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Abstract: Tree morphological characteristics, particularly straightness and lean, significantly influence
the value of the commercial products that can be obtained. Despite this, they are not usually evaluated
in timber field inventories because traditional techniques are labor-intensive and largely subjective,
hence the use of these parameters is limited to research and genetic breeding programs. Here, a non-
destructive, fully automated methodology is presented that estimates the parameters for describing
straightness and lean using terrestrial laser scanning (TLS) data. It is based on splitting stems into
evenly spaced sections and estimating their centers, which are then used to automatically calculate the
maximum sagitta, sinuosity, and lean of each tree. The methodology was applied in a breeding trial
plot of Pinus pinaster, and the results obtained were compared with field measurements of straightness
and lean based on visual classification. The methodology is robust to errors in the estimation of section
centers, the basis for calculating shape parameters. Besides, its accuracy compares favorably with
traditional field techniques, which often involve problems of misclassification. The new methodology
is easy to use, less expensive, and overcomes the drawbacks of traditional field techniques for
obtaining straightness and lean measurements. It can be modified to apply to any species and
stand typology.

Keywords: straightness; lean; sinuosity; tree breeding; wood quality

1. Introduction

Stem shape is a hugely relevant factor to consider in forestry, as it is closely related to
wood quality and has a strong influence on sawmill performance, that is, on the percentage
of profitable volume with respect to the volume of the log [1]. Consequently, it strongly
conditions the use that can be made of a forest stand and its economic sustainability.

The term “stem shape” is usually used generically to refer to a wide range of charac-
teristics, including straightness, conicity, tapering, lean, and even the presence of defects
such as bracketing fork and prominences caused by the presence of knots. All these charac-
teristics have great importance in forestry, but the specific importance of straightness and
lean is widely recognized from both the scientific and technical perspective [2—4]. Stem
straightness is particularly significant in forestry because it provides critical information
for harvesting and sawing. Stems’ bucking optimization requires the very accurate deter-
mination of their shape to enable the cutting points along the stem to be established and to
determine merchantable volumes according to particular specifications [5]. Furthermore,
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straightness is an important variable in trials, where selecting the straightest provenances is
the basis for developing a tree breeding program [4]. In the case of lean, its importance was
made clear in [6] and is based on the fact that it influences quality through increasing the
proportion of reaction wood [7]; also it is, an expression of the adaptive growth of a tree [8]
and a reaction to external loads (e.g., snowfall, stones ... ) that influences tree growth.
Reaction wood (which forms in place of normal wood as a response to gravity meaning
its cambial cells are oriented other than vertically) usually has a higher density. Although
its mechanical properties are not reduced, it undergoes greater deformations during the
drying processes and tends to break more easily; the reason being it is undesirable for wood
processing purposes [9].

To measure the straightness of a stem the most commonly used parameter is sweep,
which is traditionally defined as the maximum sagitta per meter of the stem [10]. However,
sweep is not the only indicator of straightness; there are others such as sinuosity which
are also of great interest. Sinuosity is expressed as the quotient between the line (not
necessarily straight) which defines the axis of the stem and the Euclidean distance (straight
line) between the end points of the stem [11]. As for the case of lean, it is defined as the
angular deviation of a tree stem from a vertically upright position [12].

Fieldwork approaches to collecting data on such variables range from visual classifica-
tions made by one or more observers that group trees according to predefined categories, a
very common methodology in tree breeding programs, to more evolved systems which
use measurements (from calipers, measuring tapes and hypsometers) mainly based on
the deviation or lean of the tree axis [10]. However, even with methods that use actual
field measurements, results are still subject to observer s interpretation, which is highly
influenced by their experience and the criteria used, as well as by the characteristics of the
stand. In the specific case of stem straightness, data on standing trees can also be obtained
from localized or national stem curve models [5], but their wide scope of application makes
them too imprecise to get accurate results at the individual tree level. Due to all the above,
it is difficult to accurately measure complex stem shapes using conventional field investiga-
tion methods [2] which is why stem shape variables are not habitually measured as part of
regular inventories [13]. This lack of measurements is especially notable in tree breeding
programs of conifers in general (pines in particular) despite stem shape and branch angle
assessment being very important [14,15]. In addition to these difficulties, and despite their
relevance, in most cases it is not possible or practical to measure the variables implicated
in straightness for every single tree in a plot using traditional fieldwork approaches since
individual tree measurement is costly and labor intensive [16].

