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Abstract: One characteristic of neuro-fuzzy systems is the possibility of incorporating preliminary
information in their structure as well as being able to establish an initial configuration to carry out the
training. In this regard, the strategy to establish the configuration of the fuzzy system is a relevant
aspect. This document displays the design and implementation of a neuro-fuzzy controller based
on Boolean relations to regulate the angular position in an electromechanical plant, composed by
a motor coupled to inertia with friction (a widely studied plant that serves to show the control
system design process). The structure of fuzzy systems based on Boolean relations considers the
operation of sensors and actuators present in the control system. In this way, the initial configuration
of fuzzy controller can be determined. In order to perform the optimization of the neuro-fuzzy
controller, the continuous plant model is converted to discrete time to be included in the closed-loop
controller training equations. For the design process, first the optimization of a Proportional Integral
(PI) linear controller is carried out. Thus, linear controller parameters are employed to establish
the structure and initial configuration of the neuro-fuzzy controller. The optimization process also
includes weighting factors for error and control action in such a way that allows having different
system responses. Considering the structure of the control system, the optimization algorithm
(training algorithm) employed is dynamic back propagation. The results via simulations show that
optimization is achieved in the linear and neuro-fuzzy controllers using different weighting values
for the error signal and control action. It is also observed that the proposed control strategy allows
disturbance rejection.

Keywords: controller; electromechanical plant; neuro-fuzzy; optimization

1. Introduction

In control systems, fuzzy logic offers broad applicability given its flexibility to im-
plement control strategies through a set of rules using membership functions [1–3]. It is
possible to use training algorithms with neural networks when representing the fuzzy sys-
tem as a neural network that grants higher accuracy in the fuzzy system performance. When
representing a fuzzy system as a neural network, a neuro-fuzzy system is obtained [4,5].

An interesting application of fuzzy logic is the aided design process. In this regard, a
remarkable application is observed for compliant mechanism design used in soft robotics,
space, and bioengineering due to the advantages of free friction, monolithic structure, and
minimal assembly. Considering this area, a hybrid methodology is presented in [6] for
solving the multi-objective optimization design. Authors propose a hybridization through a
combination of a finite element method, statistical technique, desirability function approach,
fuzzy logic system, Adaptive Neuro-Fuzzy Inference System (ANFIS), and Lightning At-
tachment Procedure Optimization (LAPO). A bistable compliant mechanism is designed,
where desirability values of two performance metrics are calculated and transferred into
the fuzzy logic system to obtain the output in a single objective function. A related work
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is presented in [7], proposing a method using statistics, numerical simulation, computa-
tional intelligence, and metaheuristics. A two-degree of freedom compliant mechanism
is designed, where numerical datasets are collected by simulations. The sensitivity of
design parameters is studied by analysis of variance and Taguchi technique. The results
of sensitivity are employed to separate populations for lightning attachment procedure
optimization. The values of two output mechanism performances are the inputs of the
fuzzy logic model, and the output of this system is a single objective function, that is
optimized using LAPO algorithm. Other advanced work is presented in [8], presenting an
optimization framework to provide a systematic design method for a flexure gripper. The
optimization strategy includes the topology, modeling, and size optimization phases. The
gripper topology is determined via the solids isotropic material with penalization method
considering stress constraint and force distribution. The modeling of the performances is
implemented via an Enhanced Adaptive Neuro-Fuzzy Inference System (EANFIS). The op-
timization is performed to search for the best model parameters. Finally, a hybrid procedure
of the Taguchi method is described in [9], using fuzzy logic, response surface method, and
Moth-flame optimization algorithm to solve the design optimization of a flexure hinge to
enhance three quality characteristics. Fuzzy modeling is proposed to interpolate the three
objective functions into a unified objective function. An integrated regression equation is
determined via response surface method and flexure hinge is optimized using Moth-flame
optimization algorithm.

Regarding fuzzy control applications for electromechanical systems, there are relevant
developments in electric engines control and robotics. With regard to fuzzy logic for motor
control, reference [10] carries out a review of multi-motor control, which are multiple input
and multiple output systems. The main purpose of the multiple motor control variators
consists of achieving a coordinated operation in all motors. The literature reviewed shows
that fuzzy systems are widely employed in multi-motor control. Meanwhile, in [11] a fuzzy
controller is proposed using a motion capture system to operate the speed and orientation
of a wheelchair considering the model of a Direct Current (DC) motor for the design process.
Further, a fuzzy logic controller is used in [12], for an image-based navigation system of an
autonomous underwater vehicle with a DC motor.

According to [13], due to high robustness and simple maintenance, Induction Motors
(IM) are commonly used in household appliances and industries. Currently, advanced
techniques are applied to traditional controls such as the Field-Oriented Control (FOC) and
Direct Torque Control (DTC). Authors in [13] evaluate traditional FOC and DTC compared
to two additional fuzzy and predictive controllers.

Concerning robotic applications using fuzzy logic, reference [14] employs a fuzzy
control Proportional Integral (PI) in a robotic driving system for hybrid electric vehicles
in a way that allows a reliable evaluation of energy efficiency. This depicts the relevance
of the efficiency of fuel in hybrid vehicles. Thus, reliable measurements are required in
order to have an accurate analysis of fuel efficiency; whereby, the authors propose a robotic
system to perform driving tests to reduce the deviation when such tests are carried out by
humans. Moreover, reference [15] proposes a Knowledge-Based Neural Fuzzy Controller
(KNFC) for navigation control in mobile robots. Knowledge-Based Cultural Multi-Strategy
Differential Evolution (KCMDE) is employed here to adjust the parameters of the KNFC.
This is applied in mobile robots PIONEER 3-DX for automatic navigation systems and
obstacle avoidance, employing the existing angle between the obstacle and the robot to
determine if the robot enters in specific reference points to modify its behavior and thus
skip dead ends. A related work is presented in [16] using a neuro-fuzzy system in path
planning for a service robot in complex environments with the presence of humans as in
a retirement home. As inputs for path planning, the system uses a 3D depth camera and
multiple sonar sensors.

Meanwhile, reference [17] proposes a simple and practical decoupled control structure
for a parallel robot positioning control using the Cable-Driven Parallel Robot (CDPR). This
structure is employed with a non-linear Proportional Integral Derivative (PID) and classic
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PID controllers. In addition, the control system structure is proposed through an analysis
of cables involved in End-Effector (EE) robot’s movement when operating independently
for each axis; later, an adjustment of rules for fuzzy PID controllers was carried out and the
Ziegler–Nichols method was applied to PID classic controllers.

