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ABSTRACT 
 
 This paper is focused on the analysis of fracture mechanics in metallic materials through 

the finite element method. We shall use a software called Abaqus and subroutines that enhance 

it to experiment the plastic deformation process in a Small Punch Test (SPT) and compare it to 

experimental results.  

 

 This study will take a deeper focus at the phenomenon known as strain gradient 

plasticity, which consists on the hardening experienced when considering the size effect on 

small specimens and it´s demonstration will be the main objective of this work. In order to do 

this, a model of the before mentioned SPT will be developed from scratch, an UMAT (User 

Material) subroutine will be implemented and the effect of size in stress-strain graphs will be 

evaluated and then compared it to experimental data obtained in the laboratory. 

 

 This work consists of three theoretical chapters, one chapter focused in the simulation 

and the results obtained and a chapter on conclusions.  
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CHAPTER 1 
 

Crystalline metallic structures 
 

 

During this first chapter an understanding of the basic structure of metals will be 

developed, likewise, the defects that can be found in this basic structure will be explained. 

The main reason for this is that, as we will see later, defects existing in a crystal structure 

will play an important role when developing the topic of plastic deformation. 

 

Besides this, a brief explanation on the work hardening will be provided and the 

fracture mechanism will be explained hoping the reader will get an idea of the different 

mechanics in a brittle and ductile fracture. This chapter aims to be the basic foundation that 

sets the frame in which this work is developed. 
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1. 1.- MICROSTRUCTURE OF METALS 

 

 

When analyzed on a microscopic scale, metals present a crystalline structure as seen 

in figure 1.1. This means atoms are packed in a structure in which the vicinity of each atom 

is equal to the next one. By studying an atom and its proximity, we can get a full vision of 

the whole network of atoms that compose the studied metal.  

 

 

 

 

It´s important to note that different metals will take different crystalline structures 

depending on its nature. Thankfully, most metals will take three quite simple shapes; either 

the hexagonal closest packed (HCP), the face-centered cubic (FCC) or the body centered 

cubic (BCC). Most of the commonly used metals will use either of them, for example, zinc 

displays an HCP structure, nickel an FCC structure and iron a BCC structure. Different 

examples of elements that are found in each of the structures can be seen in figure 1.2. 

FIGURE 1.1.- Crystalline network in sodium chloride (NaCl) 
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1. 2.- DEFECTS IN THE CRYSTALINE STRUCTURE PRESENT IN 

METALS 

 

Defects in crystalline structure confer the material important properties that will be 

of crucial importance when analyzing fracture mechanics. It´s important to stablish a clear 

classification of the different types of defects present on the crystalline structures. Attending 

to their size, we will have point defects; which exist on an atomic level, linear defects or 

dislocations; which affect lines of atoms, and planar defects; which are found in the interface 

separating two crystals.  

 

1.2.1.- Point defects 

 

An important detail about point defects is that they generate a stress field, which may 

be of much greater size than the defect itself. The defects are described in figure 1.3. and we 

can classify them as follows: 

 

 Vacancies: When there is an atom missing in a point of the structure in which 

there should be one. 

 

FIGURE 1.2.- FCC, BCC and HCP structures 
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 Interstitial atom: It will happen when a foreign atom (as in, an atom that 

should not be found in the studied crystalline structure) or one of the atoms 

of the structure is found positioned interstitially. 

 

 Substitutional atom: This defect is when there is a foreign atom occupying 

a position in the structure in which we should find an atom of the same nature 

as the others of the structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.2.- Linear defects 

 

As said before, linear defects affect entire lines of atoms, this kind of defect will 

happen during the solidification process of the metal. We can differentiate between screw 

dislocation and edge dislocation. 

 

 Screw dislocation: When the movement of the atoms happen in a direction 

perpendicular to the AB line then we´ll have a screw dislocation. This is clearly 

visualized in figure 1.4. 

 

FIGURE 1.3.- Examples of vacancy (A), interstitial 

atom (B) and substitutional atom (C) 
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 Edge dislocation: When the movement of the atoms happen in a direction 

parallel to the AB lines we´ll have an edge dislocation. This is also easier to 

understand looking at figure 1.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ilustración 1 - Screw and edge dislocations FIGURE 1.4.- Screw and edge dislocations 
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1. 2. 3.- Planar defects 

 

As we know, metals are formed by small crystals as seen in figure 1.5., the regions 

where these crystals touch each other are called grain boundaries. It will be in these 

mentioned grain boundaries where planar defects are found. These defects are classified as 

follows: 

 

 

 Stacking fault: It happens when there is an abnormal sequence on the crystalline 

structure, for example, if we have a material with a FCC sequence of ABCABC and 

the sequence is altered to a ABCBCABC then this is a stacking fault. This is what 

happens in figure 1.6. 

Ilustración 2 - Microscopic image of a metal FIGURE 1.5.- Microscopic image of a metal 
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 Grain Boundaries: When the process of solidification happens the crystal growth 

will lead to an infinite number of small crystals being formed within the solid. The 

crystals will grow until meeting each other, thus the arrangement of the atoms in the 

grain boundaries will not be perfect.  

 

 

1. 3.- HARDENING OF METALS 

 

We regard hardening as the process in which, due to some process the material has 

undergone, there is an increase in the elastic limit. In order to have plastic deformation the 

defects mentioned in the last part come into play, the dislocations will require a minimum 

force to displace them, hardening will introduce obstacles that will impede these movement 

thus increasing the force needed for the deformation. There are different mechanics to induce 

hardening on a material, particularly on metals. 

 

The first process that shall be mentioned is known as Hall-Petch method. This 

method relies on the increased difficulty dislocations will experience when moving due to a 

reduction of the grain size. When dislocations reach a grain boundary, extra stress is needed 

to be able to move past it. As a logical consequence, when the grains are smaller the number 

of them will increase and the dislocation will be forced to move past a higher number of 

dislocations. The final consequence is that a bigger stress will be needed for deformation.  

 

FIGURE 1.6.- Stacking fault 
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A second process would be the precipitation hardening. In this method, the increased 

dislocation movement difficulty is achieved through the introduction of particles with 

impurity phase. The procedure to create these is based in the changes in solid solubility due 

to temperature. 

 

A third and very important process is work hardening. When a metal undergoes a 

cold plastic deformation its number of dislocations increases, an increase in the number of 

dislocations inevitably leads to dislocations “crashing” and tangling to each other when 

trying to move through the material. The process is described in figure 1.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A fourth and last process for achieving hardening in a metal would be solid solution 

strengthening. In this process hardening is achieved by introducing atoms of one element to 

the crystal network of a different element, the result is a solid solution. This process is 

substitutionally or interstitially. The next figure 1.8. represents both situations: 

 

 

 

FIGURE 1.7.- Work hardening in a material 
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1. 4.- FRACTURE MECHANISM 

 

By definition, a fracture is a process in which two or more parts of the same object 

or material separate due to the tension produced by a force or addition of forces. 

Understanding fractures has long been one of the most interesting topics in engineering given 

that most fractures will lead to a critical failure of the system in question. We shall classify 

fractures in two categories: brittle and ductile fractures. 

 

 

1. 4. 1.- Brittle fractures 

 

 Brittle fractures show no significant deformation of the specimen before fracture, it 

is sometimes described as a “clean” cut like seen in figure 1.9. It´s typical of materials such 

as ceramics, but not so common in metals. Commonly, brittle fracture happens when there 

is a breakage of the atomic bonds between the atoms of a certain plane. In metals, brittle 

fracture usually happens at very low temperatures, this is because when the metal suffers 

stress and the dislocations start moving, the nearby atoms in the crystal structure do not move 

because of the low temperature, this facilitates the rapid growth of cracks. 

