1	Supplementary Information for
2 3 4	Stable isotope analysis and differences in diet and social status in northern Medieval Christian Spain (9 th -13 th centuries AD)
5 6 7 8	Patxi Pérez-Ramallo ¹ , José Ignacio Lorenzo-Lizalde ² , Alexandra Staniewska ³ , Belén Lopez ⁴ , Michelle Alexander ⁵ , Sara Marzo ⁶ , Mary Lucas ¹ , Jana Ilgner ¹ , David Chivall ⁷ , Aurora Grandal-d'Anglade ⁸ , and Patrick Roberts ^{1,9}
9 10	¹ Department of Archaeology, Max Planck Institute for the Science of Human History. Kahlaische Str. 10, 07745, Jena, Germany.
11	² PPVE Grupo de investigación H-O7 Universidad de Zaragoza. 976123037@telefonica.net
12	³ Institute of Anthropology and Ethnology, Adam Mickiewicz University (Poznań, Poland). alesta@amu.edu.pl
13 14	⁴ Departamento de Biología de Organismos y Sistemas, Área de Antropología Física, Universidad de Oviedo, Oviedo, Spain. lopezbelen@uniovi.es
15	⁵ Department of Archaeology, BioArCh, University of York. michelle.alexander@york.ac.uk.
16 17	⁶ The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh EH25 9RG, UK. s.marzo@sms.ed.ac.uk
18 19	⁷ Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX13QY, United Kingdom. <u>david.chivall@arch.ox.ac.uk</u>
20 21	⁸ Instituto Universitario de Xeoloxía, Universidade da Coruña (UDC). ESCI. 15071, A Coruña, Spain. <u>aurora.grandal@udc.es</u>
22	⁹ School of Social Sciences, University of Queensland, St Lucia QLD 4072, Brisbane, Australia.
23	This PDF file includes:
24 25 26 27 28 29	Supplementary Text S1: The sites, samples, and their historical context Supplementary Text S2: Radiocarbon Dating Supplementary Text S3: δ^{13} C and δ^{15} N analysis of bone collagen Supplementary Tables S1 to S5 Supplementary Figure S1

- Supplementary Text S3: $\delta^{13}C$ and $\delta^{15}N$ analysis of bone collagen Supplementary Tables S1 to S5 Supplementary Figure S1

Supplementary Information 31

32

Supplementary Text S1. The sites, samples, and their historical context 33

34

The region from were we took samples for isotope analysis is, according to Köppen's climate 35 36 classification, characterized as Cfb. This represents a transitional area between the Atlantic and 37 the Mediterranean climate (Chazarra Bernabé et al., 2018).

38 S1.1. Plaza de San José, Pamplona

39 Pamplona is the geographical and political centre of the region of Navarre, in the north of 40 Spain. The city is located in a basin surrounded by hills, which open up towards the south and the high valley of the Ebro river. During the Middle Ages, Pamplona developed and reached 41 its peak as the capital, firstly of the kingdom of Pamplona and, from the 12th century AD 42 onwards, of the kingdom of Navarre (Serrano Larráyoz, 2014). The city, like different places 43 44 across the Iberian Peninsula, was populated by Franks and other nationalities (Martínez García, 45 2004). This was especially significant with the establishment of the Jacobean route across the 46 kingdom which connected Pamplona to the other main population centres of the region (Josué Simonena *et al.*, 2010). The city was divided into three burghs that coexist from the 11th century 47 AD, but primarily from 12th to 15th centuries AD: San Nicolás, formed by free Navarrese 48 individuals and foreigners; San Cernín, where Frankish merchants and artisans lived; and 49 50 Navarrería with the local population (Josué Simonena et al., 2010). Between 2007 and 2010, the company Gabinete Trama, under the direction of María Ángeles Mezquíriz, discovered 51 52 several tombs corresponding to the medieval cemetery of the cathedral of Santa María of Pamplona related to the Navarrería (Josué Simonena et al., 2010). Here, eight human 53 54 individuals, together with six fauna, were analysed. Among them, two human individuals (one female and one male) were found buried with the pilgrim's scallop shell that was associated 55 56 with the completion of a Medieval pilgrimage to Santiago de Compostela. All individuals were buried under the Christian rite (east-west orientation, arms stretched out, and hands over the 57 58 belly or pelvis).

S1.2. San Roque de las Quintanillas, Burgos (9th-10th century AD) (16) 59

60 The archaeological site of San Roque is located in the central area of the province of Burgos, 10 km northwest of the provincial capital. The age of the foundation of the settlement is 61 unknown. Nevertheless, there are written mentions from at least the 11th century AD, and our 62 radiocarbon dating results indicate that it had its origin between the 9th and 10th centuries AD. 63

A total of 6 individuals were selected and analysed. All individuals were buried following aChristian rite (east-west orientation, arms stretched out, and hands over the stomach or pelvis).

