
Programa Oficial de Doctorado en Ingeniería de Producción, Minero-Ambiental
y de Proyectos

TESIS DOCTORAL

Exploitation of Parallelism in
Population-Based Metaheuristics and

Application to a Galvanizing Line

Diego Díaz Fidalgo

Noviembre de 2021

Programa Oficial de Doctorado en Ingeniería de Producción, Minero-Ambiental
y de Proyectos

TESIS DOCTORAL

Exploitation of Parallelism in
Population-Based Metaheuristics and

Application to a Galvanizing Line

Memoria presentada para la obtención del grado de Doctor por la Universidad
de Oviedo

Diego Díaz Fidalgo

Directores: César Menéndez Fernández, Profesor Titular del Departamento de
Matemáticas de la Universidad de Oviedo; y Francisco Ortega Fernández,
Catedrático del Departamento de Explotación y Prospección de Minas.

Oviedo, Noviembre de 2021

F
O

R
-M

A
T

-V
O

A
-0

1
0
 (

R
eg

.2
0
1
8
)

RESUMEN DEL CONTENIDO DE TESIS DOCTORAL

1.- Título de la Tesis

Español/Otro Idioma:
Explotación del paralelismo en la mejora de
algoritmos metaheurísticos evolutivos y
aplicación a una línea de galvanizado

Inglés:
Exploitation of Parallelism in Population-Based
Metaheuristics and Application to a Galvanizing
Line

2.- Autor

Nombre:
DIEGO DIAZ FIDALGO

DNI/Pasaporte/NIE:
71875862-B

Programa de Doctorado: INGENIERÍA DE PRODUCCIÓN, MINERO-AMBIENTAL Y DE PROYECTOS

Órgano responsable: UNIVERSIDAD DE OVIEDO - CENTRO INTERNACIONAL DE
POSTGRADO

RESUMEN (en español)

El acero es ubicuo en el mundo moderno, y una parte importante de muchos sectores

económicos. El segmento del Acero Galvanizado es el mayor entre los diferentes

productos de acero, dada su utilización en un amplio abanico de industrias, tales como

la construcción, el automóvil, los electrodomésticos, y muchos otros.

La programación, o secuenciación, de las bobinas que se producen en una Línea de

Galvanizado es extremadamente importante, puesto que tiene un gran impacto en los

costes y la factibilidad de la producción.

Este problema de secuenciación es muy parecido a un Problema del Viajante

(Travelling Salesperson Problem, TSP), con la complicación añadida de que algunos

segmentos no son factibles. Para ciertos productos existen restricciones adicionales;

estas restricciones invalidan cualquier aproximación basada en TSP, al depender de

subsecuencias más largas que una bobina y su sucesora inmediata.

Las soluciones típicas para este problema se basan en programación por restricciones

que depende de prioridades de las restricciones diseñadas cuidadosamente para cada

línea con sus condiciones particulares y su combinación de productos.

El problema de programación de tareas (Job Scheduling Problem, JSP) y sus variantes

no encajan adecuadamente con la programación de una Línea de Galvanizado.

Igualmente incapaces de representar todas las condiciones necesarias son las

formulaciones como problema de programación lineal entera (Integer Linear Program,

ILP).

Descartados los métodos exactos, la aproximación habitual son los metaheurísticos. Los

metaheurísticos basados en población, en particular, son fácilmente paralelizables y su

estructura común permite diseñar métodos de alto nivel aplicables a todos ellos.

La evolución de los ordenadores lleva a la paralelización de algoritmos para extraer toda

la capacidad computacional de los sistemas modernos, y así poder atacar problemas de

mayor tamaño y complejidad. Esta tendencia ya resulta evidente en la literatura.

Al atacar un problema de optimización complejo de gran escala utilizando

metaheurísticos debe tenerse en cuenta cuál es la mejor manera de sacar el máximo

rendimiento de los equipos y cómo encaja con las propiedades del problema en

cuestión.

Los desarrollos en metaheurísticos llevan décadas explotando estas capacidades,

empezando por implementaciones muy específicas y avanzando hacia aproximaciones

más generales.

Los beneficios de hacer más eficiente el uso de los recursos debe equilibrarse con la

usuario
Lápiz

complejidad incurrida, tanto en la construcción del algoritmo como en la comunicación

añadida, que en la práctica pueden perjudicar en mayor medida que los beneficios

obtenidos. Este equilibrio se puede interpretar como un problema de optimización

multi-objetivo. Los algoritmos existentes pueden situarse en el frente de Pareto

representando diferentes compromisos entre las métricas. Aunque se pueden obtener

mejores soluciones con métodos más complejos y computacionalmente más exigentes,

hay un claro hueco en la región de baja complejidad.

Esta tesis trata de cubrir este hueco, proponiendo un método, denominado Multiverso,

centrado en mejorar el desempeño en la región de la línea de referencia del frente de

Pareto. No es un algoritmo concreto, sino una familia de algoritmos resultante de la

aplicación de una transformación a cualquier metaheurístico basado en población.

El método Multiverso se prueba sobre el TSP, tanto con Algoritmos Genéticos como

con Optimización por Colonia de Hormigas para validar las mejoras en calidad de la

solución final y en la rapidez para alcanzar buenas soluciones. Finalmente, se aplica al

problema de programación de la Línea de Galvanizado, para evaluar su capacidad de

trasladar esas mejoras a este problema industrial bajo las condiciones que se dan en la

práctica, incluida una exigente limitación del tiempo de ejecución debida a los

requisitos operacionales del proceso.

RESUMEN (en Inglés)

Steel is pervasive in the modern world, an important part of many economic sectors. The

Galvanized Steel market segment has the largest share among the different steel products, due to

its wide application in varied industries such as construction, automotive, home appliances, and

others.

Sequencing of the coils that will be produced is of utmost importance, as it will have a big

impact on production costs and even feasibility.

This sequencing problem closely resembles a Travelling Salesperson Problem (TSP), with the

additional complication of infeasible segments due to the constraints. For certain products,

additional constraints apply, which completely invalidate any TSP-related approach. These

constraints relate longer sub-sequences, rather than just one coil and its immediate neighbour.

The traditional approach to solving this problem is constraint programming based on constraint

priorities painstakingly configured for each line to yield good results for its particular conditions

and product mix.

The job scheduling problem and its many variations do not properly map to the scheduling of a

galvanizing line. The same goes for efficient formulations as Integer Linear Programs (ILPs).

With exact optimization out of the question, metaheuristics are the usual approach under these

circumstances. Population-based metaheuristics in particular are amenable to parallelization.

Their common structure allows for the design of high-level methods that apply to all of them.

Recent trends in the evolution of computing power stress the importance of parallelization and

distribution for improving the performance and scalability of algorithms.

The evolution of hardware leads towards parallelization of algorithms in order to extract the full

performance of new systems and so tackle larger and more complex problems. This trend is

already evident in the literature.

When tackling a large, complex optimization problem using metaheuristics one must consider

how to best exploit the available hardware and how it fits with the properties of the problem at

hand.

The benefits of enabling a more efficient use of the available resources must be balanced against

the complexity involved, both in terms of building the algorithm and the communication

required, which can in practice outweigh the gains. This balance can be interpreted as a multi-

objective optimization problem. Existing algorithms can be placed on the Pareto front at

different trade-offs of the metrics. While better solutions can be obtained by more complex and

computationally expensive methods, there is an outstanding gap in the lower complexity region.

This thesis addresses this gap by proposing a method, named Multiverse, focusing on

performance improvement at the baseline end of the Pareto front. The proposed method is not a

concrete algorithm, but rather a whole family of them, resulting from the application of a

transformation to any population-based metaheuristic.

The Multiverse method is tested on the TSP with both Genetic Algorithms and Ant Colony

Optimization to validate the improvements in both solution quality and anytime performance.

Finally, it is applied to the galvanizing line scheduling problem, to assess its capability to bring

those improvements to this industrial problem under practical conditions, including stringent

constraints on running time due to operational requirements of the process.

SR. PRESIDENTE DE LA COMISIÓN ACADÉMICA DEL PROGRAMA DE DOCTORADO EN
INGENIERÍA DE PRODUCCIÓN, MINERO-AMBIENTAL Y DE PROYECTOS

To those who supported me

You know who you are

Acknowledgements

I would like to thank my mother and my wife for putting up with my spending

so much time on this work, their ongoing encouragement, and for (gently)

pushing me to get it finished.

I also would like to recognize my advisors for their advice (as implied by

the name) and guidance, and the department staff for their support in the

administrative tasks.

I must also mention my colleagues at ArcelorMittal for their help in set-

ting up and using the experimental environment, and for many insightful

conversations.

Finally, I would like to thank Douglas Adams for the Hitch-hiker’s Guide

to the Galaxy, without which I could not have faced the University’s bureau-

cracy.

v

vi ACKNOWLEDGEMENTS

Abstract

Steel is pervasive in the modern world, an important part of many economic

sectors. The Galvanized Steel market segment has the largest market share

among the different steel products, due to its high added value and its wide

application in varied industries such as construction, automotive, home ap-

pliances, and others.

Sequencing of the coils that will be produced is of utmost importance,

as it will have a big impact on production costs and even feasibility. These

issues can be modelled as constraints and costs of an optimization problem.

This sequencing problem closely resembles a Travelling Salesperson Prob-

lem (TSP), with the additional complication of infeasible segments due to

the constraints. This already makes it a different type of problem, as it is

not guaranteed that for every problem instance a feasible solution exists. A

way to bridge this gap is to consider constraints as a high-value cost that

ensures that a tour that violates a single constraint in the tour is always

considered worse than a feasible tour; beyond that, tours with fewer unmet

constraints are naturally better. The values of the costs needed to represent

the constraints in this way often result in numerical instability in the usual

TSP solution methods.

vii

viii ABSTRACT

For certain products, additional constraints related to quality apply,

which completely invalidate any TSP-related approach. These constraints

relate longer sub-sequences, rather than just one coil and its immediate neigh-

bour. The result is a problem that adds complexity on top of the already

NP-hard TSP problem, in a search space of size n! for a sequence of n coils.

The traditional approach to solving this problem is, including in most

commercial scheduling software, constraint programming based on constraint

priorities painstakingly configured for each line to yield good results for its

particular conditions and product mix.

The job scheduling problem and its many variations seem at first sight to

be a good match, but do not properly map to the scheduling of a galvanizing

line. The same goes for efficient formulations as Integer Linear Programs

(ILPs).

With exact optimization out of the question, metaheuristics are the usual

approach under these circumstances. Metaheuristics encompass a wide range

of algorithms for optimization. Originally applied to heuristics or strategies

that coordinate lower level search procedures, in time the concept extended

to include methods that employ ways of escaping local optima in complex

search spaces.

Population-based metaheuristics in particular are amenable to paralleliza-

tion; at each step of the process, the same operations are carried out on

several individuals of the population: all of them, a subset, or some pair-

wise combination, depending on the method. This common structure of

population-based metaheuristics allows for the design of high level methods

that apply to all of them.

ix

Recent trends in the evolution of computing power stress the importance

of parallelization and distribution for improving the performance and scala-

bility of algorithms.

The evolution of hardware leads towards parallelization of algorithms in

order to extract the full performance of new systems and so tackle larger

and more complex problems. This trend is already evident in the literature,

driven by a combination of stagnation of processor speeds and increased

availability of hardware: consumer-grade hardware with multi-core CPUs,

servers with dozens of threads, GPUs, high performance computing clusters,

the cloud, etc.

When tackling a large, complex optimization problem using metaheuris-

tics one must consider how to best exploit the available hardware and how

it fits with the properties of the problem at hand.

GPUs are typically used for local, fine-grain parallelization: acceleration

of function evaluation if the function is computationally intensive enough

to actually gain from the overhead of using the GPU, or parallelization of

solution evaluation at the population or neighbourhood level. The flip side to

the potential acceleration, where applicable, is the need to develop the models

at a very low level, managing data communication, memory usage, and the

computations themselves. Due to the fine-grain approach, the methods are

very algorithm- and/or problem-specific.

Multithreading is nowadays almost universally available, in that most

computers sport multi-core processors1. From a practical perspective, most

1Multithreading as such can be used in a sequential processor, and it was used before
the advent of multi-core processors; in that case, it does not provide any advantage in
terms of computation for CPU-bound processes, in fact it is slower than a single-thread

x ABSTRACT

if not all metaheuristic implementations can benefit from multithreading,

especially population-based ones which are naturally parallelizable. Multi-

threading also affords the most flexibility, and can be applicable at all levels

of the algorithm: from the evaluation of the fitness function to a coarse-

grain, population-level parallelization. The main limit is imposed by the

requirement to operate within a single machine, which restricts the amount

of memory and computation power available.

The next step is multiprocessing, which is very similar to multithreading

in its generality. It is slightly more complex to work with, as it requires

isolation of the processes to a greater extent than multithreading requires it

of threads; this entails some duplication of data and more communication.

On the other hand, this very separation across processes avoids some of the

pitfalls of concurrent programming, so to a certain extent it evens out. The

main advantage of multiprocessing is that it allows to escape the limitation

of a single machine, opening the opportunity of using clusters of worksta-

tions, high performance computing clusters, cloud environments, and other

distributed systems. Because of the added overhead in data duplication and

(potentially) network communication, this approach is usually reserved for

very coarse-grain parallelization, normally at the population level.

Developments in metaheuristics have been exploiting these capabilities

for decades, starting with very specific implementations addressing a single

problem or method, but growing towards more general approaches. Islands

models for Genetic Algorithms and Multicolony variants of Ant Colony Op-

approach because of the context switching between threads. Instead it was useful for I/O-
bound processes, where the latency of e.g. accessing the network or a file on disk leaves
idle cycles in the CPU.

xi

timization are clear examples of this generality: they can be applied orthog-

onally to other problem-specific improvements such as the representation

of individuals, or the definition of operators (crossover, mutation, solution

construction).

Metaheuristics have followed this generalization trend to the point where

several frameworks exist to build new algorithms piece-wise from individual

blocks, mixing and matching from components of different methods. The

original algorithms can be replicated in this fashion, but also new ones can be

devised. These frameworks have also embraced the parallelization abilities,

and typically support some level of multithreading and/or multiprocessing.

The benefits of enabling a more efficient use of the available resources

must be balanced against the complexity involved, both in terms of build-

ing the algorithm and the communication required, which can in practice

outweigh the gains. This balance can be interpreted as a multi-objective

optimization problem. In this perspective, the efficient solutions are those

lying on the Pareto front, also known as non-dominated solutions.

Existing algorithms can be placed on this Pareto front at different trade-

offs of the metrics. While better solutions can be obtained by more complex

and computationally expensive methods, there is an outstanding gap in the

lower complexity region.

This thesis addresses this gap by proposing a method focusing on perfor-

mance improvement at the baseline end of the Pareto front. The proposed

method is not a concrete algorithm, but rather a whole family of them, re-

sulting from the application of a transformation to any population-based

metaheuristic: a meta-algorithm that takes an algorithm as an input and

xii ABSTRACT

produces a modified distributed algorithm as its output. The method inter-

prets metaheuristics as a form of stochastic predictors of the optimal solution,

making it akin to the use of ensemble methods.

The proposed method combines multiple instances of any population-

based metaheuristic to improve its efficiency, while introducing as little ad-

ditional overhead as possible. For easier reading, the method is referred to as

the Multiverse method, as opposed to Multiple Independent Runs, which is

called Multistart. The metaphor for the Multiverse being that each instance

is a universe of its own, but within this method they all form a single entity,

hence the Multiverse.

In the Multiverse method, one of the multiple instances has special status:

the collector. It receives updates of the best solutions of the other instances.

The application of this adaptation to the algorithms is straightforward, as all

population-based metaheuristics already step through iterations (or genera-

tions), combine the solutions in their populations to create new, improved

ones, and possess mechanisms to work with multiple solutions (the popu-

lation). All other instances contribute their current best solution at each

iteration to the population of the collector; the same process that takes place

normally, applied to this extended population, is responsible for the mixing

of solutions.

The added overhead is small: injection of external solutions into the pop-

ulation, and one-way communication of a single solution from each instance.

Furthermore, this communication scheme fits a star-like topology, such as

the one provided by a standard switch, rather than the more complex and

costly mesh favoured by other configurations, such as the Islands model, and

xiii

more typical of super-computers than of clusters built from commodity-grade

computers.

The Multiverse method is tested on the TSP with both Genetic Algo-

rithms and Ant Colony Optimization to validate the improvements in both

solution quality and anytime performance. Finally, it is applied to the gal-

vanizing line scheduling problem, to assess its capability to bring those im-

provements to this industrial problem under practical conditions, including

stringent constraints on running time due to operational requirements of the

process.

Keywords: Optimization, Swarm Intelligence, Probabilistic, ACO, Ant

Colony Optimization, Steel Industry, Galvanizing, Operational Research,

Scheduling.

xiv ABSTRACT

Resumen

El acero es ubicuo en el mundo moderno, y una parte importante de muchos

sectores económicos. El segmento de mercado del Acero Galvanizado es el

mayor entre los diferentes productos de acero, dado su alto valor añadido y

su utilización en un amplio abanico de industrias, tales como la construcción,

el automóvil, los electrodomésticos, y muchos otros.

La programación, o secuenciación, de las bobinas que se producen en una

Línea de Galvanizado es extremadamente importante, puesto que tiene un

gran impacto en los costes de producción e incluso en hacer la producción

posible. Estas dificultades pueden modelarse como restricciones y costes de

un problema de optimización.

Este problema de secuenciación es muy parecido a un Problema del Via-

jante (Travelling Salesperson Problem, TSP), con la complicación añadida de

que algunos segmentos no son factibles debido a las restricciones. Esta dife-

rencia lo transforma en una clase diferente de problema, al no haber garantías

de que para todas las instancias exista alguna solución factible. Una mane-

ra de eludir este problema consiste en considerar estas restricciones como

un coste de valor suficientemente alto como para asegurar que cualquier cir-

cuito que incluya al menos un segmento no factible resulte más costoso que

xv

xvi RESUMEN

cualquier solución totalmente factible. A mayor número de segmentos no

factibles, peor valor de la solución. Los valores de los costes necesarios para

representar las restricciones de este modo a menudo provocan inestabilidad

numérica en los métodos habituales de resolución de TSP.

Para ciertos productos existen restricciones adicionales relacionadas con

la calidad; estas restricciones invalidan cualquier aproximación bassada en

TSP, al depender de subsecuencias más largas que una bobina y su sucesora

inmediata. El resultado es un problema que añade complejidad sobre el TSP,

que de por sí es NP-hard, y con un espacio de búsqueda de tamaño n! para

secuencias de n bobinas.

Las soluciones típicas para este problema, incluso en programas de secuen-

ciación comerciales, se basan en programación por restricciones que depende

de prioridades de las restricciones diseñadas cuidadosamente para cada línea

de modo que den buenos resultados para sus condiciones particulares y su

combinación de productos.

El problema de programación de tareas (Job Scheduling Problem, JSP)

y sus múltiples variantes pueden parecer a primera vista una buena opción,

pero no encajan adecuadamente con la programación de una Línea de Galva-

nizado. La misma incapacidad para representar todas las condiciones nece-

sarias afecta a las formulaciones eficientes como problema de programación

lineal entera (Integer Linear Program, ILP).

Una vez descartada la posibilidad de métodos de optimización exactos, la

aproximación habitual en estas circunstancias son los metaheurísticos. Los

metaheurísticos engloban un amplio abanico de algoritmos de optimización.

Aplicados al principio a heurísticos o estrategias que coordinan procedimien-

xvii

tos de búsqueda de bajo nivel, con el tiempo el concepto se ha extendido,

incluyendo métodos que emplean diferentes maneras de escapar de mínimos

locales en espacios de búsqueda complejos.

Los metaheurísticos basados en población, en particular, son fácilmente

paralelizables; en cada paso del proceso se aplican las mismas operaciones

sobre varios individuos de la población: todos, un subconjunto, o una com-

binación por pares, dependiendo del método. Esta estructura común de los

metaheurísticos basados en población permite diseñar métodos de alto nivel

aplicables a todos ellos.

La evolución de los equipos informáticos conduce hacia la paralelización

de algoritmos para permitir extraer toda la capacidad computacional de los

sistemas modernos, y así poder atacar problemas de mayor tamaño y com-

plejidad. Esta tendencia ya resulta evidente en la literatura, impulsada por

una combinación del estancamiento de la velocidad de los procesadores y la

creciente disponibilidad de equipamiento: ordenadores personales con CPU

multi-núcleo, servidores con docenas de hilos, tarjetas gráficas, clústeres de

computación de alto rendimiento, la nube, etc.

Al atacar un problema de optimización complejo de gran escala utilizando

metaheurísticos debe tenerse en cuenta cuál es la mejor manera de sacar

el máximo rendimiento de los equipos disponibles y cómo encaja con las

propiedades del problema en cuestión.

La computación con tarjetas gráficas se aplica normalmente para la para-

lelización de baja granularidad: acelerar la evaluación de la función objetivo

o las restricciones, si tienen la complejidad computacional necesaria para

compensar la carga adicional de usar la tarjeta gráfica, o paralelizar la eva-

xviii RESUMEN

luación de soluciones dentro de una población o una estructura de vecindad.

La contrapartida a esta posible aceleración, en los casos en los que existe,

es la necesidad de desarrollar los modelos a muy bajo nivel, gestionando las

comunicaciones de datos, el uso de la memoria, y la programación de los

propios cálculos. Debido a que es una aproximación de granularidad tan

fina, los métodos desarrollados son muy específicos para cada algoritmo y

problema.

La computación multi-hilo es prácticamente omnipresente hoy en día:

casi todos los ordenadores tienen procesadores multi-núcleo. Desde un punto

de vista práctico, casi todos —si no todos— los metaheurísticos pueden bene-

ficiarse de esta forma de paralelización, es especial los basados en población,

que admiten ser paralelizados de forma natural. La computación multi-hilo

también resulta la forma de ejecución concurrente más flexible, y puede apli-

carse a todos los niveles de los algoritmos: desde la evaluación de funciones

objetivo hasta la paralelización a nivel de población. Su mayor limitación es

estar restringida a operar en los confines de una única máquina, lo que pone

una cota superior a la memoria y la capacidad de computación disponibles.

El siguiente paso es la computación multi-proceso, muy similar a la multi-

hilo en cuanto a generalidad. Resulta ligeramente más complicado trabajar

en multi-proceso, ya que los procesos deben estar más aislados unos de otros

que los hilos. Esto provoca cierto nivel de duplicación de datos y de comuni-

cación entre procesos. Por otro lado, esta misma separación entre procesos

ayuda a prevenir algunos de los peligros de la programación concurrente, así

que en cierta manera una cosa compensa la otra. La principal ventaja de la

computación multi-proceso es que permite eliminar la limitación de utilizar

xix

una única máquina, ofreciendo la oportunidad de utilizar clústeres de orde-

nadores (personales o de computación de alto rendimiento), entornos en la

nube, y otros sistemas distribuidos. Debido a la necesidad de duplicación de

datos y de comunicaciones, posiblemente a través de la red, esta variante se

reserva para la paralelización a alto nivel, típicamente a nivel de población.

Los desarrollos en metaheurísticos llevan décadas explotando estas capaci-

dades, empezando por implementaciones muy específicas dirigidas a un único

problema o método, y avanzando en el tiempo hacia aproximaciones más ge-

nerales. Los modelos de islas en algoritmos genéticos y los multi-colonia en

optimización por colonia de hormigas son claros ejemplos de esta generali-

dad: su aplicación es ortogonal a otras mejoras específicas como pueden ser la

representación de los individuos o la definición de los operadores (mutación,

cruce, construcción de soluciones).

Los metaheurísticos han seguido esta tendencia hacia la generalizacion,

hasta el punto de que existen varias plataformas para la creación de nuevos al-

goritmos combinando bloques básicos individuales tomados de componentes

de diferentes métodos. Estas plataformas permiten reconstruir los algoritmos

base originales, pero también crear otros nuevos. Muchas de ellas proporcio-

nan cierto nivel de soporte para la paralelización multi-hilo o multi-proceso.

Las tendencias recientes en la evolución de la capacidad de computación

ponen de relieve la importancia de la paralelización y distribución de los

algoritmos para mejorar su eficiencia y escalabilidad.

Los beneficios de hacer más eficiente el uso de los recursos disponibles

debe equilibrarse con la complejidad incurrida, tanto en la construcción del

algoritmo como en la comunicación añadida, que en la práctica pueden perju-

xx RESUMEN

dicar en mayor medida que los beneficios obtenidos. Este equilibrio se puede

interpretar como un problema de optimización multi-objetivo. Desde este

punto de vista, las soluciones eficientes son las que se encuentran en el frente

de Pareto, o soluciones no dominadas.

Los algoritmos existentes pueden situarse en este frente de Pareto re-

presentando diferentes compromisos entre las métricas. Aunque se pueden

obtener mejores soluciones con métodos más complejos y computacional-

mente más exigentes, hay un claro hueco en la región de baja complejidad.

Esta tesis trata de cubrir este hueco, proponiendo un método centrado

en mejorar el desempeño en la región de la línea de referencia del frente de

Pareto. El método propuesto no es un algoritmo concreto, sino una familia

de algoritmos resultante de la aplicacion de una transformacion a cualquier

metaheurístico basado en población. El método interpreta los metaheurísti-

cos como predictores estocásticos de la solución óptima, lo que lo asemeja a

los métodos de ensembles.

El método propuesto combina múltiples instancias de cualquier meta-

heurístico basado en población para mejorar su eficiencia, introduciendo la

mínima carga adicional posible. Para facilitar la lectura, en adelante este

método se denomina Multiverso, en contraposición a múltiples instancias in-

dependientes, o Multi-inicio. La metáfora del Multiverso consiste en que cada

instancia es un universo de por sí, pero en este método forman una entidad

conjunta, o Multiverso.

En el método Multiverso, una de las instancias tiene un estatus especial:

el colector. Recibe actualizaciones con las mejores soluciones de las demás

instancias. Esto es sencillo de adaptar a los diferentes algoritmos, dado

xxi

que todos los metaheurísticos basados en población avanzan por iteraciones

(o generaciones), en las que combinan las soluciones de su población para

crear nuevas soluciones mejoradas y disponen de mecanismos para tratar con

múltiples soluciones (la población). Las demás instancias contribuyen en

cada iteración con su mejor solución, y el mismo mecanismo que se aplica

normalmente en el algoritmo se encarga de integrar estas soluciones.

La carga adicional es reducida: la inyección de soluciones externas en la

población, y la comunicación en un sentido de una única solución de cada

instancia. Además, este esquema de comunicación encaja con una topología

en estrella, como la que proporciona un switch estándar, en lugar de un

formato de malla, más complejo y caro, típico de superordenadores, y que se

usa por ejemplo en modelos de islas.

El método Multiverso se prueba sobre el TSP, tanto con Algoritmos

Genéticos como con Optimización por Colonia de Hormigas para validar las

mejoras en calidad de la solución final y en la rapidez para alcanzar buenas

soluciones. Finalmente, se aplica al problema de programación de la Línea

de Galvanizado, para evaluar su capacidad de trasladar esas mejoras a este

problema industrial bajo las condiciones que se dan en la práctica, inclui-

da una exigente limitación del tiempo de ejecución debida a los requisitos

operacionales del proceso.

Palabras clave: Optimización, Inteligencia de enjambre, Probabilístico,

ACO, Optimización por Colonia de Hormigas, Industria Siderúrgica, Galva-

nizado, Investigación Operativa, Secuenciación.

xxii RESUMEN

Contents

Acknowledgements v

Abstract vii

Resumen xv

1 Introduction 1

1.1 The Steel Industry . 3

1.2 Steel Production Process . 4

1.3 Galvanizing Line . 13

1.4 The Galvanizing Line Scheduling Problem 16

1.5 Metaheuristics . 20

1.6 Parallel and Distributed Computation 21

1.7 Parallel Metaheuristics . 23

1.8 The Multiverse Method . 27

2 State of the Art 29

2.1 Metaheuristic Algorithms . 31

2.1.1 Genetic Algorithms . 31

xxiii

xxiv CONTENTS

2.1.2 Ant Colony Optimization 34

2.2 Parallel Metaheuristics . 37

2.2.1 GPU-based Parallelization 38

2.2.2 Multiprocessing . 44

2.2.3 Evaluation of Parallel Metaheuristics 51

3 Methods 55

3.1 Introduction . 57

3.2 Objective . 60

3.3 The Multiverse Method . 62

3.4 Set-up and Methodology . 67

3.5 Algorithm Configuration . 70

3.5.1 Genetic Algorithm . 70

3.5.2 Ant Colony Optimization 71

4 Validation on TSP 73

4.1 Problem Description . 75

4.2 Procedure . 76

4.3 Results . 81

5 Analysis of Results 91

5.1 Problem Description . 93

5.2 Procedure . 96

5.3 Results . 103

6 Conclusions and Future Work 113

6.1 Conclusions . 115

CONTENTS xxv

6.2 Future Work . 118

6.2.1 Algorithm Frameworks 119

6.2.2 Non-Traditional Computing Architectures 120

6.2.3 Parallel Multiobjective Metaheuristics 122

7 Conclusiones y trabajo futuro 125

7.1 Conclusiones . 127

7.2 Trabajo futuro . 131

7.2.1 Plataformas de algoritmos 131

7.2.2 Arquitecturas de computación no convencionales . . . 133

7.2.3 Metaheurísticos multi-objetivo paralelos 135

Appendices 139

A Evolution Graphs for TSP GA 139

B Evolution Graphs for TSP ACO 153

C Evolution Graphs for the Scheduling Problem 167

xxvi CONTENTS

List of Figures

1.1 Overview of the Steelmaking Process 5

1.2 Galvanized steel coils in a coil yard 14

4.1 Boxplot of best cost achieved across the 25 runs for each in-

stance problem using Multistart and Multiverse Genetic Al-

gorithm. 87

4.2 Boxplot of best cost achieved across the 25 runs for each in-

stance problem using Multistart and Multiverse Ant Colony

Optimization. 87

4.3 Boxplot of hypervolume across the 25 runs for each instance

problem using Multistart and Multiverse Genetic Algorithm

methods. 88

4.4 Boxplot of hypervolume across the 25 runs for each instance

problem using Multistart and Multiverse Ant Colony Opti-

mization methods. 89

4.5 Typical evolution of best Genetic Algorithm solution versus

iteration for Multistart and Multiverse. 90

xxvii

xxviii LIST OF FIGURES

4.6 Typical evolution of best Ant Colony Optimization solution

versus iteration for Multistart and Multiverse. 90

5.1 Boxplot of best cost achieved across the 25 runs for each in-

stance problem using Multistart and Multiverse Scheduling

Algorithm. 109

5.2 Boxplot of hypervolume across the 25 runs for each instance

problem using Multistart and Multiverse Scheduling Algo-

rithm methods. 110

5.3 Typical evolution of best Scheduling Algorithm solution ver-

sus iteration for Multistart and Multiverse. 111

A.1 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for br17 143

A.2 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ft53 143

A.3 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ft70 144

A.4 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv170 144

A.5 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv33 145

A.6 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv35 145

A.7 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv38 146

LIST OF FIGURES xxix

A.8 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv44 146

A.9 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv47 147

A.10 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv55 147

A.11 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv64 148

A.12 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv70 148

A.13 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for kro124p 149

A.14 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for p43 149

A.15 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for rbg323 150

A.16 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for rbg358 150

A.17 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for rbg403 151

A.18 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for rbg443 151

A.19 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ry48p 152

xxx LIST OF FIGURES

B.1 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for br17 157

B.2 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for ft53 157

B.3 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for ft70 158

B.4 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for ftv170 158

B.5 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for ftv33 159

B.6 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for ftv35 159

B.7 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for ftv38 160

B.8 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for ftv44 160

B.9 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for ftv47 161

B.10 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for ftv55 161

B.11 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for ftv64 162

B.12 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for ftv70 162

LIST OF FIGURES xxxi

B.13 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for kro124p 163

B.14 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for p43 163

B.15 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for rbg323 164

B.16 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for rbg358 164

B.17 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for rbg403 165

B.18 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for rbg443 165

B.19 Evolution of ACO average best solution versus iteration for

Multistart and Multiverse for ry48p 166

C.1 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 10_coils_30 173

C.2 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 10_coils_60 173

C.3 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 10_coils_90 174

C.4 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 11_coils_30 174

C.5 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 11_coils_60 175

xxxii LIST OF FIGURES

C.6 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 11_coils_90 175

C.7 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 12_coils_30 176

C.8 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 12_coils_60 176

C.9 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 12_coils_90 177

C.10 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 13_coils_30 177

C.11 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 13_coils_60 178

C.12 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 13_coils_90 178

C.13 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 14_coils_30 179

C.14 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 14_coils_60 179

C.15 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 14_coils_90 180

C.16 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 15_coils_30 180

C.17 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 15_coils_60 181

LIST OF FIGURES xxxiii

C.18 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 15_coils_90 181

C.19 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 1_coils_27 182

C.20 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 1_coils_30 182

C.21 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 1_coils_60 183

C.22 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 1_coils_90 183

C.23 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 2_coils_30 184

C.24 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 2_coils_60 184

C.25 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 2_coils_90 185

C.26 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 3_coils_30 185

C.27 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 3_coils_60 186

C.28 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 3_coils_90 186

C.29 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 4_coils_30 187

xxxiv LIST OF FIGURES

C.30 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 4_coils_60 187

C.31 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 4_coils_90 188

C.32 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 5_coils_30 188

C.33 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 5_coils_60 189

C.34 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 5_coils_90 189

C.35 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 6_coils_30 190

C.36 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 6_coils_60 190

C.37 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 6_coils_90 191

C.38 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 7_coils_30 191

C.39 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 7_coils_60 192

C.40 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 7_coils_90 192

C.41 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 8_coils_30 193

LIST OF FIGURES xxxv

C.42 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 8_coils_60 193

C.43 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 8_coils_90 194

C.44 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 9_coils_30 194

C.45 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 9_coils_60 195

C.46 Evolution of SCHED average best solution versus iteration for

Multistart and Multiverse for 9_coils_90 195

xxxvi LIST OF FIGURES

List of Tables

4.1 Results from running Multistart and Multiverse Genetic Al-

gorithm on TSPLIB instances. 82

4.2 Results from running Multistart and Multiverse Ant Colony

optimization on TSPLIB instances. 83

4.3 Mann Whitney U test results for significant difference in best

solution between Multiverse and Multistart Genetic Algorithm

for TSP . 86

4.4 Mann Whitney U test results for significant difference in best

solution between Multiverse and Multistart Ant Colony Op-

timization for TSP . 86

4.5 Mann Whitney U test results for significant difference in hy-

pervolume between Multiverse and Multistart Genetic Algo-

rithm for TSP . 88

5.1 Results from running Multistart and Multiverse Scheduling

Algorithm on TSPLIB instances. 104

xxxvii

xxxviii LIST OF TABLES

5.2 Mann Whitney U test results for significant difference in best

solution between Multiverse and Multistart Scheduling Algo-

rithm . 109

5.3 Mann Whitney U test results for significant difference in hy-

pervolume between Multiverse and Multistart Scheduling Al-

gorithm . 110

Chapter 1

Introduction

Contents
1.1 The Steel Industry 3

1.2 Steel Production Process 4

1.3 Galvanizing Line . 13

1.4 The Galvanizing Line Scheduling Problem 16

1.5 Metaheuristics . 20

1.6 Parallel and Distributed Computation 21

1.7 Parallel Metaheuristics 23

1.8 The Multiverse Method 27

Figures
1.1 Overview of the Steelmaking Process 5

1.2 Galvanized steel coils in a coil yard 14

1

2 CHAPTER 1. INTRODUCTION

1.1. THE STEEL INDUSTRY 3

1.1 The Steel Industry

Steel is pervasive in the modern world, an important part of many economic

sectors. If you look around you right now you are bound to find multiple

objects that are made of or include steel in some form.

