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Abstract: The dual active bridge (DAB) converter has been extensively analyzed and used in recent
years for applications where bidirectional power flow is required. The unidirectional version of the
DAB, which replaces the active output bridge with a diode bridge, has been called the single active
bridge (SAB). The static behavior of the SAB differs markedly from similar DC/DC converters and
can provide interesting advantages in certain applications. This paper presents a thorough study of
the static behavior of the single active bridge (SAB) converter in different conduction modes. This
study focuses on the description of the conduction modes, marking the main differences compared to
similar DC/DC converters. Moreover, the SAB can be designed to operate in conduction mode for a
given power level with different performance. A design guide is proposed, and the performance of
different designs are compared, quantifying current stresses in the semiconductors. Finally, the main
contribution of this paper is the identification of the similarities and differences between the SAB and
the buck, forward, and phase-shifted full-bridge converters. It should be noted that the position of
the inductor, either before or after the output rectifier bridge, modifies the voltage withstood by the
output diodes and depends on the conduction mode, the voltage conversion ratio of the converter,
and consequently, its main operation and performance. Moreover, the operation of the SAB is similar
to a current source in all conduction modes, and it is not usual in similar converters. This peculiar
behavior can be useful in certain applications. The theoretical study, the different designs, and the
predicted operation of the SAB in different conduction modes have been validated using simulation
and experimental results.

Keywords: isolated DC/DC converters; dual active bridge converter; single active bridge converter

1. Introduction

The dual active bridge converter (DAB) has garnered great interest over the last
15 years [1–4]. Its input-output symmetry makes it especially interesting for applications
where bidirectional power flow between the input and output ports is required. In applica-
tions where one of the ports will always act as the input and the other as the output, it is
possible to replace the entire active output bridge with a diode bridge, lowering the cost of
the converter. The converter thus obtained has been called the single active bridge (SAB).
The general scheme of the SAB converter is shown in Figure 1. Few studies have examined
the basics of this converter [5–7]; thus, a full study is warranted.

In recent years, different circuit topologies have been proposed for unidirectional
isolated DC/DC converters, such as battery chargers. Multiple SAB converters are con-
nected in the input-parallel and output-parallel (IPOP) configuration to achieve higher
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power in [8]. In addition, an isolated three-port DC/DC converter based on SAB convert-
ers is proposed in [9] to offer an efficient solution for meeting the increasing demand of
integrating energy delivery elements, such as renewable energy sources, energy storage
devices, and mains.
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Figure 1. Single active bridge (SAB) converter.

A different unidirectional topology, also based on the DAB converter in which two
switches in the secondary H-bridge converter are replaced with diodes, is proposed in [10]
for fuel cell electric vehicles. Other topologies based on the SAB are analyzed in [11], where
the SAB with a voltage doubler and with a full-bridge rectifier are compared, and [12]
in which suitable modulation and controller schemes are proposed for improving the
converter dynamics.

To improve the efficiency and power density of the SAB converter, soft-switching
capabilities of this converter in its different conduction modes are analyzed in [6,13], and
techniques to reduce switching and conduction losses are proposed in [14–16].

This article describes an extensive study of the static characteristics of this converter,
including its conduction modes and the boundary between them, the value of its voltage
conversion ratio in each conduction mode, the determination of the electrical requirements
of its semiconductors, a guide to its design, and a comparison with other similar topologies.
This study was validated using simulation and experimental results.

2. Static Analysis of SAB Converter in Continuous Conduction Mode (CCM)

Figure 2 shows the six equivalent circuits that characterize the operation of the con-
verter in the operation mode in which the current by the inductor does not remain at
zero. This operation mode is called continuous conduction mode (CCM). The value of the
current passing through the inductor (iL), shown in Figure 3a, can be calculated in all cases
applying Faraday’s law. The results are as follows:

