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A*-based co-evolutionary approach for multi-robot path planning with 

collision avoidance  

In this research, a coevolutionary collision free multi-robot path planning that 

makes use of A* is proposed. To find collision-free paths for all robots, we 

generate a route for each of robot using A* path finding but introducing restrictions 

for each collision found. Afterward, a co-evolutionary optimization process is 

implemented for introducing changes in the initial paths to find a combination of 

routes that is collision-free. The approach has been tested in mazes with increasing 

the number of robots, showing a robust performance although at high time 

expenses. Nevertheless, several enhancements are proposed to tackle this issue.  

Keywords: multi-robot path planning, a* algorithm, evolutionary algorithms, co-

evolutionary algorithms 

Introduction 

This research aims to study optimal path finding for multiple telepresence robots 

autonomously move from the base station to the lab tables in a controlled indoor 

environment, a smart laboratory (Tan, Denojean-Mairet, Wang, Zhang, Pivot, & Treu, 

2019). Finding the best path from start points to destinations for multiple mobile robots 

in an indoor environment is defined as Multi-Robot Path Planning (MPP) problem, which 

is one of the classic research topics of mobile robotics. There are many use cases, such 

as,  indoor multi-robot virtual environments for educational purposes (Solak, Yakut & 

Bolat, 2020), collaborative tasks in manufacturing, surveillance, and space exploration 

(Huang, Jiang, Yu, Kang, & Hu, 2018), etc. Multi-robot Path Planning normally includes 

a local path planning and a global path planning. Global planning produces valid routes 

for each robot ahead based on the static environment while local path planning is to avoid 

the collisions based on real-time data received from sensors in the robot and/or the 

environment.  



In our previous researches (Kiadi, Villar, & Tan, 2019) (Kiadi, Villar, & Tan, 

2021), we proposed Reinforcement Learning and then Kubernetes and Fog Computing 

facilities as a global path-planer in an indoor multi-robot path planning problem. This 

research represents an extension of this latter study that i) proposes A* algorithm to 

determine the routes for the robots, ii) introduces a simple collision detection method to 

determine the invalid routes, iii) presents a simple method to seek for alternatives, and iv) 

designs a co-evolutionary optimization introducing changes in the routes to find collision-

free path for each robot. The solution at a high level has three stages as is shown in Figure 

1. 

Figure 1: A scheme of the solution as a block diagram. 

This study is structured as follows. The next section presents the related works 

concerning multi-robot path planning, focusing on those solutions using metaheuristics 

in finding an optimal combination of routes. Then, a complete description of the multi-

stage coevolutionary solution proposed in this work follows. Afterward, the 

experimentation setting, the obtained results, and a discussion on the findings is included. 

Finally, the conclusions of this research are drawn. 

Related Work 

Multi-robot path planning (MPP) problem is to find optimal paths for a certain 

number of autonomous robots moving within an environment without colliding with each 

other and obstacles. The key issue of MPP problem is to search optimal path, which has 

mainly been found using heuristic approach and Artificial Intelligence (AI) algorithm. 

For robot path searching, traditional heuristic approach like A* and Dijkstra as well-

known algorithms has been continuously used for global path planning.  Recently, a novel 



algorithm for multiple robots’ global path planning was presented as a decoupled 

approach, which finds the path based on map of working environment and creating the 

formation of robots using merge and split functions along with an extended version of 

Dijkstra algorithm for MPP problem (Pereyra, Araguás, & Kulich, 2019). On the other 

hand, AI algorithm, such as ANN, GE, and EA as new heuristic and biology-inspired 

approaches have attracted great research interest in academic studies and engineering 

applications to find collision-free optimal path. The state of the art show that GA (genetic 

algorithm), PSO (particle swarm optimization) algorithm, APF (artificial potential field), 

and ACO (ant colony optimization) algorithm are the most used approaches for the path 

planning of mobile robot (Zhang, Lin, & Chen, 2018). As our research also mainly 

focuses on using evolutionary algorithm to tackle the MPP problem, more research works 

in this subject area are reviewed as follows. 

