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baches, que todo ser humano pasa por la crisis de los veintitantos y que no hay doc-
torando que no sufra el llamado sı́ndrome del impostor. Todo ello se dio cita en esta
encantadora ciudad y, de no ser por el apoyo cercano de todos los seres de los que
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Pero al final dicha paciencia ha dado resultado y la tesis se ha acabado (menos mal).
Gracias por todo lo que he aprendido, que no es poco. Y es que los comienzos estu-
vieron marcados por el escaso dominio de la disciplina, problemas que se arrastraron



vii

durante la mayor parte del desarrollo de estos estudios por una no siempre óptima
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RESUMEN (en Inglés) 
 

 
Since its birth around fifteen years ago, the interacting quantum atoms (IQA) energy 
decomposition has proven to be useful, particularly when the nature of a given chemical 
bond has to be ascertained. However appealing this reference-free, orbital-invariant 
technique might be, it has suffered from the strong limitations its high computational 
demands impose, as well as the unavailability of the second-order reduced density 
matrix in some popular electronic structure methods. Nonetheless, these problems have 
recently started to be overcome and new fields of application of this genuine method 
await to be explored. 
 
In this line, the present doctoral thesis aims at paving the way for a future systematic and 
consistent application of IQA in computational biochemistry using Hartree-Fock (HF) and 
Density Functional Theory (DFT) methods. In this regard, we first study the performance 
of the IQA decomposition of DFT energies as implemented through the scaling technique 
developed at the University of Oviedo. In addition, the combined IQA-D3 methodology 
(within an HF-D3 framework that enables a separate treatment of dispersion) is tested on 
a number of compounds and with different applications. Moreover, its interacting 
quantum fragments (IQF) variant is shown as a chemically appealing alternative to the 
complicated atomic analysis one faces when a large number of atoms comes into play. 
Such a grouped analysis, that yields the energy contributions emanating from functional 
groups or more general molecular fragments, is tested in the determination of the effects 
behind the conformational preferences that different fluorine-containing systems 
present, for which the so-called fluorine gauche effect is specifically analysed. But the 
conformation and activity of biomolecules is very influenced by the surrounding 
environment, which may contribute decisively in the preferred spatial display of a large 
macromolecule and determine its activity. For this reason, and as a first step towards 
more sophisticated descriptions, the IQA atomic and group energies are enhanced with 
the solvent contribution from an electrostatic continuum solvation model: COSMO. IQA-
COSMO energies serve to dissect the electrostatic contribution to the solvation energy 
into atomic and fragment components, for which a mapping between the 
atoms/functional groups selected and the value of their respective solvation energies is 
observed.  
 
Although IQA is generally applied to three-dimensional partitions of space according to 
the quantum theory of atoms in molecules (QTAIM), other possibilities exist. Moreover, 
even an orbital decomposition of the wave function of a system can be applied so as to 
provide a real space view of some orbital-based approximations. It is the case of the 
charge penetration energy, that emanates from the consideration that two molecules 
maintain their independent entity upon mutual interaction, and so their molecular 
densities, that remain unaltered. Accordingly, when two molecules approach each other, 
their densities just superimpose and interpenetrate one another. In this regard, the IQF 



                                                                

 
 

 

analysis allows for an assessment of the penetration energy  ̶ the energy difference 
between the total electrostatic interaction involving the two interacting densities and that 
obtained by the multipole approximation ̶  in terms of inter- and intramolecular 
contributions. Besides, an IQA/IQF intermolecular electrostatic framework is constructed 
on the basis of its electrostatic interaction pair term that provides a faithful description, 
as observed after comparison with popular force field electrostatic models. 
 
A second grand line of this thesis is devoted to the elucidation of controversial chemical 
bonds, such as beryllium, halogen and charge-shift bonding. These applications serve to 
reinforce the claim on the usefulness IQA and other complementary real space, orbital-
invariant quantum chemical topology (QCT) techniques offer. With this, the common 
electrostatic interpretation of both beryllium and halogen bonding is evaluated and 
compared with the covalent contributions to these interactions. Special attention is paid 
to the σ-hole concept, closely related to such an electrostatic interpretation. Charge-shift 
bonding, in turn, is intended to be considered as a third grand category of bonding as it 
is argued to be different in nature than the ionic and covalent families. The different QCT 
tools permit the classification of this bond type according to the information the different 
descriptors provide in comparison with those reported for typical ionic and covalently-
bonded species. 
 