It is used in building construction in the form of beams, pillars, and rebar;

but also in the form of panels, plates, and even as an aesthetic facade element.

In transportation, it is the material of choice for infrastructure such as rails,

guardrails, signposts, bridges, or pipes, not to mention its prominent use in

building cars, trucks, trains, ships, and other vehicles and equipment. About

half of all beverage cans produced in the world are made of steel, as are

most of the food packaging cans. It is employed also in household and office

items and appliances of every size and shape from paper clips and cutlery to

furniture and refrigerators. Tooling, starting at hammers and screwdrivers

and extending to industrial machinery and robots, the military, high-tension

long-range electrical lines, containers, or wind turbines are some additional

examples of fields of application that rely on steel.

To cover so many applications, steel comes in a broad variety of formats,

each with specific properties to fit the job. A car provides a representative

example of this micro-cosmos of steel types. The chassis requires tough,

rigid steel that must withstand extreme stress without buckling, while the

structural elements that protect the cabin in case of impact must deform

predictably, absorbing a large amount of energy. Body parts must be ex-

traordinarily malleable to be stamped into creative shapes with thickness in

the order of tenths of a millimetre and be corrosion resistant for decades.

4 CHAPTER 1. INTRODUCTION

The steels used in engine blocks must suffer through mechanical and thermal

fatigue without cracking, and the materials for the pistons and cylinders need

high machinability and have very stringent tolerances on wear and thermal

deformation. With the advent of electric vehicles, new steels with specific

requirements in thermal and electrical properties have been developed for

battery casings and motors. Inside the cabin, chromed steel requires strict

surface quality and a very even coating. The wires embedded in the rubber,

which provide structural stability to the tyres, combine high strength and

enough ductility to be produced by extrusion.

The catalogue of steel types is still wider to account for all the different

applications. By dipping its toes in all these sectors, steel is deeply inter-

twined with the global economy in general. Even with the recent dip in

economic activity due to the global pandemic, steel production has stayed

at the same level, with the worldwide production of crude steel in 2020 at

1,878 million metric tons, more than doubling in the last 20 years1, in part

driven by the rapid growth of both demand and production in China since

the year 2000. Equivalently, this corresponds to an apparent per capita use

of 227.5 kg of finished steel products globally.

1.2 Steel Production Process

Figure 1.1 summarizes the typical steel production processes currently used.

In some specific applications, though, ingot casting is used instead of contin-

uous casting.

1The source for this and further figures in this chapter is the World Steel Association’s

1.2. STEEL PRODUCTION PROCESS 5

D
ire

ct

re
du

ct
io

n

S
cr

ap

La
dl

e
(R

efi
ni

ng
)

E
le

ct
ric

 a
rc

 fu
rn

ac
e

(S
te

el
m

ak
in

g)

Iro
n

O
re

P
el

le
ts

El
ec

tr
ic

 A
rc

 F
ur

na
ce

 S
te

el
m

ak
in

g

Co
nt

in
uo

us
 c

as
tin

g

D
es

ig
n

b
y

B
lis

sc
om

m
un

ic
at

io
n.

co
m

 /
 C

ov
er

 p
ho

to
:

Th
ys

se
nK

ru
p

p
S

te
el

 /
 T

ub
es

 p
ho

to
:

S
al

zg
itt

er

 T
he

 p
ro

ce
ss

 s
ho

w
n

ab
ov

e
is

 il
lu

st
ra

tiv
e

on
ly

 a
nd

 is
 n

ot
 d

es
ig

ne
d

to
 s

ho
w

 t
he

 s
te

el
m

ak
in

g
p

ro
ce

ss
 in

 d
et

ai
l.

N
ot

 a
ll

st
ee

l p
la

nt
s

p
ro

d
uc

e
al

l o
f t

he
 p

ro
d

uc
ts

 s
ho

w
n

in
 t

hi
s

d
ia

gr
am

.
w

o
rld

st
ee

l.o
rg

OV
ER

VI
EW

 O
F

TH
E

ST
EE

LM
AK

IN
G

PR
OC

ES
S

P
el

le
ts

S
in

te
r

Li
m

es
to

ne

C
ok

e

Iro
n

O
re

C
oa

l

S
cr

ap

B
la

st
 fu

rn
ac

e
(Ir

on
m

ak
in

g)

C
on

ve
rt

er
(S

te
el

m
ak

in
g)

La
dl

e
(R

efi
ni

ng
)

Bl
as

t F
ur

na
ce

 S
te

el
m

ak
in

g

C
oa

l/N
at

ur
al

 G
as

P
la

te
H

ot
-r

ol
le

d
ba

rs
R

od
s

Tu
be

 ro
un

ds
R

ai
ls

Sl
ab

Bi
lle

t
Bl

oo
m

H
ot

-r
ol

le
d

an
d

co
ld

-r
ol

le
d

st
rip

 (C
oi

ls
)

S
tr

uc
tu

ra
l s

ha
pe

s

Fi
gu

re
1.

1:
O

ve
rv

ie
w

of
th

e
St

ee
lm

ak
in

g
Pr

oc
es

s.
So

ur
ce

:
W

or
ld

St
ee

lA
ss

oc
ia

tio
n.

https://www.worldsteel.org/about-steel.html

6 CHAPTER 1. INTRODUCTION

There are two main routes: the Blast Furnace (BF) and the Electric Arc

Furnace (EAF). The BF route takes iron ore, consisting mostly of iron oxides,

as raw material, while the EAF route takes scrap or pre-reduced iron instead.

There is some overlap, as the BF route can and does use some scrap, and

the EAF route can admit some amount of hot metal from a Blast Furnace if

one is available, but this configuration is exceedingly rare.

The BF route starts with iron ore, which is directly mined from the

ground. at the mine, the ore is ground and potentially concentrated by sepa-

ration to improve the iron content. This form of the ore is called concentrate,

and must undergo further processes for use in the BF to prevent clogging.

One of these processes is pelletization. This is typically performed at the

mine. The concentrate is further ground to a more uniform granulometry,

shaped into small spheres around 1–2cm in diameter, and baked in an in-

duration furnace to achieve sinterization. This results in pellets, solid but

porous spheres of iron ore.

The other process is sinterization, and is usually a part of the ironmak-

ing stage of a steel plant. Concentrate, mixed to the required quality and

including some amount of pulverized coal to serve as fuel, is passed through

a furnace triggering a sinterization process resulting in a porous cake usable

in the Blast Furnace, called sinter.

The other main input to the Blast Furnace is coke, which provides carbon

to serve as fuel and also structural properties required of the load of the

furnace. For this reason, not all coals can be used to make coke. Coking coal

(coal of the required quality) is heated in a closed oven in absence of oxygen

report 2021 World Steel in Figures, which can be accessed here.

https://www.worldsteel.org/en/dam/jcr:976723ed-74b3-47b4-92f6-81b6a452b86e/World%2520Steel%2520in%2520Figures%25202021.pdf

1.2. STEEL PRODUCTION PROCESS 7

for hours. Without oxygen combustion does not take place, but volatiles

present in the coal escape as they expand due to the heat, leaving a porous

material of almost pure carbon.

The Blast Furnace itself is in essence a chemical reactor where the iron

oxides are reduced by carbon, resulting in hot metal and BF gas. Hot metal

is an alloy of iron an carbon (with around 4.5% carbon, which is too high

for steel, and is called cast iron or pig iron), while the BF gas is a mixture

of CO and CO2.

The BF works in a continuous fashion. It is fed alternate layers of iron

ore (pellets and/or sinter) and coke. As they descend, they meet an opposite

stream of gas due to the blowing of hot air from the bottom of the furnace,

usually with some added fuel such as pulverized coal, to regulate the temper-

ature. The ascending gas first generates intense heat to facilitate the reaction

of the carbon in the coke with the iron oxides, forming CO and elemental

iron, which drips down to the hearth below the furnace. Further up the air

is not so hot, but it preheats the input materials, and part of the CO still

reduces the iron oxides becoming CO2.

Some additional materials, fluxes, included with the ores ensure that the

conditions in the furnace are adequate for the chemical reactions, and fall on

top of the liquid iron in the hearth forming a protective layer of slag that

prevents reoxidation.

The hearth is periodically tapped by drilling holes to pour the liquid hot

metal into refractory-lined vessels that will take it to the steelshop. The holes

are plugged between tappings to allow the hot metal to accumulate. Option-

ally, the hot metal is desulphurized before moving on. Specific additives are

8 CHAPTER 1. INTRODUCTION

mixed into the hot metal to form a sulphur-affine slag that traps a significant

part of the sulphur, and is removed from the surface. Sulphur is an undesir-

able element in steel, as it forms inclusions that distort the crystallographic

structure. Sulphur and other elements that have a similar effect are called

tramp elements. While they all need to be controlled within certain limits

to ensure the quality of the final product, sulphur in particular cannot be

removed under the conditions in subsequent steps due to the chemical char-

acteristics of the slags needed in the steelmaking processes, so this previous

step is needed if the sulphur content in the hot metal is excessive.

After this point, we move from ironmaking to steelmaking. The hot

metal needs to have most of its carbon removed to be in the right range for

steel. This is accomplished in the Basic Oxygen Furnace (BOF). In the BOF,

oxygen is blown through the liquid hot metal to remove carbon and obtain

liquid steel. As in the BF, fluxes are added to generate a slag that protects

the liquid metal and provides the right conditions: the reaction in the BF

by which carbon took oxygen from the iron is to an extent reversed here and

oxygen is used to remove carbon from the iron. Additionally, other alloys

are added at this stage to adjust the chemical composition of the steel, and

argon or nitrogen complement the oxygen blowing for a strong stream that

mixes the liquid metal.

After the BOF, and still in liquid phase, the steel may undergo one or

several processes, known as secondary metallurgy, to adjust it to the require-

ments of the specific steel product:

Ladle Furnace The liquid steel is reheated and receives more additives to

refine its chemistry.

1.2. STEEL PRODUCTION PROCESS 9

Vacuum Degasser The liquid steel is subjected to a vacuum to remove gas

components, especially hydrogen or carbon.

The liquid steel is then solidified in the continuous caster. The first

stage is the tundish, a vessel that functions as a buffer to allow continuous

operation: the ladles pour each batch of liquid steel into the tundish and it,

in turn feeds the caster mould; the next batch will arrive before the tundish

is completely empty, concatenating anywhere from three to about a dozen

batches before the tundish needs to be replaced.

The mould defines a rectangular section; liquid steel is poured from the

top and comes solid on the surface from below, but the inside will require

additional cooling to fully solidify. This allows the ‘bar’ of steel to bend into

a horizontal position while it is cooled with water sprays. Once it is fully

solidified, it is cut to the desired length. The cross-section varies depending

on the final product:

Slab A rectangular cross-section aimed at producing flat products. Width

is usually 400–2,500mm and thickness 75–600mm.

Billet A square or close-to-square cross-section aimed at producing long

products like beams, rails, rods, wires, etc. Typical sizes are 80–200mm

to a side.

The EAF route is more compact, and characteristic of the so-called mini-

mills. The EAF takes in mainly scrap, but also possibly pre-reduced iron

or hot metal. Pre-reduced iron consists of pellets or brickets of ore that has

undergone a reduction process in the solid state traditionally treating it with

CO from natural gas to remove the oxygen from the iron oxides.

10 CHAPTER 1. INTRODUCTION

The scrap and other materials are loaded into the EAF, and a strong

electrical current is passed through it by means of graphite electrodes to

melt it into liquid steel. Oxygen blowing, addition of ferroalloys, and oxygen

blowing may be applied as described for the BOF above. The liquid steel

then moves on to secondary metallurgy.

The main drawback of this route is that the quality of the steel will be

very dependent on the cleanliness of the input materials. Scraps come from

many origins, and some of the potential contaminants such as copper cannot

be removed. These contaminants are called residuals.

These initial stages of ironmaking and steelmaking are the most carbon

intensive in the production of steel. In recent years, the industry is moving

towards improving its carbon footprint and efforts naturally concentrate on

this area. The use of hydrogen as a reducing agent in the BF and in the

production of pre-reduced iron is a clear trend in this direction, while research

on electrolysis to fully substitute the BF shows a potential avenue for future

evolution.

After iron- and steelmaking, slabs and billets are sometimes sold directly,

but mainly to other steel manufacturers for further processing. Downstream

of this point, the processes are different depending on the desired product.

Heavy plate, used in building ships, pressurized containers, or windmills,

is hot rolled into its final shape: the slab is reheated to a red- or white-hot

temperature that makes the material malleable and cylinders apply pressure

from above and below to compress the steel in thickness while extending it

in width and length. The rolling process not only shapes the product, but

combined with the thermal evolution, determined by the heating and con-

1.2. STEEL PRODUCTION PROCESS 11

trolled cooling by water spray nozzles, helps to achieve the final mechanical

properties.

Long products have several specialized routes. Each starts with a hot

rolling stage to adapt the bloom into a shape more amenable for the subse-

quent stages. Sections (e.g. beams) and rails are rolled into square section

bars, before being cold rolled with especially shaped rolls and cut to length.

Rebar and wire start with hot rolling the bloom into circular section bars,

which are cold rolled and cut in the case of rebar, or extruded into shape in

the case of wire.

Flat products also start with a hot rolling stage, using several stands

of cylinders that press the slab into shape in multiple forward and back

passes and apply controlled cooling at the exit. After this, the slab has been

transformed into a relatively thin (up to a few centimetres) strip of a similar

width to that of the slab, but much longer, which is wound into a coil for

storage.

According to the final application the flat product may end its route at

this step or after any of the following stages. Downstream of the hot rolling

mill, the finishing lines all work in a continuous process that takes one coil

after another; both coils are welded together head to tail at the entrance and

cut at the exit.

Accumulators are buffers at the beginning and end of each line that enable

decoupling the speed in different parts of the line in order to stop the strips for

welding and cutting while the line as a whole can keep functioning. They are

comprised of several rolls that guide the strip into a zig-zag pattern like that

of queues at airports or events; the rolls on one side are movable, changing

12 CHAPTER 1. INTRODUCTION

the length of material in the accumulator. The entry accumulator gathers

material while a coil is being processed, so that when the end of the coil is

reached it can give it back to feed the line while it is welded to the next coil.

Similarly, the exit accumulator takes material in during cutting and gives it

back for coiling.

The next stage is pickling, where the strip is submerged in a bath of

sulphuric or hydrochloric acid to clean it of potential rust that may form

on hot-rolled coil if unprotected. This may be done to package it as a final

product or as preparation for cold rolling.

In cold rolling, also known as the tandem mill, the strip is pressed between

cylinders to widths as small as a tenth of a millimetre, without preheating.

This changes not only the shape but also the mechanical properties of the

steel. The high pressure hardens and strengthens the steel as the microstruc-

tural grains break into smaller bits and dislocations are stretched. This also

results in a more brittle material.

In a continuous annealing line the strip is heated in a furnace to reach and

keep a temperature that, while not red-hot, allows internal diffusion, which

regrows the microstructural grains and releases tensions in the material. The

cooling process after the furnace is controlled to yield different properties

as needed: slower cooling retains softer, more malleable material (ferritic

or pearlitic steel); while faster cooling rates result in different steel phases

(martensitic or bainitic steel) that are harder and tougher.

In a skinpass line special rolls with imprinted surface roughness transfer

the pattern onto the strip to achieve certain surface aspects. This is normally

integrated with a tension leveller which pulls the strip to a point just beyond

1.3. GALVANIZING LINE 13

its elastic limit to cause a small plastic deformation; this overcomes the

initial stage of plastic deformation which can be non-smooth, and ensures

good formability of the material for further processing, such as extrusion or

stamping.

Several lines apply different coatings to the steel to provide protection

and/or aesthetic properties.

A tin-plate line applies a tin coating to isolate the steel from food or

beverages in cans.

A galvanizing line applies a zinc (or a mix of zinc and other metals) layer

to provide corrosion resistance; the galvanizing line is described below in

more detail, as it will be used for testing the algorithms.

An organic coating line applies a layer of organic pigment to yield a

painted coil (on one or both sides).

Some of these coatings may be applied to the same product, for instance

a painted galvanized coil, but not all; tin-plate is not galvanized, for example.

Some speciality products, such as military-grade plate, have custom pro-

cesses, often starting from ingots rather than slabs, as the smaller volumes

do not call for continuous processes.

1.3 Galvanizing Line

The Galvanized Steel market segment has the largest market share among the

different steel products, due to its high added value and its wide application

in varied industries such as construction, automotive, home appliances, and

others. In 2020 this corresponds to a market value of over 162.8 billion dollars

14 CHAPTER 1. INTRODUCTION

Figure 1.2: Galvanized steel coils in a coil yard

—for more than 150 million metric tons of production—, with a projection

to grow beyond 220 billion dollars by 20272.

This means that in a year the number of galvanized coils that are pro-

duced and scheduled is in the order of 10 million worldwide, spread across

hundreds of galvanizing lines belonging to many different steel manufactur-

ers. ArcelorMittal alone has dozens of these lines all over the world.

In the galvanizing line the coils are coated with a zinc (or zinc alloy with

aluminium and/or silicon) layer as a means to prevent corrosion from ambient

moisture. This is accompanied by an annealing phase which helps to achieve

specific mechanical properties and takes the steel to the right temperature

2Source: Global Galvanized Steel Market Report, History and Forecast 2016–2020,
Breakdown Data by Manufacturers, Key Regions, Types and Application by 360 Re-
search Reports (a summary is publicly accessible here). The production volume is in-
ferred from the market value and current prices. The World Steel Association pro-
vides the Steel Statistical Yearbook 2018 (later editions are only freely accessible for
summary information); there, the latest reliable data sets a lower bound on produc-
tion of over 121 million metric tons for 2015; it lacks information from several key
markets in 2016 and onwards, especially China which in previous years accounted for
around 40% of the global production (see https://www.worldsteel.org/en/dam/jcr:
e5a8eda5-4b46-4892-856b-00908b5ab492/SSY_2018.pdf).

https://www.wboc.com/story/44930537/galvanized-steel-market-size-in-2021-top-countries-data-with-40-cagr-global-industry-brief-analysis-by-top-key-companies-and-growth-insights-to-2027
https://www.worldsteel.org/en/dam/jcr:e5a8eda5-4b46-4892-856b-00908b5ab492/SSY_2018.pdf
https://www.worldsteel.org/en/dam/jcr:e5a8eda5-4b46-4892-856b-00908b5ab492/SSY_2018.pdf

1.3. GALVANIZING LINE 15

for the molten zinc to meld onto it. Depending on the line and product, a

skinpass and tension leveller stage may also be included for surface aspect

and formability.

Like other finishing processes, the galvanizing line starts and ends with

accumulators to allow a continuous process by welding consecutive coils to-

gether at the entrance and cutting them at the exit.

Next comes the annealing furnace. While in a hot rolling mill the whole

slab is placed in the reheating furnace and kept there for a time until it reaches

the right temperature and it is extracted to be rolled, in a continuous line

the strip keeps moving within the furnace, a tunnel lined with radiant tubes.

The line speed must adapt to ensure the right dwelling time and furnace

temperature combination for the steel to follow the prescribed thermal profile.

This is easy in steady state, but at the transitions between coils some length

of a given coil and its successor will be inside the furnace; furthermore, both

line speed and furnace temperature, especially the latter, are limited in the

rate of change, so matching successive coils in the sequence is important to

ensure smooth thermal cycle transitions.

The next stage is the molten zinc bath (for hot dip galvanizing; electro-

galvanizig lines use an electric current to cause electrodeposition of the zinc).

The strip passes through the zinc pot and a system of ‘air knives’ to spread

the zinc layer evenly and to specification. As in the furnace, the transition

between coils takes some time, which will be longer or shorter depending on

how different the coating thickness is between coils; in this period a coil may

be out of specification or overcoated; the latter is not usually grounds for a

claim but is a waste of material and an added cost.

16 CHAPTER 1. INTRODUCTION

Finally, the strip reaches the skinpass and tension leveller stage if it ex-

ists, with similar considerations for the transitions with respect to the force

applied in the skinpass cylinders and the tension used in the leveller.

All of these difficulties associated with the transitions mean that sequenc-

ing of the coils that will be produced is of utmost importance, as it will have

a big impact on production costs and even feasibility. These issues can be

modelled as constraints (e.g. maximum dimension difference between con-

secutive coils for a safe welding) and costs (e.g. value of the loss of material

out of specification during a thermal cycle transition).

1.4 The Galvanizing Line Scheduling Prob-

lem

Taken like this, the sequencing problem closely resembles a Travelling Sales-

person Problem (TSP), with the additional complication of infeasible seg-

ments due to the constraints. This already makes it a different type of prob-

lem, as it is not guaranteed that for every problem instance a feasible solution

exists. A way to bridge this gap is to consider constraints as a high-value

cost that ensures that a tour that violates a single constraint in the tour is

always considered worse than a feasible tour; beyond that, tours with fewer

unmet constraints are naturally better. This may be further complicated by

having two different levels for the constraints (soft and hard constraints). In

any case, the values of the costs needed to represent the constraints in this

way often result in numerical instability in the usual TSP solution methods.

1.4. THE GALVANIZING LINE SCHEDULING PROBLEM 17

The high-value cost formulation also matches reality. When a feasible

sequence cannot be found, the gaps are filled using coils from inventory that

will be degraded and potentially scrapped later to make the production keep

running, although with the high cost of the lost material. These are called

warmer or stringer coils.

For certain products, additional constraints related to quality apply,

which completely invalidate any TSP-related approach. These constraints

relate longer sub-sequences, rather than just one coil and its immediate neigh-

bour. One such constraint is, for example, that no more than a given length

of strip should be rolled without a change in width. Doing so can wear an

edge on the rolls at the rim of the strip, which can subsequently cause marks

on the strip. Not only does this involve several coils, but the exact number

depends on the sequence itself, and the length of the individual coils.

The result is a problem that adds complexity on top of the already NP-

hard TSP problem, in a search space of size n! for a sequence of n coils.

The traditional approach to solving this problem is, including in most

commercial scheduling software, constraint programming based on constraint

priorities painstakingly configured for each line to yield good results for its

particular conditions and product mix.

The job scheduling problem and its many variations (multiple machines,

time windows, set-up times, etc.) seem at first sight to be a good match.

It consists of a number of jobs that need to be scheduled in one or more

machines; the jobs have due dates or ranges of valid completion dates and the

time they take to process in a machine; constraints define which machines

can perform which jobs, precedence relationships between jobs, and other

18 CHAPTER 1. INTRODUCTION

complications. The solution methods typically aim at minimizing a metric

such as tardiness (the delay of jobs with respect to their due dates) or machine

idle time.

This problem, however, does not properly map to the scheduling of a gal-

vanizing line. The functions that they minimize cannot represent the costs

associated to subsequences longer than a single transition, and they do not

consider the potential for infeasible sequences. The use of these methods is

therefore discarded. Even if a heuristic-based approach might be attempted,

it would likely require rebuilding the heuristic for each line, due to the differ-

ent conditions. A more optimization-oriented approach should aim at min-

imizing constraint violation and costs, which would provide a more generic

solution that can be adapted to each line just by modelling the cost func-

tions and constraints. Such a solution has the added benefit of being easily

extensible to other production stages.

A relatively direct formulation of this optimization approach involves

Integer Linear Programs (ILPs), using binary variables representing the al-

location of an item to a position in the sequence. Subsequence constraints

and costs can be modelled in this framework as long as the length of the

subsequence in terms of number of items is known beforehand; otherwise,

conditional elements are needed which makes the problem non-linear. Even

the linear version suffers from very poor scalability due to the combinato-

rial nature of the problem and the corresponding exponential complexity of

the search space (O(2n
2
) for n items), and the non-linearity only makes it

worse. With state-of-the-art solvers, a few tens of items are enough to require

impractical running times.

1.4. THE GALVANIZING LINE SCHEDULING PROBLEM 19

More advanced ILP formulations use variables that represent succession

in the sequence; although additional constraints are needed to avoid loops,

this is offset by the internal structure of the problem which can be exploited

by the branch-and-bound heuristics in the solvers. Combining this and de-

composition strategies, it is possible to address somewhat larger problems,

requiring additional work to design a decomposition strategy that works for

the problem at hand. However, this formulation lacks the ability to express

the subsequence costs and constraints, so it cannot be applied, even if prac-

tical sizes could be handled for the particular problem.

With exact optimization out of the question, metaheuristics are the usual

approach under these circumstances. Metaheuristics, if properly used, can

usually find good-enough solutions in reasonable times, and can handle non-

linear and non-analytic cost functions and constraints, providing additional

flexibility when modelling the problem.

As an example, this galvanizing line scheduling problem has been ad-

dressed by [Fer+14] using Ant Colony Optimization, and will be one of the

test-beds for the algorithms presented in this work.

Despite their advantages, even metaheuristics are limited, and as the

problem becomes larger (e.g. by considering a longer scheduling horizon),

they start to suffer and solution quality drops within the stringent time

constraints imposed in the industrial environment. One way to counter this to

some extent is to increase the computational capacity through parallelization.

Therefore, this work looks at the application of parallel metaheuristics

to tackle the galvanizing line scheduling problem, so it can be extended to

address larger, more complex problems, and still provide answers in a timely

20 CHAPTER 1. INTRODUCTION

fashion.

1.5 Metaheuristics

Metaheuristics encompass a wide range of algorithms for optimization. Origi-

nally applied to heuristics or strategies that coordinate lower level search pro-

cedures, in time the concept extended to include methods that employ ways

of escaping local optima in complex search spaces, typically several neigh-

bourhood strategies or some extent of randomness. While these algorithms

cannot compete with strict optimization methods where they are applicable,

such as solving linear programs, they excel at attaining good enough solutions

for problems that do not match the expression capabilities of strict methods

or that span a large search space that cannot be exhaustively searched by

exact methods [GP10].

Given their diversity, there are many different classifications of meta-

heuristics, according to different features. The classification most relevant to

this work divides them into two classes:

1. Population-based, which at any time hold a number of solutions (the

population) and create new ones by combining or modifying them;

some examples of this class are Genetic Algorithms, Ant Colony Opti-

mization, and Artificial Bee Colony.

2. Single-solution, which focus on iteratively improving just one solution;

some examples of this class are Variable Neighbourhood Search, Sim-

ulated Annealing, and Iterated Local Search.

1.6. PARALLEL AND DISTRIBUTED COMPUTATION 21

Population-based metaheuristics are more amenable to parallelization;

at each step of the process, the same operations are carried out on several

individuals of the population: all of them, a subset, or some pair-wise com-

bination, depending on the method. Single-solution metaheuristics, on the

other hand, are by nature sequential. This does not mean that parallelization

is not possible, but it is tied to the particular algorithm, such as paralleliz-

ing the calculation or evaluation of neighbours for Local Search variants, or

even the particular problem, such as exploiting the properties of the fitness

function. This second parallelization approach can also benefit population-

based metaheuristics, and it is currently a vibrant field of research; but the

common structure of population-based metaheuristics allows for the design

of high level methods that apply to all of them.

1.6 Parallel and Distributed Computation

Recent trends in the evolution of computing power stress the importance of

parallelization and distribution for improving the performance and scalability

of algorithms [Sut05]. Moore’s Law states that the number of transistors that

can be fitted into a chip roughly doubles every 18 months. For a while, this

translated directly into raw power increase, and the same programs became

faster just by running on newer hardware.

More recently, as the development hit certain physical limits, increases in

clock speed stalled and timing and power constraints made it necessary to

separate the processor into several cores in order to extract all its potential.

Single-thread programs no longer reap the rewards of increased computing

22 CHAPTER 1. INTRODUCTION

power, as they only make use of a fraction of the processor.

To be able to take advantage of the new advances, programs need to

parallelize operations. There are different ways to attain this, and they can

be included in different layers of the design.

The paradigm for GPU acceleration follows SIMD (Single Instruction

Multiple Data): the same sequence of operations are executed on many data

instances. Its main advantages come from vector- or matrix-like calculations

with very large numbers of items; actual GPU speeds are usually quite a bit

slower than CPU speeds, but they make up for it by performing hundreds or

thousands of simultaneous operations. This form of parallelization requires

programming at very low level and taking care of interleaving the computa-

tions with data transfers to and from the GPU. Because of this, the use of

GPU is very much problem-dependent and used in the innermost loops, such

as fitness function evaluation.

When using the CPU, a distinction is needed between parallelization and

distribution. The former merely implies that several operations can take

place at the same time, whereas the latter also considers that the separate

execution threads do not share the same context, but need to explicitly com-

municate with each other. In both cases, the instructions are independent

for each instance, as opposed to the case of the GPU.

Parallelization would then correspond to a multi-threading approach,

where several threads are run at the same time, while sharing the same

memory space; likewise, distribution would correspond to separate processes

running in the same or even different CPUs, and all coordination is carried

out by means of inter-process communication (IPC) mechanisms, such as

1.7. PARALLEL METAHEURISTICS 23

message passing, mutexes, etc.

Multi-threading is therefore useful for exploiting multiple cores in the

same CPU, while distribution can take advantage of multiple CPUs, in the

same or different (networked) computers.

1.7 Parallel Metaheuristics

In the context of population-based metaheuristics, multi-threading is typi-

cally used to run the operations on the individuals of the population at the

same time, rather than one after another; and distribution is typically used

to run several populations across a cluster, either independently or with some

level of communication, usually in an Islands model, where each population

transfers good solutions to its neighbours. Here, neighbours in the sense of

the network topology; the transference only takes place between nodes that

are directly connected to avoid high communication overhead. The most

common topology is a 2-dimensional mesh, where each node is connected to

four other nodes.

The benefits of enabling a more efficient use of the available resources

must be balanced against the complexity involved, both in terms of building

the algorithm (coding and maintaining) and the communication required,

which can in practice outweigh the gains. This balance can be interpreted

as a multi-objective optimization problem. In this perspective, the efficient

solutions are those lying on the Pareto front, also known as non-dominated

solutions. A solution dominates another if it is at least as good in all ob-

jectives, and strictly better in at least one of them. Evidently, dominated

24 CHAPTER 1. INTRODUCTION

solutions are not efficient, as the solutions that dominate them are clearly

better. However, comparing non-dominated solutions is not as easy: one will

be better in some aspects and the other one in others, hence the Pareto front.

For a specific application, a solution from the Pareto front may be chosen by

selecting a trade-off of the objectives appropriate to the task.

For the assessment of parallel population-based metaheuristics, three met-

rics are relevant: complexity, running time (given the available resources),

and solution quality. Complexity refers to the added difficulty of building

the algorithm; running time corresponds to how long it takes to reach a so-

lution of a given quality, while solution quality reflects how good a solution

is reached in a given running time. Complexity is dealt with in a qualitative

way, as defining a proper metric would be overly complex and to understand

its influence on the Pareto front only a ranking is needed. The metric for

solution quality will be the value of the objective function attained in opti-

mization with a given time budget3, while the metric for running time will

be the hypervolume of the objective function attained versus iteration curve,

a measure of anytime performance explained in more detail in the discus-

sion on metrics in chapter 2 and when presenting the validation results in

chapter 4.

The algorithms and approaches described above can be placed on this

Pareto front at different trade-offs of the metrics. While better solutions can

be obtained by more complex and computationally expensive methods, and

there is vibrant research in that region of the front, there is an outstanding

3Actually, it will be a budget of function evaluations, but coupled with an analysis of
its impact on running time.

1.7. PARALLEL METAHEURISTICS 25

gap in the lower complexity region. Most parallelization strategies require

additional effort in establishing communication and coordination across the

multiple threads of execution, whereas the usual baseline consisting of Mul-

tiple Independent Runs of a sequential algorithm is quite straightforward to

implement.

This thesis addresses this gap by proposing a method focusing on perfor-

mance improvement at the baseline end of the Pareto front, adding as little

extra complexity and communication as possible, in a position between sim-

ple multiple parallel runs and fully connected systems. The proposed method

is not a concrete algorithm, but rather a whole family of them, resulting from

the application of a transformation to any population-based metaheuristic.

The method interprets metaheuristics as a form of stochastic predictors of

the optimal solution. They take a specific instance and calculate, through

a combination of deterministic and random operations, a value that tries to

approximate the solution to the problem.

Thus, running several instances of a metaheuristic is equivalent to using

a group of stochastic predictors. Even if in the case of metaheuristics it is

possible to know which of the instances yields the best solution by comparing

their fitness, it is possible to draw some ideas from the statistician’s toolbox

to extract more value from running several instances.

The group of methods, employed in statistics and Machine Learning, col-

lectively known as ensemble methods or ensemble learning deal with exactly

this scenario. All of them combine multiple models or predictors to obtain a

better result than possible with any one of the models individually [MO99].

The best known examples of ensemble methods are Bootstrap Aggregat-

26 CHAPTER 1. INTRODUCTION

ing (Bagging), which trains several models of the same type with random

samples of the original data and then generates its prediction by aggregat-

ing the results of all models with equal weights (averaging for continuous

variables, selecting the most voted class for categorical ones), and Boosting,

which trains models successively so that each one places special emphasis

on the instances misclassified by the previous one; but many others exist:

Bayesian Parameter Averaging, Bucket of Models, Stacking, etc.

The overarching theme in all ensemble methods is that improvement can

be obtained from the aggregation of multiple (weak) models to build a better

one.

The same concept is present in the very procedure of many metaheuristics:

from the partial reuse of solutions in Genetic Algorithms, to the preference

for frequently travelled edges in Ant Colony Optimization, to name a few.

