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Abstract: The placement of bone–level dental implants can lead to the detachment of particles in
the surrounding tissues due to friction with the cortical bone. In this study, 60 bone–level dental
implants were placed with the same design: 30 made of commercially pure grade 4 titanium and
30 made of Ti6Al4V alloy. These implants were placed in cow ribs following the company’s placement
protocols. Particles detached from the dental implants were isolated and their size and specific surface
area were characterized. The irregular morphology was observed by scanning electron microscopy.
Ion release to the medium was determined at different immersion times in physiological medium.
Cytocompatibility studies were performed with fibroblastic and osteoblastic cells. Gene expression
and cytokine release were analysed to determine the action of inflammatory cells. Particle sizes of
around 15 µM were obtained in both cases. The Ti6Al4V alloy particles showed significant levels of
vanadium ion release and the cytocompatibility of these particles is lower than that of commercially
pure titanium. Ti6Al4V alloy presents higher levels of inflammation markers (TNFα and Il–1β)
compared to that of only titanium. Therefore, there is a trend that with the alloy there is a greater
toxicity and a greater pro-inflammatory response.

Keywords: particles; dental implants; bone level; cytotoxicity; gene expression

1. Introduction

Long–term success of titanium dental implants is related to the osseointegration—quality
and quantity of the new bone in contact with the dental implant. The cortical bone gives the
mechanical stability due to the bone cavity presents a smaller diameter than the dental implant
inserted. Bone level implants can produce stresses on the microroughness surfaces and can
produce release of debris [1–4].

In general, all dental implants are sand–blasted with abrasive materials such as alu-
minium oxide, silicon oxide or carbides that produce roughness for better osseointegration.
This surface generally presents important residual stress values due to the impact of the
abrasive particles that have caused plastic deformation on the surface. The stresses suf-
fered in these areas due to friction between the cortex and the implant cause the release of
particles that fracture the surface of the dental implant [5,6].
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Another source of titanium particle generation is implantoplasty techniques, which
mechanism parts of the implant and/or prosthesis where bacterial plaque may have
colonized. There is much controversy as to whether or not this machining should be carried
out, but it is being applied more and more frequently. Even if the particles are aspirated,
a large part of them, especially the smaller ones, remain in the patient and their presence
can be dangerous [7–9]. Another problem that can arise from these high stresses leading
to fracture of the titanium is the nucleation of possible cracks that can affect the fatigue
behaviour of the dental implant. The cracks generated on the surface with cyclic chewing
loads lead to crack growth that can lead to catastrophic failure of the dental implant [10,11].

In addition to the mechanical problems that can arise, it is very important that the
detached particles have very high accumulated energy and generally exhibit behaviour
close to cytotoxicity, with an increase in cell death being observed. Recent investigations
have demonstrated that those particles and ions are not bioinert metals. It is very important
to understand the biological mechanisms and implications of these particles and their
relationship to the periimplantitis. Several research works have suggested the contribution
of Ti particles to the development and progression of periimplantitis [12–15]. These particles
present different types of oxides due to the high quantity of surface energy and play
an important role with the activation of the inflammatory response and release of pro-
inflammatory cytokines, such as TNF-α, IL-1β, and RANKL [12–15]. In addition, titanium
particles showed a reduced viability of bone marrow stem cells [16], and disruption of
epithelial homeostasis, increasing DNA damage response, and potentially compromising
the oral epithelial barrier [17–22].

The aim of this study is to characterize the particles released during the insertion of
bone level dental implants and to determine their biological behaviour. Furthermore, the
study also aims to determine the influence of the chemical composition of dental implants
(cp Ti and Ti6Al4V).