66 S1.3. San Nicolás de Bari, Burgos (14th-15th century AD) (18)

The church of San Nicolás de Bari is located near the cathedral of Burgos in the city centre. It 67 68 was a burial place for nobles and bourgeoisie (mainly artisans) during the Middle Ages, when the city was one of the wealthiest in the country. The actual church was founded at the 69 beginning of the 15th century AD over an old Romanesque temple. The remains provided a 70 relative chronology from between the 14th and 15th centuries AD (Lopez, 2009) and were 71 studied osteologically by Lopez (2009) at the University of Oviedo after the site was excavated 72 by the 2B arqueología company. The osseous material, including faunal samples studied in 73 order to define species, was directly provided by the archaeologists in charge of the 74 excavations, under the responsibility of the Regional Government of Castilla y León. 75

76 S1.4. Portales 67, Logroño

77 Logroño is located in the northern region of La Rioja, on the Ebro river, 384 meters above sea level. Logroño was transformed into a prosperous city thanks to the Camino de Santiago 78 79 (Franco Aliaga, 1979). It is believed that a population existed on the site before the 11th century 80 AD. However, it was not until this time that Alfonso VI granted the fuero or new jurisdiction, 81 and its recognition as a city (Franco Aliaga, 1979). In 2007, during a construction control in 82 the city centre, a medieval necropolis with 54 individuals was discovered by Natalia Bartolomé. All individuals were buried following the Christian rite (east-west orientation, arms 83 84 stretched out, and hands over the stomach or pelvis). The human remains were partly osteologically analysed (Palomo Díez et al., 2011). The vast majority of the individuals were 85 lost. However we were able to to analyse and review 11 individuals, with 7 of these studied for 86 87 stable isotope analysis.

88 S1.5. Lobera de Onsella, Zaragoza (10th-11th centuries AD) (24)

Lobera de Onsella is a municipality in the region of Cinco Villas, belonging to the judicial district of Ejea de los Caballeros, in the northwest of the province of Zaragoza. In 2014, a medieval necropolis dating to 10th and 11th century AD was discovered under the direction of José Ignacio Lorenzo (Lorenzo Lizalde, 2018). During this time, Aragon was a county within the Kingdom of Navarra. Through the study of these individuals, one can see the way of life

of rural populations that existed prior to the emergence of the Way of Saint James across the
area. In total, the remains of 14 people were found and analysed. All individuals were buried
following the Christian rite (east-west orientation, arms stretched out, and hands over the
stomach or pelvis). Tombs had a rectangular shape covered with slabs (Lorenzo Lizalde, 2018).

98 S1.6. Jaca, Zaragoza (13th-15th centuries AD)

Jaca is a city in northeastern Spain in the province of Huesca, located near the Pyrenees and 99 100 the border with France. Jaca was the city out of which the County and Kingdom of Aragon 101 developed. It was the capital of Aragon until 1097 (Buesa Conde, 2002). When Jaca became 102 the first royal seat of Ramiro I (1006-1063), people dedicated to administration and merchants 103 began to arrive, transforming it from a village exclusively devoted to livestock and agriculture 104 into an urban centre (Buesa Conde, 2002). Between 2006 and 2007, archaeological excavations 105 were carried out in Biscós Square in Jaca, next to Saint Peter's Cathedral. These were directed by Julia Justes Floría and Rafael Domingo Martínez. The necropolis emerged in the 11th 106 century AD and was in continuous use until the first half of the 16th century AD (Justes Floria 107 108 and Domingo Martínez, 2007).

109 S1.7. Sancho Ramírez, Count of Ribagorza (1040 – 1105 AD)

Sancho Ramírez was the illegitimate son of King Ramiro I of Aragon, who named him Count and lord of Ribagorza, Aibar, and Javierrelatre, among other territories. He became one of the great benefactors of the city of Jaca and the cathedral, where he was eventually buried, until his death in 1105 AD (Lapeña Paul, 2004).

114 S1.8. Saint Raymond William or San Ramón de Rodas (1067-1126 AD)

115 Raimon Guillem was born to a noble family from Durban (France). Alfonso I of Aragón 116 granted him the diocese of Barbastro-Roda in 1104, with its headquarters in the Cathedral of Roda. In 1116, the bishop Esteban of Huesca, with the support of nobles of Barbastro and King, 117 succeeded him as bishop of Roda. Ramón was forced to leave until 1119, when he could 118 become bishop of Barbastro-Roda again. In 1125, he accompanied King Alfonso during the 119 military campaign in Granada. During this trip, Raimon Guillem became sick and died on his 120 121 return to Huesca on June 21, 1126 AD. His body was interred at Roda's cathedral on June 26. He is venerated as a saint by the Catholic Church (Iglesia Costa, 1998). 122

123 S1.9. Abbey of San Pedro de Siresa, Huesca, Aragon (9th-10th centuries AD)

124 This Romanesque monastery is probably the oldest of the kingdom of Aragon, located 822m 125 above sea level in the Pyrenean valley of Hecho, in the town of Siresa, within the province of 126 Huesca. It was constructed between the 9th and 13th centuries AD (Buesa Conde, 2002b). The 127 archaeologist and anthropologist José Ignacio Lorenzo-Lizalde analysed the remains of two

individuals that, following their location and characteristics, were identified as one knight and

129 one monk who potentially could be an abbot of the monastery.

130 S1.10. Unknown Princess of Aragon (11th-12th centuries AD)

This individual was buried at the medieval royal pantheon of San Pedro el Viejo (Huesca,
Aragon, Spain). There are no documentary or material records to help us identify the exact
royal member buried in this tomb (Buisán Chaves, 2018).

134 S1.11. Bishop Pedro de Librana (1119-1128 AD)

Human remains were found under the main altar of the Seo Cathedral of Zaragoza which, after an osteological examination and following the historical records, were assigned to Pedro de Librana, the first bishop of Zaragoza after the conquest of the city by the Christian kingdom of Aragon (Lorenzo Lizalde, 1998; Naya Franco, 2017). He was a monk who was born in the south of France, probably in Béarna. He was responsible for converting mosques into churches, and the relocation of the Muslim population to the suburbs. He also participated in the military expedition of Alfonso I of Aragon in Andalusia (Dorronzoro Ramírez, 2014).