- Interval (t0, t1): Corresponds to Figure 2a, where the semiconductors conducting the
current are DS1, DS4, D2, and D3. The value of iL is:

iL =
1
L

(
Vg +

VO
n

)
(t− t0) + iL0, (1)

where iL0 is the inductor current value at the beginning of this interval. This interval ends
when iL reaches zero at t1, the value of which is:

t1 = t0 −
LiL0

Vg +
VO
n

. (2)

- Interval (t1, t2): Corresponds to Figure 2b, where the semiconductor conducting the
current are S1, S4, D1, and D4. The value of iL is:

iL =
1
L

(
Vg −

VO
n

)
(t− t1). (3)

At the end of this interval, the inductor current reaches the value iL2 at instant t2, the
value of which is:

t2 = t1 +
LiL2

Vg − VO
n

. (4)
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- Interval (t2, t3): Corresponds to Figure 2c, where the semiconductors conducting the
current are DS2, S4, D1, and D4. The value of iL is:

iL = − 1
L

(
VO
n

)
(t− t2) + iL2. (5)

At the end of this interval, the inductor current reaches the value iL3 = −iL0 at instant
t3, the value of which is:

t3 = t2 +
L(iL3 − iL2)

−VO
n

. (6)

- Interval (t3, t4): Corresponds to Figure 2d, where the semiconductors conducting the
current are DS2, DS3, D1, and D4. The value of iL is:

iL = − 1
L

(
Vg +

VO
n

)
(t− t3) + iL3. (7)

This interval ends when iL reaches zero at instant t4, the value of which is:

t4 = t3 +
LiL3

Vg +
VO
n

. (8)

- Interval (t4, t5): Corresponds to Figure 2e, where the semiconductors conducting the
current are S2, S3, D2, and D3. The value of iL is:

iL =
1
L

(
−Vg +

VO
n

)
(t− t4). (9)

At the end of this interval, the inductor current reaches the value, iL5 = −iL2, at instant
t5, the value of which is:

t5 = t4 +
LiL5

−Vg +
VO
n

. (10)

- Interval (t5, t6): Corresponds to Figure 2f, where the semiconductors conducting the
current are DS1, S3, D2, and D3. The value of iL is:

iL =
1
L

(
VO
n

)
(t− t5) + iL5. (11)

At the end of this interval, the inductor current reaches the value, iL6 = −iL3, at instant
t6, the value of which is:

t6 = t5 +
L(iL6 − iL5)

VO
n

. (12)

Finally, the switching period can be obtained as a result of the duration of these
intervals using:

TS = t6 − t0. (13)

Given the operation symmetry of the converter in periods, (t0, t3) and (t3, t6), the
following equation is satisfied:

t3 − t0 = t6 − t3 =
TS
2

. (14)

One of the possible control techniques for this converter is to keep the frequency
constant and to regulate the duration of the time corresponding to intervals, (t0, t1) and (t1,
t2). For this reason, it is useful to define:

tc = t2 − t0, (15)
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d =
tc

TS
. (16)

The voltage conversion ratio of this converter in this conduction mode can be cal-
culated using the previous equations, determining the average current injected into the
output RC network, iRC_avg, during a switching half period, which for convenience can be
measured between t1 and t4. Note that during this entire time interval, D1 and D4 diodes
are conducting; thus, the iL/n current is injected into the aforementioned RC network.
Since the iL waveform is composed of linear sections, this calculation is quite simple, but
laborious. The result of the calculation is:

iRC_avg =
1

2nLTS

Vgtc(TS − tc)−
T2

S

(
VO
n

)2

4Vg

. (17)

This current determines the output voltage value, given by the following equation:

VO = iRC_avgRL. (18)

Using Equations (16)–(18), the normalized voltage conversion ratio is easily obtained using:

N =
VO
nVg

=
4(1− d)d

k +
√

k2 + 4(1− d)d
, (19)

where N is the voltage conversion ratio normalized at the transformer ratio (n) and param-
eter k is defined as:

k =
2Ln2

RL
TS
2

. (20)

