
Computers & Security 116 (2022) 102638

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Egida: Automated security configuration deployment systems with

early error detection

Antonio Paya

∗, Alba Cotarelo, Jose Manuel Redondo

Department of Computer Science, University of Oviedo, Science Faculty, Office 240, C/Federico Garcia Lorca S/N, Oviedo 33007, Spain

a r t i c l e i n f o

Article history:

Received 12 June 2021

Revised 23 November 2021

Accepted 1 February 2022

Available online 3 February 2022

Keywords:

Security control

Automation

Defense in depth

Error detection

CIS benchmarks

a b s t r a c t

Automated deployment of validated security controls is very important to implement defense-in-depth

strategies to secure machine infrastructures. This paper describes a technique to perform these deploy-

ments in a more controlled way, using a DSL. According to the target machine configuration or character-

istics, the DSL provides ways of deploying automated security controls that are less prone to negatively

impact legitimate running services, and allows detecting several deployment errors earlier. This helps to

better capture system administrator expert knowledge, and share automated security scripts that obtain

better hardening results. The initial results of this technique are promising enough to apply them on

educational environments, and can be further developed to be applied on production infrastructures.

© 2023 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

t

c

e

M

t

c

C

t

r

t

s

M

p

c

2

t

f

r

a

d

t

w

s

i

o

C

b

i

t

t

a

a

D

t

t

d

b

p

w

a

i

p

h

0

. Introduction

The current proliferation of attacks shows that securing IT sys-

ems requires the implementation of adequate and trusted security

ontrols. This requires the adoption of a defense-in-depth strat-

gy and implementing international standards (Information Security

anagement Systems , ISMS), such as ISO 27001 (Software and sys-

ems engineering, 2020). These standards contain suitable security

ontrol lists adapted to different contexts.

Automation may facilitate ISMS implementation. SCAP (Security

ontent Automation Protocol) is an international reference protocol

o implement it. Properly automated ISMS implementations also

equire an adequate source of security controls. These must be in-

ernational, validated, and supported by their creators. There are

everal adequate SCAP-compatible sources, such as STIGs (Cyberx-

w and Knowlton, 2020) or the CIS Benchmarks . The latter incor-

orates the CIS Controls abstraction layer, that facilitates to map

oncrete actions to security controls present in frameworks like ISO

7001 (CIS, 2020c), facilitating their implementation.

However, unsupervised application of any list of security con-

rols on a software product to be secureds may impair the per-

ormance or disable services that are running on a system. Secu-

ity controls could maximize security at the expense of the func-
∗ Corresponding author.

E-mail addresses: antonio.paya@thenextpangea.com (A. Paya),

lba.cotarelo@thenextpangea.com (A. Cotarelo), redondojose@uniovi.es (J.M. Re-

ondo).

c

d

t

S

ttps://doi.org/10.1016/j.cose.2022.102638

167-4048/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article u
ionality of legitimate software running into the system. This way,

e can have a highly secure but non functional system, requiring

ecurity control customization to prevent these problems. These

nteractions can be also very hard to predict, and some sources

f security controls highlight potentially problematic ones (i.e. the

IS Benchmarks label them as Level 2 , see Section 2.2.3). Therefore,

lindly applying a list of security controls without giving admin-

strators adequate tools to decide how, or if, certain controls have

o be applied in concrete systems is a problem that requires atten-

ion.

The research presented in this paper aims to increase the

mount of control that system administrators have when applying

n existing list of security controls. This will be done through a

omain Specific Language (DSL). This DSL statements will use run-

ime information about each target system to enrich the automa-

ion process. This information can be used for example to decide if

eploying or not certain parts of a security control list to prevent

reaking legitimate functionality. It can be also used to prevent de-

loyment errors earlier, as it can improve the detection of cases in

hich a security control deployment will be unsuccessful. The DSL

llows to incorporate decisions and other programming elements

nto the automation process, so a single automation file can im-

lement multiple target system needs. This also allows to better

apture the expert knowledge of an administrator to avoid control

eployment problems.

The structure of this paper is the following: next sec-

ion will outline the related work of our research, while

ection 3 describes how the prototype of our research was de-
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.cose.2022.102638
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102638&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:antonio.paya@thenextpangea.com
mailto:alba.cotarelo@thenextpangea.com
mailto:redondojose@uniovi.es
https://doi.org/10.1016/j.cose.2022.102638
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Paya, A. Cotarelo and J.M. Redondo Computers & Security 116 (2022) 102638

s

e

S

2

2

m

t

i

a

c

d

F

e

n

s

t

c

a

c

t

c

t

B

d

p

C

(

2

a

P

(

2

s

t

(

a

t

c

a

n

i

a

t

(

o

a

t

i

b

S

m

u

o

p

c

a

w

t

n

c

o

o

c

i

c

t

a

r

s

i

X

igned. Section 4 presents the behavior of our prototype in sev-

ral use cases that cover our requirements, and, finally, the

ection 5 presents the conclusions and future work.

. Related work

.1. Implementation of defense in depth strategies

The Defense in Depth philosophy is a concept inherited from

ilitary defense that applies to every computer in an infrastruc-

ure (Stytz, 2004). A well-defined and well-implemented defense-

n-depth strategy can prevent and avoid a wide variety of risks,

nd provide monitoring and alert tools to identify unauthorized ac-

ess (Cleghorn, 2013). In this strategy, different security measures,

ivided into layers, are developed to minimize them (Kuipers and

abro, 2006). These layers overlap to cover potential deficiencies

ach other (Weaver and Farwood, 2013). Typical defensive mecha-

isms implemented are: network traffic analysis, behavioral analy-

is, anti-malware software, data integrity analysis software, restric-

ions embedded in software code, user and system restrictions, and

omputer infrastructure hardening.

To properly implement computer infrastructure hardening, reli-

ble and verified security guidelines must be followed. These are

omposed by a list of security controls with the following charac-

eristics:

• They are complete , so a desired security level for a specific OS

or product can be achieved. This means that every part of the

secured systems suitable to be compromised has to be covered

by the controls.

• Each security control must be justified (why each control is

needed). This also helps to solve potential interferences with

the legitimate system activities or functionalities. This is the

knowledge we aim to model with Egida .

• Each security control includes how to check if it is already ap-

plied on a target.

• Each security control includes how to apply (implement) it

when not present on a target.

There are guidelines that comply these characteristics. We

an mention the military-oriented Security Technical Implementa-

ion Guides (STIGs) (Cyberx-Mw and Knowlton, 2020) and the CIS

enchmarks (CIS, 2020a). The last one was chosen in this research

ue to its free availability as PDF documents, its worldwide sup-

ort by major companies, the frequent maintenance offered by the

enter for Internet Security , and the ability to facilitate ISO 27001

 Broderick, 2006) implementation (see Section 2.2.3).