Path Relinking showcases this behaviour better than any other meta-

heuristic: its concept itself is exactly to combine good solutions to find better

ones. Starting from a pool of solutions (generated randomly and/or using

some heuristic), it selects the best ones and builds paths between pairs of

them. Each step consists of a modification of the current point as in a local

search, but always moving towards the other solution (guiding solution). As

new solutions are generated, they may become new path sources or guiding

solutions.

1.8. THE MULTIVERSE METHOD 27

1.8 The Multiverse Method

Taking all of this into account, this thesis proposes a method that combines

multiple instances of any population-based metaheuristic to improve its effi-

ciency, while introducing as little additional overhead as possible. For easier

reading, the method is referred to as the Multiverse method in the remain-

der of the thesis, as opposed to Multiple Independent Runs, which is called

Multistart. The metaphor for the Multiverse being that each instance is a

universe of its own, but within this method they all form a single entity,

hence the Multiverse.

In the Multiverse method, one of the multiple instances has special status:

the collector. It receives updates of the best solutions of the other instances.

The application of this adaptation to the algorithms is straightforward, as all

population-based metaheuristics already step through iterations (or genera-

tions), combine the solutions in their populations to create new, improved

ones, and possess mechanisms to work with multiple solutions (the popu-

lation). All other instances contribute their current best solution at each

iteration to the population of the collector; the same process that takes place

normally, applied to this extended population, is responsible for the mixing

of solutions.

The added overhead is small: injection of external solutions into the pop-

ulation, and one-way communication of a single solution from each instance.

Furthermore, this communication scheme fits a star-like topology, such as

the one provided by a standard switch, rather than the more complex and

costly mesh favoured by other configurations, such as the Islands model, and

28 CHAPTER 1. INTRODUCTION

more typical of super-computers than of clusters built from commodity-grade

computers, usually dubbed clusters of workstations (COWs).

This Multiverse method, by extracting more performance from available

hardware, is one way to tackle larger and more complex versions of the gal-

vanizing line scheduling problem, which is the objective set at the start. Ad-

ditionally, the approach is applicable in a more general fashion: any problem

tackled through a population-based metaheuristic can benefit from enhancing

the solution algorithm in this way.

Chapter 2

State of the Art

Contents
2.1 Metaheuristic Algorithms 31

2.1.1 Genetic Algorithms 31

2.1.2 Ant Colony Optimization 34

2.2 Parallel Metaheuristics 37

2.2.1 GPU-based Parallelization 38

2.2.2 Multiprocessing . 44

2.2.3 Evaluation of Parallel Metaheuristics 51

29

30 CHAPTER 2. STATE OF THE ART

2.1. METAHEURISTIC ALGORITHMS 31

2.1 Metaheuristic Algorithms

Since the target of this work is population-based metaheuristics, the review

focuses on Genetic Algorithms and Ant Colony Optimization as represen-

tative examples of the two main subclasses: combining and constructive

metaheuristics, respectively.

2.1.1 Genetic Algorithms

John Holland introduced the concept of Genetic Algorithms (GAs) in [Hol75].

The field has since expanded well beyond the original idea, into a more

general class of Evolutionary Algorithms that share the underlying idea of

simulating neo-Darwinian evolution and natural selection through mutation

and recombination of individuals.

In its initial form, GA encoded individuals (candidate solutions) as binary

vectors, and used a function f : {0, 1}n 7→ R mapping the individual to the

corresponding fitness value1. Starting from a random population, it applied

a selection method to determine which solutions in the population produce

new individuals; this selection reinforces the fitness function by sampling

with higher probability individuals with better fitness. Selected individuals

go on to produce new offspring through recombination and mutation. In

recombination, the features of the two parent solutions are combined by

randomly setting the value at each position to the value of one of the parents.

Mutation randomly flips a bit with a probability inversely proportional to

1Strictly speaking, the binary vector is the encoding of the solution, or genotype, and
the actual solution variables, or phenotype, are the decoded version; the fitness function
maps the phenotype onto the fitness.

32 CHAPTER 2. STATE OF THE ART

the length of the solution.

A comprehensive review of the history and application of Genetic Algo-

rithms is given in [Ree10] and the updated version in [Whi19]. The most

notable milestones are described below.

The selection method described above, known as roulette-wheel selection,

can be visualized as a roulette spinner where the angle of a sector correspond-

ing to an individual is proportional to its fitness. It was extended by Baker’s

stochastic universal selector (SUS), which selects multiple parents with each

‘spin’ by considering multiple, evenly-spaced spinner arms. This speeds up

the selection by avoiding the rescaling needed to perform sampling without

replacement. Different scaling variations have been developed, as well as a

ranking version which takes the individuals in order of fitness and assigns

a predefined probability based on rank, typically an arithmetic progression.

Another alternative that forgoes scaling is tournament selection, where to

select one parent two individuals are sampled uniformly and the one with

better fitness kept.

The original crossover operator is known as uniform crossover (UX). The

main additional operators are one- and two-point crossover (1X and 2X,

respectively), although the general m-point crossover has been used with

greater values of m. In 1X, a single split point is chosen uniformly in the in-

dividual, and the genes after that point are exchanged. In 2X, 2 split points

are selected and the genes between the two points are exchanged. Further

crossover operators have been defined for other encodings, such as permu-

tations (widely used in TSP and scheduling problems), for which the usual

ones would yield invalid offspring. Two alternative operators for permuta-

2.1. METAHEURISTIC ALGORITHMS 33

tions are PMX (partially mapped crossover) and a reinterpretation of the

usual crossover. In PMX, a selection of genes is made as for UX, but instead

of exchanging the genes between parents, the selected value in one parent is

swapped in that parent with the value that appears in that position in the

other parent. The reinterpretation of the usual crossover keeps the values in

the selected genes fixed for one parent, and then fills in the gaps with the

rest of the values in the order in which they appear in the other parent.

Originally, the new population of the next generation was composed en-

tirely of the offspring resulting from crossover and mutation. Certain popula-

tion overlaps may be kept, replacing only a fraction of the original population

or keeping a small number of the best solutions from one generation to the

next (elitism). Several methods apply also to the selection of the individu-

als to be removed from the population, from directly eliminating those with

the worst fitness to selecting from the worst p% (e.g. below the median for

p = 50) or from the oldest ones.

The generation of the initial population also developed several variants

other than pure random generation. A more even and thorough coverage of

the search space can be obtained using a generalization of the Latin hyper-

cube. Yet another usual approach is to seed the population with known good

solutions, if available or if some other heuristic can be used to generate them,

although this method involves some risk of inducing premature convergence.

These improvements or variations apply to the more standard flavours of

GAs, but often they are adapted to address specific problems, using repre-

sentations and operators that better fit the use case, e.g. by incorporating

domain knowledge. The use of permutations for scheduling problems and

34 CHAPTER 2. STATE OF THE ART

TSP is one example. There are many others, and the performance of the

algorithm may be completely different using one representation and set of

operators or another. GAs adapted in this form are considered grey box

optimizers.

One final improvement is to refine each generated individual using local

search rather than mutation. These are known as hybrid GAs or memetic

algorithms.

Beyond the developments in GAs proper, the field has expanded into

related variations of the theme, like Genetic Programming (GP), Estimation

of Distribution Algorithms (EDA), Evolution Strategies (ES), co-evolution,

etc.

2.1.2 Ant Colony Optimization

Ant Colony Optimization (ACO) actually encompasses a number of similar

algorithms for solving discrete optimization problems and which are inspired

by the behaviour of real ant colonies in nature. Some species of ants deposit

pheromone trails when travelling between the nest and a food source; shorter

paths accumulate more pheromone as they are travelled more frequently,

which attracts more ants, which in turn deposit more pheromone in a positive

feedback loop.

The first ACO system, known as Ant System (AS), was introduced in

[Dor92]. It sets the framework common to all the variations:

1. Initialization of the pheromone

2. Iteration loop until ending condition is met

2.1. METAHEURISTIC ALGORITHMS 35

(a) Construction of ant solutions

(b) Optionally, application of local search

(c) Global pheromone update

All ACO methods represent solutions as sequences of building blocks or

components, so that they can be constructed step-wise. For instance, in

the case of TSP, which was the first application, an ant starts at one of

the cities, and in each step adds a new city to the tour. The pheromone,

combined with heuristic information if available, determines the probability

of selecting a particular component for the next step.

In AS, all pheromone is initialized to a value τ0, which is a parameter of

the algorithm. The construction of the solution for each ant progresses by

taking the next step with probability

p(bij|si) =
ταij · [η(bij)]β∑

bik∈N (si)
ταik · [η(bik)]β

∀bij ∈ N (si), (2.1)

where p(bij|si) is the probability of adding block ij given the current state of

solution si; τij is the pheromone associated to block bij; η(bij)is the heuristic

associated to block bij; N (si) is the neighbourhood of the current state of

solution si, that is, the blocks that can be added at given the current state

at the moment; and α and β are algorithm parameters that regulate the

relative weight of pheromone and heuristic. In the case of the TSP, bij is the

arc from i to j, and the neighbourhood of si is the set of arcs going out of

city i and into yet unvisited cities, i.e. those not in si, which is the (partial)

tour built up to the current stage.

36 CHAPTER 2. STATE OF THE ART

After every ant has built its solution, and evaluated the evaluation func-

tion f(s), the pheromone is updated as:

τij ← (1− ρ)τij +
∑

s|bij∈s

1

f(s)
∀ij, (2.2)

where ρ ∈ (0, 1) is an algorithm parameter.

Ant Colony Optimization as a general framework is described in [DDG99].

In time additional variants have surfaced. Following mainly [DS19], the

most relevant ones are discussed below.

The elitist strategy is the first variation to appear. At each iteration, the

best global solution adds pheromone even if it was not present in the current

iteration, and it is given a strong weight, compared to the rest of solutions.

Rank-based Ant System (ASrank) takes this elitist strategy one step fur-

ther by having only the best solutions update the pheromone. The number

of updating solutions is a parameter n; the best solution is assigned rank

r = 1, the next best r = 2, and so on. Each of them performs the pheromone

update with weight (n+ 1− r).

MAX −MIN Ant System (MMAS) bounds the pheromone values

above and below, τmin ≤ τij ≤ τmax ∀τij, and initializes all pheromone to

the upper bound, to encourage exploration in the initial phase. The lower

bound helps prevent stagnation. Pheromone update follows a strong elitist

strategy as described above, using either the global best or the iteration best,

or alternating them. MMAS also introduced two tools that are applied in

other variants: occasional pheromone reinitialization to increase exploratory

behaviour and the application of local search to each solution before the

2.2. PARALLEL METAHEURISTICS 37

pheromone update.

Ant Colony System (ACS) focuses on the exploitation of information col-

lected by previous ants. ACS uses strong elitism, only adding pheromone

from the global best solution (or, less frequently, the iteration best solution)

after each iteration, in amount of ρ
f(s)

. The selection of the next component

during solution construction follows the pseudo-random proportional rule:

with probability q0, 0 ≤ q0 < 1, it takes a greedy step, i.e. it selects the com-

ponent with the highest probability as given by equation (2.1); alternatively,

with probability 1 − q0 it applies the usual selection method. Additionally,

ants update the pheromone trails during construction of the solutions, which

results in actually removing pheromone from the components used in build-

ing a solution, which makes it less likely that all ants converge to the same

solution.

The Ant Colony Optimization approach has been adapted to additional

scenarios beyond the original discrete optimization field, such as multi-objective

optimization ([GCH07; LS12a]), optimization of dynamic problems which

change over time ([MLY17]), or stochastic optimization ([Bia+09]). Since

these fall outside of the scope of the current work, the interested reader is

directed to the relevant references.

2.2 Parallel Metaheuristics

The execution of metaheuristics can become very resource-intensive, depend-

ing on the problem. This may arise from the computation of the objective

function, the constraints, or solution repairing procedures; or from the need

38 CHAPTER 2. STATE OF THE ART

to explore a huge space of potential solutions. This is true of every kind of

metaheuristic, whether single-solution-based, or population-based.

One way to mitigate this effect is to exploit the available computational

resources to perform several calculations simultaneously, thus reducing the

wall time2 needed. Since the algorithms may need to be adapted or modified

to take advantage of parallelization, other benefits besides a speed-up can also

be obtained, such as improving the quality of solutions or the robustness of

the algorithm, or tackling larger scale problems.

2.2.1 GPU-based Parallelization

GPUs follow a very different paradigm from that of CPUs. The CPU has

a limited number of processing units, limiting its ability for simultaneous

execution, but it can handle diverse tasks that require large amounts of

data, managed by a complex control unit and enabled by a relatively ample

cache to accelerate memory access. GPUs, on the other hand, sport a very

high number of computation units, potentially in the thousands, with more

limited caching and flow control. Moreover, the GPU is a co-processor that

depends on the CPU for exchanging data with the main memory and defining

the operations via kernels.

The typical architecture of a GPU consists of multiple streaming multi-

processors (SMs), each containing several streaming processors (SPs), also
2In computation systems different times can be measured, mainly wall time (also known

as wall-clock time, real time, or real elapsed time), the time as measured outside of the
computer from beginning to end, that is what we would experience as users of the system,
as opposed to CPU time (or process time), which is the amount of time the processing
unit was used to do the work. This can exceed wall time in multi-threaded, multi-core,
or distributed systems where operations can happen in parallel. CPU time can be further
divided into user, system, idle, and steal times.

2.2. PARALLEL METAHEURISTICS 39

known as processor cores. Each core can execute a limited set of operations,

usually simple precision arithmetic and some special functions such as square

roots or trigonometric functions depending on the model, in a SIMD (single

instruction multiple data) fashion, that is, the operation is the same for all

processes, though each one applies it on its own data instance. The pro-

totypical example is element-wise vector addition, where each core takes as

data the corresponding elements in two vectors (say, the i-th element of each

vector), calculates their sum, and stores the result as the i-th element of the

output vector; all cores do this at the same time, performing the addition

in parallel for the whole vector. There are 32 execution threads in a SM

working in lockstep as described; each of this groups is called a warp.

SMs also include shared memory for its SPs, and are grouped into thread

processing clusters (TPCs) for additional caches shared among the SMs. The

interconnection network allows communication among these elements and

also with the global memory (DRAM).

One relevant offshoot of the SIMD execution paradigm of GPUs is the

effect of branching. When alternative execution flows are needed, such as

in the case of an if-else clause which evaluates to true for some threads

and to false for others, the SM will execute both sequentially, applying the

effects only on the appropriate threads. With additional nested branching,

the execution paths increase exponentially, diminishing the parallelization

advantage, to the point where it can be counter-productive.

Modern GPUs can simultaneously perform the execution of its threads

and move data both to and from main memory. However, this relies on the

CPU providing the instructions in a manner conducive to it. The instructions

40 CHAPTER 2. STATE OF THE ART

are received asynchronously, and launched as soon as the GPU has the ability.

For large loads or iterative operations, this becomes very relevant to ensure

avoiding idle times and maximizing utilization.

An in-depth description of GPU architectures is available in [ND10] and

[Ryo+08].

With the advent of general libraries that provide a C-like environment

for programming GPUs, especially CUDA and OpenCL, and more recently

Vulkan, there has been intense research on the parallelization of metaheuris-

tics using GPUs.

The main difficulties of adapting metaheuristics to GPUs are explored in,

among others, [Van11], which addresses metaheuristics in general, including

both single-solution and population-based metaheuristics. These challenges

can be summarized as:

CPU and GPU coordination Which parts of the algorithm should be

run on each, considering the effects that partition will have on the

level of parallelization, the utilization of the GPU capabilities, and the

need for data transference between CPU and GPU.

GPU computation Making the most of the parallelization capabilities of

the GPU within the relatively limited amount of memory, mapping the

tasks into memory structures that can be appropriately addressed by

the threads.

Memory management Optimization of data access is needed for perfor-

mance, by efficiently using the multiple GPU memory spaces consid-

ering their sizes and latencies. Additionally, data exchange with the

2.2. PARALLEL METAHEURISTICS 41

CPU must be adequately interleaved with the operations.

These are considered using several standard problems as use cases: the

Permuted Perceptron Problem, the Quadratic Assignment Problem, the Weier-

strass Continuous Function, the Travelling Salesperson Problem, and the

Golomb Rulers. The solution method relies on single-solution metaheuristics

that work with a neighbourhood structure such as hill climbing, by paralleliz-

ing the generation and evaluation of the neighbourhood in the GPU for each

iteration. While this allows for some level of generalization, the calculations

in the GPU, as well as the definition and management of data structures are

problem dependent. The tests show important acceleration of the algorithms,

and its integration in the ParasdisEO3 framework is showcased.

More specifically for GAs, [Krö+11] implements GPU accelerated Ge-

netic Algorithm and Differential Evolution methods for task scheduling by

offloading problem-specific computation to the GPU. They also show speed-

ups of several orders of magnitude, but once again the implementation is

problem-specific and relies on the fitness function structure being amenable

to efficient implementation in the SIMD paradigm.

As an example for ACO, [Del+13] proposes several GPU implementations

ofMMAS for the TSP, ensuring equivalent execution, and therefore results,

to the sequential version, and analysing the resulting speed-ups in several

instances of varying sizes:

• A single colony is used in one GPU, with one ant in each iteration

assigned to a single GPU execution thread for tour construction and
3http://paradiseo.gforge.inria.fr/

http://paradiseo.gforge.inria.fr/

42 CHAPTER 2. STATE OF THE ART

local search. Pheromone information, distance matrix, and probability

arrays for each ant need to be stored in the global memory, as they

soon grow too large for the limited local memory available to each

thread. For different numbers of blocks and threads used, speed-ups

range between 0.17 and 0.82. This means that the overhead of mem-

ory management and CPU-GPU communication actually makes the

algorithm slower than running sequentially on the CPU.

• A single colony is used in one GPU, with one ant in each iteration as-

signed to a GPU block, parallelizing tour construction and local search

across the threads in the block. The increased available local memory

—now the whole block— means that the data structures needed to

calculate the state transition can be kept in local or global memory,

while pheromone information and the distance matrix still can only fit

in global memory. The speed-ups in this case range from 2.85 to 12.48,

depending on the size of the problem and the number of blocks used.

Also, the variant using local memory shows better results for smaller

instances, where the faster local memory is fully exploited; for larger

instances, the higher volume of data in shared memory limits the num-

ber of concurrently active blocks, penalizing performance to the point

of making the variant using global memory faster.

• Multiple colonies are used, each one assigned to one execution block;

within the block, one ant is assigned to each thread as above. For

the Multicolony approach the whole algorithm is moved into the GPU,

rather than just the tour construction and local search stages to avoid

2.2. PARALLEL METAHEURISTICS 43

the need of continuously exchanging multiple pheromone matrices be-

tween the CPU and GPU. Speed-ups result in the range 0.06–1.77.

Only for a large number of colonies (256) the GPU version is faster

than the sequential one, at the expense of solution quality. Similar

effects to those described above, together with the synchronization of

threads within a block for tour construction and local search, undo all

potential benefits of GPU parallelization.

• Multiple colonies are used, each assigned to one GPU, with each ant as-

signed to a block. In this case each colony is an independent algorithm,

run as a CPU thread or process and using the GPU as a coprocessor.

This results in the highest speed-ups: 9.38–12.70 for 256 iterations with

one colony, and 16.24–23.60 for two colonies, 128 iterations each.

While relatively important speed-ups are attained, it is by trying out mul-

tiple strategies, all tailor-made for the specific algorithm and problem com-

bination, from the GPU kernels to memory and CPU-GPU communication

management.

The general conclusion on GPU acceleration of metaheuristics is that

there is no generality. Instead, each algorithm and problem combination

needs to be analysed and the right approach designed to extract the most

from the parallelization ability of the GPU.

The literature focuses mostly on academic problems, with a straight-

forward definition of the fitness and constraint functions. For other, more

practical, types of problems this may not be the case. The scheduling prob-

lem defined in chapter 1 includes several cost terms and constraints that

44 CHAPTER 2. STATE OF THE ART

require multiple branching control flow, which clashes with the SIMD execu-

tion paradigm in GPUs.

2.2.2 Multiprocessing

The potential for parallelization of metaheuristics has long been recognized.

For instance, [PLG87; JSV91] already discuss parallel versions of Genetic

Algorithms and [Stü98] does the same for Ant Colony Optimization only a

few years after the first publication of the algorithm.

Numerous works analyse and propose various approaches. Some of them

focus on fine-grained parallelization. This was addressed in part in the previ-

ous section on GPUs; in the case of multiprocessing, as before, the fine gran-

ularity means that the parallelization strategies must be problem dependent,

rather than generic. Therefore, the focus will be on the more coarse-grained

variants. Among all the possible references, [Alb05; Tal09; Cra19] provide

broad surveys (including fine-grained approaches).

Three main alternatives present themselves for coarse-grained paralleliza-

tion of metaheuristics: Multiple Independent Runs, domain decomposition,

and population-level parallelization.

Multiple Independent Runs has already been mentioned as the baseline

parallelization strategy. Each processor runs one instance of the problem,

possibly with different hyperparameter configurations, and the best solution

overall is considered the final result.

Domain decomposition partitions the problem in some form, and each

processor runs the search algorithm within its own sub-domain. As with

2.2. PARALLEL METAHEURISTICS 45

Multiple Independent Runs, the best solution overall is the final result, but

unlike it, this approach allows a deeper search by concentrating the comput-

ing power of a processor on a restricted region instead of the whole problem.

The partitioning is usually based on the input space, the possible values

of the decision variables, but other dimensions can be applied depending

on the problem. If several classes of solutions are possible, each subdomain

could correspond to one class and optimize the parametrization of the class;

the parameters or variables for each class could be different in this case.

This reliance on the specifics of the problem limit the general applicability

of this strategy.

The third strategy, population-level parallelization is the most widespread.

It is also generic, like Multiple Independent Runs and unlike domain de-

composition. In this strategy, each processor runs one population for the

problem, possibly with different hyperparameters as in the case of Multi-

start; only the populations are not fully independent, instead there is some

exchange of information among them to guide the optimization process in a

different way.

There are several design levers that apply:

Communication structure and neighbourhood topology This speci-

fies which populations communicate with which others; populations

that are in contact with one another are considered neighbours:

All-to-all Every population is a neighbour of every other population.

Ring topology Population i neighbours populations i − 1 and i + 1

(wrapping around).

46 CHAPTER 2. STATE OF THE ART

Mesh topology Populations exist on a 2-dimensional mesh, and pop-

ulation (i, j) has four neighbours: (i, j ± 1) and (i ± 1, j). This

topology can be generalized to higher dimensions, but 2 is the

most usual number as it maps directly to the network topology

of some high performance computing clusters.

Hypercube topology There are 2k populations, and populations i

and j are neighbours when the binary representations of i and j

differ by exactly one bit.

Random topology The connectivity is determined randomly at each

communication step, and different methods can be used for the

determination, e.g. each population randomly selects one other

population to communicate with.

Information exchanged What is communicated between populations.

Solutions This is the most used option: each population communi-

cates one or several solutions, typically its global or local best.

Other information Other forms of transmitting information are pos-

sible, but algorithm-dependent. For instance, in Ant Colony Op-

timization pheromone matrix or pheromone update information

can be used instead of solutions.

Communication frequency When does the communication take place:

Every iteration Populations exchange information after each itera-

tion.

2.2. PARALLEL METAHEURISTICS 47

Every k iterations This can be synchronous, with all populations

exchanging information at the same time, or asynchronous, with
m
k

populations communicating on any given iteration, for m pop-

ulations.

Solution quality dependent A population sends out information only

under certain conditions, such as improvement in best solution or

after significant variation of the population.

Heterogeneous or homogeneous The populations can use the same or

different parameters; these include not only algorithm hyperparam-

eters, but also foundational building blocks such as selection strate-

gies for Genetic Algorithms or solution construction methods for Ant

Colony Optimization. An extreme form of heterogeneity is to run com-

pletely different algorithms on each population, as a form of hybridiza-

tion.

This type of parallelization strategy improves on the sequential approach

in the following aspects [JSV91]:

• The selection of individuals is local to the subpopulation, which requires

less computation compared to selecting from the whole population.

• Each subpopulation can progress asynchronously, reducing the syn-

chronization overhead.

• The algorithm is more robust, as performance of each processor is in-

dependent from the others.

48 CHAPTER 2. STATE OF THE ART

Genetic Algorithms

Population-level strategies are the most used ones in Genetic Algorithms,

from fully independent subpopulations to fully-connected topologies; although

the predominant topology uses a limited number of neighbours for each pop-

ulation in a mesh or mesh-like configuration: the Islands model proposed

in [PLG87].

The potential for acceleration was already shown in [MSB91], evaluating

an Islands model on different numbers of processors, and obtaining superlin-

ear speed-ups for some configurations, which suggest that there is an inherent

benefit in the exchange of information to more efficiently guide the search.

Additional variations and applications shown in [RPE99] corroborate the

trend.

While these keep the Islands model as the base parallelization strategy,

they explore the parameters of the populations: population sizes, selection

methods, crossover and mutation operators, etc. A later review in [Alb05]

shows the same prevalence of population-level (coarse-grained) strategies,

and the first generic frameworks for parallel algorithms like DREAM and

ParadisEO.

In general, the parallelization strategies for Genetic Algorithms closely

follow the generic ones described above, as they were mostly originally de-

vised for them and then generalized to other population-based metaheuris-

tics.

2.2. PARALLEL METAHEURISTICS 49

ACO

Parallelization strategies for ACOs can be classified in the following categories

[PNC11]:

Leader-follower4 A leader process keeps track of global information (pheromone

matrix, best solution so far, etc.) and offloads some operations on the

follower processes. Three sub-categories are distinguished by the gran-

ularity of the offloaded operations:

Coarse-grain leader-follower Interaction with the followers is based

on full solutions, with each follower running one or more ants and

returning the solutions to the leader.

Medium-grain leader-follower Each follower solves a subproblem,

derived through decomposition of the problem, and the leader

pieces the partial solutions together to construct a complete solu-

tion.

Fine-grain leader-follower The followers process minimum granu-

larity operations, such as component evaluation, requiring very

frequent communication.

Cellular model The colony is structured according to some neighbourhood

scheme, keeping several pheromone matrices updated by ants belonging

to each neighbourhood; neighbourhoods overlap so that high-quality

solution spread by diffusion.
4Historically called master-slave, including in the indicated references. Leader-follower

is one of several contenders to replace the term, as it has lately become controversial.
However, the original name has to be pointed out, since that is the form in which it is
found in the literature.

50 CHAPTER 2. STATE OF THE ART

Parallel independent runs The Multistart method discussed above.

Multicolony models Several colonies, each with its own pheromone ma-

trix, explore the search space, and periodically exchange information.

Hybrid models These models combine properties from several of the cat-

egories above.

Others propose similar classifications. For instance, [Sal09], analysing

parallel strategies for metaheuristics in general, not just Ant Colony Opti-

mization, reviews multiple parallel metaheuristics applied to cutting, pack-

ing, and related problems, finding two main classes: leader-follower, where

the leader manages the population and the followers perform operations on

the individuals or subpopulation assigned to them, such as fitness evalua-

tion; and structured population, a generalization of the use of independent

subpopulations with varying degrees of communication.

Likewise, [CT10] introduces a similar classification into three types, two

of which match the ones described above (parallelization of low level compu-

tation within an iteration, and multiple subpopulations with varying degrees

of granularity and communication); the third type involves partitioning the

solution space across the components of the solution variables, with each

processor working on a given subset, assuming all other components con-

stant. This usually involves multiple iterations for a suitable exploration of

the solution space, and is reminiscent of coevolution methods.

Although different authors slice and dice the categories slightly differently,

the main concepts are the same, and it is easy to find the correspondences in

the different taxonomies. The Multicolony models most closely correspond to

2.2. PARALLEL METAHEURISTICS 51

the multiple populations, though some forms of coarse-grain leader-follower

can also be used (the main difference being that multiple processors compute

for a single colony, which can be inefficient for distributed processors, but not

necessarily so for multiple cores in a same CPU).

Another specificity of Ant Colony Optimization is how to integrate the

new information. Equivalently to the migration of individuals, a solution (as

built by an ant) can be exchanged, then the pheromone update may apply

or not (e.g. for elitist strategies the new solution will deposit pheromone

only if it improves on the incumbent best solution). The use of solutions

in this way is specially straightforward in population-based ACOs. Alter-

natively, pheromone information can be exchanged directly, which has no

direct analogy in GAs and other metaheuristics.

Pheromone exchange can happen by communicating the whole or part of

the pheromone matrix, which then must be integrated with the existing one in

a way consistent with the interpretation of the pheromone for the problem at

hand. It can also happen by communicating the pheromone update triggered

by the solution(s), which can then be directly applied in the receiving colony.

2.2.3 Evaluation of Parallel Metaheuristics

For the evaluation and comparison of parallel metaheuristics, [AL06] analyses

meaningful metrics and common pitfalls. The following are specially relevant

to the present analyses:

• The use of wall time when comparing the time performance of algo-

rithms, as this includes all the overheads and other effects of the ap-

52 CHAPTER 2. STATE OF THE ART

proaches being compared, and best reflects the overall running time.

This is opposed to process time or predefined effort (number of evalu-

ations).

• Ensuring that the algorithms are comparable, both from a design and

implementation point of view, and from a solution quality perspective.

The predefined effort is used for this purpose when comparing solution

quality.

• Since metaheuristics are stochastic, a single value or a summary ag-

gregation such as the mean value is not enough for fair comparison.

Instead, the probability distributions must be compared, checking for

statistical significance in the difference. Typically a combination of

normality test and Student t-test or ANOVA is used, or some non-

parametric test is applied if normality cannot be ascertained.

The metrics used for evaluation are also important to afford meaningful

and relevant results. This work focuses on three metrics:

Wall time to run the algorithm until exhausting a predefined number of

function evaluations.

Solution quality the best objective function value achieved within a pre-

defined number of function evaluations. This is a standard metric in

the field.

Hypervolume as described in [PLS14], as a metric of anytime performance.

The hypervolume metric provides a more nuanced view of the trade-off

between running time and solution quality. This is related to how fast the

2.2. PARALLEL METAHEURISTICS 53

algorithm reaches better quality solutions, as more demanding running time

constraints might require ending the algorithm early, and we would want

the solution at that stage to be as good as possible. This is measured as the

(properly normalized) area under the curve of time (iteration) versus solution

quality (assuming minimization), and it’s better the smaller it is5.

The term hypervolume for this metric comes from the interpretation of

this curve as the Pareto front of the bi-objective optimization that minimizes

the objective function and the running time. Considered in this way, it is

evident that the best solution so far each iteration are the non-dominated

solutions.

5The original definition of hypervolume actually uses a reference point x0, and con-
siders the space between the hyperplanes x(i) = x

(i)
0 and the Pareto front. With this

definition, and the typical choice of a nadir-like reference point, hypervolume improves as
it increases. For the specific case in this work, this alternative definition corresponds to
choosing the origin (0, 0) as the reference point, which will result in negative hypervolume
as both the number of iterations and the cost functions are always non-negative. Increas-
ing hypervolume under those conditions is equivalent to decreasing absolute value of the
hypervolume, which in turn is equivalent to the area below the curve.

54 CHAPTER 2. STATE OF THE ART

Chapter 3

Methods

Contents
3.1 Introduction . 57

3.2 Objective . 60

3.3 The Multiverse Method 62

3.4 Set-up and Methodology 67

3.5 Algorithm Configuration 70

3.5.1 Genetic Algorithm 70

3.5.2 Ant Colony Optimization 71

55

56 CHAPTER 3. METHODS

3.1. INTRODUCTION 57

3.1 Introduction

Parallelization and distribution have become the main way of achieving per-

formance and scalability of algorithms, following the recent dynamics of com-

puting power increase. Where the evolution used to consist of higher speeds,

now it comes in the form of additional cores or processors. Programs no

longer run faster just by updating the hardware; instead, the operations

must be parallelized to exploit the new advances. This can be attained in

diverse ways and in different layers of the design, as described in chapter 2.

The choice of the parallelization method depends on the available hard-

ware and the details of the problem, and also the chosen algorithm.

If GPU is an option, computationally intensive evaluation of the fitness

function or constraints can be parallelized if the functions have the right

properties; large-scale vectorized or matrix operations are the textbook ex-

ample. For simpler functions, multiple solutions can be evaluated in parallel,

whether it is a population in a population-based method, or the current

neighbourhood in single-solution methods. It may be even possible to com-

bine both to extract as much performance as possible from the GPU and

compensate for the overhead of memory management.

If the functions are not suitable for the GPU (large data structures that

don’t fit nicely in the right memory sections, deep branching, or different

operations depending on the individual) or the GPU just isn’t an option, a

similar approach can be taken by using multithreading in multi-core proces-

sors. The number of concurrent execution threads is much smaller, but with

more flexibility in terms of memory and execution flow.

58 CHAPTER 3. METHODS

For smaller problems, this parallelization approach can also be applied at

a more coarse-grain level: start multiple instances or populations.

Although it is possible to extend this when moving into multiprocessing,

the network latencies introduce a new trade-off that makes frequent and/or

verbose communication less desirable. Therefore, in this conditions more

independent processes are preferred; they may be fully isolated, but some

level of communication is possible without too much of an impact, and in

fact the diversity induced by information exchange tends to enable improved

solutions over fully independent approaches.

Some algorithms are specifically designed for the parallelized scenario,

and may be applicable for a given problem; however, this needs to be assessed

each time.

This reasoning focuses on the ability to accelerate the computation by

taking advantage of the available hardware to the greatest extent possible.

Some additional considerations apply in practice.

One of those is the ability to apply these methods. Concurrent algorithms

in general are harder than sequential ones and require additional knowledge.

GPUs are specially relevant in this respect, as even with the latest advances

they require very low level development, with careful management of memory,

communication, and execution flow. Even if in the right circumstances they

can provide speed-ups of several orders of magnitude, those circumstances

are severely limited and the programming expertise is not usually widely

available within the metaheuristics community.

Multithreading is the least difficult to apply. While the usual caveats re-

lated to concurrency must be considered (race conditions, consistency, etc.),

3.1. INTRODUCTION 59

the memory model and the fact that communication is effectively instanta-

neous provide some advantages. On the flip side, this is the least scalable

option, as the number of simultaneous threads of execution in a single pro-

cessor is limited to a few tens1 (at the moment).

Multiprocessing is very similar to multithreading conceptually, but some

additional practical concerns arise. By not sharing the memory space, the

communication methods and thus the parallelization primitives are different.

Also, the data must be copied and moved, incurring network latency, which

must be accounted for when considering the usefulness of the additional

development effort.

Multithreading and multiprocessing need not be so different, especially

if one takes into account that the multiprocessing methods are perfectly

viable within a single processor, if incurring some penalties due to the need

to maintain and communicate multiple copies of the data. Conversely, by

enforcing the communication approach and not sharing the memory space,

they remove a whole class of potential bugs.