Regarding recent research of neuro-fuzzy control systems, in [18] is developed a
Terminal Sliding-Mode Control (TSMC) using a Fuzzy Double Hidden Layer Recurrent
Neural Network (FDHLRNN). According to authors, the neuro-fuzzy system proposed is a
combination of a radial basis neural network and a fuzzy neural network. To reduce the
switching gain (associated with the TSMC), the FDHLRNN is employed to approximate the
nonlinear sliding-mode equivalent control term. In order to observe the dynamic response
and robustness, the control scheme is tested using a second-order nonlinear system. An
additional work is observed in [19], where is designed a TSMC using FDHLRNN for a
single-phase Active Power Filter (APF). Authors propose the TSMC to allow the tracking
error converges to zero (in a finite time). The system is used in harmonic suppression
first to approximate the equivalent control and second to suppress unknown disturbances.
The equations to update the adaptive parameters of the FDHLRNN are obtained using
a Liapunov function in order to ensure asymptotic stability. Finally, in [20] is displayed
an approximation-based adaptive fractional sliding mode control. For approximating the
system uncertainties and disturbance we used a Double Loop Recurrent Fuzzy Neural
Network (DLRFNN). In this development, a fractional order term is incorporated into the
sliding surface having the benefits of sliding mode control and fractional calculus. The
DLRFNN uses the advantages of fuzzy systems to handle uncertain information and the
neural networks to learn using data measured from the process.

In this work, the designed neuro-fuzzy controller uses the structure of a compact fuzzy
system based on Boolean relations as presented in [21], which can be used for the identifica-
tion and control of dynamic systems. Neuro-fuzzy systems based on Boolean relations are
founded in a system design considering possible Boolean regions in the universe discourse,
then being extended using fuzzy sets for implementation [22]. Various design consid-
erations are presented in this scenario as well as the manipulation of system equations
applying Boole and Kleene algebras. In this way, fuzzy systems with compact structures
can be established and used for identification and control of dynamic systems [21]. As an
example, the application of this type of system is shown in [23] to control an Automatic
Voltage Regulator (AVR). In control applications, the Dynamic Back Propagation (DBP)
training algorithm is used in cases when the plant’s feedback signals and the controller are
required for the neuro-fuzzy control system.

This document details the design and tuning of a neuro-fuzzy control system applied
to an electromechanical plant. The neuro-fuzzy system design is made regarding the
architecture of a linear controller. Subsequently, the training is performed similar to a
neural network employing the dynamic back propagation algorithm [24–26].

The design can be applied in robotics since it is necessary to control the movements of
the parts of a robot which are generally activated with DC motors. Another application can
be a solar tracker usually employed to improve the use of solar energy. In previous works,
the considered plant is similar to that employed to control a solar tracker mainly operated
by a DC motor [27–29]. Regarding this plant, reference [30] carries out the optimization of
a linear controller in discrete time.

Article Approach and Document Organization

The objective of this document is to show the design and optimization process of a
fuzzy controller (based on Boolean relations), making the equivalence with a linear con-
troller, for which a well-known plant (widely studied) is used to show the design process
and optimization. Considering this work, the design process can be extended to more
complex plants. Moreover, this document considers the design of a linear controller as
reference since it allows determining the structure of the fuzzy controller as well as its initial
configuration, which also allows the optimization using the dynamic back propagation
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algorithm where the equations in closed-loop are deduced to train the linear and fuzzy
controllers. The values from the linear controller are used to determine the initial configu-
ration to optimize the fuzzy controller. A well-known plant composed of a coupled motor
with a gear box and inertia with friction is employed to exhibit the design process and
training of the controller. From the above, Figure 1 displays the methodology employed.
First, the system modeling and analysis is performed, then the linear controller design used
as the basis for designing the fuzzy controller (as mentioned above) is conducted. Later, the
optimization of the controllers is carried out and finally the simulation of the closed-loop
control system is performed.

System Modeling and Analysis

Linear Controller Design

Fuzzy Controller Design

Basen On Linear Controller

Controllers Optimization

Closed-Loop Control Systems

Simulation

Figure 1. Methodology employed.

The document is organized as follows: Section 2 describes the plant model considering
a simplified structure and the representation in discrete time. Then, in Section 3 the
description is shown of the linear and fuzzy controllers employed. Section 4 displays
the general process for controller parameter training. Section 5 describes the equations
for linear controller parameter training and Section 6 the equations for fuzzy controller
optimization. Then, Section 7 presents the results of the controller training process. Finally,
Section 8 shows the discussion and conclusions are presented in Section 9.

2. Electromechanical Plant

Figure 2 displays the diagram of the electromechanical plant considered. This is
composed of a DC motor, a gearbox, and a wheel (with moment of inertia) coupled to
the gearbox. The analysis of this plant is presented in [31], corresponding to the example
A-3-9 pages 95–97. The motor plays an important role in this plant since it is a fundamental
part of the dynamic model, as it provides the required torque to move the inertia. The
parameters of the DC motor are:

• Kt: Torque constant.
• Ke: Electromagnetic feedback constant.
• Ra: Shield resistance.
• La: Shield inductance.
• Jr: Motor moment of inertia.
• Br: Rotor friction constant.

It is noteworthy that the diagram in Figure 2 is given as an example since in a real case
the gearbox has more gears. The motor torque is proportional to the current of the shield
for the modeling of the system as indicated in the following equation:

TM = Ktia(t) (1)

The counter-electromotive force is proportional to the angular speed of the motor:

e(t) = Keωr(t) (2)
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The equation that governs the electrical part is:

u(t)− e(t) = La
dia(t)

dt
+ Raia(t) (3)

Ra La

u(t) e(t)

+

−

+

−

TM

ia(t)

Br

Jr

θr

n2

N

n1

θ

Bm

Jm

TL

Figure 2. Electromechanical plant schematic diagram.

