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Metallicities in M dwarfs: Investigating different determination
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ABSTRACT

Deriving metallicities for sun-like stars follows well-established methods, but for cooler stars such as M dwarfs the determination
is much more complicated due to the forests of molecular lines. Several methods have been developed over the last years to de-
termine accurate and precise stellar parameters for these cool stars. However, sometimes significant differences can be found when
comparing metallicities for the same star derived from different methods. In this work, we determine effective temperatures, surface
gravities, and metallicities of 18 well-studied M dwarfs observed with the CARMENES high-resolution spectrograph following dif-
ferent approaches, including synthetic spectral fitting, the analysis of pseudo-equivalent widths, and machine learning. We analyze
the discrepancies in the derived stellar parameters, including metallicity, in several analysis runs. Our goal is to minimize these dis-
crepancies and find stellar parameters more consistent with literature. We attempt to achieve this by standardizing the most commonly
used components, such as wavelength ranges, synthetic model spectra, continuum normalization methods, and stellar parameters. We
see that, although such modifications work quite well in hotter main-sequence stars, they do not improve the consistency in stellar pa-
rameters in M dwarfs, leaving mean deviations of around 50-200 K in temperature, and 0.1-0.3 dex in metallicity. M dwarfs are much
more complex and a standardization of the aforementioned components cannot be considered as a straightforward recipe for bringing
consistency to the derived parameters. Further in-depth investigations of the employed methods would be necessary to identify and
correct for the still existing discrepancies.

Key words. methods: data analysis - techniques: spectroscopic – stars: fundamental parameters – stars: late-type – stars: low-mass

1. Introduction

Precise stellar metallicity determination is an essential step to a
full understanding of the dynamical and chemical evolution of
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the Galaxy. Several methods have been developed to study ele-
ment abundances of all kinds of stars. Among those, M dwarfs
are the most numerous type in our Galaxy, and therefore an ac-
curate determination of their abundances is of utmost interest.
In the fast growing field of exoplanet detection and character-
ization, abundance determination of the host star is also impor-
tant to better understand the formation and evolution of planetary
systems (e.g., Burn et al. 2021).

A popular method for deriving metallicities of M dwarfs is
based on the measurement of pseudo-equivalent widths (pEWs)
of spectral lines. This method was used by Neves et al. (2013,
2014), Mann et al. (2013a, 2014), Newton et al. (2014), Maldon-
ado et al. (2015), and Khata et al. (2020), among others. Another
widely used approach is spectral synthesis. There, the stellar
spectrum is synthesized using stellar atmosphere models along
with radiative transfer codes and atomic and molecular line lists.
The PHOENIX stellar atmosphere code (Hauschildt 1992, 1993)
is the basis for stellar model grids such as the BT-Settl model at-
mospheres (Allard et al. 2012, 2013) and the PHOENIX-ACES
synthetic model grid (Husser et al. 2013).

Marfil et al. (2021) used the BT-Settl model atmospheres
and the radiative transfer code turbospectrum (Plez 2012) to
generate synthetic spectra around 75 Fe i and Ti i lines along
with the γ- and ε-TiO bands to determine Teff , log g, and
[Fe/H] for 342 M dwarfs from the CARMENES survey by
means of the SteParSyn code (Tabernero et al. 2018, 2021).
The turbospectrum code was also employed by Souto et al.
(2017, 2020), and Sarmento et al. (2021) together with 1-D
MARCS stellar atmospheres (Gustafsson et al. 2008) to de-
rive stellar parameters and abundances for several M dwarfs
observed with the Apache Point Observatory Galactic Evolu-
tion Experiment (APOGEE, Majewski et al. 2017). Operating
in a wavelength range from 1500–1700 nm and with high-
resolution (R ≈ 22,500; Wilson et al. 2010), APOGEE is ded-
icated to observe red giants; additionally, APOGEE has ob-
served around 2000 M dwarfs. Önehag et al. (2012) and Lind-
gren et al. (2016) fitted synthetic spectra to high-resolution
CRIRES J-band spectra of M dwarfs using the Spectroscopy
Made Easy package (SME, Valenti & Piskunov 1996; Valenti &
Fischer 2005) with MARCS atmospheres. SME computes syn-
thetic spectra on the fly and determines the best fit stellar param-
eters by χ2-minimization with the observed spectra. Passegger
et al. (2018) fitted the PHOENIX-ACES model spectra grid to
high-resolution CARMENES spectra of 300 M dwarfs and de-
rived Teff , log g, and [Fe/H].

Within the last several years, machine learning has emerged
as a valuable tool to predict stellar parameters for large sets of
stars. Several applications of neural networks in stellar parameter
determination can be found in Fabbro et al. (2018), Birky et al.
(2020), Antoniadis-Karnavas et al. (2020), and Passegger et al.
(2020), among others.

For a more detailed overview on previous work regarding
stellar parameter determination in M dwarfs, we refer to the lit-
erature summaries in Passegger et al. (2020) and Marfil et al.
(2021).

It is known from previous parameter studies that different
determination methods sometimes provide significantly different
results for stellar parameters for the same stars. This is shown in
the comparison plots of several parameter determination studies,
e.g., Figs. 5-7 in Passegger et al. (2019), Fig. 7 in Passegger et al.
(2020), Figs. 1 and 5 in Lindgren et al. (2016), Figs. 13-14 in
Neves et al. (2014), Fig. 13 in Rojas-Ayala et al. (2012), Figs. 10-
12 in Marfil et al. (2020), Figs. 9, 11, Figs. A1-A6 in Marfil et al.
(2021), and Figs. 12 and 13 in Sarmento et al. (2021). These

inconsistencies challenge the reliability of the determined stellar
parameters for the lowest mass stars.

However, one has to keep in mind that there are different
kinds of inconsistencies. The most relevant cases in this context
are inconsistencies between different methods and between dif-
ferent observations of the same star with different instruments.
Since there is no way yet to measure the absolute correct physi-
cal and atmospheric properties of a given star, we have to rely on
the parameters that different methods and observations provide.
Deriving consistent values for the same star with different meth-
ods (and/or different instruments) can therefore be considered as
a proxy for the reliability of the value of the stellar parameters
and of the methods themselves.

Several studies conducted such a consistency analysis for
FGK-type stars and analyzed the differences introduced when
deriving abundances with different methods. Hinkel et al. (2016)
investigated 4 G-type stars with high-resolution MIKE spectra
(R ≈ 50,000) from the Magellan Planet Search Program, with an
average S/N of 200, and covering the wavelength range 5050–
7100 Å. Six different groups participated in the analysis and de-
termined abundances for 10 elements (C, O, Na, Mg, Al, Si, Fe,
Ni, Ba, and Eu), in 4 different runs. In Run 1 each group used
their individual techniques, in Run 2 standard stellar parameters
for Teff , log g, and microturbulent velocity ξ were provided. Run
3 included a standard line list, whereas Run 4 was a combina-
tion between Runs 2 and 3. They found that Run 2 gave con-
sistently better results between the elements, followed by Run
4, which suggests that stellar parameters other than abundances
and/or line lists should be standardized in order to produce sim-
ilar results.

A larger sample of 34 Gaia benchmark FGK-type stars
was used by Jofré et al. (2014). The spectra were collected
from HARPS (R ≈ 115, 000), NARVAL (R ≈ 80, 000), and
UVES (R ≥ 70, 000), covering a spectral range from 4760–
6840 Å. Seven different groups participated in this study and
derived Fe abundances in three runs. Their main aim was to
analyze the effects of instrumental resolution on the determina-
tion of metallicity when fixing Teff and log g to independently
derived values. Furthermore, all groups used a common line
list, atomic data (see Heiter et al. 2021) and the same atmo-
spheric models (MARCS). In the different runs, they used spec-
tra with their original resolution and with resolution downgraded
to R = 70, 000 to study instrumental effects. They found that dif-
ferent resolutions result in a metallicity difference of less than
0.05 dex, and that metallicities agree when using different in-
struments. A comparison of the different methods showed larger
standard deviations in metallicity for cooler stars (0.1 dex, Teff

< 5000 K) than for hotter stars (0.07 dex, Teff > 5000 K). A
follow-up study by Jofré et al. (2015) analyzed 10 different ele-
ment abundances with eight methods taking into account NLTE
corrections for Fe and errors of the fixed stellar parameters. They
performed a detail analysis of systematic errors for differential
and absolute abundances. For an extensive discussion on each
element and NLTE effects we refer to Jofré et al. (2015).

Jofré et al. (2017) provided a detailed study of 4 Gaia bench-
mark stars, the Sun, Arcturus, 61 Cyg A, and HD 22879. Their
high-resolution spectra from NARVAL and HARPS were con-
volved to a common resolution of 70,000. Also here, the stel-
lar parameters Teff , log g, ξ, and 3 sin i were fixed for each star.
The analysis was performed by six different teams in eight dif-
ferent runs, including tests regarding continuum normalization,
common line lists, hyperfine structure, alpha enhancement, and
radiative transfer code. They concluded that the most important
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point for consistent metallicity values is a common continuum
flux.

Focusing on cooler stars, Slumstrup et al. (2019) conducted
a similar study for red giant stars in three open clusters. They
compared several combinations of line lists and methods to de-
rive EWs and analyzed the systematic uncertainties from a line-
by-line spectroscopic analysis. As a result, they find scatter of
around 170 K in Teff , 0.4 dex in log g, and 0.25 dex in metallic-
ity, showing that even for high-precision spectroscopic analysis
external constraints are necessary to obtain consistent results be-
tween different methods.

Up to now, no such analysis has been performed for M
dwarfs. In this work, we aim to follow the approach by Hinkel
et al. (2016) to study the deviations in metallicity as well as
Teff and log g coming from different determination methods and
identify ways to derive more consistent results for stars at the
cool end of the main-sequence. This paper is structured as fol-
lows. Section 2 gives an overview on the methods we use in our
analyses. Section 3 explains our sample of benchmark stars and
the different analysis runs we perform. In Sect. 4 we present the
results of the investigation, followed by a discussion in Sect. 5.
A short summary is given in Sect. 6.

2. Methods

In the following we describe the four different methods we use
for deriving fundamental the stellar parameters Teff , log g, and
[Fe/H].

2.1. Synthetic spectra fitting

2.1.1. Pass19-code

This method is fully described in Passegger et al. (2018, 2019),
hereafter referred to as Pass19-code. We use a downhill simplex
method with a χ2 minimization to find the synthetic model spec-
trum that best fits the observed spectrum by fitting several wave-
length ranges in the VIS and NIR simultaneously (see Table 2 in
Passegger et al. 2019).

The PHOENIX-ACES model spectra grid (Husser et al.
2013) incorporated here is based on the PHOENIX code devel-
oped by Hauschildt (1992, 1993). Improvements to the code are
described in, e.g., Hauschildt et al. (1997), Hauschildt & Baron
(1999), Claret et al. (2012), and Husser et al. (2013). The one-
dimensional (1D) mode of the PHOENIX code computes spher-
ically symmetric model atmospheres, which can be used to sim-
ulate main sequence stars and brown dwarfs, including L and T
spectral types, as well as white dwarfs and giants; it also includes
models for expanding envelopes of novae and supernovae, and
accretion disks. PHOENIX can calculate synthetic spectra in 1D
or 3D and can be executed in LTE or non-LTE radiative trans-
fer mode. Several model atmosphere grids for late-type stars are
based on the PHOENIX code, for instance the NextGen models
(Hauschildt et al. 1999), the AMES models (Allard et al. 2001),
and the BT-Settl models (Allard et al. 2011). For the calculation
of the aforementioned PHOENIX-ACES model spectra grid a
new equation of state was used, which was especially designed
for the formation of molecules in very cool stellar atmospheres.
The grid takes into account solar chemical compositions from
Asplund et al. (2009), updated with meteoritic values from Lod-
ders et al. (2009). Since the PHOENIX-ACES grid we use has
[α/Fe] = 0, our metallicity results of [M/H] directly translate into
identical [Fe/H] values. However, for certain parameter ranges

an α-enhanced PHOENIX-ACES grid is available (see Husser
et al. 2013).

To match the instrumental resolution and wavelength grid of
observed spectra the PHOENIX-ACES model spectra are con-
volved with a Gaussian and linearly interpolated in wavelength.
The synthetic spectra are broadened to account for the rotational
velocity 3 sin i of the star (Reiners et al. 2018). Therefore, a sepa-
rate function estimates the effect on the line spread function and
the synthetic spectrum is convolved with the resulting line spread
function. The pseudo-continuum of both, observed and synthetic
spectra, is normalized with a linear fit within each small wave-
length region that is analyzed.

The surface gravity (log g) is determined from evolution-
ary models as in Passegger et al. (2019). This is done to break
degeneracies between the parameters. The evolutionary models
used in this work were taken from the PARSEC v1.2S library
(Bressan et al. 2012; Chen et al. 2014, 2015; Tang et al. 2014),
which provides Teff and log g for metallicities in the range −2.2
< [M/H] < +0.7 and different stellar ages, among other param-
eters. To select the appropriate isochrone we took stellar ages
from Passegger et al. (2019). The log g is then calculated from
this isochrone’s Teff-log g relation depending on Teff and [Fe/H]
chosen by our algorithm. To get finer values we linearly inter-
polate for metallicities between −1.0 and +0.7. The PHOENIX-
ACES model spectra grid is then interpolated according to these
three parameters and the χ2 is calculated between the observed
and synthetic spectrum. A downhill simplex finds the best fit-
ting synthetic spectrum with the smallest χ2 by exploring the
2-D Teff-[Fe/H] parameter space and adjusting those parameters
accordingly.

2.1.2. SteParSyn

The SteParSyn code is described in detail in Tabernero et al.
(2021). It is a Bayesian implementation of the spectral synthe-
sis technique that determines the probability distributions of the
stellar atmospheric parameters (Teff , log g, [Fe/H], 3 sin i, and ζ)
from a Markov Chain Monte Carlo (MCMC) approach. In gen-
eral terms, the code compares a grid of synthetic spectra pre-
computed around certain spectral features of interest. Therefore,
we use a selection of 75 magnetically insensitive Ti i and Fe i
lines, as well as the γ− and ε−TiO bands in a range between
5850–15800 Å. The assessment of any point in the parameter
space is done in a computationally inexpensive way employing
principal component analysis (PCA). The code finally returns
the posterior probability distributions in the stellar atmospheric
parameters along with the best synthetic fit for the input spectral
features.

With the aim of avoiding any potential degeneracy in the M-
dwarf parameter space, especially between log g and [Fe/H], we
assume Gaussian prior probability distributions in Teff and log g
for all individual targets, with standard deviations of 200 K and
0.2 dex, respectively. The prior distributions are centered follow-
ing Cifuentes et al. (2020), who determined Teff from a multi-
band photometric analysis by means of the Virtual Observatory
Spectral energy distribution Analyser (VOSA, Bayo et al. 2008),
and derived stellar radii and masses from the Stefan-Boltzmann
law and the mass-radius relation presented in Schweitzer et al.
(2019).

Even though any model atmosphere grid can be used along
with SteParSyn, in this work we employ BT-Settl model atmo-
spheres (Allard et al. 2012). Since the grid is alpha-enhanced,
metallicities derived using this method are corrected using a
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simple interpolation scheme between the mass fraction Z and
[Fe/H] following the standard composition in the MARCS mod-
els (Gustafsson et al. 2008), as explained in Marfil et al. (2021).

