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Abstract

Versions of several results from the theory of random variables are proved for fuzzy random variables: the Skorokhod represen-
tation theorem, the Vitali convergence theorem, the dominated convergence theorem, the continuous mapping theorem, existence 
of regular conditional distributions, and a few others.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Fuzzy random variables aim at providing a sound framework for the simultaneous analysis of random and some 
non-random uncertainties. Thus, a fuzzy random variable is a random variable whose possible values are fuzzy sets 
instead of real numbers. There are two broad approaches, although this should be taken to be an orientative simpli-
fication rather than a normative distinction as it is sometimes understood, since it does not exhaust all the modeling
possibilities with fuzzy random variables.

In the epistemic approach, the fuzzy sets represent descriptions or perceptions of unavailable underlying crisp 
values. For instance, it is recorded that the temperature was ‘high’ but the numerical value is unknown. This leads to a 
number of problems which often lend themselves to fuzzification techniques like Zadeh’s extension theorem [21]. As 
a concrete example, you model temperature as a normal N(μ, σ) random variable and the problem in estimating those 
parameters is that the data are ‘high’, ‘average’, ‘quite high’, ‘cool’, and so on. Zadeh’s extension allows one to define 
estimators which, appropriately, will also be fuzzy sets instead of real numbers. Since this approach gravitates towards 
the properties of the unobservable classical random variable, it is conceptually related to the statistical frameworks of 
censored data and coarse data [23].

In the ontic approach, the focus is on the postulated mechanism that produces observations in the form of fuzzy 
sets. Thus, giving the class of possible fuzzy values some amount of mathematical structure is unavoidable as a first 
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step to generalizing traditional results to this more general type of data. Researchers have succeeded to do so in ways 
which are consistent with other parts of probability theory in spaces more general than the Euclidean space. Puri 
and Ralescu [25] defined fuzzy random variables so that their α-cuts are guaranteed to be random sets. Krätschmer 
[16] showed that this definition is equivalent to Borel measurability with respect to a certain metric, which brings 
fuzzy random variables in close contact with probability in metric spaces. Additional bridges with random elements 
of previously studied spaces include, for instance, càdlàg functions [4], Banach spaces [13,30], among others.

This paper regards fuzzy random variables as random elements of a metric space, specifically the space of d-
dimensional (generalized) fuzzy intervals endowed with the dp-metric. From that point of view, a natural topic is 
convergence in distribution. Although a number of ad hoc views of what a distribution function could be in the fuzzy 
setting have been presented, and regardless of their application to specific practical problems, their common flaw 
is that they do not enjoy the properties that make the cumulative distribution function a valuable tool in the theory 
of random variables [32]. Our view of convergence in distribution, then, disposes of distribution functions entirely. 
Instead, we just adopt the standard setting of probability in metric spaces which defines convergence in distribution 
via expectations of bounded continuous functions (weak convergence). In the case of ordinary random variables, the 
Helly–Bray theorem and its converse ensure that this is equivalent to the definition via convergence of cumulative 
distribution functions at the continuity points of the limit. But this equivalent definition is valid in an arbitrary metric 
space and can be directly applied to fuzzy random variables with the dp-metric.

All results in this paper rely on two basic theorems presented in Section 3:

(a) The space of fuzzy sets with the dp-metric is Borel measurable in its completion (see Theorem 3.1).
(b) A Skorokhod representation theorem which allows one to obtain an almost surely convergent sequence of fuzzy 

random variables from a sequence converging in distribution (see Theorem 3.5).

In fact, the proof of (b) uses (a). But since other previous Skorokhod theorems in metric spaces could be used instead, 
it seems more accurate to say that subsequent results are based on both (a) and (b).

The Skorokhod theorem is an essential tool for studying weak convergence. It allowed for very simple proofs of 
some theorems, and even to weaken their assumptions in some cases. One such application is presented in Section 4. 
There, we prove a version of Vitali’s convergence theorem showing that convergence in distribution implies conver-
gence of the expectations (both in the dp-metric) provided the sequence satisfies a uniform integrability condition with 
respect to the same metric (Theorem 4.6). Note that, since it involves convergence in distribution, this is different from 
the result also called Vitali’s convergence theorem which states that L1-convergence is equivalent to convergence in 
probability plus uniform integrability.

Since a sequence dominated by an integrable function is uniformly integrable, a dominated convergence theorem 
follows easily (Theorem 4.7). This is close to Krätschmer’s [20, Theorem 8.2] but the assumption is weakened to 
convergence in distribution. We also deduce another form of the dominated convergence theorem (Corollary 4.8).

Section 5 collects a number of short applications of results (a) and (b) above. We obtain the continuous mapping 
theorem for fuzzy random variables and generalize to the d-dimensional case the result in [2] that the distributions of 
fuzzy random variables are perfect probability measures. From (a) follows also that the space of fuzzy sets we work 
with is a Lusin space. That implies that known results in Lusin spaces can be applied, in particular the existence of 
regular conditional distributions, from which rigorous sense can be made of the concept of probabilities of a fuzzy 
random variable conditional on the value of another one. Another example is that every probability assessment on the 
elements of a countably generated sub-σ -algebra in the space of fuzzy sets must coincide with the probabilities of 
some fuzzy random variable. We also apply our recent Choquet theorem for random sets in Lusin metrizable spaces, 
motivated by the appearance of random sets of fuzzy sets in statistical estimation with fuzzy data.

2. Preliminaries

Let E be a topological space. We denote by BE its Borel σ -algebra, i.e., the σ -algebra generated by its open sets. 
A Borel measurable mapping with values in E will be generally called a random element of E.