2. Materials and Methods
2.1. Sample Preparation and Collection

Sixty c.p.–Ti bone level dental implants made of grade 4 (Figure 1), and sixty made of
Ti6Al4V alloy with the same design (Vega, Klockner, Escaldes Engordany, Andorra), were
implanted in fresh cow ribs by the same investigator (JCV) following the drilling protocol
described by the company [23]. In Figure 2, implantation in the fresh cow bones can be
observed using a GENTLEsilence LUX 8000B turbine (KaVo Dental GmbH, Biberach an der
Riβ, Germany) under constant irrigation. The surface was sequentially modified with a fine–
grained tungsten carbide bur (reference H379.314. 014 KOMET; GmbH & Co. KG, Lemgo,
Germany), a course–grained silicon carbide polisher (order no. 9608.314.030 KOMET;
GmbH & Co. KG) and a fine–grained silicon carbide polisher (order no. 9618.314.030
KOMET; GmbH & Co. KG).
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Figure 2. Bone level dental implant inserted in the fresh cow ribs.

Once the dental implants were placed at bone level, the samples are taken to a high–
resolution micro–CT scanner (Skyscan 1272CMOS, Bruker, Billerica, MA, USA) (Figure 3),
which makes it possible to observe the titanium particles that have detached from the rough
part of the dental implant in the cortical bone. The scans were very slow to improve the
resolution of detection of the particles present. Once these particles were observed, the ribs
with the implants were placed in an oven at a temperature of 900 ◦C, causing the bone to
toast for 5 h. The remains of the roasting were the mineral content of the bone (apatite) and
the detached titanium particles.
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2.2. Specific Surface Area

The specific surface area is defined as the area in contact with the biological envi-
ronment. This determination was realized under vacuum conditions at 10 µmHg for
metal debris degassed at 100 ◦C using an ASAP 2020 equipment (Micromeritics, Norcross,
GA, USA). Nitrogen was used as an adsorbate. The specific surface area was analysed
by applying mathematical calculations described by the BET (Brunauer–Emmett–Teller)
theory [24].

2.3. Granulometry

The particle size of the metal debris was measured using the Mastersizer 3000 (Malvern
Panalytical, Malvern, UK). This unit uses the laser diffraction technique to measure particle
size by measuring the intensity of scattered light as a laser beam passes through the sample
of particles. This test was carried out in a wet medium, using ethanol as the liquid scattering
medium, and with the necessary amount of metal debris to bring the scattering obscuration
and the sample within the optimum range of 5% to 10%, which was finally adjusted to
7%. The particle size range that can be analysed with this equipment is between 10 nm
and 3.5 mm. Mechanical and ultrasonic agitation methods (2500 rpm and 50% sonication,
respectively) were used to avoid possible agglomeration of the metal debris during the
particle size test.
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2.4. Scanning Electron Microscopy

The morphology of the obtained particles was evaluated by scanning electron mi-
croscopy (SEM) using the Jeol 6400 Sacnnin Electron Microscopy (JEOL, Tokyo, Japan)
with an accelerating voltage of 20 keV. The particles were placed on a conductive adhesive
carbon tape in order to improve the images. This microscope is equipped with an energy
dispersive X-ray microanalysis system EDS Oxford, Oxford, UK).

2.5. Ion Release

The release of metal ions from the sample into the medium was evaluated according
to ISO 10993–12–2009. In accordance with standards, a medium/powder ratio of 1 mL
per 0.2 g of sample was used. Three samples (n = 3) were prepared for analysis (10 mL
of medium and 2 g of metal debris per sample). The liquid medium used for ion release
was Hank’s saline solution (Sigma–Aldrich, Co., Life Science, St. Louis, MO, USA), which,
being certified and commercially available, ensures homogeneity. The liquid in contact
with the metal debris was recovered and filtered through a filter with a pore size of
0.22 µm. For analysis, it was acidified with 2% nitric acid (HNO3 69.99%, Suprapur, Merck,
Darmstadt, Germany) to avoid precipitation of the metal ions prior to measurement of their
concentration by inductively coupled plasma emission mass spectrometry (ICP–MS).