Equations (19) and (20) show that the SAB converter has high output impedance operating
in CCM, as its voltage conversion ratio depends on the load resistance, RL, through the parameter
k. This situation (a behavior similar to a current source) is the opposite of most DC/DC converters
operating in CCM. This is because the inductor is placed on the AC side of the converter and not
at the output of the rectifier, as in other bridge converters. The operation of the SAB converter in
CCM only implies that the current does not remain at zero when it reaches this value.
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3. Static Analysis of SAB Converter in Discontinuous Conduction Mode (DCM)

The operation mode in which the current passing through the inductor reaches zero in
the intervals, (t2, t3) and (t5, t6), is called discontinuous continuous mode (DCM). If this
occurs, the current remains zero until the end of these intervals. In this case, some of the
equations for CCM must be modified. Thus, Equations (1) and (7) for CCM become, in
both cases:

iL = 0. (21)

The value of iL given by the previous equations in the other intervals remains valid.
The duration of the different intervals, given by (2) and (8) are not valid, while
Equations (4) and (10) remain unchanged, and Equations (6) and (12) must be modi-
fied by replacing the values of iL3 and iL6 with zero. The linear subcircuits of Figure 2a,d
are no longer valid and must be replaced by the one depicted in Figure 4. The iL waveform
in DCM is represented in Figure 5a.
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As in CCM, the voltage conversion ratio is calculated in DCM using the value of
iRC_avg. The calculation of iRC_avg is again simple but laborious. The result is as follows:

iRC_avg =
Vg

VOLTS

[
Vg −

VO
n

]
t2
c . (22)
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Using (16), (18), and (22), the normalized voltage conversion ratio in DCM is easily
obtained:

N =
VO
nVg

=
2d

d +
√

d2 + k
. (23)

4. Boundary between the Two Conduction Modes and Voltage Conversion Ratio

In the operation of the SAB converter working at a constant frequency, the value of the
parameter, k, varies only with the load resistance (RL). The RL value corresponding to the
converter operating on the boundary between the two conduction modes is called RL_crit.
kcrit can be defined as follows:

kcrit =
2Ln2

RL_crit
TS
2

. (24)

As Equations (19) and (23) must be simultaneously verified on the boundary between
the two conduction modes, and adding the suffix “crit” to the corresponding k and d values
to operate at this boundary, the following equation is obtained:

k = kcrit = 1− 2dcrit. (25)

By substituting Equation (25) in (19) or (23), the following equation is obtained:

Ncrit =

(
VO
nVg

)
crit

= 2dcrit. (26)

As in the case of other converters, CCM occurs when RL < RL_crit. Considering
Equation (24), this is equivalent to verifying k > kcrit in CCM, while k < kcrit in DCM.

Once the boundary between the two conduction modes has been obtained, it is
straightforward to determine when (19) (valid only in CCM) and when (23) (valid only in
DCM) should be used to calculate the open loop voltage conversion ratio. Setting the value
of duty cycle d and letting the output voltage change when changing RL, the evolution of
this normalized voltage conversion ratio is shown in Figure 6a, which shows three different
regions: operation in CCM, operation in DCM, and unachievable voltage conversion ratios.
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Figure 6. (a) Variation of the normalized voltage conversion ratio in open loop based on the normal-
ized load resistance. In this normalization, the critical value of RL when d is 0.25 (half of dmax) is
used as the base value. (b) Variation of the duty cycle of the converter in closed loop, based on the
normalized load resistance. In this normalization, the critical value of RL when N is 0.5 (half of Nmax)
is used as the base value.

Figure 6a shows that this converter has high output impedance, not only in DCM (as
other converters) but also in CCM. This peculiar behavior can be interesting for certain
applications. The maximum normalized voltage conversion ratio is obtained by unloading
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the converter to the limit, which corresponds to calculating the limit of N (calculated in
DCM, i.e., by (23)) as k approaches zero:

Nmax = lim
k→0

N = 1. (27)

The information provided by Figure 6a is very important for understanding the
operation of the SAB converter, but it is especially useful to have an idea of the closed-loop
operation of the converter, that is, when a feedback loop ensures a given voltage conversion
ratio at full load and the value of RL is gradually increased. Under these conditions, the
duty cycle of the converter will decrease, which can be seen in Figure 6b. The normalized
voltage conversion ratio, N, has been used as a parameter. The duty cycle at the boundary
of the two conduction modes, dcrit, is the value shown in (26).