Let Fc(Rd) be the space of fuzzy subsets of Rd , i.e., functions U : Rd → [0, 1] whose α-cuts (α ∈ [0, 1]) are in 
Kc(Rd), the space of all non-empty compact convex subsets of Rd . Recall that the α-cuts of a fuzzy set U are

Uα = {x ∈ Rd | U(x) ≥ α}
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for each α ∈ (0, 1], and U0 denotes the closure of its support.
The Hausdorff metric in Kc(Rd) is defined by

dH (K,K ′) = max{sup
x∈K

inf
y∈K ′ ||x − y||, sup

y∈K ′
inf
x∈K

||x − y||}.

The norm or magnitude of K is

‖K‖ = dH (K, {0}).
For each p ∈ [1, ∞), the metric dp in Fc(Rd), introduced in [13] and [25], is defined by

dp(U,V ) =
⎡
⎢⎣ ∫
[0,1]

(dH (Uα,Vα))p dα

⎤
⎥⎦

1/p

.

We define

Uc(R
d) = {U : Rd → [0,1] | ∀α ∈ (0,1] Uα ∈ Kc(R

d)}.
We consider the following subset of Uc(Rd) in which the definition of dp still makes sense as a (finite) metric.

F̂c,p(Rd) = {U :Rd → [0,1] | ∀α ∈ (0,1] Uα ∈Kc(R
d), dp(U, I{0}) < ∞}.

Therefore

Fc(R
d) ⊆ F̂c,p(Rd) ⊆ Uc(R

d).

Given a probability space (�, A, P), a mapping X : � → Kc(Rd) is called a random set (also a random compact 
convex set in the literature) if X is measurable with respect to the Borel σ -algebra BKc(Rd ) generated by the topology 
of the Hausdorff metric. A random set X is integrably bounded if E[‖X‖] < ∞, where ‖X‖ maps each ω ∈ � to 
‖X(ω)‖.

In the sequel, unless explicitly stated, (�, A, P) will be the underlying probability space for all random elements 
under consideration. Let X : � → Kc(Rd) be an integrably bounded random set. The Aumann expectation of X is the 
compact set

EA[X] = {E[f ] | f : � →R, f ∈ L1(�,A,P ), f ∈ X P -a.s.}.
A mapping X : � → Fc(Rd) is called a fuzzy random variable if, for each α ∈ [0, 1], the α-cut mapping Xα : � →
Kc(Rd) defined by Xα(ω) = (X (ω))α for each ω ∈ � is a random set (see [25]). We will denote by σL the natural 
σ -algebra in Fc(Rd) with which a mapping is a fuzzy random variable if and only if it is measurable, i.e., the smallest 
σ -algebra that makes the mappings U ∈Fc(Rd) �→ Uα ∈Kc(Rd) measurable.

A fuzzy random variable X is called integrably bounded if E[‖X0‖] < ∞. Then the expectation of X is the unique 
fuzzy set Ẽ[X ] ∈ Fc(Rd) such that

(Ẽ[X ])α = EA[Xα]
for each α ∈ [0, 1] (see [25]). A fuzzy random variable with finite range will be called simple.

A sequence of probability measures {Pn}n on σL is said to converge weakly in dp to a probability measure P if∫
f dPn →

∫
f dP

for every f : Fc(Rd) → R which is dp-continuous and bounded. A sequence {Xn}n of fuzzy random variables con-
verges weakly or in distribution in dp to a fuzzy random variable X if their distributions PXn converge weakly to PX , 
namely

E[f (Xn)] → E[f (X)]
for each bounded dp-continuous f .
151



M. Alonso de la Fuente and P. Terán Fuzzy Sets and Systems 435 (2022) 149–163
The Lebesgue measure in [0, 1] will be denoted by �. A class F of random variables is called uniformly integrable
if given ε > 0 there exists K ≥ 0 such that

E[|X| · I{|X|>K}] ≤ ε

for all X ∈ F .
Let us mention a couple of results which will be used later on.

Proposition 2.1. If X is a simple fuzzy random variable with range {U1, . . . , Um} then

Ẽ[X ] = p1 · U1 + . . . + pm · Um,

where pi = P(X = Ui).

Proposition 2.2. (Krätschmer [16, Theorem 6.4.(i)]) Let p ∈ [1, ∞). A mapping X : � → Fc(Rd) is a fuzzy random 
variable if and only if it is a random element of the space (Fc(Rd), dp).

3. Measurability and Skorokhod representation

In this section, we present the two main tools to be used in the remainder of the paper. First we prove that Fc(Rd)

is an element of the Borel σ -algebra of F̂c,p(Rd). In [2], that problem was studied in R and answered positively by 
a laborious constructive process. While the constructive nature of the proof is interesting in itself, it does not seem to 
admit a generalization to Rd . We will present here a shorter proof which relies on earlier results of Krätschmer [19]. 
The measurability result will then be used to obtain a Skorokhod representation theorem for fuzzy random variables 
with the dp metric.

Theorem 3.1. The set Fc(Rd) is measurable in F̂c,p(Rd).

Proof. Let � denote the minimal σ -algebra generated by the mappings Lα : U ∈ Uc(Rd) �→ Uα ∈ Kc(Rd) for α ∈
(0, 1]. (Note that this is not the same as σL since � is a σ -algebra in Uc(Rd), not Fc(Rd).)