 

 

FIGURE 1.8.- Solid solution strengthening 
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Griffith theory on brittle fracture states that an existing crack will grow in size when 

the rate of strain-energy release from the surrounding stress field is bigger than the stress 

that can be assimilated by the crack extension. In fracture mechanics, it´s considered that the 

crack will grow when the stress field around its tip achieves a certain value. 

 

 

1. 4. 2.- Ductile fractures 

 

 A ductile is a fracture in which there is obvious plastic deformation before fracture. 

In normal conditions, it´s the most common type of fracture in metals and it´s the object of 

study of this work. 

 

As we will see later, when analyzing an axial loading test, it is interesting to note 

than in ductile fractures the maximum load and the fracture load are different, with the 

fracture load being smaller. This is because the material experiences plastic deformation 

until the maximum load point, and then the deformation will focus on the place where the 

fracture happens 

 

There are different stages that happen during a ductile fracture, the stages can be 

clearly visualized in figure 1.10.:  

Ilustración 3 - Examples of brittle fractures FIGURE 1.9.- Examples of brittle 

fractures 
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 Void formation: Voids are formed due to the tension applied and the intrinsic 

porosity of the material.  

 

 Voids growth: As stress is applied the voids grow. 

 

 Void coalescence: As the voids keep growing they eventually touch each other 

leading to bigger voids. 

 

 Fracture: Once the voids completely grow and coalescence enough the material will 

be divided in two parts and we will have the fracture. 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.10.- Stages of ductile fracture 
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CHAPTER 2 
 

Flow plasticity theory 
 

 

Plasticity plays a crucial role on this study. As mentioned before, in a ductile fracture 

the material will experience noticeable plastic deformation before the fracture happens. 

During this chapter we will develop understanding on the flow plasticity theory. 

 

 On the first part a brief introduction to the axial deformation test and the different 

behaviors of ductile and brittle materials will be provided to the reader. Then, we will move 

on to some general topics interesting when treating the subject of flow plasticity and lastly 

some of the most commonly used failure criterion will be briefly introduced. 
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2.1.- INTRODUCTION 

 

 When a material is subjected to a certain force, part of it will deform elastically but 

part of it will experience permanent deformation. In many engineering’s applications it is of 

crucial importance understanding when the deformation will stop being elastic and behave 

plastically. Ideally speaking, materials in service will be loaded to a point within the elastic 

limit and won´t experience plastic deformation. In this case, fatigue would be the 

determining factor on fracture, but fatigue is out of the scope of this study. 

 

 The most common test for studying the behavior of a material that´s suffering tension 

is the stress-strain test as in Figure 2.1. The interest of this test is that, while being relatively 

simple, it shows a clear picture of the behavior of a material.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During the test, a specimen will be subjected to a gradual load while the stress and 

strain are recorded and compared to the initial elongation and section. The results of this test 

in a ductile material will look as follows in Figure 2.2.: 

FIGURE 2.1.- Axial load test machine and specimen 
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There is a lot of interesting data to extract from this test. We shall analyze it step by 

step. For the first part of the test, the specimen will experience elastic deformation, which 

means that, if the test was to be stopped at any moment during this phase, we would 

theoretically recover the initial length. The deformation in this stage is given by Hooke´s 

law which is numerically defined as follows: 

 

𝐹 = −𝑘. 𝑥 (2.1. ) 
 

 

Where F is the force, k is the spring constant and x the elongation. Applying this 

formula to our particular case we find a relationship between the stress, strain and the 

modulus of elasticity or Young modulus (E): 

 

𝜎 = 𝐸. 휀 (2.2. ) 

 

FIGURE 2.2.- Stress-strain graph for ductile material 
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 After this first phase, having passed the yield strength we now have plastic 

deformation, the curve shows a counter intuitive shape by going up then going down after 

the ultimate strength and before the fracture point, the reason for this is the before mentioned 

voids and porosity of the materials. Before the breaking point, the void growth will require 

lesser stress. It´s interesting to note that before the ultimate strength the specimen will 

experiment strain hardening and after it will experiment necking, which is a phenomenon in 

which the deformation will concentrate in a point. We can see an example of a deformation 

and fracture in a specimen before and after the experiment in Figure 2.3. 

 

 

  

 It is worth mentioning that when working with brittle materials it´s difficult to 

differentiate the elastic from the plastic zone. In this cases, it is assumed that the yield 

strength is found at 0,2% plastic deformation. As we can see in the following figure:  

Ilustración 4 - Ductile fracture after axial load test FIGURE 2.3.- Ductile fracture after axial load test 
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2. 2.- FUNDAMENTALS OF THE FLOW PLASTICITY THEORY 

 

 We will now move on to a deeper analysis of the flow plasticity theory. We will 

understand different concepts that are important for the understanding of plastic flow. During 

this chapter it´s important to note that the following notation will be used indifferently: 

 

 

∆𝝈𝒊𝒋 ↔ ∆𝜺𝒊𝒋                 or                    �̇�𝒊𝒋 ↔ �̇�𝒊𝒋              or                  𝒅𝝈𝒊𝒋 ↔ 𝒅𝜺𝒊𝒋 

 

 

Flow plasticity theory was developed in the 1930s mainly for metals, but it can also 

apply to other types of materials. By analyzing a simple traction test on a metal bar we can 

get a 1D picture (Figure 2.5.) of the plastic deformation. 

 

FIGURE 2.4. Axial load test for 

brittle material 
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We can easily spot a noticeable difference in behavior after reaching the yield stress 

(𝜎𝑌). After this point a small increase in the tension results in a big deformation, we shall 

refer to the region after the yield stress as the elasto-plastic region. We can observe that for 

a deformation OBA we will have elastic (thus recoverable) deformation which will equal the 

elongation from B to A and plastic deformation which is the elongation from 0 to B. 

  

The previous figure is a good representation of what could be considered an ideal 

elasto-plastic behavior. Reality is that different materials will behave differently when 

subjected to this same traction test, as visualized in figure 2.6. In the following figure we 

can see some oversimplified curves that represent different behaviors: 

 

Ilustración 5 - Axial load test in which the specimen is loaded and unloaded repeatedly before fracture 

Ilustración 6 - a) Rigid-perfectly-plastic b) Elastic-perfectly-plastic c) Rigid Linear hardening d)Elastoplastic 

FIGURE 2.5.- Axial load test in which the specimen is loaded and unloaded 

repeatedly before fracture 

FIGURE 2.6. a) Rigid-perfectly-plastic b) Elastic-perfectly-plastic c) Rigid Linear 

hardening d) Elastoplastic 



 
 

D. Luis Eloy García-Mauriño Rey 
 

U N I V E R S I D A D  D E  O V I E D O   

Escuela Politécnica de Ingeniería de Gijón Hoja 18 de 63 

2. 2. 1.- Additivity of deformations 

 

 As we know from the previous part, when subjected to a tension, a material will 

experience plastic and elastic deformation. We can apply the principle of additivity to 

calculate the total deformation, this means that it will be equal to the addition of the elastic 

deformation plus the plastic deformation: 

 

𝒅𝜺𝒊𝒋 = 𝒅𝜺𝒊𝒋
𝒆 + 𝒅𝜺𝒊𝒋

𝒑
 (𝟐. 𝟑. ) 

 

In order to calculate the elastic deformation (𝒅𝜺𝒊𝒋
𝒆 ) we can apply the principles learnt 

in the previous section about the theory of elasticity: 

 

𝒅𝜺𝒊𝒋
𝒆 = 𝑪𝒊𝒋𝒌𝒍 + 𝒅𝝈𝒌𝒍 (𝟐. 𝟒. ) 

 

Where 𝐶 = 𝐸−1 , and 𝐸−1  is the inverse of the elastic stiffness matrix. In the 

following sections we will learn how to calculate the plastic deformation. 