The curves shown in Figure 6b are obtained using (19) and (23), clearing the value of d.
The value of RL has been represented as normalized in Figure 6b, using the critical value of
RL when N is 0.5 as the base value for normalization. Remember that the maximum value
of N is 1, given by (27).

5. Voltage and Current Stresses of Semiconductors

One of the most interesting properties of this converter is that the maximum voltages
in the transistors and diodes in the primary bridge, on the one hand, and in the diodes in
the output rectifier bridge, on the other hand, are limited by the values of the input and
output voltages, respectively.

In contrast, rms currents passing through the transistors and diodes of the primary
bridge (in general, considering the possibility of using IGBTs) strongly depend on the point
of operation of the converter and which of the branches is being considered. The latter is
closely related to the sequence of control pulses in transistors.

As an example, an operation point has been chosen in CCM. Figure 7a shows the
voltages at the midpoints of the two branches of the bridge (vS2 and vS4). The phase-shift
between them generates the vB waveform, which is the voltage between those midpoints.
Looking at the voltages, vS2 and vS4, it is clear that vS2 is delayed from vS4; thus, the branch
where vS2 is measured is called the “lagging branch”, and the other branch is called the
“leading branch”.

From the sequence of intervals shown in Figure 2, the waveforms in Figure 7b are
easily inferred. In the lagging branch there is a more equal distribution of the currents
driven by the transistor and its diode in anti-parallel, compared to the leading branch.
Therefore, conduction losses will be greater in transistors in the leading branch and in
anti-parallel diodes of transistors in the lagging branch, than in transistors in the lagging
branch and anti-parallel diodes of transistors in the leading branch.
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Figure 7. (a) Voltages at the midpoints of the branches. (b) Currents through the semiconductors of
the input bridge.

Average and rms currents through the semiconductors of the primary bridge can be
calculated using the following equations:
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iS1_avg =
1

TS

[
iL2

2
(t2 − t1)

]
, (28)

iDS1_avg =
1

TS

[
iL0

2
(t1) + iL0(t3 − t2)−

iL2 − iL3

2
(t3 − t2)

]
, (29)

iS4_avg =
1

TS

[
iL2

2
(t2 − t1) +

iL2 − iL3

2
(t3 − t2) + iL3(t3 − t2)

]
, (30)

iDS4_avg =
1

TS

[
iL0

2
(t1)

]
, (31)

iS1_rms =
1√
3

√
iL2

2(t2 − t1)

TS
, (32)

iDS1_rms =
1√
3

√
iL0

2t1 + (iL2
2 + iL3

2 + iL2iL3)(t3 − t2)

TS
, (33)

iS4_rms =
1√
3

√
iL2

2(t2 − t1) + (iL2
2 + iL3

2 + iL2iL3)(t3 − t2)

TS
, (34)

iDS4_rms =
1√
3

√
iL0

2t1

TS
. (35)

Average and rms currents through the diodes of the secondary bridge can be calculated
using the following equations:

iD1_avg =
1

nTS

[
− iL0

2
(t1) +

iL2

2
(t2 − t1) +

iL2 − iL3

2
(t3 − t2) + iL3(t3 − t2)

]
, (36)

iD1_rms =
1

n
√

3

√
iL0

2t1 + iL2
2(t2 − t1) + (iL2

2 + iL3
2 + iL2iL3)(t3 − t2)

TS
. (37)

Average values of the input and output currents and the rms value of the inductor
current can be calculated with the following equations:

ig_avg =
2

TS

[
iL0

2
(t1) +

iL2

2
(t2 − t1)

]
, (38)

iRC_avg = 2iD1_avg, (39)

iL_rms =
1√
3

√
iL0

2t1 + iL2
2(t2 − t1) + (iL2

2 + iL3
2 + iL2iL3)(t3 − t2)