By [19, Theorem 1.(1) and Lemma 3.(3)], F̂c,p(Rd) ∈ �. Moreover, by [19, Theorem 1.(2)], BF̂c,p(Rd ) is the trace 

σ -algebra of � in F̂c,p(Rd), i.e., it is the σ -algebra generated by the inclusion mapping i : F̂c,p(Rd) → Uc(Rd):

BF̂c,p(Rd ) = {i−1(A) | A ∈ �}. (1)

Denoting by ϕ :Kc(Rd) → R the continuous mapping K ∈ Kc(Rd) �→ ‖K‖, we have

Fc(R
d) =

⋃
k∈N

{Ũ ∈ Uc(R
d) | ‖U0‖ ≤ k}

=
⋃
k∈N

⋂
n∈N

{Ũ ∈ Uc(R
d) | ‖U1/n‖ ≤ k}

=
⋃
k∈N

⋂
n∈N

(ϕ ◦ L1/n)
−1((−∞, k]) ∈ �.

Accordingly, by (1),

Fc(R
d) = i−1(Fc(R

d)) ∈ BF̂c,p(Rd ). �
The main tool to establish our Skorokhod theorem is Skorokhod’s original version [28].

Theorem 3.2. (Skorokhod) Let (E, d) be a complete separable metric space. Let Pn and P be probability measures 
on BE, such that Pn → P weakly. Then there exist random elements Xn, X : ([0, 1], B[0,1], �) → (E, BE) for which

(a) The distributions of Xn and X are Pn and P , respectively.
152



M. Alonso de la Fuente and P. Terán Fuzzy Sets and Systems 435 (2022) 149–163
(b) Xn(t) → X(t) for each t ∈ [0, 1].

We denote by ip the inclusion embedding of Fc(Rd) into F̂c,p(Rd).

Lemma 3.3. For every p ∈ [1, ∞), the mapping ip is measurable.

Proof. It follows from Theorem 3.1. �
Lemma 3.4. Let Pn, P be probability distributions in (Fc(Rd), σL). If Pn → P weakly in dp , then Pn ◦ i−1

p → P ◦ i−1
p

weakly in (F̂c,p(Rd), dp).

Proof. By the portmanteau lemma [14, Theorem 13.16, p. 254], weak convergence is equivalent to the property that 
lim infn Pn(G) ≥ P(G) for every open set G. Since, for every dp-open subset G ⊆ F̂c,p(Rd) its preimage i−1

p (G) =
G ∩Fc(Rd) is dp-open in Fc(Rd) and the metric dp in Fc(Rd) generates the σ -algebra σL (by Proposition 2.2),

lim inf
n→∞ Pn ◦ i−1

p (G) = lim inf
n→∞ Pn(i

−1
p (G)) ≥ P(i−1

p (G)) = P ◦ i−1
p (G),

proving the weak convergence Pn ◦ i−1
p → P ◦ i−1

p . �
We are ready now to prove a variant of the Skorokhod representation theorem for the dp-metrics. Given a weakly 

convergent sequence, Skorokhod’s theorem provides an almost surely convergent sequence which preserves the dis-
tributions of the variables involved.

It may be observed that the Skorokhod representation theorem in Dudley’s version [7] for separable metric spaces 
would suffice to obtain the applications presented later on in this paper. The difference lies in the simplification of 
the probability space on which the new variables are defined. Specifically, if Xn, X are fuzzy random variables with 
distributions PXn, PX , Dudley’s variables are defined on the product of countably many copies of Fc(Rd) × [0, 1]
with the product measure (PX ⊗ �) ⊗ (PX1 ⊗ �) ⊗ (PX2 ⊗ �) ⊗ . . .. More recent versions of the theorem [36] involve 
even more complex probability spaces. In contrast, our variables are defined on [0, 1] with the uniform distribution.

Theorem 3.5. Let p ∈ [1, ∞). Let Pn, P be probability measures on σL, such that Pn → P weakly, and set P = �. 
Then there exist fuzzy random variables Xn, X : ([0, 1], B[0,1], P ) → (Fc(Rd), dp), such that

(a) The distributions of Xn and X are Pn and P , respectively.
(b) Xn(t) → X (t) in dp for every t ∈ [0, 1].

Proof. By Lemma 3.4, Pn ◦ i−1
p → P ◦ i−1

p weakly. By [18, Corollary 3.3], the space (F̂c,p(Rd), dp) is separable and 
a completion of (Fc(Rd), dp). By Theorem 3.2, there exist Yn, Y : [0, 1] → (F̂c,p(Rd), B(F̂c,p(Rd ),dp)) such that

• The distributions of Yn and Y are Pn ◦ i−1
p and P ◦ i−1

p , respectively.
• Yn(t) → Y(t) for every t ∈ [0, 1].

Note that, by construction,

P (Y ∈Fc(R
d)) = P(i−1

p (Fc(R
d)) = P(Fc(R

d)) = 1

and analogously, P (Yn ∈ Fc(Rd)) = 1 for each n.
Let N be a measurable null set containing the null set

{Y /∈Fc(R
d)} ∪

⋃
n∈N

{Yn /∈ Fc(R
d)}

and set

Xn(t) =
{
Yn(t) if t /∈ N

I if t ∈ N
{0}
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and

X (t) =
{
Y(t) if t /∈ N

I{0} if t ∈ N.

Next, we have to show that Xn and X are fuzzy random variables. For each B ∈ B(Fc(Rd ),dp),

X−1(B) = (N ∩X−1(B)) ∪ (Nc ∩X−1(B))

=
{

N ∪ (Nc ∩Y−1(B)) ∈ B[0,1] if I{0} ∈ B

∅ ∪ (Nc ∩Y−1(B)) ∈ B[0,1] if I{0} /∈ B.