The torques in the motor shaft are considered to incorporate the mechanical part into
the model. The relation between the generated torque and the load torque is obtained by
performing a summation of torques on the motor shaft as shown below:

TM(t)− N TL(t) = Je
dωr(t)

dt
+ Beωr(t) (4)

where:
Be = Br + BmN2; Je = Jr + JmN2; N =

n1

n2
(5)

In these equations Jm, Bm are the inertia and friction of the mechanical part and N the
transformation ratio of the gearbox such that θ(t) = Nθr(t). In addition, Equation (6) is
employed to complete the model.

ωr =
dθr(t)

dt
(6)

2.1. System Block Diagram

In order to observe the presentation of this system as a transfer function, a Laplace
transform L is applied, obtaining:

TM(s) = Kt Ia(s) (7)

E(s) = KeΩr(s) (8)

U(s)− E(s) = (Ra + sLa)Ia(s) (9)

TM(s)− N TL(s) = (Be + sJe)Ωr(s) (10)

Θr(s) =
Ωr(s)

s
(11)

In addition, taking TL = 0 and Θ(s) = NΘr(s) the system transfer function is:

Θ(s)
U(s)

=
N Kt

KtKes + (Las + Ra)(Jes + Be)s
(12)

Considering the model equations, the block diagram in Figure 3 of the electromechani-
cal system can be obtained.
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−

−
+

−

+

−

U(s) TM(s)
Ωr(s) Θr(s)

Θ(s)

TL(s)

∑ ∑1

La

Ra

1

s
Kt

Ke

1

Je

1

s

Be

1

s

N

N

Figure 3. Electromechanical system block diagram.

2.2. Approximate Model

In some applications, a complete dynamic model of the plant may be impractical
due to the difficulty in establishing the values of its parameter (in this case, the moment
of inertia and the friction of the mechanical part). An alternative consists of a simplified
model identifying its parameters considering the dynamic behavior of the plant [31].

According to [31], when considering La ≈ 0 (very small) there is a simplified model of
the plant; in this way, the diagram in Figure 3 can be represented as shown in Figure 4.

−
+

−

+

−

U(s) TM(s)
Ωr(s) Θr(s)

Θ(s)

TL(s)

∑ ∑Kt
Ra

Ke

1

Je

1

s

Be

1

s

N

N

Figure 4. Block diagram of the electromechanical system considering La ≈ 0.

Organizing the diagram of Figure 4, it is possible to obtain the representation of
Figure 5 where TL(s) can be seen as a system disturbance.

−
+

−

+

−

U(s) TM(s)
Ωr(s) Θr(s)

Θ(s)

TL(s)

∑ ∑Kt
Ra

Ke

1

Je

1

s

Be

1

s N

NRa
Kt

Figure 5. Simplified block diagram of the electromechanical system.

Equivalently, the diagram shown in Figure 6 is obtained where in the time domain
the input u(t) = L−1{U(s)} corresponds to the voltage; the output is the angular posi-
tion θ(t) = L−1{Θ(s)} and p(t) = L−1{P(s)} is the disturbance given by the product



Appl. Sci. 2022, 12, 541 7 of 25

(NRa/Kt)TL(t). In this way, the variable to sense and control corresponds to the angular
position θ(t).

Plant

G(s)
Θ(s)U(s)

∑
+

−
P(s)

Disturbance

Input Output

Figure 6. Equivalent block diagram of the plant.

On the other hand, considering the location of the poles, the criterion to establish the
simplified model is shown in Figure 7 where the pole located in s = −a corresponding to
the mechanical part is the dominant pole (it governs the system dynamics) since b � a;
therefore, to establish the approximate model, the pole located at s = −b associated with
the electromagnetic part can be neglected [31].

××× Re

Im

0−a−b

b ≫ a

≈

×× Re

Im

0−a

Figure 7. Consideration of pole location.

Equation (13) describes the simplified plant transfer function corresponding to a first-
order system and an integrator, where the variable s is associated with the Laplace transform.

According to [31], the model of Equation (13) considers the parameters shown in
Figure 5, namely Je, Be, Ke, Kt, N, and Ra. In this way, through the data measured from
the open-loop plant, the effect of the parameters on the plant operation is being directly
considered in the identification process.

G(s) =
K

s(τs + 1)
(13)

For this plant, the identification of parameters is carried out considering the average
values of the speed and the settling time as shown in [27,28].

For the transfer function, in Equation (13) parameter K corresponds to the steady-state
input–output relationship, which for this case is K = ∆ω/∆u where ω is the angular
velocity. Taking a voltage of 12 V, the average time taken by the system to travel an angle of
π/2 is 0.06 rad/s; therefore, K parameter value corresponds to 0.005 rad/(V s) [28].

Parameter τ can be determined as one third of the system settling time (considering
a band of 5%), which is 1.13 s, hence, τ corresponds to 0.38 s [28]. In this way, the plant
model is given by Equation (14). It should be noted that the proposed control system is
designed to regulate the angular position of the electromechanical system θ(t).

G(s) =
Θ(s)
U(s)

=
0.005

s(0.38s + 1)
(14)

2.3. Discrete Time Model

Since the control strategy to be implemented is PI, a continuous time PI controller is
designed to establish the sampling time. Accordingly, the closed-loop system bandwidth
wbw can be used to determine the sampling time.
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The recommendations given in [32–34] are applied to design the PI controller. The
continuous PI controller is given by Equation (15).

C(s) = K
s + a

s
(15)

According to [34], the design procedure consists of locating the zero s = −a close to
the integrator pole so that the pole-zero pair of the feedback system “almost cancel”. As the
objective in this section is to determine the sampling time, the goal is to have the highest
bandwidth with an overshoot lower than 22% (as a criterion of the system response) to
design the PI controller. Thus, using the root locus, it is established that a = 0.132 and
K = 492. Figure 8 presents the root locus, the step response, and the Bode diagram of the
closed-loop system with the continuous time PI control.

Thus, in Figure 8 it is observed that the bandwidth of the closed-loop system is
wbw = 3.23 rad/s. According to [35], the sample rate is usually taken between 10 and
20 times the bandwidth. For the design 20 times are taken; therefore, the sampling frequency
is ws = 20wbw and thus the sampling time Ts = 2π/ws is Ts ≈ 0.1 s.
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Figure 8. System characteristics with PI control.

The transfer function G(s) given by Equation (14) is converted to G(z) (discrete time
system) using a sampling time of Ts = 0.1 s and the bilinear transformation method [30]. In
this way, the model of the discrete time system is obtained given by Equation (16).