142

143 S2. Radiocarbon Dating

144 S2.1. Oxford Radiocarbon Accelerator Unit (ORAU)

The human bone from the necropolis of San Roque de las Quintanillas, Burgos; Portales 67, 145 Logroño; Plaza de San José, Pamplona; and Plaza Biscós in Jaca (Huesca, Aragon) were 146 147 radiocarbon dated at the Oxford Radiocarbon Accelerator Unit (ORAU). Prior to extensive sampling of human skeletal remains, we screened small (3-5 mg) sub-samples of drilled bone 148 powder by measuring the elemental nitrogen concentration. This is a useful proxy for protein, 149 150 and therefore presence of collagen in the bone (Brock et al., 2010; Jacob et al., 2018). Samples 151 with $>\sim 0.5\%$ N were passed for full collagen extraction treatment for AMS dating. The methods 152 used are outlined in Brock et al. (2010). Briefly, collagen was extracted using an acid-base-153 acid procedure followed by gelatinization and lyophilization (Brock et al. 2010). The extracted

gelatine was filtered using pre-cleaned VivaspinTM30kD MWCO ultra-filters (Brown et al. 154 1988; Higham et al. 2006). Ultrafiltration removes low molecular weight contaminants and 155 produces a better purified collagen fraction as indicated by improved C:N atomic ratios and 156 carbon mass on combustion. The filtered collagen was freeze-dried and combusted in a CHN 157 158 analyzer in continuous flow mode linked to a Europa isotope ratio mass spectrometer (EA-CF-IRMS) using He as carrier gas. δ^{13} C and δ^{15} N values, nitrogen and carbon content, and bone 159 C:N atomic ratios were determined. The purified CO_2 was then reduced to graphite using H_2 in 160 a reaction catalyzed by 2 mg of Fe powder at 560°C for 6 hr. The graphite was pressed into an 161 162 Al target holder prior to radiocarbon measurement using AMS (Bronk Ramsey et al. 2004). We tested the reliability of dating bone with collagen yields of this size and the models showed 163 164 that none were outliers. All other analytical parameters measured, including the carbon to nitrogen atomic ratio, were acceptable. We therefore consider the results to be robust. The 165 166 calibration and the calibration curve were performed by OxCal V4.4 Bronk Ramsey (2021): 167 r.5: IntCarl13 atmospheric curve (Reimer et al. 2020).

168 S2.2. Beta Analytic

We also sent human bone from Lobera de Onsella, Zaragoza, Aragon; and San Pedro de Siresa, 169 170 Huesca, Aragon to be radiocarbon dated at the Beta Analytics Laboratories, Florida. Before 171 radiocarbon dating, the samples were first gently crushed then dispersed in deionized water. 172 They were then washed with hot HCl acid to eliminate carbonates followed by an alkali wash (NaOH) to remove secondary organic acids. The alkali wash is followed by a final acid rinse 173 174 to neutralize the solution before drying. After this, the samples for radiocarbon dating were bathed in sodium chlorite (NaClO2) under controlled conditions (pH 3 and temperature at 175 176 70°C). The AMS measurement was done on graphite produced by hydrogen reduction of the CO₂ sample over a cobalt catalyst. The CO₂ was obtained from the combustion of the sample 177 at 800°C+ under a 100% oxygen atmosphere. The CO₂ is first dried with methanol/dry ice then 178 179 collected in liquid nitrogen for the subsequent graphitization reaction. The identical reaction is 180 performed on reference standards, internal QA samples, and backgrounds to ensure systematic chemistry. The analytical results ("BP" or "pMC") were obtained by measuring sample C^{14}/C^{13} 181 relative to the C14/C13 in Oxalic Acid II (NIST-4990C) in one of Beta Analytic's multiple in-182 house particle accelerators using SNICS ion source. Quality assurance samples were measured 183 along with the unknowns and reported separately. The AMS results have been corrected for 184 total fractionation using machine graphite δ^{13} C. The IRMS performs the separation and 185 measurement of the CO₂ masses (44, 45, and 46) and calculation of the sample δ^{13} C. 186

187 S3. δ^{13} C and δ^{15} N analysis of bone collagen

- Collagen was extracted using standard procedures following Richards and Hedges (1999) at 189 the Max Planck Institute for the Science of Human History in Jena, Germany. 0.7 gram to 1 190 gram of bone or tooth dentine was demineralised in 10ml aliquots of 0.5M HCL at 4°C, where 191 192 the acid was changed every day until CO₂ stopped evolving. The residue was rinsed three times in Milliq© water before being gelatinised in pH3 HCl at 75°C for 48 hours. The resulting 193 194 solution was filtered with Ezee filters, with the supernatant then being lysophilized over a period of 24 hours. After calculating the collagen yield, from the purified collagen sample 1mg 195 196 was weighed out twice and placed into tin capsules to be analysed in duplicate by the elemental 197 analyser/continuous flow isotope ratio mass spectrometry (EA-IRMS), using a ThermoFisher 198 Elemental Analyser coupled to a ThermoFisher Delta V Advantage Mass Spectrometer via a 199 ConFloIV system. Isotopic values are reported as the ratio of the heavier isotope to the lighter 200 isotope (13C/12C or 15N/14N) as δ values in parts per mille (‰) relative to international standards, VPDB for $\delta 13C$ and atmospheric N2 (AIR) for $\delta 15N$. $\delta^{13}C$ and $\delta^{15}N$ of the samples 201 202 were calibrated using linear regression based on the measured values of international standard reference materials within each analytical run. Those were USGS40 L-Glutamic Acid: $\delta^{13}C$ -203 204 26.389 ± 0.042 ‰, $\delta^{15}N = -4.5 \pm 0.1$ ‰; IAEA-N-2 Ammonium Sulfate: $\delta^{15}N = +20.3 \pm 0.2$ ‰; IAEA-CH-6 Sucrose: $\delta^{13}C = -10.449 \pm 0.03\%$. An in house fish gelatine standard was used to 205 206 determine overall measurement precision. Based on replicate analyses long-term machine error over a year is $\pm 0.2\%$ for δ^{13} C and $\pm 0.2\%$ for δ^{15} N. The atomic C:N ratio along with the 207 collagen yields were used in order to determine the quality of collagen preservation. Collagen 208 vields over 1 wt% were considered acceptable for carbon and nitrogen values (van Klinken, 209 1999), while the C:N ratio should have a range from 2.9 to 3.6 (DeNiro, 1985). 210 211
- 212