.2. Security controls and standards

ISMS implementation can be facilitated via technologies that

llow automation, such as the SCAP (Security Content Automation

rotocol) (Computer Security Division, 2020) protocol and the TCG

 Trusted Computing Group) (Berger, 2005) framework.

.2.1. SCAP

It is a set of NIST security automation standards for as-

essing compliance with security policies. It is also able to de-

ect vulnerable versions of software and system configurations

 Waltermire et al., 2018). This protocol provides standard formats

nd nomenclatures for defining and exchanging information be-

ween end users and tools, and has many components that can be

lassified into the following categories according to their purpose:

• Enumeration (CVE, CCE , and CPE)

• Metrics (CVSS and CCSS)

• Languages (XCCDF, OVAL , and OCIL)
2
• Report Format (ARF and AI)

• Integrity (TMSAD and SWID)

Enumeration components include CVE (Common Vulnerability

nd Exposures), a system for naming and documenting known vul-

erabilities referenced with a unique identifier. Each CVE contains

nformation such as description, which versions of the software

re affected, the possible solutions (if any), and how to mitigate

he vulnerability. CCE (Common Configuration Enumeration) and CPE

 Common Platflorm Enumeration) are very similar to CVE but their

bjectives are to document system configurations and to collect

nd identify technology systems, software, and packages respec-

ively.

Regarding Metrics , the CVSS (Common Vulnerability Score System)

s a scoring system that allows estimating the impact of vulnera-

ilities based on their characteristics. CCSS (Common Configuration

core System) (Mell and Scarfone, 2010) is a CVSS derivation that

easures the impact of security flaws that depend on certain prod-

ct configurations.

Reporting and Integrity components of the SCAP protocol are

utside the scope of this research. Opposite, its most important

art are their XML-based Languages :

• OVAL (Open Vulnerability and Assessment Language)

(Corporation, 2015) allows to standardize the reporting and

assessment of system configuration status. It consists on three

XML schemas: the OVAL System Characteristics schema , to

represent system information, an OVAL Definition schema , for

expressing a specific machine state, and an OVAL Results schema ,

for reporting the results of an assessment. This language rep-

resents truth values associated with system components (i.e.:

“the version of the /bin/program file is 2.4 ”, “the value of

a registry key is 0 ”, or “the user Alba is a member of the Phd

group ”).

• XCCDF (Extensible Configuration Checklist Description Format)

(NIST, 2021) allows to write security checklists, benchmarks,

and related documents. These documents are a structured col-

lection of security configuration rules for several target systems.

XCCDF specification supports information interchange, docu-

ment generation, organizational and situational tailoring, au-

tomated compliance testing, compliance scoring, and a data

model and format for storing results of benchmark compliance

testing. XCCDF documents can refer to OVAL documents to fully

specify their elements.

• OCIL (Open Checklist Interactive Language) specifies the neces-

sary guidelines to define a series of less automatable checklists

that require more human intervention.

These languages facilitate the exchange of information between

ybersecurity professionals, software vendors, and auditors, as well

s enable the development of automated tools and solutions. Files

ritten in these languages can be used by SCAP-compatible tools

o automatically verify or enforce security controls on a substantial

umber of OS and/or software products. CIS Benchmarks and STIGs

an be also found in SCAP- compatible format, although at a cost

r not publicly available, respectively. In fact, freely available STIGs

nly support manual checking and remediation of their security

ontrols.

However, although the SCAP protocol is a very important step

n the right direction, it has a series of issues. Specifying security

ontrol lists is verbose and require substantial knowledge about

he structure and schemas of these files. Even the simplest ex-

mples require the definition of multiple elements to achieve cor-

ect results (Bergmann, 2017). Additionally, manual specification of

ecurity control lists may easily miss critical security controls, as

t requires deep systems, software, and security knowledge. Being

ML-based, implementation mistakes committed in their defini-

A. Paya, A. Cotarelo and J.M. Redondo Computers & Security 116 (2022) 102638

t

s

t

t

b

i

a

i

c

b

i

a

t

i

t

a

t

a

u

v

t

d

t

t

o

t

r

o

i

a

p

d

p

2

t

m

t

l

t

t

t

m

t

d

s

s

2

t

C

t

c

b

o

2

v

I

m

o

o

l

g

2

b

o

o

p

(

N

c

c

f

(

p

C

p

p

p

a

m

p

t

2

w

t

controls that the system has passed or failed.
ion will detected at runtime. Because of these reasons, we con-

ider that most users will use validated, international, and main-

ained third-party control lists they can trust instead of defining

heir own ones. CIS Benchmarks or STIGs are suitable candidates,

ut their limited availability or the substantial cost of their official

mplementations may also prevent several business to adopt them.

Even if cost is not a factor (unofficial and open implementations

re used), the lack of advanced security control application options

s still a problem to resolve. Security control lists are provided as a

omprehensive list of operations to perform in sequence. They may

e categorized by machine role, potential “dangerousness” to legit-

mate functionalities of a system, or other criteria. Tools that man-

ge them may enable administrators to apply operations bound

o one or multiple categories, but do not provide the ability of

ndividually consider the actions of each individual security con-

rol upon its application on certain systems. For example, if an

dministrator decides to deploy a security control that minimize

he amount of installed packages, it will uninstall an OS GUI to

chieve their goal. However, if some machines have a Training
ser group whose users require a GUI, these users will lose con-

enient functionality. If the administrator could easily check prior

o apply the control if a machine has this group defined, it could

ecide not to apply it on these machines while implementing it on

he others. Providing this kind of flexibility, so security implemen-

ation does not go against functionality, is one of the main goals of

ur research.

The final problem that SCAP-based implementations have is

hat errors that happen during control application are reported at

untime. This means that if a control breaks the execution, the rest

f the controls will not be applied, and the system might be left

n an inconsistent state depending on the controls that have been

pplied. The user is forced then to debug the problem and to re-

eat the process of control application again, as no way of early

etecting potential problems exist. Finding ways of decreasing this

ossibility is the second main goal of our research.

.2.2. TCG (Trusted Computing Group)

The TCG (Trusted Computing Group) (Berger, 2005) is a consor-

ium of more than 200 companies. They develop, define, and pro-

ote a set of open source hardware specifications to protect sys-

ems from attacks that cannot be protected by only software so-

utions to obtain a reliable platform. To this end, the TCG defines

hree characteristics that these systems must meet: (i) Measuring

heir own integrity, logging and reporting, (ii) Protected capabili-

ies, and (iii) Ensuring the accuracy of a component’s status infor-

ation.