Applying the GA in solving a path planning problem means creating a 

representation of the problem, defining a fitness function and the chromosome structure, 

and generating initial and subsequent generations of the population by different 

operations like cross-over or mutation (Wirsansky, 2020). An ant colony optimization has 

been used for the creation of the Max-Min Ant System for Dynamic Path Planning 

algorithm for the MPP based on topological maps whose focus is the main reference 

points of the environment and their connections. The path can be composed by a sequence 

of state/actions pairs without the information of the complete map (Santos, Otero, 

Johnson, Osorio, & Toledo, 2020). Another research has developed an algorithm, a 

modified PSO (MPSO) combined with the η 3 -splines for path planning of mobile robots 

with kinematic constraints. The MPSO algorithm with adaptive random fluctuations 

(ARFs) deals with the local convergence issue in the planning. The evolutionary state is 

classified equally at each iteration according to the evaluated evolutionary factor, and the 



velocity updating dynamics switches are imposed on the best particles (Song, Wang, Zou, 

Xu, & Alsaadi, 2019). A research compares the efficiency of two path planning methods, 

namely probabilistic roadmap (PRM) and genetic algorithm for mobile robots. The 

research concluded that GA produced smoother paths but consumed more processing 

time which made it difficult to implement in real-time navigation (Santiago, De Ocampo, 

Ubando, Bandala, & Dadios, 2017). 

The GA has also been suggested in path planning for unmanned vehicles. For 

example, GA has been utilized with an improved initial population along with adaptive 

crossover and mutation probability operations, which have produced a shorter and safer 

non-collision path in different lake environments for lake patrol unmanned surface 

vehicle (Long, Su, Zhang, & Li, 2018).  A path planning for single robot using GA, the 

solution has tried to optimize the pathfinding through customizing fitness functions and 

variable-length chromosomes along with three genetic operators namely simplification, 

revision, and substitution operators (Ni, Wang, Huang, Wu, & Luo, 2016).  

Using heuristics and AI algorithm in MPP, it does not guarantee an optimal 

solution. The algorithms have their own strength and weakness in the applications. A 

research was conducted to compare the A*, D*, and PSO algorithms for path planning. It 

concludes that A* algorithm outperforms PSO in terms of processing time of the 

algorithms and path lengths (Okumuş & Kocamaz, 2019). A co-evolutionary improved 

Genetic Algorithm shows improvements in fitness function, proposes a new genetic 

modification operator like selection and crossover operations. It avoids the problem of 

local optimum and increases convergence rate. The use of a co-evolution mechanism fully 

enables the cooperation between populations, which avoids collision between mobile 

robots and generates an optimal or near-optimal collision-free path (Qu, Xing, & 

Alexander, 2013). Therefore, merging algorithms to improve the MMP solution has been 



used in our research. We use A* algorithm to create optimal initial paths for each robot 

in order to obtain the populations of each generation for the co-evolutionary algorithm to 

find a combination of routes that is collision-free.  

A co-evolutionary approach for collision avoided multi-robot path planning 

The solution includes several stages: i) obtaining A* routes for each robot, ii) if 

collisions are detected alternatives A* routes are found introducing fake obstacles and iii) 

a multi-objective coevolutionary algorithm (CA) to evolve the paths to find a valid 

combination of routes for each robot. The power of the CA was demonstrated in various 

applications such as classification, process control, and constraint satisfaction (Liu, 

2009). Two-dimensional environments are assumed and through a maze (M) with P rows 

and Q columns, where each cell has the size of a robot and can be empty or containing 

one robot at a time.  

We assume R robots and a route should be determined for each of them. Let us 

denote 𝛿𝛿 is the set of valid movement operations. A movement operation δi is each of 

the unitary movements the robot can perform in a time unit. In this study, for the sake of 

simplicity, includes only the HALT –(H), making the robot stop for one time slit- and the 

primitive movements -Up (U), Down (D), Left (L), and Right (R)-. Finally, each robot 

path is represented with the initial position r0 and the sequence of movements, each 

movement belonging to 𝛿𝛿.  Figure 2 give an example of the route representation. 

The initial A* routing stage 

For each of the R robots the A* determines the best route from the current position 

to the corresponding goal. Afterwards, the collision detection is performed to find out if 

the set of R routes are valid to be deployed. Whenever a collision is detected, then the 

collision point is marked as an obstacle for the corresponding robots and A* is repeated 



until a valid solution is found or the limit of repetitions nA reached. The algorithm (shown 

in Algorithm 1) is as follows. Let Lr be the list of A* paths for robot r. In each iteration, 

the routes in Lr for all the robots are checked so when any combination of routes -one 

per robot- represents a collision free solution, the whole process is stopped, and this 

solution is returned. Algorithm 1 explains this initial stage. 