SteParSyn was also used in Tabernero et al. (2018) for the
study of cool supergiants in the Magellanic clouds, as well as
in Tabernero et al. (2021) for the analysis of the AGB-star can-
didate VX Sgr. Marfil et al. (2021) applied SteParSyn to the
CARMENES GTO sample. The exoplanet host WASP-121 was
also analyzed with SteParSyn using ESPRESSO spectra (Borsa
et al. 2021).

2.2. Machine Learning

2.2.1. Deep Learning (DL)

This method is described in detail in Passegger et al. (2020). Ar-
tificial neural networks are machine learning methods that are
constructed from a collection of artificial neurons organized in
different layers, in order to learn structures from data in a simi-
lar way as the human brain. In deep learning, the neural network
models consist of multiple processing layers that can learn rele-
vant features by themselves without user interaction.

For each stellar parameter we build a convolutional deep
neural network with several hidden layers. In order to learn fea-
tures from the input spectrum, the networks are trained with
PHOENIX-ACES synthetic models. We linearly interpolate the
existing grid using pyterpol (Nemravová et al. 2016) to in-
crease the number of training samples. We apply additional re-
strictions to our grid similar to the Pass19-code. Based on the
PARSEC v1.2S evolutionary models we exclude combinations
of Teff , log g, and [Fe/H] that are physically unrealistic for M
dwarfs (i.e., they represent stellar objects far away from the main
sequence). In the end we create 449 806 synthetic model spectra
for the reference set in training process.

We convolve the synthetic spectra with a Voigt profile to
account for instrumental broadening using a function based on
libcerf (Johnson S.G. 2019). The Gaussian and Lorentzian
components of the Voigt function for CARMENES were de-
termined by Nagel et al. (2021, submitted). We also take into
account 3 sin i by broadening the synthetic spectra with a For-
tran translation of the rotational_convolution function of
Eniric, assuming a default limb darkening coefficient of 0.6
(see Figueira et al. 2016). For continuum normalization of the
synthetic as well as the observed CARMENES spectra we em-
ploy the Gaussian Inflection Spline Interpolation Continuum
(GISIC) routine1. The routine smoothens the spectrum with a
Gaussian before identifying molecular bands with a numerical
gradient. Then continuum points are selected and a cubic spline
interpolation normalizes the continuum within the desired spec-
tral range. The observed CARMENES spectra are corrected for
the spatial motion of the stars by using a cross-correlation be-
tween the observed spectrum and a PHOENIX-ACES model
spectrum. Because this results in shifts of the wavelength grid
of the observations, we linearly interpolate this grid to match the
wavelength grid of the synthetic spectra.

In the training, the reference set is divided into a training set
(95 %) and a validation set (5 %). After running the training set
through the deep neural network the training error is estimated
from the difference between the output and the known input stel-
lar parameters. Based on this error the hyper-parameters of the
DL model are adjusted through backward propagation. The vali-

1 https://pypi.org/project/GISIC/, developed by D. D. Whit-
ten

dation set is used to determine the validation error (mean square
error, MSE) after each training epoch to verify that the adjust-
ment of the model hyper-parameters goes in the right direction
to improve the DL model and the error keeps decreasing. It also
helps to avoid over-fitting of the training set, which happens
when the DL model learns to describe random variations and
is unable to generalize to new data. The training is finished once
the minimum validation error is reached. At this point a test set
of 100 randomly generated synthetic spectra is sent through the
DL model to measure the test error. This presents a final test to
the DL model before it is applied to observed spectra. The model
performs well, if the average test error is below a certain thresh-
old, which we define to be between 5 · 10−4 and 10−5 depending
on the stellar parameter under investigation.

As explained in Passegger et al. (2020), the range 8800–
8835 Å and an individual neural network model for each stellar
parameter separately give the smallest validation errors. There-
fore, we also follow that approach in this work.

2.2.2. Pseudo-EW approach (ODUSSEAS)

A detailed description of the machine learning tool ODUSSEAS
can be found in Antoniadis-Karnavas et al. (2020). ODUSSEAS
receives 1D spectra and their resolutions as input. The method is
based on measuring the pEWs of absorption lines and blended
lines in the range between 5300 and 6900Å. Spectral sections
that include the activity-sensitive Na doublet, Hα line, and strong
telluric lines, have been excluded from the line list. The line list
consists of 4104 absorption features, the same as used by Neves
et al. (2014).

ODUSSEAS contains a supervised machine learning algo-
rithm based on the “scikit learn” package of Python, in order to
determine the Teff and [Fe/H] of the stars. In the training, it is
provided with both input and expected output, in order to create
the machine learning models using ridge regression. The pEWs
in 65 HARPS spectra are used together with their Teff and [Fe/H]
from Casagrande et al. (2008) and Neves et al. (2012), respec-
tively, as reference for training and testing its models.

Applied to new spectra, ODUSSEAS measures the pEWs of
the lines and compares them to the model generated from the
HARPS spectra, convolved to the respective resolution of the
new spectra. In this case, the HARPS reference spectra are con-
volved from their resolution of 115 000 to the CARMENES res-
olution of 94 600. For each new star, the resulting parameters
are calculated from the mean values of 100 determinations ob-
tained from randomly shuffling and splitting each time the train-
ing (70 % of the sample, i.e. 45 stars) and testing groups (30 %
of the population, i.e. 20 stars). This iterative process of multi-
ple runs minimizes the possible dependence of the resulting pa-
rameters on how the stars from the HARPS dataset are split for
training and testing in a single measurement.

We report parameter uncertainties derived by quadratically
adding the dispersion of the resulting stellar parameters and the
uncertainties of the machine learning models at this resolution
after having taken into consideration the intrinsic uncertainties
of the reference dataset parameters during the machine learning
process. Since ODUSSEAS only relies on pEWs from HARPS
spectra, this method is independent of synthetic spectra.
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3. Analysis

3.1. Stellar sample

Our stellar sample of benchmark stars consists of 18 M dwarfs,
listed in Table 1. All stars are part of the CARMENES GTO
sample and were observed with the CARMENES2 instrument.
They were chosen such that they have a high-S/N CARMENES
spectrum with a S/N of at least 75 in the optical (VIS) and near-
infrared (NIR) as stated in Passegger et al. (2018). Their spec-
tral types cover the range between M0.0 V to M5.5 V, follow-
ing the typical CARMENES GTO distribution (see Marfil
et al. 2021). The mean S/N over all spectrograph orders in the
VIS and NIR for each spectrum is listed in Table 1. There is one
exception to the S/N > 75 limit in the NIR, which is J13005+056
(GJ 493.1) due to its high rotational velocity. All sample stars,
except for the two high-rotation stars, show only minimal to
no stellar activity. Each star has literature photospheric param-
eters determined from at least three, and up to 12 other studies.

CARMENES operates with two highly stable fiber-fed spec-
trographs covering 5200–9600 Å in the VIS and 9600–17100 Å
in the NIR wavelength ranges. The spectral resolutions are R ≈
94 600 and 80 500, respectively (Quirrenbach et al. 2018; Rein-
ers et al. 2018). The spectrographs are mounted on the Zeiss
3.5 m telescope at the Calar Alto Observatory in Spain. The
prime goal of CARMENES is the search for Earth-sized plan-
ets in the habitable zones of M dwarfs.

Zechmeister et al. (2014), Caballero et al. (2016), and
Passegger et al. (2019) presented a detailed description of the
data reduction. After spectral extraction, each single spectrum
is corrected for telluric lines by modeling a telluric absorption
spectrum with the tool Molecfit (Kausch et al. 2014; Smette
et al. 2015). The process is described in Nagel et al. (2021, sub-
mitted). The absorption telluric spectrum is subtracted from the
observed spectrum resulting in a telluric-free spectrum that is
then fed into the CARMENES radial velocity pipeline serval
(SpEctrum Radial Velocity AnaLyser; Zechmeister et al. 2018).
There, a high-S/N template spectrum is constructed for each star
having at least five single spectra. This is a byproduct of the ra-
dial velocity calculation, where the radial velocities of the single
spectra are derived from a least-square fit against the template.
In this work, we apply our methods to these high-S/N templates
of our 18 benchmark stars.

The stellar photospheric parameters we collected from lit-
erature for the benchmark stars are summarized in Table A.1.
Although most benchmark stars have 3 sin i < 2 km s−1 (Reiners
et al. 2018), there are two stars with larger values: J07558+833
(12.1 km s−1) and J13005+056 (16.4 km s−1). These stars are
useful to investigate the performance of the algorithms when
dealing with higher rotational velocities. The literature values
were derived with different methods. These methods include: in-
terferometry to estimate the stellar radius and Teff (Boyajian et al.
2012; Ségransan et al. 2003; von Braun et al. 2014; Berger et al.
2006; Newton et al. 2015), synthetic model fitting using BT-Settl
models to determine Teff (Gaidos et al. 2014; Lépine et al. 2013;
Gaidos & Mann 2014; Mann et al. 2015) and log g (Lépine et al.
2013), empirical relations to derive stellar mass in the form of
mass-luminosity relations (Mann et al. 2015; Khata et al. 2020;
Boyajian et al. 2012; Berger et al. 2006; Ségransan et al. 2003),
mass-magnitude relations (Maldonado et al. 2015), mass-radius
relations (von Braun et al. 2014), mass-Teff relations (Gaidos &

2 Calar Alto high-Resolution search for M dwarfs with Exo-earths with
Near-infrared and optical Échelle Spectrographs, http://carmenes.
caha.es

Mann 2014; Gaidos et al. 2014), empirical relations to derive
the stellar radius in the form of mass-radius relations (Maldon-
ado et al. 2015) and Teff-radius relations (Gaidos & Mann 2014;
Gaidos et al. 2014; Houdebine et al. 2019), pEW measurements
to determine Teff (Maldonado et al. 2015; Neves et al. 2014;
Newton et al. 2015) and [Fe/H] (Maldonado et al. 2015; Neves
et al. 2014; Gaidos et al. 2014; Mann et al. 2015), the defini-
tion of spectral indices such as the H2O-K2 index to estimate
Teff (Rojas-Ayala et al. 2012), as well as the combination of the
H2O-K2 index with pEWs to derive [Fe/H] (Rojas-Ayala et al.
2012; Khata et al. 2020), the stellar radius and Teff (Khata et al.
2020), and spectral curvature indices for the determination of
Teff (Gaidos & Mann 2014). Additionally, [Fe/H] was derived
by using color-magnitude metallicity relations (Dittmann et al.
2016), atomic line strength relations (Gaidos & Mann 2014),
and spectral feature relations (Terrien et al. 2015). Terrien et al.
(2015) used K-band magnitudes and the Dartmouth Stellar Evo-
lution Program (Dotter et al. 2008) to derive the stellar radius,
whereas Mann et al. (2015) employed the Boltzmann equation
with Teff determined from synthetic model fits. Last, but not
least, Houdebine et al. (2019) derived Teff from photometric col-
ors. For more details on the individual methods we refer to the
descriptions in the corresponding works.

In this work, it is not our aim to analyze the variations from
different techniques, data sets, and observations in the literature,
however, we can compare the results of our methods to the lit-
erature as a whole. Therefore, we calculated the median over
all literature values to reduce possible biases introduced by dif-
ferent data sets and methods. Thus, we presume the median to
be to some degree more accurate than single literature values
and consider the closeness of our values to the literature me-
dian as our quality measurement. The errors for the literature
median come from the root-mean-squared-errors (RMSE) of
the single measurements. Further, the median can be effective
in smoothing extreme outliers, in case of contradicting literature
values.

3.2. Different runs

We analyze our stellar sample with each method in three differ-
ent runs. Each run is described thoroughly in the following.

3.2.1. Run A

For the first run, Run A, each team derived the stellar parameters
with their methods as described in Sect. 2 without any particu-
lar restrictions. In this way, we directly compare the algorithms
themselves and see how they perform compared to literature ref-
erences.

3.2.2. Run B

In this run, all teams fixed the parameters Teff and log g to com-
mon agreed values. They were calculated for each star as median
values from the literature and the results from all teams from Run
A (see Table A.1), hereafter referred to as overall median. We do
this in order to increase the amount of individual measurements
for each star, especially when there are not many literature val-
ues available. This leaves metallicity as the only free parameter
to be determined. With this setting, we are able to gain insight
into how the algorithms perform if they focus on only one pa-
rameter, and if this run gives any improvements compared to the
previous run.
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Table 1. Selected sample of benchmark stars.

Karmn Name GJ α (J2000) δ (J2000) Spectral type (a) 3 sin i (b) mean S/N
[hh:nmm:ss] [hh:nmm:ss] [km s−1] VIS NIR

J00067−075 GJ 1002 1002 00:06:42.35 −07:32:46.4 M5.5 V ≤ 2.0 226 318
J00183+440 GX And 15A 00:18:27.04 +44:01:29.0 M1.0 V ≤ 2.0 993 1419
J04429+189 HD 285968 176 04:42:56.49 +18:57:12.1 M2.0 V ≤ 2.0 230 171
J05314−036 HD 36395 205 05:31:28.18 −03:41:10.5 M1.5 V ≤ 2.0 518 581
J07558+833 GJ 1101 1101 07:55:51.31 +83:22:55.7 M4.5 V 12.1 92 94
J09143+526 HD 79210 338A 09:14:20.14 +52:41:03.0 M0.0 V ≤ 2.0 459 597
J09144+526 HD 79211 338B 09:14:22.00 +52:41:00.7 M0.0 V 2.3 770 796
J10508+068 EE Leo 402 10:50:51.14 +06:48:16.6 M4.0 V ≤ 2.0 319 415
J11033+359 Lalande 21185 411 11:03:19.44 +35:56:52.8 M1.5 V ≤ 2.0 1112 1553
J11054+435 BD+44 2051A 412A 11:05:22.32 +43:31:51.6 M1.0 V ≤ 2.0 633 697
J11421+267 Ross 905 436 11:42:12.13 +26:42:11.0 M2.5 V ≤ 2.0 506 1080
J13005+056 FN Vir 493.1 13:00:32.55 +05:41:11.5 M4.5 V 16.4 89 62
J13457+148 HD 119850 526 13:45:45.67 +14:53:06.9 M1.5 V ≤ 2.0 941 1053
J15194−077 HO Lib 581 15:19:25.55 −07:43:21.7 M3.0 V ≤ 2.0 341 409
J16581+257 BD+25 3173 649 16:58:08.72 +25:44:31.1 M1.0 V ≤ 2.0 384 407
J17578+046 Barnard’s star 699 17:57:47.67 +04:44:16.7 M3.5 V ≤ 2.0 976 1600
J22565+165 HD 216899 880 22:56:33.69 +16:33:08.0 M1.5 V ≤ 2.0 1140 1338
J23419+441 HH And 905 23:41:55.20 +44:10:14.1 M5.0 V ≤ 2.0 309 637

Notes. (a)Spectral types from Alonso-Floriano et al. (2015). (b)Projected rotational velocities from Reiners et al. (2018).
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Fig. 1. Generic architecture for DL models in Passegger et al. (2020) and the different positions where we concatenated the values of the stellar
parameters so that they could be fixed as needed in Run B.