Analogously,

X−1
n (B) ∈ B[0,1].

Since Xn and X are Borel measurable in dp , by Proposition 2.2 both Xn and X are fuzzy random variables.
For the pointwise convergence, let t ∈ [0, 1]. Obviously, if t ∈ N , we have Xn(t) → X (t). If t /∈ N , then Xn(t) =

Yn(t), with Yn(t) → Y(t) = X (t). Therefore Xn(t) → X (t).
Finally, there remains to check P (X ∈ A) = P(A) for A ∈ B(Fc(Rd ),dp). Indeed,

P (X ∈ A) = P ({t ∈ [0,1] | X (t) ∈ A})
= P ({t ∈ Nc | X (t) ∈ A}) = P ({t ∈ Nc | Y(t) ∈ A})
= P ({t ∈ [0,1] | Y(t) ∈ A}) = P (Y ∈ A) = (P ◦ i−1

p )(A) = P(A),

since, by [24, Theorem 1.9], {Y ∈ A} is measurable. �
To the best of our knowledge, there is only one earlier adaptation of the Skorokhod representation theorem to fuzzy 

random variables [31, Proposition 10]. In that case, convergence in is the metric d∞ given by

d∞(U,V ) = sup
α∈[0,1]

dH (Uα,Vα),

(see [25] for more details) which means both the required weak convergence and the obtained almost sure convergence 
are stronger. The new variables are defined on [0, 1] as ours are too.

That result, however, is valid only for fuzzy random variables which are Borel measurable with respect to the 
stronger metric d∞, a rather strong requirement as very simple fuzzy random variables fail to satisfy it. In fact, since 
measurable mappings from [0, 1] to a metric space must take on values, almost surely, on a closed separable subset 
[15, Theorem 1.2], the characterization of d∞-separable subsets in [31, Proposition 10] yields the following: for any 
d∞-Borel fuzzy random variable X there exists a subset of � with null complement for which

α ∈ [0,1] �→ Xα(ω) ∈Kc(R
d)

is continuous for all α out of an at most countable subset independent of ω. Thus the applicability of Theorem 3.5 is 
much wider.

4. Vitali convergence theorem

In this section, we generalize Vitali’s convergence theorem to fuzzy random variables. Taking advantage of The-
orem 3.5, the traditional assumption of almost sure convergence (or convergence in probability) will be relaxed to 
convergence in distribution. Two variants of the dominated convergence theorem will be obtained as applications.

We will be using a number of notions and results about convex combination spaces [34,35]. Since they are needed 
only for this section, they are collected here rather than in Section 2.

Definition 4.1. Let (E, d) be a metric space with a convex combination operation [·, ·] which, for any n ≥ 2 numbers 
λ1, . . . λn > 0 satisfying 

∑n
i=1 λi = 1, and all u1, . . . , un ∈ E, produces an element [λi, ui]ni=1 of E. We will say that 

E is a convex combination space if the following axioms are satisfied:
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1. (Commutativity) [λi, ui]ni=1 = [λσ(i), uσ(i)]ni=1 for every permutation σ of {1, . . . , n};
2. (Associativity) [λi, ui]n+2

i=1 = [λ1, u1; . . . , λn, un; λn+1 + λn+2, [ λn+j

λn+1+λn+2
; un+j ]2

j=1];
3. (Continuity) If u, v ∈E and λ(k) → λ ∈ (0, 1), then

[λ(k), u;1 − λ(k), v] → [λ,u;1 − λ,v];
4. (Negative curvature) For all u1, u2, v1, v2 ∈ E and λ ∈ (0, 1)

d([λ,u1;1 − λ,u2], [λ,u1;1 − λ,u2]) ≤ λd(u1, v1) + (1 − λ)d(u2, v2);
5. (Convexification) For each u ∈E, there exists limn→∞[n−1, u]ni=1, which will be denoted by Ku.

In [34, Theorems 2 and 4] it is shown that (Kc(Rd), dH ) and (Fc(Rd), dp), for every p ∈ [1, ∞], are convex 
combination spaces.

Definition 4.2. Let (E, d) be a convex combination space and u0 ∈ E. A random element X : � → (E, d) is called 
integrable if d(u0, X) is an integrable random variable.

Notice that the definition does not depend on the chosen point, since for any u, v ∈E we have

E[d(u,X)] ≤ E[d(u, v) + d(v,X)] = E[d(u, v)] + E[d(v,X)]
= d(u, v) + E[d(v,X)].

The expectation in a convex combination space is defined through approximation by simple random elements [35].

Definition 4.3. Let (E, d) be a complete and separable convex combination space and let X be a random element. If 
X is simple, i.e., has the form X = ∑r

j=1 I�j
uj , its expectation is E[X] = [P(�j ), Kuj ]rj=1. If X is integrable then 

there exist sequences {Xk}k of simple functions converging almost surely to X and with E[d(Xk, X)] → 0, and for 
any such sequence the d-limit of E[Xk] exists and is the same element E[X] ∈E, which is called the expectation of 
X.

In [35] we can also find the following properties.

Theorem 4.1. Let (E, d) be a complete separable convex combination space.

1. There exists a sequence of measurable simple functions {φk}k with φk : E → E such that d(φk(X), X) ↘ 0 a.s. 
and E[d(φk(X), X)] → 0.

2. Let X, Y : � →E be integrable random elements. Then

d(E[X],E[Y ]) ≤ E[d(X,Y )].
3. Let X : � → E an integrable random element and let {Xn}n be a sequence of pairwise independent random 

elements distributed as X. Then

[n−1,Xi]ni=1 → E[X] almost surely.