Both newer and older libraries used for multiprocessing allow for decou-

pling of the hardware architecture: the algorithm is developed using the

communication primitives, and then the parallelization framework can be

deployed locally or across a network.

In order to evaluate the improvement brought about by a new parallel

algorithm, two components need to be differentiated:

1This discussion assumes a standard computing architecture. A memristor-based in-
memory computing platform, for instance, can change the dynamics, but those are still
experimental and would require a redesign of the algorithms to exploit the new architec-
ture.

60 CHAPTER 3. METHODS

1. the contribution of parallelization, and

2. the contribution of the novelty of the algorithm itself.

Since most parallel algorithms tend to be problem-specific, it is not known a

priori whether any potential gain comes just from the additional computation

budget or from new features. This is usually addressed by using Multiple

Independent Runs as a baseline for the performance of the algorithm.

Multiple independent runs is the most basic parallelization strategy for

metaheuristics. It consists of running several independent instances, and

keeping the best one. If we assume that the main constraint is wall time,

this multiplies the computation budget according to the number of concurrent

instances, and is equivalent to a (sequential) Multistart, applicable to most

metaheuristics, whether single-solution or population-based.

Even if it can be simulated sequentially, normally the Multiple Indepen-

dent Runs algorithm will be implemented in parallel as a first step, after all it

will be the baseline for the comparison of a distributed algorithm, so the par-

allelization framework will be deployed anyway; the parallel implementation

also allows to directly compare wall times.

3.2 Objective

Looking at the spectrum of parallel metaheuristics from the point of view of

the trade-off of efficiency, both in terms of acceleration and solution quality,

and algorithm complexity, both from the conceptual and practical perspec-

tives, Multiple Independent Runs lies at one end, that of the simplest imple-

3.2. OBJECTIVE 61

mentation. Other methods span the efficient frontier from general methods,

like the Islands model in Genetic Algorithms or Multicolony Ant Colony

Optimization, that add limited complexity for some additional gains in ef-

ficiency to customized, problem-specific approaches that require more work

but allow tackling extreme problems.

While attacking the further end of the spectrum is an attractive prospect,

and indeed an active field of current research, doing so means abandoning

the generality of algorithm improvement and delving into customization and

adaptation to specific problems.

There remains, however, a gap between the Multiple Independent Runs

approach and full-fledged distributed algorithms that may be exploited for

general gains across whole families of algorithms. In particular, the best pos-

sible outcome in this area is to improve the efficiency of the algorithms while

keeping the complexity constant. Looking at the trade-off as a Pareto front

of efficient solutions, this would mean finding an approach that dominates

Multiple Independent Runs, and therefore takes its place in the Pareto front.

At the very least, if the incurred added complexity is negligible, the new

method will be part of the efficient frontier, and an interesting option as a

baseline.

This thesis posits that the Multiverse method fits into that gap. Like

Multiple Independent Runs, it can be considered a meta-algorithm that ap-

plies to other algorithms to create parallel versions. As such, it is applicable

to all population-based metaheuristics. This is a narrower scope than that of

Multiple Independent Runs, but is still a very broad range of algorithms. If

it can substitute Multiple Independent Runs as the baseline for population-

62 CHAPTER 3. METHODS

based individuals, it will claim a large swath of applications.

On the complexity side, Multiverse adds a single, one-directional com-

munication step that is hardly noticeable. In the implementation used for

the tests in this work, it amounts to three extra lines of code. Once the

parallelization framework is set up, this is negligible. And, like Multiple

Independent Runs, it is trivial to emulate in sequential programming by

running the collector last in each iteration.

Only the effects on running time and solution quality remain to be tested.

If the method can be proven to improve on these, the conditions described

above are met.

3.3 The Multiverse Method

The Multiverse method aims to provide the same generality and ease of use

and implementation that Multiple Independent Runs does, while improving

solution quality without affecting running time, potentially becoming the

new baseline for multiprocessing parallelization of population-based meta-

heuristics.

In order to attain this level of generality, it cannot rely on particulars of

the algorithm it is applied to or the specific problem that is being solved.

This makes it a meta-algorithm, an algorithm that takes one algorithm as

input and returns a modified algorithm.

It also means that it is orthogonal to other parallelization, acceleration,

or improvement approaches. For instance, it is trivial to combine Multiverse

at the node level in a cluster with intra-node acceleration using GPUs for

3.3. THE MULTIVERSE METHOD 63

e.g. solution evaluation. The Multiverse method falls in the population-

level parallelization class, corresponding to an Islands model for GAs and a

Multicolony model for ACO; however, the neighbourhood structure, rather

than following a ring, hypercube, or mesh configuration as usual, adopts a

star-like structure that mirrors the connectivity of a cluster of workstations.

The more usual patterns derive from the hardware configuration of high

performance computing clusters.

Although the Multiverse method is compatible with other approaches

such as local acceleration, different hyperparameter settings —or even dif-

ferent algorithms— for each population, etc., its greatest advantage is its

ability to generate an effective parallel version of an algorithm without com-

plex algorithm design and implementation.

The choice of exchanging information in the form of solutions (individu-

als) stems from this need of generality. All population-based methods have

the concept of individuals and mechanisms to integrate them in the solution

procedures, while other representations would be algorithm-dependent, or

even problem-dependent. As long as all populations use the same algorithm,

this communication should result transparent to the local algorithms; if mul-

tiple algorithms are mixed, some transformations may be needed: different

algorithms may benefit from different representations that better fit the op-

erations performed. This transformations can however be performed at the

time of injection of the migrant solutions, without a significant impact. Since

this work focuses on the baseline use of the method, the variant using the

same algorithm throughout is assumed without loss of generality (except if

the transformations are computationally intensive).

64 CHAPTER 3. METHODS

See the discussion above and [Cra19; Alb05; JSV91; PNC11; Kaw+00;

MRS02; JMM05] for in-depth surveys of existing models.

As a note on implementation, the chosen communication framework,

MPI, is one of the most (if not the most) usual ones in the literature (cf.

the references in 2.2.2 and the previous paragraph). At the time of develop-

ment it also provided the needed features with the minimum fuss for imple-

mentation, and it was (and still is) widely available in distributed computing

facilities. However, in the intervening time and with the developments follow-

ing the increased importance of distributed computation new and improved

frameworks have appeared.

One cannot fail to mention Hadoop and Spark, the de facto standard Big

Data platform. While it could be possible to implement these methods on

top of such a platform, the underlying map-reduce structure constrains the

development and goes against the simplicity and generality principles that

are the main objectives.

Generic DAG-based2 parallelization libraries offer a more modern ap-

proach without sacrificing flexibility. If developed today, considering the use

of Python as a programming language, the main candidates would be Dask3,

probably the most widespread such library in Python, and PyCOMPSs [Tej+17],

developed by the Barcelona Supercomputing Centre following the same phi-

losophy as a wrapper around their COMPSs library4 for high performance

2DAG: Directed Acyclic Graph; it refers to the graph of operations defined by the code,
and the constraint that it should be directed and not contain cycles to allow for efficient
execution scheduling methods.

3https://dask.org/
4https://www.bsc.es/research-and-development/software-and-apps/

software-list/comp-superscalar

https://dask.org/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar

3.3. THE MULTIVERSE METHOD 65

Listing 3.1: Pseudocode for population-based metaheuristics
1 Populat ion ← I n i t i a l P o p u l a t i o n
2 While not EndCondition :
3 Cont r ibuto r s ← S e l e c t (Populat ion)
4 NewIndiv idua l s ← Proce s s (Cont r ibuto r s)
5 Populat ion ← Trim (Populat ion ∪ NewIndiv idua l s)
6 Return Best (Populat ion)

computing. Both are free open source projects that, had they been available

at the time, would have simplified both the implementation of the algorithm

and the overall set-up.

The proposed Multiverse method extends population-based metaheuris-

tics in general. Population-based metaheuristics follow the common proce-

dure described in listing 3.1, repeating the loop until a certain condition is

met: a number of iterations, a given fitness level, some number of generations

without improvement, etc.

Different algorithms define alternative strategies for each of the steps in

the procedure, and may in implementation blur the distinctions between

them.

Genetic algorithms and Ant Colony Optimization are examples of the

specialization of the general procedure. In Genetic Algorithms the selection

is e.g. through a tournament or round-robin, and the generation of the new

population, the Process function, uses the crossover and mutation opera-

tors; while in ACO the generation of new individuals occurs when the ants

build their solutions using pheromone information (which is the way that the

‘population’ is carried over from one generation to the next) and the selection

corresponds to determining which individuals will deposit pheromone.

66 CHAPTER 3. METHODS

Listing 3.2: Pseudocode for Multiverse metaheuristics
1 Populat ion ← I n i t i a l P o p u l a t i o n
2 While not EndCondition :
3 Cont r ibuto r s ← S e l e c t (Populat ion)
4 NewIndiv idua l s ← Proce s s (Cont r ibuto r s)
5 Populat ion ← Trim (Populat ion ∪ NewIndiv idua l s)
6 I f not C o l l e c t o r :
7 Send (B e s t I n d i v i d u a l)
8 I f C o l l e c t o r :
9 Populat ion ← Populat ion ∪ R e c e i v e d I n d i v i d u a l s

10 Return Best (Populat ion)

They can be considered the archetypes for two broad classes of population-

based metaheuristics: those which build solutions atomically from previous

individuals (like GAs) and those that construct new solutions by combining

elements or components of previous solutions one at a time (like ACOs). As

such archetypes, they are the obvious choice to test the generality of the

Multiverse method.

The Multiverse method injects a new step just before closing the loop. In

this step, every instance of the metaheuristic sends its current best solution

to the controlling node, and it relays them to the collector instance, which

adds them to its own population. Due to the very design of this type of

metaheuristics, everything else just needs to go on as usual, giving the new

procedure in listing 3.2.

The meta-algorithm cannot be tested directly. Instead, the evaluation

must be performed on algorithms derived using it. Two are Multiverse vari-

ations of GA and ACO applied to the Asymmetric Travelling Salesperson

Problem are developed to validate that the method brings about improve-

3.4. SET-UP AND METHODOLOGY 67

ments. These are reviewed in chapter 4.

Finally, to evaluate performance on the practical, real-world problem that

is the main target of this work, the third implementation is a Multiverse

variant of the Ant Colony Optimization method applied to the scheduling of

a galvanizing line. The results are reviewed in chapter 5.

As the aim of this thesis is to assess the improvements brought by the

Multiverse approach, the base algorithms are far from state-of-the-art. In-

stead, the focus is placed on creating a level playing field for both versions,

with as little influence from external factors as possible. For this reason, the

GA relies on relatively simple crossover and mutation operators among those

available in the literature and the ACO uses the standard parametrization,

and neither of them performs a local search step. Similarly, there is no com-

parison between the results and the best known solutions in the literature;

doing this would require a much greater development effort in the design and

programming of the algorithms, but is irrelevant to the objective.

3.4 Set-up and Methodology

The hardware set-up for the tests described below consisted of a cluster of

18 virtual machines with 512 MB of RAM memory running Arch Linux on

top of an Intel Xeon E5-2695 at 2.40 GHz.

The logs containing all the information needed for the analysis are pro-

vided as supplementary material to this thesis. The program for the tests

was written in Python, using MPI for communication across nodes, and is

available in GitHub at the URL https://github.com/valthalion/endof.

https://github.com/valthalion/endof

68 CHAPTER 3. METHODS

The repository also includes the code used to process the results and auto-

matically generate the tables and charts used in the thesis.

The overall procedure starts from the 18 instances of Asymmetric Trav-

elling Salesperson Problem in the benchmark collection TSPLIB. For each of

them, four sets of runs are executed: GA Multistart, GA Multiverse, ACO

Multistart, and ACO Multiverse. Each set consists of 25 runs with random

seeds. Each run logs to a text file the running time, random seed, final so-

lution, and best solution at each iteration. The logs may be recreated by

re-running the experiments using the recorded seeds.

The logs are parsed and loaded into a MySQL database for easier ma-

nipulation. The repository contains the Python script for populating the

database, as well as the SQL code to generate the database schema.

Another script processes the database to generate the aggregated values

reported in the tables throughout this work, including generating LATEX code

for some of them, the statistical tests comparing corresponding Multistart

and Multiverse instances, and the charts summarizing the results: boxplots

of best solution and hypervolume, and the graphs of evolution of the objective

function with the iterations.

The scheduling problem follows the same procedure, using a Multistart

and a Multiverse version of the model described in [Fer+14] and 46 scheduling

problem samples taken from historical data of the galvanizing line. The code

and benchmark files cannot be made available due to confidentiality reasons,

but the resulting log files are provided along with the results.

For each Multiverse-Multistart pair, the following comparisons are per-

formed:

3.4. SET-UP AND METHODOLOGY 69

• Average difference in running time

• Average and minimum values of the best solution found

• Average and minimum values of the hypervolume

• Statistical test for significance of the difference in the average solution

value

• Statistical test for significance of the difference in the average hyper-

volume

Following the concerns on metrics discussed in chapter 2, these metrics

and the procedure for applying them were defined before running the tests,

and there is no selection of the instances used: the whole set from TSPLIB

is used for the TSP problem, and all available instances of the scheduling

problem at the time were included in the scheduling part. In fact, the analysis

code was written before running the tests. The only changes made after the

fact remove one or two of the simplest instances in the TSP problem from

some of the analysis because of numerical problems; these are discussed in

chapter 4 while reviewing the results.

All comparisons are performed at the probability distribution level. Al-

though aggregated values, such as average and minimum, are used to show-

case the results and charts of individual runs are shown to discus the evo-

lution of the algorithms, boxplot charts are also included for comparison of

the corresponding probability distributions, and conclusions are supported

by statistical significance tests.

70 CHAPTER 3. METHODS

The selected test is Mann Whitney U. There is no reason to expect the

distributions to be normal (and looking at the boxplots in chapter 5 they

clearly are not), so a non-parametric test is preferable. The directed Mann

Whitney U test is such a non-parametric test geared towards establishing

statistical significance of the difference in the means of two empirical distri-

butions, which perfectly matches the needs of this assessment.

The choice of stopping criterion is, accordingly, a predefined effort. Ad-

ditionally, by evaluating anytime performance the potential bias introduced

by the selection of the effort level is mitigated.

3.5 Algorithm Configuration

The algorithms use standard parameters, except for the termination condi-

tion which was set to a number of iterations equal to 10 times the number

of cities, a usual heuristic for the Travelling Salesperson Problem.

3.5.1 Genetic Algorithm

The configuration for GA is:

• A population of 50 solutions is used

• No elitism

• 50% and 5% crossover and mutation probabilities, respectively

• The crossover operator is the permutation interpretation of 2X

• The mutation operator randomly exchanges two cities in the loop

3.5. ALGORITHM CONFIGURATION 71

3.5.2 Ant Colony Optimization

The configuration for ACO is:

• Evaporation is ρ = 0.95

• Three ants deposit pheromones out of 50 ants per iteration

• A single elitist solution is kept

• α = β = 1 for the TSP and α = 1, β = 2 for the scheduling problem.

In both cases, all the choices correspond to standard recommendation for

default parameters, global to the algorithm in general and TSP-specific in

the case of the operators, to avoid having to tune the parallel algorithms

individually.

72 CHAPTER 3. METHODS

Chapter 4

Validation on TSP

Contents
4.1 Problem Description 75

4.2 Procedure . 76

4.3 Results . 81

Figures
4.1 Boxplot of best cost achieved across the 25 runs for each

instance problem using Multistart and Multiverse Genetic

Algorithm. 87

4.2 Boxplot of best cost achieved across the 25 runs for each

instance problem using Multistart and Multiverse Ant

Colony Optimization. 87

4.3 Boxplot of hypervolume across the 25 runs for each in-

stance problem using Multistart and Multiverse Genetic

Algorithm methods. 88

73

74 CHAPTER 4. VALIDATION ON TSP

4.4 Boxplot of hypervolume across the 25 runs for each in-

stance problem using Multistart and Multiverse Ant Colony

Optimization methods. 89

4.5 Typical evolution of best Genetic Algorithm solution ver-

sus iteration for Multistart and Multiverse. 90

4.6 Typical evolution of best Ant Colony Optimization solu-

tion versus iteration for Multistart and Multiverse. 90

4.1. PROBLEM DESCRIPTION 75

4.1 Problem Description

The Travelling Salesperson Problem (TSP)1 is a classical, well-studied, NP-

Complete combinatorial optimization problem that is frequently used to

benchmark optimization algorithms, introduced in [GP78]. In its basic form,

it consists on finding an optimal (i.e. shortest length) tour of a given number

of cities, passing each exactly once.

In time, several variations were developed requiring an open or closed

loop, introducing asymmetric distances (going from city i to city j is a dif-

ferent distance than going from city j to city i), time windows, etc.

More formally, the TSP corresponds to finding a minimum-weight Hamil-

tonian path in a fully-connected weighted graph where the nodes represent

cities and the edges’ weights represent the distances. The search space there-

fore is the set of permutations of cities, leading to an O(n!) complexity in the

number of cities. This clearly prevents any brute-force enumeration approach

for any but the smallest instances.

Multiple approaches have been proposed, mainly heuristics, such as k-opt,

metaheuristics, and, more recently, spectral methods. The problem remains

open as there is no single method that consistently outperforms the others.

TSPLIB is a repository of TSP instances and additional information such

as upper and lower solution bounds encompassing a wide range of problem

sizes and difficulties [Rei91]. This work uses the set of Asymmetric TSP

(ATSP) instances to evaluate the algorithms.

1Originally named Travelling Salesman Problem, it has shifted towards the new name
in the last years.

76 CHAPTER 4. VALIDATION ON TSP

4.2 Procedure

Listing 4.1 shows, in pseudocode, the operation of the Multiverse Genetic

Algorithm for TSP. The condition Collector is true for the collector node

in Multiverse mode; therefore, the code for Multistart is exactly the same,

except for the two lines under this condition, as it never happens. This

pseudocode corresponds to the nodes that run the GA instances; there is an

additional node, the controller, that launches the execution of the instances,

keeps the synchronization between them, tracks and consolidates the best

solutions, and in the Multiverse case communicates the best solutions of the

other instances to the collector.

Lines 1–6 initialize the population with random tours and calculate the

costs associated to them, informing the controller. Inside the loop, lines

8–14 generate the new population by including directly the elite individu-

als, selecting the ones that will act as parents, and applying the crossover

and mutation operators on them. Lines 15–17 add the solutions from other

instances in the collector. Finally, lines 18–23 trim the solutions down to

the population size discarding the ones with worse fitness, update the best

solution if needed, and send the current best solution to the controller.

The SelectParents function selects a fraction of individuals from the

population; this fraction is given by the crossover probability parameter. The

selection is random, but the probability for each individual to be selected

is inversely proportional to its cost. It deterministically includes the best

individual as an elitist strategy. The crossover operator is a variation of

order crossover: it randomly selects a subtour of one parent and places it

4.2. PROCEDURE 77

Listing 4.1: Pseudocode for Multiverse and Multistart Genetic Algorithm for
TSP

1 Populat ion = EmptyList
2 f o r i = 1 to PopSize :
3 Populat ion ← RadomPermutation (C i t i e s)
4 Costs = Eva lua t eSo lu t i on s (Populat ion)
5 BestSol , BestCost = min (Populat ion , Costs)
6 SendToContro l l e r (BestSol , BestCost)
7 wh i l e not Terminat ionCondit ion :
8 Parents = S e l e c t P a r e n t s (Populat ion , Costs)
9 O f f s p r i n g = EmptyList

10 O f f s p r i n g ← ApplyCrossover (Parents)
11 O f f s p r i n g ← ApplyMutation (Parents)
12 NewPopulation = EmptyList
13 NewPopulation ← E l i t e S o l u t i o n s (Populat ion , Costs)
14 NewPopulation ← O f f s p r i n g
15 i f C o l l e c t o r :
16 Rece iveFromContro l l e r (MoreSo lut ions)
17 NewPopulation ← MoreSo lut ions
18 Populat ion = CutToPopSize (NewPopulation , Costs)
19 Costs = Eva lua t eSo lu t i on s (Populat ion)
20 B e s t S o l I t e r , Be s tCo s t I t e r = min (Populat ion , Costs)
21 i f Be s tCo s t I t e r < BestCost :
22 BestSol , BestCost = B e s t S o l I t e r , Be s tCo s t I t e r
23 SendToContro l l e r (BestSol , BestCost)

78 CHAPTER 4. VALIDATION ON TSP

in the same position in the offspring; the rest of the tour is filled up with

the remaining cities in the order that they appear in the other parent. The

ApplyCrossover function repeatedly draws two individuals from the parents

group and generates two offspring with them (inverting which is used as first

parent). The selection at this stage is again biased by the inverse of the

cost, so that better solutions are selected more often. The mutation operator

switches the position of two randomly selected cities. The ApplyMutation

function goes through all the individuals selected as parents and applies

the mutation operator with probability given by the mutation probability

parameter. Each time it does apply it, it adds a new individual to the

population. EliteSolutions includes the best individuals from the original

population in the new one; the number of individuals to transfer in this way

is given by the elitism parameter.

Listing 4.2 shows the pseudocode for the Multiverse ACO for solving a

TSP, which closely mirrors the procedure outlined above for GA. The code

is the same for the Multistart version, as the only difference is the two lines

under the condition Collector, which is true only for the collector process in

the Multiverse version. As in the case for GA, this pseudocode corresponds

to the nodes that run the ACO instances and there is an additional controller

node.

Lines 1–3 initialize the algorithm by setting the initial pheromone value

and creating the heuristic matrix from the distances between nodes. The

main loop, lines 4–20, runs until the stopping criterion is met; each pass of

the loop is one iteration in the algorithm, where it generates a new solution

for each ant (lines 5–10; the evaluation of solutions is actually performed

4.2. PROCEDURE 79

Listing 4.2: Pseudocode for Multiverse and Multistart Ant Colony Optimiza-
tion for TSP

1 PheromMatrix ← I n i t i a l V a l u e
2 HeurMatrix ← DistanceMatr ix
3 Populat ion = EmptyPopulation
4 wh i l e not Terminat ionCondit ion :
5 f o r i = 1 to NumAnts :
6 S o l u t i on ← EmptySolution
7 wh i l e C i t i e s L e f t :
8 So l u t i on ← GetNext (C i t i e s L e f t , PheromMatrix , HeurMatrix)
9 Populat ion ← So l u t i on

10 Costs = Eva lua t eSo lu t i on s (Populat ion)
11 B e s t S o l I t e r , Be s tCo s t I t e r = min (Populat ion , Costs)
12 i f Be s tCo s t I t e r < BestCost :
13 BestSol , BestCost = B e s t S o l I t e r , Be s tCo s t I t e r
14 PheromMatrix ← Evaporate (PheromMatrix)
15 PheromMatrix ← PheromUpdate (BestSol , BestCost)
16 SendToContro l l e r (BestSol , BestCost)
17 Populat ion = EmptyPopulation
18 i f C o l l e c t o r :
19 Rece iveFromContro l l e r (MoreSo lut ions)
20 Populat ion ← MoreSo lut ions

80 CHAPTER 4. VALIDATION ON TSP

at the time of construction), updates the current best solution if needed

(lines 11–13), updates the pheromone matrix (lines 14–15), and resets the

population (line 17). Lines 16, 19 and 20 manage communication with the

control node.

In each iteration, each of the NumAnts ants builds a tour by iteratively

selecting the next city to go to. The function GetNext does this selection by

assigning a probability to choose each of the cities not yet visited calculated

as:

Pr(c, c′) =
ταcc′η

β
cc′∑

k∈C ταckη
β
ck

, (4.1)

where c is the current city in the tour, c′ is the candidate city for the next

step, C is the set of all potential candidate cities for the next step, including

c′; τij is the pheromone level associated to including going from city i to city

j in the tour; ηij is the heuristic associated to including going from city i to

city j in the tour, namely the inverse of the distance from i to j; and α and

β are algorithm parameters.

The update of the pheromone matrix consists of the evaporation step,

calculated as τij = ρτij, with the non-negative evaporation parameter ρ < 1,

and the pheromone addition by the best ant along the tour it built, T :

τij = τij +
1∑

i,j∈T dij
∀i, j ∈ T, (4.2)

where dij is the distance from i to j.

4.3. RESULTS 81

4.3 Results

The following analysis takes all 18 Asymmetric Travelling Salesperson Prob-

lem instances in the TSPLIB benchmark library, and runs both the Multi-

verse and Multistart variants of each GA and ACO on them. Due to the

probabilistic nature of the algorithms, it repeats each run 25 times, tracking

running time and the best solution found at each iteration. It also records

the random seed generated in each run so that the exact same results can be

reproduced.

Tables 4.1 and 4.2 show the outcome of the analysis for the Genetic

Algorithm and the Ant Colony Optimization, respectively. The fields are:

Instance The file containing the problem data.

∆Avg The percent difference between the average across repetitions of final

solution fitness for Multistart and Multiverse.

∆Min The percent difference between the best solution fitness across repeti-

tions for Multistart and Multiverse.

RTime The percent difference between the averages across repetitions of CPU

time elapsed for Multistart and Multiverse.

WTime The percent difference between the averages across repetitions of wall

time elapsed for Multistart and Multiverse.

∆HV The percent difference between the averages across repetitions of the

hypervolume Multistart and Multiverse.

82 CHAPTER 4. VALIDATION ON TSP

Table 4.1: Results from running Multistart and Multiverse Genetic Algo-
rithm on TSPLIB instances.

Instance ∆ Avg ∆ Min RTime WTime ∆ HV
ftv33.atsp −4.66 −2.94 −12.3 −10.1 −3.75
rbg403.atsp −0.67 −0.844 +4.48 −5.54 −0.628
p43.atsp −0.173 −0.283 −10.9 −9.15 −0.207
rbg443.atsp −0.668 −0.184 +6.3 +6.19 −0.638
ftv47.atsp −1.49 +3.34 −10.7 −9.27 −1.95
ft70.atsp −0.723 −0.143 −7.69 −7.06 −1.16
br17.atsp −0.102 +0.0 −12.1 −8.51 −0.292
ftv170.atsp −0.563 −0.304 −3.96 −3.79 −0.593
rbg358.atsp −1.42 −1.51 +3.27 +3.27 −0.934
ftv44.atsp −0.988 +0.274 −9.76 −8.28 −1.57
ftv55.atsp −0.497 −4.71 −9.11 −8.04 −2.25
ftv38.atsp −3.88 −5.44 −10.9 −9.15 −3.12
ftv35.atsp −3.67 −3.54 −11.0 −8.68 −3.28
kro124p.atsp −1.01 −1.78 −5.91 −5.68 −0.969
ftv64.atsp −0.672 −2.53 −8.17 −7.48 −1.8
ftv70.atsp −0.399 −3.82 −8.35 −7.67 −0.11
ft53.atsp −0.733 −1.43 −10.3 −9.08 −1.69
ry48p.atsp −2.87 −5.96 −10.1 −8.81 −2.82
rbg323.atsp −1.02 −0.808 +3.14 +3.13 −0.671

4.3. RESULTS 83

Table 4.2: Results from running Multistart and Multiverse Ant Colony op-
timization on TSPLIB instances.

Instance ∆ Avg ∆ Min RTime WTime ∆ HV
ftv33.atsp +0.0 +0.0 −14.3 −5.92 −0.66
rbg403.atsp −0.0565 −0.121 +1.48 +1.46 −0.237
p43.atsp −0.037 −0.0178 −0.572 −0.252 −0.00103
rbg443.atsp −0.109 −0.183 −0.995 −0.954 −0.3
ftv47.atsp −0.156 +0.0 −0.649 −0.345 −0.119
ft70.atsp −0.211 −0.234 −2.48 −1.92 −0.0868
br17.atsp +0.0 +0.0 −1.42 −0.157 +0.00483
ftv170.atsp −0.932 −0.525 −2.71 −2.67 −0.394
rbg358.atsp −0.0201 −0.252 +0.596 +0.661 −0.309
ftv44.atsp −0.052 +0.0 −1.11 −0.564 −0.282
ftv55.atsp −0.354 +0.0 −1.88 −1.2 −0.447
ftv38.atsp −0.0366 +0.0 −0.558 −0.225 −0.0138
ftv35.atsp −0.0895 +0.0 −11.3 −4.89 −0.383
kro124p.atsp −0.373 −0.966 −2.0 −1.84 −0.244
ftv64.atsp −0.11 +0.0 −1.14 −0.821 −0.611
ftv70.atsp −0.364 −0.102 −4.9 −3.97 −0.367
ft53.atsp −0.642 −0.882 +1.8 +1.13 −0.0366
ry48p.atsp −0.255 −0.504 −5.56 −6.84 −0.306
rbg323.atsp +0.0237 −0.0742 −3.21 −3.24 −0.125

84 CHAPTER 4. VALIDATION ON TSP

All differences are calculated as the value for Multiverse minus value for

Multistart; since all the measured items are better the lower they become,

this makes negative values favourable to Multiverse. The base for the per-

centage is the value for Multistart for the instance.

Hypervolume is a measure used to compare solutions to multi-objective

problems. In such problems, the outcome is given as a Pareto front of non-

dominated solutions, that is, solutions such that there is no other solution

that improves on one of the objectives without getting worse on another

objective. These solutions are also known as efficient solutions. Pérez Cáceres

et al. [PLS14] apply the hypervolume measure to assess anytime performance

of ACO algorithms, by considering the evolution of best solution found so far

at each iteration as a bi-objective problem which aims at minimizing both

the cost and the time to reach a given solution quality. This work includes

the hypervolume in the same way as a measure of anytime performance.

Tables 4.1 and 4.2 show that the final solution quality is better in av-

erage using Multiverse, and that the best solution across runs for most of

the instances also is attained by Multiverse. Elapsed times (CPU time and

wall time) alternate between positive and negative, which is consistent with

negligible overhead of Multiverse with respect to Multistart, as the random

effect of synchronization is dominant; otherwise the time differences should

be more consistently positive if the additional communication had a signifi-

cant impact. Finally, hypervolume is in average also consistently better for

Multiverse.

Instance br17 is rather small (17 cities) and always yielded the globally

optimal solution except in one run of Multistart. The analyses below do

4.3. RESULTS 85

not include this instance, as it behaves as an outlier, posing problems for

normalization and application of statistical tests. At this size, there is no

practical difference between the two methods, but also little incentive for

parallelization. For the ACO, instance ftv33 was also problematic for the

same reason in the analysis of solution quality, but had enough variability to

be included in the analysis of hypervolume.

Figure 4.1 shows a boxplot of the best costs achieved in the 25 runs of

each instance for Multistart and Multiverse GA, providing a deeper view of

the ∆Avg and ∆Min columns in Table 4.1. Since the values for each instance

are very different from each other, the values are normalized as

xnorm =
x− x̄

x̄− xmin

, (4.3)

where xnorm is the normalized value for x, x̄ is the average value for Multistart,

and xmin is the minimum value for Multistart. This performs a translation

and scaling of both the Multistart and Multiverse values so that the result-

ing boxes are comparable and fit well in the graph, while maintaining the

relative shapes and positions unmodified within each instance. This figure

corroborates the typically improved performance of the Multiverse method

(with labels ending in .mv) over the Multistart method (with labels ending

in .ms). There are some instances, such as ftv55 and ftv64 where the high

variability of solutions using Multiverse makes it difficult to reach a conclu-

sion. Running a directed Mann Whitney U test at α = 0.05 for each instance,

supports the hypothesis that there is a statistically significant difference in

solution quality for 10 out of 17 instances in favour of Multiverse, and no

86 CHAPTER 4. VALIDATION ON TSP

Table 4.3: Instances for which the Mann Whitney U test supports that there
is a significant difference between Multiverse and Multistart Genetic Algo-
rithm in favour of Multiverse (MV) or no difference (EQ). There is no in-
stance so that there is a difference in favour of Multistart.

MV ftv33, rbg403, p43, rbg443, ftv47, ft70, rbg358,
ftv38, ftv35, ry48p.

EQ ftv170, ftv44, ftv55, kro124p, ftv64, ftv70, ft53.

Table 4.4: Instances for which the Mann Whitney U test supports that there
is a significant difference in solution quality between Multiverse and Multi-
start Ant Colony Optimization in favour of Multiverse (MV) or no difference
(EQ). There is no instance so that there is a difference in favour of Multistart.

MV rbg403, p43, rbg443, ft70, ftv170, ftv44, ftv55,
ftv38, ftv70, ft53, ry48p.

EQ ftv47, rbg358, ftv35, kro124p, ftv64, rbg323.

significant difference for the other 7. Table 4.3 shows which instances pass

the test.

Figure 4.2 is the equivalent of Figure 4.1 for ACO. The findings are simi-

lar, with 11 out of 17 significantly improving according to the directed Mann

Whitney U test, as shown in Table 4.4.