Figure 2. Example of three robots and their A* routes in a character-based maze. The 

squares are the starting points, the circles are the goals. Then the sequence of 

movements is RRRRUURRDRRUUUUR for the blue robot, UULU for the orange and 

LLLLLLLDDLLULDLLU for the green. 

 

M’r  M, ∀r = 1 … R 
Lr  [], ∀r = 1 … R 
i  0 
While i < nA and collisions exist, increment i at the end 
   Lr  Lr U [A* for M’ and r], ∀r = 1 … R 
   Detect collisions on M 
   Update M’r for each robot r for which a collision exists 
If no collision detected 
   Return the solution found 

Algorithm 1. Initializing the set of A* for each robot r. The initial map M is cloned for 

each robot (M’r) and, whenever a collision is detected, updated with the collision point 

marked as an obstacle on M’r. Up to nA routes for each robot are determined using this 

algorithm. Interestingly, all the collisions are evaluated on the real map M. 

 



To detect the collisions among the all the routes we take advantage of the discrete 

time assumption: each robot moves one cell in each time slot. This might not be true when 

working with directions beyond the primitive ones, introducing some adjustments that 

are out of the scope of this work. On the other hand, the possibility of having robots with 

different speeds would be easily integrated just by considering a different increment in 

the number of cells. These two issues are left as future work. 

The collision detection is performed by determining, at each time step, the current 

location of each robot and notifying whether robots coincide in a cell or not. This simple 

procedure requires the exhaustive analysis of all the routes, including routes still in 

progress in the virtual lab. For the maze with three robots of Figure 2, the process of 

collision detection is illustrated in Figure 3. 

Figure 3. Illustration of the collision detection. At time slot 11 a collision has been 

detected for robots blue and green. 

 

At the end of this stage, we can be in one of the following states. The first case is 

that we have found a valid combination of routes, one for each robot, with no collisions; 

in this case, this is the solution finally proposed. The second case is that we do not have 

a solution, so we have R lists of A*-base routes Lr (one for each robot) and length nA; 

these lists are use in the generation of the initial population of the co-evolutionary process 

explained next. 

Co-evolutionary collaborative phase and mutation operation 

The co-evolutionary algorithm is as follows: we generate the initial population Pr0 for 

each robot and evaluate both locally and globally each route in Pr0. Then, detect collisions 



of the best candidates from each robot. If no solution is found, coevolve until either a 

solution is found or the maximum number of generations is reached. 

Algorithm 2 presents the co-evolutionary procedure, where PS is the total size of 

the population, each robot has PS/R individuals. Each individual is encoded using the 

initial population (which do not vary) and the sequence of movements, each movement 

being one of the valid movements 𝛿𝛿.  

Pr0  Generate the initial population, ∀r 
Co-evaluate Pr0 locally 
Co-evaluate Pr0 globally 
Detect collisions on M 
i  0 
While i < nE and no optimal solution found, end with i=i+1  
   Pri  Generate next population 
   Co-evaluate Pri locally using [Pri-1, ∀r] 
   Co-evaluate Pri globally using Pri, ∀r] 
   Detect collisions on M 

Algorithm 2. Steps in the co-evolutionary algorithm for finding a set of paths without 

any collision. Each of the stages are detailed in the text.  

The individual representation and the mutation operation 

To represent an individual belonging to a subpopulation, that is, a certain robot, 

we need the initial position r0 and sequence of movements. We also store the final position 

rF for the sake of keeping information; nevertheless, neither r0 nor rF are modified: they 

are included in the representation to simplify the testing. The real chromosomes of the 

individual are the sequence of movements, each movement belonging to the ser of valid 

movements 𝛿𝛿.  

The mutation operation is a very simple modification of an individual I to generate 

a new route. Firstly, we select a random point within the individual, this is the mutation 

starting point (MSP). Then, we select a random operation o to insert among the valid 

movements. In case the operation to insert becomes HALT, the mutation ends with a valid 

routed with the operator inserted as a new node at MSP; see Figure 4 for details.  



 

Figure 4. Example of a mutation that introduces the operator HALT. 