For the following result, the reader is referred to [35, p. 887] or [34, Example 1].

Lemma 4.2. Let X : � → (Kc(Rd), dH ) be an integrably bounded random set. Then X is integrable and E[X] =
EA[X].

The following lemma corresponds to Theorem 5 in [34].

Lemma 4.3. Let X : � → (Fc(Rd), dp) be an integrably bounded fuzzy random variable. Then X is integrable and 
its expectation in the sense of convex combination spaces is E[X] = Ẽ[X].
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It will be convenient to state explicitly, for future reference, the following consequence of Theorem 4.1.(2) and 
Lemma 4.3.

Lemma 4.4. Let X , Y : � → Fc(Rd) be integrably bounded fuzzy random variables. Then

dp(Ẽ[X ], Ẽ[Y]) ≤ E[dp(X ,Y)].

Vitali’s convergence theorem for real random variables, in the form we wish to extend, is as follows.

Lemma 4.5 (Vitali’s convergence theorem). Let Xn and X be random variables such that {Xn}n is uniformly inte-
grable. If Xn → X almost surely, then E[Xn] → E[X].

In order to obtain an adaptation of this theorem for fuzzy random variables, we will use the following concept.

Definition 4.4. A class F of fuzzy random variables will be called uniformly integrable in dp if given ε > 0 there 
exists K ≥ 0 such that

E[dp(X , I{0}) · I{dp(X ,I{0})>K}] ≤ ε

for all X ∈ F .

The version we will prove weakens the assumption from almost sure convergence to weak convergence.

Theorem 4.6. Let Xn and X be integrably bounded fuzzy random variables such that {Xn}n is uniformly integrable 
in dp . If Xn → X weakly in dp , then Ẽ[Xn] → Ẽ[X ] in dp .

Proof. By Theorem 3.5, there exist fuzzy random variables Yn, Y : ([0, 1], B[0,1], P ) → Fc(Rd) such that PYn
= PXn

, 
PY = PX and Yn(t) → Y(t) in dp for every t ∈ [0, 1]. Then, by Lemma 4.4,

dp(Ẽ[Yn], Ẽ[Y]) ≤ E[dp(Yn,Y)].
Furthermore, {dp(Yn, Y)}n is a sequence of measurable functions which converges pointwise to the null function. Let 
us show that {dp(Yn, Y)}n is uniformly integrable. By the triangle inequality,

dp(Yn,Y) ≤ dp(Yn, I{0}) + dp(I{0},Y).

Since Yn has the same distribution as Xn, for each n ∈ N and K ≥ 0 it follows that dp(Yn, I{0}) · I{dp(Yn,I{0})>K} has 
the same distribution as dp(Xn, I{0}) · I{dp(Xn,I{0})>K}. Hence

E
[
dp(Yn, I{0}) · I{dp(Yn,I{0})>K}

]
= E

[
dp(Xn, I{0}) · I{dp(Xn,I{0})>K}

]
.

Then {dp(Yn, I{0})}n is a uniformly integrable sequence.
By an analogous reasoning,

E[dp(I{0},Y)] = E[dp(I{0},X )] = E

⎡
⎢⎣

⎡
⎢⎣ ∫
[0,1]

(dH ({0},Xα))p d�(α)

⎤
⎥⎦

1/p⎤
⎥⎦

≤ E

⎡
⎢⎣

⎡
⎢⎣ ∫
[0,1]

(dH ({0},X0))
p d�(α)

⎤
⎥⎦

1/p⎤
⎥⎦ = E[dH ({0},X0)] = E[‖X0‖] < ∞,

since X is integrably bounded, so dp(I{0}, Y) is an integrable random variable.
The space L1([0, 1], B[0,1], P ) is a Banach space, hence the mapping

T : f ∈ L1([0,1],B[0,1],P ) → f + dp(I{0}, Y ) ∈ L1([0,1],B[0,1],P )
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is well defined and continuous.
By [3, Theorem 13.6, p. 140], {dp(Yn, I{0})}n is uniformly integrable if and only if it is relatively weakly compact 

(i.e., its closure is compact in the weak topology of L1([0, 1], B[0,1], P )). Since the continuous image of a relatively 
compact set is relatively compact [10, Theorem 6.8, p. 254], it follows that the set

T ({dp(Yn, I{0})}n) = {dp(Yn, I{0}) + dp(I{0},Y)}n
is relatively compact. Applying again [3, Theorem 13.6], the sequence {dp(Yn, I{0}) + dp(I{0}, Y)}n is uniformly 
integrable, i.e., for any fixed ε > 0 there exists K > 0 such that

E
[
(dp(Yn, I{0}) + dp(I{0},Y)) · I{(dp(Yn,I{0})+dp(I{0},Y))>K}

]
< ε.

Then

E
[
dp(Yn,Y) · I{dp(Yn,Y)>K}

] ≤ E
[
(dp(Yn, I{0}) + dp(I{0},Y)) · I{dp(Yn,Y)>K}

]
≤ E

[
(dp(Yn, I{0}) + dp(I{0},Y)) · I{(dp(Yn,I{0})+dp(I{0},Y))>K}

]
< ε.

Thus {dp(Yn, Y)}n is uniformly integrable. By Lemma 4.5, E[dp(Yn, Y)] → 0. As we have seen that

dp(Ẽ[Yn], Ẽ[Y]) ≤ E[dp(Yn,Y)],
it follows that

dp(Ẽ[Yn], Ẽ[Y]) → 0.