Figures 4.3 and 4.4 are the equivalent of Figures 4.1 and 4.2, respectively,

but for hypervolume instead of cost achieved. The analysis is similar, but for

hypervolume the improvement obtained by Multiverse is more evident. The

application of a directed Mann Whitney U test at α = 0.05 for each instance,

supports the hypothesis that there is a statistical significant difference in

solution quality for Genetic Algorithm in 15 out of 17 instances in favour

of Multiverse, and no significant difference for the other two: ftv170 and

4.3. RESULTS 87

ft5
3.

at
sp

.m
v

ft5
3.

at
sp

.m
s

ft7
0.

at
sp

.m
v

ft7
0.

at
sp

.m
s

ftv
17

0.
at

sp
.m

v
ftv

17
0.

at
sp

.m
s

ftv
33

.a
ts

p.
m

v
ftv

33
.a

ts
p.

m
s

ftv
35

.a
ts

p.
m

v
ftv

35
.a

ts
p.

m
s

ftv
38

.a
ts

p.
m

v
ftv

38
.a

ts
p.

m
s

ftv
44

.a
ts

p.
m

v
ftv

44
.a

ts
p.

m
s

ftv
47

.a
ts

p.
m

v
ftv

47
.a

ts
p.

m
s

ftv
55

.a
ts

p.
m

v
ftv

55
.a

ts
p.

m
s

ftv
64

.a
ts

p.
m

v
ftv

64
.a

ts
p.

m
s

ftv
70

.a
ts

p.
m

v
ftv

70
.a

ts
p.

m
s

kr
o1

24
p.

at
sp

.m
v

kr
o1

24
p.

at
sp

.m
s

p4
3.

at
sp

.m
v

p4
3.

at
sp

.m
s

rb
g3

23
.a

ts
p.

m
v

rb
g3

23
.a

ts
p.

m
s

rb
g3

58
.a

ts
p.

m
v

rb
g3

58
.a

ts
p.

m
s

rb
g4

03
.a

ts
p.

m
v

rb
g4

03
.a

ts
p.

m
s

rb
g4

43
.a

ts
p.

m
v

rb
g4

43
.a

ts
p.

m
s

ry
48

p.
at

sp
.m

v
ry

48
p.

at
sp

.m
s

Experiments

2

0

2

No
rm

al
ize

d
be

st
_s

ol
 v

al
ue Comparison of best_sol for ga

Figure 4.1: Boxplot of best cost achieved across the 25 runs for each in-
stance problem using Multistart and Multiverse Genetic Algorithm. Costs
are normalized to the corresponding average using Multistart so that they
are comparable.

ft5
3.

at
sp

.m
v

ft5
3.

at
sp

.m
s

ft7
0.

at
sp

.m
v

ft7
0.

at
sp

.m
s

ftv
17

0.
at

sp
.m

v
ftv

17
0.

at
sp

.m
s

ftv
35

.a
ts

p.
m

v
ftv

35
.a

ts
p.

m
s

ftv
38

.a
ts

p.
m

v
ftv

38
.a

ts
p.

m
s

ftv
44

.a
ts

p.
m

v
ftv

44
.a

ts
p.

m
s

ftv
47

.a
ts

p.
m

v
ftv

47
.a

ts
p.

m
s

ftv
55

.a
ts

p.
m

v
ftv

55
.a

ts
p.

m
s

ftv
64

.a
ts

p.
m

v
ftv

64
.a

ts
p.

m
s

ftv
70

.a
ts

p.
m

v
ftv

70
.a

ts
p.

m
s

kr
o1

24
p.

at
sp

.m
v

kr
o1

24
p.

at
sp

.m
s

p4
3.

at
sp

.m
v

p4
3.

at
sp

.m
s

rb
g3

23
.a

ts
p.

m
v

rb
g3

23
.a

ts
p.

m
s

rb
g3

58
.a

ts
p.

m
v

rb
g3

58
.a

ts
p.

m
s

rb
g4

03
.a

ts
p.

m
v

rb
g4

03
.a

ts
p.

m
s

rb
g4

43
.a

ts
p.

m
v

rb
g4

43
.a

ts
p.

m
s

ry
48

p.
at

sp
.m

v
ry

48
p.

at
sp

.m
s

Experiments

0

5

10

No
rm

al
ize

d
be

st
_s

ol
 v

al
ue Comparison of best_sol for aco

Figure 4.2: Boxplot of best cost achieved across the 25 runs for each instance
problem using Multistart and Multiverse Ant Colony Optimization. Costs
are normalized to the corresponding average using Multistart so that they
are comparable.

88 CHAPTER 4. VALIDATION ON TSP

ft5
3.

at
sp

.m
v

ft5
3.

at
sp

.m
s

ft7
0.

at
sp

.m
v

ft7
0.

at
sp

.m
s

ftv
17

0.
at

sp
.m

v
ftv

17
0.

at
sp

.m
s

ftv
33

.a
ts

p.
m

v
ftv

33
.a

ts
p.

m
s

ftv
35

.a
ts

p.
m

v
ftv

35
.a

ts
p.

m
s

ftv
38

.a
ts

p.
m

v
ftv

38
.a

ts
p.

m
s

ftv
44

.a
ts

p.
m

v
ftv

44
.a

ts
p.

m
s

ftv
47

.a
ts

p.
m

v
ftv

47
.a

ts
p.

m
s

ftv
55

.a
ts

p.
m

v
ftv

55
.a

ts
p.

m
s

ftv
64

.a
ts

p.
m

v
ftv

64
.a

ts
p.

m
s

ftv
70

.a
ts

p.
m

v
ftv

70
.a

ts
p.

m
s

kr
o1

24
p.

at
sp

.m
v

kr
o1

24
p.

at
sp

.m
s

p4
3.

at
sp

.m
v

p4
3.

at
sp

.m
s

rb
g3

23
.a

ts
p.

m
v

rb
g3

23
.a

ts
p.

m
s

rb
g3

58
.a

ts
p.

m
v

rb
g3

58
.a

ts
p.

m
s

rb
g4

03
.a

ts
p.

m
v

rb
g4

03
.a

ts
p.

m
s

rb
g4

43
.a

ts
p.

m
v

rb
g4

43
.a

ts
p.

m
s

ry
48

p.
at

sp
.m

v
ry

48
p.

at
sp

.m
s

Experiments

4

2

0

No
rm

al
ize

d
hy

pe
rv

ol
 v

al
ue Comparison of hypervol for ga

Figure 4.3: Boxplot of hypervolume across the 25 runs for each instance
problem using Multistart and Multiverse Genetic Algorithm methods. Hy-
pervolumes are normalized to the corresponding average using Multistart so
that they are comparable.

ftv70. For Ant Colony Optimization, the advantage is found in 11 out

of 18 instances (see Table 4.5); larger instances benefit the most from the

Multiverse approach.

Figures 4.5 and 4.6 show the typical graph of best cost so far versus

iteration number for GA and ACO, respectively. The lines represent the

average of best solution achieved in each run by the corresponding iteration

Table 4.5: Instances for which the Mann Whitney U test supports that there
is a significant difference in hypervolume between Multiverse and Multistart
Ant Colony Optimization in favour of Multiverse (MV) or no difference (EQ).
There is no instance so that there is a difference in favour of Multistart.

MV ftv33, rbg403, rbg443, ft70, ftv170, rbg358, ftv44,
ftv55, ftv64, ftv70, rbg323.

EQ p43, ftv47, ftv38, ftv35, kro124p, ft53, ry48p.

4.3. RESULTS 89

ft5
3.

at
sp

.m
v

ft5
3.

at
sp

.m
s

ft7
0.

at
sp

.m
v

ft7
0.

at
sp

.m
s

ftv
17

0.
at

sp
.m

v
ftv

17
0.

at
sp

.m
s

ftv
33

.a
ts

p.
m

v
ftv

33
.a

ts
p.

m
s

ftv
35

.a
ts

p.
m

v
ftv

35
.a

ts
p.

m
s

ftv
38

.a
ts

p.
m

v
ftv

38
.a

ts
p.

m
s

ftv
44

.a
ts

p.
m

v
ftv

44
.a

ts
p.

m
s

ftv
47

.a
ts

p.
m

v
ftv

47
.a

ts
p.

m
s

ftv
55

.a
ts

p.
m

v
ftv

55
.a

ts
p.

m
s

ftv
64

.a
ts

p.
m

v
ftv

64
.a

ts
p.

m
s

ftv
70

.a
ts

p.
m

v
ftv

70
.a

ts
p.

m
s

kr
o1

24
p.

at
sp

.m
v

kr
o1

24
p.

at
sp

.m
s

p4
3.

at
sp

.m
v

p4
3.

at
sp

.m
s

rb
g3

23
.a

ts
p.

m
v

rb
g3

23
.a

ts
p.

m
s

rb
g3

58
.a

ts
p.

m
v

rb
g3

58
.a

ts
p.

m
s

rb
g4

03
.a

ts
p.

m
v

rb
g4

03
.a

ts
p.

m
s

rb
g4

43
.a

ts
p.

m
v

rb
g4

43
.a

ts
p.

m
s

ry
48

p.
at

sp
.m

v
ry

48
p.

at
sp

.m
s

Experiments

4

2

0

2

No
rm

al
ize

d
hy

pe
rv

ol
 v

al
ue Comparison of hypervol for aco

Figure 4.4: Boxplot of hypervolume across the 25 runs for each instance
problem using Multistart and Multiverse Ant Colony Optimization methods.
Hypervolumes are normalized to the corresponding average using Multistart
so that they are comparable.

for Multiverse and Multistart respectively. The examples selected show a

clear gap, and others are similar with varying gap sizes.

The evolution graphs for all TSP GA and ACO instances are shown in

Appendix A and Appendix B, respectively.

90 CHAPTER 4. VALIDATION ON TSP

0 50 100 150 200 250 300
Iterations

2 × 103

3 × 103

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

) Best Solution Evolution - ftv33.atsp - ga
multistart
multiverse

Figure 4.5: Typical evolution of best Genetic Algorithm solution versus iter-
ation for Multistart and Multiverse. Each line follows the average of the best
solutions across the 25 runs at the corresponding iteration for their respective
method. The Y axis is shown in logarithmic scale.

0 50 100 150 200 250 300
Iterations

1.4 × 103

1.6 × 103

1.8 × 103

2 × 103

2.2 × 103
2.4 × 103
2.6 × 103

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

) Best Solution Evolution - ftv33.atsp - aco
multistart
multiverse

Figure 4.6: Typical evolution of best Ant Colony Optimization solution ver-
sus iteration for Multistart and Multiverse. Each line follows the average of
the best solutions across the 25 runs at the corresponding iteration for their
respective method. The Y axis is shown in logarithmic scale.

Chapter 5

Analysis of Results

Contents
5.1 Problem Description 93

5.2 Procedure . 96

5.3 Results . 103

Figures
5.1 Boxplot of best cost achieved across the 25 runs for each

instance problem using Multistart and Multiverse Schedul-

ing Algorithm. 109

5.2 Boxplot of hypervolume across the 25 runs for each in-

stance problem using Multistart and Multiverse Schedul-

ing Algorithm methods. 110

5.3 Typical evolution of best Scheduling Algorithm solution

versus iteration for Multistart and Multiverse. 111

91

92 CHAPTER 5. ANALYSIS OF RESULTS

Tables
5.1 Results from running Multistart and Multiverse Schedul-

ing Algorithm on TSPLIB instances. 104

5.2 Mann Whitney U test results for significant difference in

best solution between Multiverse and Multistart Schedul-

ing Algorithm . 109

5.3 Mann Whitney U test results for significant difference in

hypervolume between Multiverse and Multistart Schedul-

ing Algorithm . 110

5.1. PROBLEM DESCRIPTION 93

5.1 Problem Description

The production of steel is a very complex process, with several functions

involved in its transformation from coal and iron ore: iron making (conversion

of iron ore into liquid iron), steelmaking (conversion of liquid iron into liquid

steel), casting (solidification of liquid steel into semi-products: billets or

slabs) and finally rolling, aimed at transforming the intermediate products

into the format accepted by the client (normally coils of steel, bars, heavy

plates, wire rod, etc.) to continue the transformation into cars, bridges,

beverage cans, and many other products.

One of the most important products manufactured by steelmakers is gal-

vanized steel. The main use of this steel is as a raw material in other in-

dustries, and especially in the automotive industry for building car bodies.

The process of galvanizing consists in covering the steel with a zinc layer to

protect it against corrosion.

The facility in charge of galvanizing steel is the galvanizing line. In this

process, steel is coated with a zinc layer, which has the purpose of protecting

the steel against air and moisture. In fact, the zinc layer is considered to be

the most effective and low-cost means to achieve this goal. Galvanization is

applied to steel coils, which are a finished steel product which has been wound

or coiled after rolling slabs. Slabs are semi-finished steel products, obtained

by processing through a continuous caster and cut into various lengths. The

slab has a rectangular cross section and is used as a starting material in the

production process of flat products, i.e. hot rolled coils or plates.

The process of galvanizing is continuous, that is, there is no separation

94 CHAPTER 5. ANALYSIS OF RESULTS

between the coils and the line never stops. The head of the next coil is welded

to the tail of the coil in process. Thus, for the line, the input is an infinite

strip which has points where there is a change in some of its characteristics:

dimensions (width, thickness), steel grade, section, thickness of the zinc layer,

etc.

After the welding area, the strip advances towards the accumulator, a

kind of buffer that makes it possible to change the speed of the line depend-

ing on the needs of the furnace without running out of material. The furnace

is the next stage; here the strip has to reach a target temperature depending

on its chemical composition (steel grade), and for this line speed and fur-

nace temperature have to be adjusted according to the thickness and width

of the coil. Thicker and wider coils require lower speed or higher furnace

temperature to reach the same target temperature. Due to the inertia of the

system, changing these parameters takes some time, during which part of the

coil may not be processed properly, depending on how different the coils and

their targets are.

After the furnace, the strip is entered into the zinc pot, a bath of molten

zinc at a temperature of around 460◦ Celsius, and later by passing through

an ‘air knives’ system, the zinc layer is spread evenly and to the thickness

specified by the client; this is critical in order to avoid coil rejections.

All this process is dramatically affected by the sequencing. Depending

on it, it is possible to lose many of meters of strip due to a lack of quality, or

even worse, to have a breakage that would halt the facility for several hours

up to a full day. Every time the strip breaks in the furnace where they are

heated before the zinc bath, the line must be stopped until the furnace cools

5.1. PROBLEM DESCRIPTION 95

down, in order to remove the steel strip of the furnace; then the furnace must

be heated up again before resuming production.

Sequencing is critical in production lines in the steel industry (as it is in

the industry in general). Depending on the sorting, the sequence could have

different impact in the process, and it can cause quality issues in the final

product, lower productivity, higher energy consumption or even an incident

in the facility.

Due to the technical limitations of the lines and the critical efficiency

necessary to offer nowadays for each productive plant, the necessity of hav-

ing a scheduling model able to solve the limitations of current scheduling

algorithms has arisen. The objective is to maximize productivity, making

the facility more competitive.

Like the TSP, this problem is a search in an O(n!) complexity space, as

it needs to explore the permutations of coils. The difference stems from the

existence of constraints that exclude some of the permutations, and the fact

that the cost function and some of the constraints depend on longer sub-

sequences: whereas in the TSP the cost is equal to the sum of weights of the

edges that form the Hamiltonian path, in this scheduling problem the cost or

constraints may be different for the same transition from one coil to another

depending on the previous coils in the sequence.

Traditionally, techniques based on constraint programming have been

used for these purposes. These algorithms are focused on finding a solution

with some properties, mainly fulfilling some relations among variables and

respecting a set of constraints. Their main problem is their limitation for

using complex cost functions, which prevents the exploration of the whole

96 CHAPTER 5. ANALYSIS OF RESULTS

search space. A more optimization-oriented approach is presented in [Fer+14]

using ACO, which is the base for the parallelized algorithm presented below.

The benchmark instances consist of batches produced in a galvanizing

line, and run the gamut in terms of size and complexity. Line experts made

the selection to be representative of typical operating conditions, in order to

ensure that the results are meaningful.

See chapter 1 for a more detailed description of the steelmaking process

in general, and the galvanizing line and the sequencing problem in particular.

5.2 Procedure

In the TSP, the objective is to generate the shortest tour of a number of

cities, given the distance matrix between each pair. The sequencing problem

shows similarities with this specification, substituting cities for steel coils and

distances for costs. Confidentiality limits the level of detail given below.

Since some of the orderings are not possible, some of the costs will be

infinite (or, viewing the problem as a graph, the corresponding arcs do not

exist). This is one of the two main differences with a TSP. One main goal is

the reduction of these infeasible transitions, because every time there is one

in a sequence, it is necessary to include a transition coil (a coil with no client)

to solve the issue. This transition coil has a high cost (compared to a normal

production cost) in terms of productivity (it requires producing something

unneeded instead of the outstanding orderbook) and in terms of cost (yield),

because maybe the coil will be sold as second quality or even used as scrap

(lower value).

5.2. PROCEDURE 97

For over a year, the technical experts of the lines defined the losses asso-

ciated to the transitions, analysing all the parameters and characteristics of

the coils that have some kind of impact on the resulting meters of strip lost

for a given sequence. These cost functions depend on the parameters of the

coils and their differences in the transitions. The losses are mainly gener-

ated by width changes between consecutive coils, thickness changes, thermal

losses, etc.

The general idea is to try and minimize the transitions for each parameter

relevant to sequencing, looking for a smoother evolution and therefore a more

stable production.

The input to the problem consists on the campaign type, and the features

of the coils to be sequenced. The campaign type is relevant because some of

the rules only apply to specific campaigns, and the values of the parameters

in constraints and cost functions may be different per campaign type.

The coil features include:

ID A coil identification code, used for tracking

Width (wi) The width of the coil in millimetres

Thickness (ei) The thickness of the coil in millimetres

Weight (mi) The weight of the coil in tons

Product type The steel grade of the coil

Target zinc coating (zi) The amount of coating to apply, in grams per

square metre

98 CHAPTER 5. ANALYSIS OF RESULTS

Line speed (vi) The speed of the line, in metres per minute, needed to

properly process the coil

Target temperature (ti) The ideal temperature for the coil in the thermal

cycle, in degrees Celsius

Temperature range (t−i , t+i) The minimum and maximum temperature ad-

missible for the thermal cycle, in degrees Celsius. Obviously t ∈ [t−i , t
+
i].

Most constraints are transition constraints, they depend only on two ad-

jacent coils in the sequence: i and i+ 1. These are:

wi+1 − wi ≤ ∆w+, (5.1)

wi − wi+1 ≤ ∆w−, (5.2)

ei+1 − ei ≤ ∆e+, (5.3)

ei − ei+1 ≤ ∆e−, (5.4)

|vi+1 − vi| ≤ ∆v, (5.5)

[t−i , t
+
i] ∩ [t−i+1, t

+
i+1] 6= ∅. (5.6)

In words, the width and thickness can only change so much from one coil

to the next, and the limit may be different going up or down; these limits

stem from the ability to safely weld the coils together. The change in line

speed is also limited; this is related to the operational limitations of the line.

And the temperature ranges of the coils must overlap, so that there is a valid

operating point while the furnace contains part of both strips.

Yet another transition constraint is expressed as a compatibility table

which forbids certain product type combinations to be adjacent in the se-

5.2. PROCEDURE 99

quence. This summarizes multiple issues such as weldability difficulties de-

rived from the materials chemistry or the need to make sudden changes in

operation setpoints of machines in the line.

In specific campaigns, a ’wide-to-narrow’ constraint forbids any increasing

in width along the sequence, although there is some little wiggle room and

isolated increases below a certain threshold are allowed. This is a sequence

constraint rather than a transition constraint.

Also in specific campaigns, a certain product type must be included in the

sequence at regular time intervals, to allow certain maintenance operations

needed to ensure the quality required in those campaigns.

One final sequence constraint prevents width increases after more that a

given volume of material, in tons, has been processed without a change in

width. There is a threshold, in millimetres, determining the required width

difference to consider that the width has changed. This requirement comes

from quality considerations: prolonged rolling at the same width may cause

the edges to carve a groove on the cylinders, which will transfer it to a wider

strip or affect the edges of subsequent strips of the same width.

The cost function adds up several components. Most of them are tran-

sition costs: the cost associated to changes in thickness (Ce), the cost asso-

ciated to changes in zinc coating (Cz), the cost associated to changes in line

speed (Cv), and the cost associated to changes in target temperature (Ct);

the last one is calculated based on the target temperature of the coils ti,

which should not be confused with the bounds of the admissible temperature

range, as there is already a constraint that forces the ranges to overlap.

100 CHAPTER 5. ANALYSIS OF RESULTS

These costs are formulated as follows:

Ce = Ke |ei+1 − ei| , (5.7)

Cz = Kz |zi+1 − zi| , (5.8)

Cv =


Kv |vi+1 − vi| if |vi+1 − vi| ≥ ∆v

0 otherwise,
(5.9)

Ct =


Kt |ti+1 − ti| if |ti+1 − ti| ≥ ∆t

0 otherwise.
(5.10)

Besides these transition costs, there is a sequence cost, Cw, associated to

the risk of quality defects with consecutive coils of the same width. This cost

only applies when widening out, i.e. when the width is increasing for that

part of the sequence, and uses a custom proprietary function to calculate the

probability of having a defect for a given number of consecutive coils of the

same width. This probability is then multiplied by a constant representing

the typical cost of a defect.

The total cost is simply the sum of all these components:

C = Ce + Cz + Cv + Ct + Cw. (5.11)

Initially, before any pheromone has been laid out, the transition costs, i.e.

the costs that only depend on two consecutive coils, function as a heuristic

for solution construction. Before launching the algorithm, the transition

cost for each combination of nodes σ(n1, n2) is precalculated; this cost can be

5.2. PROCEDURE 101

classified as: infinite (if the transition does not respect some of the constraints

of the line), zero or finite (there are losses associated to the transition, but

it respects all the constraints of the line).

Given the existence of zero and infinite costs it is not possible to apply di-

rectly the usual selection criterion of selecting the next node with probability

inversely proportional to the arc cost. Instead, a two-step selection chooses

first among the three categories (if present in the node), biasing against in-

finite costs; and in the second step, if zero or infinite cost arcs have been

selected, all of them are equiprobable, whereas for finite cost arcs the usual

approach (probability inversely proportional to cost) applies.

Infeasible transitions have to be accepted because not doing so would

require each ant to build a Hamiltonian path. This is a hard problem in

itself, and in the problem there is often no such path. A second option

would be to accept them only if no feasible transition is left; this leads to

much worse sequences, because it tends to leave out the least connected

nodes, accumulating large numbers of infeasible transitions at the end of

the sequence. As a mitigation strategy, infinite cost transitions are allowed,

with low probability, at any time to enable the model to discover infeasible

transitions that save more of them later.

These infeasible solutions are “solved” by the operators of the line by

means of inserting transition coils between two coils that are not compatible

from the production point of view. This transition coil is especially expensive,

as described above, and this is the reason why it is considered as an infinite

cost. Therefore, the priority of the algorithm will always be to minimize first

these infeasible transitions and only then minimizing the total cost.

102 CHAPTER 5. ANALYSIS OF RESULTS

The function to deposit the pheromone in the path is the standard one,

shown in (5.12), where τij is the amount of pheromone between nodes i and

j, BestCost the cost of the best solution found up to the moment of the

update and ρ the evaporation factor:

τ kij ←


(1− ρ)τ kij +

BestCost
CostAntk

if arc ij ∈ Antk

(1− ρ)τ kij otherwise
(5.12)

With the advance of the iterations, the heuristic based on transition cost

loses weight in favour of the pheromone. Heuristic and pheromone informa-

tion are combined following the usual formula:

pkij =
[τij]

α[ηij]
β∑

l∈N k
i
[τil]α[ηil]β

, ∀j ∈ N k
i , (5.13)

where:

pkij: is the probability of selecting node j after selecting i for ant k,

τij: is the amount of pheromone between nodes i and j,

ηij: is the heuristic value calculated as 1
Cij

,

Cij: represents the meters of strip lost in transition between nodes i and j,

α: is a parameter to control the influence of the pheromone,

β: is a parameter to control the influence of heuristic based on losses, and

N k
i : is the set of accessible nodes for ant k from node i that have not been

already selected.

5.3. RESULTS 103

The combination of the parameters α and β controls the influence of the

pheromone and transition costs over the decision of choosing a path. In the

tests,the parameters are set to α = 1 and β = 2, with the objective of having

a good balance between the heuristic and experience (pheromone).

Elitism allows only the top 10% ants in each iteration to deposit pheromone

in the matrix.

5.3 Results

The following analysis replicates the analysis performed for the Asymmetric

Travelling Salesperson Problem above to the 46 instances of the scheduling

problem, running both the Multiverse and Multistart variants on them. As

in the previous case, there are 25 runs of each instance and method, tracking

running time and the best solution found at each iteration. It also records

the random seed generated in each run so that the exact same results can be

reproduced.

Table 5.1 shows the outcome of the analysis for the scheduling problem.

The fields are once again:

Instance The file containing the problem data.

∆Avg The percent difference between the average across repetitions of final

solution fitness for Multistart and Multiverse.

∆Min The percent difference between the best solution fitness across repeti-

tions for Multistart and Multiverse.

104 CHAPTER 5. ANALYSIS OF RESULTS

RTime The percent difference between the averages across repetitions of CPU

time elapsed for Multistart and Multiverse.

WTime The percent difference between the averages across repetitions of wall

time elapsed for Multistart and Multiverse.

∆HV The percent difference between the averages across repetitions of the

hypervolume Multistart and Multiverse.

Table 5.1: Results from running Multistart and Multi-

verse Scheduling Algorithm on TSPLIB instances.

Instance ∆ Avg ∆ Min RTime WTime ∆ HV

10_coils_30 -0.00125 -0.00427 +8.97 +2.22 -0.00213

10_coils_60 -3.98 -7.8 +4.47 +2.12 -0.433

10_coils_90 -5.74 +22.0 -1.31 -0.801 -3.51

11_coils_30 +0.000166 -0.00217 -7.49 -2.09 +0.286

11_coils_60 -1.32 -1.13 +4.22 +2.15 -0.454

11_coils_90 -0.298 -0.322 +0.283 +0.26 -0.0929

12_coils_30 -0.871 -0.0397 -3.97 -1.1 -0.53

12_coils_60 -1.24 -30.5 +0.598 -1.97 -0.448

12_coils_90 +0.227 -0.077 -0.626 -0.386 +0.324

13_coils_30 +0.145 -0.129 +0.855 +0.242 +0.0792

13_coils_60 -0.0624 -0.0554 -1.9 -2.44 -0.135

13_coils_90 -0.532 -4.85 -0.601 -0.368 -0.865

Continued on next page

5.3. RESULTS 105

Table 5.1 – Continued from previous page

Instance ∆ Avg ∆ Min RTime WTime ∆ HV

14_coils_30 -0.000866 -0.0397 +8.75 +2.79 -0.0577

14_coils_60 -0.042 -0.0088 -1.69 -0.894 +6.29e-05

14_coils_90 +0.641 +1.17 -1.63 -1.13 -0.66

15_coils_30 -1.97e-05 +0.000493 +1.09 -0.446 -0.00146

15_coils_60 -0.014 -0.00714 +3.5 +1.98 +65.4

15_coils_90 -0.985 -1.16 -2.41 -1.76 -1.06

1_coils_27 -0.0559 -0.000287 +2.06 +0.791 -0.0705

1_coils_30 -5.41e-05 +0.0 +0.502 +0.251 -0.0178

1_coils_60 -0.000582 -0.00637 -0.561 +0.674 -0.00874

1_coils_90 -3.33 -1.53 -0.0756 -0.062 -2.87

2_coils_30 -1.55 -0.0266 -1.7 -1.66 -1.95

2_coils_60 -9.96 -11.4 +1.62 +1.36 -8.93

2_coils_90 -0.565 +0.0579 +0.874 +1.29 -0.288

3_coils_30 -2.48 -1.39 -5.98 -2.79 -2.17

3_coils_60 -0.00288 -0.0028 +1.28 +1.09 -0.01

3_coils_90 -0.000589 -0.000982 -0.458 -0.413 -0.000639

4_coils_30 -0.0118 +0.0 -3.17 -1.44 -0.0649

4_coils_60 -0.0587 -0.124 -1.47 -1.21 -0.039

4_coils_90 -0.203 -0.68 +0.019 +0.0269 -0.243

5_coils_30 -4.68 -2.22 -1.68 -0.789 -3.74

5_coils_60 -0.603 -1.21 -1.79 -1.48 -0.489

5_coils_90 -0.0524 -0.156 +1.41 +1.34 -0.108

Continued on next page

106 CHAPTER 5. ANALYSIS OF RESULTS

Table 5.1 – Continued from previous page

Instance ∆ Avg ∆ Min RTime WTime ∆ HV

6_coils_30 -0.000164 +0.0 -0.84 -0.377 -0.0349

6_coils_60 +5.91e-05 -0.000246 +0.111 +0.77 -6.27e-05

6_coils_90 -3.32 -2.99 +0.0151 +0.0263 -2.5

7_coils_30 -0.00699 -0.00176 +0.612 +0.3 -0.0095

7_coils_60 -8.14 -12.8 +1.69 +1.42 -6.48

7_coils_90 -0.0507 -0.0389 +0.185 +0.185 -0.0593

8_coils_30 -0.000124 +0.0 -3.19 -2.71 -0.0439

8_coils_60 -5.08 -2.28 +1.65 +1.4 -4.7

8_coils_90 -0.272 -0.598 -0.343 -0.31 -0.257

9_coils_30 -0.000568 +0.0 +2.65 +1.21 -0.00377

9_coils_60 -0.00377 -0.00868 +0.874 +0.742 +1.88

9_coils_90 -0.262 -1.27 +0.489 +0.856 -0.246

All differences are calculated as the value for Multiverse minus value for

Multistart; since all the measured items are better the lower they become,

this makes negative values favourable to Multiverse. The base for the per-

centage is the value for Multistart for the instance.

Hypervolume is a measure used to compare solutions to multi-objective

problems, used here as a measure of anytime performance. See section 4.3

for the rationale behind this metric.

Table 5.1 shows that the final solution quality is most frequently better

in average using Multiverse, and that the best solution across runs for most

of the instances also is attained almost always by Multiverse; the instances

5.3. RESULTS 107

where this does not hold have very small differences. Elapsed times (CPU

time and wall time) alternate between positive and negative, which is consis-

tent with negligible overhead of Multiverse with respect to Multistart, as the

random effect of synchronization is dominant; otherwise the time differences

should be more consistently positive if the additional communication had a

significant impact. Finally, hypervolume is in average also consistently bet-

ter for Multiverse, with the exception of 15_coils_60, which can be shown

to be an artifact due to an outlying run (see Table 5.1 and Figure C.17 in

Appendix C).

Figure 5.1 shows a boxplot of the best costs achieved in the 25 runs of

each instance for Multistart and Multiverse GA, providing a deeper view of

the ∆Avg and ∆Min columns in Table 5.1. Since the values for each instance

are very different from each other, the values are normalized as

xnorm =
x− x

x− xmin

, (5.14)

where xnorm is the normalized value for x, x is the average value for Multistart,

and xmin is the minimum value for Multistart. This performs a translation

and scaling of both the Multistart and Multiverse values so that the result-

ing boxes are comparable and fit well in the graph, while maintaining the

relative shapes and positions unmodified within each instance. This figure

corroborates the typically improved performance of the Multiverse method

(with labels ending in .mv) over the Multistart method (with labels ending

in .ms).

The results for this case are more variable than for the TSP. This is

108 CHAPTER 5. ANALYSIS OF RESULTS

related to the characteristics of the problem, and specifically to the increased

difficulty in finding feasible solutions besides improving sequence cost. This

translates into wider ranges in the boxplot and fewer instances where the

advantage is as clear as it was for the TSP.

Another issue related to this is the appearance of outliers due to very

high costs used to represent infeasible solutions. These have been filtered

out (only for the figure, not for the results table and the statistical analysis)

to afford a better view of the boxplots, which would otherwise be compressed

to a few pixels. Values outside the interval [−10, 10] after normalization were

removed from the plots.

Running a directed Mann Whitney U test at α = 0.05 for each instance,

supports the hypothesis that there is a statistically significant difference in

solution quality for roughly two-thirds of the instances in favour of Multi-

verse, and no significant difference for the other one-third. Table 5.2 shows

which instances pass the test.

Figure 5.2 is the equivalent of Figure 5.1, but for hypervolume instead

of cost achieved. The analysis is similar, and the same outlier filtering is

applied to obtain a clear view of the bulk of the data. The application of a

directed Mann Whitney U test at α = 0.05 for each instance, supports the

hypothesis that there is a statistical significant difference in solution quality

for the Scheduling Algorithm again for about two-thirds of the instances, and

no significant difference for the other one-third (see Table 5.3).

Figure 5.3 shows the typical graph of best cost so far versus iteration

number. The lines represent the average of best solution achieved in each

run by the corresponding iteration for Multiverse and Multistart respectively.

5.3. RESULTS 109

Table 5.2: Instances for which the Mann Whitney U test supports that there
is a significant difference between Multiverse and Multistart Scheduling Al-
gorithm in favour of Multiverse (MV) or no difference (EQ). There is no
instance so that there is a difference in favour of Multistart.

MV 10_coils_30, 10_coils_60, 10_coils_90, 11_coils_60, 11_coils_90,
12_coils_30, 13_coils_60, 14_coils_30, 14_coils_60, 15_coils_90,
1_coils_27, 1_coils_30, 1_coils_90, 2_coils_30, 2_coils_60,
3_coils_30, 3_coils_60, 3_coils_90, 4_coils_30, 5_coils_30,
5_coils_60, 6_coils_30, 6_coils_90, 7_coils_30, 7_coils_60,
7_coils_90, 8_coils_60, 9_coils_30, 9_coils_60.

EQ 11_coils_30, 12_coils_60, 12_coils_90, 13_coils_30, 13_coils_90,
14_coils_90, 15_coils_30, 15_coils_60, 1_coils_60, 2_coils_90,
4_coils_60, 4_coils_90, 5_coils_90, 6_coils_60, 8_coils_30,
8_coils_90, 9_coils_90.

10
_c

oi
ls_

30
.m

v
10

_c
oi

ls_
30

.m
s

10
_c

oi
ls_

60
.m

v
10

_c
oi

ls_
60

.m
s

10
_c

oi
ls_

90
.m

v
10

_c
oi

ls_
90

.m
s

11
_c

oi
ls_

30
.m

v
11

_c
oi

ls_
30

.m
s

11
_c

oi
ls_

60
.m

v
11

_c
oi

ls_
60

.m
s

11
_c

oi
ls_

90
.m

v
11

_c
oi

ls_
90

.m
s

12
_c

oi
ls_

30
.m

v
12

_c
oi

ls_
30

.m
s

12
_c

oi
ls_

60
.m

v
12

_c
oi

ls_
60

.m
s

12
_c

oi
ls_

90
.m

v
12

_c
oi

ls_
90

.m
s

13
_c

oi
ls_

30
.m

v
13

_c
oi

ls_
30

.m
s

13
_c

oi
ls_

60
.m

v
13

_c
oi

ls_
60

.m
s

13
_c

oi
ls_

90
.m

v
13

_c
oi

ls_
90

.m
s

14
_c

oi
ls_

30
.m

v
14

_c
oi

ls_
30

.m
s

14
_c

oi
ls_

60
.m

v
14

_c
oi

ls_
60

.m
s

14
_c

oi
ls_

90
.m

v
14

_c
oi

ls_
90

.m
s

15
_c

oi
ls_

30
.m

v
15

_c
oi

ls_
30

.m
s

15
_c

oi
ls_

60
.m

v
15

_c
oi

ls_
60

.m
s

15
_c

oi
ls_

90
.m

v
15

_c
oi

ls_
90

.m
s

Experiments

4

2

0

2

No
rm

al
ize

d
be

st
_s

ol
 v

al
ue Comparison of best_sol for sched

Figure 5.1: Boxplot of best cost achieved across the 25 runs for each instance
problem using Multistart and Multiverse Scheduling Algorithm. Costs are
normalized to the corresponding average using Multistart so that they are
comparable.