 

 

2. 2. 2.- Yield surface  

 

The yield surface graphically represents the different combinations of tensions that 

will result in elastic and plastic deformations (Figure 2.7.). It is of interest as it generalizes 

the yield limit we had obtained in 1D during the introduction of this chapter. 

 

 

 

 

 

 

 

 

  

 

 Ilustración 7 - Yield surface FIGURE 2.7. Yield surface 
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For the figure above, there will be elastic behavior within the shape and plastic 

deformations on its surface. The general expression of the yield surface is as follows: 

 

𝐹(𝜎𝑖𝑗 , χ𝑖) = 0 (2.5. ) 

 

 It is quite intuitive to imagine that for the different elasto-plastic behaviors seen in 

figure 15 we will have different yield surfaces: 

 

 Perfect elasto-plastic: The yield surface is exclusively dependent of the tensions, 

there will be no shape variation during the load process. 

 

 Rigid linear hardening: The yield surface expands during the load process. 

 

 Elastoplastic: The yield surface contracts during the load process. 

 

As stated before, the specimen is undergoing plastic deformation when it´s located 

on the surface of the yield surface. We can make the consideration that: 

 

𝐹 (𝜎𝑖𝑗
∗ , χ

𝑖𝑗
∗ )  < 0  

 
⇒   𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑟𝑒𝑔𝑖𝑚𝑒 

 

𝐹 (𝜎𝑖𝑗
∗ , χ

𝑖𝑗
∗ ) = 0  

 
⇒   𝐸𝑙𝑎𝑠𝑡𝑜 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑟𝑒𝑔𝑖𝑚𝑒 

 

𝐹 (𝜎𝑖𝑗
∗ , χ

𝑖𝑗
∗ )  > 0  

 
⇒   𝐼𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 

 

 

2. 2. 3.- Yield law 

 

This law allows us to understand the relationship between the different components 

of the plastic incremental strain. We shall assume that existence of a function of the stresses: 
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𝐺(𝜎𝑖𝑗 , ξ𝑖) = 0 (2.6. ) 

 

This shall be known as elastic potential so that plastic deformations can be calculated 

as: 

 

𝑑휀𝑖𝑗
𝑝

= 𝑑λ
𝜕𝐺

𝜕𝜎𝑖𝑗
 (2.7. ) 

 

Where 𝑑λ is the numerical value of the plastic deformation, G is the direction of the 

plastic deformation; the direction of the plastic strain is parallel to the direction of the 

gradient of the plastic potential. 

 

 

2. 2. 4.- Hardening law 

 

The hardening expresses the variation in the size, shape, or position of the yield 

surface. This law does not exist in the case of perfect plasticity, since in this case the yield 

surface remains constant. Otherwise, if the material is softenable or stiffenable, it is 

necessary to specify how the yield surface varies and, since the yield surface is defined by 

expression (2.4.), the hardening law will express the variation of the parameters that appear 

in that equation. Normally, these parameters are made to depend on the accumulated plastic 

strain. 

 

𝛘 = 𝛘 (𝜺𝒊𝒋
𝒑

) (𝟐. 𝟖. ) 

 

 

 

2. 3.- YIELD CRITERION 

 

There are many criterions for the calculation of the point in which plastic deformation 

starts. Considering the behavior difference between ductile and brittle materials it´s evident 

that there must be different models for each case. We will now review the most common 

criterion used nowadays. 
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2. 3. 1.- Rankine criterion 

 

 Rankine criterion should be mostly used for brittle materials and it´s not advisable 

for ductile ones. The criterion can be defined as:  

 

 The yield of the material begins when the maximum normal stress in the material 

reaches a critical value equal to the yield stress obtained for a specimen of the same material 

in a uniaxial tensile test. 

 

 If we consider the principal stresses to be 𝜎1 ≥ 𝜎2 ≥ 𝜎3 , 𝜎𝑡  the failure stress in 

tension and 𝜎𝑐 the failure stress in compression. The criterion states that there will be failure 

when: 

 

𝜎1 ≥ 𝜎𝑡     𝑜𝑟     𝜎3 ≤ 𝜎𝑐   
  

Graphically: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.8. Graphical 

representation of the Rankine 

criterion 
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2. 3. 2.- Von Mises criterion 

 

 Contrary to the Rankine criterion, Von Mises is very useful at analyzing failure 

criterion on ductile material. It can be defined as: 

 

 The von Mises criterion says that when a critical value is reached by the shear energy 

the yielding of the material will begin. For a general case with three principal stresses: 

 

(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

 

 

 The constant is found with the uniaxial test, which means that both 𝜎2 and 𝜎3 are 

zero and 𝜎1=Y. Then the formula becomes: 

 

(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2 = 2𝑌2  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.9. Graphical representation of 

the Von Mises criterion 
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2. 3. 3.- Tresca criterion 

  

 Tresca criterion can be considered as an alternative to the Von Mises criterion. It will 

provide results without as much accuracy as Von Mises but with a higher safety margin. 

Tresca criterion can be defined as: 

  

 The Tresca criterion says that when a critical value is reached by the maximum shear 

stress (known as shear yield strength) yielding will begin. 

 

 If we consider the principal stresses 𝜎1 ≥ 𝜎2 ≥ 𝜎3 we can find the maximum shear 

stress with the following relationship: 

 

𝜏𝑚𝑎𝑥 =
1

2
(𝜎1 − 𝜎3) (2.9) 

 

 

 In a simple axial loading test both 𝜎2 and 𝜎3 are zero, then we can find the failure 

criterion as: 

𝜏𝑓 =
1

2
𝜎𝑓 (2.10. ) 

  

Maximum Shear stress for failure can be found just by simply combining both 

previous equations: 

 

𝜏𝑚𝑎𝑥 ≥  
1

2
𝜎𝑓      

 
⇔      𝜎1 − 𝜎3 ≥ 𝜎𝑓 (2.11. ) 

  

We can graphically observe the difference in the areas produced by the Von Mises 

and Tresca criterion: 
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2. 3. 4.- Drucker-Prager criterion  

 

 

 The Drucker-Prager criterion is a modification of the Von Mises criterion, a different 

behavior in traction and compression is considered. In this criterion, an extra hydrostatic-

dependant first invariant 𝐼1 and 𝐽2 are introduced to the Von Mises equation: 

 

𝒇(𝑰𝟏, 𝑱𝟐) ≡ 𝜶𝑰𝟏 + √𝑱𝟐 − 𝒌 = 𝟎 (𝟐. 𝟏𝟐. ) 

 

 

 As seen in the equation, there are new material parameters 𝜶 and k. Both can be 

calculated as follows: 

 

𝜶 =
𝟐 𝐬𝐢𝐧 𝜹

√𝟑(𝟑 − 𝐬𝐢𝐧 𝜹)
          𝒌 =

𝟔𝒄 𝐜𝐨𝐬 𝜹

√𝟑(𝟑 − 𝐬𝐢𝐧 𝜹)
 

 

 

 

Ilustración 8 - Comparison between Von Mises 
and Tresca criterion 

FIGURE 2.10. Comparison between Von 

Mises and Tresca criterion 
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FIGURE 2.11. Graphical representation of the Drucker-Prager 

criterion 
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CHAPTER 3 
 

Strain gradient plasticity 
 

 

 Traditionally, when we talked about plastic deformations, we didn´t take into account 

the different behaviors due to the size of the work piece. Experimental results indicate that 

the materials show strong size effects when deformed within the plastic zone.  