G(z) = 10−5 2.907 + 5.814z−1 + 2.907z−2

1− 1.767z−1 + 0.767z−2 (16)

In general, this transfer function can be represented as:

G(z) =
Θ(z)
U(z)

=
B0 + B1z−1 + B−2

2
1 + A1z−1 + A2z−2 (17)

The respective difference equation for this plant is:

θ[n] = B0u[n] + B1u[n− 1] + B2u[n− 2]− A1θ[n− 1]− A2θ[n− 2] (18)

3. Fuzzy Control System

The neuro-fuzzy controller uses the structure of a compact fuzzy system based on
Boolean relations such as that presented in [21], which can be used for the identification
and control of dynamic systems. Fuzzy systems based on Boolean relations are based on a
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system design considering possible Boolean regions in the discourse universes; then this
system is extended using fuzzy sets for implementation, making it possible to consider the
operation of sensors and actuators present in the control system [22]. The output of these
systems can be calculated as:

y =
N

∑
i=1

νiYi (19)

where νi corresponds to the virtual actuator and Yi the activation output that depends
on the membership functions µl,j(xl) associated with inputs xl for l = 1, 2, . . . , L and
j = 1, 2, . . . , Ml .

In order to establish the activation functions Yi, a truth table and various design
considerations are used as well as the manipulation of the system equations using Boolean
and Kleene algebras [22]. By using a compact structure, direct equivalence can be performed
with the structure of a dynamic discrete time system, which allows the implementation of
fuzzy controllers [21].

In this way, fuzzy control design consists of modifying (extending) a linear (discrete
time) controller using fuzzy sets to model the controller non-linear relations. This design
principle is used in [23] to control an automatic voltage regulator. The general diagram of
the control system can be seen in Figure 9.

Controller

Neuro
Fuzzy

System

Plant∑
r[n]

θ[n]e[n] u[n]

Reference
Output

+
−

∑
+

−
p[n]

Disturbance

Figure 9. General diagram of the control system.

The fuzzy controller schema consists of modifying the non-linear relations that exist
for the input and feedback signals. To carry out the design of the neuro-fuzzy controller, a
linear PI (Proportional Integral) controller given by Equation (20) is considered.

C(s) = Kp +
Ki
s

=
sKp + Ki

s
(20)

Considering the controller in discrete time, the respective transfer function of the PI
controller is:

C(z) =
U(z)
E(z)

=
b0 − b1z−1

1− z−1 (21)

The difference equation of this controller corresponds to:

u[n] = b0e[n]− b1e[n− 1] + u[n− 1] (22)

where the respective coefficients b0, b1 are constant. For the fuzzy controller, these constants
are replaced by non-linear relations given by fuzzy membership functions, such that:

u[n] = f1(e[n])− f2(e[n− 1]) + f3(u[n− 1])) (23)

Fuzzy sets shown in Figures 10 and 11 are employed for the fuzzy control system.
Particularly, Figure 10 shows a sigmoidal fuzzy set to model positive values of the universe
of discourse e and u, while in Figure 11 the negative values are represented for the error e
and control action u.
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u e

µP(e) µP(u)

xi

µi1(xi)

Figure 10. Membership function to model positive values.

u e

µN(e) µN(u)

xi

µi2(xi)

Figure 11. Membership function to model negative values.

Considering the fuzzy sets described in Figures 10 and 11, as well as the controller
structure given by Equation (23), the scheme of Figure 12 is obtained, where the proposed
fuzzy controller is shown.

µ11

µ12

∑

µ21

µ22

∑

µ31

µ32

∑

1

z

e[n]

1

z

∑
u[n]

u[n − 1]

e[n − 1]

+

+

+

+

+

+

+

−

+

ν11

ν12

ν21

ν22

ν31

ν32

f1

f2

f3

Figure 12. Neuro-fuzzy control system scheme.

The controller output can be calculated with Equation (24) where the inputs to the
fuzzy system are xi ∈ {e[n], e[n− 1], u[n− 1]}.

u[n] =
3

∑
i=1

2

∑
j=1

νijµij(xi) =
3

∑
i=1

fi(xi) (24)



Appl. Sci. 2022, 12, 541 11 of 25

For each input xi it is possible to define a function fi as presented in Equation (25).

fi = νi1µi1(xi) + νi2µi2(xi) (25)

To carry out the respective calculations, the membership function is given by equation
µij(xi) = (1 + e−ρij(xi−χij))−1; in this way, the set of controller parameters is
Hc = {νij, ρij, χij}.

4. Controller Parameter Training

The structure of the closed-loop neuro-fuzzy controller can be assimilated as a re-
current neural network; according to [36], there are different alternatives to perform the
training process. One way is to calculate the respective recurrent equation that updates
each parameter using the respective fitness function derivatives. In this way, the system
simulation will be carried out with the current parameters without modification; in the
same simulation the adjustment of parameters is carried out in auxiliary variables, since
these parameters are not used in the current simulation. When finishing the simulation,
the system parameters are updated with those stored in the auxiliary variables and a new
simulation is carried out until the value of the fitness function is reduced.

To carry out the controller training, first the structure of the plant and the controller
are established; thus, for a closed-loop system, the control action corresponds to:

u[n] = fc(e[n], e[n− 1], u[n− 1], Hc) (26)

Likewise, the system’s output employed for controller training is:

θ[n] = fp
(
u[n], u[n− 1], θ[n− 1], θ[n− 2], Hp

)
(27)

where Hc corresponds to the set of controller parameters and Hp to the plant parameters.
Considering hc as one of the control system parameters, the adaptation of the controller
parameters is carried out using Equation (28).

hc(k + 1) = hc(k)− η
dJ
dhc

(28)

In Equation (28), parameter η is the learning rate and J corresponds to the adjustment
function defined as:

J =
1
2

[
Q(e[n])2 + R(u[n])2

]
(29)

where e[n] = r[n]− θ[n] and the derivative of J depending on the adjustment parameters
is given by Equation (30). Considering these equations, Figure 13 shows the algorithm
employed for controller training.

dJ
dhc

= Qe[n]
de
dhc

+ Ru[n]
du
dhc

(30)

The first step consists of choosing the initial controller’s parameter configuration;
then, the next step involves the system output calculation using the model of the plant.
Subsequently, the parameter’s adjustment occurs employing the respective equations
involved in the dynamics in the control system and the derivatives of the parameters
(equations de/dhc, du/dhc and subsequent). It is noteworthy that during the simulation
the adjusted parameters are stored in auxiliary variables since during this process these
values are not used by the controller. To continue the simulation and parameter adjustment,
the algorithm returns to the step where the control system is evaluated with n = n + 1,
repeating this process until simulation time NT is complete. Once the simulation time
is completed, the parameters of the controller are updated with the optimized values to
return to the evaluation step of the control system to start a new iteration k = k + 1 until
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the objective function JT(k) = (1/NT)∑NT
n=1 J(k, n) is less than a given ε or until k is equal

to a given number KT .