110 CHAPTER 5. ANALYSIS OF RESULTS

10
_c

oi
ls_

30
.m

v
10

_c
oi

ls_
30

.m
s

10
_c

oi
ls_

60
.m

v
10

_c
oi

ls_
60

.m
s

10
_c

oi
ls_

90
.m

v
10

_c
oi

ls_
90

.m
s

11
_c

oi
ls_

30
.m

v
11

_c
oi

ls_
30

.m
s

11
_c

oi
ls_

60
.m

v
11

_c
oi

ls_
60

.m
s

11
_c

oi
ls_

90
.m

v
11

_c
oi

ls_
90

.m
s

12
_c

oi
ls_

30
.m

v
12

_c
oi

ls_
30

.m
s

12
_c

oi
ls_

60
.m

v
12

_c
oi

ls_
60

.m
s

12
_c

oi
ls_

90
.m

v
12

_c
oi

ls_
90

.m
s

13
_c

oi
ls_

30
.m

v
13

_c
oi

ls_
30

.m
s

13
_c

oi
ls_

60
.m

v
13

_c
oi

ls_
60

.m
s

13
_c

oi
ls_

90
.m

v
13

_c
oi

ls_
90

.m
s

14
_c

oi
ls_

30
.m

v
14

_c
oi

ls_
30

.m
s

14
_c

oi
ls_

60
.m

v
14

_c
oi

ls_
60

.m
s

14
_c

oi
ls_

90
.m

v
14

_c
oi

ls_
90

.m
s

15
_c

oi
ls_

30
.m

v
15

_c
oi

ls_
30

.m
s

15
_c

oi
ls_

60
.m

v
15

_c
oi

ls_
60

.m
s

15
_c

oi
ls_

90
.m

v
15

_c
oi

ls_
90

.m
s

Experiments

2

0

2

4

No
rm

al
ize

d
hy

pe
rv

ol
 v

al
ue Comparison of hypervol for sched

Figure 5.2: Boxplot of hypervolume across the 25 runs for each instance prob-
lem using Multistart and Multiverse Scheduling Algorithm methods. Hyper-
volumes are normalized to the corresponding average using Multistart so that
they are comparable.

Table 5.3: Instances for which the Mann Whitney U test supports that there
is a significant difference in hypervolume between Multiverse and Multistart
Scheduling Algorithm in favour of Multiverse (MV) or no difference (EQ).
There is no instance so that there is a difference in favour of Multistart.

MV 10_coils_30, 10_coils_90, 11_coils_60, 12_coils_30, 13_coils_60,
14_coils_30, 15_coils_30, 15_coils_60, 15_coils_90, 1_coils_27,
1_coils_30, 1_coils_90, 2_coils_30, 2_coils_60, 3_coils_30,
3_coils_60, 3_coils_90, 4_coils_30, 5_coils_30, 5_coils_60,
6_coils_30, 6_coils_90, 7_coils_30, 7_coils_60, 7_coils_90,
8_coils_30, 8_coils_60.

EQ 10_coils_60, 11_coils_30, 11_coils_90, 12_coils_60, 12_coils_90,
13_coils_30, 13_coils_90, 14_coils_60, 14_coils_90, 1_coils_60,
2_coils_90, 4_coils_60, 4_coils_90, 5_coils_90, 6_coils_60,
8_coils_90, 9_coils_30, 9_coils_60, 9_coils_90.

5.3. RESULTS 111

0 200 400 600 800 1000 1200
Iterations

400

500

600

700

800

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 7_coils_60 - sched
multistart
multiverse

Figure 5.3: Typical evolution of best Scheduling Algorithm solution versus
iteration for Multistart and Multiverse. Each line follows the average of
the best solutions across the 25 runs at the corresponding iteration for their
respective method.

The example selected shows a clear gap, and others are similar with varying

gap sizes, and given the higher variability in the solutions to this problem

the lines cross over one another in some instances. In particular instance

13_coils_30 goes the opposite direction with the Multistart average out-

performing the Multiverse average throughout, but the range of results is

similar for both approaches in terms of best solution and hypervolume.

The evolution graphs for all Scheduling Algorithm instances are shown

in Appendix C.

112 CHAPTER 5. ANALYSIS OF RESULTS

Chapter 6

Conclusions and Future Work

Contents
6.1 Conclusions . 115

6.2 Future Work . 118

6.2.1 Algorithm Frameworks 119

6.2.2 Non-Traditional Computing Architectures 120

6.2.3 Parallel Multiobjective Metaheuristics 122

113

114 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1. CONCLUSIONS 115

6.1 Conclusions

The multiple approaches to the parallelization of metaheuristics span dif-

ferent trade-offs of solution quality, algorithm complexity, communication

overhead, and generalization capability.

Multiple Independent Runs, or Multistart, sits at one end of the trade-

off spectrum: fully generic, with minimum complexity and overhead, and

is typically considered the baseline against which to compare other paral-

lel methods. This work introduces the Multiverse method, first published

in [Día+20], as an alternative to multiple independent runs.

Both the Multistart and Multiverse methods are fully generic. Indeed,

they can be considered meta-algorithms, as they can be applied to a meta-

heuristic to generate a new, parallel algorithm. Multistart has a wider range

of application, as it can take both single-solution and population-based meta-

heuristics; Multiverse still is very general, being applicable to any population-

based metaheuristic. Compared to Multistart, the Multiverse method incurs

negligible overhead both in terms of added complexity and communication.

In order to test these claims, and to evaluate its performance in solution

quality with respect to Multistart, this thesis describes concrete instantia-

tions of the method for solving the Travelling Salesperson Problem using a

Genetic Algorithm and Ant Colony Optimization as representatives of the

two broad classes of population-based metaheuristics. The tests are run on

the asymmetric TSP instances in the benchmark library TSPLIB.

The Multiverse variant is superior or equal in solution quality at the end

of the run than the Multistart approach. The statistical tests support this

116 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

superiority in 10 out of 18 instances in the case of Genetic Algorithms and

in 11 out of 18 in the case of Ant Colony Optimization. In the remaining 8

or 7 cases, respectively, the solution quality is equivalent for Multiverse and

Multistart. The largest instances, especially those with over 400 cities, tend

to benefit more.

Looking at anytime behaviour, or the ability to reach better solutions

faster, in terms of hypervolume, the situation is similar for Ant Colony Op-

timization, where the Multiverse variant shows statistically significant im-

provement in 11 out of 18 problem instances; for Genetic Algorithms, the

benefits of the Multiverse method are much greater, extending to 16 out of

the 18 instances tested.

The added overhead to reap these benefits is lost within the intrinsic vari-

ability in running time of the problems, with both Multiverse and Multistart

being slightly faster on some of the instances. The averages differ by just tens

of seconds to a few seconds for total execution times ranging from around

30 seconds to 4–5 minutes (or more in some special cases), or a couple of

percentage points at the most, depending on the instance.

Looking at the galvanizing line scheduling problem, which originated the

need for the algorithm, similarly positive results are obtained. The industrial

scheduling problem is solved for 46 representative instances using a specially

adapted ACO.

As in the case of the TSP, the results using Multiverse for the scheduling

problem show significant improvements both in solution quality and anytime

behaviour. Out of the 46 available instances tested, 29 yield a statistically

significant improvement in solution quality and 27 succeed likewise in terms of

6.1. CONCLUSIONS 117

hypervolume. For the remaining 17 or 19 respective instances, the differences

are not statistically significant.

This in spite of a much higher variability in solution quality across runs for

this problem due to the difficulties associated with finding feasible solutions

in a complex search space with such a limited number o function evaluations.

As before, the differences in running times alternate in favour of one or the

other method, always with absolute values that represent a small fraction of

the total time, as is expected of a negligible added complexity and overhead.

These results support the Multiverse method as a potential candidate

to replace multiple independent runs as the baseline for distributed algo-

rithm comparison, and a promising initial approach to extending the gal-

vanizing line scheduling problem to larger, more complex problems; this in

turn enables addressing longer scheduling horizons or more complex cases,

where feasible solutions are harder to find, all while respecting the stringent

constraints on running time set by the operational needs of the industrial

application.

Even though the improvements are relatively small, reaching 2%–3% in

the best cases, and typically below 1%, the volumes involved result in mean-

ingful returns. As a back-of-the-envelope calculation, assume a galvanizing

line that produces 500 Kt/year. A 0.5% improvement in productivity adds

2.5 Kt, which translates to approximately $2.5M additional revenue at cur-

rent prices at the time of writing1. That’s a potential for over $750M in-

creased revenue across the worldwide production if extrapolated to the more

1Taking China galvanized sheet spot price as a representative index: on 2021-11-03 the
price per ton is 6,495 RMB or 1,015.51 USD.

118 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

than 150 Mt/year of galvanized steel produced globally.

While confidentiality prevents giving more details on the evaluation of

the gains using the approach, the example above shows how apparently tiny

improvements explode when the huge volumes of steel production are taken

into account.

Furthermore, the same scheduling optimization approach can be extended

to other production lines by adapting the cost and constraint functions. This

should map quite directly to all finishing lines, albeit with some effort in mod-

elling specifics of each line. For primary lines, the steelshop and the hot strip

mill, the additional constraints and coupled behaviour would require new

developments to tackle their scheduling. The increased scope, and therefore

problem size, makes the parallelization abilities developed in this work even

more relevant for that case.

6.2 Future Work

The field of metaheuristics is very broad, has a near-infinite range of appli-

cations, and intersects with other fields like multiobjective optimization or

Machine Learning2.

This opens up multiple options to advance from this point of paralleliza-

tion of metaheuristics towards enabling solving larger and/or more complex

problems. Below are some interesting avenues to extend the research pre-

sented in this thesis.
2Both in the use of metaheuristics as optimization tools for hyperparametrization of

Machine Learning Models and in the use of Machine Learning to build surrogate models
for use as an integral part of metaheuristic algorithms.

6.2. FUTURE WORK 119

6.2.1 Algorithm Frameworks

One possibility is to move from the ad-hoc implementations of the algorithms

used for the tests detailed above towards generic ones, ready to use by the

research community. The most straightforward way to attain this is to in-

tegrate the algorithm into widely used frameworks for the development of

metaheuristics.

A more ambitious goal to set would be developing a new framework fo-

cusing on the parallelization aspect as the central idea, instead of one of

the supporting features. This would provide a tool to develop novel algo-

rithms designed for parallelization from the ground up, rather than taking

an existing sequential algorithm and adapting it to run concurrently.

There are already some algorithms designed following this principle, but

the literature shows no general conceptual framework for it, like there is for

the basic metaheuristic algorithms. Undoubtedly, such a conceptual frame-

work would go hand-in-hand with the more practical development framework.

One such parallel-centric feature could be the use of asynchronous com-

putation. This is not completely novel, but it is a very underrepresented

option. Usually, the different execution threads advance more or less in

lockstep, and explicit synchronization points are set, e.g. at the end of an

iteration. This can, with some adaptations of the algorithms, be avoided,

and instead allow a more dynamic environment that more closely resembles

the real-life inspiration for most metaheuristics.

For instance, in Ant Colony Optimization, ants would not synchronize in

iterations for a global pheromone update; each ant would build its solution,

120 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

determine whether pheromone should be deposited, and do the update, which

can change the pheromone while another ant is building it own solution.

The effects of this type of features on solution quality and convergence

have not yet been studied.

6.2.2 Non-Traditional Computing Architectures

With a few exceptions3, metaheuristics are implemented using imperative or

object-oriented programming languages on ‘classical’ computers.

Other options could be explored to assess potential benefits that could

be gained at the moment, or to understand the potential improvements and

new capabilities of future architectures.

Functional programming languages, due to their very design, enforce data

immutability and encapsulation of behaviour, which matches perfectly with

the needs of parallelization. Metaheuristics implemented using functional

languages would parallelize very naturally, and options like Erlang, which

runs on a distributed virtual machine, would make the distinction of whether

the algorithm is run locally or distributed irrelevant.

Similarly, some languages are designed specifically for distributed sys-

tems, and they establish a crisp separation of the program logic and the

distributed hardware mapping.

These options could be tried out to see if the new perspective on the

algorithms provides advantages. Potentially they could improve upon current

implementations because of their dedicated features, or at least make it easier
3E.g. there are some hardware implementations of Ant Colony Optimization using

FPGAs.

6.2. FUTURE WORK 121

to build distributed algorithms. But also they force a different way to look

at the algorithms, which may lead to novel ideas.

Although the classical Von Neumann architecture has dominated com-

puting for over half a century, new architectures are on the horizon.

Quantum Computing is the obvious one. Even if practical applications

(and the exact technologies) are still years to decades away, the main princi-

ples and proof-of-concept hardware are available now. Quantum Computing

will be very relevant to the field of metaheuristics, as important acceleration

and scalability is expected in combinatorial optimization, where metaheuris-

tics now dominate; but it is still to be seen whether Quantum Computing can

be harnessed to run accelerated, improved, or completely new metaheuristic

algorithms.

In-memory computing, while less known than Quantum Computing is

also much closer to practical equipment that can be applied for real-life

problems. The main difference between classical and in-memory comput-

ing is that the latter tries to break the communication bottleneck created by

the need to move data to the CPU for computation by adopting a memory-

centric architecture with processors distributed across the ‘memory fabric’.

Oversimplifying, it takes the computation to the data instead of taking the

data to the computation.

Like Quantum Computing, being a new architecture, the design of al-

gorithms has to be reworked. In-memory computing is closer to traditional

algorithm design, and many of the skills translate quite directly; Quantum

Computing, on the other hand, requires a completely different skill set, more

related to quantum mechanics than computer science. Understanding the

122 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

implications of developing metaheuristic algorithms in an in-memory archi-

tecture would be another potential research avenue.

6.2.3 Parallel Multiobjective Metaheuristics

This work has touched lightly on multiobjective optimization as an inter-

pretation of the several conflicting desirable properties in an algorithm, and

used the concept of Pareto front to identify an existing gap to address.

When dealing with multiple objectives, the move from one to several

dimensions means that the absolute ordering of solution quality disappears,

and solution quality needs to rely on the concept of dominance.

This automatically rules out analytical optimization approaches, and the

field of multiobjective optimization is almost monopolized by metaheuris-

tics, especially Evolutionary Algorithms. Although we can take some of the

lessons learned and apply them to multiobjective metaheuristics, significant

adaptations or new developments are needed. For instance, when selecting

the ‘best solution’ to migrate, it is no longer possible to have an absolute

best solution.

There is already some research on parallelization of multiobjective meta-

heuristics. The most common approach is using decomposition strategies

that have each population focus on a limited region of the Pareto front.

Much more can be explored in this area. Additionally, there are practical

problems that drive the need for such systems. One example, if we move

upstream from the scheduling problem introduced in this work, is the joint

scheduling of the steelshop and hot strip mill. These two lines, as described in

6.2. FUTURE WORK 123

chapter 1, need to be coordinated to have a fluid operation of the whole plant,

and their requirements are different enough that their respective objectives

can be considered as antagonistic. Add to that the need to consider lead

times to ensure proper service levels, and the problem is not only much

larger and complex than the scheduling of the galvanizing line, but it also

becomes multiobjective.

Having such a problem as a practical, real-world test-bed for parallel

multiobjective metaheuristics is icing on the cake, making this option possibly

the most enticing for further research.

124 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Chapter 7

Conclusiones y trabajo futuro

Contents
7.1 Conclusiones . 127

7.2 Trabajo futuro . 131

7.2.1 Plataformas de algoritmos 131

7.2.2 Arquitecturas de computación no convencionales . 133

7.2.3 Metaheurísticos multi-objetivo paralelos 135

125

126 CHAPTER 7. CONCLUSIONES Y TRABAJO FUTURO

7.1. CONCLUSIONES 127

7.1 Conclusiones

Esta gran variedad de aproximaciones a la paralelización de metaheurísticos

proporciona diferentes opciones de combinación de calidad de solución, com-

plejidad de los algoritmos, volumen añadido de comunicación, y capacidad

de generalización.

Las múltiples ejecuciones independientes (Multi-inicio), se sitúa en uno de

los extremos del espectro de equilibrio de factores, con complejidad y carga

de comunicaciones mínimas, y se utiliza habitualmente como método base

de referencia para comparar otros métodos. Este trabajo presenta el método

Multiverso, publicado por primera vez en [Día+20], como alternativa a las

múltiples ejecuciones independientes.

Tanto el método Multiverso como el Multi-inicio son completamente ge-

néricos. De hecho, pueden considerarse meta-algoritmos, que se aplican a

un algoritmo para obtener un nuevo algoritmo, paralelizado. El método

Multi-inicio tiene un ámbito más amplio, ya que puede aplicarse a cualquier

metaheurístico. El método Multiverso, aplicable directamente a cualquier

metaheurístico basado en población, sigue teniendo un ámbito de aplicación

importante. Comparado con Multi-inicio, el incremento tanto de carga de

comunicaciones como de complejidad de Multiverso es despreciable.

Para comprobar estas afirmaciones, y para evaluar su comportamiento

en términos de calidad de soluciones comparado con Multi-inicio, esta tesis

describe instanciaciones concretas del método para resolver el problema del

viajante (Travelling Salesperson Problem, TSP) utilizando algoritmos genéti-

cos y optimización por colonia de hormigas como representantes de las dos

128 CHAPTER 7. CONCLUSIONES Y TRABAJO FUTURO

clases generales de metaheurísticos basados en población. Las pruebas se re-

alizan sobre las instancias de problema del viajante asimétrico de la librería

de pruebas estándar TSPLIB.

La variante Multiverso supera o iguala a la aproximacion Multi-inicio en

calidad de solución final. Los tests estadísticos demuestran que esta mejora

es estadísticamente significativa en 10 de las 18 instancias en el caso de los

Algoritmos Genéticos y en 11 de las 18 en el caso de la Optimización por

Colonia de Hormigas. En los 8 ó 7 casos restantes respectivamente, no existe

diferencia significativa, es decir, la calidad es equivalente en Multiverso y

Multi-inicio. Las instancias de mayor tamaño, especialmente las que tienen

más de 400 ciudades, tienden a benficiarse más de la mejora.

En cuanto a la rápidez para alcanzar soluciones de mayor calidad, según

la métrica de hipervolumen, la situación es similar para la Optimización

por Colonia de Hormigas, donde la variante Multiverso mejora de forma

estadísticamente significativa a Multi-inicio en 11 de 18 instancias; para los

Algoritmos Genéticos, los beneficios del método Multiverso son aún mayores,

mejorando en 16 de las 18 instancias probadas.

El incremento de tiempo de ejecución necesario para obtener estos bene-

ficios es indistinguible de la variabilidad intrínseca del tiempo de ejecución

de cada problema. Tanto Multi-inicio como Multiverso resultan la opción

más rápida, por márgenes muy reducidos, en varias de las instancias. Las

diferencias en las medias de tiempos de ejecución difieren por décimas de

segundo, o unos pocos segundos en los problemas de mayor tamaño, y los

tiempos totales de ejecución varían entre unos 30 segundos y 4–5 minutos

(o más en algunos casos particulares); esto supone diferencias de uno o dos

7.1. CONCLUSIONES 129

puntos percentuales a lo sumo, según la instancia.

En el problema de programación de la línea de galvanizado, que origina la

necesidad de desarrollar este algoritmo, se obtienen resultados similarmente

positivos. El problema industrial de programación se resuleve para 46 ins-

tancias representativas, utilizando un modelo de Optimización por Colonia

de Hormigas especialmente adaptado.

Como en el caso del TSP, los resultados de la variante Multiverso para

el problema de programación muestran mejoras significativas tanto en cali-

dad de solución final como en rapidez para alcanzar mejores soluciones. De

las 46 instancias disponibles para las pruebas, 29 resultaron en una mejora

estadísticamente significativa de la calidad de la solución final y 27 mejo-

ran similarmente en la métrica de hipervolumen. En las 17 ó 19 instancias

restantes respectivamente, las diferencias no son significativas.

Estos resultados se obtienen a pesar de la variabilidad mucho mayor en

calidad de solución entre ejecuciones de la misma instancia, debida a las difi-

cultades asociadas a encontrar soluciones factibles en un espacio de búsqueda

complejo con un número de evaluaciones de las funciones tan limitado.

Como en el caso anterior, las diferencias en tiempos de ejecución alternan

a favor de uno u otro método, siempre con valores absolutos que representan

una pequeña fracción del tiempo de ejecución total, como es de esperar si la

complejidad y comunicación añadidas son despreciables.

Estos resultados apoyan la hipótesis de que el método Multiverso es un

buen candidato para sustituir a Multi-inicio como modelo base para la com-

paración de métodos distribuidos, y una aproximación inicial prometedora

para extender el problema de programación de la Línea de Galvanizado a

130 CHAPTER 7. CONCLUSIONES Y TRABAJO FUTURO

instancias de mayor tamaño y complejidad, en las que resulta más difícil en-

contrar soluciones factibles. Todo ello, respetando las duras limitaciones de

tiempo de ejecución impuestas por las necesidades operativas de la aplicación

industrial.

Aunque las mejoras son relativamente pequeñas, llegando al 2%–3% en

los mejores casos, y manteniendose típicamente por debajo del 1%, los re-

tornos totales son significativos, dado el volumen de material procesado. En

términos aproximados, suponiendo una línea que produzca 500 Kt/año, con

una mejora del 0,5% en la productividad añade 2,5 Kt, lo que se traduce

en aproximadamente $2,5M en ingresos adicionales con los precios actuales

en el momento de escribir estas conclusiones1. Esto supone un potencial de

más de $750M de incremento de ingresos a nivel de la producción mundial

si se extrapola este cálculo a las más de 150 Mt/año de acero galvanizado

producidas globalmente.

Si bien por motivos de confidencialidad no es posible proporcionar más

detalles sobre la evaluación de las ganacias derivadas de esta aproximación,

este ejemplo muestra claramente cómo mejoras aparentemente pequeñas ex-

plotan al tener en cuenta los ingentes volúmenes de producción mundial de

acero.

Adicionalmente, la misma aproximación de optimización de la progra-

mación se puede extender a otras líneas de producción adaptando las fun-

ciones de coste y restricciones. En el caso de otras líneas acabadoras, la

adaptación debería ser relativamente directa, por las similitudes en el fun-

1Considerando el precio spot en China de bobina galvanizada como índice representa-
tivo, a 2021-11-03 el precio por tonelada es 6.495 RMB o 1.015,51 USD.

7.2. TRABAJO FUTURO 131

cionamiento, aunque requerirían esfuerzos para modelar los aspectos espe-

cíficos de cada línea. Para las líneas de cabecera, acería y tren de bandas

en caliente, las restricciones adicionales y su funcionamiento acoplado harían

necesario desarrollar nuevos modelos para optimizar su programación. El

ámbito de mayor amplitud, y por lo tanto la mayor complejidad y tamaño

del problema, hacen que las capacidades de paralelización desarrolladas en

este trabajo resulten aún más relevantes en ese caso.

7.2 Trabajo futuro

El campo de los metaheurísticos es muy amplio, con una variedad casi infinita

de aplicaciones, y se solapa con otros campos como la optimización multi-

objetivo o el aprendizaje automático.

Esto abre la puerta a múltiples opciones para continuar avanzando desde

la paralelización de metaheurísticos hacia hacer posible resolver problemas

más complejos y/o a mayor escala.

7.2.1 Plataformas de algoritmos

Una posibilidad es abandonar las implementaciones ad-hoc de los algoritmos

utilizados en las pruebas realizadas en esta tesis y moverse hacia versiones

más genéricas, listas para su uso por parte de la comunidad investigadora. La

manera más directa de lograr esto es integrando el algoritmo en las platafor-

mas de desarrollo de metaheurísticos de uso más común.

Una meta más ambiciosa sería la creación de una nueva plataforma, con

la paralelización de algoritmos como idea central, en lugar de ser una fun-

132 CHAPTER 7. CONCLUSIONES Y TRABAJO FUTURO

cionalidad secundaria. Sería una herramienta para el desarrollo de nuevos

algoritmos diseñados desde el inicio para la paralelización, en lugar de adap-

tar un modelo secuencial existente para ejecutarse de forma distribuida.

Ya existen algunos algoritmos diseñados siguiendo esta filosofía, pero no

se ha identificado en la literatura ningún marco conceptual genérico para

ello, como lo hay para los metaheurísticos ‘clásicos’. Sin duda un marco

conceptual así debería ir aparejado a una plataforma de este tipo.

Una característica específicamente asociada a la paralelización podría ser

el uso de computación asíncrona. Esto no es completamente nuevo, pero

es una opción extremadamente poco frecuente. Normalmente, los diferentes

flujos de ejecución avanzan conjuntamente, y se establecen puntos de sin-

cronización específicos, por ejemplo al final de cada iteración. Con ciertas

adaptaciones en los algoritmos, se podría evitar esto y en su lugar permi-

tir una evolución más dinámica, que además representaría más fielmente la

inspiración biológica de muchos metaheurísticos.

Por ejemplo, en la optimización por colonia de hormigas, las hormigas no

necesitarían sincronizarse por iteraciones para llevara a cabo una operación

global de depósito de feromonas. En su lugar, cada hormiga construiría

su solución, determinaría si debe depositar feromona, y en su caso haría el

depósito. Esto podría cambiar los valores de las feromonas mientras otras

hormigas están construyendo sus soluciones.

Los efectos de este tipo de características sobre la calidad de las soluciones

y la convergencia de los algoritmos aún no han sido estudiados.

7.2. TRABAJO FUTURO 133

7.2.2 Arquitecturas de computación no convencionales

Salvo contadas excepciones, los metaheurísticos se implementan en orde-

nadores ‘clásicos’ utilizando lenguajes de programación imperativos u orien-

tados a objetos.

Podrían explorarse otras opciones para evaluar posibles beneficios que

podrían obtenerse en estos momentos, o para entender las potenciales mejoras

y nuevas posibilidades de arquitecturas futuras.

Los lenguajes de programación funcionales, por diseño, obligan a utilizar

datos inmutables y a aislar comportamientos, lo que encaja perfectamente

con las necesidades de los algoritmos paralelos. Los metaheurísticos imple-

mentados con lenguajes de programción funcionales se adaptarían muy na-

turalmente a entornos distribuidos, y opciones como Erlang, que se ejecuta

sobre una máquina virtual distribuida, pueden volver irrelevante la cuestión

de si la ejecución es local o paralelizada.

Igualmente, algunos lenguajes se han diseñado específicamente para sis-

temas distribuidos, y separan claramente la lógica de programa y el mapeo

a los equipos distribuidos.

Estas opciones podrían probarse para determinar si la nueva perspectiva

sobre los algoritmos aporta ventajas. Potencialmente, podrían mejorarse las

implementaciones actuales gracias a sus características específicas, o al menos

facilitar el desarrollo de algoritmos distribuidos. Pero además, al forzar una

manera diferente de considerar los algoritmos, podrían fomentar la aparición

de nuevas ideas.

Aunque la arquitectura Von Neumann lleva más de medio siglo domi-

134 CHAPTER 7. CONCLUSIONES Y TRABAJO FUTURO

nando la computación, empiezan a vislumbrarse alternativas.

La más obvia es la computación cuántica. Si bien las aplicaciones prác-

ticas (e incluso las tecnologías definitivas) aún tardarán años o décadas en

llegar, los principios básicos y equipos a nivel de prueba de concepto ya

existen. La computación cuántica será muy relevante para el mundo de los

metaheurísticos, dadas la aceleración y la escalabilidad que se espera en el

ámbito de la optimización combinatoria, que los metaheurísticos dominan

hoy en día. Aún está por ver si la computación cuántica puede aprovecharse

para ejecutar versiones aceleradas, mejoradas, o completamente nuevas de

algoritmos metaheurísticos.

La computación en memoria, aunque es menos célebre que la computación

cuántica, está más próxima a producir equipos y soluciones de aplicación

práctica. La principal diferencia entre la computación clásica y la com-

putación en memoria es que esta intenta superar el cuello de botella que

supone la necesidad de mover datos a la CPU para realizar los cálculos; para

ello, adoptan una arquitectura centrada en la memoria, con procesadores dis-

tribuidos por el ‘tejido de memoria’ (memory fabric). De forma muy simple,

lleva la computación a los datos en lugar de los datos a la computación.

Al igual que en la computación cuántica, al ser una arquitectura nueva,

la computación en memoria requiere rediseñar los algoritmos para sacarle el

máximo provecho. La computación en memoria es más similar a la com-

putación clásica, lo que hace más fácil transferir las habilidades de una a

la otra. La computación cuantica, por el contrario, requiere unas compe-

tencias muy diferentes, más alineadas con la mecánica cuántica que con las

ciencias de la computación. Entender las implicaciones de desarrollar algo-

7.2. TRABAJO FUTURO 135

ritmos metaheurísticos para estas arquitecturas sería otra posible línea de

investigación.

7.2.3 Metaheurísticos multi-objetivo paralelos

Este trabajo ha mencionado la optimización multi-objetivo como la manera

de interpretar múltiples requisitos opuestos en las propiedades de los algo-

ritmos, usando el concepto de frente de Pareto para indentificar un área de

interés sobre la que investigar.

Al tratar con varios objetivos, el cambio de una a varias dimensiones

hace desaparecer la ordenación absoluta de las soluciones. Para comparar

soluciones hay que recurrir al concepto de dominancia.

En estas condiciones, hay que descartar las aproximaciones analíticas, y

la optimización multi-objetivo está prácticamente monopolizada por meta-

heurísticos, especialmente algoritmos evolutivos. Aunque se podrían trasladar

algunas de las lecciones aprendidas para paralelizar estos métodos, harían

falta importantes revisiones o incluso métodos completamente nuevos. Por

ejemplo, al seleccionar la ‘mejor solución’ para migrar, ya no es posible tener

una ‘mejor solución’ absoluta.

Ya se ha realizado algo de investigación en la paralelización de meta-

heurísticas multiobjetivo. La aproximación más habitual consiste en utilizar

estrategias de descomposición por las que cada población se concentra en

una región limitada del frente de Pareto.

Aún hay mucho más por explorar. Además, hay problemas prácticos que

impulsan el desarrollo de este tipo de sistemas. Un ejemplo se encuentra

136 CHAPTER 7. CONCLUSIONES Y TRABAJO FUTURO

aguas arriba del problema de secuenciación que se presenta en este trabajo:

la secuenciación conjunta de la acería y el tren de bandas en caliente. Estas

dos líneas deben coordinarse para garantizar una operación fluida de toda la

planta, y sus requisitos individuales son tan distintos que pueden considerarse

antagónicos. Añadiendo a la mezcla la necesidad de tener en cuenta los

tiempos de entrega para asegurar un nivel de servicio adecuado, el problema

resulta mucho mayor y más complejo que la secuenciación de una línea de

galvanizado, y además es multi-objetivo.

Tener un problema industrial realista como este como banco de pruebas

para metaheurísticos multiobjetivo paralelos es el colofón para hacer que esta

opción sea probablemente la más atractiva para investigación futura.