The implementation is straightforward in both the Pass19-
code and SteParSyn, since Teff and log g can be kept fixed so
that the downhill simplex and the MCMC chains, respectively,
only explore a 1-D parameter space for metallicity. Therefore,

there is only one minimum and one best-fit metallicity value.
To assess the uncertainty in metallicity for the Pass19-code in
the case of two fixed parameters, we follow the approach de-
scribed in Passegger et al. (2016). Thus, we produce a set of
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1400 synthetic spectra with uniformly distributed random pa-
rameters for Teff , log g, and [Fe/H], broadened to the resolution
of the CARMENES spectrographs. To simulate a S/N of ≈ 100,
we add Poisson noise. The set of synthetic spectra is then sent
through the Pass19-code keeping Teff and log g fixed. This is
done for the three different 3 sin i values of our stellar sample.
The standard deviation of the mean deviation between input and
derived output stellar parameter serves as an estimation for the
uncertainty of the parameter.

The DL approach presented in Passegger et al. (2020) was
not conceived to fix the stellar parameters as required in this run.
First, we constructed models by restricting the training sample
to synthetic spectra with fixed Teff and log g. This significantly
reduced the training sample size and it also meant training new
models for every single star. Although it is always possible to
apply the DL learning process to small datasets, the results were
not as good or trustworthy as the predictions we obtained with
a more extensive grid. Instead, we try different architectures to
take into account this prior knowledge about Teff and log g in our
DL models (see Fig. 1). In this way we are able to inject these
conditions in the creation of DL models for predicting metal-
licity. The parameters that we fix are added at the end of the
convolutional feature vector. We also consider the uncertainties
of Teff and log g from the overall median. For that purpose, we
create two different sets of predictions. First, Teff and log g are
fixed without taking into account their uncertainties. Second, we
generate 50 copies of the original flux, but with Teff and log g
extracted from a binomial distribution with the overall median
of Teff and log g as the center and the uncertainties of each pa-
rameter as the corresponding standard deviations. Finally, we ag-
gregate the different predictions and create a probability density
function using the Kernel Density Estimate (KDE; Rosenblatt
1956; Parzen 1962) for each benchmark star. The final result for
metallicity is drawn from the maximum of the KDE, with its
uncertainty being derived from the 1σ threshold.

For ODUSSEAS fixing any parameters is not possible for
technical reasons, therefore this team cannot provide any metal-
licities for this run. Since the parameter determination process of
ODUSSEAS correlates the pEWs of new spectra with the pEWs
and reference stellar parameters of the HARPS dataset of same
resolution, fixing Teff of the new spectra, or even leaving out
the Teff prediction completely from the whole process, makes no
difference to the derived [Fe/H] of new spectra.

3.2.3. Run C

In the last run, we standardize our methods by using the same
wavelength regions, the same synthetic model spectra, and the
same continuum normalization method. The analyzed wave-
length regions are provided by the SteParSyn team and are sum-
marized in Table 2. Because some of these regions fit well for
hotter M dwarfs, but perform rather poorly for cooler spectral
types, we manually select 35 of them that yield good fits over
the whole spectral type range and use those in an additional
Run C2. For the synthetic spectra, we use the PHOENIX-ACES
model spectra grid as described in Sect. 2.1.1. We incorporate
the same normalization method as the DL team, the GISIC rou-
tine (see Sect. 2.2.1). In the end, all teams are provided with
normalized CARMENES and PHOENIX-ACES synthetic spec-
tra for all wavelength regions from Table 2 to then run their in-
dividual algorithms to derive the stellar parameters Teff , log g,
and [Fe/H]. The line list employed by ODUSSEAS has a spe-
cific format of lower and upper wavelength boundaries for each

Table 2. Analyzed wavelength regions for Runs C and C2. Wavelengths
are given in vacuum.

Region Run Region Run
λstart [Å] λend [Å] C C2 λstart [Å] λend [Å] C C2

5867.60 5868.55 • 8437.44 8438.51 • •
5923.32 5924.16 • 8452.76 8453.66 • •
5979.80 5980.62 • 8469.03 8469.97 •
6065.88 6066.77 • 8470.22 8471.29 •
6066.73 6067.62 • 8515.87 8516.95 • •
6086.46 6087.38 • 8516.99 8517.90 • •
6127.49 6128.36 • 8549.98 8550.92 •
6137.88 6138.78 • 8584.16 8585.10 •
6138.94 6139.86 • 8613.68 8614.66 •
6394.95 6395.81 • 8676.66 8677.61 • •
6432.17 6433.08 • 8677.29 8678.23 • •
6477.00 6477.84 • • 8684.87 8685.86 • •
6483.23 6484.09 • • 8690.44 8691.63 • •
6557.43 6558.32 • • 8694.27 8695.18 • •
6594.31 6595.20 • 8759.11 8760.09 •
6600.51 6601.35 • 8826.06 8827.22 • •
7050.91 7061.52 • • 8840.36 8841.35 • •
7084.05 7094.66 • • 9012.65 9013.50 •
7121.66 7132.27 • • 9721.13 9722.16 • •
7390.98 7391.91 • 9730.48 9731.70 • •
7412.74 7413.67 • 9834.35 9835.38 •
7491.21 7492.08 • 10343.25 10344.22 • •
7497.72 7498.62 • 10381.35 10382.32 •
7585.42 7586.36 • • 10398.17 10399.14 • •
7914.61 7915.50 • • 10586.99 10588.10 • •
8000.61 8001.72 • 10663.98 10665.14 •
8076.92 8077.84 • • 10777.31 10778.38 •
8206.78 8207.65 • 11799.85 11800.97 •
8398.70 8399.73 • • 11886.71 11887.97 • •
8403.31 8404.14 • • 11952.26 11953.39 • •
8414.15 8415.22 • • 12814.42 12815.54 • •
8418.80 8419.74 • • 12922.87 12923.99 •
8428.29 8429.39 • • 15606.45 15607.80 •
8436.73 8437.84 • • 15719.19 15720.61 •
8437.02 8447.62 • •

absorption feature, which covers the range from 5300 to 6900 Å.
Thus, ODUSSEAS can only use those normalized CARMENES
spectral regions inside this range, in order to measure the respec-
tive absorption lines and determine the stellar parameters based
on them. Their modified Run C will be designated as Run C* in
the following.

4. Results

All results for each star, run, and method are listed in Table C.1
and C.2. In the following we will discuss the results for each run.
As discussed in Sect. 3.1, we compare our results to the literature
median, assuming that the literature median represents accurate
parameter values for each star, to investigate the consistency of
our results over the different runs.

4.1. Run A

In Run A, all teams determined the stellar parameters with their
methods without any restrictions. Figure 2 shows the comparison
of our results with the literature median for each star. This gives
a direct comparison of the performance of each method.
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Effective temperature

It can be seen that all methods are mostly consistent with the
literature median (purple dot) within the errors with only a few
outliers. Overall, SteParSyn reproduces the literature values
best. Compared to the literature median, the mean difference
∆Teff = mean(T our

eff
− T lit

eff
) is +20 K, meaning that, on aver-

age, SteParSyn derived Teff 20 K hotter. Their results fall only
three times outside of the error range, which is defined from the
combined error bars of the literature median and the respective
method for each star. SteParSyn is followed by the Pass19-code,
which is on average 63 K hotter than the literature median and
falls three times outside the error range. DL is on the hotter side
as well, showing an average of 87 K larger than the literature me-
dian, and also falling three times outside the error. In contrast to
the previous methods, ODUSSEAS consistently determines Teff

cooler than the other methods and on average 74 K cooler com-
pared to the literature median. There are only two exceptions,
where ODUSSEAS derives hotter Teff , GJ 1101 and GJ 493.1.
Both stars have large 3 sin i, which is the most likely reason for
the larger Teff values. Additionally, ODUSSEAS falls outside the
error ranges five times.

Regarding large 3 sin i, the other methods could deter-
mine values in good agreement with the literature median for
these stars. An outlier is GJ 402, where all methods derive a
Teff of about 170 K higher than the literature median. Only
ODUSSEAS is consistent with literature, but also here Teff is
lower compared to the other methods. In preparation of Run B,
we calculate the median values between the literature and the
results of Run A for each star. This overall median (red dot) is
also plotted in Fig. 2 for comparison. As can be seen from the
plot, the overall median is consistent with the literature median
for all stars and sometimes differs only by a few K. Therefore,
we consider the overall median as a benchmark value for each
star and take it as a fixed value for our Run B.

Surface gravity

As described in Sect. 2.2.2, ODUSSEAS does not provide log g.
From the remaining methods, the Pass19-code performs best.
The differences between the results and the literature median
are almost always within 0.1 dex, and only once does their value
fall outside the error range. On average, log g from the Pass19-
code are 0.03 dex higher that the literature median, this differ-
ence is nearly negligible. The reason for this is likely the use
of evolutionary models to constrain log g. The DL method de-
rives on average 0.04 dex lower log g than the literature me-
dian and lies five times outside of the error. For SteParSyn
the log g has values 11 times outside the error range, on aver-
age being 0.12 dex higher than the literature median. In sev-
eral cases, log g is significantly higher than the literature median
and the other methods. The biggest outlier is GJ 338B, where
SteParSyn derives a value of 0.53 dex larger than the literature
median. A possible explanation for these high values could be
either a still remaining degeneracy in the stellar parameter space
or the synthetic gap (difference in feature distribution between
synthetic and observed spectra). As shown in Marfil et al. (2021),
SteParSyn retrieves tentatively higher log g values for the whole
CARMENES GTO sample.

In the case of GJ 1002 the overall median for log g repre-
sents the median of all our Run A results, because there are no
literature values for this star. In total, the literature and overall
median differ less than 0.1 dex in all cases, except for GJ 493.1,

Table 3. Analysis of Run A for Teff (top), log g (middle), and [Fe/H]
(bottom). The results for each team are provided in different columns,
showing the mean difference to the literature median, the number of
stars for which the results fall outside the error range, and the number
of stars for which the results lie within 100 K and 0.1 dex, and out-
side 200 K and 0.2 dex of the literature median, for Teff , and log g and
[Fe/H], respectively.

Pass19- SteParSyn DL ODUSSEAS
code

∆Teff [K] +63 +20 +87 –74
# o/s error 3 3 3 5
# <100 K 11 15 9 8
# >200 K 0 0 2 5

∆ log g [cgs] +0.03 +0.12 –0.04 . . .
# o/s error 1 11 5 . . .
# <0.1 dex 15 6 10 . . .
# >0.2 dex 0 4 0 . . .

∆[Fe/H] [dex] –0.02 –0.08 +0.23 –0.14
# o/s error 0 8 9 3
# <0.1 dex 7 7 3 6
# >0.2 dex 3 5 10 7

which only has one literature value of 4.5 dex. Therefore, we
excluded this star from the analysis of log g in this section.

Metallicity

The bottom panel of Fig. 2 presents the results of all methods
for [Fe/H]. Although this parameter will not be fixed in Run B,
we calculate and plot an overall median for comparison. The
Pass19-code performs best compared to the literature median
and the other methods. On average, the metallicities are 0.02 dex
lower than the literature median. All values agree with each
other within their errors, for seven stars the results are within
0.1 dex difference to the literature median, and only for three
stars the difference is larger than 0.2 dex. An explanation for this
good performance can be the careful line selection of magneti-
cally insensitive lines in the VIS and NIR. The use of multiple
lines simultaneously also cancels out most of the effect com-
ing from the synthetic gap, which especially affects DL. On this
note, DL is doing worst when it comes to metallicity determina-
tion. The results for nine stars, which is half of our benchmark
sample, lie outside the error range. For 10 stars the values dif-
fer by more than 0.2 dex from the literature median, while only
three stars have differences less than 0.1 dex. On average, DL
provides metallicities 0.23 dex higher than the literature median,
tentatively deriving higher values for all but one star (GJ 205).

ODUSSEAS and SteParSyn determine tentatively lower
values for metallicity, with ∆[Fe/H] of –0.14 dex and –0.08 dex,
respectively. For ODUSSEAS, three values fall outside the er-
ror range, while for SteParSyn it is eight. Six stars show dif-
ferences of less than 0.1 dex with ODUSSEAS, and seven stars
differ by more than 0.2 dex compared to the literature median.
For SteParSyn, seven stars fall within 0.1 dex of the literature
median and five stars outside of 0.2 dex.

All these numbers are summarized in Table 3 for better
readability. Overall, the Pass19-code performs best in log g and
[Fe/H] compared to the literature median. For Teff , SteParSyn
would be the best choice.
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Fig. 2. Comparison of Teff (top), log g (middle), and [Fe/H] (bottom) for the different methods in Run A. Each method is indicated with a different
symbol and color. The median of all literature values and the median of literature+Run A are shown as purple and red dots, respectively. The
x-axis indicates the Teff from the literature median, the top axis shows the Gliese-Jahreiss (GJ) numbers for all sample stars. The stars are sorted
by Teff from the literature median to visualize possible trends.

4.2. Run B

For Run B, all teams (except ODUSSEAS, see Sect. 3.2.2) de-
rived only [Fe/H], with Teff and log g fixed to the median values

determined from all teams in Run A and literature values. In
Fig. 3 we show a comparison between our results and the litera-
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Table 4. Same as Table 3, but for Run B, showing [Fe/H].

Pass19- SteParSyn DL
code

∆[Fe/H] [dex] –0.06 –0.09 +0.27
# o/s error 11 4 7
# <0.1 dex 5 11 1
# >0.2 dex 4 4 12

ture median. Results from Run A are plotted in gray to illustrate
the changes between the runs. We can see from this plot that fix-
ing Teff and log g does not improve the metallicities derived with
the Pass19-code and DL. For both methods the differences to the
literature median increased. This can be explained by looking at
the results for Teff from Run A. If the temperatures were further
away from the overall median, which was used to fix this param-
eter in Run B, then the deviation in metallicity in Run B is larger
than in Run A. Some correlation with log g can also be found
in some cases. Since in Run B the parameter determination is
reduced to a 1-D problem, there are no local minima anymore
and only one best value for metallicity. If the fixed values Teff

and log g deviate from the best fitting values found in Run A,
the deviation in metallicity will consequently increase as well.
Therefore, there will be no improvement regarding metallicity,
unless the other parameters Teff and log g can be chosen freely
too. We performed the same analysis of the results as for Run A,
the numbers are summarized in Table 4.

On the other hand, fixing parameters slightly improved the
metallicities derived by SteParSyn. The number of stars outside
the error range decreased, whereas the number within 0.1 dex
increased. A good example here is GJ 338B. From Run A, Teff

is close to the literature median, but log g is far off. By fixing
log g the metallicity improves and moves closer to the litera-
ture median. This run suggests that there is a dependency on
the stellar synthetic spectra used in the analysis. DL and the
Pass19-code both rely on the PHOENIX-ACES model spectra,
but do not show any improvements towards literature values,
whereas SteParSyn incorporated BT-Settl model atmospheres.
Therefore, the next step is for all methods to use the same syn-
thetic models.

4.3. Run C and C2

In Run C all teams incorporate the same normalized PHOENIX-
ACES model spectra and derive parameters from the same wave-
length regions. As mentioned in Section 3.2.3, we carry out an
additional Run C2, using a subset of 35 wavelength regions from
Run C, but otherwise identical to Run C. Figure 4 presents a
comparison of stellar parameters between Run A and Run C2. A
comparison between Run C and C2 is shown in Fig. B.1. Table 5
summarizes the statistics of Run C and C2.