 

 In this chapter we will first study experiments that prove this phenomenon and the 

dislocations that justify its existence. Then we will move to Gao et al. mechanism-based 

strain gradient plasticity theory and we will finish by explaining what is an UMAT 

subroutine for Abaqus and how can we use it to implement the already mentioned 

mechanism-based strain gradient plasticity theory. 
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3.1.- INTRODUCTION 

 

There are two simple experiments we can use to clearly see this difference due to 

size, one is the already mentioned uniaxial loading test and the other one is done by 

subjecting a cylindrical specimen to a torsion force. The results are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in figure 3.1., a reduction of section leads to stronger behavior in both of the 

test. The reason for this is that the stress at a point may be affected by not only the strain but 

also the strain gradient if the length scale associated with the deformation field is small, and 

in this case it becomes necessary to include the strain gradient term in the description of 

FIGURE 3.1. Experimental tests that show the effect of 

strain gradient plasticity 
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plasticity deformation at small length scale. We can assume strain gradient to be inverse 

proportion to the length of the plastic deformation region. A smaller length will mean that a 

stronger strain gradient effect will be noted 

 

It´s important to understand that when a material is being deformed two kinds of 

dislocations will appear. On the one hand, there will be statistically stored dislocations (SSDs) 

and on the other hand there will be geometrically necessary dislocations (GNDs). 

Statistically stored dislocations accumulate randomly when they trap each other during the 

deformation process, geometrically necessary dislocations are necessary for compatible 

deformation of various parts of the material. 

 

 

 

When the density of GNDs is bigger than the density of SSDs we can say that GNDs 

control the work hardening of the material, they do this by becoming “obstacles” to slip. The 

size effects we saw in figure 3.1. are attributed to GNDs which, in turn, are associated to the 

plastic strain gradients. Plastic strain gradients appear either because of the geometry of 

loading or because of the non-uniform deformation of the material. 

 

 

 

FIGURE 3.2. Illustration of SSD and GND dislocations 
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3. 2.- MECHANISM-BASED STRAIN GRADIENT PLASTICITY 

THEORY 

 

 Gao et al. proposed a mechanism-based strain gradient plasticity theory based on a 

multiscale framework linking the microscale notion of SSDs and GNDs to the mesoscale 

notion of plastic strain and strain gradient. This theory assumes that: 

 

1. The motion of the dislocations controls the microscale flow stress, it will happen 

under the law for strain gradient plasticity, which is as follows: 

 

�̃� = 𝝈𝒀√𝒇𝟐(�̃�) + 𝒍𝜼 (𝟑. 𝟏. ) 

 

Where �̃� is the stress tensor, 휀̃ is the strain tensor and l is the length of the material: 

 

𝒍 = 𝟑𝜶𝟐(
𝝁

𝝈𝒀
)𝟐𝒃  

 

Where 𝝁 is the shear modulus, b is the Burgers vector and 𝜶 is an empirical constant 

which is usually in the range of 0.2 to 0.5. 

 

2. We can define a mesoscale cell as a cell large enough for the application of the Taylor 

model yet sufficiently small to apply a simplification of the strain field as linear. In 

this cell, we can assume negligible higher-order strain gradients. The equation that 

relates the microscale and mesoscale at the mesoscale cell is the plastic work equality: 

 

∫ �̃�𝒊𝒋
′ 𝜹�̃�𝒊𝒋𝒅𝑽

 

𝑽𝒄𝒆𝒍𝒍

= (𝝈𝒊𝒋
′ 𝜹𝜺𝒊𝒋 + 𝝉𝒊𝒋𝒌

′ 𝜹𝜼𝒊𝒋𝒌)𝑽𝒄𝒆𝒍𝒍 (𝟑. 𝟑. ) 

 

Where 𝝈 is the tension, 휀 is the strain, 𝜏 is the higher-order stress and 𝜼 is the strain 

gradient. 
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3. The fundamentals of the conventional theory of plasticity are preserved when 

working on a microscale. We shall assume that the Schmid stress is proportional to 

the dislocation slip so we can obtain the following relationship: 

 

𝒅�̃�𝒊𝒋

𝒅�̃�
=

𝟑�̃�𝒊𝒋
′

𝟐�̃�𝒆
 (𝟑. 𝟒. ) 

 

Where 𝒅�̃�𝒊𝒋 is the effective strain increment and �̃�𝒆 is the effective stress. We can 

obtain their values through the following formulas: 

 

𝒅�̃� = √
𝟐

𝟑
𝒅�̃�𝒊𝒋𝒅�̃�𝒊𝒋 (𝟑. 𝟓. ) 

 

�̃�𝒆 = √
𝟐

𝟑
�̃�𝒊𝒋

′ �̃�𝒊𝒋
′ (𝟑. 𝟔. ) 

 

 The microscale yield criterion is �̃�𝒆 = �̃� and the effective strain can be calculated: 

  

�̃�𝟐 =
𝟐

𝟑
�̃�𝒊𝒋�̃�𝒊𝒋 (𝟑. 𝟕. ) 

 

�̃�𝜹�̃� =
𝟐

𝟑
�̃�𝒊𝒋𝜹�̃�𝒊𝒋 (𝟑. 𝟖. ) 

 

 These three assumptions are of crucial important when trying to analyze and 

understand the mechanism-based strain gradient plasticity theory. We shall now consider a 

cubic unit cell in mesoscale whose edges are all 𝑙𝜀, a value much shorter than the 𝑙 calculated 

before. We can then find the following relationship for the microscale strain, strain gradient 

and mesoscale strain: 
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�̃�𝒊𝒋 = 𝜺𝒊𝒋 +
𝟏

𝟐
(𝜼𝒌𝒊𝒋 + 𝜼𝒌𝒋𝒊)𝒙𝒌 (𝟑. 𝟗. ) 

 

 In which 𝒙𝒌 represents the local coordinates with origins at the center of the cell. If 

we substitute the following kinematic assumption into the equation: 

 

𝜹�̃�𝒊𝒋 = 𝜹𝜺𝒊𝒋 +
𝟏

𝟐
(𝜹𝜼𝒌𝒊𝒋 + 𝜹𝜼𝒌𝒋𝒊)𝒙𝒌 (𝟑. 𝟏𝟎) 

 

 And assuming 𝝈𝒊𝒋
′  and 𝝉𝒊𝒋𝒌

′  can be represented by the following equations: 

 

𝝈𝒊𝒋
′ =

𝟏

𝑽𝒄𝒆𝒍𝒍

∫ �̃�𝒊𝒋
′ 𝒅𝑽

 

𝑽𝒄𝒆𝒍𝒍

 (𝟑. 𝟏𝟏. ) 

 

𝝉𝒊𝒋𝒌
′ =

𝟏

𝑽𝒄𝒆𝒍𝒍
𝑫𝒆𝒗 [

𝟏

𝟐
∫ �̃�𝒋𝒌

′
 

𝑽𝒄𝒆𝒍𝒍

𝒙𝒊 + �̃�𝒊𝒌
′ 𝒙𝒋𝒅𝑽] (𝟑. 𝟏𝟐. ) 

 

 Where Dev [...] represents the deviatoric part of […]. Given 𝒙𝒌  is located at the 

center of the cell, we can make the following assumptions that will help us solve the integral 

above:  

 

𝟏

𝑽𝒄𝒆𝒍𝒍

∫ 𝒅𝑽
 

𝑽𝒄𝒆𝒍𝒍

= 𝟏, ∫ 𝒙𝒌

 