The use of remote sensing techniques, and more specifically the use of TLS (terrestrial
laser scanning) can be very valuable in the estimation of stem shape. TLS acquires high
resolution three-dimensional point clouds of the study area, which provides a reliable
representation of the structure of the trees within the stands at the time when data were
collected [17]. The fact that data are collected from the ground makes this technology
especially suitable for studying stem profiles. In spite of this, there are only a few studies
that have focused their efforts on the calculation of shape variables such as straightness
and lean [9,18-20] or to the study of the presence and distribution of branches [21-24].
This may be explained by a combination of issues such as the high price of most scan-
ning devices [25] and the lack of algorithms and software applications to calculate shape
variables automatically [26] and which also requires expert knowledge to obtain reliable
results. However, the general trend is slowly changing, equipment prices are gradually
falling [27], and the proliferation of methodological developments which automatize data
processing and analysis tasks is well under way [28-30]. Presumably, then, TLS will be
a fundamental technology in forest inventories in the near future [31] and will make the
automatic measurement of shape variables, such as straightness and lean, possible in regu-
lar inventories with minimal effort. For this to happen in a cost-effective and simple way,
the automation of point cloud processing with readily available and easy-to-use software
capable of extracting information related to important forest attributes is essential [1,26].
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The aims of this study are two-fold: (i) To develop a methodology that allows the
measurement of straightness (maximum sagitta and sinuosity) and lean automatically
at the individual tree level from data captured with TLS; and (ii) to compare the results
obtained with measurements made in the field by traditional methods (categorical visual
classification that groups trees into classes).

2. Materials and Methods
2.1. Data Collection and Inventory

The study area is located in the autonomous region of Asturias (Northern Spain)
(Figure 1(1)), characterized by an oceanic climate, with abundant rainfall throughout the
year and mild temperatures in both winter and summer. The soils are siliceous. The
plot where the study was carried out belongs to a network of trials for the National Tree
Breeding program of Pinus pinaster, a species with a particular tendency to tortuosity. It has
an approximate area of 5700 m?. The terrain is irregular with high slope (>60%) (Figure 1(4))
and the presence of various shrub species such as Ulex, Ericas, and Pteridium, among others
(Figure 1(2)). Both these characteristics contribute to making this study area a challenging
one. It was planted in 2005 following an experimental design of four randomized blocks,
where 225 families were planted, each family in a row of four trees. Some of the families
are from the region of the plantation (Asturias) while others are from various places within
Italy, France, Spain, Portugal, and the north of Africa. A genetic thinning (where also fallen
trees were removed) was carried out in 2018 resulting in the current number of trees which
is 408 (806 stems/ha).

Figure 1. (1) Plot situation in northern Spain (Longitude 6°32/33.25” Latitude 43°2518.06”) (2) Pinus
pinaster stand and understory within the plot. (3) Polystyrene spheres used for the point cloud
georeferentiation. (4) Three-dimensional representation of size and slope of the plot.

Data acquisition was accomplished in November 2018 using a TLS FAROFocus3D.
Twenty-four scanning paths were necessary to ensure full coverage and minimize the effect
of occlusions. Polystyrene spheres of 25 cm diameter fixed to surveying rods were used to
merge the point clouds of individual scans into a unified coordinate system (Figure 1(3)).
Moreover, the position of the spheres was measured in the field using GNSS (Global
Navigation Satellite System), thereby ensuring that the unified point cloud had absolute
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coordinates. The resulting point cloud had approximately 150 million points after removing
redundant points within 6 mm (average density ~26,300 points/m?).

