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Abstract—Dynamic interactions among AC railway networks
and train power converters have been reported to cause low-
frequency oscillations (LFO) and eventually instability phenom-
ena, which can collapse the railway power system. Several system
parameters can influence in the appearance of LFO, including
catenary length, power consumption, control bandwidths, etc.
This paper proposes a methodology for the analysis and un-
derstanding of the impact of all these parameters on the LFO.
The proposed method combines time-domain simulations with
eigenvalue analysis. Eigenvalue migration will be shown to be a
powerful tool to understand the risk of instability and to analyse
potential remedial actions.

I. INTRODUCTION

Modern train railway systems include a large number of

power electronic converters, aimed to improve performance

and efficiency. Despite the benefits, complex dynamic inter-

actions among the railway network and the controlled power

converters can produce undesired phenomena, which might

result in power system instability, including LFO phenomena

[1]–[7] and and harmonic instability [8]

LFO phenomena have been reported worldwide for different

types of railway networks under different operating conditions

(see Table I).

TABLE I: LFO reported cases

N º Case f0[Hz] fosc[Hz] Time

1 Zürich, Switzerland [5] 16.67 5 1995

2 Norway [3] 16.67 1.6 2007

3 Washington, USA [9] 25 3 2006

4 Thionville, France [4] 50 5 2008

5 Siemens test, Germany [1] 50 7 2006

6 Hudong Depot, China [6] 50 2-4 2008

7 Shanhaiguan Hub, China [7] 50 6-7 2011

Reported events include 16,6 Hz catenaries fed from rotary

converters [3], and static frequency converters [5], as well as

50 Hz catenaries fed from the grid [4]. Therefore, this paper

consider the phenomena occurred when the low-frequency

dynamics are mainly determined by the train vehicle.

There is a number of constructive and operational aspects

that will affect LFO formation, including catenary line length,

consumed power, design and tuning of train catenary-side

converter controllers (bandwidth of current and voltage con-

trollers, PLLs, SOGI, etc), interference from other trains, etc

[5]. It is not trivial therefore to determine the circumstances

in which LFO will occur.

In this paper, modes of operation (i.e. eigenmodes) that

can produce LFO are first obtained by means of time-domain

simulations, system dynamics being characterized using eigen-

values estimation techniques. Sensitivity is then studied by

means of eigenvalue migration analysis. System parameters

considered for the analysis presented in this paper include:

catenary length; power consumption; characteristics of on-

board catenary side converter: current and dc voltage control

bandwidths, SOGI, PLL; leakage inductance of the trans-

former; and dc-link capacitor.

The paper is organized as follows. Section II describes rail-

network model used for the study. Section III deals with LFO

description and modelling; section IV addresses eigenvalue

migration and sensitivity analysis. Finally, conclusions are

drawn in section V.

II. TRAIN-NETWORK CONTROL SYSTEM MODEL

A simplified representation of the railway system is shown

in Fig.1, it is seen to consist of three main elements: power

source, transmission line (i.e. catenary line), and power load

(i.e. train). For the study of LFO, an equivalent circuit of the

transmission line with only resistance and inductance is widely

used [1], [5], [6], as capacitive effects can be safely neglected.

Fig.2 shows the rail-network model, including control loops,

that will be used in this study. The main elements interfacing

the network and the traction inverters are the transformer,

single-phase four-quadrant power converter (4QC), and DC-

link capacitor. The traction inverter is represented as an

equivalent linear load in Fig.2.

A cascaded control structure consisting of an outer voltage

control loop and an inner current control loop is used to

regulate the DC link voltage vdc [9]. The control in Fig.2

operates in dq coordinates, the d-axis voltage cotrrespoding

to the catenary voltage. A second order generalized integrator

(SOGI) is being used to obtain the quadrature signals. A PLL

is used to obtain the grid voltage phase angle θ required for

the coordinate transformations to the synchronous reference

frame [7].