Initial parameters

Update new parameters

Evaluate control system

Adjust parameters

Simulation finished?

End of the process

Criteria?

Yes

No

No

Yes

Figure 13. Algorithm for controller training.

5. Equations for Linear Controller Parameter Training

The implementation of the training algorithm (dynamic back propagation) uses dif-
ference equations of each parameter in the adaptation Equation (28). On aspects to bear
in mind in [37,38], the stability analysis is presented for this kind of algorithm used for
training recurrent neural networks.

In order to determine the equations for linear controller training, first, the error
equation is e[n] = r[n]− θ[n] where the output of the plant is given by Equation (31).

θ[n] = B0u[n] + B1u[n− 1] + B2u[n− 2]− A1θ[n− 1]− A2θ[n− 2] (31)

Secondly, the difference equation of the controller is:

u[n] = b0e[n]− b1e[n− 1] + u[n− 1] (32)

Therefore, the training equations of the parameters hc ∈ {b0, b1} are the following:

de
dhc

[n] = − dθ

dhc
[n] (33)

dθ

dhc
[n] = B0

du
dhc

[n] + B1
du
dhc

[n− 1] + B2
du
dhc

[n− 2]− A1
dθ

dhc
[n− 1]− A2

dθ

dhc
[n− 2] (34)

The derivative equation of u[n] based on the controller parameter b0 is:

du
db0

[n] =
d

db0
(b0e[n])− b1

de
db0

[n− 1] +
du
db0

[n− 1]

= b0
de
db0

[n]− b1
de
db0

[n− 1] +
du
db0

[n− 1] + e[n] (35)
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Therefore, for the parameter b1 the equation is:

du
db1

[n] = b0
de
db1

[n]− d
db1

(b1e[n− 1]) +
du
db1

[n− 1]

= b0
de
db1

[n]− b1
de
db1

[n− 1] +
du
db1

[n− 1]− e[n− 1] (36)

In this way, using a learning rate η the following equation is used to update
the parameters:

hc(k + 1) = hc(k)− η

[
Qe[n]

de[n]
dhc

+ Ru[n]
du[n]
dhc

]
(37)

6. Equations for Fuzzy Controller Parameter Training

In this case, the training equations are established for the fuzzy controller based on
Boolean relations; in this order, the equation of the plant is:

θ[n] = B0u[n] + B1u[n− 1] + B2u[n− 2]− A1θ[n− 1]− A2θ[n− 2] (38)

Considering the controller architecture (Figure 12) and the expression for fi given by
Equation (25), the controller dynamics is given by:

u[n] = f1(e[n])− f2(e[n− 1]) + f3(u[n− 1]) (39)

Additionally,
e[n] = r[n]− θ[n] (40)

is used to calculate the error variable.
The respective derivative of the plant output θ[n] for a controller parameter hij ∈ Hc is:

dθ

dhij
[n] = B0

du
dhij

[n] + B1
du
dhij

[n− 1] + B2
du
dhij

[n− 2]− A1
dθ

dhij
[n− 1]− A2

dθ

dhij
[n− 2] (41)

In the same way, the derivative of the control action u[n] with respect to hij is:

du[n]
dhij

=
d f1(e[n])

dhij
− d f2(e[n− 1])

dhij
+

d f3(u[n− 1])
dhij

(42)

Meanwhile, the derivative of the error e[n] for a controller parameter hij corresponds to:

de[n]
dhij

=
dr[n]
dhij

− dθ[n]
dhij

= −dθ[n]
dhij

(43)

To determine the respective derivatives, it is considered that:

d fl(xl)

dhij
=

d
dhij

(νl1µl1(xl)) +
d

dhij
(νl2µl2(xl)) (44)

where l = 1, . . . , 3, i = 1, . . . , 3 and j = 1, 2; therefore, there are different cases for values of
i and l. According to the values of i, l and j the possible cases are:

• Case: l 6= i, where fl does not depend directly on hij.
• Case: l = i and j = 1, where fi directly depends on hi1.
• Case: l = i and j = 2, where fi directly depends on hi2.

In the case when l 6= i it is obtained:

d fl(xl)

dhij
=

d
dxl

(νl1µl1(xl))
dxl
dhij

+
d

dxl
(νl2µl2(xl))

dxl
dhij

(45)
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d fl(xl)

dhij
=

[
d

dxl
(νl1µl1(xl)) +

d
dxl

(νl2µl2(xl))

]
dxl
dhij

(46)

For m = 1, 2 the respective derivatives are:

d
dxl

(νlmµlm(xl)) =
d

dxl

(
νlm

(
1 + e−ρlm(xl−χlm)

)−1
)

(47)

d
dxl

(νlmµlm(xl)) = Llm = νlm

(
1 + e−ρlm(xl−χlm)

)−2
e−ρlm(xl−χlm)ρlm (48)

Meanwhile, when l = i and j = 1 it is established that:

d fi(xi)

dhi1
=

d
dhi1

(νi1µi1(xi)) +
d

dxi
(νi2µi2(xi))

dxi
dhi1

(49)

Now in the case where l = i and j = 2 it is presented that:

d fi(xi)

dhi2
=

d
dxi

(νi1µi1(xi))
dxi
dhi2

+
d

dhi2
(νi2µi2(xi)) (50)

In the first place, for the derivatives with respect to xi is obtained:

d
dxi

(νijµij(xi)) = Lij = νij

(
1 + e−ρij(xi−χij)

)−2
e−ρij(xi−χij)ρij (51)

Second, for the derivatives with respect to hij it has:

d
dhij

(νijµij(xi)) =
d

dhij

(
νij

(
1 + e−ρij(xi−χij)

)−1
)

(52)