The point cloud (Figure 1(4)) was analyzed with the methodology for the automatic
estimation of dbh and h described in [32,33]. As a result, for each tree, measurements of the
diameters of the sections along the stem (spaced 20 cm apart, from 0.5 over the ground to
4.9 m) as well as their centers (defined by X, Y, Z coordinates) were automatically obtained
(Figure 2(1)).
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Figure 2. (1) Stem sections, defined by their center (X, Y, Z) and radius, automatically calculated
by the algorithm presented in [32,33]. In red, the sections labelled as anomalous by the algorithm.
(2) Stem sections after the correction of the anomalous cases.

Some of the trees did not have the complete range of sections mainly due to (i) the
number of points in a section being insufficient to perform the circle fitting or (ii) sections
presented anomalies that the methodology detected automatically. In this regard, the
methodology includes several filters to detect anomalies [32,33] so the potentially ‘wrong’
sections are flagged for revision by a human operator who checks whether the fitting is
correct and/or if it is possible to fit the circle manually.

Moreover, as described in [33] to have a reference for the data calculated by the
algorithm, diameter fitting was manually conducted in the point cloud twice for the same
section, each time by a different operator (Op; and Op,). As a result, the centers of the
sections for all the individual trees within the plot were available and served two purposes:
(i) as reference data to assess the performance of the algorithm and (ii) to correct those
sections which were labeled as anomalous by the algorithm (Figure 2(1)) to ensure data used
to estimate stem shape variables were free of outliers (Figure 2(2)). If a circle obtained and
flagged by the algorithm was incorrect but there were enough points to visually estimate
its size and position, the operator fitted the circle manually.

In parallel to TLS data acquisition, dbh was measured in the field with a caliper, to
the nearest 1 mm, and £, to the nearest 10 cm, using a digital hypsometer (Vertex IV 360°).
As a complement to this inventory data, all the tree stems within the plot were also geo-
positioned using the same GNSS as used for the TLS spheres and a total station. This
allowed the inventoried trees to be related to those in the point cloud, making comparisons
between the two data sources possible. The average dbh and h for the plot were 17.6 cm
and 10.20 m respectively.

Regarding conducting inventories of shape variables in the field (as mentioned in
Section 1) in tree breeding programs, visual classifications that group the trees according to
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predefined categories have been widely used as selection criteria over the years to assess
stem straightness and lean. In this study, these variables were visually assessed at an
individual tree level by a field observer using the classification proposed by [2] for Pinus
pinaster which is detailed in Table 1.

Table 1. Scale of values used as a reference to measure stem shape variables in the field.

Category Straightness Lean
1 Straight Lean not appreciable at first sight
’ Curved in the intermediate or basal Lean appreciable up to 15° (referred to
zone and less than twice the dbh the vertical)
3 Curved in the intermediate or basal Lean greater than 15° referred to the
zone and more than twice the dbh vertical)

In the next section the steps to be followed to estimate straightness and lean from the
TLS point cloud are detailed.

2.2. Stem Shape Variables Estimation from TLS Data

As shown in Figure 3, our method automatically calculates the lean angle and straight-
ness parameters (maximum sagitta and sinuosity) from the exact location of the centers
of the sections along the stems in a plot. The coordinates of all the sections available for
each stem are used to define a polyline that allows the estimation of deviations from ideal
straight and /or vertical stem axes.

Input data
FromTLS data ALGORITHM [ Lean J
A -PCA from XYZ0 section coord.
Section centers xvz, coord _Lack of verticality of PC1
T
Straightness
[ Maximum sagitta (SSmax)] [ Sinuosity ]
-Initial estimation with variable length| | -[Section centers’ line] / [straight line]
-Standardizationata 5 m length -Values>1

Figure 3. Workflow of the methodology for the automatic estimation of lean and straightness
(maximum sagitta and sinuosity) from the coordinates of the section centers along the stems.