However, a major obstacle in the use of TCG-based solutions is

he absence of a public repository (published by the software ven-

or) of hash values of all software components. In addition, the

tatic and rigid whitelisting approach is not well suited to large-

cale distributed environments.

.2.3. Center for Internet Security (CIS) security resources

The Center for Internet Security Critical Security Controls for Effec-

ive Cyber Defense , also called CIS-CSC (Center of Internet Security -

ritical Security Controls) (CIS, 2020b) is a collection of best prac-

ice guidelines that organizations can implement to reduce their

yber-attack surface significantly. These guidelines are formulated

y a group of information technology experts using information

btained from real attacks and their effective defenses.

These guides are composed by 20 (rev. 7, 2018) or 18 (rev. 8,

021) activities called Critical Security Controls (CSC). They are di-

ided into three categories called Implementation Groups (IG). Each

G defines which security controls an organization should imple-

ent depending on the resources it has at its disposal and its level

f risk. Organizations are responsible of classifying themselves into
3
ne of the three IGs depending on their security budget. This al-

ows the controls to be used by almost any type of organization re-

ardless of size or resources (Shamma et al., 2018; Winarno et al.,

020). Each IGs include the previous one. This way, IG 1 includes

asic security controls, while IG 3 includes the most advanced

nes regarding software security, incident response, management,

r penetration testing.

CIS Controls can work either as standalone resources or as com-

anions to other frameworks. As we said, CIS provides a mapping

 CIS, 2020c) of their security controls to other frameworks such as

IST or ISO/IEC 27001 .

CIS Benchmarks are documented industry best practices for se-

urely configuring IT systems, software, and networks. There are

urrently over 100 benchmarks, that cover many vendor product

amilies. They contain a detailed list of security configuration tasks

security controls) applicable to that product. The CIS Benchmarks

rovide a mapping of each of these tasks to the corresponding CIS

ontrols . Task “dangerousness” to the performance or availability of

roduct features are indicated by levels. Level 1 tasks can be im-

lemented fairly quickly, and are designed not to have a major im-

act on product performance. Level 2 tasks are considered part of

 defense-in-depth strategy, and are intended for critical environ-

ents. These tasks can affect the proper functioning if not applied

roperly. CIS Benchmarks can be automated following the SCAP pro-

ocol guidelines, but at a cost.

.3. Automated tools for security configuration and verification

Guidelines and standards, such as SCAP or TCG , are usually used

ith automatic hardening tools that try to comply with most of

heir sections. Examples of these tools are:

• VM2 (Spichkova et al., 2020), that automatically generates vir-

tual machines applying some of the CIS Benchmarks to them.

• The configuration script for a Linux web server proposed by

Michal Olencin (Olen ̌cin and Perháč, 2019).

• JShielder (Soto, 2019), which automates the hardening of LAMP

(Linux, Apache, MySQL/MariaDB, and PHP) and LEMP (Linux, Ng-

inx, MySQL/MariaDB, and PHP)

• Research projects such as ISCP (Al-Safwani et al., 2018), or the

one proposed by Durkota et al. (2019) . They use models to

determine vulnerable controls and provide clear guidelines on

how to perform control analysis and to represent the possible

actions of an attacker using attack graphs respectively.

• The most popular implementation of the SCAP protocol, the

OpenSCAP Project (OpenSCAP, 2020) and its GUI SCAP Work-

bench . It is a collection of open source tools for implement-

ing and enforcing the SCAP standard, which are certified up

to SCAP version 1.2. These tools comprise a multi-purpose

specification framework that supports automated configuration,

vulnerability checking and patching, technical control compli-

ance activities, and security measurements. OpenSCAP supports

files written in the OVAL and XCCDF languages, as well as al-

lowing system audit reports based on already defined poli-

cies such as those of the CIS or STIGs. OpenSCAP is typically

used with the also freely available SCAP-compatible files of the

scap-security-guide package (ComplianceAsCode, 2021).

However, although this combination is popular, it has several

important shortcomings, such as not covering typical products,

not supporting Windows systems, lack of automatic verification

and/or remediation of several security controls, or incomplete

implementations when compared with official counterparts.

• Other tools that use these guidelines and standards to perform

system audits and tests such as Lynis, Chef Inspec or Prowler . The

result of these tools is a report with a checklist of the security

A. Paya, A. Cotarelo and J.M. Redondo Computers & Security 116 (2022) 102638

Fig. 1. SCAP Workbench running a list of security controls for Ubuntu 18.04.

S

m

o

t

f

E

a

3

o

fi

t

i

b

d

w

3

r

t

u

c

C

t

i

w

t

p

o

s

b

r

t

g

a

b

t

a

m

i

a

g

p

c

s

A

f

c

m

g

f

r

s

N

t

t

C

a

t

t

m

t

f

These tools have the problem we outlined at the end of the

ection 2.2.1 : they apply the security control lists in a sequential

anner (see Fig. 1), not giving the administrator enough control

ver their actions to prevent breaking legitimate functionality. Po-

ential errors while control application are reported at runtime,

orcing the user to restart the process when these errors are fixed.

gida aims to enable the same type of automation that these tools

lleviating these problems.

. Egida

This research project proposes an automated security control

rchestration system called Egida . It allows to deploy security con-

gurations (validated security control checklists) on an infrastruc-

ure of machines giving more deployment flexibility to the admin-

strators. These security configurations can protect these machines

y applying security measures depending on their usage profile,

ecreasing the risk of breaking legitimate functionality if compared

ith other approaches.

.1. Security controls deployment

As we said in Section 2.2.1 , developing adequate custom secu-

ity controls is a very complex task for most use cases, so tried and

ested third-party ones are usually preferred. For this reason, Egida

ses the CIS Benchmarks guides and their security controls.

CIS Benchmarks officially support the SCAP protocol, but at a

ost (Sager, 2021) and with a custom SCAP-compatible tool (CIS

AT Pro). Very recently, a Lite version of this tool can be ob-

ained free of charge. However, due to the shortcomings of us-

ng the SCAP protocol in this scenario we outlined in Section 2.2.1 ,

e chose the highly popular Ansible configuration deployment tool

o distribute the security controls verification and implementation

rocedures.

Using Ansible has three main advantages: the ability to work

ver any machine accessible via SSH without installing additional
4
oftware, its ability to be used in large-scale deployments, and its

uilt-in ability of not repeating operations that are detected as al-

eady performed. This means that restarting an Ansible script due

o runtime errors do not perform already done operations. This

reatly facilitates security control testing and enforcement prop-

gation with a great degree of efficiency. Ansible is indeed used

y several of the products listed in Section 2.3 as a complement,

o automatically verify and/or remediate security controls. For ex-

mple, scap-security-guide SCAP files are typically comple-

ented by Ansible or Bash remediation scripts, that may automat-

cally remediate problems in cases these procedures are not avail-

ble in the companion SCAP files yet.