TS/2
. (40)

To graphically show the distribution of the currents through the transistor and its
anti-parallel diode (Figure 8), an SAB converter is designed, selecting the change between
modes at half of the maximum output current for the lower input voltage and the higher
output voltage (i.e., the maximum voltage conversion ratio). The semiconductor rms
current values are normalized to the average input current, while the output current is
normalized to its maximum value.

ix_RMS_norm =
ix_RMS
ig_avg

(41)

IO_norm =
IO

IO_crit_Nmax
(42)
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In Figure 8a, normalized rms values of the current through the semiconductors are
shown for the maximum voltage conversion ratio (N = Nmax), while in Figure 8b, the
voltages are changed to obtain a N = 0.8·Nmax.

Another important issue to consider is the possibility of operating with zero-voltage-
switching (ZVS) on the transistors in the primary bridge. During the interval, (t0, t3),
this is achieved if the iL current is positive in t2 and t3 since this current is responsible
for redistributing the electrical charges associated with the parasitic capacitance of the
midpoints of the branches. This current is always positive in t2 but is only positive in t3 if
the converter operates in CCM. Of course, the same happens in the interval, (t3, t6), but in
this case with iL being negative at t5 and t6. Therefore, transistors in the leading branch
only operate with ZVS in CCM, while transistors in the lagging branch operate with ZVS
in both conduction modes.
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Consequently, the operation in CCM is desirable to minimize switching losses on the
transistors. However, CCM implies that during intervals, (t0, t1) and (t3, t4), the iL current is
not zero (unlike in DCM) and is circulating in such a way that electrical power is returned
to the primary source (Vg). In other words, the converter works with electrical energy
recirculated towards its input (reactive energy), which ends up decreasing its efficiency by
increasing conduction losses. Therefore, the ideal situation is one in which the converter
works in CCM but very close to the boundary between this mode and DCM.

Finally, rectifier diodes of the secondary bridge operate neglecting switching losses in
both conduction modes. The current in the turn-off of the rectifier diodes is always zero,
and consequently, there are no reverse recovery losses.

6. Comparison with Other Converters

As discussed above, the SAB converter operating in CCM differs markedly from
similar DC/DC converters, as VO varies by changing the RL value when d and Vg are
maintained constant. On the other hand, the operation in DCM is very similar to the
other classic converters belonging to the buck family of converters, as will be explained in
this section.

Regarding the SAB converter operating in the DCM, (23) can be rewritten as follows:

N =
2

1 +
√

1 + k
d2

(43)
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In the case of the buck converter operating in DCM, it is well known that the voltage
conversion ratio in DCM is [17]:

NBuck =
VO

Vg_Buck
=

2

1 +
√

1 + 4kBuck
d2

Buck

, (44)

where the subscript “Buck” has been added to the original expression given in [17]. The
value of the dimensionless conduction parameter kBuck is defined in [17] as follows:

kBuck =
2LBuck

RLTS_Buck
. (45)

Comparing (43) with (44) and (20) with (45), it can be concluded that N and NBuck
coincide if:

(a) The dimensionless conduction parameters, k and kBuck, also coincide, which
means that:

LBuck = Ln2. (46)

Ts_Buck =
TS
2

, (47)

In other words, k and kBuck coincide if the buck inductor is selected with the same value
as the SAB inductor reflected to the transformer secondary side and the buck switching
frequency is selected as twice the SAB frequency, which, in fact, coincides with the switching
frequency corresponding to its output diodes.

(b) The buck duty cycle dBuck is selected as twice the SAB duty cycle, d:

dBuck = 2dSAB. (48)

As in the previous case, this is a consequence of the symmetrical operation of the SAB
during (t0, t3) and (t4, t6).

(c) As the buck converter does not have any transformers, n must be selected as equal
to 1.