213 Supplementary Tables

214

Table S1. Statistical analysis comparison between social status/origin (Kruskal-Wallis test for equal medians, and Mann-Whitney pairwise with Bonferroni correction), and between biological

sexes (Mann-Whitney test for equal medians with Monte Carlo permutation)

218

	Rural	Urban	Social Elite						
	(n=20)	(n=14)	(n=6)						
Rural		δ ¹⁵ N: 0.0054	δ ¹⁵ N: 0.0235						
(n=20)	-	$δ^{13}$ C: 1	δ ¹³ C: 1						
Urban	δ^{15} N: 0.0054		δ ¹⁵ N: 0.4779						
(n=14)	δ ¹³ C: 1	-	δ ¹³ C: 1						
Social Elite	δ ¹⁵ N: 0.0235	δ ¹⁵ N: 0.4779							
(n=6)	δ ¹³ C: 1	δ ¹³ C: 1	-						
	Rural, Urban, and So	cial Elite comparison							
	(Kruskal-Wallis test	t for equal medians)							
	δ^{15} N: (0.0009							
	δ ¹³ C: (0.5811							
	Female and Male comparison								
(Mann-Whitney test for equal medians, Monte Carlo permutation)									
δ^{15} N: 0.975									
	δ^{13} C:	0.419							

219

220	Table S2. Radiocarbon dating	g results calibrated using	g OxCal. v4.4 Bronk Ramsey	y (2017)
		7 (/ \ /

Lab code	Sample code	Location	Material	Radiocarbon years before present (BP)	δ ¹³ C (‰) (VPDB)	Calibrated calendar date (95,4%)*
OxA-38172	SRQ(BUR)30	San Roque de las Quintanillas, Burgos	Tooth Homo sapiens	1123±27	-18.7	775-994 cal AD
OxA-38171	P67(RIJ)10	Portales 67, Logroño, La Rioja	Bone Homo sapiens	777±26	-19.1	1223-1279 cal AD
OxA-38168	PSJP(NAV)01	Plaza de San José, Pamplona	Bone Homo sapiens	843±26	-20.8	1164-1262 cal AD
Beta-464469	T-11	Lobera de Onsella	Tooth Homo sapiens	960±30	-18.4	1025-1160 cal AD
Beta-464468	T-5	Lobera de Onsella	Tooth Homo sapiens	1060±30	-19.3	895-1030 cal AD
Beta-283032	T-1 Niv 1	San Pedro de Siresa	Bone Homo sapiens	1000±40	-18.9	989-1160 cal AD

and the IntCal13 atmospheric curve (Reimer *et al.*, 2020)

222

223 Table S3. δ^{13} C and δ^{15} N stable isotope ratios, collagen quality indicators, and species

224 identification of fauna analysed at the present study

Reference	Place	Chronology	Laboratory	Species	δ ¹⁵ N (‰) (AIR)	δ ¹³ C (‰) (VPDB)	N%	C%	C/ N	Collagen Yield (%)
SMB(CAN)FAU01	Santa María de Bareyo, Cantabria	9 th -15 th centuries AD	UDC	Bos taurus	5.1	-21.1	13.3	34.4	3.0	4.2
SNB(BUR)FAU03	San Nicolás de Bari (Burgos, Castile and Leon)	12 th -14 th centuries AD	MPI	Ovicaprine	5.7	-19.7	14.7	42.7	3.4	6.8

SNB(BUR)FAU04	San Nicolás de Bari (Burgos, Castile and Leon)	12 th -14 th centuries AD	MPI	Ovicaprine	4.1	-19.9	18.9	48.1	3	17.9
SNB(BUR)FAU05	San Nicolás de Bari (Burgos, Castile and Leon)	12 th -14 th centuries AD	MPI	Sus scrofa	9.1	18.7	16.2	43.8	3.1	18.3
SNB(BUR)FAU06	San Nicolás de Bari (Burgos, Castile and Leon)	12 th -14 th centuries AD	MPI	Gallus gallus	9.4	-18.9	19.3	49.4	3	16.6
SNB(BUR)FAU07	San Nicolás de Bari (Burgos, Castile and Leon)	12 th -14 th centuries AD	MPI	Ovicaprine	3.4	-19.4	18.8	47.4	2.9	18.2
SNB(BUR)FAU09	San Nicolás de Bari (Burgos, Castile and Leon)	12 th -14 th centuries AD	MPI	Ovicaprine	6.2	-19.9	15.9	43.2	3.2	10.6
SNB(BUR)FAU10	San Nicolás de Bari (Burgos, Castile and Leon)	12 th -14 th centuries AD	MPI	Ovicaprine	6.9	-20.6	13.4	35.4	3.1	10
SNB(BUR)FAU12	San Nicolás de Bari (Burgos, Castile and Leon)	12 th -14 th centuries AD	MPI	Bos taurus	5.1	-19.7	16.4	46.6	3.3	15.6
SNB(BUR)FAU14	San Nicolás de Bari (Burgos, Castile and Leon)	12 th -14 th centuries AD	MPI	Sus scrofa	8.8	-20.6	13.6	38.8	3.3	5.4
P67(RIJ)FAU01	Calle Portales 67 (Logroño, La Rioja)	13 th century AD	MPI	Bos taurus?	2.3	-21.9	15.2	40.8	3.1	19.1
P67(RIJ)FAU02	Calle Portales 67 (Logroño, La Rioja)	13 th century AD	MPI	Ovicaprine	5.3	-20.5	13.3	37.0	3.2	9.9
P67(RIJ)FAU05	Calle Portales 67 (Logroño, La Rioja)	13 th century AD	MPI	Bos taurus?	3.9	-20.9	19.0	48.4	3	30.3