The centers of the stem sections for each tree are the only input data necessary for
straightness and lean estimations. Each coordinate (X, Y, and Z) is stored in an independent
array with as many rows as trees in the plot, and as many columns as sections. The
workflow for straightness and lean estimations has been implemented in a script written in
Python, which enables these variables to be automatically obtained for each individual tree.
Consequently, the methodology can be applied in datasets with different characteristics
(e.g., species, stand conditions, slope) in a simple and fast way.

2.2.1. Straightness

For straightness assessment, the calculation of two variables, maximum sagitta and
sinuosity, has been implemented in the methodology. The steps needed for their calculation
are explained in detail below.

For each tree, the reference for the sagitta is taken from the straight line segment
connecting the centers of the end sections. The sagitta of each section is then calculated as
the distance between the center of the section (Figure 4(1)) and the straight line segment.
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The maximum sagitta (hereafter, Smax), as well as its position in the stem is identified
(Figure 4(2)).
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Figure 4. (1) Stem sections defined by their center (X, Y, Z) and radius. (2) Sagittas calculated for
each stem section, defined as the distance from the center of the section to the straight line segment.
(3) Maximum standardized sagitta calculation considering the centers of the sections to be distributed
around a circumference of radius R.

As explained in Section 2.1, some trees do not have data along the full height range
(i.e., 23 sections over 4.4 m: from 0.5 to 4.9 m from the ground). In these cases, the sagitta is
standardized to the highest height obtained for the dataset (hereafter, standardized height
range, i.e., 4.4 m) so that the results obtained for each individual tree within the plot are
comparable. To do this, the centers are considered to be distributed around a circumference
of radius R (Figure 4(3)). R is calculated using the formula that relates the radius of a
circumference with the sagitta of its arc and the length of the chord that connects the two
ends of the arc. In this case, the sagitta is the Smax and the chord is the height range for each
tree. From these two variables, R can be estimated as in Equation (2). Once the value of R is
known for each tree, the maximum standardized sagitta (hereafter SSmax) can be obtained
for the standardized height range, this time, by isolating the variable in Equation (1).

[Swmax AB)* + [Height range /2]
2 % [Spax AB]

R= @

The sinuosity of a line is calculated as the quotient between its length and the length
of a reference line. In the case of a tree, that reference line is the straight line segment that
joins the end points of the stem, and its length (L) is calculated as the sum of the rectilinear
segments that connect the centers of the stem sections, as in Equation (2). According to this,
the minimum value for sinuosity is 1, which means no sinuosity.

L

height range @

Sinuosity =
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2.2.2. Lean

A principal component analysis (PCA) based on the X, Y, Z coordinates of section
centers was carried out. When this type of analysis is applied to a tree-dimensional
point cloud, three principal components (directions), which can be considered as three
perpendicular coordinate axes, are created (PC1, PC2, and PC3) (Figure 5(1)). By definition,
PC1 will follow the direction with the greatest variance possible. Since tree stems are
eminently linear objects, the direction of the first component follows the direction of the
tree axis, and from there, the lean, or lack of verticality, is calculated as in Equation (3)
(Figure 5(2)).
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Figure 5. (1) Coordinate axis resulting from PCA analysis applied to the stem section centers.
(2) Calculation of lean angle («) from PC1 with respect to the vertical.

2.3. Validation Procedure

The only input data that the methodology uses to estimate the shape variables are
the X, Y, Z coordinates of the centers of the sections, and errors will be transmitted to the
same variables. Based on that, the methodology’s performance is assessed in terms of error
propagation, from the position of the centers of the sections, to the maximum standardized
sagitta, sinuosity, and lean. Manual measurements of the centers of the sections (Xop, Yop)
(see Section 2.1) have been considered as ground truth for the comparisons through the
workflow explained in Figure 6. In this figure Op1, Op, refer to manual measurements
made by two different operators. Op refers to a random choice between diameters from
Op1 or from Op; that is used to minimize potential biases by either of the operators that
might be imperceptible to the naked eye.