𝑽𝒄𝒆𝒍𝒍

𝒅𝑽 = 𝟎,
𝟏

𝑽𝒄𝒆𝒍𝒍

∫ 𝒙𝒌𝒙𝒎𝒅𝑽
 

𝑽𝒄𝒆𝒍𝒍

=
𝟏

𝟏𝟐
𝒍𝜺

𝟐𝜹𝒌𝒎 

 

 Then the equations that represent the mechanism-based strain gradient can finally be 

simplified as: 

𝝈𝒊𝒋
′ =

𝟐𝜺𝒊𝒋

𝟑𝜺
𝝈 (𝟑. 𝟏𝟑. ) 
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𝝉𝒊𝒋𝒌
′ = 𝒍𝜺

𝟐 [
𝝈

𝜺
(Λ𝒊𝒋𝒌 − Π𝒊𝒋𝒌) +

𝝈𝒀
𝟐𝒇(𝜺)𝒇′(𝜺)

𝝈
Π𝑖𝑗𝑘]  (𝟑. 𝟏𝟒) 

  

Where Λ𝒊𝒋𝒌 and Π𝒊𝒋𝒌 are: 

 

Λ𝒊𝒋𝒌 =
𝟏

𝟕𝟐
[𝟐η𝒊𝒋𝒌 + η𝒌𝒋𝒊 + η𝒌𝒊𝒋 −

𝟏

𝟒
(𝜹𝒊𝒌η𝒑𝒑𝒋 + 𝜹𝒋𝒌η𝒑𝒑𝒊)] (𝟑. 𝟏𝟓) 

 

Π𝒊𝒋𝒌 =
𝟏

𝟓𝟒

𝜺𝒎𝒏

𝜺𝟐
[𝜺𝒊𝒌η𝒋𝒎𝒏 + 𝜺𝒋𝒌η𝒊𝒎𝒏 −

𝟏

𝟒
(𝜹𝒊𝒌𝜺𝒋𝒑 + 𝜹𝒋𝒌𝜺𝒊𝒑)η𝒑𝒎𝒏] (𝟑. 𝟏𝟔) 

 

 The flow stress is then: 

 

𝝈 = 𝝈𝒀√𝒇𝟐(𝜺) + 𝒍η (𝟑. 𝟏𝟕) 

 

 It´s easy to imagine the importance of the chosen value for 𝑙𝜀 as it controls the 

accuracy of the strain gradient calculation, it should be small enough to guarantee the 

accuracy but large enough to contain enough dislocations for obtaining accuracy on the flow 

stress calculation. Gao combined these two requirements and gave result to the following 

equation: 

 

𝒍𝜺 = 𝜷𝑳𝒚𝒊𝒆𝒍𝒅 = 𝜷
𝝁𝒃

𝝈𝒀
 (𝟑. 𝟏𝟖. ) 

 

 In this equation, 𝑳𝒚𝒊𝒆𝒍𝒅 is the mean spacing between SSDs at plastic yielding and 𝜷 

is a constant to be determined through empirical means. In order to guarantee a 

representative sample of dislocations the value of 𝜷 should be bigger than one.  
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3. 3.- UMAT SUBROUTINE  

 
UMAT stands for user material. An UMAT subroutine allows us to confer special 

mechanical properties to the material being analyzed. In order to understand what is an 

UMAT, it is important to take into account how ABAQUS solves the FEM models. 

Assuming that we deal with single “step” models, we can understand a “step” as a load case, 

which will have both boundary conditions and loads associated to every one of them. 

However, we can make a new "step" to obtain the modified characteristics of the model, for 

example let's suppose that we are dealing with a model with an elasto-plastic behavior and 

we subject the model to a "step" that produces the plastification of a certain area of the model, 

we could create a step that would follow the previous one so that the new “step” would 

consider that area of the model to have experienced the plastic deformation. 

 

The "step" is assigned a time, which has physical meaning if we are in a dynamic 

case, but not interesting for our case. The steps consist of a series of increments, and at each 

increment an “increment” of the applied loads is applied. In each increment, a series of 

iterations will be carried out to reach equilibrium with the loads corresponding to this 

increment. In the event that the maximum number of allowed iterations has been used and 

the problem does not converge, the solution that did not reach equilibrium is discarded and 

a new increment is performed with a load step smaller than the one previously given.  

  

In Figure 3.3. we can see a diagram of the process that ABAQUS follows to solve 

problems, and where it calls the UMAT subroutine. Although the indicated scheme can show 

in a simple way how ABAQUS works and where the UMAT subroutine is executed, it is not 

valid for the first iteration of any element. In this first iteration the UMAT subroutine is 

called twice, in the first call the stiffness matrix is assembled using the configuration of the 

initial situation in the increment. The second call updates the stiffness based on the updated 

setting from the previous iteration. In the other iterations the initial configuration will be 

based on the previous iteration. In each iteration that is carried out to search for equilibrium 

and for each integration point of each element, the UMAT subroutine is executed.  
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For each iteration, ABAQUS passes to the subroutine the stresses and strains at the 

beginning of the iteration and the predicted increase in strains. From the data that we have 

introduced to the subroutine, it will then return to ABAQUS the Jacobian matrix and the 

updated tensions. 

 

 

3. 3. 1.- Variables 

 

 The following is a list of the most common variables used in an Abaqus subroutine. 

They will play a crucial role on defining the material properties: 

 

 DDSDDE (NTENS, NTENS): Jacobian matrix of the material model. Because for 

our model we will assume small deformations of the interface the Jacobian matrix 

will be expressed as 𝐶 = 𝜕∆𝜎/𝜕∆휀 in which ∆𝜎 is the increments in tensions and ∆휀 

is the increment in deformations. The components of matrix DDSDDE (I, J) are 

understood as the changes the i-th stress experiences at the end of each of the 

increment, caused by an infinitesimal perturbation in the j-th component of the strain 

vector. In ABAQUS/Standard, only the symmetric part of DDSDDE, unless solving 

non-symmetric equations is enabled for the defined material. 

FIGURE 3.3.- Flowchart of Abaqus and the UMAT subroutine 
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 STRESS (NTENS): It is a vector which contains the stress tensor in reduced Voight 

notation at the beginning of the subroutine, and has to be updated in the subroutine 

to be the stress tensor at the end of each iteration. The direction of the stresses will 

take the element local directions. 

 

 STATEV (NSTATEV): It is a vector where we can store a variable that depends on 

the solution of the state variables (stress and strain). There is one STATEV variable 

for each integration point in the model, and the value at the beginning of an iteration 

is the value of the previous increment, unless changed by one of the USDFLD or 

UEXPAN subroutines. The size of this vector is defined using the DEVPAR 

command (in the inp file when calling the material). Also keep in mind that the 

STATEV variables will be shown in the output file (odb) with the name of SDVs 

(solution-dependnt variables). 

 

I will now proceed to mention another, less relevant, variables just for the information 

of the reader: 

 

 STRAN (NTENS): Similar to STRESS, a vector which will contain the strain tensor 

in reduced Voigh total notation but in this case at the beginning of each increment. 

These deformations will take the local direction of the element. 

 

 DSTRAN (NTENS): The variations of the deformations are contained in this vector. 

This increase in deformations will also take the local direction of the element. 

 

 NTENS: It indicates the number of components included in the Tension 

pseudovector, depending on the type of element used. For plane stress elements the 

number of components is 3, in the case of plane strain it is 4 and for the three-

dimensional case it is 6. 

 

 NSTATEV: Reflects the number of dependent variables in the solution variables 
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 NOEL: It´s as simple as the element number 

 

 NPT: Refers to the Integration Point Number 

 

 KSTEP: Step number 

 

 KINC: Increment number 

 

3. 3. 2.- Format 

 

As we must know, an UMAT subroutine is written in Fortran. Every subroutine will 

be different, but there is a common format that will be found at the beginning of every one 

of them which can be seen in figure 3.4. 