P67(RIJ)FAU07	Calle Portales 67 (Logroño, La Rioja)	13 th century AD	MPI	Ovicaprine ?	4.4	-19.7	15.5	42.6	3.2	3
P67(RIJ)FAU08	Calle Portales 67 (Logroño, La Rioja)	13 th century AD	MPI	Ovicaprine ?	5	-19.5	15.6	42.6	3.2	11.0
PSJ(FAU)NAV01	Plaza de San José, Pamplona (Navarre)	12 th -13 th centuries AD	MPI	Sus scrofa?	8.4	-20.9	15.8	44.1	3.3	9.2
PSJ(FAU)NAV02	Plaza de San José, Pamplona (Navarre)	12 th -13 th centuries AD	MPI	Ovicaprine	6.7	-20.1	13.6	37.5	3.2	9.9
PSJ(FAU)NAV04	Plaza de San José, Pamplona (Navarre)	12 th -13 th centuries AD	MPI	Bos taurus?	4.7	-20.6	15.3	43.1	3.3	12
PSJ(FAU)NAV05	Plaza de San José, Pamplona (Navarre)	12 th -13 th centuries AD	MPI	Bos taurus	5.1	-21.5	14	38.6	3.2	1.7
PB(ARG)FAU29	Plaza Biscós, Jaca (Huesca, Aragon)	13 th -15 th centuries AD	MPI	Bos Taurus?	5.1	-20.2	15.3	41.9	3.2	8.8
PB(ARG)FAU30	Plaza Biscós, Jaca (Huesca, Aragon)	13 th -15 th centuries AD	MPI	Bos taurus	4.8	-21.5	14.7	40.5	3.2	3.5
PB(ARG)FAU31	Plaza Biscós, Jaca (Huesca, Aragon)	13 th -15 th centuries AD	MPI	Bos taurus	3.7	-21.8	14	38.7	3.2	4.9
PB(ARG)FAU32	Plaza Biscós, Jaca (Huesca, Aragon)	13 th -15 th centuries AD	MPI	Bos taurus	4.8	-20.5	17.1 %	47.0 %	3.2	15.8
PB(ARG)FAU35	Plaza Biscós, Jaca (Huesca, Aragon)	13 th -15 th centuries AD	MPI	Ovicaprine	3.1	-20.0	16	44.3	3.2	5.8

PB(ARG)FAU36	Plaza Biscós, Jaca (Huesca, Aragon)	13 th -15 th centuries AD	MPI	Ovicaprine	4.5	-19.5	16.2	43.7	3.1	
PB(ARG)FAU37	Plaza Biscós, Jaca (Huesca, Aragon)	13 th -15 th centuries AD	MPI	Ovicaprine	4.9	-19.9	16.1	44.1	3.2	19.7
PB(ARG)FAU38	Plaza Biscós, Jaca (Huesca, Aragon)	13 th -15 th centuries AD	MPI	Ovicaprine	8.6	-20.6	16.5	45.3	3.2	12.2
PB(ARG)FAU39	Plaza Biscós, Jaca (Huesca, Aragon)	13 th -15 th centuries AD	MPI	Bos taurus	4.4	-20.3	14.6	40.6	3.2	3.1
PBJ(ARG)FAU42	Plaza Biscós, Jaca (Huesca, Aragon)	13 th -15 th centuries AD	MPI	Ovicaprine	6.1	-20.0	14.6	41.4	3.3	4.2
PBJ(ARG)FAU43	Plaza Biscós, Jaca (Huesca, Aragon)	13 th -15 th centuries AD	MPI	Ovicaprine	4.1	-22.1	15.7	44.2	3.3	25.2

Table S4 Human $\delta^{13}C$ and $\delta^{15}N$ stable isotope ratios, collagen quality indicators, location, chronology, and laboratory 229

Reference and Chronology	Site	Sex and Age estimation**	Sample	δ ¹⁵ N (‰)(AIR)	δ ¹³ C (‰)(VPDB)	%N	%C	C/N	Collagen Yield (%)
SRQ(BUR)01b 9 th -10 th centuries AD	San Roque de las Quintanillas	Male Later Middle Adult	LM ²	10.3	-18.2	16.6	45.8	3.2	17.8
SRQ(BUR)05 9 th -10 th centuries AD	San Roque de las Quintanillas	Ind. Later Middle Adult	LM ₂	8.4	-18.6	17.4	45.9	3.1	18.7
SRQ(BUR)14 9 th -10 th centuries AD	San Roque de las Quintanillas	Male Mature Adult	RM ²	9.4	-18.6	16.6	45.8	3.2	18.7
SRQ(BUR)19 9 th -10 th centuries AD	San Roque de las Quintanillas	Male Ind. Adult	LM ₂	9	-18.6	16.4	45.6	3.2	18.1
SRQ(BUR)21 9 th -10 th centuries AD	San Roque de las Quintanillas	Male Mature Adult	LM ²	11.2	-16.3	16.7	46.0	3.2	17.9
SRQ(BUR)023 9 th -10 th centuries AD	San Roque de las Quintanillas	Male Later Middle Adult	LM ²	9.8	-18.4	16.6	45.6	3.2	18.1
P67(RIJ)01 13 th century AD	Portales 67, Logroño	Male Mature Adult	LM_2	9.9	-18.5	16.2	43.5	3.1	20.7
P67(RIJ)02 13 th century AD	Portales 67, Logroño	Male Early Middle Adult	RM ₂	9.5	-19.1	16.2	44.2	3.2	18.8