Effective temperature

We compared our results from Run C2 to those derived in Run A.
Figure 4 shows that the stellar parameters do not improve from
Run A to Run C2. This is most evident for Teff , where the 16 stars
for SteParSyn, 13 stars for DL, and 13 stars for the Pass19-code
show larger deviations to the literature median than in Run A.
Analyzing Runs C and C2 shows that stellar parameters derived
with DL agree better with the literature median in Run C2 than

Table 5. Same as Table 3, but for Run C/C2.

Pass19- SteParSyn DL
code

∆Teff [K] +73/+113 +58/+13 +221/+152
# o/s error 0/3 10/9 6/4
# <100 K 12/7 8/7 2/6
# >200 K 0/3 4/4 7/3

∆ log g [cgs] –0.06/+0.03 –0.01/–0.01 +0.01/+0.07
# o/s error 3/4 9/11 3/2
# <0.1 dex 11/11 5/1 9/13
# >0.2 dex 4/1 6/9 3/1

∆[Fe/H] [dex] +0.31/–0.17 –0.07/–0.16 –0.09/–0.07
# o/s error 5/4 7/11 2/1
# <0.1 dex 4/2 4/2 9/8
# >0.2 dex 9/9 6/10 7/5

in Run C. This means an improvement towards Run C2, with
all stars being closer to the literature median in Teff compared
to Run C. For SteParSyn, the results from Run C and C2 are
a bit more ambiguous. Half of the sample stars are closer to the
literature median in Run C for Teff , the other half in Run C2. Run
C exhibits a larger ∆Teff of +58 K compared to Run C2 (∆Teff

= +13 K). Concerning the Pass19-code, Run C is clearly better
than Run C2, giving values closer to the literature median. The
mean difference, ∆Teff , amounts to +73 K, with all values being
within the error range for all stars.

Surface gravity

Compared to Run A, the Pass19-code and SteParSyn show sim-
ilar results as in Teff , with no improvement from Run A to Run
C2. On the other hand, 11 stars with log g derived from DL are
closer to the literature median in Run C2 than in Run A. For
Run C, the results from DL show an improvement towards Run
C2 for eleven stars. Only six stars from SteParSyn lie closer to
the literature median in Run C2 than in Run C, which clearly
favours the results from Run C in this case. For the Pass19-code,
the results derived in Run C are tentatively lower than for Run
C2. Especially for hotter stars, this means that Run C is closer to
the literature median, as can be seen from Fig. B.1.

Metallicity

Similar to Teff and log g the results in metallicity for the Pass19-
code and SteParSyn are closer to literature in Run A than in Run
C2. However, DL presents a slight improvement, deriving values
which are closer to the literature median for 13 stars in metallic-
ity. Using multiple wavelength ranges instead of only one range,
as it was done in Runs A and B, appears to trigger this improve-
ment. Looking at Run C, eight of 18 stars have better values in
Run C2 for DL. As for log g, only a small number of five stars
shows better results in Run C2 than in Run C for SteParSyn.
This could be explained by the fact that SteParSyn is optimized
for the wavelength ranges in Run C, that are originally used by
the method. Analyzing a subset of these ranges, as it was done in
Run C2, does not improve the results. In Run C, the Pass19-code
derives consistently too high metallicities, especially for cooler
M-dwarfs (see Fig. B.1, bottom panel). The selected wavelength
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Fig. 3. Comparison of [Fe/H] for the different methods in Run B. Each method is indicated with a different symbol and color. The gray symbols
indicate the results from Run A for comparison. The median of all literature values is shown as purple dots. The x-axis indicates Teff from the
median literature, the top axis shows the Gliese-Jahreiss (GJ) numbers for all sample stars.

ranges of Run C2, however, clearly improve the metallicity de-
termination.

Comparing the numbers Table 5 to those of Runs A and B
also illustrates the differences and the better performance of Run
A. It can be seen, for example, that the number of stars with
differences larger than 200 K and 0.2 dex from the literature me-
dian significantly increased in Run C2. An exception here is DL,
which is able to decrease those numbers in Run C2.

5. Discussion

We compare the results from all runs for each method in order
to analyze which run gives the best results, i.e. in which run can
we find the most stars with values closest to the literature me-
dian. For example in case of the Pass19-code, each star has four
determined [Fe/H] values, derived in Run A, B, C, and C2. For
each value, we calculate the difference from the literature me-
dian and find the minimum difference, for example for Run A.
This particular star then counts toward Run A. The procedure is
repeated for all stars, and for all three stellar parameters. As a
consequence, the sum over all runs for each stellar parameter is
always 18. This way, we can assess which run performed best
for each stellar parameter.

Figure 5 shows this number of stars for all parameters and
methods. From that, we can see that for Teff , all methods but
ODUSSEAS perform best in Run A. Generally, the Pass19-code
works better in Run A than in the other runs. Run C and C2 show
a similar performance for log g and [Fe/H].

DL results get closer to the literature median for [Fe/H] and
log g in Runs C and C2, respectively. Since the continuum nor-
malization and synthetic spectra are the same as the ones used
in Runs A and B, the only explanation for the improvement is
the different wavelength regions. DL can determine [Fe/H] and
log g significantly better by taking into account more wavelength
regions than just the one between 8800–8835 Å, although this re-
gion seems to work well for Teff alone.

Similar to the Pass19-code, SteParSyn is in general perform-
ing best in Run A, with good results declining towards Run C and

C2. An exception is metallicity, which is best in Run B, directly
followed by Run A. This indicates that the metallicity determi-
nations with SteParSyn could be improved by taking indepen-
dent estimates and fixing Teff and log g. The stellar parameters
derived in Run C and C2 show tentatively larger deviations from
the literature median than Run A, which is probably due to the
different synthetic spectra used. This implies that SteParSyn is
optimized for the analysis of their selected wavelength ranges
with BT-Settl models.

5.1. ODUSSEAS’ Run C*

As described in Sect. 3.2.3, ODUSSEAS could use only the
bluest wavelength ranges provided for Run C/C2. Therefore, the
results cannot be directly compared to the other methods. How-
ever, it is possible to assess the performance of the algorithm
itself. Since ODUSSEAS does not rely on synthetic model spec-
tra, and a different continuum normalization does not affect the
measurement of pEWs, the only difference between Run A and
C* is the choice of the wavelength ranges. In the bottom right
panel of Fig. 5, it can be seen that ODUSSEAS derives the best
metallicities for all 18 stars in Run A. For Teff , Run A shows ten-
tatively lower values compared to other methods and the litera-
ture. However, their modified Run C* gives significantly better
results. From this, we can conclude that the wavelength ranges
used in Run A are very good for deriving metallicity, but seem
to be less sensitive to Teff . On the other hand, the ranges used in
Run C* appear to be more appropriate when it comes to temper-
ature determination.

5.2. Comparison with interferometry

For 11 stars we can compare our results for Teff and log g to in-
dependent measurements coming from interferometry (Boyajian
et al. 2012; von Braun et al. 2014; Newton et al. 2015; Rabus
et al. 2019). Boyajian et al. (2012) and von Braun et al. (2014)
used Hipparchos parallaxes (van Leeuwen 2007) to convert the
angular stellar diameter, ΘLD, to stellar radius via ΘLD = 2 ·R/d,
whereas Rabus et al. (2019) used Gaia DR2 data (Gaia Collabo-
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Fig. 4. Comparison of Teff (top), log g (middle), and [Fe/H] (bottom) for the different methods in Run C2. Each method is indicated with a different
symbol and color. The gray symbols indicate the results from Run A for comparison. The median of all literature values is shown as purple dots.
The x-axis indicates Teff from the literature median, the top axis shows the Gliese-Jahreiss (GJ) numbers for all sample stars.

ration et al. 2018). Newton et al. (2015) collected interferometric
radii from the literature. When there was more than one measure-

ment per star, they calculated the weighted mean. Teff can be de-
rived from the Stefan-Boltzmann law, Teff = 2341·(Fbol/ΘLD)1/4,
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Table 6. Mean difference between our results and interferometric literature values, ∆Teff / ∆ log g, standard deviation of the mean difference,
std. dev., and Pearson correlation coefficients, rP, for Teff / log g.

Pass19-code SteParSyn DL ODUSSEAS
Run A

∆Teff / ∆ log g +60 / −0.04 −18 / +0.13 +111 / −0.11 −123 / –
std. dev. 80 / 0.04 75 / 0.18 123 / 0.06 113 / –
rP 0.950 / 0.928 0.923 / 0.300 0.817 / 0.881 0.815 / –

Run C

∆Teff / ∆ log g +38 / −0.08 −5 / −0.09 +169 / −0.06 −67 / –
std. dev 90 / 0.09 106 / 0.25 66 / 0.12 112 / –
rP 0.901 / 0.795 0.922 / −0.480 0.939 / −0.021 0.815 / –

Run C2

∆Teff / ∆ log g +72 / −0.01 −68 / −0.07 +120 / +0.001 – / –
std. dev. 105 / 0.09 130 / 0.29 62 / 0.05 – / –
rP 0.839 / 0.741 0.875 / −0.536 0.948 / 0.929 – / –

Fig. 5. Number of stars for each run where the stellar parameter lies
closest to the literature median. Each method is shown in a separate
panel. Note that ODUSSEAS does not provide log g, and their Run C*
differs from Run C and C2 due to restriction in the method itself.

when the bolometric flux Fbol is known. Boyajian et al. (2012)
and von Braun et al. (2014) produced spectral energy distribu-
tions (SEDs) using flux-calibrated photometry from the litera-
ture. Rabus et al. (2019) estimated Fbol by integrating the flux
from synthetic photometric flux points using PHOENIX-ACES
synthetic spectra. Newton et al. (2015) presented interferometric
Teff from Mann et al. (2013b) and updated Teff for three stars fol-
lowing their approach. Mann et al. (2013b) determined Fbol by
comparing the measured fluxes from observed visual and NIR
spectra, incorporating BT-Settl synthetic models to cover wave-
length gaps in the spectra, to photometric fluxes using a correc-
tion factor to adjust the overall flux level. From the stellar radius
and mass, log g can be calculated via g = GM/R2. This requires
the stellar mass, which cannot be measured from interferometry.

Therefore, Boyajian et al. (2012) and Rabus et al. (2019) used
the K-band mass-luminosity relation from Henry & McCarthy
(1993), and from Benedict et al. (2016) and Mann et al. (2019),
respectively. von Braun et al. (2014) determined stellar mass by
deriving a mass-radius relation from the results from Boyajian
et al. (2012). Although Teff can be derived independently from
interferometry, log g can be seen as semi-independent, since it
involves interferometric radii, but also empirical mass-radius or
mass-luminosity relations. Therefore, such quasi-interferometric
log g possesses tentatively higher accuracy than log g derived
from, e.g., synthetic model fits alone, and, thus, can be used as a
reliable comparison.

A comparison plot is shown in Fig. 6. We calculated the
mean difference, standard deviation, and Pearson correlation co-
efficient (rP) between our results and the literature, presented in
Table 6. A good consistency between the samples would result
in a low mean difference and standard deviation, as well as a
Pearson correlation coefficient close to 1.

For Run A, SteParSyn agrees quite well with interferometry
in Teff with ∆Teff = −18 K, followed by the Pass19-code, which
gives slightly hotter values with ∆Teff = +60 K compared to in-
terferometry. Also DL is on the hotter side (∆Teff = +111 K),
whereas ODUSSEAS, as mentioned before, derived tentatively
cooler temperatures (∆Teff = −123 K). In Run C (which corre-
sponds to Run C* for ODUSSEAS), temperatures from DL and
ODUSSEAS are shifted more towards the hotter side, bringing
ODUSSEAS closer to the interferometric values (∆Teff = −67).
This is the same behavior as in Fig. 5. In contrast, the Pass19-
code provides cooler temperatures, but still mostly consistent
with those from interferometry (∆Teff = +38). SteParSyn per-
forms similar to Run A, however with some larger spread at low
and high temperatures, which is represented in a higher stan-
dard deviation compared to Run A. This is similar for Run C2,
where SteParSyn again yields some cooler temperatures com-
pared to Run C. Overall, SteParSyn does best in Run A, where
it shows the lowest standard deviation and highest rP, similarly
to the Pass19-code. On the other hand, DL shows a better 1:1
relation in Run C2, represented by the larger rP (see Table 6).
This indicates that the selected wavelength ranges in Run C2
lead to an improvement in the results, although there seems to
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Fig. 6. Comparison of our results for Teff (le f t column) and log g (right column) from Run A (top), Run C (middle), and Run C2 (bottom) with
interferometric values from Boyajian et al. (2012), von Braun et al. (2014), Newton et al. (2015), and Rabus et al. (2019). If more than one value
exists for a star in literature, we plot the median with the RMSE for better readability. Note that results from ODUSSEAS in Run C correspond
to their Run C*. The black line indicates the 1:1 relationship.

be a general offset towards hotter temperatures compared to in-
terferometry. Again, this is also illustrated in Fig. 5.

For log g, the Pass19-code is closest to the quasi-
interferometric log g for all runs, which is most likely due to the
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use of evolutionary models in the method. However, the values
are a little lower than the literature on average. The smallest stan-
dard deviation and highest rP is presented by Run A, as for Teff .
The results given by the Pass19-code in Run C are systematically
lower than interferometric ones, but they improve in Run C2. DL
follows the relation in general, but those results are lower as well.
A great improvement is shown for DL in Run C and even more
in Run C2, where ∆ log g decreases to as low as +0.001 dex,
which can be clearly attributed to the use of multiple wavelength
ranges. Overall, the values from SteParSyn show a large spread
with a high standard deviation and low rP. The spread is per-
sistent in Run C and C2, although the mean difference of all
SteParSyn values moves closer to the 1:1 relation.

Overall, this comparison is very similar to the comparison of
the literature median and yet another indication that, for most
stars, Run A gives very good results compared to the literature
median, with the exception of DL, where the analysis of mul-
tiple wavelength ranges results in better measurements of log g
and a higher correlation in Teff .

A similar analysis could be done for metallicity, should there
be independent measurements from a hotter FGK-type binary
companion.

5.3. Consistency between methods

Finally, we analyze the consistency between the methods we em-
ployed in this experiment. A statistical analysis similar to Table 6
is presented in Table 7. We compare each method to each of the
other methods to reveal trends. We plotted all these combina-
tion for further visualization in Figs. B.3-B.5 for Teff , log g, and
[Fe/H] for Run A; [Fe/H] for Run B is presented in Fig. B.6, Teff ,
log g, and [Fe/H] for Run C in Figs. B.7-B.9, and Teff , log g, and
[Fe/H] for Run C2 in Figs. B.10-B.12.

Run A

For Teff , SteParSyn and the Pass19-code show the best correla-
tion with rP of 0.974, also being the only methods with a spread,
i.e., standard deviation of less than 100 K between them. Both
methods compare well with DL, although DL shows higher devi-
ations at higher Teff . As illustrated in previous comparisons (see
Figs. 2 and 6) ODUSSEAS derives much lower Teff values, on
average 130 K cooler compared to the other methods.