In this way, for the respective parameters νij, ρij and χij it is obtained that:

d
dνij

(νijµij(xi)) =
(

1 + e−ρij(xi−χij)
)−1

+ νij

(
1 + e−ρij(xi−χij)

)−2
e−ρij(xi−χij)ρij

dxi
dνij

(53)

d
dρij

(νijµij(xi)) = −νij

(
1 + e−ρij(xi−χij)

)−2
e−ρij(xi−χij)

(
χij − xi − ρij

dxi
dρij

)
(54)

d
dχij

(νijµij(xi)) = −νij

(
1 + e−ρij(xi−χij)

)−2
e−ρij(xi−χij)

(
ρij − ρij

dxi
dχij

)
(55)

In general terms for hij these equations can be written as:

d
dhij

(νijµij(xi)) = Thij
+ Cij

dxi
dhij

(56)

Considering the parameters νij, ρij and χij it has:

d
dνij

(νijµij(xi)) = Tνij + Cij
dxi
dνij

(57)

d
dρij

(νijµij(xi)) = Tρij + Cij
dxi
dρij

(58)

d
dχij

(νijµij(xi)) = Tχij + Cij
dxi
dχij

(59)

where:
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Cij = νij

(
1 + e−ρij(xi−χij)

)−2
e−ρij(xi−χij)ρij (60)

Tνij =
(

1 + e−ρij(xi−χij)
)−1

(61)

Tρij = −νij

(
1 + e−ρij(xi−χij)

)−2
e−ρij(xi−χij)

(
χij − xi

)
(62)

Tχij = −νij

(
1 + e−ρij(xi−χij)

)−2
e−ρij(xi−χij)ρij (63)

Considering the above for the Equation (46) (case l 6= i), it can be written in the form:

d fl(xl)

dhij
=

[
d

dxl
(νl1µl1(xl)) +

d
dxl

(νl2µl2(xl))

]
dxl
dhij

= [Ll1 + Ll2]
dxl
dhij

(64)

On the other hand, for Equation (49) (case l = i, j = 1) the following representation
is stated:

d fi(xi)

dhi1
=

d
dhi1

(νl1µi1(xi)) +
d

dxi
(νi2µi2(xi))

dxi
dhi1

= Thi1
+ Ci1

dxi
dhi1

+ Li2
dxi
dhi1

= Thi1
+ [Ci1 + Li2]

dxi
dhi1

(65)

Meanwhile for the Equation (50) (case l = i, j = 2) it is obtained:

d fi(xi)

dhi2
=

d
dxi

(νl1µi1(xi))
dxi
dhi2

+
d

dhi2
(νi2µi2(xi))

= Li1
dxi
dhi2

+ Thi2
+ Ci2

dxi
dhi2

= Thi2
+ [Li1 + Ci2]

dxi
dhi2

(66)

Finally, Equations (67)–(69) are employed to update the parameters, here η corresponds
to the learning rate.

νij(k + 1) = νij(k)− η

[
Qe[n]

de[n]
dνij

+ Ru[n]
du[n]
dνij

]
(67)

ρij(k + 1) = ρij(k)− η

[
Qe[n]

de[n]
dρij

+ Ru[n]
du[n]
dρij

]
(68)

χij(k + 1) = χij(k)− η

[
Qe[n]

de[n]
dχij

+ Ru[n]
du[n]
dχij

]
(69)

7. Results

Using the equations described in Sections 5 and 6, the respective optimization of the
control system is carried out for both the linear and fuzzy controllers. The settings for the
Q and R values are as follows:

• QR1: Q = 1, R = 0.00005.
• QR2: Q = 1, R = 0.0001.
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• QR3: Q = 1, R = 0.0005.
• QR4: Q = 1, R = 0.001.

After the training process Figure 14 shows the results when considering different
reference values using the PI discrete linear controller.
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Figure 14. System response with the linear controller.

The transfer functions of the PI controller obtained to Q and R values are the following:

• QR1:

C(z) =
66.79z− 66.67

z− 1
=

66.79(z− 0.9982)
(z− 1)

• QR2:

C(z) =
48.48z− 48.39

z− 1
=

48.48(z− 0.9981)
(z− 1)

• QR3:

C(z) =
22.66z− 22.62

z− 1
=

22.66(z− 0.9982)
(z− 1)

• QR4:

C(z) =
16.11z− 16.08

z− 1
=

16.11(z− 0.9981)
(z− 1)

The stability analysis for linear controller consists of determining the closed-loop poles
of the control system (controller and plant). In this order, if the poles are in the unit circle
the system is stable. For each case the transfer function T(z) in a closed loop is:

• QR1:

T(z) =
0.001942z3 + 0.001945z2 − 0.001935z− 0.001938

1.002z3 − 2.765z2 + 2.532z− 0.7689

• QR2:

T(z) =
0.001409z3 + 0.001412z2 − 0.001404z− 0.001407

1.001z3 − 2.766z2 + 2.533z− 0.7684

• QR3:

T(z) =
0.0006587z3 + 0.0006599z2 − 0.0006564z− 0.0006576

1.001z3 − 2.766z2 + 2.533z− 0.7677

• QR4:

T(z) =
0.0004683z3 + 0.0004692z2 − 0.0004666z− 0.0004674

z3 − 2.767z2 + 2.534z− 0.7675
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The respective pole localization is presented in Table 1. It is observed that the poles
are within the unit circle. Therefore, all the systems in a closed loop are stable.

Table 1. Pole localization for each QR case.

QR1 QR2 QR3 QR4

0.9981 0.9980 0.9978 0.9971

0.9639 0.9756 0.9905 0.9947

0.7978 0.7881 0.7762 0.7734

Additionally, as observed, the controllers display the zero near to z = 0.998, while
the gain K has the values 66.79, 48.48, 22.66 and 16.11. Moreover, when incrementing
the value of R (which weighs the action control), the gain value of the K controller is
reduced. Furthermore, it is seen that the algorithm establishes the zero near the pole,
therefore the pole and zero “almost cancel” which is consistent with reference [34] for the
PI controller design.

As results analysis, Figure 15 shows the root locus for the PI control system. This
figure also displays the movement of the roots as the gain K increases.
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Figure 15. Root locus for the linear controllers obtained.