In the case of the forward converter operating in DCM, the normalized voltage con-
version ratio can also be easily deduced from [17], taking into account that the LC output
filter is excited by the input voltage multiplied by n, and it works at the same converter
duty cycle and switching frequency, leading to:

NFW =
VO_FW

nFWVg_FW
=

2

1 +
√

1 + 4kFW
d2

FW

, (49)

kFW =
2LFW

RLTS_FW
, (50)

where the subscript “FW” denotes that the quantities correspond to the forward converter.
This case is very similar to the case of the buck converter; the final conclusions being that
the operation of the forward and SAB converters in DCM coincide if:

LFW = Ln2, (51)

TS_FW =
TS
2

, (52)

dFW = 2d, (53)

nFW = n. (54)
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Special attention must be paid to the case of the phase shifted full-bridge converter. It
should be noted that the LC output filter of this converter is excited by a square voltage
waveform whose peak value is the input voltage multiplied by n; its duty cycle and
frequency are both twice those of the converter. When this converter is operating in DCM,
the normalized voltage conversion ratio can be easily deduced from [17], taking into
account the aforementioned differences in comparison to the buck converter, leading to:

NFB =
VO_FB

nFBVg_FB
=

2

1 +
√

1 + kFB
d2

FB

, (55)

kFB =
2LFB

RL
TS_FB

2

, (56)

where the subscript “FB” denotes that the quantities correspond to the full-bridge converter
(with phase shifted control). Comparing (43) with (55) and (20) with (56), it can be concluded
that N and NFB coincide if:

nFB = n (57)

LFB = Ln2 (58)

In other words, the normalized voltage conversion ratio in DCM of the phase shifted
full-bridge converter and SAB converter, NFB and N, coincide if both converters have been
designed with the same transformer turns ratio, and the full-bridge inductor has been se-
lected with the same value as the SAB inductor reflected to the transformer secondary side.

Therefore, if the power stages shown in Figure 9 are compared, it can be concluded
that the normalized voltage conversion ratio of both stages is the same if the stages have
been designed to operate in DCM, whereas the normalized voltage conversion ratio of both
stages differs completely if the stages start working in CCM. This also means that if the
stages have been designed to operate in DCM, then the normalized voltage conversion
ratio is independent of the position of the inductor, either before or after the output rectifier
bridge. It should be noted that the position of the inductor modifies the maximum voltage
withstood by the output diodes.

In Table 1, the voltage conversion ratio in DCM of the previously described converters
is shown to summarize the comparison of SAB with similar converters.

Table 1. Summary of the converter comparison.

Converter Voltage Conversion Ratio (N) in DCM

SAB
NSAB =

2

1 +

√
1 +

kSAB

d2
SAB

Buck
NBuck =

2

1 +

√
1 +

4kBuck

d2
Buck

,

Forward
NFW =

2

1 +

√
1 +

4kFW

d2
FW

,

Phase-shifted full bridge
NFB =

2

1 +

√
1 +

kFB

d2
FB

,
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7. Converter Design Guide

The initial variables for the converter design, which are a function of the specifications
of the application, are as follows:
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Since the converter has a transformer, a certain voltage conversion ratio VO/Vg can
be given by infinite possible values of N, depending on the choice of n and always taking
into account (27). Moreover, N depends on d and the choice of L through k. Therefore,
a certain operation point, defined by VO, Vg, and RL, can be achieved with infinite sets
of values of n, d, and L. That operation point will change during the use of the converter
and the new operation point must be reached by changing only the value of d and always
complying with the existing restrictions to the possible values of d and N (i.e., d < dmax = 0.5
and N < Nmax = 1). Despite this, there are infinite combinations of n and L compatible with
the new operation point obtained by changing d. In conclusion, there is always a degree of
freedom in the choice of n and L. Therefore, one of these values can be defined according to
a certain objective. In this paper, an objective is proposed that the converter operates in
CCM in a certain operating range. To do this, the value of dcrit is set to the minimum input
voltage and the maximum output voltage. This value of dcrit is called dcritmax. By setting
this value, the value of n is calculated from Equation (26), resulting in:

n =
VOmax

2Vgmindcritmax
. (59)