To finish the proof, we have to check that the expectations of the fuzzy random variables provided by Skorokhod’s 
theorem are the same as those of the original variables. Assume first that X and Y are simple fuzzy random variables, 
i.e.,

X (�) = {Ũ1, ..., Ũm} = Y([0,1]).
By Proposition 2.1 we have

Ẽ[X ] = P({ω ∈ � | X (ω) = Ũ1}) · Ũ1 + ... + P({ω ∈ � | X (ω) = Ũm}) · Ũm

= P({t ∈ [0,1] | Y(t) = Ũ1}) · Ũ1 + ... + P({t ∈ [0,1] | Y(t) = Ũm}) · Ũm = Ẽ[Y].
For the general case, by Theorem 4.1 there exists a sequence {φk}k of measurable simple functions such that φk(X ) →
X and φk(Y) → Y .

dp(Ẽ[X ], Ẽ[Y]) ≤ dp(Ẽ[X ], Ẽ[φk(X )]) + dp(Ẽ[φk(X )], Ẽ[Y])
≤ dp(Ẽ[X ], Ẽ[φk(X )]) + dp(Ẽ[φk(X )], Ẽ[φk(Y)]) + dp(Ẽ[φk(Y)], Ẽ[Y]).

On the one hand, dp(Ẽ[X ], Ẽ[φk(X )]) → 0, by Theorem 4.1.(1,2). Analogously, dp(Ẽ[Y], Ẽ[φk(Y)]) → 0.
On the other hand, since φk(X ) and φk(Y) are simple fuzzy random variables with the same distribution, we have 

dp(Ẽ[φk(X )], Ẽ[φk(Y)]) = 0.
Then dp(Ẽ[X ], Ẽ[Y]) = 0, namely Ẽ[X ] = Ẽ[Y]. For the same reason, also Ẽ[Xn] = Ẽ[Yn]. In conclusion,

dp(Ẽ[Xn], Ẽ[X ]) → 0. �
Remark 4.1. The proof above uses some results from [35] which are under the assumption that the convex combi-
nation space is complete as a metric space, specifically the approximation scheme by simple functions. That is not 
satisfied by (Fc(Rd), dp), whence it might appear that the proof is doubtful. However, completeness is used in the 
construction of the expectation: writing E[X] in the sense of convex combination spaces already involves considering 
the completion of (Fc(Rd), dp) (see [34]).

Once the expectation has been constructed as an element of the completion of (Fc(Rd), dp) which is ensured to lie 
within Fc(Rd) (thanks to Lemma 4.3 and the assumption of integrable boundedness), clearly the invoked properties 
continue to hold as properties of the completion which involve only elements of Fc(Rd).
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From the Vitali theorem we can deduce a variant of the dominated convergence theorem for fuzzy random variables.

Theorem 4.7. Let Xn and X be integrably bounded fuzzy random variables. If Xn → X weakly in dp and there exists 
g ∈ L1(�, A, P) such that dp(Xn, I{0}) ≤ g for all n ∈N , then Ẽ[Xn] → Ẽ[X ] in dp .

Proof. The sequence of random variables {dp(Xn, I{0})}n is dominated by a function in L1(�, A, P). Every domi-
nated sequence is uniformly integrable, see e.g. [5, Remark 3.13.(b), p. 72]. Then, for all ε > 0, there exists K ≥ 0
such that

E
[
dp(Xn, I{0}) · I{dp(Xn,I{0})>K}

]
≤ ε,

that is, {Xn}n is uniformly integrable in dp. It suffices now to apply Theorem 4.6. �
A number of versions of the dominated convergence theorem for fuzzy random variables have been proved so far. 

The most comprehensive one seems to be Krätschmer’s [20, Theorem 8.2], which includes and/or improves upon 
earlier versions like [25, Theorem 4.3], [13, Theorem 4.1], [19, Theorem 3], [17, Theorem 3.6]. Krätschmer’s result 
considers the metrics ρp and d∞, of which ρp is uniformly equivalent to dp and d∞ is strictly stronger.

Let us comment the case of the Lp-type metrics first, since it is the one directly related to our setting. By the 
uniform equivalence, Krätschmer’s integrability conditions are equivalent to those in Theorem 4.7. The conclusion is 
the same in both theorems. He considers fuzzy random variables with values in F̂c,p(Rd), which is more general than 
Fc(Rd). On the other hand, he assumes almost sure convergence while we do with weak convergence.

In the case of a dominated convergence theorem for the d∞-metrics, convergence in both the assumption and the 
conclusion is stronger than in the dp-metrics, so no version implies the other. However, the weak convergence assumed 
in Theorem 4.7 is still a weaker type of requirement than the almost sure convergence in [20, Theorem 8.2] and the 
convergence in probability in [9, Theorem 3.4].

Remark 4.2. It seems worth pointing out that our dominated convergence theorem does not seem to follow from 
successive application of the dominated convergence theorem with almost sure convergence (e.g., [20, Theorem 8.2]) 
and Skorokhod’s theorem (to obtain an almost sure convergence from a weak one). The reason is that Skorokhod’s 
theorem does not ensure that the sequence of almost surely converging fuzzy random variables it provides will still be 
dominated.

To close this section, we present a variant which does not require the calculation of dp(Xn, I{0}).

Corollary 4.8. Let Xn and X be integrably bounded fuzzy random variables. If Xn →X weakly in dp and there exists 
an integrably bounded fuzzy random variable Y such that Xn ⊆ Y for all n ∈N , then Ẽ[Xn] → Ẽ[X ] in dp .