All in all, the results of this thesis point out the numerous advantages of adopting a QCT-
IQA description of chemical systems as a robust and physically-rooted alternative to 
orbital-based methodologies, and whose scope of application is becoming wider and 
wider. 
 
 
 
 

RESUMEN (en español) 
 

 
Desde su surgimiento unos quince años atrás, el método de descomposición de la 
energía de átomos cuánticos interaccionantes (IQA) ha demostrado ser un útil descriptor 
del enlace químico. Sin embargo, la aplicación de dicho método libre de referencias e 
invariante orbital se ha visto fuertemente impedida por su alto coste computacional, así 
como la ausencia de la matriz densidad reducida de segundo orden en varios métodos 
de cálculo de la estructura electrónica muy populares. Estos problemas, no obstante, 
han comenzado a ser recientemente solucionados, abriendo nuevas puertas para la 
aplicación de este genuino método a campos que hasta la fecha esperaban a ser 
explorados. 
 
Siguiendo esta línea, la presente tesis doctoral pretende sentar las bases para una futura 
aplicación sistemática, a la par que consistente, de IQA en bioquímica computacional 
utilizando los métodos tanto de Hartree-Fock (HF) como la teoría del funcional de la 
densidad (DFT). En este sentido, se presenta en primer lugar un estudio sobre la 
efectividad de la descomposición IQA de las energías DFT siguiendo la implementación 
basada en la técnica de escalado desarrollada en la Universidad de Oviedo. Por otra 
parte, se comprueba el desempeño de la metodología combinada IQA-D3 (dentro de un 
marco HF-D3 que permite el tratamiento separado de la dispersión) en la descripción de 
diversos compuestos y con diferentes aplicaciones. Además, su variante de fragmentos 
cuánticos interaccionantes (IQF) se muestra como una alternativa atractiva desde el 
punto de vista químico al complicado análisis atómico al que uno se enfrenta cuando el 
número de átomos comienza a ser sustancial. Este análisis grupal, que proporciona 
contribuciones energéticas asociadas a grupos funcionales o fragmentos moleculares 
más generales, se pone a prueba en la determinación de los efectos que subyacen bajo 
las preferencias conformacionales de sistemas que contienen flúor, prestando especial 
atención al llamado efecto gauche del flúor. Pero la conformación y la actividad de las 
biomoléculas está muy influida por el entorno que las rodea, pudiendo contribuir 
decisivamente a la preferente disposición espacial de una gran macromolécula y 
determinar su actividad. Por este motivo, y como un primer paso hacia descripciones 
más sofisticadas, se presenta una primera incorporación de las contribuciones del 
disolvente a las energías atómicas y grupales IQA a partir de un modelo electrostático de 



                                                                

 
 

 

disolvente continuo: COSMO. Las energías IQA-COSMO permiten diseccionar la 
contribución electrostática a la energía de solvatación en componentes atómicas y de 
fragmento, observándose una adecuada correspondencia entre los átomos/grupos 
funcionales seleccionados y el valor de sus respectivas energías de solvatación. 
 
Aunque IQA se aplica en general siguiendo una partición del espacio tridimensional 
conforme a la teoría cuántica de átomos en moléculas (QTAIM), existen otras 
posibilidades. No solo eso, sino que es posible incluso aplicar una descomposición 
orbital de la función de onda de un sistema para proporcionar una visión del espacio real 
de determinadas aproximaciones basadas en orbitales. Este es el caso de la energía de 
penetración de carga, que surge de la consideración de que dos moléculas mantienen su 
entidad independiente al interactuar mutuamente y, por tanto, sus densidades 
moleculares permanecen inalteradas. En consecuencia, cuando dos moléculas se 
aproximan, sus densidades se superponen y se interpenetran mutuamente. A este 
respecto, IQF permite evaluar la energía de penetración  ̶ la diferencia energética entre la 
interacción electrostática total entre dos densidades interaccionantes y la obtenida por 
medio de la aproximación multipolar ̶  en términos de contribuciones inter e 
intramoleculares. Asimismo, se construye también un marco de la electrostática 
intermolecular IQA/IQF sobre la base del término electrostático de pares, que 
proporciona una fiel descripción, tal y como se observa en su comparación con modelos 
electrostáticos de populares campos de fuerzas. 
 