Otherwise, we need to develop further. Firstly, we select a second random position 

within the individual, the mutation ending point (MEP). This point could be any of the 

individuals; however, for the sake of simplicity, we consider the MEP > MSP. Next, we 

insert o followed by all the movements in the individual from MSP to MEP. Finally, we 

insert the operation that leads to joining the initial route in a single step. The process is 

illustrated in the next figures, when either an extra operator is needed (Figure 5) or when 

no extra operator is needed because the two routes coincide (Figure 6). 

 

Figure 5. Example of a mutation using the Down operation and using an inverse 

operation to return to the original path. 

 

Figure 6. Example of a mutation in which no extra operation is needed to return to the 

original path 



The initial population 

The initial population makes use of all the A* candidates generated in the previous 

stage, that is, Lr ∀r. As long as co-evolutionary scheme is used, a subpopulation for each 

robot is needed. Defining PS as the total population size and R the number of robots, each 

subpopulation 𝑷𝑷𝒔𝒔𝒓𝒓 includes PS/R robots. In particular, the initial subpopulation for robot 

r (𝑷𝑷𝒔𝒔𝒓𝒓𝒓𝒓) includes the nA routes in its corresponding Lr plus (PS/R – 1) individuals 

generated using the mutation operator. The individual to mutate is randomly chosen from 

Lr.  

Local evaluation of an individual 

Each individual needs an evaluation of their performance and validity. The performance 

is measured using two different objectives: on the one hand, the estimation of the number 

of collisions the route of the individual induces; on the other hand, the length of a route 

in the number of operations. 

The length of a route is easily measured and relies only on the robot's properties, 

with a high fitness value close to Infinitum for those invalid routes. With validity, we 

refer to the ability of the route to advert obstacles. Checking the validity is just analysing 

the operations included in the route from its origin to its end; if any operation forces to 

move onto an obstacle the route becomes invalid, and its fitness is set to a very high value. 

The estimation of the number of collisions is a more complex task that relies on 

the selected routes from the other robots involved in the path planning. Therefore, a 

collaborative co-evolutionary scheme is proposed to estimate the number of collisions. 

Given an individual 𝑰𝑰𝒊𝒊𝒓𝒓𝒓𝒓 - individual i for robot r from any of its sub-populations at 

generation n -, we will estimate the number of collisions using Q individuals from each 

of the robots at generation (n - 1). The process is illustrated in Figure 7. 



As mentioned, Q individuals are selected from each population  𝑷𝑷𝒂𝒂 (𝒏𝒏−𝟏𝟏)  ∀𝒂𝒂 ≠ 𝒓𝒓   

following the tournament selection with p initially set to 0.5 and without replacement; we 

call these pools 𝑷𝑷𝑸𝑸
𝒂𝒂 (𝒏𝒏−𝟏𝟏)   ∀𝒂𝒂 ≠ 𝒓𝒓. The value of Q is kept small (about 3 or 5) to avoid 

high combinatorial problems. Then, every single combination of 𝑰𝑰𝒊𝒊𝒓𝒓𝒓𝒓 with an individual 

from each pool to form a solution to the multirobot path planning is checked for collisions 

using the procedure described before. The average (or the minimum, we need to check 

which one works better) number of collisions represents the estimation of the number of 

collisions for 𝑰𝑰𝒊𝒊𝒓𝒓𝒓𝒓 . 

 

Figure 7. Local evaluation of an individual. The individual i within the blue population 

at generation n is evaluated for collision detection in collaboration with Q individuals 

from the other populations at generation (n – 1), with Q=3. All the possible 

combinations of bi with the selected individuals are examined to detect collisions. 

It is worth noticing that we use the population in the generation (n - 1) to 

estimate the number of collisions of any individual in generation n. This scheme works 

well for all the generations but the first one because this latter does not have any previous 

generation to count with. Therefore, for the first generation, only the length of the 



individual will be used in the tournaments and the local evaluation of any individual at 

generation 0 is performed using the populations in this initial population. 

Co-evolutive evaluation 

In this step, we obtain a measure of how good the solutions drawn by the evolutionary 

algorithm are. This process involves sorting the individuals in each population using the 

local evaluation. This local evaluation includes two measurements: the estimated number 

of collisions and the length of the individual; therefore, we need an extra criterion to sort 

them. In this study, we will sort first according to the estimated number of collisions and 

then using the length of the individual. 

In a second step, we select the W best-ranked individuals from each population at 

the current generation. Afterward, all the possible solutions to the multi-robot path-

planning problem are tested to detect collisions. The minimum number of collisions found 

represents the co-evolutionary fitness value; when this value equals 0 a valid solution has 

been found.  Figure 8 illustrates this evaluation. 