Proof. We have dp(Xn, I{0}) ≤ ‖(Xn)0‖, as shown in the proof of Theorem 4.6. Since Xn ⊆ Y for all n ∈N , we have 
‖(Xn)0‖ ≤ ‖Y0‖ and since Y is integrably bounded, E[‖Y0‖] < ∞.

Finally, ‖Y0‖ is an L1(�, A, P) function dominating the sequence {dp(Xn, I{0})}n, so Theorem 4.7 applies. �
5. Miscellaneous applications

This section provides a number of further consequences of the results in Section 3.

5.1. Continuous mapping theorem

Theorem 3.5 allows one to obtain the continuous mapping theorem for fuzzy random variables with the assumption 
of weak convergence.

Theorem 5.1. Let Xn and X be fuzzy random variables such that Xn → X weakly in dp . If f : Fc(Rd) → Fc(Rd) is 
a PX -almost surely continuous function, then f (Xn) → f (X ) weakly in dp .
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Proof. By Theorem 3.5, there exist fuzzy random variables Yn, Y : ([0, 1], B[0,1], P ) → Fc(Rd) with P = � such that 
PYn

= PXn
, PY = PX and Yn(t) → Y(t) in dp for every t ∈ [0, 1]. Since f is a continuous function PY -a.s., there 

exists M ⊆ Fc(Rd) such that PY (M) = 1, and if Y ∈M then f (Yn) → f (Y). Therefore

{t ∈ [0,1] | f (Yn(t)) � f (Y(t))} ⊆ {Y /∈ M},
which is a null set since P (Y /∈ M) = 1 − PY (M) = 0. Then f (Yn) → f (Y) P -a.s. Combining Lemma 3.2 and 
Lemma 3.7 in [12], almost sure convergence implies weak convergence, hence f (Yn) → f (Y) weakly. Finally, from 
the fact that X and Y and also Xn and Yn have the same distribution, it follows that f (Xn) → f (X ) weakly. �

In the case of random variables, the codomain of f is R and so preservation of weak convergence by continuous 
mappings follows easily from the definition of weak convergence (since the composition of continuous functions is 
continuous). The difficulty in establishing the continuous mapping theorem in the real case is rather to prove it from 
convergence in distribution defined as pointwise convergence of the cumulative distribution functions in the continuity 
points of the limit.

5.2. Perfect distributions

The notion of a perfect probability measure was introduced by Gnedenko and Kolmogorov [11] in order to avoid 
some counter-intuitive behaviours of probability measures in arbitrary sample spaces which began to be detected in 
the late 1940s.

Definition 5.1. A probability measure P in a measurable space (�, A) is called perfect if for every A ⊆ R and every 
random variable X : � → R such that {X ∈ A} ∈ A, there exist A1, A2 ∈ BR such that

• A1 ⊆ A ⊆ A2.
• P(X ∈ A2 \ A1) = 0.

Hence a probability measure is perfect when all the probabilistic information about its random variables is de-
termined by the probabilities of the Borel sets. For a more detailed (but still introductory) discussion, the reader is 
referred to [2, Section 4]. The following result ensures that fuzzy random variables always have perfect distributions. 
Its proof is analogous to that of the Fc(R) case in [2, Proposition 4.7] and therefore omitted. It is based on the mea-
surability of Fc(Rd) in F̂c,p(Rd) (Theorem 3.1), the fact that (F̂c,p(Rd), dp) is a complete separable metric space, 
and the fact that σL is the Borel σ -algebra in Fc(Rd) generated by dp (Proposition 2.2).

Theorem 5.2. Let X : � →Fc(Rd) be a fuzzy random variable. Then its distribution PX is perfect.

5.3. Fc(Rd) is a Lusin space

Definition 5.2. A topological space is called Polish if its topology is generated by some complete separable metric.

Definition 5.3. A Lusin space is the image of a Polish space under a continuous bijective function.

Clearly, every Polish space is Lusin. The following result can be found in [29].

Lemma 5.3. A topological subspace of a Lusin space is Lusin if and only if it is Borel measurable.

The metric space (Fc(Rd), dp) is not complete, but it is separable [6, Theorem 3]; as a consequence of Theorem 3.1, 
it is Lusin.

Proposition 5.4. The space (Fc(Rd), dp) is a Lusin space for every p ∈ [1, ∞).
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Proof. As mentioned in the proof of Theorem 3.5, F̂c,p(Rd) is the completion of a separable metric space, therefore 
it is Polish, in particular it is a Lusin space. Moreover, by Theorem 3.1, Fc(Rd) is a measurable subspace of F̂c,p(Rd). 
Finally, from Lemma 5.3 we deduce that Fc(Rd) is Lusin. �

This will be applied in the next three subsections.

5.4. Regular conditional distributions

In this subsection, we discuss an approach to defining probabilities of events concerning a fuzzy random variable, 
conditional on the value of another fuzzy random variable.

Definition 5.4. A standard measurable space is a measurable space isomorphic to a Borel subset of a Polish space.

Definition 5.5. Let (Y, T , μ) be a probability space and (X, S) be a measurable space. A Markov kernel is a function 
ν : Y × S → [0, 1] such that ν(y, ·) is a probability measure on (X, S) for each y ∈ Y and ν(·, F) is a T -measurable 
function for each F ∈ S.

Definition 5.6. Let (X × Y, S ⊗ T , λ) be a probability space. A regular conditional probability is a Markov kernel 
satisfying

λ(F × E) =
∫
E

ν(y,F )λy(dy) (2)

for all E ∈ T , F ∈ S, where λy is the Y -marginal of λ.