Samples were extracted at 5 timepoints: 1, 3, 7, 14 days and 21 days, as in similar
studies [16]. Samples were stored at 37◦C in an incubator oven and were shaken at 250 rpm,
with an inclination angle of 30◦, to avoid settling of the metal debris during the assay and
to ensure continuous exposure of all particles of the powder samples to the medium.

The samples were analysed by ICP–MS (Perkin Elmer Elan 6000, Perkin Elmer Inc.,
Waltham, MA, USA). This technique allows quantitative multi–elemental analysis with an
accuracy of 1 ppt for 90% of the elements of the periodic table.

2.6. Sterilization of Samples for Cell Assays

Prior to cell culture assays, both samples (c.p.–Ti and Ti6Al4V alloy) were separately
sterilized with 96% ethanol. Briefly, samples were covered with ethanol for 30 min and
ethanol was then eliminated by 3 cycles of centrifugation (7200 rpm, 5 min). Then, sam-
ples were washed three times with Dulbecco’s Phosphate Buffered Saline (DPBS) (Sigma–
Aldrich®, Sant Louis, MO, USA). After the last centrifugation, the required volume of cell
culture medium was added in order to obtain a final concentration of 0.2 g of sample per
mL of medium, in accordance to ISO 10993–5.

2.7. Cytotoxicity Assay

The cytotoxicity of the sample was evaluated by indirect exposure determination
according to ISO 10993.

The cytotoxicity assays were performed in triplicate (n = 3). The samples studied were
test sample (Ti and Ti6Al4V metal debris), positive control (cells seeded directly onto the
plate), and negative control: medium without cells.

Samples were handled aseptically throughout the assay. The cytotoxicity test consists
of evaluating the percentage cell survival of a known cell line when exposed to the medium
that has been in contact with a given material. In this case, an indirect contact cytotoxicity
test was performed according to the guidelines specified in ISO 10993–5 “Biological evalua-
tion of medical devices”, part 5 “In vitro cytotoxicity tests”. To quantify cytotoxicity, the
cell survival rate, which indicates cytotoxicity if <70%, was calculated.

Since these metal particles are in contact with both bone and soft tissue, two human
cell lines were used: SAOS–2 osteoblastic (ATCC® HTB–85, New York, NY, USA) and
HFF–1 fibroblastic cells (ATCC® SCRC–1041, New York, NY, USA). Moreover, in order to
evaluate the inflammatory response, THP–1 macrophage line (DSMZ, ACC 16) was also
used. The cells were stored with dimethyl sulfoxide as a cryopreservative at −180 ◦C and
were assayed bimonthly for the absence of mycoplasma.
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Cells were cultured in a humidity–controlled incubator with 5% CO2 supply. As
recommended by the manufacturer, McCoy’s Medium (Thermo Fisher Scientific, Waltham,
MA, USA) was used for SAOS–2 culture; Dulbecco’s Modified Eagle Medium (DMEM;
Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% Foetal Bovine
Serum (FBS; Thermo Fisher Scientific, Waltham, MA, USA), 1% L–glutamine (Thermo
Fisher Scientific, Waltham, MA, USA) and 1% penicillin/streptomycin (Thermo Fisher
Scientific, Waltham, MA, USA) was used for HFF–1 culture, and Roswell Park Memorial
Institute (RPMI) 1640 medium (Sigma–Aldrich®, Sant Louis, MO, USA) supplemented with
10% foetal bovine serum (FBS) (Sigma–Aldrich®, Sant Louis, MO, USA) and 1% penicillin–
streptomycin (Fisher Scientific, Hampton, USA) was used for THP–1 culture. The medium
was stored at 4 ◦C, and the supplements at −20 ◦C.

The extracts were assayed according to Section 8.2 of ISO 10993–5. To do so, the
material was incubated in supplemented medium at a ratio of 1 mL per 0.2 g of sample, for
72 h at 37 ◦C. Cells were seeded at a density of 2–104 cells/mL for 24 h before contact with
the sample extracts.