Forests 2022, 13, 431

8 of 16

[ Input data

Reference data OPERATORS FromTLS data ALGORITHM

[ Section centers xy coord ] [ Section centers xy coord

] [

_

P \‘\
[ Differences XY centers

-Between operators [Op1-Op2]
-Operators—Algorithm [Op-Alg]

V ol

[Stem shape parameters]

J

-

Bootstrap of the XY differences

[with error added from the diff.] - Sinuosity

XY [Alg] + bootstrapped errors XY e
A" 1 [

(7 \)
7 B =

{} Differences in

Stem shape parameters shape parameters

- Lean
( Section centers xy coord. ] - Maximum sagitta

[with error added from the diff.] Error transmission:
1000 bootstrap samples XY[diff] - stem parameters
- Lean - Lean
- Maximum sagitta - Maximum sagitta
- Sinuosity - Sinuosity
\S )

Figure 6. Workflow for the algorithm performance assessment. In yellow: X, Y coordinates of the
centers of the sections. In blue: straightness and lean parameters calculated by the algorithm. In
green: differences between operators and algorithm in the position of the center of the sections, and
in the straightness and lean calculations.

The differences between the two operators (Op;-Op;) and between the operators and
the algorithm (Op-Alg) in positioning the sections’ centers were calculated. A bootstrap
analysis was conducted to study the propagation of the errors from the center of the
sections to maximum sagitta, lean, and sinuosity, considering that the distribution of these
errors was not known. First, the initial values of these three variables were calculated
for each tree given the coordinates (X, Y). Then, 1000 bootstraps samples of dimension
N - M (N and M being the number of stems and number of sections, respectively) were
constructed by resampling with replacement the initial values of the errors for each section.
Then, the errors were obtained for each case and added to the initial X, Y coordinates
of the centers estimated by the algorithm. With the new coordinates as a starting point,
the maximum standardized sagitta, sinuosity, and lean of all the trees were recalculated.
Finally, the results obtained were compared with the original estimates of the algorithm.
From the differences between them, the density function of the differences was represented
graphically, for each scenario and variable (distances between the centers of the sections,
maximum standardized sagitta, sinuosity, and lean).

Regarding traditional estimations, comparing a continuous variable (from TLS data)
and a categorical one (from a field inventory) is not straightforward due to their different
natures. However, it is possible to evaluate if the categorization of the trees in the field
as per their straightness and lean follows a similar pattern to that obtained with TLS.
The procedure consists of grouping the trees on the plot following the traditional method
(Table 1), and then calculating the two shape variables for each tree in each category
using the TLS observations. Then, the probability density functions for each variable
and for each category were compared. The comparison was done both visually and
numerically. Numerical analysis was carried out by analyzing the statistics of both variables
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and through a Tukey-Kramer test [34,35] that compares the individual means from an
analysis of variance of several samples with different characteristics.

3. Results
3.1. Stem Shape Variables from TLS

Once the methodology was tested in the plot, the shape variables were obtained for
385 of the initial 408 trees. The missing trees were either poorly defined in the point cloud
or had a very small number of sections. In the first case, it was not possible to apply the
methodology to them, while in the second case the results obtained were unreliable. Table 2
summarizes the minimum, maximum, mean, standard deviation, median, and mode of the
shape variables estimated by the methodology.

Table 2. Descriptive statistics of shape variables estimated from the TLS point cloud.

Minimum Maximum Mean Deviation Median Mode

Lean (°) 0.150 14.100 4.010 2.604 3.686 1.000
Maximum standardized 0.020 0.390 0.104 0.058 0092  0.094
sagitta (m)
Sinuosity 1.000 1.250 1.008 0.018 1.004  1.003
(adimensional)

The range of the lean values was low (14°); the maximum value corresponded to a tree
classified as not leaning in the field. These results demonstrate that the trees were mostly
slightly inclined. The standard deviation was around 0.5°, with lean values not widely
dispersed around the mean. According to the median and mode values, the distribution
had negative skew, and the range was small, which means that there was little variability
in the lean values.