 

Figure 8. The co-evolutive evaluation. The minimum among all the possible 

combinations of the W best solutions from each populations represents the measurement 

of the goodness of the process. 

Intermediate and final population generation 

We propose to use elitism; therefore, we keep the best K individuals from each 

subpopulation 𝑷𝑷𝒔𝒔
𝒓𝒓 (𝒏𝒏−𝟏𝟏) into the next generation subpopulation 𝑷𝑷𝒔𝒔𝒓𝒓 𝒏𝒏. We then complete 



the sup-population size up to (PS/nA – K) using the selection and mutation operators. 

The mutation operator is the same explained for the initial population; the selection 

follows a tournament with p initially set to 0.35. 

Experiments and Results 

The experimentation description 

To evaluate the coevolutionary collision free multi-robot path planning we propose two 

different scenarios for which the number of robots will vary; in this way, it would be 

possible to assess the effectivity and efficiency of the solution.  

The first maze is a toy problem of 10x30 tiles, where each cell has the robot size; 

when occupied, the cell can hold only one robot at a time. We refer to this maze as 

MAZE1, which is depicted in Figure 9. For this MAZE1, the number of robots will vary 

from 3 to 15, so the different cases are analysed: from the case for which the A* routes 

do not generate any collision to those where the number of collisions gets increased. A 

comparison with the state-of-the-art research proposed in (Qu, Xing, & Alexander, 2013) 

is included for this maze. We will refer to this study, from here and after, as QXA2013. 

 

Figure 9. The MAZE1 maze. Each cell can hold a robot at a time. There are several 

areas in this maze where only a robot at a time can go through, but the total size of the 

mase is small. 



The second maze includes four 10x30 empty tiles mazes that are interconnected 

to their two closest areas though bridges of one cell wide; the whole maze is presented in 

Figure 10 and is referred hereinafter as MAZE2. For this maze, three robots were in each 

room of the maze, with different goals set to each of the other rooms, so to increase the 

difficulty of the problem. The initial position of each robot is as closer as possible to the 

corner that is opposite to the bridge between rooms.  

Figure 10. The MAZE2 maze. The robots will depart from the opposite corner to the 

bridges, although each one has its own position due to the physical restrictions set on 

each cell.  

Obtained results 

The results are presented using the following tables: Table 1 shows the number of 

coevolution generations that were needed to obtain a valid solution; it also shows the 

average number of generations with the QXA2013 for each problem. Table 2 depicts the 

length f of the path for each robot in each of the runs of the algorithm, comparing our 

solution with that proposed in QXA2013. Finally, Table 3 includes the time spent in 

calculations by each of the methods in this comparison for each of the different number 

of robots.  

As can be seen in Table 1, the number of generations that our method needed kept 

increasing with the number of robots in the game. Nevertheless, this number of 

generations was found valid because only 23 generations were needed in the worst case. 



Interestingly, when the number of robots was smaller or equal than 5, the multiple A* 

route finding and the combination of them was enough to find a collision-free proposal. 

When the number of robots higher is 12 or higher, the time spent in the calculations 

increased so much and we opted for stopping the process. On the other hand, the number 

of iterations highly increases with the number of robots for the QXA2013, although the 

required time is significantly shorter. 

Table 2 shows that our proposal does not suffer on introducing large routes. 

Furthermore, for most of the cases the standard deviation of the length of the routes was 

kept reduced; only for the higher number of robots the standard deviation became 

somewhat higher. However, this is understandable due to the size of the maze and the 

increment in the density of robots. For the case of QXA2013, the length of the paths was 

always much longer and with a high variability from one run to another.  

Table 1. Number of iterations needed to obtain a solution for MAZE1. The first 

collision that requires a co-evolutionary search is with 6 robots for our research; 

therefore, no results are shown for a smaller number of robots. MN stands for average. 

 Experiment repetition for our solution Our QXA2013 

NR 1 2 3 4 5 6 7 8 9 10 MN MN 

6 18 3 21 19 18 25 11 12 8 20 15.5 23.6 

7 15 27 8 12 9 6 15 11 12 7 12.2 40.3 

8 25 16 48 6 22 21 10 22 19 17 20.6 44.5 

9 16 19 20 15 13 24 5 45 50 13 22.0 96.1 

10 13 24 16 10 15 28 32 13 31 11 19.3 147.9 

11 23 12 11 26 29 26 6 9 14 19 17.5 236.5 

 

Finally, Table 3 states the number of seconds consumed in finding suitable 

solutions. As expected, the higher the number of robots, the higher the time consumed. 