Another advantage of using Ansible is that we can follow a more

ranular approach. Therefore, with Egida we can achieve a more

recise and flexible management of the CIS Benchmarks security

ontrols to be deployed. To do that, we can create smaller or more

pecialized security control profiles that can be combined thanks to

nsible features. This facilitates deploying just what it is needed,

avoring more flexible machine specialization. Aggregation of se-

urity control profiles allows better security control micromanage-

ent, which in turn may decrease the probability of breaking le-

itimate functionality.

Even tough CIS Benchmarks security controls are a very strong

oundation to obtain secure systems, there are also additional secu-

ity software that may complement them to further enhance their

ecurity. Reverse proxies, perimetral firewalls, host-based firewalls,

IDS, HIDS, WAFs , etc. strengthen certain points of an infrastruc-

ure, better implementing the defense-in-depth approach. Installa-

ion of this type of advanced software is not typically covered by

IS Benchmarks . The Egida project also want to apply its automated

nd flexible approach to these higher-level security elements, so

hey are easier to apply over specific machines. The installation of

hese products is also facilitated with Ansible , as there are docu-

ented ways of automating its deployment using it. It is impor-

ant to remark that other solutions studied in 2.3 typically lack this

unctionality.

A. Paya, A. Cotarelo and J.M. Redondo Computers & Security 116 (2022) 102638

Fig. 2. Egida structure.

o

t

t

t

3

p

t

t

a

v

g

o

m

p

t

c

l

t

s

a

d

e

s

i

p

u

c

i

a

c

s

3

w

w

m

h

E

3

s

t

a

d

t

t

t

(

g

i

t

l

m

d

s

t

a

a

b

l

t

g

i

v

e

v

d

T

L

Finally, in order to achieve Egida goals we require a method to

btain runtime information of the state and configuration of each

arget system. This type of information will be used to customize

he application of the CIS security controls thanks to the Egida DSL,

hat will be described in the following section.

.2. Domain Specific Language (DSL)

As we said, XML markup-based solutions like OVAL or XCCDF

rovide specifications to precisely detail and deploy security con-

rols, but they do not allow to incorporate what we can call seman-

ic checks. Ansible and SCAP tools deployment errors are discovered

t runtime. The final goal of the Egida research project is to de-

elop a DSL that allows administrators to deploy security control

roups from the CIS Benchmarks , but performing early validations

f the infrastructure machines and/or contents prior to this deploy-

ent. Things like inconsistencies with the machines that are ex-

ected to be found, open ports, available software, necessary direc-

ories, required users, etc. could prevent a deployment to be suc-

essful or break legitimate functionality. Egida aims to explore the

imits of what can be validated prior to perform a deployment, so

he probability of finding a runtime failure or break a service is

ignificantly lower. A precise early error control may also enable

dministrators to solve problems in substantially less time, as the

eployment procedure need not to be run subsequently until no

rror is found. We successfully tried this philosophy with Nmap

cans in Redondo and Cuesta (2019) .

The purpose is to define DSL programs containing the harden-

ng configuration of machines fulfilling a specific role of a com-

any. This way, these programs contain all the hardening config-

ration (security controls, extra security software, plus their asso-

iated variable values) of their HTTP servers, SGBD servers, prox-

es, or other machine types. These files could also be distributed

nd reused all through the company infrastructure. If configuration

hanges, or must be refined, the DSL could be able to detect incon-

istencies produced in the new versions prior to its deployment.

.3. Structure

Egida works with a Master-Worker design pattern (see Fig. 2)

here the system administrator has control of the Master machine

ith the Egida software installed. From this Master machine we can
5
anage the security configurations of the Worker machines and

ow it will be implemented.

Egida is composed of four independent modules: Egida Core,

gida Role CIS, Egida Role Setup and Egida API Worker .

.3.1. Egida Core

Egida Core is the main program, and also the interface that the

ystem administrators use to interact with the machines they want

o configure. Egida allows two usage modes: an interactive menu,

nd a Domain Specific Language (DSL) called Aspida .

Some of the tasks and operations can require variable data that

epend on the type of installation or configuration that you want

o apply to a machine (e.g. user names, passwords, etc.). To solve

his, Egida allows using variables that can be modified by the sys-

em administrator, both in the interactive menu execution mode

through a YAML configuration file) and in the Domain Specific Lan-

uage (within the variables block).

Menu An interactive console menu that allows to select harden-

ng options to perform on a machine or set of machines. It allows

he customization of the machine’s security configuration by se-

ecting the CIS Controls, sections , or specific points of the CIS Bench-

arks to be applied.

Domain Specific Language Aspida allows the development of pre-

efined configuration scripts that act differently depending on the

tate of the target machine. The language is aimed at facilitating

he implementation of security controls linked to machine profiles,

lso allowing users to check different states, conditions, or vari-

ble values so that they can prevent or react to deployment errors

efore configuration deployment occurs and also prevent breaking

egitimate functionality.

The language also aims to implement a semantic error preven-

ion module so that a given program cannot be deployed if the lan-

uage processor detects any kind of problem with the deployment

nfrastructure, incompatibilities between security controls, wrong

ariable values, and any other condition that may cause a runtime

rror that can be prevented at compile time (see 3.2).

Aspida allows the use of conditional structures in order to pro-

ide the user with the ability to specify different types of actions

epending on the information obtained from the target machine.

he main elements of the structure of the grammar are shown in

isting 1 .

A. Paya, A. Cotarelo and J.M. Redondo Computers & Security 116 (2022) 102638

Listing 1. Aspida grammar.

F

3

c

E

l

o

g

u

a

t

c

i

t

t

p

a

r

3

W

c

3

c

E

t

i

e

4

u

s

p

i

p

4

c

s

4

m

a

c

4

c

d

o

m

a

t

MAIN This block provides information about the script, such as

the name or a description or the type of connection to the

target machine (Local or SSH).
HOSTS Name of the host(s) on which the script will be executed.

TASKS This block is the most important one, as it contains all

the information about the tasks to be performed. It allows

you to define which sections or specific points of the CIS

Benchmarks will be executed or excluded, as well as to select

CIS Controls (see Section 2.2.3), or to execute all the tasks

that correspond to a label (for example all the tasks that are

related to SSH). In this block, If-ElsIf-Else conditional

statements can be used along with values obtained from the

target machine state to control the script flow and to apply

the CIS elements.