 

 

3. 3. 3.- Mechanism-based strain gradient plasticity implementation in 

Abaqus 

 

 In section 3. 1. It was explained what the mechanism-based SGP proposed by Gao et 

al. consists of, this mechanism is useful for simple calculations like pure bending, but when 

we turn our focus in more complex calculations we will need to use numerical methods. This 

is when Abaqus and subroutines come into play. 

FIGURE 3.4. Format of Abaqus UMAT subroutine 
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 As function of their order we can differentiate two different types of SGP theories: 

the first one including higher order stresses thus requiring extra boundary conditions, and a 

second one which will not include higher order terms, gradient effects are then considered 

through the incremental plastic moduli. It´s of our interest the use of the CMSG plasticity 

theory developed by Huang et al., which relies on Taylor´s dislocation model (which will be 

explained in the next section) as it will not include higher order. The plastic strain gradient 

will only appear in the constitutive model while both the equilibrium equations and the 

boundary conditions are the same as the conventional continuum theories. 

 

 

 

3. 3. 3. 1.- A Taylor-based viscoplastic-like constitutive relation 

 

 The Taylor dislocation model proposed by Qu 2004 gives the flow stress depending 

on both the equivalent plastic strain 휀𝑝 and the effective plastic strain gradient η𝑝: 

 

�̇� =
𝝏𝝈

𝝏𝜺𝒑
�̇�𝒑 +

𝝏𝝈

𝝏η𝒑
η̇𝒑 (3.19. ) 

 

 The problem when using this model is that for plastic strain rate 휀𝑖𝑗
𝑝

 proportional to 

the deviatoric stress 𝜎𝑖𝑗
′ , we can´t obtain a self cointained constitutive model because of η̇𝒑. 

Huang et al. proposed a viscoplastic formulation that will give 휀̇𝑝 in terms of effective stress 

𝜎𝑒 instead of its rate �̇�𝑒: 

 

휀̇𝑝 =  휀̇ [
𝜎𝑒

𝜎𝑓𝑙𝑜𝑤

]

𝑚

 (3.20. ) 

 

 Because we are interested in making a model independent of time, Huang et al. prove 

that for big values for m (𝑚 ≥ 20) we can assume our model to be independent. This means 

that the velocity of deformation will not influence the results. If we take into account that 
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the volumetric strain rate (휀�̇�𝑘) and the deviatoric strain rate (휀�̇�𝑘
′ ) are related to the stress 

rate in the same way as classical plasticity, the constitutive equation is: 

 

�̇�𝑖𝑗 = 𝐾휀�̇�𝑘𝛿𝑖𝑗 + 2𝜇 {휀�̇�𝑗
′ −

3휀̇

2𝜎𝑒

[
𝜎𝑒

𝜎𝑓𝑙𝑜𝑤

]

𝑚

�̇�𝑖𝑗
′ } (3.21) 

 

 For which: 

 

𝜎𝑓𝑙𝑜𝑤 = 𝜎𝑟𝑒𝑓√𝑓2(휀𝑝) + 𝑙η𝑝 (3.22. ) 

 

 For these two equations we can find that K is the bulk modulus, 𝜇  is the shear 

modulus,  𝛿𝑖𝑗  is the Kronecker delta, 𝜎𝑟𝑒𝑓  a reference stress, 𝑓2(휀𝑝)a non-dimensional 

function determined from the uniaxial stress-strain curve, l the intrinsic material length, 휀�̇�𝑗
′   

the total strain and �̇�𝑖𝑗 the Cauchy stress tensor. 

 

 

3. 3. 3. 2.- Consistent tangent modulus 

 

Given we are not taking into account higher order stresses, the equations for CMSG 

plasticity are pretty much the same as in traditional plasticity. For this reason, the plastic 

strain rate 휀�̇�𝑗
𝑝

 is proportional to the deviatoric stress rate 𝜎𝑖𝑗
′ : 

 

휀�̇�𝑗
𝑝

=  
3휀̇𝑝

2𝜎𝑒
𝜎𝑖𝑗

′  (3.23. ) 

 

Where the deviatoric stresses can be found from the following equation in which |𝑡 

stands for the value at the beginning of the increment and ∆ refers to the incremental value: 

 

𝜎𝑖𝑗
′ = 2𝜇 (휀𝑖𝑗

′𝑒|𝑡 + ∆휀𝑖𝑗
′ − ∆휀𝑖𝑗

𝑝 ) (3.24) 
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The effective stress and the equivalent strain rate can be expressed as simple as: 

 

𝜎𝑒 = √
3

2
𝜎𝑖𝑗

′ 𝜎𝑖𝑗
′  (3.25) 

 

 

휀̇ = √
2

3
휀𝑖𝑗

′ 휀𝑖𝑗
′  (3.26) 

 

 Now, by substitution of equation (3.23.) into equation (3.24) we get: 

 

𝜎𝑖𝑗
′ = 2𝜇 (휀𝑖𝑗

′𝑒|𝑡 + ∆휀𝑖𝑗
′ −

3∆휀𝑝

2𝜎𝑒
𝜎𝑖𝑗

′ ) (3.27) 

 

 If we define 휀𝑖𝑗
′𝑒|𝑡 +  +∆휀𝑖𝑗

′ =  휀�̂�𝑗
′  then: 

 

(1 +
3𝜇

𝜎𝑒
∆휀𝑝) 𝜎𝑖𝑗

′ = 2𝜇 휀�̂�𝑗
′  (3.28) 

 

 Taking the inner part: 

 

𝜎𝑒 + 3𝜇∆휀𝑝 = 3𝜇휀̂ (3.29) 

 

 Where 휀̂ =  √
2

3
휀�̂�𝑗

′ 휀�̂�𝑗
′   reformulating (3.29.) and substituting (3.20.) and (3.22.): 

 

𝜎𝑒 − 3𝜇(휀̂ − ∆휀 (
𝜎𝑒

𝜎𝑓𝑙𝑜𝑤
)𝑚) = 0 
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 This is a non-linear equation that can be solved with the Newton-Raphson method: 

 

𝜎𝑒 = 𝜎𝑒 +

3𝜇(휀̂ − ∆휀 (
𝜎𝑒

𝜎𝑓𝑙𝑜𝑤
)𝑚) − 𝜎𝑒

1 + 3𝜇ℎ
 (3.31) 

 

 

 For which h is: 

 

ℎ = 𝑚∆휀(
𝜎𝑒

𝜎𝑓𝑙𝑜𝑤
)(𝑚−1) 1

𝜎𝑓𝑙𝑜𝑤
   

 

 Once the convergence has been achieved we will obtain the incremental effective 

plastic strain from: 

 

∆휀𝑝 = 휀̂ −
𝜎𝑒

3𝜇
 (3.33. ) 

 

 

 From the previous equations we can obtain the value for 𝜎𝑖𝑗
′  and ∆휀𝑖𝑗

𝑝
. The consistent 

material Jacobian is computed from equation (3.28.) with respect to all quantities at the end 

of an increment: 

 

(1 +
3𝜇

𝜎𝑒
∆휀𝑝) 𝜕𝜎𝑖𝑗

′ + 𝜎𝑖𝑗
′

3𝜇

𝜎𝑒
(𝜕∆휀𝑝 −

∆휀𝑝

𝜎𝑒
𝜕𝜎𝑒) = 2𝜇𝜕휀�̂�𝑗

′  (3.34) 

 

 

 Equation (3.29.) gives to: 

 