Employing configurations of functions fi(xi) shown in Figure 16, it is possible to
use the values obtained from the optimization of the linear controller to define an initial
configuration to optimize the fuzzy controller. Thus, the slope of fi in the linear region is
set to be equivalent with each parameter of the linear controller.

xi

fi(xi)

Figure 16. Configuration employed for fi(xi).

The fuzzy controller parameters obtained, with which the simulation of the closed-
loop system can be performed, are shown in Table 2. As can be seen, there are different
parameters considering the QR case. In this table, i corresponds to rows and j to columns.
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Table 2. Fuzzy controller parameters for QR cases.

Fuzzy controller parameters for QR1 case

νij ρij χij

−1.3358× 104 1.3358× 104 −0.0101 0.0101 −0.3382× 10−5 −0.3382× 10−5

1.3334× 104 −1.3334× 104 −0.0099 0.0099 0.3446× 10−5 0.3446× 10−5

−0.0200× 104 0.0200× 104 −0.0100 0.0100 0 0

Fuzzy controller parameters for QR2 case

νij ρij χij

−9.6960× 103 9.6960× 103 −0.0100 0.0100 −0.1066× 10−5 −0.1066× 10−5

9.6780× 103 −9.6780× 103 −0.0100 0.0100 0.1064× 10−5 0.1064× 10−5

−0.2000× 103 0.2000× 103 −0.0100 0.0100 0 0

Fuzzy controller parameters for QR3 case

νij ρij χij

−4.5320× 103 4.5320× 103 −0.0100 0.0100 0.1086× 10−6 0.1086× 10−6

4.5240× 103 −4.5240× 103 −0.0100 0.0100 −0.1081× 10−6 −0.1081× 10−6

−0.2000× 103 0.2000× 103 −0.0100 0.0100 0 0

Fuzzy controller parameters for QR4 case

νij ρij χij

−3.2220× 103 3.2220× 103 −0.0100 0.0100 0.6994× 10−7 0.6994× 10−7

3.2160× 103 −3.2160× 103 −0.0100 0.0100 −0.6982× 10−7 −0.6982× 10−7

−0.2000× 103 0.2000× 103 −0.0100 0.0100 0 0

After performing the fuzzy controller training, Figure 17 shows the system response for
different reference values, as well as the value of the control signal; additionally, Figure 18
shows in detail the system response for a unitary reference. According to simulations, the
suitable configurations correspond to QR2 or QR3 considering the values of control action
and settling time.

On the other hand, Table 3 presents the values obtained for JT in the initial and the
final iteration (30 iterations) when performing the optimization process. These results show
that the value of the objective function JT increases when increasing the value of R.
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Figure 17. System response for different reference values.

In addition, Table 3 shows that linear and fuzzy controls obtain similar values of JT .
These results highlight that the design and choice of the initial configuration of the fuzzy
controller were satisfactory since it presents a similar result to the linear controller.
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To statistically observe the performance of the linear and fuzzy controllers for different
values of Q and R 10 simulations were performed with randomly generated r(t) reference
values (six variations in each simulation). Results of JT for 10 simulations are shown
in Table 4, while Table 5 displays the mean, Standard Deviation (STD), maximum and
minimum values.
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Figure 18. Control signal and response for a unitary reference.

Table 3. Initial and final values for JT in each configuration.

QR Linear Fuzzy

Case Initial Final Initial Final

QR1 0.0240293 0.0077754 0.0082463 0.0077858

QR2 0.0301406 0.0101258 0.0103760 0.0101451

QR3 0.1424850 0.0197969 0.0198750 0.0198434

QR4 0.4415530 0.0269572 0.0270372 0.0270370

Table 4. Results of JT for 10 simulations.

Simulation QR1 QR2 QR3 QR4

Run Linear Fuzzy Linear Fuzzy Linear Fuzzy Linear Fuzzy

1 0.0032 0.0033 0.0044 0.0044 0.0092 0.0090 0.0130 0.0126

2 0.0018 0.0019 0.0024 0.0025 0.0051 0.0050 0.0071 0.0069

3 0.0043 0.0044 0.0058 0.0058 0.0122 0.0119 0.0172 0.0166

4 0.0032 0.0032 0.0043 0.0043 0.0090 0.0088 0.0127 0.0123

5 0.0046 0.0046 0.0062 0.0062 0.0130 0.0127 0.0184 0.0178

6 0.0017 0.0018 0.0023 0.0023 0.0048 0.0047 0.0067 0.0066

7 0.0018 0.0018 0.0024 0.0025 0.0051 0.0051 0.0073 0.0070

8 0.0009 0.0010 0.0013 0.0013 0.0026 0.0026 0.0037 0.0036

9 0.0009 0.0010 0.0012 0.0013 0.0026 0.0026 0.0037 0.0036

10 0.0025 0.0026 0.0034 0.0034 0.0069 0.0068 0.0097 0.0094

Table 5. Numerical measures of JT for 10 simulations.

Numerical QR1 QR2 QR3 QR4

Measure Linear Fuzzy Linear Fuzzy Linear Fuzzy Linear Fuzzy

Mean 0.0025 0.0026 0.0034 0.0034 0.0070 0.0069 0.0099 0.0096

STD 0.0013 0.0013 0.0017 0.0017 0.0037 0.0036 0.0052 0.0050

Max 0.0046 0.0046 0.0062 0.0062 0.0130 0.0127 0.0184 0.0178

Min 0.0009 0.0010 0.0012 0.0013 0.0026 0.0026 0.0037 0.0036
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Regarding the statistical tests application [39], the Kruskal–Wallis test is used to de-
termine statistically significant differences between two or more experimental groups,
obtaining a p value of 3.7814× 10−7, which indicates differences, then it the Bonferroni pro-
cedure is employed to perform multiple comparisons, the results are presented in Figure 19,
where we observe no significant difference between the linear and fuzzy implementations
for the Q and R configurations. We also observed a significant difference between cases
QR1 and QR4.

0 20 40 60 80

Linear QR1

Linear QR2

Linear QR3

Linear QR4

Fuzzy QR1

Fuzzy QR2

Fuzzy QR3

Fuzzy QR4

JT Ranking

Figure 19. Multiple comparison using Bonferroni procedure.

Meanwhile, Figure 20 shows the system behavior for θ(t) when there are disturbances
p(t). This figure also displays the responses for different configurations in Q and R. It can
be observed that the disturbance effect is more noticeable for the controllers that employ a
small signal control, as in the cases QR3 and QR4 (according to Figures 17 and 18).
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Figure 20. Response of the system for different disturbance values.