VARS The variables block allows you to give a value to each of

the variables that will be used during script execution.

Some examples of programs written in Aspida are shown in

ig. 3 .

.3.2. Egida Role CIS

The Egida Role CIS module is an Ansible Role that defines all se-

urity configuration operations based on the CIS Benchmarks that

gida can perform. Ansible Roles allows to automatically load re-

ated vars, files, tasks, handlers, and other Ansible artifacts based

n a known file structure. This way, if all the hardening content is

rouped in roles, they can be easily reused and shared with other

sers, or even the public Ansible repository (Ansible Galaxy) to be

vailable worldwide.

This Ansible Role contains one task for each point corresponding

o the CIS Benchmarks . Each of these tasks contains tags that indi-

ate the control, point and section of the CIS Benchmarks to which

t belongs, as well as some extra tags that provide extra informa-

ion such as software or elements affected by that task.

In the evaluation of the prototype of this benchmark, most of

he Ubuntu 18.04 CIS Benchmarks security controls are currently im-

lemented, except for some of them that require manual action
6
nd make automation difficult. In the future, the remaining secu-

ity controls are expected to be developed.

.3.3. Egida Role Setup

Is an Ansible Role that is responsible for installing the Egida API

orker service and the tools or options necessary to ensure the

orrect behavior of Egida in the system.

.3.4. Egida API Worker

The Egida API Worker is a gRPC API installed on a Worker ma-

hine through the Master node. It works as a service to provide the

gida Core module with information about each machine we men-

ioned, such as data about running or stopped services, machine

nformation, installed packages or results of security audits using

valuation tools.

. Evaluation

In this section we will evaluate our Egida proposal with some

se cases. Subsequently, we will perform an analysis and discus-

ion of the results obtained. All measurements and tests have been

erformed using a 64-bit Ubuntu 18.04 LTS and its correspond-

ng CIS Benchmark . More CIS Benchmarks , covering other OS and/or

roducts, will be incorporated in the future.

.1. Use cases

In order to evaluate the Egida system, we have defined 3 use

ases with several functionalities that should be fulfilled by the

ystem.

.1.1. Automated and customized system hardening profiles

The system should be able to automatically run all the imple-

ented security controls of the mentioned CIS Benchmark . It must

lso allow users to customize the hardening to be performed. To

heck this, we have defined four tests:

1. Automatic execution of all available security controls . To test how

this improves Ubuntu security, we will use several audit tools of

Section 2.3 to obtain an overall security score. These are: Lynis,

Chef InSpec , and OpenSCAP , comparing the score obtained be-

fore and after executing all CIS security controls implemented

in Egida . This use case was chosen because Egida could not lose

functionality over other similar tools that use CIS Benchmarks to

improve the security of an Ubuntu OS.

2. Execution of all tasks that belong to a single CIS Control . To test

this we will run all the benchmarks tied to an specific CIS Con-

trol and check if all of them have been run or there are missing

ones. This facilitates implementing CIS Implementation Groups

(see Section 2.2.3) with Egida and, thanks to the existing map-

ping of these controls (CIS, 2020c), also international frame-

works like ISO 27001.

3. Use of tags to run all security controls related to a topic (e.g.

cron or sshd). This facilitates applying only the security op-

tions of certain key services at the administrator discretion, let-

ting the rest unmodified. This increased granularity facilitates

not breaking legitimate functionalities with Egida .

4. Change default values using variables .

.1.2. Security operation customization according to the

haracteristics of the target machine

As we said in Section 3.2 , our DSL allow the administrator to

ecide which security controls are applied on a machine based

n its current state and characteristics. In this way, we can better

odel the experience of a trained system or security administrator

ccording to these characteristics. To evaluate this, we have defined

wo different tests that need information from the target machine.

A. Paya, A. Cotarelo and J.M. Redondo Computers & Security 116 (2022) 102638

Fig. 3. Aspida DSL examples.

4

e

a

e

i

e

fi

C

f

e

m

Table 1

Chef InSpec, OpenSCAP , and Lynis results.

Audit Tool After/Before Successful Failures Other Score [%]

Before 85 118 32 36.17

Chef Inspec After 151 53 31 64.25

Before 31 39 1 32.08

OpenSCAP After 52 18 1 71.46

Before 78 72 0 52.00

Lynis After 126 24 0 84.00

4

u

4

t

w

f

t

o

d

t

fi

L

u

(

i

t

T

c

i

p

v

r

t

o

1. Change configuration based on target machine information (ser-

vices, packages, open/closed ports,...). To test this, we propose

three possible realistic situations.

(a) If the apache service is running and port 80 is in use, do

not run CIS Benchmark security control 2.2.10. It may affect

the correct operation of this web server, preventing breaking

legitimate functionality.

(b) If a GUI is detected, do not run CIS Benchmark security con-

trol 2.2.2, as it may affect the performance of the system’s

GUI. This is the same use case we outlined at the end of

Section 2.2.1 , also preventing breaking legitimate function-

ality for some users that require a GUI.

(c) If telnet is being used and SSH is enabled, run the CIS

Benchmarks security control 2.3.4 to disable telnet . This

replaces an inherently insecure service with a more secure

one, using administrator knowledge.

2. Detect if the target system does not obtain a specific score through

an audit of the Lynis tool . This is useful because having ma-

chines complying a base security score is a common require-

ment for several infrastructures. If any of these machines fall

behind the minimum expected security score, this will indicate

that some kind of misconfiguration has happened, and it needs

to be promptly fixed. Even worse, some kind of malware may

be disabling security mechanisms as a previous step to perform

a more complex attack, so it is necessary to take decisive action

inmediately. Note that these kinds of operations is only possi-

ble with the Egida approach, and not with the other tools we

reviewed. The rationale to include this use case is to show how

“machine characteristics” can be more than just values to cer-

tain properties, but also the result of executing third-party‘ pro-

grams we decide to use.

.1.3. Early configuration errors detection

The DSL should detect at compile time possible configuration

rrors, problems with the deployment infrastructure, wrong vari-

ble values, and any other condition that may cause a run-time

rror. As we said, the difference with other tools we analyzed

n Section 2 and Ansible is that Egida allows early detection of

rrors. This follows a similar approach and has the same bene-

ts than other research projects with security tools (Redondo and

uesta, 2019) or languages (Ortin et al., 2015). To evaluate this

unctionality, we have defined the following tests of each of the

rror detection procedures that our current DSL prototype imple-

ents at this moment:

1. Syntactic and lexical error detection.
7
2. Display warnings when the default value of a variable is used

(its value has not been set and is going to be used).

3. Display Warnings when a Level 2-Workstation task is going to

be executed.