Appendices

137

Appendix A

Evolution Graphs for TSP GA

Figures
A.1 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for br17 143

A.2 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ft53 143

A.3 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ft70 144

A.4 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv170 144

A.5 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv33 145

A.6 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv35 145

139

140 APPENDIX A. EVOLUTION GRAPHS FOR TSP GA

A.7 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv38 146

A.8 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv44 146

A.9 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv47 147

A.10 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv55 147

A.11 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv64 148

A.12 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ftv70 148

A.13 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for kro124p 149

A.14 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for p43 149

A.15 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for rbg323 150

A.16 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for rbg358 150

A.17 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for rbg403 151

A.18 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for rbg443 151

141

A.19 Evolution of GA average best solution versus iteration for

Multistart and Multiverse for ry48p 152

142 APPENDIX A. EVOLUTION GRAPHS FOR TSP GA

143

0 25 50 75 100 125 150 175
Iterations

40

45

50

55

60

65

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - br17.atsp - ga
multistart
multiverse

Figure A.1: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for br17

0 100 200 300 400 500
Iterations

10000

12000

14000

16000

18000

20000

22000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ft53.atsp - ga
multistart
multiverse

Figure A.2: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for ft53

144 APPENDIX A. EVOLUTION GRAPHS FOR TSP GA

0 100 200 300 400 500 600 700
Iterations

45000

50000

55000

60000

65000
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - ft70.atsp - ga
multistart
multiverse

Figure A.3: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for ft70

0 250 500 750 1000 1250 1500 1750
Iterations

7500

10000

12500

15000

17500

20000

22500

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv170.atsp - ga
multistart
multiverse

Figure A.4: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for ftv170

145

0 50 100 150 200 250 300
Iterations

1500

1750

2000

2250

2500

2750

3000

3250

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv33.atsp - ga
multistart
multiverse

Figure A.5: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for ftv33

0 50 100 150 200 250 300 350
Iterations

2000

2500

3000

3500

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv35.atsp - ga
multistart
multiverse

Figure A.6: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for ftv35

146 APPENDIX A. EVOLUTION GRAPHS FOR TSP GA

0 50 100 150 200 250 300 350
Iterations

2000

2500

3000

3500

4000
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - ftv38.atsp - ga
multistart
multiverse

Figure A.7: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for ftv38

0 100 200 300 400
Iterations

2000

2500

3000

3500

4000

4500

5000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv44.atsp - ga
multistart
multiverse

Figure A.8: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for ftv44

147

0 100 200 300 400
Iterations

2500

3000

3500

4000

4500

5000

5500

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv47.atsp - ga
multistart
multiverse

Figure A.9: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for ftv47

0 100 200 300 400 500
Iterations

2000

2500

3000

3500

4000

4500

5000

5500

6000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv55.atsp - ga
multistart
multiverse

Figure A.10: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for ftv55

148 APPENDIX A. EVOLUTION GRAPHS FOR TSP GA

0 100 200 300 400 500 600
Iterations

3000

4000

5000

6000

7000
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - ftv64.atsp - ga
multistart
multiverse

Figure A.11: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for ftv64

0 100 200 300 400 500 600 700
Iterations

3000

4000

5000

6000

7000

8000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv70.atsp - ga
multistart
multiverse

Figure A.12: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for ftv70

149

0 200 400 600 800 1000 1200
Iterations

60000

80000

100000

120000

140000

160000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - kro124p.atsp - ga
multistart
multiverse

Figure A.13: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for kro124p

0 100 200 300 400
Iterations

6000

7000

8000

9000

10000

11000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - p43.atsp - ga
multistart
multiverse

Figure A.14: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for p43

150 APPENDIX A. EVOLUTION GRAPHS FOR TSP GA

0 500 1000 1500 2000 2500 3000
Iterations

2000

2500

3000

3500

4000

4500

5000

5500
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - rbg323.atsp - ga
multistart
multiverse

Figure A.15: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for rbg323

0 500 1000 1500 2000 2500 3000 3500
Iterations

2000

3000

4000

5000

6000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - rbg358.atsp - ga
multistart
multiverse

Figure A.16: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for rbg358

151

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

3000

4000

5000

6000

7000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - rbg403.atsp - ga
multistart
multiverse

Figure A.17: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for rbg403

0 1000 2000 3000 4000
Iterations

4000

5000

6000

7000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - rbg443.atsp - ga
multistart
multiverse

Figure A.18: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for rbg443

152 APPENDIX A. EVOLUTION GRAPHS FOR TSP GA

0 100 200 300 400 500
Iterations

20000

25000

30000

35000

40000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ry48p.atsp - ga
multistart
multiverse

Figure A.19: Evolution of GA average best solution versus iteration for Mul-
tistart and Multiverse for ry48p

Appendix B

Evolution Graphs for TSP ACO

Figures
B.1 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for br17 157

B.2 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for ft53 157

B.3 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for ft70 158

B.4 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for ftv170 158

B.5 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for ftv33 159

B.6 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for ftv35 159

153

154 APPENDIX B. EVOLUTION GRAPHS FOR TSP ACO

B.7 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for ftv38 160

B.8 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for ftv44 160

B.9 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for ftv47 161

B.10 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for ftv55 161

B.11 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for ftv64 162

B.12 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for ftv70 162

B.13 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for kro124p 163

B.14 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for p43 163

B.15 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for rbg323 164

B.16 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for rbg358 164

B.17 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for rbg403 165

B.18 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for rbg443 165

155

B.19 Evolution of ACO average best solution versus iteration

for Multistart and Multiverse for ry48p 166

156 APPENDIX B. EVOLUTION GRAPHS FOR TSP ACO

157

0 25 50 75 100 125 150 175
Iterations

39.0

39.1

39.2

39.3

39.4

39.5

39.6

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - br17.atsp - aco
multistart
multiverse

Figure B.1: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for br17

0 100 200 300 400 500
Iterations

8000

10000

12000

14000

16000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ft53.atsp - aco
multistart
multiverse

Figure B.2: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for ft53

158 APPENDIX B. EVOLUTION GRAPHS FOR TSP ACO

0 100 200 300 400 500 600 700
Iterations

40000

45000

50000

55000

60000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ft70.atsp - aco
multistart
multiverse

Figure B.3: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for ft70

0 250 500 750 1000 1250 1500 1750
Iterations

4000

6000

8000

10000

12000

14000

16000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv170.atsp - aco
multistart
multiverse

Figure B.4: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for ftv170

159

0 50 100 150 200 250 300
Iterations

1400

1600

1800

2000

2200

2400

2600

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv33.atsp - aco
multistart
multiverse

Figure B.5: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for ftv33

0 50 100 150 200 250 300 350
Iterations

1400

1600

1800

2000

2200

2400

2600

2800

3000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv35.atsp - aco
multistart
multiverse

Figure B.6: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for ftv35

160 APPENDIX B. EVOLUTION GRAPHS FOR TSP ACO

0 50 100 150 200 250 300 350
Iterations

1500

1750

2000

2250

2500

2750

3000

3250
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - ftv38.atsp - aco
multistart
multiverse

Figure B.7: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for ftv38

0 100 200 300 400
Iterations

1500

2000

2500

3000

3500

4000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv44.atsp - aco
multistart
multiverse

Figure B.8: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for ftv44

161

0 100 200 300 400
Iterations

2000

2500

3000

3500

4000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv47.atsp - aco
multistart
multiverse

Figure B.9: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for ftv47

0 100 200 300 400 500
Iterations

1500

2000

2500

3000

3500

4000

4500

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv55.atsp - aco
multistart
multiverse

Figure B.10: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for ftv55

162 APPENDIX B. EVOLUTION GRAPHS FOR TSP ACO

0 100 200 300 400 500 600
Iterations

2000

2500

3000

3500

4000

4500

5000

5500
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - ftv64.atsp - aco
multistart
multiverse

Figure B.11: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for ftv64

0 100 200 300 400 500 600 700
Iterations

2000

3000

4000

5000

6000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ftv70.atsp - aco
multistart
multiverse

Figure B.12: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for ftv70

163

0 200 400 600 800 1000 1200
Iterations

40000

50000

60000

70000

80000

90000

100000

110000

120000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - kro124p.atsp - aco
multistart
multiverse

Figure B.13: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for kro124p

0 100 200 300 400
Iterations

5620

5640

5660

5680

5700

5720

5740

5760

5780

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - p43.atsp - aco
multistart
multiverse

Figure B.14: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for p43

164 APPENDIX B. EVOLUTION GRAPHS FOR TSP ACO

0 500 1000 1500 2000 2500 3000
Iterations

1500

2000

2500

3000

3500

4000
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - rbg323.atsp - aco
multistart
multiverse

Figure B.15: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for rbg323

0 500 1000 1500 2000 2500 3000 3500
Iterations

1500

2000

2500

3000

3500

4000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - rbg358.atsp - aco
multistart
multiverse

Figure B.16: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for rbg358

165

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

2500

3000

3500

4000

4500

5000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - rbg403.atsp - aco
multistart
multiverse

Figure B.17: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for rbg403

0 1000 2000 3000 4000
Iterations

3000

3500

4000

4500

5000

5500

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - rbg443.atsp - aco
multistart
multiverse

Figure B.18: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for rbg443

166 APPENDIX B. EVOLUTION GRAPHS FOR TSP ACO

0 100 200 300 400 500
Iterations

15000

17500

20000

22500

25000

27500

30000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - ry48p.atsp - aco
multistart
multiverse

Figure B.19: Evolution of ACO average best solution versus iteration for
Multistart and Multiverse for ry48p

Appendix C

Evolution Graphs for the

Scheduling Problem

Figures
C.1 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 10_coils_30 173

C.2 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 10_coils_60 173

C.3 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 10_coils_90 174

C.4 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 11_coils_30 174

C.5 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 11_coils_60 175

167

168APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

C.6 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 11_coils_90 175

C.7 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 12_coils_30 176

C.8 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 12_coils_60 176

C.9 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 12_coils_90 177

C.10 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 13_coils_30 177

C.11 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 13_coils_60 178

C.12 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 13_coils_90 178

C.13 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 14_coils_30 179

C.14 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 14_coils_60 179

C.15 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 14_coils_90 180

C.16 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 15_coils_30 180

C.17 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 15_coils_60 181

169

C.18 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 15_coils_90 181

C.19 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 1_coils_27 182

C.20 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 1_coils_30 182

C.21 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 1_coils_60 183

C.22 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 1_coils_90 183

C.23 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 2_coils_30 184

C.24 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 2_coils_60 184

C.25 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 2_coils_90 185

C.26 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 3_coils_30 185

C.27 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 3_coils_60 186

C.28 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 3_coils_90 186

C.29 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 4_coils_30 187

170APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

C.30 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 4_coils_60 187

C.31 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 4_coils_90 188

C.32 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 5_coils_30 188

C.33 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 5_coils_60 189

C.34 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 5_coils_90 189

C.35 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 6_coils_30 190

C.36 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 6_coils_60 190

C.37 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 6_coils_90 191

C.38 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 7_coils_30 191

C.39 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 7_coils_60 192

C.40 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 7_coils_90 192

C.41 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 8_coils_30 193

171

C.42 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 8_coils_60 193

C.43 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 8_coils_90 194

C.44 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 9_coils_30 194

C.45 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 9_coils_60 195

C.46 Evolution of SCHED average best solution versus itera-

tion for Multistart and Multiverse for 9_coils_90 195

172APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

173

0 25 50 75 100 125 150 175 200
Iterations

538.15

538.20

538.25

538.30

538.35

538.40

538.45

538.50

538.55

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 10_coils_30 - sched
multistart
multiverse

Figure C.1: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 10_coils_30

0 25 50 75 100 125 150 175 200
Iterations

180

190

200

210

220

230

240

250

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 10_coils_60 - sched
multistart
multiverse

Figure C.2: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 10_coils_60

174APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

0 25 50 75 100 125 150 175 200
Iterations

280

300

320

340

360

380

400

420
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - 10_coils_90 - sched
multistart
multiverse

Figure C.3: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 10_coils_90

0 50 100 150 200
Iterations

60

70

80

90

100

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 11_coils_30 - sched
multistart
multiverse

Figure C.4: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 11_coils_30

175

0 50 100 150 200
Iterations

2100

2150

2200

2250

2300

2350

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 11_coils_60 - sched
multistart
multiverse

Figure C.5: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 11_coils_60

0 50 100 150 200
Iterations

740

760

780

800

820

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 11_coils_90 - sched
multistart
multiverse

Figure C.6: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 11_coils_90

176APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

0 50 100 150 200 250
Iterations

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - 12_coils_30 - sched
multistart
multiverse

Figure C.7: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 12_coils_30

0 50 100 150 200 250
Iterations

790

800

810

820

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 12_coils_60 - sched
multistart
multiverse

Figure C.8: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 12_coils_60

177

0 50 100 150 200 250
Iterations

1180

1200

1220

1240

1260

1280

1300

1320

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 12_coils_90 - sched
multistart
multiverse

Figure C.9: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 12_coils_90

0 50 100 150 200 250
Iterations

1985

1990

1995

2000

2005

2010

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 13_coils_30 - sched
multistart
multiverse

Figure C.10: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 13_coils_30

178APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

0 50 100 150 200 250
Iterations

445

450

455

460

465

470

475
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - 13_coils_60 - sched
multistart
multiverse

Figure C.11: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 13_coils_60

0 50 100 150 200 250
Iterations

200

300

400

500

600

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 13_coils_90 - sched
multistart
multiverse

Figure C.12: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 13_coils_90

179

0 50 100 150 200 250
Iterations

111.0

111.5

112.0

112.5

113.0

113.5

114.0

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 14_coils_30 - sched
multistart
multiverse

Figure C.13: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 14_coils_30

0 50 100 150 200 250
Iterations

5700

5720

5740

5760

5780

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 14_coils_60 - sched
multistart
multiverse

Figure C.14: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 14_coils_60

180APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

0 50 100 150 200 250
Iterations

600

650

700

750

800

850
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - 14_coils_90 - sched
multistart
multiverse

Figure C.15: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 14_coils_90

0 50 100 150 200 250 300
Iterations

2027.6

2027.8

2028.0

2028.2

2028.4

2028.6

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 15_coils_30 - sched
multistart
multiverse

Figure C.16: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 15_coils_30

181

0 50 100 150 200 250 300
Iterations

0

10000

20000

30000

40000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 15_coils_60 - sched
multistart
multiverse

Figure C.17: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 15_coils_60

0 50 100 150 200 250 300
Iterations

2100

2150

2200

2250

2300

2350

2400

2450

2500

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 15_coils_90 - sched
multistart
multiverse

Figure C.18: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 15_coils_90

182APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

0 100 200 300 400 500
Iterations

34.8

35.0

35.2

35.4

35.6

35.8

36.0
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - 1_coils_27 - sched
multistart
multiverse

Figure C.19: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 1_coils_27

0 100 200 300 400 500 600
Iterations

96

97

98

99

100

101

102

103

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 1_coils_30 - sched
multistart
multiverse

Figure C.20: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 1_coils_30

183

0 200 400 600 800 1000 1200
Iterations

220

221

222

223

224

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 1_coils_60 - sched
multistart
multiverse

Figure C.21: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 1_coils_60

0 250 500 750 1000 1250 1500 1750
Iterations

2000

2200

2400

2600

2800

3000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 1_coils_90 - sched
multistart
multiverse

Figure C.22: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 1_coils_90

184APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

0 100 200 300 400 500 600
Iterations

70

80

90

100

110
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - 2_coils_30 - sched
multistart
multiverse

Figure C.23: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 2_coils_30

0 200 400 600 800 1000 1200
Iterations

250

275

300

325

350

375

400

425

450

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 2_coils_60 - sched
multistart
multiverse

Figure C.24: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 2_coils_60

185

0 250 500 750 1000 1250 1500 1750
Iterations

1000

1050

1100

1150

1200

1250

1300

1350

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 2_coils_90 - sched
multistart
multiverse

Figure C.25: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 2_coils_90

0 100 200 300 400 500 600
Iterations

135

140

145

150

155

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 3_coils_30 - sched
multistart
multiverse

Figure C.26: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 3_coils_30

186APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

0 200 400 600 800 1000 1200
Iterations

642

643

644

645

646

647

648

649
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - 3_coils_60 - sched
multistart
multiverse

Figure C.27: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 3_coils_60

0 250 500 750 1000 1250 1500 1750
Iterations

0

100

200

300

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

+1.018e6 Best Solution Evolution - 3_coils_90 - sched
multistart
multiverse

Figure C.28: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 3_coils_90

187

0 100 200 300 400 500 600
Iterations

280

290

300

310

320

330

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 4_coils_30 - sched
multistart
multiverse

Figure C.29: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 4_coils_30

0 200 400 600 800 1000 1200
Iterations

4200

4400

4600

4800

5000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 4_coils_60 - sched
multistart
multiverse

Figure C.30: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 4_coils_60

188APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

0 250 500 750 1000 1250 1500 1750
Iterations

2400

2500

2600

2700

2800

2900
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - 4_coils_90 - sched
multistart
multiverse

Figure C.31: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 4_coils_90

0 100 200 300 400 500 600
Iterations

780

800

820

840

860

880

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 5_coils_30 - sched
multistart
multiverse

Figure C.32: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 5_coils_30

189

0 200 400 600 800 1000 1200
Iterations

556

558

560

562

564

566

568

570

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 5_coils_60 - sched
multistart
multiverse

Figure C.33: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 5_coils_60

0 250 500 750 1000 1250 1500 1750
Iterations

5500

5600

5700

5800

5900

6000

6100

6200

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 5_coils_90 - sched
multistart
multiverse

Figure C.34: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 5_coils_90

190APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

0 100 200 300 400 500 600
Iterations

66

68

70

72

74

76

78

80

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 6_coils_30 - sched
multistart
multiverse

Figure C.35: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 6_coils_30

0 200 400 600 800 1000 1200
Iterations

4060.0

4060.5

4061.0

4061.5

4062.0

4062.5

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 6_coils_60 - sched
multistart
multiverse

Figure C.36: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 6_coils_60

191

0 250 500 750 1000 1250 1500 1750
Iterations

350

375

400

425

450

475

500

525

550

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 6_coils_90 - sched
multistart
multiverse

Figure C.37: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 6_coils_90

0 100 200 300 400 500 600
Iterations

739.75

740.00

740.25

740.50

740.75

741.00

741.25

741.50

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 7_coils_30 - sched
multistart
multiverse

Figure C.38: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 7_coils_30

192APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

0 200 400 600 800 1000 1200
Iterations

400

500

600

700

800
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - 7_coils_60 - sched
multistart
multiverse

Figure C.39: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 7_coils_60

0 250 500 750 1000 1250 1500 1750
Iterations

4400

4450

4500

4550

4600

4650

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 7_coils_90 - sched
multistart
multiverse

Figure C.40: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 7_coils_90

193

0 100 200 300 400 500 600
Iterations

1940

1960

1980

2000

2020

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 8_coils_30 - sched
multistart
multiverse

Figure C.41: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 8_coils_30

0 200 400 600 800 1000 1200
Iterations

250

300

350

400

450

500

550

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 8_coils_60 - sched
multistart
multiverse

Figure C.42: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 8_coils_60

194APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

0 250 500 750 1000 1250 1500 1750
Iterations

4600

4700

4800

4900

5000

5100
Be

st
 so

lu
tio

n
(a

ve
ra

ge
d

ac
ro

ss
 ru

ns
)

Best Solution Evolution - 8_coils_90 - sched
multistart
multiverse

Figure C.43: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 8_coils_90

0 100 200 300 400 500 600
Iterations

43.0

43.1

43.2

43.3

43.4

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 9_coils_30 - sched
multistart
multiverse

Figure C.44: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 9_coils_30

195

0 200 400 600 800 1000 1200
Iterations

0

50000

100000

150000

200000

250000

300000

350000

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 9_coils_60 - sched
multistart
multiverse

Figure C.45: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 9_coils_60

0 250 500 750 1000 1250 1500 1750
Iterations

1650

1675

1700

1725

1750

1775

1800

1825

Be
st

 so
lu

tio
n

(a
ve

ra
ge

d
ac

ro
ss

 ru
ns

)

Best Solution Evolution - 9_coils_90 - sched
multistart
multiverse

Figure C.46: Evolution of SCHED average best solution versus iteration for
Multistart and Multiverse for 9_coils_90

196APPENDIX C. EVOLUTION GRAPHS FOR THE SCHEDULING PROBLEM

Bibliography

[11] Third World Congress on Nature & Biologically Inspired Com-

puting, NaBIC 2011, Salamanca, Spain, October 19-21, 2011.

IEEE, 2011. isbn: 978-1-4577-1122-0.

[ABD17] M. T. Adham, P. J. Bentley, and D. Diaz. “Evaluating Decompo-

sition Strategies to Enable Scalable Scheduling for a Real-World

Multi-Line Steel Scheduling Problem”. In: 2017 IEEE Sympo-

sium Series on Computational Intelligence (SSCI). 2017 IEEE

Symposium Series on Computational Intelligence (SSCI). Nov.

2017, pp. 1–8. doi: 10.1109/SSCI.2017.8285185.

[AK89] Emile Aarts and Jan Korst. Simulated Annealing and Boltzmann

Machines: A Stochastic Approach to Combinatorial Optimization

and Neural Computing. New York, NY, USA: John Wiley &

Sons, Inc., 1989. isbn: 0-471-92146-7.

[AL06] Enrique Alba and Gabriel Luque. “Evaluation of Parallel Meta-

heuristics”. In: (Jan. 1, 2006).

[Alb02] Enrique Alba. “Parallel Evolutionary Algorithms Can Achieve

Super-Linear Performance”. In: Information Processing Letters.

197

https://doi.org/10.1109/SSCI.2017.8285185

198 BIBLIOGRAPHY

Evolutionary Computation 82.1 (Apr. 15, 2002), pp. 7–13. issn:

0020-0190. doi: 10 . 1016 / S0020 - 0190(01) 00281 - 2. url:

https://www.sciencedirect.com/science/article/pii/

S0020019001002812.

[Alb05] Enrique Alba. Parallel Metaheuristics: A New Class of Algo-

rithms. John Wiley & Sons, Oct. 3, 2005. 574 pp. isbn: 978-0-

471-73937-1. Google Books: bUJXzkhg5s8C.

[AM11] L. Araujo and J. J. Merelo. “Diversity Through Multicultur-

ality: Assessing Migrant Choice Policies in an Island Model”.

In: IEEE Transactions on Evolutionary Computation 15.4 (Aug.

2011), pp. 456–469. issn: 1941-0026. doi: 10.1109/TEVC.2010.

2064322.

[Amd67] Gene M. Amdahl. “Validity of the Single Processor Approach

to Achieving Large Scale Computing Capabilities”. In: Proceed-

ings of the April 18-20, 1967, Spring Joint Computer Confer-

ence. AFIPS ’67 (Spring). New York, NY, USA: Association for

Computing Machinery, Apr. 18, 1967, pp. 483–485. isbn: 978-

1-4503-7895-6. doi: 10.1145/1465482.1465560. url: https:

//doi.org/10.1145/1465482.1465560.

[ANT02] Enrique Alba, Antonio Nebro, and José Troya. “Heterogeneous

Computing and Parallel Genetic Algorithms”. In: Journal of Par-

allel and Distributed Computing 62 (Sept. 1, 2002), pp. 1362–

1385. doi: 10.1006/jpdc.2002.1851.

https://doi.org/10.1016/S0020-0190(01)00281-2
https://www.sciencedirect.com/science/article/pii/S0020019001002812
https://www.sciencedirect.com/science/article/pii/S0020019001002812
http://books.google.com/books?id=bUJXzkhg5s8C
https://doi.org/10.1109/TEVC.2010.2064322
https://doi.org/10.1109/TEVC.2010.2064322
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1006/jpdc.2002.1851

BIBLIOGRAPHY 199

[App+06] David L. Applegate et al. The Traveling Salesman Problem: A

Computational Study. Princeton University Press, 2006. 606 pp.

isbn: 978-0-691-12993-8. Google Books: vhsJbqomDuIC.

[ASG07] I. Alaya, C. Solnon, and K. Ghedira. “Ant Colony Optimization

for Multi-Objective Optimization Problems”. In: 19th IEEE In-

ternational Conference on Tools with Artificial Intelligence(ICTAI

2007). 19th IEEE International Conference on Tools with Arti-

ficial Intelligence(ICTAI 2007). Vol. 1. Oct. 2007, pp. 450–457.

doi: 10.1109/ICTAI.2007.108.

[AT01] Enrique Alba and José Troya. “Analyzing Synchronous and Asyn-

chronous Parallel Distributed Genetic Algorithms”. In: Future

Generation Computer Systems 17 (Jan. 31, 2001), pp. 451–465.

doi: 10.1016/S0167-739X(99)00129-6.

[AT02] E. Alba and M. Tomassini. “Parallelism and Evolutionary Al-

gorithms”. In: IEEE Transactions on Evolutionary Computation

6.5 (Oct. 2002), pp. 443–462. issn: 1941-0026. doi: 10.1109/

TEVC.2002.800880.

[AT99] Enrique Alba and José Troya. “A Survey of Parallel Distributed

Genetic Algorithm”. In: Complexity 4 (Mar. 1, 1999), pp. 31–52.

doi: 10.1002/(SICI)1099-0526(199903/04)4:43.0.CO;2-4.

[AW09] Daniel Angus and Clinton Woodward. “Multiple Objective Ant

Colony Optimisation”. In: Swarm Intelligence 3.1 (Mar. 1, 2009),

pp. 69–85. issn: 1935-3820. doi: 10.1007/s11721-008-0022-4.

url: https://doi.org/10.1007/s11721-008-0022-4.

http://books.google.com/books?id=vhsJbqomDuIC
https://doi.org/10.1109/ICTAI.2007.108
https://doi.org/10.1016/S0167-739X(99)00129-6
https://doi.org/10.1109/TEVC.2002.800880
https://doi.org/10.1109/TEVC.2002.800880
https://doi.org/10.1002/(SICI)1099-0526(199903/04)4:43.0.CO;2-4
https://doi.org/10.1007/s11721-008-0022-4
https://doi.org/10.1007/s11721-008-0022-4

200 BIBLIOGRAPHY

[BD05] C. Blum and M. Dorigo. “Search Bias in Ant Colony Optimiza-

tion: On the Role of Competition-Balanced Systems”. In: IEEE

Transactions on Evolutionary Computation 9.2 (Apr. 2005), pp. 159–

174. issn: 1941-0026. doi: 10.1109/TEVC.2004.841688.

[BEN14] R. Bellman, A. O. Esogbue, and I. Nabeshima. Mathematical

Aspects of Scheduling and Applications: Modern Applied Mathe-

matics and Computer Science. Elsevier, May 20, 2014. 345 pp.

isbn: 978-1-4831-3744-5. Google Books: iW_iBQAAQBAJ.

[Ber] Dimitri P Bertsekas. “Network Optimization: Continuous and

Discrete Models”. In: (), p. 607.

[BFM97] Thomas Bäck, David Fogel, and Zbigniew Michalewicz. Hand-

book of Evolutionary Computation. Jan. 1, 1997. doi: 10.1887/

0750308958.

[Bia+09] Leonora Bianchi et al. “A Survey on Metaheuristics for Stochas-

tic Combinatorial Optimization”. In: Natural Computing: an in-

ternational journal 8.2 (June 1, 2009), pp. 239–287. issn: 1567-

7818. doi: 10.1007/s11047-008-9098-4. url: https://doi.

org/10.1007/s11047-008-9098-4.

[BKM94] Kenneth D. Boese, Andrew B. Kahng, and Sudhakar Muddu. “A

New Adaptive Multi-Start Technique for Combinatorial Global

Optimizations”. In: Operations Research Letters 16.2 (Sept. 1,

1994), pp. 101–113. issn: 0167-6377. doi: 10.1016/0167-6377(94)

90065-5. url: https://www.sciencedirect.com/science/

article/pii/0167637794900655.

https://doi.org/10.1109/TEVC.2004.841688
http://books.google.com/books?id=iW_iBQAAQBAJ
https://doi.org/10.1887/0750308958
https://doi.org/10.1887/0750308958
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1016/0167-6377(94)90065-5
https://doi.org/10.1016/0167-6377(94)90065-5
https://www.sciencedirect.com/science/article/pii/0167637794900655
https://www.sciencedirect.com/science/article/pii/0167637794900655

BIBLIOGRAPHY 201

[BKS98] Bernd Bullnheimer, Gabriele Kotsis, and Christine Strauß. “Par-

allelization Strategies for the Ant System”. In: High Performance

Algorithms and Software in Nonlinear Optimization. Ed. by Re-

nato De Leone et al. Applied Optimization. Boston, MA: Springer

US, 1998, pp. 87–100. isbn: 978-1-4613-3279-4. doi: 10.1007/

978-1-4613-3279-4_6. url: https://doi.org/10.1007/978-

1-4613-3279-4_6.

[Blu+11] Christian Blum et al. “Hybrid Metaheuristics in Combinato-

rial Optimization: A Survey”. In: Applied Soft Computing 11.6

(Sept. 1, 2011), pp. 4135–4151. issn: 1568-4946. doi: 10.1016/

j.asoc.2011.02.032. url: https://www.sciencedirect.

com/science/article/pii/S1568494611000962.

[Blu04] Christian Blum. Theoretical and Practical Aspects of Ant Colony

Optimization. IOS Press, 2004. 298 pp. isbn: 978-3-89838-282-3.

Google Books: ut9qw0SUeMkC.

[BR03] Christian Blum and Andrea Roli. “Metaheuristics in Combina-

torial Optimization: Overview and Conceptual Comparison”. In:

ACM Computing Surveys 35.3 (Sept. 1, 2003), pp. 268–308. issn:

0360-0300. doi: 10.1145/937503.937505. url: https://doi.

org/10.1145/937503.937505.

[BSZ02] Christian Blum, Michael Sampels, and Mark Zlochin. “On a Par-

ticularity in Model-Based Search”. In: (Oct. 6, 2002).

https://doi.org/10.1007/978-1-4613-3279-4_6
https://doi.org/10.1007/978-1-4613-3279-4_6
https://doi.org/10.1007/978-1-4613-3279-4_6
https://doi.org/10.1007/978-1-4613-3279-4_6
https://doi.org/10.1016/j.asoc.2011.02.032
https://doi.org/10.1016/j.asoc.2011.02.032
https://www.sciencedirect.com/science/article/pii/S1568494611000962
https://www.sciencedirect.com/science/article/pii/S1568494611000962
http://books.google.com/books?id=ut9qw0SUeMkC
https://doi.org/10.1145/937503.937505
https://doi.org/10.1145/937503.937505
https://doi.org/10.1145/937503.937505

202 BIBLIOGRAPHY

[Can00] Erick Cantú-Paz. Efficient and Accurate Parallel Genetic Al-

gorithms. Springer Science & Business Media, Nov. 30, 2000.

192 pp. isbn: 978-0-7923-7221-9. Google Books: UXkGGQbmsfAC.

[Car] Gianni Di Caro. “Ant Colony Optimization and Its Application

to Adaptive Routing in Telecommunication Networks”. In: (),

p. 374.

[Cec+13] José M. Cecilia et al. “Enhancing Data Parallelism for Ant Colony

Optimization on GPUs”. In: Journal of Parallel and Distributed

Computing. Metaheuristics on GPUs 73.1 (Jan. 1, 2013), pp. 42–

51. issn: 0743-7315. doi: 10.1016/j.jpdc.2012.01.002. url:

https://www.sciencedirect.com/science/article/pii/

S0743731512000032.

[CG97] Erick Cantu-Paz and David Goldberg. “Predicting Speedups of

Ideal Bounding Cases of Parallel Genetic Algorithms.” In: Jan. 1,

1997, pp. 113–120.

[CH05] Teodor Gabriel Crainic and Nourredine Hail. “Parallel Meta-

heuristics Applications”. In: Parallel Metaheuristics. John Wiley

& Sons, Ltd, 2005, pp. 447–494. isbn: 978-0-471-73938-8. doi:

10.1002/0471739383.ch19. url: https://onlinelibrary.

wiley.com/doi/abs/10.1002/0471739383.ch19.

[CHS02] Oscar Cordon, Francisco Herrera, and Thomas Stützle. “Special

Issue on Ant Colony Optimization”. In: Mathware & soft com-

puting 4.2-3 (2002). issn: 1134-5632. url: http://hdl.handle.

net/2013/.

http://books.google.com/books?id=UXkGGQbmsfAC
https://doi.org/10.1016/j.jpdc.2012.01.002
https://www.sciencedirect.com/science/article/pii/S0743731512000032
https://www.sciencedirect.com/science/article/pii/S0743731512000032
https://doi.org/10.1002/0471739383.ch19
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471739383.ch19
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471739383.ch19
http://hdl.handle.net/2013/
http://hdl.handle.net/2013/

BIBLIOGRAPHY 203

[CJM07] A. Catala, J. Jaen, and J. A. Mocholi. “Strategies for Accelerat-

ing Ant Colony Optimization Algorithms on Graphical Process-

ing Units”. In: 2007 IEEE Congress on Evolutionary Computa-

tion. 2007 IEEE Congress on Evolutionary Computation. Sept.

2007, pp. 492–500. doi: 10.1109/CEC.2007.4424511.

[CJP08] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using

OpenMP: Portable Shared Memory Parallel Programming. MIT

Press, 2008. 378 pp. isbn: 978-0-262-53302-7. Google Books:

MeFLQSKmaJYC.

[Cra19] Teodor Crainic. “Parallel Metaheuristics and Cooperative Search”.

In: Handbook of Metaheuristics. Ed. by Michel Gendreau and

Jean-Yves Potvin. International Series in Operations Research &

Management Science. Cham: Springer International Publishing,

2019, pp. 419–451. isbn: 978-3-319-91086-4. doi: 10.1007/978-

3-319-91086-4_13. url: https://doi.org/10.1007/978-3-

319-91086-4_13.

[CT10] Teodor Gabriel Crainic and Michel Toulouse. “Parallel Meta-

Heuristics”. In: Handbook of Metaheuristics. Ed. by Michel Gen-

dreau and Jean-Yves Potvin. International Series in Operations

Research & Management Science. Boston, MA: Springer US,

2010, pp. 497–541. isbn: 978-1-4419-1665-5. doi: 10.1007/978-

1-4419-1665-5_17. url: https://doi.org/10.1007/978-1-

4419-1665-5_17.

https://doi.org/10.1109/CEC.2007.4424511
http://books.google.com/books?id=MeFLQSKmaJYC
https://doi.org/10.1007/978-3-319-91086-4_13
https://doi.org/10.1007/978-3-319-91086-4_13
https://doi.org/10.1007/978-3-319-91086-4_13
https://doi.org/10.1007/978-3-319-91086-4_13
https://doi.org/10.1007/978-1-4419-1665-5_17
https://doi.org/10.1007/978-1-4419-1665-5_17
https://doi.org/10.1007/978-1-4419-1665-5_17
https://doi.org/10.1007/978-1-4419-1665-5_17

204 BIBLIOGRAPHY

[Cun+02] Van-Dat Cung et al. “Strategies for the Parallel Implementation

of Metaheuristics”. In: Essays and Surveys in Metaheuristics. Ed.

by Celso C. Ribeiro and Pierre Hansen. Operations Research/-

Computer Science Interfaces Series. Boston, MA: Springer US,

2002, pp. 263–308. isbn: 978-1-4615-1507-4. doi: 10.1007/978-

1-4615-1507-4_13. url: https://doi.org/10.1007/978-1-

4615-1507-4_13.

[CZ05] Ling Chen and Chunfang Zhang. “Adaptive Parallel Ant Colony

Algorithm”. In: Advances in Natural Computation. Ed. by Lipo

Wang, Ke Chen, and Yew Soon Ong. Lecture Notes in Computer

Science. Berlin, Heidelberg: Springer, 2005, pp. 1239–1249. isbn:

978-3-540-31858-3. doi: 10.1007/11539117_165.

[DB05] Marco Dorigo and Christian Blum. “Ant Colony Optimization

Theory: A Survey”. In: Theoretical Computer Science 344.2 (Nov. 17,

2005), pp. 243–278. issn: 0304-3975. doi: 10.1016/j.tcs.2005.

05.020. url: https://www.sciencedirect.com/science/

article/pii/S0304397505003798.

[DBP99] V. Donaldson, Francine Berman, and R. Paturi. “Program Speedup

in a Heterogeneous Computing Network”. In: Journal of Parallel

and Distributed Computing 21 (Jan. 2, 1999), pp. 316–322. doi:

10.1006/jpdc.1994.1062.

[DDG99] Marco Dorigo, Gianni Di Caro, and Luca M. Gambardella. “Ant

Algorithms for Discrete Optimization”. In: Artificial Life 5.2

https://doi.org/10.1007/978-1-4615-1507-4_13
https://doi.org/10.1007/978-1-4615-1507-4_13
https://doi.org/10.1007/978-1-4615-1507-4_13
https://doi.org/10.1007/978-1-4615-1507-4_13
https://doi.org/10.1007/11539117_165
https://doi.org/10.1016/j.tcs.2005.05.020
https://doi.org/10.1016/j.tcs.2005.05.020
https://www.sciencedirect.com/science/article/pii/S0304397505003798
https://www.sciencedirect.com/science/article/pii/S0304397505003798
https://doi.org/10.1006/jpdc.1994.1062

BIBLIOGRAPHY 205

(1999), pp. 137–172. doi: http : / / dx . doi . org / 10 . 1162 /

106454699568728.

[Deb08] Kalyanmoy Deb. “Introduction to Evolutionary Multiobjective

Optimization”. In: Multiobjective Optimization: Interactive and

Evolutionary Approaches. Ed. by Jürgen Branke et al. Lecture

Notes in Computer Science. Berlin, Heidelberg: Springer, 2008,

pp. 59–96. isbn: 978-3-540-88908-3. doi: 10.1007/978-3-540-

88908-3_3. url: https://doi.org/10.1007/978-3-540-

88908-3_3.

[Deb11] Kalyanmoy Deb. “Multi-Objective Optimisation Using Evolu-

tionary Algorithms: An Introduction”. In: Multi-Objective Evo-

lutionary Optimisation for Product Design and Manufacturing.

Ed. by Lihui Wang, Amos H. C. Ng, and Kalyanmoy Deb. Lon-

don: Springer, 2011, pp. 3–34. isbn: 978-0-85729-652-8. doi: 10.

1007/978-0-85729-652-8_1. url: https://doi.org/10.

1007/978-0-85729-652-8_1.

[Del+] Pierre Delisle et al. “PARALLEL IMPLEMENTATION OF AN

ANT COLONY OPTIMIZATION METAHEURISTIC WITH

OPENMP”. In: (), p. 7.