In Figure 21, the behavior comparison of the linear and fuzzy controllers is presented
considering different perturbation values. For the disturbance values considered (Figure 18),
some fuzzy controller configurations decrease the disturbance rejection capacity.

In order to statistically observe the performance of the linear and fuzzy controllers
for disturbance rejection (considering different values of Q and R) 10 simulations were
performed with randomly generated p(t) disturbance values (six variations in each simula-
tion). Results of JT for 10 simulations are shown in Table 6, in this way, Table 7 displays the
mean, standard deviation, and maximum and minimum values.
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Figure 21. Comparison for the response of the system using linear and fuzzy controllers for different
disturbance values.

Considering Tables 6 and 7, to determine statistically significant differences among the
groups, we used the Kruskal–Wallis test, having a p-value of 2.8463× 10−13, which indicates
differences. Considering the above result, the multiple comparisons using Bonferroni
procedure is performed, obtaining Figure 22 observing no significant difference between
the linear and fuzzy controllers for the configurations of Q and R. In addition, Figure 22
allows us to observe differences among cases QR1, QR2, QR3, and QR4, for example, when
the value of R is increased the value of JT also increases.
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Table 6. Disturbance rejection results of JT for 10 simulations.

Simulation QR1 QR2 QR3 QR4

Run Linear Fuzzy Linear Fuzzy Linear Fuzzy Linear Fuzzy

1 0.0025 0.0024 0.0038 0.0036 0.0119 0.0116 0.0208 0.0213

2 0.0024 0.0024 0.0036 0.0035 0.0109 0.0107 0.0189 0.0190

3 0.0023 0.0023 0.0034 0.0033 0.0101 0.0100 0.0172 0.0178

4 0.0027 0.0028 0.0043 0.0044 0.0147 0.0153 0.0264 0.0289

5 0.0023 0.0023 0.0034 0.0034 0.0103 0.0102 0.0176 0.0180

6 0.0023 0.0023 0.0034 0.0033 0.0099 0.0099 0.0168 0.0178

7 0.0020 0.0020 0.0029 0.0028 0.0075 0.0072 0.0120 0.0120

8 0.0024 0.0024 0.0036 0.0036 0.0111 0.0114 0.0192 0.0205

9 0.0022 0.0022 0.0031 0.0031 0.0088 0.0086 0.0145 0.0147

10 0.0022 0.0022 0.0032 0.0031 0.0090 0.0090 0.0149 0.0157

Table 7. Numerical measures of JT for 10 simulations considering disturbance rejection.

Numerical QR1 QR2 QR3 QR4

Measure Linear Fuzzy Linear Fuzzy Linear Fuzzy Linear Fuzzy

Mean 0.0023 0.0023 0.0035 0.0034 0.0104 0.0104 0.0178 0.0186

STD 0.0002 0.0002 0.0004 0.0004 0.0020 0.0022 0.0039 0.0045

Max 0.0027 0.0028 0.0043 0.0044 0.0147 0.0153 0.0264 0.0289

Min 0.0020 0.0020 0.0029 0.0028 0.0075 0.0072 0.0120 0.0120

-20 0 20 40 60 80 100

Linear QR1

Linear QR2

Linear QR3

Linear QR4

Fuzzy QR1

Fuzzy QR2

Fuzzy QR3

Fuzzy QR4

JT Ranking

Figure 22. Multiple comparison using Bonferroni procedure.

8. Discussion

As seen, for linear controller the algorithm locates the zero near the pole in such a
way that the pole and zero “almost cancel” occurs, which is a PI controller design method
as presented in [34]. Frequently, it is possible to create a design by placing the zero of
the controllers near the pole of origin in a way that both pole and zero of the system in
closed loop “almost cancel” each other. Considering [33,34], a pair pole-zero that almost
cancels has an insignificant effect on the time response; thus, the transitory response of
the closed-loop system with the controller is approximately the same as in the closed-loop
system without the controller. As a result, PI controller offers little deterioration in the
transitory response with a significant improvement in steady state error.
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According to [40], a prefilter can be employed to improve the system’s dynamic
response. In the linear controller, the prefilter allows the cancellation of the zero effect; also,
the system overshoot can be reduced with an adequate prefilter design. The effect of the
prefilter might be included in the training algorithm for the optimization of the neuro-fuzzy
system. The prefilter may have a linear design and then extend it to a fuzzy design.

This application shows the possibility of achieving a non-linear fuzzy controller taking
as reference the design of a linear controller (linear controllers with excellent performance
can be used for the plant). As the plant considered is well known, the article focuses on
showing how a linear controller can be extended to a fuzzy controller (starting from a
behavior close to the linear controller). After having the first implementation for the fuzzy
controller, nonlinearities can be included to improve the behavior of the control system
when having more complex plants with nonlinearities, a subject that will be addressed in
later work. In addition, it can be considered a broader comparison with other techniques
using different plants.

Further, in this work, the stability analysis of the closed-loop system was performed
with the linear controller, in a later work it is expected to extend the stability analysis for
this type of fuzzy controllers by means of a Liapunov analysis.

9. Conclusions

Linear controller design and optimization allow the design of the fuzzy controller as
well as the definition of the initial optimization setup of this controller.

For the linear controller (in discrete time), since the pole of the controller is placed in
z = 1, the employed algorithm aims at finding the optimal location for the zero. Then, the
fuzzy controller is optimized by considering these values for the initial setup; therefore,
similar behavior is obtained. This demonstrates that it is possible to carry out the design
and optimization of the fuzzy controller having a linear controller as a reference.

The fuzzy controller permits to include nonlinear relations through membership
functions. Adequate configurations of these functions also allow the definition of a lin-
ear region in a way that it is possible to determine equivalence between the linear and
fuzzy controllers.

The use of values Q and R permits obtaining different behaviors considering the
action values that may be supplied for the plant. When testing the fuzzy controller for
different reference values, the behavior of the control system is similar for the considered
reference values.

It is observed that keeping the value of Q constant and increasing the value of R, the
gain of the controller is reduced in a way that the energy of the plant also decreases.

The fuzzy controller scheme can be used for the implementation of an adaptive control
strategy, in such a way that when a variation of the plant parameters occurs, the controller
can be adjusted to obtain the desired behavior.
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