Una segunda gran línea de esta tesis está dedicada a la elucidación de enlaces químicos 
controvertidos, como los de berilio, de halógeno o por desplazamiento de carga. Estas 
aplicaciones sirven para reforzar la afirmación sobre la utilidad que ofrece tanto IQA 
como otras técnicas complementarias de la topología químico cuántica (QCT), 
pertenecientes al espacio real e invariantes orbitales. Con todo ello, se evalúa la 
interpretación electrostática que comúnmente se realiza de los enlaces de berilio y de 
halógeno, y se compara con las contribuciones covalentes a dichas interacciones. Se 
presta una especial atención al concepto de agujero σ, íntimamente ligado a tal 
interpretación electrostática. El enlace por desplazamiento de carga, por su parte, se ha 
pretendido que sea considerado como una tercera gran categoría de enlace, 
argumentando para ello que su naturaleza difiere sustancialmente de la de las familias 
iónica y covalente. Las diferentes herramientas de la QCT permiten clasificar este tipo de 
enlace en función de la información que aportan diferentes descriptores en comparación 
con los reportados para especies con enlaces iónicos y covalentes típicos. 
 
En definitiva, los resultados de esta tesis señalan las numerosas ventajas de adoptar 
una descripción QCT-IQA de los sistemas químicos como una alternativa robusta y con 
sólidas bases físicas a las metodologías orbitales, y cuyo ámbito de aplicación está 
resultando cada vez más amplio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SR. PRESIDENTE DE LA COMISIÓN ACADÉMICA DEL PROGRAMA DE DOCTORADO  
EN QUÍMICA TEÓRICA Y MODELIZACIÓN COMPUTACIONAL 
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Chapter 1

Introduction

The complexity of the natural world is something that burdens any person who pays
enough attention to what is waiting out there. The apparent simplicity of still wa-
ter in a puddle or the plain, thin, symmetric leaf of a pine tree conceal a complex
net of interacting constituents that make the whole incomprehensible without all
its parts. The, at first sight, simple leaf is composed of tens of thousands of cells
that are alive as independent units, but which cannot survive without the support
of their partners. These provide the structure for the transport of mineral salts, pro-
tection against external threats or simply make possible gas exchange. Each of these
cells produces its own organic matter, transforms nutrients into more complex struc-
tures, undergoes mitosis, etc. They are in turn made of differentiated structures such
as membrane, nucleus, Golgi apparatus, mitochondria and other organelles that are
nothing but macro-chemical networks of a repeated number of smaller molecules or
sets of atoms interacting in such a way that all the functions of the organelles and,
ultimately, cell life are preserved. Hence, the macroscopic apparent simplicity turns
into an overwhelming complexity when going a bit deeper upon the first perception
we get from our senses. We, humans, are in fact a collection of organs and structures
composed of cells in an intricate display. We are all aware of the complexity of the
human being, not only at the biological level, but also —and more easily averted—
sociologically. We believe other human beings are complex in the way they behave,
they act, the decisions they make. . . and, ultimately, they are merely the result of a
set of simpler constituents interacting congruently; their feelings, the result of chem-
ical reactions triggered by cellular response. But, although we may agree in the
realisation of the high complexity of the world, we have been capable of surpassing
our biological limits and thus developing cures for diseases caused by the tiniest
virus, making the sempiternal human dream of flying come true, communicating
with electromagnetic waves from thousands kilometers away or even conquering
the outer space by travelling beyond the edges of our own planet. It has been so
thanks to our capacity to fragment complexity, disentangle mixed facets of nature to
focus on one or a few and build a model. We create models in our minds everyday,
even in an unconscious way. We act upon stimuli, and to cope with them our brains
create a model, a simplified representation of the real event we have to manage [1, 2],
so we can react to it and anticipate the consequences of one or another reaction. From
the spatial representation of a room to process the distribution of objects in space to
the use of our memory to avoid controversial topics with some relative on Christmas
Eve, we use models in our daily life continuously. Models are inherent to our way of
dealing with the real world, and models are the milestone of the framework we use
to comprehend it: science [3]. Science emerges as the best manner of understanding
nature. It is primarily based on observation, later formulation of a hypothesis and
finally evaluation of the proposed explanation (the real process may be not so simple
[4], but this one serves as an idealised example). It is roughly the formalisation of
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the natural process we daily do in our minds, with the imposition of a testing phase
to check the reasoning formulated. This is how a mere conjecture loses its subjective
character due to the particular view of the individual who proposed it and acquires
explanatory power. There is another difference: science seeks generality, as it tries to
capture as many empirical aspects as possible within the developing models. How-
ever, and although an apparently solid theory serves to explain many facets of life
and nature, scientists eventually come across new scenarios that do not fit into the
already known models. And that does not pose a bump in the road at all, but entails
an exciting new path to be discovered towards a more complete understanding of
nature. It was exactly what happened in the late 19th century and principles of the
20th, when the failure of the very rooted theory of classical mechanics gave rise to
the birth of a new one: quantum mechanics.