Once the value of n is chosen, the value of L must be low enough to allow the converter
to process the maximum output current, i.e., at VOmax, Vgmin, and RLmin. Considering that
IOmax = VOmax/RLmin and using (19) and (20), the value of L is obtained with:

L =

[
Vgmindmax(1− dmax)−

V2
Omax

4Vgminn2

]
2n f IOmax

. (60)

Two different design examples are shown here. The following specifications are
the same for both designs: Vgmax = 850 V; Vgmin = 800 V; Vomax = 400 V; Vomin = 350 V;
Iomax = 5.5 A; Iomin = 0.5 A; dmax =0.45; f = 33 kHz. The difference between the two designs
is the selection of dcritmax:

Design 1: dcritmax = 0.1 is selected. With the previously described global specifications,
n is calculated using (59), obtaining the value of n = 2.5. With the previously calculated
value of n and the global specifications, L is calculated using (60), obtaining the value of
L = 209 µH.
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Design 2: dcritmax = 0.25 is selected. With the previously described global specifications,
n is calculated using (59), obtaining the value of n = 1. With the previously calculated
value of n and the global specifications, L is calculated using (60), obtaining the value of
L = 408 µH.

In Figure 10a,b, the evolution of the duty cycle depending on the output current is
shown when the converter works in closed loop for both designs. These curves are obtained
as in Figure 6b, i.e., from Equations (19) and (23) and by clearing the value of d in them.
The difference is that the independent variable is in this case IO = VO/RL instead of RL.
It can be observed that choosing dcritmax = 0.1 (Design 1), the converter operates in CCM
for most of the IO variation range. This is attractive for reducing switching losses, but it
penalizes conduction losses. In Design 2 (dcritmax = 0.25), since the converter works in DCM
for most IO values, conduction losses are reduced while switching losses are penalized.
In Figure 10c,d, the waveforms corresponding to VO = 400 V, Vg = 800 V and two output
power levels are shown. Comparing the two figures, the current values in the second design
are lower than in the first. The same pattern can be seen in more detail in Figure 10e,f,
which show the rms values of the current passing through the transistors and anti-parallel
diodes of the leading branch (taking as an example S3 and DS3) and the lagging branch
(taking as an example S1 and DS1). Considering the scales of the figures it is clear the
conduction losses are lower in the second design.
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8. Simulation and Experimental Results

The verification of the proposed static analysis of the SAB converter was initially
carried out by simulation with PSIM on a converter with ideal components and the same
characteristics as those presented in the design examples. The results predicted by the
theory perfectly matched the results at various simulated operating points. In addition, the
waveforms obtained in the simulation perfectly matched those produced by the theory. Sim-
ulation results are not shown because they are the same as the presented analytical results.

A preliminary SAB prototype has been developed and tested to validate the ana-
lytical study proposed in this paper. The prototype has the characteristics of Design 2.
Experimental (squares and diamonds) and analytical (continuous line) results at various
operating points are compared in Figure 11a with good agreement. Moreover, experimental
waveforms obtained using the prototype and shown in Figure 11b,c match those obtained
from the theory (Figure 10d). As can be seen in Figure 11c, a small resonant period is
observed during the intervals where the inductor current should theoretically be zero. This
resonant period is caused by the reverse recovery current of the anti-parallel diodes of the
main transistors. This phenomenon occurs on many occasions when DC/DC converters
work in DCM.
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9. Conclusions

In this paper, the static behavior of the SAB converter has been thoroughly studied.
The voltage conversion ratio in both CCM and DCM have been found, as well as the
conditions for the change of conduction mode. Unlike other converters, operation in CCM
does not imply low open loop output impedance, but, as in DCM, this converter has a high
output impedance under both conduction modes. This means that when the converter
works in a closed loop, its duty cycle changes extensively when changing the load in both
conduction modes. It is also appreciated that the design for operation in CCM reduces
switching losses, but penalizes conduction losses, just the opposite of operating in DCM.
Finally, operation in DCM is identical to that of buck, forward and phase shifted full-bridge
converters if appropriate transformations related to the switching frequency, duty cycle,
and inductance value are performed.
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