In this case, QXA2013 defeats our solution as it shows fast convergence. For our solution, 

the time consumption grows exponentially with the number of robots, which is a real 

drawback. These results suggests that a better co-evolutionary solution should be 

developed, and some ideas can be deduced. In the first hand, those robots that do not 

collide must not be introduced in the co-evolutionary process. This solution would 

substantially reduce the time in those cases where only a few robots collide. On the second 

hand, the co-evolutionary search can be restricted to the proximity of the collisions but 

always before of the collision point. With this enhancement the search space is reduced, 

and the time spent can be reduced. Finally, this proximity can vary to focus on wider areas 

when no enhancement of the global fitness is observed. 

 



Table 2. Average and standard deviation -within parenthesis- of the length of the routes for the robot (R) in each scenario -with different number 

of robots (NR)-. Our method beats QXA2013 in terms of the average path length and in robustness measured as a reduced standard deviation. 

NR 6 7 8 9 10 11 

R Our QXA2013 Our QXA2013 Our QXA2013 Our QXA2013 Our QXA2013 Our QXA2013 

1 16.20 
(0.6325) 

63.60 
(30.5876) 

17.20 
(1.0328) 

45.00 
(14.1342) 

17.20 
(1.0328) 

42.60 
(12.8858) 

16.80 
(1.0328) 

38.40 
(15.6929) 

17.20 
(1.0328) 

41.60 
(15.6858) 

19.60 
(3.0984) 

40.00 
(15.2898) 

2 4.00 
(0.0000) 

53.60 
(18.0874) 

4.00 
(0.0000) 

51.00 
(20.4287) 

4.00 
(0.0000) 

59.10 
(14.3639) 

4.00 
(0.0000) 

42.30 
(15.2392) 

4.00 
(0.0000) 

38.60 
(17.9703) 

4.00 
(0.0000) 

33.70 
(16.4388) 

3 24.60 
(0.6992) 

58.60 
(17.8463) 

24.30 
(0.6749) 

57.10 
(15.1030) 

24.60 
(0.8433) 

55.30 
(15.9238) 

24.20 
(1.0328) 

43.90 
(13.5519) 

24.30 
(2.8694) 

51.40 
(19.3861) 

24.00 
(1.4907) 

47.40 
(18.2647) 

4 24.30 
(0.4830) 

68.30 
(27.5441) 

24.70 
(0.8233) 

51.80 
(17.1968) 

24.40 
(0.5164) 

53.60 
(19.0566) 

25.40 
(1.4298) 

39.30 
(12.8154) 

28.60 
(2.5473) 

42.50 
(18.5966) 

29.50 
(1.9579) 

33.10 
(14.8881) 

5 21.00 
(2.1082) 

63.30 
(28.5970) 

20.50 
(1.2693) 

55.40 
(26.0520) 

23.40 
(5.8157) 

56.40 
(24.8828) 

24.00 
(2.5386) 

46.70 
(19.6867) 

24.60 
(5.4406) 

46.50 
(18.2041) 

23.80 
(5.4528) 

37.40 
(16.7876) 

6 33.90 
(1.3703) 

51.00 
(10.5093) 

33.90 
(0.7379) 

56.80 
(18.0234) 

33.30 
(1.4181) 

56.30 
(15.9237) 

33.30 
(1.0593) 

43.40 
(12.2854) 

33.40 
(1.1738) 

49.10 
(17.6915) 

33.10 
(0.8756) 

40.50 
(9.5714) 

7 - - 18.00 
(0.0000) 

54.50 
(22.5351) 

18.00 
(0.0000) 

60.60 
(17.2123) 

18.00 
(0.0000) 

41.90 
(18.0213) 

18.00 
(0.0000) 

43.80 
(15.7042) 

20.20 
(0.6325) 

39.20 
(21.9636) 

8 - - - - 20.90 
(1.1005) 

49.10 
(18.2236) 

20.40 
(0.6992) 

37.00 
(11.0252) 

27.10 
(9.1827) 

41.60 
(21.7521) 

35.20 
(9.1263) 