P67(RIJ)05	Portales 67,	Male Farly Middle	I Ma	10.3	18.5	16.3	44.0	3.7	10.7
13 th century AD	Logroño	Adult	LIM ₂	10.3	-18.5	10.3	44.0	3.2	19.7
P67(RIJ)09 13 th century AD	Portales 67, Logroño	Male Young Adult	RM_2	11	-18.1	16.5	44.6	3.2	18.7
P67(RIJ)10 13 th century AD	Portales 67, Logroño	Female Young Adult	RM_2	12.2	-18.6	16.4	44.0	3.1	17.8
P67(RIJ)11 13 th century AD	Portales 67, Logroño	Male Later Middle Adult	RM ²	8.8	-19.2	19.1	49.4	3	21.3
P67(RIJ)12 13 th century AD	Portales 67, Logroño	Male Early Middle Adult	LM ₂	11.7	-18.5	16.6	44.4	3.1	20.0
PSJP(NAV)01 (Pilgrim) 12 th -13 th centuries AD	Plaza San José, Pamplona	Female Later Middle Adult	Rib	10.6	-21	13.5	39.3	3.4	8.3
PSJP(NAV)02b 12 th -13 th centuries AD	Plaza San José, Pamplona	Ind. Mature Adult	Rib	9.9	-18.9	16.2	44.9	3.2	12.8
PSJP(NAV)04 (Pilgrim) 12 th -13 th centuries AD	Plaza San José, Pamplona	Male Early Middle Adult	Rib	9.9	-19.7	15.0	41.7	3.3	13.8
PSJP(NAV)05 12 th -13 th centuries AD	Plaza San José, Pamplona	Male Young Adult	Rib	9.8	-18.1	15.7	44.6	3.3	15.8
PSJP(NAV)06 12 th -13 th centuries AD	Plaza San José, Pamplona	Male Ind. Adult	Rib	11.5	-15.3	15.6	43.8	3.3	10.3
PSJP(NAV)07 12 th -13 th centuries AD	Plaza San José, Pamplona	Male Mature Adult	Rib	10.4	-19.1	14.7	41.2	3.3	11.3
PSJP(NAV)08 12 th -13 th centuries AD	Plaza San José, Pamplona	Male Mature Adult	RM ₂	12.0	-19.2	16.4	46.0	3.3	16.2
LOZ(ARG)01 10th-11th centuries AD	Lobera de Onsella	Female Mature Adult	Rib	9.4	-18.8	15.8	43.2	3.2	21.2
LOZ(ARG)02 10th-11th centuries AD	Lobera de Onsella	Male Early Middle Adult	Rib	9.6	-18.9	16.8	46.4	3.2	18.7
LOZ(ARG)03 10th-11th centuries AD	Lobera de Onsella	Indeterminate Ind. Adult	Rib	9.5	-18.6	16.0	44.8	3.3	9.1
LOZ(ARG)04 10th-11th centuries AD	Lobera de Onsella	Female Mature Adult	Rib	9.6	-18.7	15.9	43.7	3.2	19.6
LOZ(ARG)05 10th-11th centuries AD	Lobera de Onsella	Male Later Middle Adult	Rib	9.4	-17.9	17.5	46.1	3.1	10.8
LOZ(ARG)06 10th-11th centuries AD	Lobera de Onsella	Female Mature Adult	Rib	9.5	-19	16.5	45.5	3.2	19.1
LOZ(ARG)07 10th-11th centuries AD	Lobera de Onsella	Male Mature Adult	Rib	9.5	-18.7	15.7	42.9	3.2	13.3
LOZ(ARG)08 10th-11th centuries AD	Lobera de Onsella	Male Mature Adult	Rib	9.2	-18.6	15.6	42.9	3.2	11.8
LOZ(ARG)09 10th-11th centuries AD	Lobera de Onsella	Male Early Middle Adult	Rib	10.4	-19.2	15.9	43.3	3.2	25.7
LOZ(ARG)10 10th-11th centuries AD	Lobera de Onsella	Male Mature Adult	Rib	10.4	-18.3	15.9	45.7	3.3	23.8
LOZ(ARG)11 10th-11th centuries AD	Lobera de Onsella	Indeterminate Adult	Rib	8.3	-18.5	16.3	46.7	3.3	25.6
LOZ(ARG)12 10th-11th centuries AD	Lobera de Onsella	Indeterminate	Rib	9.3	-18.5	16	44.3	3.2	23.7
LOZ(ARG)13 10th-11th centuries AD	Lobera de Onsella	Male Mature Adult	Rib	9.4	-18.5	14.8	41.2	3.3	7.4
LOZ(ARG)14 10th-11th centuries AD	Lobera de Onsella	Female Young Adult	Rib	9.4	-19.3	15.4	44	3.3	5.7
Saint Raymond William or San Ramón de Roda 11 th -12 th centuries AD	Catedral de San Vicente de Roda de	Male Mature Adult	Rib	12.4	-18.6	15.8	46	3.4	16.2