.2. Evaluation results

In this section, we will detail the results of the of the defined

se cases.

.2.1. Automated and customized system hardening profiles

To test the first section of this use case, all the security con-

rols available in Egida (see see 3.3.2) were run, auditing the OS

ith the tools we mentioned in Section 4.1.1 . These tools use dif-

erent criteria to evaluate it, so the returned score may depend on

he initial configuration of the system, installed services, defaults,

r other features. To create a common baseline, we started with a

efault Ubuntu installation with its base configuration.

For the Chef InSpec tool we have used its CIS Dis-

ribution Independent Linux Benchmark (CIS, 2020a) pro-

le, which implements the CIS Distribution Independent

inux 2.0.0 Benchmark . For the OpenSCAP audit tool we

sed its CIS Benchmarks profile for Ubuntu 18.04 LTS

 xccdf_org.ssgproject.content_profile_cis). Finally,

n the Lynis tool, we have taken the executed and not skipped

ests and represented the warnings and suggestions as failures.

he Table 1 shows these results.

After applying Egida to the machine, we have managed to in-

rease the hardening score by 28% in the Chef InSpec tool, 39.38%

n OpenSCAP , and 31% in Lynis audit tool. These results show how

roper automated hardening of a machine with tried and tested

alidated controls (CIS Benchmarks) can greatly increase its secu-

ity compared to its initial configuration with little effort, showing

hat automation is a way to facilitate increasing the overall security

f an infrastructure.

A. Paya, A. Cotarelo and J.M. Redondo Computers & Security 116 (2022) 102638

Table 2

CIS Controls benchmarks expected vs executed.

CIS Controls v7 security controls Expected Executed

2.- Inventory and Control of Software Assets 8 8

3.-Continuous Vulnerability Management 6 6

4.-Controlled Use of Administrative Privileges 15 15

5.-Secure Configuration for Hardware and Software on Mobile Devices, Laptops, Workstations and Servers 52 52

6.-Maintenance, Monitoring and Analysis of Audit Logs 10 10

8.-Malware Defenses 3 3

9.-Limitation and Control of Network Ports, Protocols and Services 34 34

13.-Data Protection 1 1

14.-Controlled Access Based on the Need to Know 23 23

16.-Account Monitoring and Control 19 19

Total 171 171

Listing 2. Aspida use Case 1.

a

p

i

t

E

t

i

a

t

b

c

o

a

a

B

r

m

a

f

4

c

c

c

s

s

T

p

n

t

s

s

e

Listing 3. Aspida Use Case 2.

s

p

t

c

s

H

a

e

m

t

t

s

e

4

t

t

To test the second section of this use case, we have executed

ll the security controls that belong to each of the CIS Controls im-

lemented in Egida for Ubuntu 18.04LTS individually and checked

f the amount corresponds to the expected one (see Table 2). All

he expected security controls have been executed correctly, so

gida is able to successfully deploy all implemented security con-

rols that compose each CIS Control , and therefore help to quickly

mplement the Implementation Groups defined by the CIS, as well

s standards like ISO 27001 (CIS, 2020c). To check that the con-

rols have been successfully applied, we used Ansible output. Ansi-

le clearly informs when each automated operation has been suc-

essful or has failed, creating a very detailed and easy to read trace

f its operations.

To test the last two sections of this use case we have developed

 script (see Listing 2) in Aspida that performs all ssh -related tasks

nd changes the value of the default variables according to the CIS

enchmarks indications. As we see, it is very easy to isolate secu-

ity controls from different services in separate units, so the ad-

inistrators can decide which services they secure automatically,

nd which ones require further study to avoid breaking legitimate

unctionality, allowing more granularity in control application.

.2.2. Security operation customization according to the

haracteristics of the target machine

To test this use case, we have developed a script in Aspida that

hecks the state of the target machine and acts accordingly. As we

an see in Listing 3 , the language allows us to obtain information

uch as the current state of a service or the open ports. We use this

cript to implement all the use cases we outlined in Section 4.1.2 .

herefore, we are checking if the Apache service is running and

ort 80 is in use (Line 3). If these two conditions are met, we do

ot execute its CIS Benchmark 2.2.10 (Line 5). In addition, if the

arget machine has an active GUI, we also add 2.2.2 to the exclu-

ions (Line 9). In case the telnet package is installed and the SSH

ervice is also running (Lines 11 and 12), we add 2.3.4 to the ex-

cution list as it disables telnet (Line 13). Finally, we check the
8
core obtained on the target machine with Lynis , and we act de-

ending on this score (Lines 16–22). If the score is found to be

oo low (less or equal to 50 points), we add 12 additional security

ontrols of the Ubuntu CIS Benchmark that can improve the overall

ystem security score to a minimum value we consider acceptable.

igher but not great scores (less or equal than 60 points) add 4

dditional controls to reach this minimal security score. Finally, we

nsure that at least security control 9.4 from the Ubuntu CIS bench-

ark is implemented.

As shown in Listing 3 , making decisions based on the charac-

eristics of the target machine gives us flexibility to develop scripts

hat allow to specialize machine hardening, applying all available

ecurity controls except those that interfere with its legitimate op-

ration.

.2.3. Early configuration errors detection

Finally, to test this use case we have developed some scripts

hat use undefined variables, have lexical or semantic errors, or

ry to execute Level 2-Workstation tasks. Processing the script pro-

A. Paya, A. Cotarelo and J.M. Redondo Computers & Security 116 (2022) 102638

d

a

c

v

p

s

t

b

t

a

a

5

c

a

fi

B

a

c

r

t

s

o

m

p

s

i

d

T

a

a

i

o

t

fi

t

e

B

t

t

c

p

i

a

r

t

p

a

g

t

s

t

i

(

s

i

t

h

D

e

c

o

a

fi

fi

a

t

t

p

c

c

t

r

c

s

C

t

v

W

R

A

B

B

B

C

C

C

C

C

C

C

C

D

K

M

N

O

O

O

R

uces lexical and syntactic errors in lines 7 and 9 (missing HOST
nd TASK keywords), and also in line 11 (badly constructed IF
ondition). It also produces warnings for not defining the value of

ariable ssh_access and using its default value and, finally, re-

orts a warning for using a Level-2 security control that may break

ystem functionality.

As we said, detecting errors or potential problems at compile

ime (such as forgetting to change the value of the ports allowed

y the firewall or setting the SSH access user) allows us, in addi-

ion to develop scripts with potentially less errors in less time, to

void possible default configurations that may be vulnerable, or to

void running security controls that may affect system operation.