Cells were incubated for 24 h with undiluted and 1/2, 1/10, 1/100 and 1/1000 diluted
extract, using complete medium for dilutions. Cells were inspected for adhesion and
morphology before and after contact with the extracts. Once the assay was completed, cells
were lysed with Mammalian Protein Extraction Reagent (mPER), and cell viability was
assessed as lactate dehydrogenase enzyme activity (LDH; Roche Applied Science, Penzberg,
Germany). Viability was calculated according to the manufacturer’s recommendations,
measuring absorbance at 492 nm.

2.8. Gene Expression Analysis

Gene expression was analysed by quantitative real time polymerase chain reaction
(qPCR). Shortly, total RNA was isolated using NucleoSpin RNA kit (Macherey–Nagel,
Düren, Germany), which included DNAse treatment, following the manufacturer’s instruc-
tions. One µg of RNA with a ratio of intensities at the wavelengths of 260/280 nm between
1.8–2 was then reversed transcribed into cDNA using Transcriptor First Strand cDNA
Synthesis Kit (Roche, Basel, Switzerland) according to the manufacturer’s recommenda-
tions. Specific primers for inflammatory response and FastStart Universal SYBR Green
Master (Roche, Basel, Switzerland) were used to amplify the desired cDNA. As shown in
Table 1, these primers were pro–inflammatory markers (CCR7, TNF–α and IL–1β genes)
and anti–inflammatory markers (CD206, TGF–β and IL–10 genes). Gene expression was
normalized to the constitutive β–actin gene. and a housekeeping gene (β–actin). Finally,
the amplifications were performed in a CFX96 Real–Time PCR Detection System (Bio–Rad,
Hercules, California, USA).

Table 1. Sequences of primers used for quantitative real time polymerase chain reaction.

Inflammatory Character Gene Forward (Sequence 5′–3′) Reverse (Sequence 5′–3′)

Pro–inflammatory
TNF–α TTCCAGACTTCCTTGAGACACG AAACATGTCTGAGCCAAGGC
IL–1β GACACATGGGATAACGAGGC ACGCAGGACAGGTACAGATT
CCR7 GGCTGGTCGTGTTGACCTAT ACGTAGCGGTCAATGCTGAT

Anti–inflammatory
IL–10 AAGCCTGACCACGCTTTCTA ATGAAGTGGTTGGGGAATGA

TGF–β TTGATGTCACCGGAGTTGTG TGATGTCCACTTGCAGTGTG
CD206 CCTGGAAAAAGCTGTGTGTCAC AGTGGTGTTGCCCTTTTTGC

Housekeeping gene B–actin AGAGCTACGAGCTGCCTGAC AGCACTGTGTTGGCGTACAG

2.9. Cytokine Release Analysis

Cell culture supernatants were collected at 24 and 48 h in order to quantify the
release of cytokines by THP–1 cells. Two pro–inflammatory (TNF–α and IL–1β) and one
anti–inflammatory (IL–10) cytokines were analysed. Quantification was performed using
commercially available ELISA kits (Thermofisher scientific, Waltham, MA, USA) following
the manufacturer’s recommendations.
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2.10. Statistical Analysis

Data were recorded using a Microsoft Excel spreadsheet (Microsoft®, Redmond, Wash-
ington DC, WA, USA) and subsequently processed with the Stata 14 package (StataCorp®,
College Station, San Antonio, TX, USA). Means and standard deviations were calculated,
except for the granulometry test, where the mode and percentiles were used.

3. Results and Discussion

The particles released for each dental implant observed by micro–CT range from 3 to
7 in all cases and the average equivalent dimeter were 11.5 µM for cp Ti and 12.2 µM for
Ti6Al4V alloy, as can be observed in Figure 4. These results are obtained by following the
dental implant manufacturer’s drilling protocols. The specific surfaces obtained are shown
in Table 2. From the results obtained we determine that there are no statistically significant
differences between Ti and T6Al4V alloy and they have a good reproducibility given the
correlation coefficient close to 1.
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Table 2. Specific surface of the Ti and Ti6Al4V particles.