𝜕𝜎𝑒 + 3𝜇𝜕∆휀𝑝 = 3𝜇𝜕휀̂ (3.35) 
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 By substitution and rearrangement in equation (3.33.): 

 

𝜕𝜎𝑒 =
3𝜇

1 + 3𝜇ℎ
𝜕휀̂ (3.36) 

 

 By the definition of 휀̂ we will get: 

 

𝜕𝜎𝑒 =  
2

3휀̂

3𝜇

1 + 3𝜇ℎ휀�̂�𝑗
′ 𝜕휀�̂�𝑗

′  (3.37) 

 

 Substituting this in equation (3.34.) we finally get: 

 

𝜕𝜎𝑖𝑗
′ = (

2𝜎𝑒

3휀̂
𝐼𝑖𝑗𝑘𝑙 −

1

𝜎𝑒휀̂
(ℎ −

∆휀𝑝

𝜎𝑒
)

3𝜇

1 + 3𝜇ℎ
𝜎𝑖𝑗

′ 𝜎𝑖𝑗
′ ) 𝜕휀�̂�𝑗

′ (3.38) 

  

𝐼𝑖𝑗𝑘𝑙  is the fourth-order unit tensor. Finally, considering the before mentioned 

relationships between stress and strain tensors with deviatoric quantities, the material 

stiffness matrix is: 

 

𝜕𝜎𝑖𝑗 = (
2𝜎𝑒

3휀̂
𝐼𝑖𝑗𝑘𝑙 + (𝐾 −

2𝜎𝑒

9휀̂
) 𝐼𝑖𝑗 −

1

𝜎𝑒휀̂
(ℎ −

∆휀𝑝

𝜎𝑒
)

3𝜇

1 + 3𝜇ℎ
𝜎𝑖𝑗

′ 𝜎𝑖𝑗
′ ) 𝜕휀𝑖𝑗 (3.39) 
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CHAPTER 4 
 

Abaqus model 
 

 

 In this chapter we will proceed to develop the Abaqus model that will be used to 

obtain the results of this study, developing an accurate model can sometimes be difficult but 

the accuracy needs to be high if we want to trust the results obtained. Secondly, we will 

study the properties of a material used for the labs experiments we will use as reference in 

order to introduce it to the model.  

 

 Having developed the model and found the properties of the material, we will run 

abaqus with the subroutine to obtain results that we hope will prove the existence of the 

already known strain gradient plasticity. We will also compare these results to the lab 

experiments in order to evaluate the degree of accuracy of the results. 
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4. 1.- EXPERIMENTAL ASSEMBLY 

 

 We will reproduce in Abaqus a model to recreate the fracture process in a Small 

Punch Test (SPT). The SPT is a reliable test that allows us to get accurate data on damage 

properties and fracture estimation for a specimen, its interest in industry is that, while it 

allows us to get the mentioned accuracy, it requires a very small testing specimen, which 

may be required for certain materials. 

 

 In a SPT, a very small circular specimen (typical dimensions: 3-8 mm of diameter 

and 0,25-0,5 mm of thickness) is pressed between two dies that will hold it in place, then, a 

punch with hemispherical indenter will penetrate the specimen at a speed of v=0,2 mm/min. 

The results of this experiment are measured by the experimental device that will register the 

displacement and force required along the experimental process. The following figure 

represents a standard SPT and it will be the one that will be used as reference for our Abaqus 

model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.1. Device and schematic of the SPT 
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When translating this model into Abaqus we will preserve the same size 

characteristics of the specimen and punch.  It´s interesting to use axisymmetric for the design 

of the assembly, it will allow us to obtain the same results but with a much faster analysis.   

 

In the image below it can be seen the Abaqus representation of the experiment in 

figure 4.2. taking into account the already mention axisymmetric nature of the model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On a first sight the reader will notice the different aspect of the dies and the punch 

compared to the specimen, this is because they are designed as analytical rigid parts, which 

means that they are rigid parts in the contact analysis. Given we consider these parts as rigid 

FIGURE 4.2. Model of SPT done in Abaqus 
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and undeformable, describing them as analytical rigid is computationally less expensive as 

no mesh is needed. 

 

 

4. 2.- MESH 

 

 The mesh may well be the most characteristic element in a finite element analysis, it 

describes an array of finite elements that will be considered for the calculations. When we 

mesh a geometry we are discretizing its shape.  

 

For the specimen in the SPT we need to develop a mesh, for it we must find a balance 

between performance and computational load and the accuracy of results. A finer mesh gives 

higher accuracy of calculation but the increment in the number of elements increases the 

time of calculation. This is how our specimen mesh looks like: 

 

 

 The later image may be confusion inducing as no clear geometry can be seen in the 

shape from this distance. If we take a much closer look we can get a general idea of the 

whole geometry of the work piece: 

 

 

 

 

 

 

 

FIGURE 4.3. Meshed specimen for SPT 

FIGURE 4.4.- Closer look at the mesh 
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Seeing from this distance, we can appreciate that the mesh displays a quadrilateral 

shape which is perfect for the rectangular geometry of our specimen. In terms of the mesh 

type I have used CAX4 which is a 4-node bilinear axisymmetric quadrilateral, hourglass 

control. The element type of the mesh determines the mathematical algorithms that the 

software will use when determining the behavior of the model during the simulation stage. 

 

 

4. 3.- BOUNDARY CONDITIONS 

 

Boundary conditions set the rules of what happens during the simulation process. 

They are crucial as they will completely define the behavior of the whole model. For our 

case we will have different boundary conditions that will fix the degrees of freedom of the 

different elements of the model and also an extra boundary condition that will define the 

movement speed of the punch. 

 

Having set the reference points for the dies and the punch (seen in figure 4.2.) we can 

apply a set a boundary conditions on them to define their DoF. Given they are rigid bodies 

the conditions applied to each of the reference points will apply to all of the part.  

 

 

For the dies we will have a complete encastre, that way they will not move or rotate 

in any axis. For the punch we will have conditions that will impede rotation and allow 

movement on the Y axis, besides this it will experience a BC that will force it to move 

downwards on the Y axis with the speed of 0,2 mm/min 
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4. 4.- MATERIAL PROPERTIES 

 

 The first step on this process was to determine the properties of a material used for 

several experiments conducted in the lab, the reason for this is that we want to compare our 

model to the lab results in order to evaluate the accuracy of it. The following graphs represent 

the results of such lab experiments, for all of them, the same material is used and the 

thickness is reduced from 500 μm to a minimum of 40 μm. 

  

FIGURE 4.5.- Abaqus SPT model with boundary 

conditions 
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FIGURE 4.6.- Lab results for tension-strain relationship at different thickness 

  

 

 

 

FIGURE 4.7.- Lab results for load-strain relationship at different thickness 
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In the first graph we see several plots comparing the behaviors at different thickness 

in a stress-strain graph, for the second one we see the behaviors for a load-strain graph. The 

reader might have noticed something, even if intuition correctly leads us to believe that 

thicker specimens will record higher loads before fracture, the opposite case happens when 

analyzed from a tension point of view. In the case of tension, less thick specimens reach 

higher fracture values, this is due to the strain gradient plasticity that we have studied on the 

previous chapter. 

 

From this data we must notice something; given it´s always the same material, even 

if the plastic deformation zone varies for each thickness accounting for strain gradient 

plasticity, this should not happen for the elastic deformation zone as it is governed by the 

modulus of elasticity (Young Modulus). The reason for this is simple, in a real life lab 

situation for every repetition of the experiment that is done there will always be a slight 

change of environment that will lead to slightly different results, perfect reiteration of an 

experiment is not possible. This proves to be the first hurdle faced when determining this 

material´s properties, as the young modulus is necessary data to implement in the software. 