. Conclusions and future work

The proposed Egida system allows automated deployment of se-

urity configurations to components of an infrastructure, giving the

dministrators more flexibility and control. As a base of these con-

gurations we use the tried and tested security controls of the CIS

enchmarks . The hardening of target machines can be customized

ccording to their characteristics. This allow to implement security

ontrols minimizing the possibility of interfering with their cor-

ect operation. In this way, different security profiles composed by

hese controls can be created better capturing the expertise of a

ecurity administrator.

To better capture this expertise, the Domain Specific Language

f Egida obtains information about the characteristics of the target

achine, and allows customizing the security controls to be ap-

lied. Additionally, the language processor performs the checks the

tatements to early detect different types of errors, thus decreas-

ng the possibility of breaking the control application at runtime

ue to misconfigurations, as happens with other similar solutions.

herefore, with Egida we complement the work of projects such

s SCAP or the CIS Benchmarks by adding customization, flexibility,

nd error prevention, based on the characteristics of each machine.

Once the first prototype of our research work as expected, we

ntend to improve the Egida API prototype in the future so we can

btain more information from the target machines. Some features

hat are being considered are: checking the existence of certain

les, checking the permissions on directories and files, or checking

he configuration values of known services. This enhanced knowl-

dge of the target systems will improve the ability to customize CIS

enchmarks application, decreases the probability of finding run-

ime errors, and improve the ability of translating expert adminis-

rator knowledge to them, based on its current configuration.

We also want to improve the Domain Specific Language by in-

luding elements to facilitate code development. For example, the

ossibility of being able to print messages (error, info, and warn-

ng) or the declaration of variables. All these future changes are

imed to fully deploy this security automation technique over the

eal infrastructures of a company, capturing the required informa-

ion of their running systems, and using the Ansible features to im-

lement large-scale deployments.

This tool has been incorporated as part of the teaching materi-

ls of the Computer Security course of the School of Computer En-

ineering in the University of Oviedo (Redondo, 2021). We also in-

end to provide this tool to administrative personnel of the Univer-

ity of Oviedo in the future to collect usage feedback and see how

hey can share and model their knowledge. The ideas support-

ng this research were Top 10 finalist in the I INNCYBER AWARDS

2019). The next year, an evolution of these ideas (the ones pre-

ented in this paper) were Top 5 (out of 68 teams worldwide)

n the 2nd edition of the same awards. All the source code of

he Egida project and documentation of its use is available at

ttps://egida-kassandra.github.io/egida .
9
eclaration of Competing Interest

We wish to confirm that there are no known conflicts of inter-

st associated with this publication and there has been no signifi-

ant financial support for this work that could have influenced its

utcome.

We confirm that the manuscript has been read and approved by

ll named authors and that there are no other persons who satis-

ed the criteria for authorship but are not listed. We further con-

rm that the order of authors listed in the manuscript has been

pproved by all of us.

We confirm that we have given due consideration to the pro-

ection of intellectual property associated with this work and that

here are no impediments to publication, including the timing of

ublication, with respect to intellectual property. In so doing we

onfirm that we have followed the regulations of our institutions

oncerning intellectual property.

We understand that the Corresponding Author is the sole con-

act for the Editorial process (including Editorial Manager and di-

ect communications with the office). He/she is responsible for

ommunicating with the other authors about progress, submis-

ions of revisions and final approval of proofs.

RediT authorship contribution statement

Antonio Paya: Software, Conceptualization, Methodology, Inves-

igation. Alba Cotarelo: Writing – original draft, Visualization, In-

estigation. Jose Manuel Redondo: Supervision, Conceptualization,

riting – original draft, Writing – review & editing.

eferences

l-Safwani, N., Fazea, Y., Ibrahim, H., 2018. ISCP: in-depth model for selecting critical

security controls. Comput. Secur. 77, 565–577. doi: 10.1016/j.cose.2018.05.009 .

erger, B., 2005. Trusted computing group history. Inf. Secur. Tech. Rep. 10 (2), 59–
62. doi: 10.1016/j.istr.20 05.05.0 07 .

ergmann, A., 2017. Simple XCCDF/OVAL example. Accessed: 2021-05-17. https:
//gist.github.com/abergmann/13e1ef5c0ad06a640f90aa8a9897644e .

roderick, J.S., 2006. ISMS, security standards and security regulations. Inf. Secur.
Tech. Rep. 11 (1), 26–31. doi: 10.1016/j.istr.20 05.12.0 01 .

IS, 2020a. CIS benchmarks. Accessed: 2021-05-20. https://github.com/dev-sec/

cis- dil- benchmark .
IS, 2020b. CIS Controls. Accessed: 2021-05-20. https://www.cisecurity.org/

controls/ .
IS, 2020c. Mapping and compliance. Accessed: 2021-05-20. https://www.cisecurity.

org/cybersecurity-tools/mapping-compliance .
leghorn, L., 2013. Network defense methodology: a comparison of defense in depth

and defense in breadth. J. Inf. Secur. 4, 144–149. doi: 10.4236/jis.2013.43017 .

omplianceAsCode, 2021. Compliance as code. Accessed: 2021-05-17. https://github.
com/ComplianceAsCode/content .

omputer Security Division, I. T. L., 2020. Security content automation
protocol: CSRC. Accessed: 2021-05-25. https://csrc.nist.gov/projects/

security- content- automation- protocol .
orporation, M., 2015. Open vulnerability and assessment language. Accessed: 2021-

10-25. https://oval.mitre.org/language/index.html .

yberx-Mw, Knowlton, 2020. Security technical implementation guides (STIGs). Ac-
cessed: 2021-05-17. https://public.cyber.mil/stigs .

urkota, K., Lisý, V., Bošanský, B., Kiekintveld, C., P ̌echou ̌cek, M., 2019. Hardening
networks against strategic attackers using attack graph games. Comput. Secur.

87, 101578. doi: 10.1016/j.cose.2019.101578 .
uipers, D. , Fabro, M. , 2006. Control systems cyber security: defense in depth strate-

gies. Technical Report. Idaho National Laboratory (INL) .

ell, P., Scarfone, K., 2010. The Common Configuration Scoring System (CCSS): met-
rics for software security configuration vulnerabilities. doi: 10.6028/NIST.IR.7502 .

IST, 2021. eXtensible Configuration Checklist Description Format (XCCDF). Ac-
cessed: 2021-10-25. https://csrc.nist.gov/projects/security- content- automation-

protocol/specifications/xccdf .
len ̌cin, M., Perháč, J., 2019. Automated configuration of a Linux web server se-

curity. In: Proceedings of the IEEE 15th International Scientific Conference on
Informatics, pp. 0 0 0491–0 0 0496. doi: 10.1109/Informatics47936.2019.9119272 .

penSCAP, 2020. OpenSCAP portal. Accessed: 2021-05-20. http://www.open-scap.

org/ .
rtin, F. , Schofield, J. , Redondo, J.M. , 2015. Towards a static type checker for Python.