1.1 The birth of a new theory

By the 19th century, science was ready to experience a development, supported by
the Industrial Revolution, as it had never seen before. The so-called scientific revo-
lution of the 16th and, especially, 17th centuries brought the breeding ground for a
nascent modern science based upon observation and rationalisation, leaving aside
the dominant Aristotelian tradition [5, 6]. In this context, the Earth lost its central-
ity in the universe, the planets no longer revolved about our planet, nor the stars
were fixed in the sky; the invention of the microscope permitted the discovery of
the cell in many forms such as plant, blood or sperm cells, bacteria and other mi-
croorganisms, what ultimately made dismiss the idea of spontaneous generation;
the mysterious ability of the compass needle to point toward the north was not due
to Polaris, the pole star, nor to a magnetic island somewhere in the north, but to the
fact that the Earth was itself magnetic... Such discoveries and breakthrough in the
way of interpreting the world were reinforced in the century of the Enlightenment
with other remarkable advances such as the law of conservation of mass, that posed
the beginning of modern chemistry, the dismissal of the theory of phlogiston with
the discovery of oxygen and its role played in combustion, the Linnaean classifica-
tion of species —the starting point of modern taxonomy—, the first contemporary
theory of evolution that confronted with the biblical idea of immutable species, or
the developments of the steam engine and the invention of the battery, among many
others [7]. This age was the time of diffusion and popularisation of science and
prepared the western society for the prolific 19th century, the also called Age of
Science [8]. Dalton’s atomic theory, Darwin’s On the origin of species, Lyell’s Princi-
ples of Geology, Maxwell’s equations of electromagnetism, Mendel’s laws of hered-
ity, Mendeleev’s periodic table, the rise of thermodynamics as a science, Pasteur’s
discovery of microorganisms as cause of fermentation and disease or Faraday’s in-
vention of the dynamo and electric motor are fruits of this splendorous era in the
different, many newly-created branches of science [5, 7]. Such was the confidence in
the development and scientific maturity achieved that scientists began to think that
the major scientific contributions, the guidelines of each discipline —especially in
physics—, had already been set. The dominant belief by the late 19th century was
that only improvements due to more precise measurements were expected, reveal-
ing scarce new knowledge [8]. They were wrong.

Experimental physics had proven the validity of the (classical) theories at that
time for a large number of phenomena, and the motions of mechanical objects were
correctly described by Newtonian mechanics at both the astronomical and terrestrial
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scales [9]. Yet, a subatomic particle, the electron, could be discovered as if it were a
classical, Newtonian particle. Nonetheless, some experimental results did not follow
the classical rules, though it was chiefly ascribed to the absence of a suitable atomic
model. Yet, some of the phenomena observed should have been understood by the
theories known, but they were actually not. The specific heats of solids at low tem-
perature, the observed only five degrees of freedom in the motion of a free diatomic
molecule or the electromagnetic spectrum of the blackbody at thermal equilibrium
are some of the unsolved problems that what we call now classical mechanics could
not explain. Historically, it is the latter that has been considered as the problem
whose solution posed the breakdown with the hitherto completely accepted theory
of mechanics and marked the beginning of quantum mechanics [10].