[Del+05] Pierre Delisle et al. “Comparing Parallelization of an ACO: Mes-

sage Passing vs. Shared Memory”. In: Hybrid Metaheuristics. Ed.

by María J. Blesa et al. Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer, 2005, pp. 1–11. isbn: 978-3-540-

31898-9. doi: 10.1007/11546245_1.

https://doi.org/http://dx.doi.org/10.1162/106454699568728
https://doi.org/http://dx.doi.org/10.1162/106454699568728
https://doi.org/10.1007/978-3-540-88908-3_3
https://doi.org/10.1007/978-3-540-88908-3_3
https://doi.org/10.1007/978-3-540-88908-3_3
https://doi.org/10.1007/978-3-540-88908-3_3
https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1007/11546245_1

206 BIBLIOGRAPHY

[Del+13] Audrey Delévacq et al. “Parallel Ant Colony Optimization on

Graphics Processing Units”. In: Journal of Parallel and Dis-

tributed Computing 73.1 (2013), pp. 52–61. issn: 0743-7315. doi:

http://dx.doi.org/10.1016/j.jpdc.2012.01.003. url:

http://www.sciencedirect.com/science/article/pii/

S0743731512000044.

[DG97a] M. Dorigo and L. M. Gambardella. “Ant Colony System: A Co-

operative Learning Approach to the Traveling Salesman Prob-

lem”. In: IEEE Transactions on Evolutionary Computation 1.1

(Apr. 1997), pp. 53–66. issn: 1941-0026. doi: 10.1109/4235.

585892.

[DG97b] Marco Dorigo and Luca Maria Gambardella. “Ant Colonies for

the Travelling Salesman Problem”. In: Biosystems 43.2 (July 1,

1997), pp. 73–81. issn: 0303-2647. doi: 10.1016/S0303-2647(97)

01708-5. url: https://www.sciencedirect.com/science/

article/pii/S0303264797017085.

[Día+14] Diego Díaz et al. “An ACO Algorithm to Solve an Extended

Cutting Stock Problem for Scrap Minimization in a Bar Mill”.

In: Swarm Intelligence. Ed. by Marco Dorigo et al. Lecture Notes

in Computer Science. Cham: Springer International Publishing,

2014, pp. 13–24. isbn: 978-3-319-09952-1. doi: 10.1007/978-

3-319-09952-1_2.

[Día+20] Diego Díaz et al. “Improved Method for Parallelization of Evo-

lutionary Metaheuristics”. In: Mathematics 8.9 (9 Sept. 2020),

https://doi.org/http://dx.doi.org/10.1016/j.jpdc.2012.01.003
http://www.sciencedirect.com/science/article/pii/S0743731512000044
http://www.sciencedirect.com/science/article/pii/S0743731512000044
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/4235.585892
https://doi.org/10.1016/S0303-2647(97)01708-5
https://doi.org/10.1016/S0303-2647(97)01708-5
https://www.sciencedirect.com/science/article/pii/S0303264797017085
https://www.sciencedirect.com/science/article/pii/S0303264797017085
https://doi.org/10.1007/978-3-319-09952-1_2
https://doi.org/10.1007/978-3-319-09952-1_2

BIBLIOGRAPHY 207

p. 1476. doi: 10.3390/math8091476. url: https://www.mdpi.

com/2227-7390/8/9/1476.

[Dor+14] Marco Dorigo et al., eds. Swarm Intelligence - 9th International

Conference, ANTS 2014, Brussels, Belgium, September 10-12,

2014. Proceedings. Vol. 8667. Lecture Notes in Computer Sci-

ence. Springer, 2014. isbn: 978-3-319-09951-4. doi: 10.1007/

978-3-319-09952-1. url: http://dx.doi.org/10.1007/978-

3-319-09952-1.

[Dor92] Marco Dorigo. “Optimization, Learning and Natural Algorithms

(in Italian)”. PhD thesis. Milan, Italy: Dipartimento di Elettron-

ica, Politecnico di Milano, 1992.

[DS04] Marco Dorigo and Thomas Stützle. Ant Colony Optimization.

Cambridge, MA, USA: MIT Press, 2004. isbn: 0-262-04219-3.

[DS13] L. Dawson and I. Stewart. “Improving Ant Colony Optimiza-

tion Performance on the GPU Using CUDA”. In: 2013 IEEE

Congress on Evolutionary Computation. 2013 IEEE Congress

on Evolutionary Computation. June 2013, pp. 1901–1908. doi:

10.1109/CEC.2013.6557791.

[DS19] Marco Dorigo and Thomas Stützle. “Ant Colony Optimization:

Overview and Recent Advances”. In: Handbook of Metaheuris-

tics. 2019, pp. 311–351. doi: 10.1007/978-3-319-91086-4_10.

url: https://app.dimensions.ai/details/publication/

pub . 1107124659 % 20and % 20http : / / iridia . ulb . ac . be /

IridiaTrSeries/IridiaTr2009-013r001.pdf.

https://doi.org/10.3390/math8091476
https://www.mdpi.com/2227-7390/8/9/1476
https://www.mdpi.com/2227-7390/8/9/1476
https://doi.org/10.1007/978-3-319-09952-1
https://doi.org/10.1007/978-3-319-09952-1
http://dx.doi.org/10.1007/978-3-319-09952-1
http://dx.doi.org/10.1007/978-3-319-09952-1
https://doi.org/10.1109/CEC.2013.6557791
https://doi.org/10.1007/978-3-319-91086-4_10
https://app.dimensions.ai/details/publication/pub.1107124659%20and%20http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2009-013r001.pdf
https://app.dimensions.ai/details/publication/pub.1107124659%20and%20http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2009-013r001.pdf
https://app.dimensions.ai/details/publication/pub.1107124659%20and%20http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2009-013r001.pdf

208 BIBLIOGRAPHY

[ECB07] Issmail Ellabib, Paul Calamai, and Otman Basir. “Exchange

Strategies for Multiple Ant Colony System”. In: Information Sci-

ences. Including: The 3rd International Workshop on Computa-

tional Intelligence in Economics and Finance (CIEF’2003) 177.5

(Mar. 1, 2007), pp. 1248–1264. issn: 0020-0255. doi: 10.1016/

j.ins.2006.09.016. url: https://www.sciencedirect.com/

science/article/pii/S0020025506002908.

[Ekl04] Sven E. Eklund. “A Massively Parallel Architecture for Dis-

tributed Genetic Algorithms”. In: Parallel Computing. Paral-

lel and Nature-Inspired Computational Paradigms and Applica-

tions 30.5 (May 1, 2004), pp. 647–676. issn: 0167-8191. doi: 10.

1016/j.parco.2003.12.009. url: https://www.sciencedirect.

com/science/article/pii/S0167819104000365.

[Fer+14] Silvino Fernandez et al. “Scheduling a Galvanizing Line by Ant

Colony Optimization”. In: Swarm Intelligence. Ed. by Marco

Dorigo et al. Lecture Notes in Computer Science. Cham: Springer

International Publishing, 2014, pp. 146–157. isbn: 978-3-319-

09952-1. doi: 10.1007/978-3-319-09952-1_13.

[Fer+15] Silvino Fernández et al. “Performance Comparison of Ant Colony

Algorithms for the Scheduling of Steel Production Lines”. In:

Proceedings of the Companion Publication of the 2015 Annual

Conference on Genetic and Evolutionary Computation. GECCO

Companion ’15. New York, NY, USA: Association for Computing

Machinery, July 11, 2015, pp. 1387–1388. isbn: 978-1-4503-3488-

https://doi.org/10.1016/j.ins.2006.09.016
https://doi.org/10.1016/j.ins.2006.09.016
https://www.sciencedirect.com/science/article/pii/S0020025506002908
https://www.sciencedirect.com/science/article/pii/S0020025506002908
https://doi.org/10.1016/j.parco.2003.12.009
https://doi.org/10.1016/j.parco.2003.12.009
https://www.sciencedirect.com/science/article/pii/S0167819104000365
https://www.sciencedirect.com/science/article/pii/S0167819104000365
https://doi.org/10.1007/978-3-319-09952-1_13

BIBLIOGRAPHY 209

4. doi: 10.1145/2739482.2764658. url: https://doi.org/

10.1145/2739482.2764658.

[Fer+16] Silvino Fernández et al. “Criticality of Response Time in the Us-

age of Metaheuristics in Industry”. In: Proceedings of the 2016 on

Genetic and Evolutionary Computation Conference Companion.

GECCO ’16 Companion. New York, NY, USA: Association for

Computing Machinery, July 20, 2016, pp. 937–940. isbn: 978-

1-4503-4323-7. doi: 10.1145/2908961.2931649. url: https:

//doi.org/10.1145/2908961.2931649.

[GCH07] C. García-Martínez, O. Cordón, and F. Herrera. “A Taxonomy

and an Empirical Analysis of Multiple Objective Ant Colony

Optimization Algorithms for the Bi-Criteria TSP”. In: European

Journal of Operational Research 180.1 (July 1, 2007), pp. 116–

148. issn: 0377-2217. doi: 10.1016/j.ejor.2006.03.041. url:

https://www.sciencedirect.com/science/article/pii/

S0377221706002451.

[GD96] L. M. Gambardella and M. Dorigo. “Solving Symmetric and

Asymmetric TSPs by Ant Colonies”. In: Proceedings of IEEE In-

ternational Conference on Evolutionary Computation. Proceed-

ings of IEEE International Conference on Evolutionary Com-

putation. May 1996, pp. 622–627. doi: 10.1109/ICEC.1996.

542672.

https://doi.org/10.1145/2739482.2764658
https://doi.org/10.1145/2739482.2764658
https://doi.org/10.1145/2739482.2764658
https://doi.org/10.1145/2908961.2931649
https://doi.org/10.1145/2908961.2931649
https://doi.org/10.1145/2908961.2931649
https://doi.org/10.1016/j.ejor.2006.03.041
https://www.sciencedirect.com/science/article/pii/S0377221706002451
https://www.sciencedirect.com/science/article/pii/S0377221706002451
https://doi.org/10.1109/ICEC.1996.542672
https://doi.org/10.1109/ICEC.1996.542672

210 BIBLIOGRAPHY

[GLM00] F. Glover, M. Laguna, and R. Marti. “Fundamentals of Scatter

Search and Path Relinking”. In: Control and Cybernetics 29.3

(2000), pp. 653–684.

[GM02] Michael Guntsch and Martin Middendorf. “A Population Based

Approach for ACO”. In: Applications of Evolutionary Comput-

ing. Ed. by Stefano Cagnoni et al. Lecture Notes in Computer

Science. Berlin, Heidelberg: Springer, 2002, pp. 72–81. isbn: 978-

3-540-46004-6. doi: 10.1007/3-540-46004-7_8.

[GP10] Michel Gendreau and Jean-Yves Potvin. Handbook of Metaheuris-

tics. 2nd Edition. Springer Publishing Company, Incorporated,

2010. isbn: 1-4419-1663-6 978-1-4419-1663-1.

[GP19] Michel Gendreau and Jean-Yves Potvin, eds. Handbook of Meta-

heuristics. 3rd ed. International Series in Operations Research &

Management Science. Springer International Publishing, 2019.

isbn: 978-3-319-91085-7. doi: 10.1007/978-3-319-91086-4.

url: https://www.springer.com/gp/book/9783319910857.

[GP78] Martin Grötschel and Manfred W. Padberg. “On the Symmet-

ric Travelling Salesman Problem: Theory and Computation”. In:

Optimization and Operations Research. Ed. by Rudolf Henn,

Bernhard Korte, and Werner Oettli. Lecture Notes in Economics

and Mathematical Systems. Berlin, Heidelberg: Springer, 1978,

pp. 105–115. isbn: 978-3-642-95322-4. doi: 10.1007/978- 3-

642-95322-4_12.

https://doi.org/10.1007/3-540-46004-7_8
https://doi.org/10.1007/978-3-319-91086-4
https://www.springer.com/gp/book/9783319910857
https://doi.org/10.1007/978-3-642-95322-4_12
https://doi.org/10.1007/978-3-642-95322-4_12

BIBLIOGRAPHY 211

[Gro+99] William Gropp et al. Using MPI: Portable Parallel Programming

with the Message-Passing Interface. MIT Press, 1999. 414 pp.

isbn: 978-0-262-57132-6.

[Gue+14] Ginés D. Guerrero et al. “Comparative Evaluation of Platforms

for Parallel Ant Colony Optimization”. In: The Journal of Su-

percomputing 69.1 (July 1, 2014), pp. 318–329. issn: 1573-0484.

doi: 10.1007/s11227-014-1154-5. url: https://doi.org/

10.1007/s11227-014-1154-5.

[Har+06] A. Hara et al. “Effective Diversification of Ant-Based Search

Using Colony Fission and Extinction”. In: 2006 IEEE Inter-

national Conference on Evolutionary Computation. 2006 IEEE

International Conference on Evolutionary Computation. July

2006, pp. 1028–1035. doi: 10.1109/CEC.2006.1688422.

[Hol75] John H. Holland. Adaptation in Natural and Artificial Systems:

An Introductory Analysis with Applications to Biology, Control

and Artificial Intelligence. Cambridge, MA, USA: MIT Press

(re-issued 1992), 1975. isbn: 0-262-08213-6.

[Igl+19] Miguel Iglesias-Escudero et al. “Planning and Scheduling with

Uncertainty in the Steel Sector: A Review”. In: Applied Sciences

9.13 (13 Jan. 2019), p. 2692. doi: 10.3390/app9132692. url:

https://www.mdpi.com/2076-3417/9/13/2692.

[JMM05] Stefan Janson, Daniel Merkle, and Martin Middendorf. “Paral-

lel Ant Colony Algorithms”. In: Parallel Metaheuristics: A New

https://doi.org/10.1007/s11227-014-1154-5
https://doi.org/10.1007/s11227-014-1154-5
https://doi.org/10.1007/s11227-014-1154-5
https://doi.org/10.1109/CEC.2006.1688422
https://doi.org/10.3390/app9132692
https://www.mdpi.com/2076-3417/9/13/2692

212 BIBLIOGRAPHY

Class of Algorithms. Ed. by Enrique Alba. Wiley, 2005, pp. 171–

201. doi: 10.1002/0471739383.ch8.

[JSV91] P. Jog, J. Y. Suh, and D. Van Gucht. “Parallel Genetic Algo-

rithms Applied to the Traveling Salesman Problem”. In: SIAM

Journal of Optimization 1 (1991), pp. 515–529.

[JTS10] Raka Jovanovic, Milan Tuba, and Dana Simian. “Comparison

of Different Topologies for Island-Based Multi-Colony Ant Algo-

rithms for the Minimum Weight Vertex Cover Problem”. In: 9.1

(2010), p. 10.

[Kaw+00] Hidenori Kawamura et al. “Multiple Ant Colonies Algorithm

Based on Colony Level Interactions”. In: IEICE TRANSAC-

TIONS on Fundamentals of Electronics, Communications and

Computer Sciences E83-A.2 (Feb. 25, 2000), pp. 371–379. issn:

, 0916-8508. url: https://search.ieice.org/bin/summary.

php?id=e83-a_2_371&category=A&year=2000&lang=E&abst=.

[KGV83] Scott Kirkpatrick, C. Gelatt, and M. Vecchi. “Optimization by

Simulated Annealing”. In: Science (New York, N.Y.) 220 (June 1,

1983), pp. 671–80. doi: 10.1126/science.220.4598.671.

[KLQ14] B. Kazimipour, X. Li, and A. K. Qin. “A Review of Popula-

tion Initialization Techniques for Evolutionary Algorithms”. In:

2014 IEEE Congress on Evolutionary Computation (CEC). 2014

IEEE Congress on Evolutionary Computation (CEC). July 2014,

pp. 2585–2592. doi: 10.1109/CEC.2014.6900618.

https://doi.org/10.1002/0471739383.ch8
https://search.ieice.org/bin/summary.php?id=e83-a_2_371&category=A&year=2000&lang=E&abst=
https://search.ieice.org/bin/summary.php?id=e83-a_2_371&category=A&year=2000&lang=E&abst=
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1109/CEC.2014.6900618

BIBLIOGRAPHY 213

[KPS12] Pavel Krömer, Jan Platos, and Václav Snásel. “Evolutionary

Clustering on CUDA”. In: ECAI. 2012, pp. 909–910.

[Krö+11] Pavel Krömer et al. “A Comparison of Many-Threaded Differen-

tial Evolution and Genetic Algorithms on CUDA”. In: NaBIC.

2011, pp. 509–514.

[Lar+99] P. Larrañaga et al. “Genetic Algorithms for the Travelling Sales-

man Problem: A Review of Representations and Operators”. In:

Artificial Intelligence Review 13.2 (Apr. 1, 1999), pp. 129–170.

issn: 1573-7462. doi: 10.1023/A:1006529012972. url: https:

//doi.org/10.1023/A:1006529012972.

[Lóp+16] Manuel López-Ibáñez et al. “The Irace Package: Iterated Rac-

ing for Automatic Algorithm Configuration”. In: Operations Re-

search Perspectives 3 (Jan. 1, 2016), pp. 43–58. issn: 2214-7160.

doi: 10 . 1016 / j . orp . 2016 . 09 . 002. url: https : / / www .

sciencedirect.com/science/article/pii/S2214716015300270.

[LS09] Maria Lucka and Piecka Stanislav. “Parallel Posix Threads Based

Ant Colony Optimization Using Asynchronous Communication”.

In: Proceedings of the 8th International Conference on Applied

Mathematics 2 (Jan. 1, 2009).

[LS12a] M. Lopez-Ibanez and T. Stutzle. “The Automatic Design of Mul-

tiobjective Ant Colony Optimization Algorithms”. In: IEEE Trans-

actions on Evolutionary Computation 16.6 (Dec. 2012), pp. 861–

875. issn: 1941-0026. doi: 10.1109/TEVC.2011.2182651.

https://doi.org/10.1023/A:1006529012972
https://doi.org/10.1023/A:1006529012972
https://doi.org/10.1023/A:1006529012972
https://doi.org/10.1016/j.orp.2016.09.002
https://www.sciencedirect.com/science/article/pii/S2214716015300270
https://www.sciencedirect.com/science/article/pii/S2214716015300270
https://doi.org/10.1109/TEVC.2011.2182651

214 BIBLIOGRAPHY

[LS12b] Manuel López-Ibáñez and Thomas Stützle. “An Experimental

Analysis of Design Choices of Multi-Objective Ant Colony Opti-

mization Algorithms”. In: Swarm Intelligence 6.3 (Sept. 1, 2012),

pp. 207–232. issn: 1935-3820. doi: 10.1007/s11721-012-0070-

7. url: https://doi.org/10.1007/s11721-012-0070-7.

[LS69] C. F. Long and J. D. Schoeffler. “Dynamic Scheduling in the

Process Industries by Predictive Control”. In: Automatica 5.2

(Mar. 1, 1969), pp. 235–238. issn: 0005-1098. doi: 10.1016/

0005-1098(69)90017-X. url: https://www.sciencedirect.

com/science/article/pii/000510986990017X.

[Man+06] Max Manfrin et al. “Parallel Ant Colony Optimization for the

Traveling Salesman Problem”. In: Ant Colony Optimization and

Swarm Intelligence. Ed. by Marco Dorigo et al. Lecture Notes in

Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 224–

234. isbn: 978-3-540-38483-0. doi: 10.1007/11839088_20.

[MC03] Pablo Moscato and Carlos Cotta. “A Gentle Introduction to

Memetic Algorithms”. In: Handbook of Metaheuristics. Ed. by

Fred Glover and Gary A. Kochenberger. International Series

in Operations Research & Management Science. Boston, MA:

Springer US, 2003, pp. 105–144. isbn: 978-0-306-48056-0. doi:

10.1007/0-306-48056-5_5. url: https://doi.org/10.1007/

0-306-48056-5_5.

[MLY17] Michalis Mavrovouniotis, Changhe Li, and Shengxiang Yang. “A

Survey of Swarm Intelligence for Dynamic Optimization: Algo-

https://doi.org/10.1007/s11721-012-0070-7
https://doi.org/10.1007/s11721-012-0070-7
https://doi.org/10.1007/s11721-012-0070-7
https://doi.org/10.1016/0005-1098(69)90017-X
https://doi.org/10.1016/0005-1098(69)90017-X
https://www.sciencedirect.com/science/article/pii/000510986990017X
https://www.sciencedirect.com/science/article/pii/000510986990017X
https://doi.org/10.1007/11839088_20
https://doi.org/10.1007/0-306-48056-5_5
https://doi.org/10.1007/0-306-48056-5_5
https://doi.org/10.1007/0-306-48056-5_5

BIBLIOGRAPHY 215

rithms and Applications”. In: Swarm and Evolutionary Computa-

tion 33 (Apr. 1, 2017), pp. 1–17. issn: 2210-6502. doi: 10.1016/

j.swevo.2016.12.005. url: https://www.sciencedirect.

com/science/article/pii/S2210650216302541.

[MO99] R. Maclin and D. Opitz. “Popular Ensemble Methods: An Em-

pirical Study”. In: Journal of Artificial Intelligence Research 11

(Aug. 1, 1999), pp. 169–198. issn: 1076-9757. doi: 10.1613/

jair.614. arXiv: 1106.0257. url: http://arxiv.org/abs/

1106.0257.

[MRS02] Martin Middendorf, Frank Reischle, and Hartmut Schmeck. “Multi

Colony Ant Algorithms”. In: Journal of Heuristics 8.3 (May 1,

2002), pp. 305–320. issn: 1572-9397. doi: 10.1023/A:1015057701750.

url: https://doi.org/10.1023/A:1015057701750.

[MS10] R. Mallipeddi and P. N. Suganthan. “Ensemble of Constraint

Handling Techniques”. In: IEEE Transactions on Evolutionary

Computation 14.4 (Aug. 2010), pp. 561–579. issn: 1941-0026.

doi: 10.1109/TEVC.2009.2033582.

[MSB91] H. Muhlenbein, M. Schomisch, and J. Born. “The Parallel Ge-

netic Algorithm as Function Optimizer”. In: Proceedings on an

International Conference on Genetic Algorithms. 1991.

[ND10] J. Nickolls and W. Dally. “The GPU Computing Era”. In: IEEE

Micro (2010). doi: 10.1109/MM.2010.41.

[OSH87] I. M. Oliver, D. J. Smith, and J. R. C. Holland. “Study of Permu-

tation Crossover Operators on the Traveling Salesman Problem”.

https://doi.org/10.1016/j.swevo.2016.12.005
https://doi.org/10.1016/j.swevo.2016.12.005
https://www.sciencedirect.com/science/article/pii/S2210650216302541
https://www.sciencedirect.com/science/article/pii/S2210650216302541
https://doi.org/10.1613/jair.614
https://doi.org/10.1613/jair.614
https://arxiv.org/abs/1106.0257
http://arxiv.org/abs/1106.0257
http://arxiv.org/abs/1106.0257
https://doi.org/10.1023/A:1015057701750
https://doi.org/10.1023/A:1015057701750
https://doi.org/10.1109/TEVC.2009.2033582
https://doi.org/10.1109/MM.2010.41

216 BIBLIOGRAPHY

In: Genetic algorithms and their applications : proceedings of the

second International Conference on Genetic Algorithms : July

28-31, 1987 at the Massachusetts Institute of Technology, Cam-

bridge, MA (1987). url: https://agris.fao.org/agris-

search/search.do?recordID=US201301782179.

[PL02] D. A. L. Piriyakumar and P. Levi. “A New Approach to Exploit-

ing Parallelism in Ant Colony Optimization”. In: Proceedings of

2002 International Symposium on Micromechatronics and Hu-

man Science. Proceedings of 2002 International Symposium on

Micromechatronics and Human Science. Oct. 2002, pp. 237–243.

doi: 10.1109/MHS.2002.1058041.

[PLG87] Chrisila B. Pettey, Michael R. Leuze, and John J. Grefenstette.

“A Parallel Genetic Algorithm”. In: Proceedings of the Second

International Conference on Genetic Algorithms on Genetic Al-

gorithms and Their Application. USA: L. Erlbaum Associates

Inc., Oct. 1, 1987, pp. 155–161. isbn: 978-0-8058-0158-3.

[PLS14] Leslie Pérez Cáceres, Manuel López-Ibáñez, and Thomas Stützle.

“Ant Colony Optimization on a Budget of 1000”. In: Swarm In-

telligence - 9th International Conference, ANTS 2014, Brussels,

Belgium, September 10-12, 2014. Proceedings. 2014, pp. 50–61.

doi: 10.1007/978-3-319-09952-1_5. url: http://dx.doi.

org/10.1007/978-3-319-09952-1_5.

[PNC11] Martín Pedemonte, Sergio Nesmachnow, and Héctor Cancela.

“A Survey on Parallel Ant Colony Optimization”. In: Applied

https://agris.fao.org/agris-search/search.do?recordID=US201301782179
https://agris.fao.org/agris-search/search.do?recordID=US201301782179
https://doi.org/10.1109/MHS.2002.1058041
https://doi.org/10.1007/978-3-319-09952-1_5
http://dx.doi.org/10.1007/978-3-319-09952-1_5
http://dx.doi.org/10.1007/978-3-319-09952-1_5

BIBLIOGRAPHY 217

Soft Computing 11.8 (Dec. 1, 2011), pp. 5181–5197. issn: 1568-

4946. doi: 10.1016/j.asoc.2011.05.042. url: https://www.

sciencedirect.com/science/article/pii/S156849461100202X.

[PT99] P. Preux and E.-G. Talbi. “Towards Hybrid Evolutionary Algo-

rithms”. In: International Transactions in Operational Research

6.6 (1999), pp. 557–570. issn: 1475-3995. doi: 10.1111/j.1475-

3995.1999.tb00173.x. url: https://onlinelibrary.wiley.

com/doi/abs/10.1111/j.1475-3995.1999.tb00173.x.

[Pun98] William Punch. “How Effective Are Multiple Populations in Ge-

netic Programming”. In: Genetic Programming 98 (Jan. 1, 1998).

[Rae+12] Luc De Raedt et al., eds. ECAI 2012 - 20th European Con-

ference on Artificial Intelligence. Including Prestigious Applica-

tions of Artificial Intelligence (PAIS-2012) System Demonstra-

tions Track, Montpellier, France, August 27-31 , 2012. Vol. 242.

Frontiers in Artificial Intelligence and Applications. IOS Press,

2012. isbn: 978-1-61499-097-0.

[Rai06] Günther R. Raidl. “A Unified View on Hybrid Metaheuristics”.

In: Hybrid Metaheuristics. Ed. by Francisco Almeida et al. Lec-

ture Notes in Computer Science. Berlin, Heidelberg: Springer,

2006, pp. 1–12. isbn: 978-3-540-46385-6. doi: 10.1007/11890584_

1.

[Ree10] Colin Reeves. “Genetic Algorithms”. In: Handbook of Metaheuris-

tics. Ed. by Michel Gendreau and Jean-Yves Potvin. 2nd Edi-

https://doi.org/10.1016/j.asoc.2011.05.042
https://www.sciencedirect.com/science/article/pii/S156849461100202X
https://www.sciencedirect.com/science/article/pii/S156849461100202X
https://doi.org/10.1111/j.1475-3995.1999.tb00173.x
https://doi.org/10.1111/j.1475-3995.1999.tb00173.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.1999.tb00173.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.1999.tb00173.x
https://doi.org/10.1007/11890584_1
https://doi.org/10.1007/11890584_1

218 BIBLIOGRAPHY

tion. Springer Publishing Company, Inc., 2010, pp. 55–82. isbn:

1-4419-1663-6 978-1-4419-1663-1.

[Rei91] Gerhard Reinelt. “TSPLIB—A Traveling Salesman Problem Li-

brary”. In: INFORMS Journal on Computing 3.4 (Nov. 1991),

pp. 376–384. doi: 10.1287/ijoc.3.4.376. url: https://

ideas.repec.org/a/inm/orijoc/v3y1991i4p376-384.html.

[RL02] Marcus Randall and Andrew Lewis. “A Parallel Implementation

of Ant Colony Optimization”. In: Journal of Parallel and Dis-

tributed Computing 62.9 (Sept. 1, 2002), pp. 1421–1432. issn:

0743-7315. doi: 10.1006/jpdc.2002.1854. url: https://www.

sciencedirect.com/science/article/pii/S074373150291854X.

[Rob49] J. B. Robinson. On the Hamiltonian Game (a Traveling-Salesman

Problem). Santa Monica, CA: RAND Corporation, 1949.

[RPE99] Mauricio G.C. Resende, Panos M. Pardalos, and Sandra Duni

Ekscanioglu. “Parallel Metaheuristics for Combinatorial Opti-

mization”. In: International School on Advanced Algorithmic Tech-

niques for Parallel Computations with Applications (1999).

[Ryo+08] Shane Ryoo et al. Program Optimization Carving For . . . 2008.

[Sal09] Carolina Salto. “Metaheurísticas Híbridas Paralelas Para Proble-

mas de Corte, Empaquetado y Otros Relacionados”. PhD thesis.

San Luis, Argentina: Universidad Nacional de San Luis, 2009.

[SH97] T. Stutzle and H. Hoos. “MAX-MIN Ant System and Local

Search for the Traveling Salesman Problem”. In: Proceedings of

https://doi.org/10.1287/ijoc.3.4.376
https://ideas.repec.org/a/inm/orijoc/v3y1991i4p376-384.html
https://ideas.repec.org/a/inm/orijoc/v3y1991i4p376-384.html
https://doi.org/10.1006/jpdc.2002.1854
https://www.sciencedirect.com/science/article/pii/S074373150291854X
https://www.sciencedirect.com/science/article/pii/S074373150291854X

BIBLIOGRAPHY 219

1997 IEEE International Conference on Evolutionary Computa-

tion (ICEC ’97). Proceedings of 1997 IEEE International Con-

ference on Evolutionary Computation (ICEC ’97). Apr. 1997,

pp. 309–314. doi: 10.1109/ICEC.1997.592327.

[Sho93] Ron Shonkwiler. “Parallel Genetic Algorithms.” In: Proceedings

of the Fifth International Conference on Genetic Algorithms.

Jan. 1, 1993, pp. 199–205.

[Stü98] Thomas Stützle. “Parallelization Strategies for Ant Colony Op-

timization”. In: Parallel Problem Solving from Nature — PPSN

V. Ed. by Agoston E. Eiben et al. Lecture Notes in Computer

Science. Berlin, Heidelberg: Springer, 1998, pp. 722–731. isbn:

978-3-540-49672-4. doi: 10.1007/BFb0056914.

[Sut05] Herb Sutter. Software and the Concurrency Revolution. ACM,

2005. url: http://queue.acm.org/detail.cfm?id=1095421.

[Tal09] El-Ghazali Talbi. Metaheuristics: From Design to Implementa-

tion. John Wiley & Sons, May 27, 2009. 625 pp. isbn: 978-0-470-

49690-9. Google Books: SIsa6zi5XV8C.

[Tej+17] Enric Tejedor et al. “PyCOMPSs: Parallel Computational Work-

flows in Python”. In: The International Journal of High Per-

formance Computing Applications 31.1 (Jan. 1, 2017), pp. 66–

82. issn: 1094-3420. doi: 10 . 1177 / 1094342015594678. url:

https://doi.org/10.1177/1094342015594678.

[Two+10] C. Twomey et al. “An Analysis of Communication Policies for

Homogeneous Multi-Colony ACO Algorithms”. In: Information

https://doi.org/10.1109/ICEC.1997.592327
https://doi.org/10.1007/BFb0056914
http://queue.acm.org/detail.cfm?id=1095421
http://books.google.com/books?id=SIsa6zi5XV8C
https://doi.org/10.1177/1094342015594678
https://doi.org/10.1177/1094342015594678

220 BIBLIOGRAPHY

Sciences 180.12 (June 15, 2010), pp. 2390–2404. issn: 0020-0255.

doi: 10 . 1016 / j . ins . 2010 . 02 . 017. url: https : / / www .

sciencedirect.com/science/article/pii/S0020025510000824.

[Van11] Thé Van Luong. “Parallel Metaheuristics on GPU”. PhD thesis.

Université Lille1, 2011.

[Wan+20] Yu Wang et al. “Multi-Objective Optimization of Rolling Sched-

ule for Tandem Cold Strip Rolling Based on NSGA-II”. In: Jour-

nal of Manufacturing Processes 60 (Dec. 1, 2020), pp. 257–267.

issn: 1526-6125. doi: 10.1016/j.jmapro.2020.10.061. url:

http://www.sciencedirect.com/science/article/pii/

S1526612520307416.

[Whi19] Darrell Whitley. “Next Generation Genetic Algorithms: A User’s

Guide and Tutorial”. In: Handbook of Metaheuristics. Ed. by

Michel Gendreau and Jean-Yves Potvin. International Series in

Operations Research & Management Science. Cham: Springer

International Publishing, 2019, pp. 245–274. isbn: 978-3-319-

91086-4. doi: 10.1007/978-3-319-91086-4_8. url: https:

//doi.org/10.1007/978-3-319-91086-4_8.

https://doi.org/10.1016/j.ins.2010.02.017
https://www.sciencedirect.com/science/article/pii/S0020025510000824
https://www.sciencedirect.com/science/article/pii/S0020025510000824
https://doi.org/10.1016/j.jmapro.2020.10.061
http://www.sciencedirect.com/science/article/pii/S1526612520307416
http://www.sciencedirect.com/science/article/pii/S1526612520307416
https://doi.org/10.1007/978-3-319-91086-4_8
https://doi.org/10.1007/978-3-319-91086-4_8
https://doi.org/10.1007/978-3-319-91086-4_8

	Acknowledgements
	Abstract
	Resumen
	Introduction
	The Steel Industry
	Steel Production Process
	Galvanizing Line
	The Galvanizing Line Scheduling Problem
	Metaheuristics
	Parallel and Distributed Computation
	Parallel Metaheuristics
	The Multiverse Method

	State of the Art
	Metaheuristic Algorithms
	Genetic Algorithms
	Ant Colony Optimization

	Parallel Metaheuristics
	GPU-based Parallelization
	Multiprocessing
	Evaluation of Parallel Metaheuristics

	Methods
	Introduction
	Objective
	The Multiverse Method
	Set-up and Methodology
	Algorithm Configuration
	Genetic Algorithm
	Ant Colony Optimization

	Validation on TSP
	Problem Description
	Procedure
	Results

	Analysis of Results
	Problem Description
	Procedure
	Results

	Conclusions and Future Work
	Conclusions
	Future Work
	Algorithm Frameworks
	Non-Traditional Computing Architectures
	Parallel Multiobjective Metaheuristics

	Conclusiones y trabajo futuro
	Conclusiones
	Trabajo futuro
	Plataformas de algoritmos
	Arquitecturas de computación no convencionales
	Metaheurísticos multi-objetivo paralelos

	Appendices
	Evolution Graphs for TSP GA
	Evolution Graphs for TSP ACO
	Evolution Graphs for the Scheduling Problem
	Página en blanco
	Página en blanco