The Pass19-code and DL correlate quite well in log g,
whereas SteParSyn exhibits a large spread compared to both
other methods (see also Figs. 2 and 6).

SteParSyn, the Pass19-code, and ODUSSEAS are in good
agreement in [Fe/H], having little mean differences and a large
rP. The direct comparison between SteParSyn and ODUSSEAS
displays a slightly larger spread and therefore a smaller rP. DL
derives much higher [Fe/H] values, which are on average 0.3 dex
more metal-rich compared to the other methods. This behaviour
can also be seen in Fig. 2.

Run B

As in Run A, SteParSyn and the Pass19-code are most consis-
tent with a small mean difference of only 0.03 dex, and a similar
standard deviation. However, the values are not so well corre-
lated, exhibiting a smaller rP of 0.691 (compared to rP = 0.804
in Run A). DL performs even worse than in Run A, with ∆[Fe/H]
being +0.33 dex and +0.36 dex compared to the Pass19-code and
SteParSyn, respectively.

Run C and C2

As described in Sect. 3.2.3 and 5.2, ODUSSEAS could only use
wavelength ranges between 5300 and 6900 Å. Therefore, a di-
rect comparison of results from this Run C* with the results
from Runs C and C2 from the other methods is not meaning-
ful. However, we included ODUSSEAS in our analysis here for
completeness and to visualize relative changes between Runs C
and C2 for the other methods.

A comparison of Run C with C2 reveals only minor differ-
ences for Teff . It can be seen from the numbers in Table 7 and the
plot in Fig. B.7 that DL performs a bit better in Run C2, where it
derives slightly lower Teff and therefore exhibits a smaller ∆Teff

compared to the other methods. SteParSyn and the Pass19-code
show a somewhat smaller ∆Teff and spread in Run C. This is
also clearly shown by the comparison of the Pass19-code and
ODUSSEAS in Run C and C2. Since for both runs the Pass19-
code is compared to Run C* of ODUSSEAS, relative improve-
ments between the runs are revealed. Overall, it can be said that
the correlation coefficients for Teff are a little larger in Run C
compared to Run C2.

On the other hand, there is almost no correlation in log g for
any of the methods. The only notable improvement toward Run
C2 is given between the Pass19-code and DL, which present a
little higher correlation and smaller ∆ log g in Run C2. This can
be attributed to an improvement of DL in Run C2, as already
described in in Sect. 4 and 5.2.

A clear difference can be seen for [Fe/H] between Run C
and C2 (see Figs. B.9 and B.12). In Run C all methods appear
more separated, also having higher mean differences. They de-
termine, in general, higher [Fe/H] values, especially the Pass19-
code, which is depicted in Fig. B.1 as well. For Run C2 the de-
rived values are more metal-poor, causing the results to move
closer together for all methods. This reduces the mean differ-
ences, although the spread and correlation coefficient are not im-
proved necessarily for all methods.

Overall, the largest correlation between the methods for all
stellar parameters is found in Run A, however we can see some
trends. The determination of log g with SteParSyn is in gen-
eral not very well constrained: it has a large mean difference
and spread compared to the other methods. The correlation in-
creases toward Run C and C2, however the reason for this is not
clear. ODUSSEAS shows the best consistency in Teff in Run C*,
when comparing to Run C of the other methods, with the small-
est mean difference and a slightly better rP than in Run A. For
[Fe/H], Run A as well as Run C2 show small ∆[Fe/H] in gen-
eral, however in Run C2 the spread is larger and rP is smaller,
therefore, the consistency in [Fe/H] is better in Run A. Only DL
is able to improve the consistency toward Run C/C2, with negli-
gible differences between C and C2. Consequently, rP increases
and ∆[Fe/H] decreases.

Possible improvements to increase the consistency are very
specific to the method, there is no general recipe. For DL, the
values in [Fe/H] are tentatively too high, using more wave-
length ranges can improve [Fe/H] in Run C and C2. However,
for the determination of Teff one wavelength range serves well.
ODUSSEAS derives consistently lower Teff , the use of different
wavelength ranges, as it was done in Run C*, would increase the
consistency with our other methods. The analysis in this section
confirms our findings in Sect. 4 and 5.2.
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Table 7. Statistical analysis between our methods for Runs A, B, C, and C2. Mean difference, ∆, standard deviation of the mean difference,
std. dev., and Pearson correlation coefficients, rP, for Teff , log g, and [Fe/H] for all combinations of our methods. Note that the results of Run C*
from ODUSSEAS technically cannot be compared to the other methods, but are shown here for completeness. For more details, see Sect. 5.3.

Run A Teff log g [Fe/H]
∆ std. dev. rP ∆ std. dev. rP ∆ std. dev. rP

Pass-19 – SteParSyn +43 96 0.974 −0.07 0.24 −0.074 +0.06 0.12 0.804
Pass-19 – DL −24 120 0.937 +0.06 0.06 0.930 −0.25 0.16 0.468
Pass-19 – ODUSSEAS +136 178 0.829 . . . . . . . . . +0.12 0.11 0.821
SteParSyn – DL −67 137 0.947 +0.14 0.26 −0.189 −0.30 0.21 0.195
SteParSyn – ODUSSEAS +93 132 0.882 . . . . . . . . . +0.07 0.16 0.639
DL – ODUSSEAS +161 176 0.860 . . . . . . . . . +0.37 0.15 0.530

Run B

Pass-19 – SteParSyn . . . . . . . . . . . . . . . . . . +0.03 0.13 0.691
Pass-19 – DL . . . . . . . . . . . . . . . . . . −0.33 0.10 0.643
SteParSyn – DL . . . . . . . . . . . . . . . . . . −0.36 0.17 0.411

Run C

Pass-19 – SteParSyn +15 123 0.900 −0.06 0.22 0.177 +0.38 0.38 0.346
Pass-19 – DL −148 86 0.954 −0.06 0.13 0.339 +0.40 0.30 0.359
Pass-19 – ODUSSEAS∗ +74 152 0.844 . . . . . . . . . +0.57 0.45 −0.222
SteParSyn – DL −163 101 0.931 +0.00 0.22 0.285 +0.02 0.29 0.451
SteParSyn – ODUSSEAS∗ +59 180 0.777 . . . . . . . . . +0.19 0.36 0.235
DL – ODUSSEAS∗ +222 114 0.901 . . . . . . . . . +0.17 0.17 0.757

Run C2

Pass-19 – SteParSyn +100 172 0.782 +0.05 0.24 0.187 −0.01 0.31 0.555
Pass-19 – DL −39 87 0.941 −0.03 0.13 0.547 −0.10 0.33 −0.162
Pass-19 – ODUSSEAS∗ +114 194 0.715 . . . . . . . . . +0.09 0.46 −0.495
SteParSyn – DL −140 135 0.869 −0.08 0.25 0.227 −0.09 0.33 0.392
SteParSyn – ODUSSEAS∗ +14 181 0.772 . . . . . . . . . +0.10 0.42 0.087
DL – ODUSSEAS∗ +153 144 0.848 . . . . . . . . . +0.19 0.18 0.704

Notes. (∗) corresponding to Run C*.

6. Summary and conclusions

We applied four different methods, including synthetic spectral
fitting, pEW measurements, and machine learning, to derive the
stellar parameters Teff , log g, and [Fe/H] for a sample of 18 M
dwarfs from high-resolution and high-S/N CARMENES spectra.
Our analysis consisted of four different Runs: Run A allowed
each team to use their method without restrictions, Run B fixed
Teff and log g to derive only [Fe/H], and in Run C and C2 all
teams incorporated the same synthetic model spectra, continuum
normalization method, and wavelength ranges.

Although we provide several new stellar parameters for our
sample, it was not our goal to measure more precise or accu-
rate parameters of these stars in the context of a catalog, but to
identify and understand discrepancies in the parameters between
our groups, i.e. the different parameter determination methods,
with the aim to minimize these discrepancies in order to make
a step forward to more consistent parameter determinations. At
the beginning of this experiment we expected that a standard-
ization of underlying synthetic models, wavelength ranges, and
reducing the dimension of the parameter space by fixing stellar
parameters would account for the inconsistencies between our

results and literature medians. Therefore, we assumed to find
the best agreement between our methods, and compared to the
literature, in Run C and C2. However, we find that this is not
necessarily the case as it is for FGK-stars (e.g. Jofré et al. 2014,
2017), and that our methods generally show the largest consis-
tency with literature when used in their original setting without
any standardizations. In general, the mean differences to the lit-
erature median are below 100 K in Teff for all methods, and also
below 0.1 dex in [Fe/H] for the Pass19-code and SteParSyn. In
Run C and C2 these differences increase significantly, up to over
200 K and 0.3 dex for some of our methods.

This is an indication that each team had calibrated their
methods and optimized them to the use of certain wavelength
ranges and synthetic spectra. It also implies that there might
be other components responsible for the remaining differences
we see in stellar parameters, which requires a more thorough
in-depth investigation of the methods themselves and underly-
ing concepts. One example are stellar atmosphere models and
their corresponding spectra. Although constant improvements
are made, they still suffer from some deficiencies. Various sets
of synthetic spectra also show differences when comparing the
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same spectral lines, due to the use of different equations of state,
line lists, and other hyper-parameters. It cannot be excluded that
these deviations contribute to the disagreements in derived stel-
lar parameters found in this work. However, we were able to
shed some light on deficiencies of some methods, e.g., that the
DL method would benefit from the use of multiple wavelength
ranges, and that ODUSSEAS could improve Teff determination
by using different sets of lines or by changing the Teff refer-
ence scale from Casagrande et al. (2008) to the values derived
based on calibration using interferometry (e.g., Khata et al.
2021).
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Table A.1. Collection of stellar parameters from the literature.

Karmn Author Teff [K] log g [dex] [Fe/H] [dex] R [R�] M [M�]

J00067−075 Neves et al. (2014) 2718 ± 150 . . . −0.27 ± 0.20 . . . . . .
Terrien et al. (2015) . . . . . . −0.11 ± 0.10 . . . . . .
Houdebine et al. (2019) 2970 ± 149 . . . . . . 0.127 ± 0.011 . . .
Literature median 2844 ± 149 . . . −0.19 ± 0.16 . . . . . .
Literature & Run A median 2906 ± 103 5.01 ± 0.11 −0.17 ± 0.18 . . . . . .

J00183+440 Berger et al. (2006) 3747 ± 112 4.89 ± 0.07 . . . 0.379 ± 0.006 0.404 ± 0.040
Boyajian et al. (2012) 3563 ± 11 4.89 ± 0.04c . . . 0.387 ± 0.002 0.423 ± 0.042
Gaidos et al. (2014) 3669 ± 67 4.79 ± 0.02c −0.29 ± 0.11 0.470 ± 0.040 0.500 ± 0.060
Gaidos & Mann (2014) 3693 ± 91 4.77 ± 0.03c −0.26 ± 0.08 0.490 ± 0.050 0.520 ± 0.070
Houdebine et al. (2019) 3656 ± 183 . . . . . . 0.365 ± 0.014 . . .
Khata et al. (2020) 3493 ± 103 4.82 ± 0.04c −0.19 ± 0.08 0.385 ± 0.027 0.357 ± 0.017
Mann et al. (2015) 3603 ± 60 4.86 ± 0.01c −0.30 ± 0.08 0.388 ± 0.013 0.398 ± 0.040
Newton et al. (2015) 3534 ± 79 . . . . . . 0.388 ± 0.028 . . .

3602 ± 13int . . . . . . 0.386 ± 0.002int . . .
Ségransan et al. (2003) 3698 ± 95 4.89 ± 0.02c . . . 0.383 ± 0.020 0.414 ± 0.021
Terrien et al. (2015) . . . . . . −0.26 ± 0.10 0.395 ± 0.004 . . .
Literature median 3626 ± 94 4.84 ± 0.04 −0.26 ± 0.09 . . . . . .
Literature & Run A median 3614 ± 84 4.85 ± 0.04 −0.25 ± 0.11 . . . . . .

J04429+189 Gaidos et al. (2014) 3680 ± 99 4.78 ± 0.03c +0.04 ± 0.11 0.480 ± 0.050 0.510 ± 0.070
Gaidos & Mann (2014) 3721 ± 82 4.76 ± 0.03c +0.14 ± 0.08 0.500 ± 0.050 0.530 ± 0.070
Houdebine et al. (2019) 3542 ± 177 . . . . . . 0.453 ± 0.027 . . .
Khata et al. (2020) 3377 ± 110 4.87 ± 0.06c −0.01 ± 0.09 0.338 ± 0.032 0.312 ± 0.015
Lépine et al. (2013) 3550 ± 57 4.50 . . . . . . . . .
Maldonado et al. (2015) 3603 ± 68 4.75 ± 0.04 +0.03 ± 0.09 0.510 ± 0.047 0.520 ± 0.052
Mann et al. (2015) 3680 ± 60 4.82 ± 0.01c +0.14 ± 0.08 0.452 ± 0.019 0.492 ± 0.049
Neves et al. (2014) 3355 ± 110 . . . −0.01 ± 0.09 . . . 0.500 ± 0.030
Newton et al. (2015) 3574 ± 78 . . . . . . 0.514 ± 0.029 . . .

3701 ± 90int . . . . . . 0.453 ± 0.022int . . .
Rojas-Ayala et al. (2012) 3581 ± 20 . . . +0.15 ± 0.17 . . . . . .
Terrien et al. (2015) . . . . . . +0.12 ± 0.10 0.478 ± 0.010 . . .
von Braun et al. (2014) 3679 ± 77 4.78 ± 0.09c . . . 0.453 ± 0.022 0.450 ± 0.135
Literature median 3587 ± 93 4.75 ± 0.05 +0.08 ± 0.10 . . . . . .
Literature & Run A median 3581 ± 85 4.73 ± 0.05 +0.07 ± 0.11 . . . . . .

J05314−036 Boyajian et al. (2012) 3801 ± 9 4.71 ± 0.04c . . . 0.574 ± 0.004 0.615 ± 0.062
Gaidos et al. (2014) 3701 ± 61 4.77 ± 0.02c . . . 0.490 ± 0.040 0.520 ± 0.060
Gaidos & Mann (2014) 3895 ± 84 4.72 ± 0.01c +0.43 ± 0.08 0.560 ± 0.040 0.600 ± 0.070
Houdebine et al. (2019) 3696 ± 185 . . . . . . 0.588 ± 0.019 . . .
Khata et al. (2020) 3849 ± 275 4.69 ± 0.08c . . . 0.553 ± 0.149 0.554 ± 0.193
Maldonado et al. (2015) 3800 ± 68 4.68 ± 0.05 +0.00 ± 0.09 0.580 ± 0.052 0.600 ± 0.056
Mann et al. (2015) 3801 ± 60 4.71 ± 0.01c +0.49 ± 0.08 0.581 ± 0.019 0.633 ± 0.063
Neves et al. (2014) 3670 ± 110 . . . +0.19 ± 0.09 . . . 0.600 ± 0.070
Newton et al. (2015) 3872 ± 75 . . . . . . 0.597 ± 0.027 . . .