32.50 
(12.4387) 

9 - - - - - - 17.40 
(0.6992) 

50.70 
(19.9857) 

17.20 
(0.6325) 

43.40 
(15.9248) 

17.00 
(0.0000) 

34.20 
(15.4833) 

10 - - - - - - - - 32.30 
(0.8233) 

40.50 
(13.1930) 

32.30 
(0.8233) 

37.40 
(9.5475) 

11 - - - - - - - - - - 28.40 
(0.6992) 

33.80 
(15.3319) 



For MAZE2, the number of coevolutionary generations and the path length are 

included in Table 4. Again, the number of generations is relatively small, and the path 

length is kept small.  Nevertheless, the time consumed in finding solutions is too high 

and that is the reason we do not study this solution with a higher number of robots per 

room. The same ideas found for MAZE1 can be repeated here so to improve the 

performance of the system.  

Table 3. Average (MN), median (MD) and standard deviation (SD) of the time spent in 

finding a solution in each scenario -with different number of robots (NR)-. QXA2013 

performed much better in terms of time consumption. 

 Our solution QXA2013 

NR MN SD MD MN SD MD 

6 3,8319 1,4861 4,4080 4.7479 3.5449 3.2720 

7 11,2127 5,4879 10,6205 9.6416 4.3064 9.7090 

8 75,8119 41,5637 74,2549 14.3116 8.0994 11.8045 

9 303,3489 203,8299 242,1621 32.8010 12.7689 32.0580 

10 1255,6156 459,5965 1404,6725 59.7161 24.0424 66.6075 

11 3958,5166 1954,4660 3982,3627 95.2412 46.1279 95.2854 

Table 4. MAZE2 scenario: number of coevolutionary generations and the length of the 

route for each robot. REP, MN and SD stand for repetition of the experiment, average 

and standard deviation, respectively. Rx refers to the corresponding robot in the maze. 

GEN 17 24 13 18 27 16 10 15 13 15 16,8 5,2 

REP 1 2 3 4 5 6 7 8 9 10 MN SD 

R1 65 65 90 65 65 90 89 91 65 89 77.4 13.1 

R2 58 58 44 58 58 44 44 44 58 44 51.0 7.4 

R3 79 78 104 79 78 104 105 105 79 106 91.8 13.9 



R4 103 103 78 103 103 78 78 78 103 78 90.5 13.2 

R5 45 45 58 45 45 58 58 58 45 58 51.5 6.9 

R6 87 87 63 87 87 63 63 63 87 63 75.0 12.6 

R7 105 107 80 105 107 80 78 77 105 78 92.2 14.4 

R8 89 88 64 89 88 64 64 64 89 64 76.3 13.0 

R9 44 42 52 44 41 52 52 55 44 52 47.9 5.1 

R10 110 109 45 111 109 45 45 45 11 45 77.6 34.4 

R11 63 64 89 65 64 89 88 91 65 88 76.8 12.9 

R12 74 74 100 74 74 100 100 101 74 100 87.1 13.8 

Conclusions 

This study focuses on finding collision-free routes for each robot in an known indoor 

multi-robot laboratory. The proposal includes an initial step to determine A* routes for 

each robot, detecting collisions and finding alternative suboptimal A* routes, and a co-

evolutionary stage that introduces changes in the routes to avoid the collisions.  

The experimentation makes use of two simple mazes, one as a rectangular patter 

of tiles and another as four rooms interconnected by single-robot bridges. For the first 

maze, different number of robots were evaluated and for each scenario 10 runs have been 

considered. For the second maze, only 3 robots per room were introduced. The result 

from the experiments shows that the co-evolutionary solution can easily find collision-

free routes for all the robots, with a reduced number of generations. However, there are 

problems due to the time of service, which increases with the number of robots and the 

maze complexity.  

To tackle this issue, we propose several alternatives. Firstly, only robots that 

collide should be considered in the A* alternative route finding and the co-evolutionary 



process (although all the robots must be considered in the evaluations). Secondly, the 

initial mutation point should be selected from the neighbourhood of the collision point 

and, more precisely, from points in the route before the collision. In this way, the problem 

is solved locally, and the search space is highly reduced. Finally, the neighbourhood can 

be widened with the number of generations: the larger this latter the bigger the 

neighbourhood. This solution allows to increase the search space when the problem 

becomes harder due to restrictions in the domain. 
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