In order to get the desired current control bandwidth

(BWcc) and the voltage control bandwidth (BWvc), controllers

(i.e Kpcc,Kicc,Kpvc,Kivc) were tuned using the zero-pole

cancellation as described in [10]. The design of the PLL

was performed according to [11] where the PLL proportional



Fig. 1: Simplified representation of the train-network system

Fig. 2: Rail-network control system model (a) Complete Model (b) Current
Controller (c) SOGI (d) DC Voltage Controller (e) PLL

and integral gain are choosen as Kppll=Kpll, Kipll=K
2

pll/2.

Finally, the value of gain Ksogi for second order generalized

integrator (SOGI) was chosen as described in [5]

III. LFO MODELING

The typical catenary line voltage and train current wave-

forms when LFO occur, and its harmonic spectra, are shown in

Fig. 3. AC signals in the time domain oscillate at a frequency

f0, their magnitude (envelope) varying at a frequency fosc. The

corresponding spectrums show the fundamental component

an f0 escorted by two side bands at fL = f0 − fosc and

fH = f0 + fosc respectively. This behavior can be modelled

mathematically as shown by (1).

u(t) = U(t) sin (2πf0t)

= (U0 +∆U cos (2πfosct)) sin (2πf0t)
(1)

= U0 sin (2πf0t) +
∆U

2
sin (2πfLt) +

∆U

2
sin (2πfHt)

It is important to notice that, in general, the magnitude of

the harmonic spectra components fL and fH are not equal,

contrary to equation (1) illustrate. The accurate simulation

in Fig.3 shows the actual asymmetry of spectra components.

Due to this distortion in the catenary line voltage and vehicle

current, the low-frequency oscillations have caused a number

of serious issues, such as the malfunction of the protection

system, high-voltage, and current that could damage the elec-

trical/electronic equipment, transportation delays, and so on.
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Fig. 3: Simulated LFO phenomena: (a) Catenary Line Voltage and Train
DC-Link Voltage (b) Train Current (c) Catenary Line Voltage FFT (d) Train

Current FFT

IV. LFO ANALYSIS USING EIGENMODE IDENTIFICATION

In this section eigenmodes are used to characterize the

system dynamic behavior when LFO occur. Associated eigen-

values to each eigenmode are obtained by mean of numerical

estimation techniques.

The impact on LFO of catenary length and consumed power

are first considered. The sensitivity to 4QC control parameters,

transformer leakage inductance and dc-link capacitor is then

discussed using this approach.

A. Eigenvalue migration due to catenary length

Fig.4 shows the time domain transient response to a distur-

bance of the dc-link voltage, for different lengths of catenary



line. For this analysis it is considered that 4QC control

parameters are constant. The power consumed by the vehicle

was only 300 kW. This corresponds to the low power condition

reported in [4].

Degradation of dc-link voltage control as the distance

increases is readily observed in Fig.4, eventually leading to

instability. Transient responses shown in Fig.4 in response to

changes in catenary length can modeled as a set of complex

conjugates eigenvalues as shown in Fig. 5. The following terms

are defined from Fig. 5: ωn is the natural frequency and σ is

the attenuation constant and θ the eigenvalue angle. Using

these last two terms, damping ζ ratio and settling time Ts

are defined (2). Notice that the damping factor is zero when

θ = π/2, which is the stability limit.

ζ =
σ

ωn

= cos (θ) , Ts =
ln(0.02)

σ
(2)

The trajectory followed by the eigenvalues as the catenary

length increases show smaller damping coefficient and slower

dynamics, which results in a degradation of the system behav-

ior, eventually becoming unstable.

B. Eigenvalue migration with catenary length and consumed

power

Eigenvalue migration with load power is shown in Fig. 6 for

three different catenary lengths, short line (20 km), medium

line (60 km) and long line (120 km). It is interesting to note

that the overall shape of the eigenvalue trajectory is similar

for all the three cases. Lower power consumption result in

lower damping, i.e. higher instability risks. A closer analysis

also reveals that long catenaries combined with low power

consumption lead to the highest risk of instability, which is

consistent with the behavior reported in the literature [3],

[12].