Regarding maximum standardized sagitta statistics, the trees in the plot can be consid-
ered as straight in most cases given their average value of 10.4 cm, which was very close to
the average radius of the trees within the plot (8.8 cm). Standard deviation was approxi-
mately equivalent to half the mean value, and the distribution negatively skewed in terms
of the median and mode values. The range was around 37 cm, indicating considerable
variation in the maximum sagitta values. Regarding sinuosity, average values were close
to 1 (no sinuosity), while the standard deviation was low, indicating an overall reduced
stem tortuosity. The distribution shows negative skewness, and the range is small, which
means that there was little variability in the sinuosity values. Figure 7 shows the spatial
distribution of the stem-shaped variables obtained in the study plot.

3.2. Validation Results

The results of assessing the methodology’s performance are shown in Figure 8.
The probability density functions obtained as in the procedure explained in Section 2.3,
were grouped according to the assessed variable and the comparison between operators
(Op1-Opy) and operators-algorithm (Op-Alg).

Regarding the discrepancies between the centers of the sections (Figure 8(1)), the trend
was similar in the two comparisons, with low values in general terms. As expected, the
lowest values (less than 2% in 97% of the estimations) were obtained when comparing the
estimations of the two operators. When the operator estimations were compared with the
algorithm (Op-Alg), the discrepancies were slightly higher but still less than 4 cm in 90%
of the estimates. The trend was similar for the results obtained for lean (Figure 8(4)) and
maximum standardized sagitta (Figure 8(2)). For lean, discrepancies were extremely low
when comparing Op; and Op,, with less than 0.25° in 99% of the estimates. Regarding
Op-Alg, the differences were a little higher, but they were still only between —0.5 and 0.5°,
in 95% of the cases, so they were practically insignificant. The same occurred with the
maximum standardized sagitta, where the lowest differences were computed for Op;-Op,,
with 99% of differences in the estimates being below 5 cm. There was a slight bias in this
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case showing TLS tended to estimate bigger sagittas than the operators. The comparison
between Op-Alg showed 92% of differences in the estimates to be below 10 cm. Finally, in
the case of sinuosity (Figure 8(3)), differences between operators were practically negligible
(very close to 0) on most occasions, while the differences between algorithm and operators
were mostly around —0.015. The distribution was relatively uniform but still had a slight
negative bias.

_— _— .
0° 15° 0 40cm

Figure 7. Spatial distribution of the stem-shaped variables (lean, maximum sagitta, and sinuosity)
within the study plot. Top: 3D representation of the plot. Bottom: top views of the trees represented
by a colored point indicating the stem shape value according to a color scale (blue: lowest value and
red highest value within the study plot).

As for the comparison with traditional estimations, Figure 9 shows the probability
density functions obtained for the trees within the study plot: one for each of the three
categories under study established following the criteria in Table 1. Specifically, Figure 9(1)
shows the three curves corresponding to the SSmax and Figure 9(2) shows those relative
to the lean. In the case of the SSmax there was a high degree of overlap among the three
categories, especially 2 and 3, which is an indicator that the boundaries between them were
not well defined.

There was a tendency for SSmax to increase as category value increased. In category
1, most of the trees were around 5 cm, while in the other two categories, the peak of the
density function was slightly shifted to the right, indicating a greater frequency of higher
SSmax values. In the case of lean, the results were very similar. The curves show a high
degree of overlap and reveal a slight decrease in the lean value as the category number
increases. Moreover, it is observed that the peak of the distribution is very close to 0° in
class 1 and slightly displaced to the left in classes 2 and 3.
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shape variables as follows: (1) Distance between centers, (2) maximum standardized sagitta (SSmax),

(3) sinuosity, (4) lean.

