting 𝑆𝑎, without logarithm, the balance 542 

obtained is the same but removing Hg from the numerator. 543 

 544 
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Figure 4. Regression lines of spread Aitchison distance, 𝑆𝑎, on the balance 𝐶𝐼1 = 𝐵 (
𝑆𝑏

𝐾
, 𝐴𝑙) ; R2 = 0.6, 545 

using the whole sample, left panel. Right panel: Regression of ln(𝑆𝑎) on the balances 𝐶𝐼2 =546 

𝐵 (𝑆𝑏; 𝑃𝑏;
𝐻𝑔

𝐾
; 𝐴𝑙; 𝑍𝑛) ; R2= 0.68 in the analysis. Points for which 𝑆𝑎 = 0 were excluded. 547 

The third balance was obtained based on expert criteria after conventional examination 548 

of the geochemical data set using multivariate procedures. Unlike the previous 549 

approaches, these criteria attend a selection of elements, of which some are considered 550 

pollutants while others are not. In the case of Langreo, the identification of the main 551 

pollutants was addressed in a previous study (Boente et al., 2018), where the authors 552 

stated that the main contaminants were typical pollutants such as As, Hg or Pb. while the 553 

main natural-source elements (or non-pollutants) were several major elements (i.e., Al, 554 

Ca, Fe, K, Mg, and Na). Based on this previous study, the selected balance, CI3, was 555 

𝐶𝐼3 = √
30

11
ln (

(𝐴𝑠 ∙ 𝐶𝑢 ∙ 𝐻𝑔 ∙ 𝑃𝑏 ∙ 𝑍𝑛)1/5

(𝐴𝑙 ∙ 𝐶𝑎 ∙ 𝐹𝑒 ∙ 𝐾 ∙ 𝑀𝑔 ∙ 𝑁𝑎)
1
6

) , (11) 

In conclusion, the compositional analysis revealed that overall pollution in the Langreo 556 

area is related to the relative content of Sb. Note that the chemistry of this element is 557 

similar to that of As, as both are metalloids that present a high geochemical affinity and 558 

are commonly enriched together in soils (Casiot et al., 2007; Wilson et al., 2010). In fact, 559 

As (and also Sb) are well-known soil contaminants in regions that host heavy industry, 560 

power stations and coal mining (Woon et al., 2021; Rodriguez-Iruretagoiena et al., 2015), 561 

like Langreo (Boente et al., 2020a). However, the association between As and Sb is not 562 

confirmed in the Langreo data set, as can be seen in the normalized variation matrix in 563 

Table S1. 564 

The balance CI1 is a log-contrast between a contaminant, Sb, over other non-contaminant 565 

elements such as K or Al, which are lithogenic and usually linked to natural clays and 566 

other soil minerals. When few elements are considered, as in the CI2 analysis, Sb still 567 

appears in the balance and is complemented by two typical pollutants like Pb and Hg (also 568 
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abundant in the Langreo area). The denominator has elements that are not usually 569 

considered pollutants and that are stable (compositional relative scale) across the study 570 

area, like Al, K, and Zn. The idea that CI1 and CI2 are suitable measures of the pollution 571 

size is reinforced by the fact that, of the 37 elements studied, these few elements are 572 

included within those considered pollutants and non-pollutants, respectively, according 573 

to the expert criteria in the construction of CI3. 574 

The configuration of the three CIs proposed, pollutants in the numerator and non-575 

pollutants in the denominator, implies that the larger the value of the CI, the larger the 576 

relative pollution in the studied point. Some values of CIs evaluated on the trimmed 577 

sample (background) illustrate the scales of the three CIs. Reference thresholds for the 578 

CIs were chosen as explained in Supplementary materials, Section A.5. The reference 579 

values were -6.96, -7.52, and -7.91 for CI1, CI2 and CI3 respectively. When finding values 580 

over these thresholds, one expects an approximately 70 - 75% probability of exceeding 581 

some official threshold of admissibility. See Table S2 in the Supplementary material for 582 

further details. 583 

3.6 Spatial distribution: significant clusters definition 584 

Isotropic variograms computed and corresponding models fitted are shown in Figure 5 585 

for each of the selected indicators (CI1, CI2 and CI3). No clear evidence of anisotropies 586 

was found. Cross-validation correlation indices of the observed and estimated CIs ranged 587 

between 0.70 and 0.88 and, therefore, results were considered satisfactory for the selected 588 

models. At first sight, all three indicators show a similar distribution over the study area. 589 

They are also similar to the maps presented in Boente et al. (2018), thus validating 590 

previous results. However, some differences call for discussion.  591 
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Visual comparison of Figures 1 and 5 reveals that the balance obtained by means of expert 592 

criteria (CI3) presents a good representation of hot points, specially of the city and 593 

industrial areas, thereby confirming the larger pollution detected in previous studies 594 

(Boente et al., 2018; Martínez et al., 2014), while the areas to the east and south of 595 

Langreo appear to have predominantly low contamination, as corresponds to natural soils 596 

and forests. The northwestern area of Langreo appears partially with high values of the 597 

indicators, specially CI2, CI3, because it is enriched in Hg, as previously identified given 598 

the presence of old Hg-mining activities in the surroundings (González-Fernández et al., 599 