	Isábena, Huesca								
Sancho Ramírez, Count of Ribagorza 11 th century AD	San Pedro Carhedral, Jaca (Huesca, Aragón)	Male Mature Adult	Rib	11.9	-18.4	15.7	44.2	3.3	13.9
Pedro de Librana. Bishop of Zaragoza 11 th -12 th centuries AD	Cathedral of Salvador (Zaragoza, Aragón)	Male Mature Adult	Femur	13.7	-18.6	15.1	45.4	3.5	2.9
Unknown Princess Aragon 10 th -12 th centuries AD	Monastery of San Pedro el Viejo (Huesca, Aragón)	Female Young Adult	Rib	13.3	-17.8	16.1	46.1	3.3	8.8
SPSH(ARG)01B(Monk) 9 th -10 th centuries AD	Monastery of San Pedro de Siresa (Huesca, Aragon)	Male Mature Adult	Rib	9.9	-19.1	15.3	43.2	3.3	13.8
SPSH(ARG)03T(Knight) 9 th -10 th centuries AD	Monastery of San Pedro de Siresa (Huesca, Aragon)	Male Later Middle Adult	Rib	9.4	-18.8	16.4	45	3.2	27.5

Table S5. δ^{13} C and δ^{15} N human measurements compiled from the literature. 232

Site and Location	# in map (Figure 1)	Social Group and Chronology	$\delta^{15}N$ (‰) and $\delta^{13}C$ (‰) Mean ± SD, Range and number of samples	Reference
Capela do Pilar, Santa María Cathedral (Lugo, Galicia)	11	Social Elite Members of the cathedral clergy (12 th -14 th century)	13.7 ± 0.9 (7.1 to 11.2) -18.5 ± 0.6 (-22.6 to -20.8) n = (6)	López-Costas, 2012
San Salvador Cathedral (Oviedo, Asturias)	12	Social Elite Members of the cathedral clergy (10 th century)	$12.0\pm1.2 \\ (10.3 \text{ to } 13) \\ -18.6\pm0.2 \\ (-19.9 \text{ to } -18.4) \\ n = (4)$	MacKinnon et al., 2019
EM Dulantzi Alegría-Dulantzi (Álava, Basque Country)	13	Rural (8 th -12 th century)	9.1 \pm 1.2 (4.7 to 12.2) -18.8 \pm 1.4 (-24.5 to -14.1) n = (45)	Lubritto et al. 2017
EM Aistra Zalduondo (Álava, Basque Country)	14	Rural (8 th -10 th century)	8.0 ± 1.1 (6.7 to 12.1) -18.9±1.0 (-22 to -16.7) n = (44)	Lubritto et al. 2017
Treviño, Condado de Treviño (Burgos, Castile and León)	15	Rural (12 th -15 th century)	9.6 \pm 1.1 (7.5 to 12) -19.5 \pm 0.7 (-22 to -18.7) n = (19)	Lubritto et al. 2017
Las Gobas Treviño, Burgos (Castile and León)	16	Rural (7 th -11 th century)	8.9 ± 0.9 (7.7 to 11.7) -19.0\pm 0.6 (-20.1 to -17.2) n = (40)	Guede et al. 2018
Palacios de la Sierra (Burgos, Castile and León)	18	Rural (13 th -15 th century)	9.4 \pm 1.5 (6.8 to 10.6) -18.9 \pm 0.8 (-20.3 to -18.2) n = (5)	Jiménez-Brobeil et al. 2016
San Baudelio de Berlanga, Soria	18	Rural, Christian 11 th -12 th centuries AD	$10.3\pm0.5(9.3 to 11.5)-18.2\pm0.4(-19.0 to -17.6)n = (20)$	Jiménez-Brobeil et al. 2020

Tauste, Zaragoza	19	Urban, Muslim 8 th -10 th centuries AD	14.9 ± 1.7 (9.6 to 17.5) -19.1\pm0.5 (-19.9 to -17.0) n = (20)	Guede et al., 2017
Zaragoza	8	Urban, Muslim 10 th -12 th centuries AD	10.9 ± 1.4 (9.0 to 14.1) -19.0±0.3 (-19.6 to-18.2) n = (36)	Mundee, 2010
Albarracín, Teruel	20	Urban, Muslim 8 th -10 th centuries AD	$10.8\pm0.8 \\ (9.4 \text{ to } 12.1) \\ -19.0\pm0.2 \\ (-19.4 \text{ to} -18.5) \\ n = (31)$	Mundee, 2010
Castile Royal Family, Virgen de los Reyes chapel, Santa María de la Sede Cathedral (Seville, Andalusia)**	21	Social Elite Royal family of Castile Kingdom (14 th century)	13.3 ± 1.5 (11.9 to 15.6) -18.6 ± 0.5 (-19.3 to -18) n = (5)	Jiménez-Brobeil et al. 2016

Supplementary Figures

Figure S1. δ^{13} C and δ^{15} N data of teeth and ribs comparison from the human individuals analysed in this study.