C. Eigenvalue migration with dc-link voltage and current

control bandwidths

The influence of the 4QC voltage and current control closed-

loop bandwidths is discussed following. For the sake of

simplicity, four scenarios are considered for catenary length

and power consumption: 1) low distance - low power; 2) low

distance - high power; 3) high distance - low power; 4) high

distance - high power.

Fig. 7 shows the eigenvalues for different current-control

and voltage-control bandwidths for the long-distance catenary

- low power consumption case. The general trend is that,

for a given current control bandwidth, higher voltage-control

bandwidths results in eigenvalue angle θ (as defined in Fig.

5) closer to π/2 which means shorter damping ratio and

larger settling times (σ decreases) and larger natural frequency.

On the other hand, it is observed that for a given voltage

control bandwidth, larger current-control bandwidths result

in larger damping ratio shorter settling times (σ increases),

and larger natural frequencies. From Fig. 7 it can be noticed

that eigenvalue migration due to simultaneous variation in

voltage-control bandwidths and voltage-control bandwidth in
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Fig. 4: dc-link time response for variations in catenary-line lenght
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Fig. 5: Eigenvalue migration for variations in catenary-line lenght

this region are close to being orthogonal. It is concluded from

Fig. 7 that rather than the bandwidth of the current and voltage

control loops, the ratio BWcc/BWv will be critical for system

stability.

Fig. 8 shows the damping ratio, settling time and natural

frequency, as a function of BWcc and BWvc, for two different

values of the current control bandwidth and the four scenarios

discussed at the beginning of this section are considered: 1)

low distance - low power; 2) low distance - high power; 3)

high distance - low power; 4) high distance - high power. The

following conclusions are reached:

• It is observed from Fig.8(a) that the damping ratio (i.e.

system stability) always increase as the BWcc/BWvc

ratio increases. Low values of the BWcc/BWvc ratio will

jeopardize systems stabilty for any operation mode. This

trend is independent of the catenary distance and load

power.

• From Fig.8(a), in is observed that high distance - low

power scenario shows the highest risk of instability (lower
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damping ratio). The damping ratio is seen to change

linearly with BWcc/BWvc, independent of BWcc.

• The damping ratio increases when the load power level

increases and decreases when the catenary line increases.

This behavior is consistent with previous studies [7].

• It is observed from Fig.8(b) that the settling time of

the oscillations decreases as BWcc/BWvc increases. Low

BWcc/BWvc ratios in the high distance - low power

scenario values result in significant settling times, i.e. dc-

link voltage oscillation can persist for seconds.

• The natural frequency shown in Fig.8(c) trend to decrease

as the BWcc/BWvc ratio increases, but differences by a

factor of 2 can be observed depending on the scenario.

The frequency of the LFO might need be considered

if control strategies aimed to cancel LFO are to be

implemented [12].
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D. Eigenvalue migration with PLL and SOGI tuning

In addition to the control bandwidths and catenary distance

discussed previously, other elements involved in the control of

the 4QC might influence the LFO. These can include the PLL

used to synchronize the 4QC with the catenary ac voltage, and

the SOGI (depending on the control strategy being used).

Fig.9 shows the eigenvalue migration for variations in gains

Kvsogi and Kisogi of voltage and current SOGI. The gains are

varied within a range of 0.7 to 1.3 or their nominal values,

Kvsogi−nominal = 0.8 and Kisogi−nominal = 1 respectively.

Increasing Kvsogi migrates system eigenvalues towards in-

stability limit (i.e. shorter damping ratio), while increasing

Kisogi, migrate the eigenvalues away from stability limit (i.e.

larger damping ratio). However, increasing Kisogi implies an

increasing of its bandwidth, which could compromise SOGI

low-pass filter characteristic. It is concluded that a trade-off is

required, sensitivity analysis of SOGI is performed in section

IV-F.

Fig.10 shows eigenvalue migration for variations in gain

Kpll. As mentioned in section II, the design of the PLL

was performed according to [11] where the PLL proportional

and integral gain are choosen as Kppll=Kpll, Kipll=K
2

pll/2.

Generally speaking, PLL was found to have a marginal impact.