3850 ± 22int . . . . . . 0.574 ± 0.004int . . .
Rojas-Ayala et al. (2012) 4012 ± 106 . . . +0.35 ± 0.17 . . . . . .
Ségransan et al. (2003) 3520 ± 170 4.54 ± 0.06c . . . 0.702 ± 0.063 0.631 ± 0.031
Terrien et al. (2015) . . . . . . +0.69 ± 0.10 0.587 ± 0.040 . . .
Literature median 3789 ± 125 4.69 ± 0.05 +0.36 ± 0.11 . . . . . .
Literature & Run A median 3779 ± 112 4.69 ± 0.05 +0.30 ± 0.11 . . . . . .

J07558+833 Dittmann et al. (2016) . . . . . . +0.00 ± 0.10 . . . . . .
Gaidos et al. (2014) 3183 ± 60 . . . . . . <0.19 <0.14
Lépine et al. (2013) 3250 ± 76 5.00 . . . . . . . . .
Literature median 3217 ± 68 5.00 +0.00 ± 0.10 . . . . . .
Literature & Run A median 3265 ± 87 5.00 ± 0.07 −0.14 ± 0.18 . . . . . .

J09143+526 Boyajian et al. (2012) 3907 ± 35 4.71 ± 0.02c . . . 0.577 ± 0.013 0.622 ± 0.062
Gaidos et al. (2014) 3991 ± 66 4.69 ± 0.01c −0.26 ± 0.11 0.590 ± 0.040 0.630 ± 0.070
Houdebine et al. (2019) 3921 ± 196 . . . . . . 0.602 ± 0.020 . . .
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Table A.1. Collection of stellar parameters from the literature (cont.)

Karmn Author Teff [K] log g [dex] [Fe/H] [dex] R [R�] M [M�]

Khata et al. (2020) 4002 ± 125 4.48 ± 0.05c −0.08 ± 0.09 0.617 ± 0.051 0.424 ± 0.024
Mann et al. (2015) 3920 ± 60 4.74 ± 0.00c −0.01 ± 0.08 0.550 ± 0.026 0.607 ± 0.061
Newton et al. (2015) 3955 ± 106 . . . . . . 0.571 ± 0.029 . . .

3953 ± 41int . . . . . . 0.577 ± 0.013int . . .
Rojas-Ayala et al. (2012) 4031 ± 56 . . . −0.18 ± 0.17 . . . . . .
Literature median 3960 ± 100 4.65 ± 0.03 −0.13 ± 0.12 . . . . . .
Literature & Run A median 3961 ± 88 4.68 ± 0.04 −0.07 ± 0.12 . . . . . .

J09144+526 Boyajian et al. (2012) 3867 ± 37 4.71 ± 0.02 c . . . 0.567 ± 0.014 0.600 ± 0.060
Gaidos et al. (2014) 3770 ± 87 4.74 ± 0.03c . . . 0.520 ± 0.050 0.550 ± 0.07
Houdebine et al. (2019) 3921 ± 196 . . . . . . 0.600 ± 0.040 . . .
Khata et al. (2020) 3844 ± 127 . . . −0.07 ± 0.09 0.582 ± 0.047 . . .
Newton et al. (2015) 3892 ± 92 . . . . . . 0.562 ± 0.028 . . .

3926 ± 37int . . . . . . 0.567 ± 0.014int . . .
Rojas-Ayala et al. (2012) 3869 ± 15 . . . −0.15 ± 0.17 . . . . . .
Literature median 3870 ± 103 4.72 ± 0.03 −0.11 ± 0.14 . . . . . .
Literature & Run A median 3894 ± 89 4.80 ± 0.04 −0.02 ± 0.13 . . . . . .

J10508+068 Gaidos et al. (2014) 3238 ± 81 5.02 ± 0.06c +0.13 ± 0.11 0.190 ± 0.080 0.140 ± 0.100
Gaidos & Mann (2014) 3400 ± 63 4.92 ± 0.05c +0.20 ± 0.08 0.320 ± 0.050 0.310 ± 0.060
Houdebine et al. (2019) 3099 ± 155 . . . . . . 0.334 ± 0.031 . . .
Khata et al. (2020) 2388 ± 113 . . . +0.18 ± 0.10 . . . 0.155 ± 0.007
Lépine et al. (2013) 3100 ± 76 4.50 . . . . . . . . .
Mann et al. (2015) 3238 ± 60 4.94 ± 0.01c +0.16 ± 0.08 0.276 ± 0.012 0.246 ± 0.025
Neves et al. (2014) 2943 ± 110 . . . +0.03 ± 0.09 . . . . . .
Rojas-Ayala et al. (2012) 3334 ± 23 . . . +0.20 ± 0.17 . . . . . .
Terrien et al. (2015) . . . . . . +0.11 ± 0.10 . . . . . .
Literature median 3093 ± 93 4.85 ± 0.04 +0.14 ± 0.11 . . . . . .
Literature & Run A median 3136 ± 82 4.83 ± 0.06 +0.08 ± 0.12 . . . . . .

J11033+359 Boyajian et al. (2012) 3465 ± 17 4.85 ± 0.04c . . . 0.392 ± 0.004 0.403 ± 0.040
Gaidos et al. (2014) 3593 ± 66 4.81 ± 0.02c . . . 0.440 ± 0.040 0.460 ± 0.060
Gaidos & Mann (2014) 3679 ± 110 4.78 ± 0.04c −0.30 ± 0.08 0.480 ± 0.060 0.510 ± 0.080
Houdebine et al. (2019) 3602 ± 180 . . . . . . 0.362 ± 0.013 . . .
Khata et al. (2020) 3560 ± 104 4.74 ± 0.04c −0.18 ± 0.13 0.419 ± 0.028 0.355 ± 0.016
Lépine et al. (2013) 3530 ± 39 4.50 . . . . . . . . .
Mann et al. (2015) 3563 ± 60 4.84 ± 0.01c −0.38 ± 0.08 0.389 ± 0.013 0.386 ± 0.039
Newton et al. (2015) 3532 ± 85 . . . . . . 0.401 ± 0.029 . . .

3532 ± 17int . . . . . . 0.392 ± 0.003int . . .
Rojas-Ayala et al. (2012) 3526 ± 18 . . . −0.41 ± 0.17 . . . . . .
Ségransan et al. (2003) 3570 ± 42 4.85 ± 0.00c . . . 0.393 ± 0.008 0.403 ± 0.020
Terrien et al. (2015) . . . . . . −0.41 ± 0.10 0.378 ± 0.042 . . .
Literature median 3559 ± 82 4.77 ± 0.03 −0.34 ± 0.12 . . . . . .
Literature & Run A median 3566 ± 76 4.79 ± 0.05 −0.28 ± 0.12 . . . . . .

J11054+435 Boyajian et al. (2012) 3497 ± 39 4.84 ± 0.02c . . . 0.398 ± 0.009 0.403 ± 0.040
Gaidos et al. (2014) 3702 ± 65 4.77 ± 0.02c −0.41 ± 0.11 0.490 ± 0.040 0.520 ± 0.060
Gaidos & Mann (2014) 3743 ± 84 4.75 ± 0.03c −0.32 ± 0.08 0.510 ± 0.050 0.540 ± 0.070
Houdebine et al. (2019) 3692 ± 185 . . . . . . 0.370 ± 0.030 . . .
Lépine et al. (2013) 3560 ± 44 4.50 . . . . . . . . .
Mann et al. (2015) 3619 ± 60 4.86 ± 0.01c −0.37 ± 0.08 0.383 ± 0.013 0.390 ± 0.039
Newton et al. (2015) 3664 ± 227 . . . . . . 0.425 ± 0.041 . . .

3537 ± 41int . . . . . . 0.398 ± 0.009int . . .
Rojas-Ayala et al. (2012) 3684 ± 20 . . . −0.40 ± 0.17 . . . . . .
Terrien et al. (2015) . . . . . . −0.38 ± 0.10 0.378 ± 0.004 . . .
Literature median 3633 ± 109 4.74 ± 0.02 −0.38 ± 0.11 . . . . . .
Literature & Run A median 3633 ± 95 4.80 ± 0.04 −0.35 ± 0.12 . . . . . .

J11421+267 Gaidos et al. (2014) 3479 ± 61 4.88 ± 0.05c +0.07 ± 0.11 0.370 ± 0.050 0.380 ± 0.060
Gaidos & Mann (2014) 3606 ± 72 4.82 ± 0.04c +0.00 ± 0.08 0.440 ± 0.050 0.470 ± 0.060
Houdebine et al. (2019) 3464 ± 173 . . . . . . 0.403 ± 0.012 . . .
Khata et al. (2020) 3534 ± 106 4.86 ± 0.04c −0.06 ± 0.08 0.418 ± 0.029 0.460 ± 0.021
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Table A.1. Collection of stellar parameters from the literature (cont.)

Karmn Author Teff [K] log g [dex] [Fe/H] [dex] R [R�] M [M�]

Lépine et al. (2013) 3400 ± 62 5.00 . . . . . . . . .
Mann et al. (2015) 3479 ± 60 4.78 ± 0.01c +0.01 ± 0.08 0.449 ± 0.019 0.445 ± 0.044
Neves et al. (2014) 3354 ± 110 . . . −0.03 ± 0.09 . . . . . .
Newton et al. (2015) 3477 ± 81 . . . . . . 0.400 ± 0.028 . . .

3520 ± 66int . . . . . . 0.455 ± 0.018int . . .
Rojas-Ayala et al. (2012) 3469 ± 17 . . . +0.04 ± 0.17 . . . . . .
Terrien et al. (2015) . . . . . . −0.06 ± 0.10 0.431 ± 0.008 . . .
Literature median 3478 ± 90 4.87 ± 0.04 −0.00 ± 0.11 . . . . . .
Literature & Run A median 3468 ± 81 4.83 ± 0.05 −0.01 ± 0.11 . . . . . .

J13005+056 Dittmann et al. (2016) . . . . . . +0.07 ± 0.10 . . . . . .
Gaidos et al. (2014) 3090 ± 77 . . . +0.28 ± 0.11 <0.19 <0.14
Houdebine et al. (2019) 3140 ± 157 . . . . . . 0.191 ± 0.013 . . .
Lépine et al. (2013) 2950 ± 61 4.50 . . . . . . . . .
Newton et al. (2015) . . . . . . . . . 0.170 ± 0.043 . . .
Terrien et al. (2015) . . . . . . +0.09 ± 0.10 . . . . . .
Literature median 3060 ± 107 4.50 +0.15 ± 0.10 . . . . . .
Literature & Run A median 3137 ± 100 4.79 ± 0.10 +0.02 ± 0.17 . . . . . .

J13457+148 Berger et al. (2006) 3662 ± 110 4.75 ± 0.07 . . . 0.493 ± 0.033 0.502 ± 0.050
Boyajian et al. (2012) 3618 ± 31 4.78 ± 0.03c . . . 0.484 ± 0.008 0.520 ± 0.052
Gaidos et al. (2014) 3703 ± 73 4.77 ± 0.02c −0.45 ± 0.11 0.490 ± 0.040 0.520 ± 0.060
Gaidos & Mann (2014) 3792 ± 92 4.75 ± 0.03c −0.18 ± 0.09 0.520 ± 0.050 0.560 ± 0.070
Houdebine et al. (2019) 3650 ± 183 . . . . . . 0.494 ± 0.033 . . .
Khata et al. (2020) 3707 ± 103 4.78 ± 0.01c −0.15 ± 0.10 0.502 ± 0.027 0.554 ± 0.044
Maldonado et al. (2015) 3609 ± 68 4.79 ± 0.04 −0.10 ± 0.09 0.470 ± 0.047 0.470 ± 0.052
Mann et al. (2015) 3649 ± 60 4.74 ± 0.01c −0.31 ± 0.08 0.478 ± 0.016 0.465 ± 0.046
Neves et al. (2014) 3515 ± 110 . . . −0.22 ± 0.09 . . . 0.500 ± 0.030
Newton et al. (2015) 3716 ± 125 . . . . . . 0.450 ± 0.033 . . .

3646 ± 34int . . . . . . 0.484 ± 0.008int . . .
Rojas-Ayala et al. (2012) 3642 ± 17 . . . −0.30 ± 0.17 . . . . . .
Literature median 3659 ± 95 4.77 ± 0.03 −0.24 ± 0.11 . . . . . .
Literature & Run A median 3667 ± 88 4.75 ± 0.04 −0.21 ± 0.11 . . . . . .

J15194−077 Gaidos et al. (2014) 3413 ± 61 4.90 ± 0.05c −0.21 ± 0.11 0.330 ± 0.050 0.320 ± 0.060
Gaidos & Mann (2014) 3357 ± 73 4.94 ± 0.05c −0.10 ± 0.08 0.290 ± 0.060 0.270 ± 0.080
Houdebine et al. (2019) 3423 ± 171 . . . . . . 0.285 ± 0.008 . . .
Khata et al. (2020) 3475 ± 119 4.71 ± 0.08c −0.11 ± 0.12 0.364 ± 0.045 0.251 ± 0.015
Maldonado et al. (2015) 3419 ± 68 4.95 ± 0.08 −0.20 ± 0.09 0.300 ± 0.078 0.290 ± 0.086
Mann et al. (2015) 3395 ± 60 4.92 ± 0.01c −0.15 ± 0.08 0.311 ± 0.012 0.292 ± 0.029
Neves et al. (2014) 3248 ± 110 . . . −0.20 ± 0.09 . . . 0.300 ± 0.020
Newton et al. (2015) 3354 ± 74 . . . . . . 0.329 ± 0.027 . . .

3487 ± 62int . . . . . . 0.299 ± 0.010int . . .
Rojas-Ayala et al. (2012) 3534 ± 18 . . . −0.10 ± 0.17 . . . . . .
Terrien et al. (2015) . . . . . . −0.06 ± 0.10 0.322 ± 0.050 . . .
Literature median 3411 ± 83 4.88 ± 0.14 −0.14 ± 0.11 . . . . . .
Literature & Run A median 3399 ± 82 4.87 ± 0.06 −0.13 ± 0.11 . . . . . .

J16581+257 Gaidos et al. (2014) 3744 ± 65 4.75 ± 0.02c −0.08 ± 0.11 0.510 ± 0.040 0.540 ± 0.060
Houdebine et al. (2019) 3705 ± 185 . . . . . . 0.497 ± 0.020 . . .
Khata et al. (2020) 3654 ± 117 4.74 ± 0.05c −0.03 ± 0.12 0.466 ± 0.036 0.438 ± 0.019
Lépine et al. (2013) 3590 ± 39 4.50 . . . . . . . . .
Mann et al. (2015) 3700 ± 60 4.75 ± 0.01c +0.03 ± 0.08 0.507 ± 0.018 0.534 ± 0.053
Newton et al. (2015) 3683 ± 79 . . . . . . 0.497 ± 0.028 . . .

3604 ± 46int . . . . . . 0.539 ± 0.016int . . .
Rojas-Ayala et al. (2012) 3733 ± 20 . . . −0.04 ± 0.17 . . . . . .
Terrien et al. (2015) . . . . . . −0.04 ± 0.10 0.505 ± 0.006 . . .
von Braun et al. (2014) 3590 ± 45 4.70 ± 0.10c . . . 0.539 ± 0.016 0.540 ± 0.162
Literature median 3667 ± 87 4.69 ± 0.06 −0.03 ± 0.12 . . . . . .
Literature & Run A median 3678 ± 78 4.74 ± 0.06 +0.01 ± 0.12 . . . . . .