In: Proceedings of the ECOOP 2015. STOP 2015 Workshop .
edondo, J.M., 2021. Improving concept learning through specialized digital

fanzines. In: Proceedings of the IEEE/ACM 43rd International Conference on

https://egida-kassandra.github.io/egida
https://doi.org/10.1016/j.cose.2018.05.009
https://doi.org/10.1016/j.istr.2005.05.007
https://gist.github.com/abergmann/13e1ef5c0ad06a640f90aa8a9897644e
https://doi.org/10.1016/j.istr.2005.12.001
https://github.com/dev-sec/cis-dil-benchmark
https://www.cisecurity.org/controls/
https://www.cisecurity.org/cybersecurity-tools/mapping-compliance
https://doi.org/10.4236/jis.2013.43017
https://github.com/ComplianceAsCode/content
https://csrc.nist.gov/projects/security-content-automation-protocol
https://oval.mitre.org/language/index.html
https://public.cyber.mil/stigs
https://doi.org/10.1016/j.cose.2019.101578
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0014
https://www.doi.org/10.6028/NIST.IR.7502
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/xccdf
https://doi.org/10.1109/Informatics47936.2019.9119272
http://www.open-scap.org/
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0019

A. Paya, A. Cotarelo and J.M. Redondo Computers & Security 116 (2022) 102638

R

S

S

S

S
S

S

W

W

W

Software Engineering: Software Engineering Education and Training (ICSE-
SEET), pp. 134–143. doi: 10.1109/ICSE-SEET52601.2021.0 0 023 .

edondo, J.M., Cuesta, D., 2019. Towards improving productivity in Nmap security
audits. J. Web Eng. 18 (7), 539–578. doi: 10.13052/jwe1540-9589.1871 .

ager, T., 2021. Secure configurations and the power of SCAP. Accessed: 2021-05-17.
https://www.cisecurity.org/blog/secure- configurations- and- the- power- of- scap/ .

hamma, B. , et al. , 2018. Implementing CIS critical security controls for organiza-
tions on a low-budget. University of Houston . Ph.D. thesis .

oftware, I. J. S., systems engineering, 2020. ISO/IEC 19770-8:2020. Accessed:

2021-05-12. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/
standard/07/25/72588.html .

oto, J., 2019. JShielder. Accessed: 2021-05-26. https://github.com/Jsitech/JShielder .
pichkova, M., Li, B., Porter, L., Mason, L., Lyu, Y., Weng, Y., 2020. VM2: automated

security configuration and testing of virtual machine images. Proc. Comput. Sci.
176, 3610–3617. doi: 10.1016/j.procs.2020.09.025 .

tytz, M., 2004. Considering defense in depth for software applications. IEEE Secur.

Privacy 2 (1), 72–75. doi: 10.1109/MSECP.2004.1264860 .
altermire, D., Quinn, S., Booth, H., Scarfone, K., Prisaca, D., 2018. The technical

specification for the Security Content Automation Protocol (SCAP) version 1.3.
doi: 10.6028/NIST.SP.800-126r3 .

eaver, R. , Weaver, D. , Farwood, D. , 2013. Guide to Network Defense and Counter-
measures. Cengage Learning .

inarno, H., Yasin, F., Prasetyo, M.A., Rohman, F., Shihab, M.R., Ranti, B., 2020. IT

infrastructure security risk assessment using the Center for Internet Security
Critical Security Control framework: a case study at insurance company. In: Pro-

ceedings of the 3rd International Conference on Computer and Informatics En-
gineering (IC2IE), pp. 404–409. doi: 10.1109/IC2IE50715.2020.9274594 .

Antonio Payá González has a Web Engineering Master

Degree in the University of Oviedo, and works at Arcelor-

Mittal R&D Asturias and ICUBE SL in the development of
artificial intelligence solutions in the Additive Manufac-

turing field. He is also working on the implementation
of secure network architectures for an additive manufac-

turing pilot plant and implementing new ways to auto-
mate the deployment of security configurations. He has

currently started his Ph.D. studies.
10
Alba Cotarelo has a Web Engineering Master Degree in

the University of Oviedo, and works with Machine Learn-
ing algorithms at Ingenica STS and ArcelorMittal R&D As-

turias. She also worked in Artificial Intelligence at Model-
Driven Engineering Research Group in Universidad de

Oviedo. She has currently started her PhD studies.

Jose Manuel Redondo Lopez is a Tenured Associate Pro-
fessor in the University of Oviedo, Spain. Received his

B.Sc., M.Sc., and Ph.D. degrees in computer engineering
from the same university in 20 0 0, 20 02, and 20 07, re-

spectively. He participated in various research projects

funded by Microsoft Research and the Spanish Depart-
ment of Science and Innovation. He has authored three

books and over 20 articles. His research interests include
computer security, dynamic languages and computational

reflection.

https://doi.org/10.1109/ICSE-SEET52601.2021.00023
https://doi.org/10.13052/jwe1540-9589.1871
https://www.cisecurity.org/blog/secure-configurations-and-the-power-of-scap/
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0024
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/25/72588.html
https://github.com/Jsitech/JShielder
https://doi.org/10.1016/j.procs.2020.09.025
https://doi.org/10.1109/MSECP.2004.1264860
https://www.doi.org/10.6028/NIST.SP.800-126r3
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00037-2/sbref0020
https://doi.org/10.1109/IC2IE50715.2020.9274594

	Egida: Automated security configuration deployment systems with early error detection
	1 Introduction
	2 Related work
	2.1 Implementation of defense in depth strategies
	2.2 Security controls and standards
	2.2.1 SCAP
	2.2.2 TCG (Trusted Computing Group)
	2.2.3 Center for Internet Security (CIS) security resources

	2.3 Automated tools for security configuration and verification

	3 Egida
	3.1 Security controls deployment
	3.2 Domain Specific Language (DSL)
	3.3 Structure
	3.3.1 Egida Core
	3.3.2 Egida Role CIS
	3.3.3 Egida Role Setup
	3.3.4 Egida API Worker

	4 Evaluation
	4.1 Use cases
	4.1.1 Automated and customized system hardening profiles
	4.1.2 Security operation customization according to the characteristics of the target machine
	4.1.3 Early configuration errors detection

	4.2 Evaluation results
	4.2.1 Automated and customized system hardening profiles
	4.2.2 Security operation customization according to the characteristics of the target machine
	4.2.3 Early configuration errors detection

	5 Conclusions and future work
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