Increasing Kpll by a factor as large as ten is seen to have a

marginal effect on the eigenvalues. A sensitivity of PLL is

performed in section IV-F.

E. Eigenvalue migration due to the leakage inductance (Ln)

of transformer and dc-link capacitor (Cd)

Fig.11 shows the eigenvalue migration as a function of

leakage inductance of transformer and dc-link capacitor. From

this figure, it is possible to see that larger values of capacitance

and inductance of the transformer improve stability against

LFO. However, bigger capacitors are bulky and expensive,

what places obvious constraints on the values that could be

used. Also, designing a transformer to get a larger value of

leakage inductance could limit the power transfer capability.

Finally, from Fig.11, close to the stability limit, low values
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of the leakage inductance might provoke oscillations at lower

frequencies than low values of the DC-Link capacitance. The

trajectory of the eigenvalue migration of Cd tends to go to

stability limit meanwhile increasing the oscillation frequency.

F. Combined sensitivity analysis

A different approach to analyze the sensitivity to system

parameters discussed in the previous subsections is to obtain

the variation of the eigenvalues to an incremental variation of a

given parameter, with the rest of system parameters remaining

constant.

Fig.12 shows the variation of damping ratio, settling time

and natural frequency, which results from this analysis. The

analysis is performed for the case of of a catenary length of

120 km and a power consumption of 300 kW. The system is in

this case close to the stability limit. System parameters being

considered are changed within a range of 0.8 to 1.2 of their

nominal value.

From Fig.12 the magnitude of the slope of each curve at the

operational point (O.P) gives the sensitivity of the damping

ratio, settling time and natural frequency to variation in the
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Fig. 12: Damping ratio, Settling Time and Natural Frequency as a function of
proportional factor of O.P.

proportional factor. For the damping ratio, positive slopes

indicate that the system becomes more stable as the parameter

being consider increases, the contrary occurs for negative

slopes. Same reasoning applies for the setting time and natural

frequency.

TABLE II: Sensitivity of dynamic system characteristics at O.P. Arrows ↑
and ↓ stands for positive sensitivity and negative sensitivity. Number of

arrows show the degree of sensitivity.

Damping R.(ζ) Settling T.(Ts) Natural Freq. (ωn)

BWvc ↓↓ ↑↑ ↑↑

BWcc ↑↑ ↓↓ ↑↑↑

Ln ↑↑↑ ↓↓↓ ↑↑↑

Cd ↑↑ ↓↓ ↓↓

Kvsogi ↓ ↑ ↑

Kisogi ↑ ↓ ↑

Kpll - - -

Table II summarizes the results shown in Fig.12. It is

observed that for the operating point being considered, LFO

show highly sensitive to Ln and control bandwidths, while

sensitivity to SOGI parameters is low, practically no sensitivity

to PLL tuning is observed.

It is interesting to note that increasing the voltage-control

bandwidth decreases the damping of the system, while increas-

ing the current-control bandwidth, increases the damping of

the system. Rather than the absolute values of the current and

voltage control bandwidths, the system response is primarily

given by the ratio BWcc/BWvc. This goes in accordance the

analysis presented in section IV-C. It is concluded that low

values of BWcc/BWvc significantly increase the risk of LFO.

Finally, it is noted that the trajectories shown in Fig. 12

and not necessarily straight lines. This is due to the non-linear

nature of the system. This suggest that parameter sensitivity

will depend on the operating point, this is a subject of ongoing

research.

V. CONCLUSIONS

Time-domain simulation combined with eigenvalue migra-

tion analysis is proposed in this paper for the analysis of

LFO phenomena in AC railway systems. The proposed method

allows an insightful visualization of the sensitivity of LFO to

catenary and train parameters, and consequently identifying

critical modes of operation, as well as to propose remedial

actions. It is concluded from the analysis performed in this

paper that the worst scenario for LFO stability occurs for the

case of trains operating far from substation and with low-

power consumption. Catenary inductance (i.e. infrastructure

parameter) and BWcc/BWv ratio (i.e. AFE control parameters)

are the main two factors affecting to system stability.
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