J17578+046 Boyajian et al. (2012) 3224 ± 10 5.06 ± 0.04c . . . 0.187 ± 0.001 0.146 ± 0.015
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Table A.1. Collection of stellar parameters from the literature (cont.)

Karmn Author Teff [K] log g [dex] [Fe/H] [dex] R [R�] M [M�]

Dittmann et al. (2016) . . . . . . −0.44 ± 0.10 . . . . . .
Gaidos et al. (2014) 3237 ± 60 . . . −0.32 ± 0.11 <0.19 <0.14
Gaidos & Mann (2014) 3247 ± 61 5.05 ± 0.04c −0.32 ± 0.08 0.190 ± 0.060 0.150 ± 0.080
Houdebine et al. (2019) 3266 ± 163 . . . . . . 0.186 ± 0.010 . . .
Mann et al. (2015) 3228 ± 60 5.09 ± 0.01c −0.40 ± 0.08 0.186 ± 0.007 0.155 ± 0.015
Neves et al. (2014) 3338 ± 110 . . . −0.51 ± 0.09 . . . 0.160 ± 0.010
Newton et al. (2015) 3248 ± 81 . . . . . . 0.188 ± 0.029 . . .

3238 ± 11int . . . . . . 0.187 ± 0.001int . . .
Rojas-Ayala et al. (2012) 3266 ± 29 . . . −0.39 ± 0.17 . . . . . .
Ségransan et al. (2003) 3163 ± 65 5.05 ± 0.01c . . . 0.196 ± 0.008 0.158 ± 0.008
Terrien et al. (2015) . . . . . . −0.34 ± 0.10 0.183 ± 0.002 . . .
Literature median 3246 ± 78 5.06 ± 0.03 −0.39 ± 0.12 . . . . . .
Literature & Run A median 3242 ± 75 5.06 ± 0.07 −0.34 ± 0.13 . . . . . .

J22565+165 Berger et al. (2006) 3373 ± 101 4.53 ± 0.07 . . . 0.689 ± 0.044 0.586 ± 0.059
Boyajian et al. (2012) 3713 ± 11 4.71 ± 0.04c . . . 0.548 ± 0.005 0.569 ± 0.057
Gaidos et al. (2014) 3673 ± 60 4.78 ± 0.02c +0.18 ± 0.11 0.480 ± 0.040 0.510 ± 0.060
Gaidos & Mann (2014) 3786 ± 87 4.75 ± 0.03c +0.17 ± 0.08 0.520 ± 0.050 0.560 ± 0.070
Houdebine et al. (2019) 3661 ± 183 . . . . . . 0.567 ± 0.019 . . .
Lépine et al. (2013) 3520 ± 39 4.50 . . . . . . . . .
Maldonado et al. (2015) 3736 ± 68 4.71 ± 0.04 −0.01 ± 0.09 0.550 ± 0.047 0.570 ± 0.052
Mann et al. (2015) 3720 ± 60 4.71 ± 0.01c +0.21 ± 0.08 0.549 ± 0.018 0.574 ± 0.057
Neves et al. (2014) 3602 ± 110 . . . +0.03 ± 0.09 . . . 0.580 ± 0.030
Newton et al. (2015) 3749 ± 76 . . . . . . 0.555 ± 0.028 . . .

3731 ± 16int . . . . . . 0.548 ± 0.005int . . .
Terrien et al. (2015) . . . . . . +0.26 ± 0.10 0.545 ± 0.003 . . .
Literature median 3660 ± 87 4.67 ± 0.04 +0.14 ± 0.09 . . . . . .
Literature & Run A median 3673 ± 79 4.68 ± 0.04 +0.14 ± 0.11 . . . . . .

J23419+441 Dittmann et al. (2016) . . . . . . +0.17 ± 0.10 . . . . . .
Gaidos et al. (2014) 3005 ± 62 . . . . . . <0.19 <0.14
Gaidos & Mann (2014) 3067 ± 60 . . . +0.29 ± 0.08 <0.19 <0.14
Houdebine et al. (2019) 3032 ± 152 . . . . . . 0.098 ± 0.003 . . .
Khata et al. (2020) 3104 ± 117 5.05 ± 0.15c +0.26 ± 0.11 0.197 ± 0.038 0.161 ± 0.007
Lépine et al. (2013) 3110 ± 43 5.00 . . . . . . . . .
Mann et al. (2015) 2930 ± 60 5.04 ± 0.01c +0.23 ± 0.08 0.189 ± 0.008 0.145 ± 0.015
Rojas-Ayala et al. (2012) 3058 ± 65 . . . +0.19 ± 0.17 . . . . . .
Terrien et al. (2015) . . . . . . +0.32 ± 0.10 . . . . . .
Literature median 3044 ± 88 5.03 ± 0.11 +0.24 ± 0.11 . . . . . .
Literature & Run A median 3031 ± 80 5.02 ± 0.10 +0.16 ± 0.14 . . . . . .

Notes. (c) log g calculated from M and R, (int) interferometric measurement.
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Appendix B: Additional plots
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Fig. B.1. Same as Fig. 4, but the gray symbols represent results from Run C.
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Fig. B.2. Same as Fig. 2, but showing the difference between the stellar parameter and the literature median on the y-axis.
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Fig. B.3. Comparison between our methods, showing the derived Teff in Run A. Each method is indicated by a different color and symbol. Each
panel compares one method (denoted by the x-axis label) to all other methods.

Fig. B.4. Comparison between our methods, showing the derived log g in Run A. Each method is indicated by a different color and symbol. Each
panel compares one method (denoted by the x-axis label) to all other methods. Note that ODUSSEAS did not derive log g.
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Fig. B.5. Comparison between our methods, showing the derived [Fe/H] in Run A. Each method is indicated by a different color and symbol. Each
panel compares one method (denoted by the x-axis label) to all other methods.

Fig. B.6. Comparison between our methods, showing the derived [Fe/H] in Run B. Each method is indicated by a different color and symbol. Each
panel compares one method (denoted by the x-axis label) to all other methods. Note that ODUSSEAS did not participate in Run B.
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Fig. B.7. Comparison between our methods, showing the derived Teff in Run C. Each method is indicated by a different color and symbol. Each
panel compares one method (denoted by the x-axis label) to all other methods. Note that the values from ODUSSEAS correspond to Run C*.

Fig. B.8. Comparison between our methods, showing the derived log g in Run C. Each method is indicated by a different color and symbol. Each
panel compares one method (denoted by the x-axis label) to all other methods. Note that ODUSSEAS did not derive log g.
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Fig. B.9. Comparison between our methods, showing the derived [Fe/H] in Run C. Each method is indicated by a different color and symbol. Each
panel compares one method (denoted by the x-axis label) to all other methods. Note that the values from ODUSSEAS correspond to Run C*.

Fig. B.10. Comparison between our methods, showing the derived Teff in Run C2. Each method is indicated by a different color and symbol. Each
panel compares one method (denoted by the x-axis label) to all other methods. Note that the values from ODUSSEAS correspond to Run C*.
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Fig. B.11. Comparison between our methods, showing the derived log g in Run C2. Each method is indicated by a different color and symbol.
Each panel compares one method (denoted by the x-axis label) to all other methods. Note that ODUSSEAS did not derive log g.

Fig. B.12. Comparison between our methods, showing the derived [Fe/H] in Run C2. Each method is indicated by a different color and symbol.
Each panel compares one method (denoted by the x-axis label) to all other methods. Note that the values from ODUSSEAS correspond to Run C*.
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Table C.1. Stellar parameters for each method from Runs A and B.

Run A Run B
Karmn Method Teff [K] log g [dex] [Fe/H] [dex] Teff [K] log g [dex] [Fe/H] [dex]

J00067−075 Pass19-code 3024 ± 54 5.10 ± 0.06 −0.25 ± 0.19 2906 ± 103 5.01 ± 0.11 −0.06 ± 0.01
SteParSyn 3023 ± 22 4.80 ± 0.11 −0.29 ± 0.08 2906 ± 103 5.01 ± 0.11 −0.15 ± 0.01

DL 2951 ± 94 5.12 ± 0.14 +0.31 ± 0.28 2906 ± 103 5.01 ± 0.11 +0.42 ± 0.30
ODUSSEAS 2748 ± 85 . . . −0.43 ± 0.13 . . . . . . . . .

J00183+440 Pass19-code 3576 ± 54 4.84 ± 0.06 −0.32 ± 0.19 3614 ± 84 4.85 ± 0.04 −0.25 ± 0.01
SteParSyn 3549 ± 13 5.03 ± 0.03 −0.24 ± 0.05 3614 ± 84 4.85 ± 0.04 −0.33 ± 0.03

DL 3672 ± 45 4.71 ± 0.06 +0.04 ± 0.08 3614 ± 84 4.85 ± 0.04 +0.09 ± 0.12
ODUSSEAS 3539 ± 78 . . . −0.39 ± 0.12 . . . . . . . . .

J04429+189 Pass19-code 3716 ± 54 4.67 ± 0.06 +0.16 ± 0.19 3581 ± 85 4.73 ± 0.05 −0.07 ± 0.01
SteParSyn 3528 ± 15 4.71 ± 0.05 −0.02 ± 0.03 3581 ± 85 4.73 ± 0.05 +0.00 ± 0.03

DL 3630 ± 44 4.68 ± 0.06 +0.20 ± 0.08 3581 ± 85 4.73 ± 0.05 +0.21 ± 0.12
ODUSSEAS 3376 ± 78 . . . −0.06 ± 0.12 . . . . . . . . .

J05314−036 Pass19-code 3930 ± 54 4.64 ± 0.06 +0.32 ± 0.19 3779 ± 112 4.69 ± 0.05 +0.17 ± 0.01
SteParSyn 3726 ± 10 4.83 ± 0.05 +0.20 ± 0.02 3779 ± 112 4.69 ± 0.05 +0.21 ± 0.04

DL 3809 ± 57 4.61 ± 0.05 +0.28 ± 0.12 3779 ± 112 4.69 ± 0.05 +0.29 ± 0.14
ODUSSEAS 3527 ± 78 . . . +0.10 ± 0.12 . . . . . . . . .

J07558+833 Pass19-code 3191 ± 131 5.02 ± 0.10 −0.20 ± 0.29 3265 ± 87 5.00 ± 0.07 −0.19 ± 0.02
SteParSyn 3355 ± 7 5.06 ± 0.02 −0.46 ± 0.03 3265 ± 87 5.00 ± 0.07 −0.40 ± 0.02

DL 3175 ± 29 4.94 ± 0.08 +0.17 ± 0.16 3265 ± 87 5.00 ± 0.07 +0.18 ± 0.16
ODUSSEAS 3439 ± 134 . . . −0.21 ± 0.22 . . . . . . . . .

J09143+526 Pass19-code 4045 ± 54 4.69 ± 0.06 +0.00 ± 0.19 3961 ± 88 4.68 ± 0.04 −0.10 ± 0.01
SteParSyn 3901 ± 9 4.85 ± 0.04 +0.03 ± 0.01 3961 ± 88 4.68 ± 0.04 −0.09 ± 0.03

DL 4076 ± 62 4.62 ± 0.04 +0.11 ± 0.10 3961 ± 88 4.68 ± 0.04 +0.12 ± 0.13
ODUSSEAS 3830 ± 85 . . . −0.14 ± 0.14 . . . . . . . . .

J09144+526 Pass19-code 4021 ± 54 4.69 ± 0.06 +0.02 ± 0.19 3894 ± 89 4.80 ± 0.04 −0.13 ± 0.01
SteParSyn 3891 ± 18 5.25 ± 0.05 +0.11 ± 0.03 3894 ± 89 4.80 ± 0.04 −0.05 ± 0.02

DL 4032 ± 60 4.62 ± 0.04 +0.12 ± 0.10 3894 ± 89 4.80 ± 0.04 +0.15 ± 0.13
ODUSSEAS 3805 ± 84 . . . −0.13 ± 0.14 . . . . . . . . .

J10508+068 Pass19-code 3284 ± 54 4.92 ± 0.06 −0.10 ± 0.19 3136 ± 82 4.83 ± 0.06 −0.22 ± 0.01
SteParSyn 3232 ± 11 4.70 ± 0.04 −0.20 ± 0.04 3136 ± 82 4.83 ± 0.06 −0.09 ± 0.03

DL 3281 ± 54 4.84 ± 0.11 +0.21 ± 0.14 3136 ± 82 4.83 ± 0.06 +0.25 ± 0.17
ODUSSEAS 3090 ± 79 . . . −0.07 ± 0.12 . . . . . . . . .

J11033+359 Pass19-code 3555 ± 54 4.80 ± 0.06 −0.17 ± 0.19 3566 ± 76 4.79 ± 0.05 −0.16 ± 0.01
SteParSyn 3550 ± 12 5.03 ± 0.09 −0.37 ± 0.05 3566 ± 76 4.79 ± 0.05 −0.45 ± 0.03

DL 3766 ± 57 4.65 ± 0.05 +0.05 ± 0.09 3566 ± 76 4.79 ± 0.05 +0.15 ± 0.13
ODUSSEAS 3469 ± 78 . . . −0.33 ± 0.12 . . . . . . . . .

J11054+435 Pass19-code 3609 ± 54 4.85 ± 0.06 −0.37 ± 0.19 3633 ± 95 4.80 ± 0.04 −0.33 ± 0.01
SteParSyn 3566 ± 14 5.15 ± 0.05 −0.31 ± 0.04 3633 ± 95 4.80 ± 0.04 −0.34 ± 0.03

DL 3774 ± 44 4.70 ± 0.05 −0.12 ± 0.07 3633 ± 95 4.80 ± 0.04 −0.06 ± 0.12
ODUSSEAS 3581 ± 80 . . . −0.44 ± 0.12 . . . . . . . . .

J11421+267 Pass19-code 3455 ± 54 4.84 ± 0.06 −0.12 ± 0.19 3468 ± 81 4.83 ± 0.05 −0.10 ± 0.01
SteParSyn 3492 ± 17 4.74 ± 0.06 −0.04 ± 0.03 3468 ± 81 4.83 ± 0.05 −0.04 ± 0.04

DL 3514 ± 47 4.75 ± 0.08 +0.18 ± 0.09 3468 ± 81 4.83 ± 0.05 +0.20 ± 0.14
ODUSSEAS 3314 ± 78 . . . −0.05 ± 0.12 . . . . . . . . .

J13005+056 Pass19-code 3142 ± 134 5.01 ± 0.11 −0.12 ± 0.33 3137 ± 100 4.79 ± 0.10 −0.28 ± 0.02
SteParSyn 3148 ± 40 4.60 ± 0.10 −0.36 ± 0.10 3137 ± 100 4.79 ± 0.10 −0.31 ± 0.09

DL 3071 ± 46 5.06 ± 0.10 +0.34 ± 0.13 3137 ± 100 4.79 ± 0.10 +0.30 ± 0.10
ODUSSEAS 3417 ± 117 . . . −0.18 ± 0.18 . . . . . . . . .