Material Specific Surface (m2/g) Correlation Coeff.

Ti 0.4305 ± 0.037 0.9998
Ti6Al4V 0.4401 ± 0.025 0.9999

Electron microscopy has shown, at different magnifications, an irregular morphology
of the particles in both samples evaluated (Figure 5). At the morphological level, SEM
analysis has not shown major differences between the Ti and Ti6Al4V samples, although a
higher amount of fine particles seems to be observed in the Ti6Al4V µm samples. These
results would confirm the data provided by the laser grain size measurements. The SEM
analysis has shown a heterogeneous geometry, with a rough and irregular finish in all the
powders evaluated, which would be the product of some kind of synthesis process by
friction [25–27].

X-ray energy dispersive microanalysis does not detect the presence of contaminants in
its composition, nor does it detect the presence of iron that could come from the steels of
the drills used in the surgery.
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Figure 5. Particles released observed by SEM. (a–c) Titanium particles observed at different magnifi-
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Figure 6 shows the release curves of titanium, aluminium and vanadium ions into
the liquid medium (Hanks’ solution) as a function of incubation time for both powders
evaluated. A comparative analysis of the titanium ion release level has shown similar
behaviour of both powders analysed, with an initial stage of high titanium ion release
in the first 3 days of study, followed by a second stage of progressive stabilisation of the
titanium ion release level between 3 and 21 days of incubation.
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The quantitative comparative analysis of titanium ion release between the two pow-
ders tested showed differences between the samples in terms of the amount of ions as a
function of incubation time. Despite the low values of ion concentration released by both
powders, the Ti6Al4V powder released approximately twice the amount of Ti ions, which
could be explained by a galvanic couple effect of the alloy with respect to Al and V. The
comparative analysis of ion release between the two powders showed a preferential release
of V and Al ions with respect to Ti from the Ti6Al4V powder. The possible influence of
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the galvanic effect on the Ti6Al4V alloy would have caused the preferential release of V
and Al between one and two orders of magnitude higher than Ti, respectively [28,29]. The
significant release of vanadium ions could be due to the fact that this element favours
the beta phase of Ti6Al4V. In this alloy, it has approximately 4% beta phase and is more
unstable than the majority alpha phase and with a higher stability [9].

3.1. Cytotoxicity Assays

The results obtained from the cytotoxicity test are shown below in the form of per-
centage cell survival (Figure 7). Seventy per cent is set as the lower limit of cell survival
for a material not to be considered cytotoxic. The cells were adhered to the substrate plate
and presented the expected morphology, both before and after incubation with the extracts.
The samples evaluated in the cytotoxicity assay presented values higher than 70% cell
survival in all cases. The samples analysed under the conditions tested were found not to
be cytotoxic to any of the cell types studied.
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Figure 7. Cellular viability in the cytotoxicity tests: (a) SAOS–1 and (b) HFF–1.

Cytotoxicity tests have shown values slightly above 80% cell survival in both cell
lines tested for the Ti–15 µm powder. However, the Ti6Al4V powder showed mean cell
survival values below 80% for the HFF–1 cell line. In view of the results, a certain tendency
towards an increased cell cytotoxic effect on human fibroblasts (gingival tissue) of Ti6Al4V
powder particles compared to titanium particles is confirmed. A cytotoxicity assay was also
performed for THP–1 cells at 24 and 48 h to assess cell survival. For this, these cells were
cultured in medium containing the extracts at different concentrations: [ISO] (0.2 g/mL),
and their dilutions 1:2, 1:10, 1:100 and 1:1000. According to regulations, a cell survival
rate of less than 70% was considered cytotoxic. The cells were adherent to the substrate
plate and presented the expected morphology, both before and after incubation with the
extracts [30–32]. As can be seen in Figure 8, cells with concentrations of [ISO], and their
1:2 dilutions were considered cytotoxic at 24 and 48 h, for the titanium aluminium vanadium
alloy Ti6Al4V (TiAL15), but not for the titanium microparticles (Ti15) where only the [ISO]
concentration is considered cytotoxic. In addition, extracts of the alloy microparticles
(TiAL15) were also cytotoxic at a 1:10 dilution. For this reason, the 1:100 dilution was used
for further experiments [18,33].
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3.2. Gene Expression Analysis