Theorem 5.5. Any space (Fc(Rd) × Y, σL ⊗ T , λ) has a regular conditional probability.

Proof. By Theorem 3.1, Fc(Rd) is a measurable subset of a Polish space, hence standard. In particular, it is pre-
standard in the sense of [8]. The result follows by an application of [8, Theorem 5]. �

In particular, this provides a rigorous way to define conditional distributions for fuzzy random variables. Let X and 
Y be fuzzy random variables with values in Fc(Rd) and Fc(Rd ′

), respectively. Taking λ to be the joint distribution 
P(X ,Y) and ν provided by Theorem 5.5 we define

P(X ∈ F | Y = U) = ν(U,F )

for all U ∈ Fc(Rd) and F ∈ σL. Thus (2) becomes

P(X ∈ F,Y ∈ E) =
∫
E

P (X ∈ F | Y = V )dPY (V ).

From the definition of a Markov kernel, the conditional distributions PX |Y=U so defined are actual probability mea-
sures. Of course, if U ∈ Fc(Rd) is such that P(Y = U) > 0 then

P(X ∈ F,Y = U) =
∫

{U}
P(X ∈ F | Y = V )dPY (V ) = P(X ∈ F | Y = U) · PY ({U})

whence

P(X ∈ F | Y = U) = P(X ∈ F,Y = U)

PY ({U}) = P(X ∈ F,Y = U)

P (Y = U)

consistently with the ordinary definition P(A | B) = P(A ∩ B)/P (B) for P(B) > 0.
One can define a conditional expectation E[X | Y = U ] to be the expectation of the identity mapping id :

(Fc(Rd), σL, PX |Y=U) → Fc(Rd), provided the latter is integrably bounded. Other notions (variance, median, and 
so on) are adapted similarly.
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Let X, Y be random vectors of Rd and Rd ′
, respectively. We can define conditional probabilities and distributions 

of the types X|Y = U and X |Y = y with the formulas

P(X ∈ A|Y = U) = P(I{X} ∈ {I{x} | x ∈ A} | Y = U)

and

P(X ∈ F |Y = y) = P(X ∈ F |I{Y } = I{y}).

López-Díaz and Gil [22] considered regular conditional distributions in the context of fuzzy random variables, but 
their problem is very different. They consider one fuzzy random variable defined on a product space which is assumed 
to be endowed with a regular conditional distribution. Here we consider a joint distribution of two fuzzy random 
variables and establish the existence of a regular conditional distribution (as an application of Faden’s general result).

5.5. An extension theorem

Every probability measure on a sub-σ -algebra of σL extends to σL, whence there exist some fuzzy random variable 
whose induced distribution agrees on every event with the original probability, provided the sub-σ -algebra is countably 
generated.

Definition 5.7. A Suslin space is the image of a Polish space under a continuous surjective function.

Theorem 5.6. Let C ⊆ σL be a countably generated sub-σ -algebra, and let μ : C → [0, 1] be a probability measure. 
Then there exists a fuzzy random variable X on a probability space (�, A, P) such that P(X ∈ A) = μ(A) for every 
A ∈ C.

Proof. By Proposition 5.4, Fc(Rd) is a Lusin space and obviously Suslin. By [1, Corollary 5.3] (note that Suslin 
spaces are called analytic there), μ has an extension μ̂ : σL → [0, 1]. One fuzzy random variable X such that PX = μ̂

is the identity mapping in Fc(Rd). �
Therefore a partial assignment of probabilities in a (countably generated) sub-σ -algebra always agrees with the 

probabilities assigned by some fuzzy random variable.

5.6. Choquet theorem for random closed sets in Fc(Rd)

The Choquet theorem is a central result about distributions of random closed sets, analogous to the theorem that 
identifies the properties a function must have in order to be the cumulative distribution function of some random 
variable.

In some situations there appear random sets formed by points in a space of fuzzy sets. A motivating example comes 
from statistical estimation with fuzzy data. Indeed, whenever estimators are obtained by optimizing some objective 
function, the estimator may or may not be unique (for instance, in the case of random variables, the mean is unique 
while the median, in general, is not). If uniqueness is not achieved, the set of optimizers is a random set (since it 
depends on the sample) each point of which is a fuzzy set. The reader is referred to the papers [26,27] for such 
examples of estimators (M-estimators) in the setting of fuzzy data.

Definition 5.8. Let E be a topological space. A capacity in E is a set function c : L → [0, 1] on a lattice of sets 
L ⊆ P(E) such that ∅, E ∈L, c(∅) = 0 and c(E) = 1 hold, and moreover c(A) ≤ c(B) whenever A ⊆ B .

A random closed set in a metric space E is a mapping, from a probability space to the class of all non-empty closed 
subsets of E, for which the events {X ∩ G �= ∅} are measurable whenever G is open.

Theorem 5.7. Let p ∈ [1, ∞). The identities

P(X ∩ G �= ∅) = T (G),
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for every dp-open set G in Fc(Rd), establish a bijection between the distributions PX of random closed sets in 
(Fc(Rd), dp) and capacities T in the space of dp-open sets in Fc(Rd) such that c(An) → c(A) whenever An ↗ A

and

c(

n⋂
i=1

Ai) ≤
∑

I⊆{1,...,n},I �=∅
(−1)|I |+1c(

⋃
i∈I

Ai).

Proof. Since (Fc(Rd), dp) is a metrizable Lusin space for each p ∈ [1, ∞) by Proposition 5.4, we can apply [33, 
Theorem 7]. �
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