1049 ~ Straightness 1 92901

Straightness 2 0.175 4
~— Straightness 3

0.150

0.125 o

0.100

Density

0.075

0.050 -

0.025

0 0.000
T T T T T T L)
0.1 0 0.1 0.2 03 04 20 15 10 5 0 5
i P P Lean (°
Maximum standarized sagitta (m) 0

Figure 9. Probability density functions representing the values for SSmax (1) and lean (2) obtained
by means of the methodology/TLS using the classification from field inventory so that the three
categories of trees shown in the graphic could be established.

Table 3 summarizes the descriptive statistics (mean, median, and standard deviation)
of the maximum standardized sagitta and lean by category. In view of the results, the trend
previously detected in the probability density functions is confirmed by the descriptive
statistics. In the case of SSmax, mean values increase with the category number (see Table 1).
Between categories 1 and 2 the increase is 4.4 cm, while between 2 and 3, it is only 0.5 cm.

In the case of lean, the situation also follows a clear trend: there is a decrease in its
value as the field category number increases, which indicates that, in general terms, the
trees are more inclined in the higher categories than in the first. The biggest increment in
the mean value is between category 1 and 2 (2.28°), while between categories 2 and 3 it is
only 1.39°.

Similar conclusions were obtained by performing a Tukey-Kramer test to compare
the means between the three categories. For a significance level o = 0.05, the test result
showed that it is not possible to assert that there are significant differences between the
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three categories for SSmax. Regarding lean, there was only a significant difference between
category 1 and the other two.

Table 3. Maximum standardized sagitta (SSmax) and lean statistics obtained for the different categories
shown in the probability density functions.

Maximum Standardized Sagitta (m) Lean (°)
Ng! Mean Deviation Minimum Maximum N1 Mean Deviation Minimum Maximum
1 260 0.095 0.060 0.020 0.355 272 3.352 2.068 0.149 11.573
2 120 0.139 0.080 0.047 0.390 108 5.633 3.051 0.206 14.102
3 5 0.144 0.075 0.074 0.256 5 7.026 2.651 4.870 11.314

1 Ns, Ni_ are the number of trees included in each category of straightness and lean respectively according to field
inventory.

4. Discussion

This study presents a methodology for the automated measurement of straightness
(maximum standardized sagitta and sinuosity) and lean at the individual tree level from
data captured with TLS. The results obtained were compared with measurements made
in the field employing a categorical visual classification that groups trees into classes
according to their degree of straightness and lean.

The methodology performance was assessed in terms of error propagation from the
centers of the sections to the maximum standardized sagitta, sinuosity, and lean values.
The probability density functions (Figure 8) for comparison between Op;-Op, showed
the lowest values of error, as expected. It has been graphically demonstrated that for
both comparisons made (Op1-Op, and Op-Alg), the errors have little influence on shape
variable estimations, revealing that small errors that may potentially be made regarding
the position of the centers of the sections hardly affected the estimation of shape variables.
Based on the results, the values obtained for these variables from TLS point clouds with
the methodology presented in this study can be considered reasonable. Regarding their
spatial distribution, straightness, lean, and sinuosity values do not show any pattern;
thus, the differences between trees are mainly associated with genetic factors and not with
environmental factors as reported in previous works [36,37].

In the case of the comparison between the variables obtained by the methodology
and those obtained by the categorical classification performed in the field inventory, the
results show that there is a clear misclassification between the categories established in the
field. Although the results achieved show the mean values tend to increase slightly as the
category number increases, (see Table 1) as expected, the statistical analysis shows that
there are no differences between any of the groups in the case of straightness and there
are only significant differences in the case of group 1 and the other groups in the case of
lean. This fact suggests that traditional methods involve constraints which make them
unsuitable for accurate analysis at individual tree level, especially in a tree breeding plot,
like the one used in this study, where it is crucial to have reliable measurements of the
tree’s morphology for the correct estimation of individual and family heritability and their
genetic correlation between traits.