239 **References**

241

247

251

254

257

272

279

282

- 240 Buesa Conde, D. (2002). *Jaca, Historia de una ciudad*. Ayuntamiento de Jaca, Zaragoza.
- Buesa Conde, D. (2002b). *Los monasterios altoaragoneses en la historia*. Publicaciones y Ediciones
 del Alto Aragón, Huesca.
- 244
- Buisán Chaves, A. (2018). "San Pedro el Viejo de Huesca, retiro y panteón de un rey." In Menjón Ruiz,
 M. (Coord.). *Panteones Reales*. Gobierno de Aragón, Zaragoza: 104-111.
- Brock, F., T. Higham and C. B. Ramsey (2010). "Pre-screening techniques for identification of samples
 suitable for radiocarbon dating of poorly preserved bones." *Journal of Archaeological Science* 37(4):
 855-865.
- Bronk Ramsey, C., Higham, T.F.G. and P. Leach (2004). "Towards high-precision AMS: progress and
 limitations." *Radiocarbon* 46(1): 17-24.
- Bronk Ramsey, C. (2017). "Methods for Summarizing Radiocarbon Datasets." *Radiocarbon* 59(6): 1809-1833.
- Brown, T. A., D. E. Nelson, J. S. Vogel and J. R. Southon (1988). "Improved Collagen Extraction by
 Modified Longin Method." *Radiocarbon* 30(2): 171-177.
- Chazarra Bernabé, A., Flórez García, E., Peraza Sánchez, B., Tohá Rebull, T., Criado Pinto, E., Moreno
 García, J.V., Romero Fresneda, R. and R. Botey Fullat (2018). *Mapas Climáticos de España 1981-*2010) Y ETo (1996-2016). Agencia Estatal de Meteorología (AEMET). Madrid, 11-13.
- Dorronzoro Ramírez, P. (2014). "El Episcopado "Batallador" en tiempos de Alfonso I de Aragón y
 Pamplona." *Estudios Medievales Hispánicos* 3: 7-42.
- Franco Aliaga, T. (1979). "La población de la ciudad de Logroño desde el siglo XI al XVI." *Cuadernos de investigación: Geografía e Historia* 5(1): 91-104.
- Jacob, E., Querci, D., Caparros, M., Barroso Ruiz, C., Higham, T. and T. Devièse (2018). "Nitrogen content variation in archaeological bone and its implications for stable isotope analysis and radiocarbon dating." *Journal of Archaeological Science* 93: 68–73.
- Justes Floria, J. and R. Domingo Martínez (2007). "El cementerio mayor de Jaca durante la Edad Media:
 excavaciones arqueológicas en la Plaza Biscós (2005-2006)." *Saldvie* 7: 309-342.
- Jusué Simonena, C., Unzu Urmeneta, M. and M. García-Barberena Unzu (2010) "Evidencias arqueológicas sobre la muerte en el Camino de Santiago." *Trabajos de Arqueología de Navarra*, 22: 195-248.
- Iglesia Costa, M., (1998). "Ramón de Roda." In Leonardi, C., Ricardi, A. and G. Zarri (Coord.), *Diccionario de los santos*, vol. II. San Pablo, Madrid.
- 283 Lapeña Paúl, A. I. (2004). Sancho Ramírez, rey de Aragón (¿1064? 1094) y rey de Navarra (1076 1094). Gijón: Ediciones Trea.
- 286 Lopez, B., García-Manrique, P. y Pardiñas, A.F. (2009) *Estudio antropológico de la necrópolis* 287 *medieval y moderna de San Nicolás de Bari en Burgos*. Anthropological Report research with support

- from the "Ministerio de Educación, Cultura y Deporte" of the Junta de Castilla y León, Spain (Project
 CN-08-045). (unpublish)
- 290
 291 Lorenzo Lizalde, J.I. (1998). Informe antropológico sobre don Alonso de Aragón, arzobispo de
 292 Zaragoza. Unpublished.
- 293

294 Lorenzo Lizalde, J.I. (2018). La Excavación de la necrópolis Alto Medieval del Cerro de San Miguel,
295 en Lobera de Onsella (Zaragoza). In VVAA. *II Congreso de Arqueología y Patrimonio Aragonés*,
296 Zaragoza :195-200.

297

Martín Carbajo, M., Marcos Contreras, G.J., Sanz García, F.J., Misiego Tejada, J.C., Doval Martínez,
D., García Martínez, M.I. and L.A. del Caño García (2003). "Excavación arqueológica en la necrópolis
medieval de San Roque (Quintanillas, Burgos)." In Misiego Tejada, J.C. and C. Etxeberría Zarranz
(Coord). Actuaciones arqueológicas en la autovía del Camino de Santiago (A-231, León-Burgos).
Provincia de Burgos (2000-2003). Junta de Castilla y León, GICAL, León. 131-186.

- Martínez García, L. (2004). *El Camino de Santiago: Una visión histórica desde Burgos*. Caja Círculo,
 Burgos.
- 306
 307 Martínez Baraja, S. (2016). Paleopatología oral en dos poblaciones históricas (s.s. XII XVIII) del norte de España. Doctoral Thesis. Universidad de Oviedo, Oviedo.
- 309
 310 Palomo Díez S, Prieto Potin I and A. González Martín (2011). "Alteraciones de la superficie del cuerpo
 311 vertebral en una población medieval de Logroño (s. XI y XII)". In *Paleopatología: ciencia*312 *multidisciplinar* (Coor. González Martín et al.), 449-458.
- 313
- Naya Franco, C. (2017). "El ajuar funerario del arzobispo de Zaragoza y Valencia, Don Alonso de
 Aragón (1470-1520)." *Archivo Español de Arte* 360: 335-346.
- Reimer, P. J. *et al.* (2020) "The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (055 cal kBP)" *Radiocarbon* 62:4, 725 757.
- 318 Serrano Larráyoz, F. Del reino de pamplona al reino de navarra: El entramado sanitario (siglos
- 319 XII-XIII). J. Mediev. Iber. Stud. (2014). doi:10.1080/17546559.2014.886332