The Young Modulus is calculated from the slope of the elastic zone of the material, the 

following graphs show repeated iterations of the calculation for the different specimen 

thickness: 
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FIGURE 4.8.- Slope of the elastic zone at 500 µm FIGURE 4.9.- Slope of the elastic zone at 400 µm 

FIGURE 4.10.- Slope of the elastic zone at 300 

µm 

 

FIGURE 4.11.- Slope of the elastic zone at 

200 µm 

 

FIGURE 4.12.- Slope of the elastic zone at 

100 µm 

 

FIGURE 4.13.- Slope of the elastic zone at 50 µm 
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For the estimated Young Modulus, the average of the previous results was obtained 

which yielded a modulus of 194064,8 MPa. The reader may be concerned with the 

estimation approach as we have no guarantee of exactitude, in order to estimate the influence 

that small changes of the young modulus have in our model different simulations were done 

in which the only thing that changed was the young modulus for a specimen of 0,5mm 

thickness: 

 

 

 

As the reader can tell, the minor differences in the young modulus don´t lead to huge 

changes on the nature of the results. We can rest assured with the picked value of 194064 

MPa. We can also extract another interesting data from the previous young modulus 

calculations, when analyzed at room temperature, steel´s young modulus usually ranges from 

190 GPa to 220 Gpa, it´s not bold to assume that the material that we are working with is 

some kind of steel alloy. Because of this we will be setting a common Poisson ratio of 0,25. 

 

Another property of the materials that we shall find is the strain hardening exponent 

N, it represents the hardening of a material in the forming process and we can kind of 
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FIGURE 4.14.- Influence of Young modulus in the developed Abaqus model 
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understand it as the “slope” of the plastic region of the stress-strain plot. In order to find it, 

a logarithmic tension-strain plot is performed for the plastic region of two of the specimens 

and the slope is then found: 
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FIGURE 4.15.- Slope of the plastic region for 500µm 

FIGURE 4.16.- Slope of the plastic region for 400 µm 
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From the graphs we obtain and average N value of 0.09, we shall simplify this value 

as 0.1 for the sake of simplicity and also to comply with the general rule that metals are 

found in the 0.1-0.5 range. 

 

 Lastly, we need to know the yield stress of the material. This is quite difficult to 

estimate based purely on the graphs. Theoretically it is considered to be the point of 0,2% 

strain… but when facing a true case this estimation falls short at delivering accurate results. 

When observing the stress strain graphs of figure 4.6., we can estimate that the yield stress 

is at 1400MPa. We shall know if this estimation can be assumed as true when comparing the 

results offered by the model to the reality, if there is a correlation of results then it´s quite 

reasonable to say that the estimation was accurate. 

 

 

4. 5.- CALCULATION PROCESS 

 

 The following figures represent the simulation of Abaqus when calculating the 

reaction force and displacement experienced at the punch when penetrating the specimen 

(0,5 mm thickness in the particular case shown) at constant speed: 

 

FIGURE 4.17.- Simulation at t=0 

FIGURE 4.18.- Simulation at t=0.1 



 
 

D. Luis Eloy García-Mauriño Rey 
 

U N I V E R S I D A D  D E  O V I E D O   

Escuela Politécnica de Ingeniería de Gijón Hoja 54 de 63 

 

 

 

 

FIGURE 4.19.- Simulation at t=0.2 

FIGURE 4.21.- Simulation at t=0.4 

FIGURE 4.20.- Simulation at t=0.3 

FIGURE 4.22.- Simulation at t=0.5 
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FIGURE 4.23.- Simulation at t=0.6 

FIGURE 4.24.- Simulation at t=0.7 

FIGURE 4.25.- Simulation at t=0.8 
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FIGURE 4.27.- Simulation at t=1 

 

 

 Even though the images are descriptive of the process, they can´t provide us with the 

data we need to obtain from each case. For that we have set a reference point on top of the 

punch (represented as a white X) and we will obtain both data on the reaction force and the 

displacement experienced on this point related to time: 

 

FIGURE 4.26.- Simulation at t=0.9 
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FIGURE 4.29.- Results of displacement vs time 

 

 By using Abaqus to combine both graphs we will get a plot that relates reaction force 

vs. displacement: 

FIGURE 4.28.- Results of the reaction force vs time 
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This process will be repeated successively with different specimen thickness but 

preserving the same material properties, this way we will obtain the data that will be useful 

for comparing the behavior. This data will then be exported to Excel in order to be able to 

display all iterations of the experiment on the same graph and then compare it to the lab 

results. 

 

 

4.6.- RESULTS AND ANALYSIS 

 

 At this point we need to go back to figure 4.7. as it will be our reference to evaluate 

whether the results we are obtaining are adjusted to reality. Following the procedure 

explained in the previous section, the results the software provide for different thickness can 

be represented in the following graph: 

 

 

 

 

 

FIGURE 4.30.- Plot of the force vs displacement by combining both previous graphs 
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Comparing with the lab results considering there is a minor slip at the beginning of 

the lab experiment we get the following relationships between lab and our model 

 

 

 

 It is important to understand why the Abaqus results do not match the lab results until 

the very end, the reason for this is that there is no implementation of fracture mechanism for 

the software within the scope of this study.  
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FIGURE 4.31.- Abaqus results at different thickness 

FIGURE 4.32.- Abaqus results vs lab results at different thickness 
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 In order to evaluate size effects, we need to apply a relationship that should, if the 

size effect doesn’t exist, give out the same relationship for each of the experiments. We can 

tackle this on a set of different ways but the objective will remain the same: we need to 

stablish a relationship that will dimensionless the results. For that we will multiply the strain 

times the thickness to the power of three for each of the experiments: 

 

 

 

 As we see on the graph there is a considerable difference on the experimental results 

at different thickness even if we dimensionless the results. This is due to the strain gradient 

plasticity and goes to prove that our model correctly considers its effects and applies it to the 

model. In order to see if the size effect in Abaqus is proportional to the one found in reality 

we can plot the normalized lab results taking into account the before mentioned slip at the 

beginning of the experiment on the same graph: 
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 Finally, we see that the normalized lab results give out for similar results to the one 

obtained through Abaqus, not only the size effect is seen through our model, we can also say 

that the results are accurate compared to reality 
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CHAPTER 5 
 

5.- Conclusions 

 

 

 

Having concluded the results of this paper. The following conclusions and reflections 

can be extracted from this work: 

 

1. A successful model for the Small Punch Test has been developed for Abaqus, the use 

of axisymmetric allows for an efficient model that has proven to give accurate results 

while preserving speed of calculation. 

 

2. The size effect of strain gradient plasticity has been thoroughly analyzed through 

Abaqus results and comparison of them to the lab results. As a result, it´s clear that 

the effect exists and that we have enough evidence to justify that the developed model 

not only proves the existence, it also provides reliable results with a close relationship 

to the real ones. 

 

3. The effect of the implemented UMAT (User material) subroutine has been proven, 

allowing us to obtain a size effect analysis on Abaqus even if the base program does 

not consider it. Subroutines will allow us to introduce desired effects into the 

program allowing us practically unlimited types of analysis. 

 

4. We have been successful at determining the material properties from the results of 

lab experiments on its stress/load-strain relationships. The utility of this kind of 

experiments is proven as it allows to know a lot of information on the studied material 

with a minor effort both in terms of work and resources. 

 

5. For future works, I trust that there is more potential to the developed model, given it 

has proved reliable at describing plastic deformation and size effects it would be 
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interesting to implement a fracture mechanism and evaluate the reliability of the 

software and subroutine when predicting fracture points and strength.  
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