These results are not entirely unexpected, as several authors have pointed out that man-
ual assessment of stem shape parameters in standing trees is complicated, time-consuming,
and costly [19,38]. Moreover, comparisons between the results of different studies are diffi-
cult due to the variety of methods used to evaluate stem straightness and lean (particularly
those based on subjective scales), compounded with variation in testing environments,
species, and age at the time of evaluation. These are the main reasons why numerical
measurements of quality parameters in standing trees are not yet common for most forest
inventories [38]. All the above is in line with the high degree of subjectivity in estimates
when using exclusively visual classifications that do not rely on any measuring device,
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thus increasing the risk of error. In the case of the genus Pine, when using visual clas-
sifications, high heritability in characters related to stem straightness has been reported
by several authors. This, however, contrasts with other authors who have reported low
heritability [39] in the same characters. Using our methodology on TLS datasets provides,
for each shape variable, a numerical value that quantifies it in an absolute and precise
manner. Consequently, the subjectivity and ambiguity associated with other alternatives,
such as establishing visual categories in the field, disappear, allowing comparisons between
different plots, species, or time periods. Besides, based on the results obtained with TLS
data, thresholds could be established to define categories if desired. Some authors such
as [12,18] defined a lean value beyond which a tree can be considered as inclined, and the
same procedure could be applied to other shape variables. Moreover, the methodology
provides estimations for sinuosity, which is difficult to measure in the field by traditional
methods. In some studies, such as [40,41], sinuosity of standing trees was measured by
using a combination of visual scoring and assessing the displacement of sections of the
stem from the initial direction of growth. Due to the wide range in values, they were aver-
aged and relativized to represent a sinuosity rating for a plot; a very costly and subjective
method. However, the methodology presented in this study estimates sinuosity in a very
fast and accurate manner.

In this case, a simple characterization of the stems has been made with an eminently
practical approach focused on the stem shape variables which are traditionally evaluated.
However, the use of TLS point clouds is an extremely powerful tool that offers a three-
dimensional reconstruction of the forest at the moment of the scan, which has many
advantages [30,42,43]. The most obvious is that TLS forest data are permanently available,
so multitemporal studies with various objectives can be performed [44,45], as well as
making it easy for new variables of interest to be studied retrospectively. Moreover, future
work could focus on estimating other stem shape variables, like curvature or taper, with
the same input data used in this study (i.e., position and diameter of sections along the
stems of a forest plot).

Finally, this study provides a new methodology that contributes to the potential
availability of information on stem shape and quality in preharvest inventories. On the
one hand, this type of information (i) makes possible better value estimations of stems
based on a desired specification, (ii) allows the consideration of traits related to stem shape,
which influence the yield of merchantable volume, (iii) serves as a starting point for an
automated procedure to estimate merchantable volume in standing trees, considering not
only diameters at different heights and total height but also stem shape variables, and (iv)
facilitates the planning of the bucking of stems into logs using more detailed stem shape
data and thereby improves the overall profit that can be obtained from each tree [12,18,46].
On the other hand, it has wide applications in the field of tree breeding, where stem
straightness and lean are key variables when selecting the best provenances according to
wood quality criteria.

5. Conclusions

This study presents a methodology for the automatic measurement of stem shape
variables focused on straightness and lean, at the individual tree level, from data captured
with TLS. This methodology was applied to a breeding plot of Pinus pinaster and provided
accurate results for all the variables evaluated. Furthermore, the methodology is robust to
errors in estimating the centers of the sections, which are the basis for estimating the shape
variables. However, the analysis related to error propagation has only been carried out
in one study plot, so further research would be advisable to assess the methodology with
different species and stand conditions.

Comparison with non-rigorous and subjective field techniques (visual categorization
of individual trees according to their degree of straightness and lean) has shown a very
high overlapping between the established categories, revealing a problem of misclassi-
fication of trees when using these techniques. The proposed methodology is presented
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as an alternative that outperforms classical field techniques by automatically providing
quantitative and objective estimations of the variables traditionally measured in the field
(straightness and lean).
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