Once the cytotoxicity of the extracts in culture with THP–1 cells had been assessed,
the inflammatory response was tested at the concentration considered to be non–cytotoxic.
As can be seen in Figure 9, in the case of gene expression, the pro–inflammatory markers
(CCR7, TNFα and IL–1β) showed similar levels to the control (TCP), and these were
significantly lower when cultured with the pro–inflammatory LPS medium, the positive
control for inflammation (Figure 9A). Specifically, the values for the titanium aluminium
vanadium Ti6Al4V alloy (TiAL15) extracts were significantly lower at 24 h In contrast, in
the case of IL–1β interleukin, the values for titanium (Ti) extracts were significantly lower
at 48 h.

On the other hand, the anti–inflammatory markers (CD206, TGF–β and IL–10) fol-
lowed the same trend as the control sample (TCP) as they presented similar values
(Figure 9B). These results indicate that the cells do not show an inflammatory response
when cultured in medium conditioned with the samples [18,33].
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3.3. Cytokine Release

Once the response was evaluated at the gene level, protein analysis was performed.
Figure 10 shows that the pro–inflammatory markers (TNFα and IL–1β) showed similar
levels to those of the control (TCP), and these were significantly lower than the culture with
the pro–inflammatory LPS medium, the positive control of inflammation (Figure 10A). On
the other hand, the anti–inflammatory marker tested (IL–10) showed similar results to the
control sample (TCP). These results indicate that the cells do not show an inflammatory
response when cultured in the conditioned medium of the samples. Furthermore, these
results are in agreement with the cytotoxicity results, indicating that the general trend is
that the alloy sample (TiAL15) shows a higher cell toxicity and a higher pro–inflammatory
response [34–37].
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Debris of titanium, Ti6Al4V and other metals have been proposed as a risk factor
of bone loss and inflammation of the peri–implant mucosa [12,14,16,38]. Periimplantitis
has been associated with a greater accumulation of Ti in peri–implant tissues, in com-
parison with healthy implants [18,33]. Moreover, it has been reported that Ti debris can
promote DNA damage in oral epithelial cells by activating the molecular markers CHK2
and BRCA1 [35]. Metal particles can be released into the peri–implant tissues through
different mechanisms, including implant insertion, fatigue, corrosion, wear, or surface de-
contamination methods of the dental implant, such as implantoplasty. Although Ti particles
seem to induce the expression of pro–inflammatory cytokines and decrease the viability
of osteogenic cells [16,39,40] the immunological properties (inflammatory and osteogenic
response) of metal particles released during insertion dental implant is still unknown.

4. Conclusions

According to the tests carried out to evaluate the inflammatory response of THP–1
cells in contact with extracts of 15 µm titanium microparticles of different composition:
titanium (Ti15) and an alloy of titanium, aluminium and vanadium Ti6Al4V (TiAL15),
we can conclude that cell survival in cultures with extracts of the Ti6AL4V alloy is lower
compared to that of only titanium (Ti15), which obtained a significantly higher percentage
of cytotoxicity. At the gene level, cells do not show an inflammatory response grown in
conditioned medium from the samples compared to the control. Even so, at 48 h, the
Ti6AL4V alloy presents higher levels of the inflammation marker Il–1β compared to that of
only titanium (Ti15). From studies concerning cytokine release, the cells do not show an
inflammatory response grown in conditioned medium from the samples compared to the
control. Even so, at 48 h, the Ti6AL4V alloy presents higher levels of inflammation markers
(TNFα and Il–1β) compared to that of only titanium (Ti15). Therefore, there is a trend that
with the alloy there is a greater toxicity and a greater pro–inflammatory response.
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