J13457+148 Pass19-code 3628 ± 54 4.76 ± 0.06 −0.12 ± 0.19 3667 ± 88 4.75 ± 0.04 −0.07 ± 0.01
SteParSyn 3569 ± 23 4.74 ± 0.03 −0.31 ± 0.03 3667 ± 88 4.75 ± 0.04 −0.35 ± 0.03

DL 3975 ± 70 4.60 ± 0.05 +0.12 ± 0.09 3667 ± 88 4.75 ± 0.04 +0.22 ± 0.12
ODUSSEAS 3590 ± 78 . . . −0.24 ± 0.12 . . . . . . . . .

J15194−077 Pass19-code 3390 ± 54 4.91 ± 0.06 −0.17 ± 0.19 3399 ± 82 4.87 ± 0.06 −0.16 ± 0.01
SteParSyn 3422 ± 10 4.82 ± 0.03 −0.10 ± 0.04 3399 ± 82 4.87 ± 0.06 −0.07 ± 0.02
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Table C.1. continued.

Run A Run B
Karmn Method Teff [K] log g [dex] [Fe/H] [dex] Teff [K] log g [dex] [Fe/H] [dex]

DL 3385 ± 47 4.82 ± 0.09 +0.11 ± 0.10 3399 ± 82 4.87 ± 0.06 +0.13 ± 0.15
ODUSSEAS 3280 ± 79 . . . −0.28 ± 0.12 . . . . . . . . .

J16581+257 Pass19-code 3825 ± 54 4.67 ± 0.06 +0.09 ± 0.19 3678 ± 78 4.74 ± 0.06 −0.15 ± 0.01
SteParSyn 3673 ± 12 5.11 ± 0.07 +0.14 ± 0.02 3678 ± 78 4.74 ± 0.06 −0.05 ± 0.02

DL 3748 ± 43 4.68 ± 0.05 +0.17 ± 0.08 3678 ± 78 4.74 ± 0.06 +0.19 ± 0.11
ODUSSEAS 3561 ± 79 . . . −0.12 ± 0.12 . . . . . . . . .

J17578+046 Pass19-code 3231 ± 54 5.00 ± 0.06 −0.23 ± 0.19 3242 ± 75 5.06 ± 0.07 −0.17 ± 0.01
SteParSyn 3282 ± 14 5.12 ± 0.10 −0.24 ± 0.07 3242 ± 75 5.06 ± 0.07 −0.35 ± 0.04

DL 3352 ± 55 4.91 ± 0.10 +0.07 ± 0.14 3242 ± 75 5.06 ± 0.07 +0.16 ± 0.19
ODUSSEAS 3172 ± 80 . . . −0.62 ± 0.13 . . . . . . . . .

J22565+165 Pass19-code 3842 ± 54 4.66 ± 0.06 +0.20 ± 0.19 3673 ± 79 4.68 ± 0.04 −0.07 ± 0.01
SteParSyn 3714 ± 9 4.87 ± 0.03 +0.10 ± 0.03 3673 ± 79 4.68 ± 0.04 +0.09 ± 0.03

DL 3765 ± 49 4.62 ± 0.05 +0.23 ± 0.09 3673 ± 79 4.68 ± 0.04 +0.25 ± 0.13
ODUSSEAS 3509 ± 79 . . . +0.00 ± 0.12 . . . . . . . . .

J23419+441 Pass19-code 3069 ± 54 5.02 ± 0.06 −0.06 ± 0.19 3031 ± 80 5.02 ± 0.10 +0.08 ± 0.01
SteParSyn 3140 ± 7 5.00 ± 0.02 −0.13 ± 0.05 3031 ± 80 5.02 ± 0.10 +0.03 ± 0.02

DL 2995 ± 81 5.01 ± 0.14 +0.40 ± 0.27 3031 ± 80 5.02 ± 0.10 +0.50 ± 0.28
ODUSSEAS 2831 ± 79 . . . −0.10 ± 0.12 . . . . . . . . .

Table C.2. Stellar parameters for each method from Runs C and C2.

Run C Run C2
Karmn Method Teff [K] log g [dex] [Fe/H] [dex] Teff [K] log g [dex] [Fe/H] [dex]

J00067−075 Pass19-code 3031 ± 151 4.83 ± 0.10 +0.78 ± 0.26 3169 ± 123 5.11 ± 0.07 −0.48 ± 0.22
SteParSyn 3088 ± 28 5.11 ± 0.14 −0.06 ± 0.11 3069 ± 29 5.04 ± 0.16 −0.13 ± 0.12

DL 3181 ± 246 4.82 ± 0.14 −0.06 ± 0.27 3133 ± 129 5.12 ± 0.12 −0.02 ± 0.22
ODUSSEAS 2875 ± 90∗ . . . −0.43 ± 0.13∗ . . . . . . . . .

J00183+440 Pass19-code 3667 ± 151 4.75 ± 0.10 −0.13 ± 0.26 3664 ± 123 4.83 ± 0.07 −0.39 ± 0.22
SteParSyn 3459 ± 31 4.59 ± 0.08 −0.63 ± 0.07 3437 ± 39 4.65 ± 0.12 −0.67 ± 0.09

DL 3779 ± 90 4.77 ± 0.07 −0.30 ± 0.16 3713 ± 73 4.80 ± 0.07 −0.28 ± 0.12
ODUSSEAS 3589 ± 80∗ . . . −0.45 ± 0.12∗ . . . . . . . . .

J04429+189 Pass19-code 3632 ± 151 4.71 ± 0.10 +0.07 ± 0.26 3710 ± 123 4.76 ± 0.07 −0.23 ± 0.22
SteParSyn 3651 ± 21 4.78 ± 0.09 +0.00 ± 0.05 3430 ± 46 4.77 ± 0.10 −0.41 ± 0.11

DL 3751 ± 114 4.73 ± 0.08 −0.11 ± 0.19 3703 ± 105 4.77 ± 0.10 −0.03 ± 0.14
ODUSSEAS 3471 ± 81∗ . . . −0.11 ± 0.12∗ . . . . . . . . .

J05314−036 Pass19-code 3763±151 4.66±0.10 +0.21 ± 0.26 3766 ± 123 4.74 ± 0.07 −0.22 ± 0.22
SteParSyn 3878 ± 15 4.76 ± 0.10 +0.21 ± 0.03 3908 ± 17 4.79 ± 0.11 +0.24 ± 0.04

DL 3980 ± 78 4.70 ± 0.06 +0.09 ± 0.19 3918 ± 93 4.72 ± 0.05 +0.06 ± 0.13
ODUSSEAS 3572 ± 81∗ . . . +0.04 ± 0.12∗ . . . . . . . . .

J07558+833 Pass19-code 3345 ± 199 4.75 ± 0.11 +0.57 ± 0.27 3305 ± 123 4.85 ± 0.05 +0.16 ± 0.22
SteParSyn 3276 ± 15 5.23 ± 0.07 −0.21 ± 0.05 3276 ± 15 5.27 ± 0.07 −0.23 ± 0.05

DL 3572 ± 186 5.20 ± 0.08 −0.28 ± 0.36 3409 ± 173 5.20 ± 0.13 −0.33 ± 0.31
ODUSSEAS 3608 ± 154∗ . . . −0.79 ± 0.22∗ . . . . . . . . .

J09143+526 Pass19-code 4054 ± 151 4.70 ± 0.10 −0.07 ± 0.26 4096 ± 151 4.74 ± 0.07 −0.37 ± 0.22
SteParSyn 4034 ± 17 4.98 ± 0.09 +0.04 ± 0.03 4020 ± 24 4.93 ± 0.12 +0.01 ± 0.05

DL 4049 ± 38 4.71 ± 0.05 −0.13 ± 0.16 4026 ± 52 4.73 ± 0.06 −0.19 ± 0.12
ODUSSEAS 3859 ± 92∗ . . . −0.19 ± 0.14∗ . . . . . . . . .

J09144+526 Pass19-code 4033 ± 151 4.71 ± 0.10 −0.11 ± 0.26 3982 ± 123 4.74 ± 0.07 −0.29 ± 0.22
SteParSyn 4006 ± 14 4.95 ± 0.08 +0.04 ± 0.02 3953 ± 9 5.16 ± 0.07 +0.01 ± 0.02

DL 4043 ± 37 4.71 ± 0.05 −0.13 ± 0.15 4008 ± 54 4.72 ± 0.06 −0.15 ± 0.10
ODUSSEAS 3816 ± 87∗ . . . −0.18 ± 0.14∗ . . . . . . . . .
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Table C.2. continued.

Run C Run C2
Karmn Method Teff [K] log g [dex] [Fe/H] [dex] Teff [K] log g [dex] [Fe/H] [dex]

J10508+068 Pass19-code 3239 ± 151 4.77 ± 0.10 +0.77 ± 0.26 3506 ± 123 4.85 ± 0.07 −0.16 ± 0.22
SteParSyn 3348 ± 42 4.85 ± 0.13 −0.06 ± 0.11 3291 ± 40 4.72 ± 0.13 −0.21 ± 0.10

DL 3514 ± 171 4.75 ± 0.10 −0.06 ± 0.24 3435 ± 121 4.85 ± 0.11 +0.04 ± 0.20
ODUSSEAS 3144 ± 84∗ . . . −0.11 ± 0.13∗ . . . . . . . . .

J11033+359 Pass19-code 3597 ± 151 4.73 ± 0.10 +0.02 ± 0.26 3619 ± 123 4.85 ± 0.07 −0.40 ± 0.22
SteParSyn 3346 ± 24 4.34 ± 0.08 −0.70 ± 0.06 3357 ± 28 4.46 ± 0.11 −0.66 ± 0.07

DL 3719 ± 101 4.72 ± 0.07 −0.25 ± 0.17 3652 ± 73 4.81 ± 0.07 −0.23 ± 0.14
ODUSSEAS 3571 ± 81∗ . . . −0.45 ± 0.12∗ . . . . . . . . .

J11054+435 Pass19-code 3707 ± 151 4.75 ± 0.10 −0.18 ± 0.26 3553 ± 123 4.91 ± 0.07 −0.48 ± 0.22
SteParSyn 3549 ± 27 4.73 ± 0.08 −0.53 ± 0.06 3481 ± 42 4.56 ± 0.11 −0.67 ± 0.10

DL 3779 ± 81 4.77 ± 0.07 −0.39 ± 0.12 3717 ± 65 4.84 ± 0.07 −0.39 ± 0.10
ODUSSEAS 3625 ± 81∗ . . . −0.51 ± 0.12∗ . . . . . . . . .

J11421+267 Pass19-code 3436 ± 151 4.75 ± 0.10 +0.17 ± 0.26 3632 ± 123 4.77 ± 0.07 −0.16 ± 0.22
SteParSyn 3449 ± 32 4.73 ± 0.07 −0.21 ± 0.07 3373 ± 36 4.67 ± 0.09 −0.38 ± 0.09

DL 3666 ± 128 4.72 ± 0.07 −0.09 ± 0.19 3618 ± 89 4.79 ± 0.07 −0.02 ± 0.15
ODUSSEAS 3395 ± 81∗ . . . −0.16 ± 0.12∗ . . . . . . . . .

J13005+056 Pass19-code 3245 ± 210 4.77 ± 0.11 +0.51 ± 0.28 3201 ± 123 4.77 ± 0.06 +0.77 ± 0.25
SteParSyn 3533 ± 5 4.61 ± 0.11 +0.59 ± 0.06 3586 ± 24 4.58 ± 0.14 +0.67 ± 0.06

DL 3589 ± 188 5.16 ± 0.11 −0.33 ± 0.33 3379 ± 181 5.18 ± 0.12 −0.23 ± 0.30
ODUSSEAS 3579 ± 175∗ . . . −0.83 ± 0.27∗ . . . . . . . . .

J13457+148 Pass19-code 3615 ± 151 4.73 ± 0.10 −0.02 ± 0.26 3627 ± 123 4.85 ± 0.07 −0.41 ± 0.22
SteParSyn 3516 ± 31 4.59 ± 0.09 −0.41 ± 0.07 3373 ± 32 4.44 ± 0.12 −0.72 ± 0.08

DL 3755 ± 84 4.81 ± 0.11 −0.22 ± 0.18 3720 ± 68 4.78 ± 0.06 −0.23 ± 0.13
ODUSSEAS 3648 ± 81∗ . . . −0.28 ± 0.13∗ . . . . . . . . .

J15194−077 Pass19-code 3447 ± 151 4.76 ± 0.10 +0.23 ± 0.26 3578 ± 123 4.84 ± 0.07 −0.23 ± 0.22
SteParSyn 3383 ± 36 4.72 ± 0.10 −0.27 ± 0.08 3332 ± 35 4.63 ± 0.11 −0.40 ± 0.09

DL 3581 ± 135 4.74 ± 0.09 −0.15 ± 0.20 3535 ± 87 4.91 ± 0.10 −0.08 ± 0.16
ODUSSEAS 3325 ± 81∗ . . . −0.31 ± 0.13∗ . . . . . . . . .

J16581+257 Pass19-code 3758 ± 151 4.67 ± 0.10 +0.12 ± 0.26 3785 ± 123 4.75 ± 0.07 −0.29 ± 0.22
SteParSyn 3772 ± 12 4.87 ± 0.07 +0.00 ± 0.02 3701 ± 29 4.94 ± 0.07 −0.13 ± 0.06

DL 3886 ± 80 4.80 ± 0.14 −0.10 ± 0.23 3826 ± 112 4.79 ± 0.15 −0.12 ± 0.19
ODUSSEAS 3602 ± 80∗ . . . −0.17 ± 0.12∗ . . . . . . . . .

J17578+046 Pass19-code 3256 ± 151 4.76 ± 0.10 +0.61 ± 0.26 3448 ± 123 4.89 ± 0.07 −0.27 ± 0.22
SteParSyn 3189 ± 26 4.63 ± 0.11 −0.50 ± 0.08 3175 ± 26 4.61 ± 0.11 −0.54 ± 0.08

DL 3412 ± 157 4.74 ± 0.11 −0.18 ± 0.19 3392 ± 92 5.00 ± 0.11 −0.17 ± 0.15
ODUSSEAS 3233 ± 84∗ . . . −0.68 ± 0.13∗ . . . . . . . . .

J22565+165 Pass19-code 3693 ± 151 4.69 ± 0.10 +0.10 ± 0.26 3624 ± 123 4.80 ± 0.07 −0.26 ± 0.22
SteParSyn 3795 ± 12 4.76 ± 0.08 +0.09 ± 0.02 3702 ± 41 4.97 ± 0.11 −0.04 ± 0.07

DL 3885 ± 79 4.73 ± 0.06 −0.12 ± 0.16 3824 ± 74 4.75 ± 0.06 −0.07 ± 0.12
ODUSSEAS 3551 ± 79∗ . . . −0.05 ± 0.12∗ . . . . . . . . .

J23419+441 Pass19-code 3195 ± 151 4.77 ± 0.10 +0.79 ± 0.26 3173 ± 123 5.12 ± 0.07 −0.52 ± 0.22
SteParSyn 3176 ± 26 5.17 ± 0.11 +0.21 ± 0.10 3167 ± 27 5.13 ± 0.11 +0.20 ± 0.11

DL 3246 ± 248 4.82 ± 0.14 +0.04 ± 0.29 3139 ± 137 5.03 ± 0.14 +0.08 ± 0.26
ODUSSEAS 2922 ± 87∗ . . . −0.83 ± 0.27∗ . . . . . . . . .

Notes. (∗) corresponding to Run C*.

Article number, page 35 of 35