2018), whereas the northern area of the municipality is also partially red. This observation 600 

is attributable to the preferential wind direction according to a study of the air quality in 601 

Langreo (Martínez et al., 2014). In general, CI3 presents sharper contours, probably 602 

because more elements, pollutants or not, are explicitly involved in its expression. The 603 

design of an indicator like CI3 has the inconvenience that it requires the hand of an expert 604 

using geochemical tools to manually define elements that are dangerous and those that 605 

better represent the geology of the area. 606 

The indicators constructed using selbal, namely CI1 and CI2, both contain Sb as a driving 607 

pollutant. This finding is consistent with the fact that Sb has a similar chemistry to that of 608 

As, which has been reported to be enriched in the area (Boente et al., 2018). However, 609 

the agreement with the underlying assumptions on sample space and the scale, as well as 610 

the absence of outliers, provides higher robustness for the compositional analysis, 611 

focusing on the compositional criteria indicators. For this case study, the selection of Zn 612 

as part of the compositional baseline (but not in the group of pollutants for CI2) indicates 613 

a partial relationship with geogenic elements like K and Al (Boente et al., 2018). 614 

Regarding the results, CI1 and CI2 show similar distributions. In this context, both 615 

highlight the city and its surroundings as the main area affected by pollution. 616 
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Nevertheless, the absence of other PTEs enriched in soils like Cu or As, or even the 617 

inclusion of Zn in the denominator in the case of CI2, leads to a less sharp definition of 618 

other hot points and blurs the maps, as can be seen particularly for CI1 in Figure 5. In 619 

global terms, both CoDa-driven CIs are suitable to indicate the location of major 620 

pollution. 621 

Attending to the definition of red/blue shapes, it seems easier to identify polluted areas in 622 

Figure 5(b) than in SGS presented in Figure 5(a). These Figure 5(b) maps predict the 623 

probability of exceeding thresholds for each CI: -6.96, -7.52 and -7.91 for CI1, CI2 and 624 

CI3, respectively. They are roughly similar to the spatial interpolation of the CIs 625 

themselves, but here a smoothing effect can be appreciated that induces a sharper 626 

definition of the principal hazardous areas, as well as other minor locations, thus 627 

providing greater robustness to the predictions. Here, once again, the effect of considering 628 

a lower number of pollutants in CI1, particularly the role of Sb, is visible as there are areas 629 

that do not appear in red, such as the occidental one. In this respect, the mathematically 630 

obtained CI2 and the manual selection of CI3 seem to be more accurate and closer to 631 

reality. 632 

Finally, the spatial distribution of CI1 is more complex to interpret, as the areas of 633 

high/low values appear to be mixed. Nevertheless, the spatial patterns obtained are 634 

consistent with the other two indicators, showing a northern hot-spot and a southern cold-635 

spot. These results thus evidence that, when using K and Al as a reference of natural 636 

sourcing, Sb alone is a suitable predictor of pollution in the area. 637 
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 638 

Figure 5. (a) SGS average images (MI) and (b) probability maps of exceeding the defined threshold for 639 
CI1 (left, threshold -6.96), CI2 (middle, threshold -7.52), CI3 (right, threshold -7.91). Fitted omnidirectional 640 
variograms are also shown. The colour scales correspond to Jenks natural breaks classification. 641 

4. Conclusions 642 

Geochemical data are compositional data, as the concentrations of elements in any 643 

environmental matrix are commonly expressed as parts of a whole and vary together. 644 

Once established this feature, it is possible to apply Compositional Data procedures to 645 

obtain indicators that address pollution, for instance, in soils.  646 
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Here, we presented a novel methodology to address soil pollution basing on 647 

compositional principles. The strength of this methodology is that it allows to build 648 

compositional-based, non-polluted background and indicators measuring the deviation 649 

from the background to obtain a wide view of PTEs pollution. The indicators produced 650 

are easily programmable in R packages, and allow an easy and intuitive identification of 651 

the most polluted subareas, offering a proper overview of pollution for both large and 652 

small scales for both experienced and unexperienced users. An additional possibility we 653 

have checked here to enhance the interpretation of pollution is to build maps showing the 654 

probability of exceeding defined thresholds through SGS. 655 

With respect to the weaknesses, one of the most important is that, unlike other classical 656 

single-component indices, the indicators obtained in this work are only valid for the 657 

example of Langreo, whereas the novel methodology proposed must be computed for 658 

each case study. Moreover, as indicators are based on concentration data, they are useful 659 

as they offer a global map of pollution, but this approach cannot use other geochemical 660 

variables such as the bioavailability of elements, the abundance of toxic species, or a 661 

precise assessment of pollution sources that should require forensic techniques. Thus, in 662 

further studies, it would be interesting to face these limitations by exploring whether other 663 

geochemical variables different to concentrations might be also expressed in a 664 

compositional way, and also if a complementary, specific, pollution sources study may 665 

complement CoDa results. 666 

All things considered, the methodology presented constitutes a powerful tool for non-667 

proficient users in the topic of soil pollution, public administration, or private companies. 668 

We encourage researchers to apply it in pollution prevention and effective environmental 669 

quality management, as it can be very useful for decision making and assessment of the 670 

variability through geostatistical analysis. 671 
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