1.1.1 A conundrum with the blackbody radiation

Oscillating charges radiate. This statement is the basis for the understanding of the
emission due to a body in thermal equilibrium. Experiments show that every ob-
ject has a certain radiative emission and that such emission covers a given range of
wavelengths, having a peak of intensity about one of them and becoming thus the
observed wavelength of radiation [11]. Empiricism also reveals that the rise in the
temperature of the object entails an increase in the observed frequency, what could
be related with the inner vibrations of the atoms and molecules conforming the ob-
ject that are composed of charged subatomic particles —in addition to the neutron,
that was discovered in 1932. With the aim of obtaining a relationship between the
observed wavelength of an emitting body and the temperature it presents, physics
devised the blackbody, a perfect absorber and emitter.

When an object is irradiated with light, some of the incident radiation is ab-
sorbed and some is reflected; a blackbody is therefore an idealised object. Neverthe-
less, physics employed an equivalent device: an object composed of a cavity with a
diminutive hollow. In such object, the oscillating charges in the cavity wall emit elec-
tromagnetic waves constantly in every direction, but, as they are emitted, they are
absorbed by another part of the cavity. Therefore, in thermodynamic equilibrium,
the constantly emitting radiation inside the cavity is compensated by a simultane-
ous absorption, the waves that escape from the cavity being negligible due to the
insignificant size of the hole —and so those that enter through it. Experiments with
this device in the 19th century showed an energy density ρ(ν) (or intensity, since
they are proportional) distribution conforming a curve, rising from lower frequen-
cies ν to higher in a rate proportional to ν2, reaching a maximum and then decaying
exponentially. It was shown that the curve moves towards higher frequencies when
increasing temperature (Wien’s displacement law) and becomes more peaked, but
the pattern remains. There were two main attempts to attain a relation between
the energy density and the frequencies they correspond to basing on either thermo-
dynamic arguments or statistical mechanics [10, 12]. On the one hand, by using
thermodynamic arguments and fitting to the empirical curves, Wien obtained the
relation

ρ(ν) = c1ν3ec2ν/T, (1.1)

where c1 and c2 are constants and T represents the temperature of the system. Wien’s
formula agreed with measurements at high frequencies, but not at low. A different
approach was followed by Rayleigh and Jeans who, by employing in this case clas-
sical electrodynamics and statistical mechanics were led to

ρ(ν) = cκTν2, (1.2)
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κ and c being the Boltzmann’s and another constant, respectively, and becoming
only valid for low frequencies of the emission spectrum. In fact, the Rayleigh-Jeans
law predicts a continuous increment of energies with ν (the ultraviolet catastrophe),
what leads to a divergent integrated total energy and the conclusion that the black-
body contains an infinite amount of energy. Therefore, neither the thermodynamic
derivation nor the electrodynamical one could satisfactorily explain the experimen-
tal emission curve. Rayleigh and Jeans had assumed that the oscillators that com-
pose the cavity walls have a continuous range of energies available. In an attempt
to circumvent the problems raised with the classical electrodynamics formulation,
Max Planck introduced a revolutionary hypothesis: the energy of a given oscillator
of frequency ν must be an integral multiple of a basic quantity or quantum hν, where
h is a very small constant. Thus, he found the relation

ρ(ν) = chν3 e−hν/κT

1− e−hν/κT . (1.3)

This new formula approaches Rayleigh-Jeans’ at small frequencies and tends to
Wien’s law for higher. Yet, it perfectly agrees with intermediate frequencies, be-
ing capable of reproducing the whole blackbody spectrum at different temperatures.
Planck’s hypothesis sounded strange, but was able to explain the experimental mea-
surements. This finding constituted a breakthrough and was supported by succes-
sive new explanations of phenomena such as the photoelectric effect —for which
Einstein found the same h constant from Planck’s theory and showed the universal-
ity of Planck hypothesis that radiation can be only exchanged in units of hν—, the
Compton effect, the energy levels of material systems or the laws for the absorption
and emission of radiation. Planck marked the beginning of what we nowadays call
quantum mechanics, the theory of mechanics that describes phenomena in the mi-
croscopic world; phenomena that appear when looking deep enough but that are
otherwise imperceptible from our macroscopic view. Such macroscopic impercep-
tibility impedes us from noticing the quantisation of matter, as the basic units of
energy hν are too small for our direct perception. An apparent continuum is nev-
ertheless what is revealed and the physical laws based on it are satisfying in the
macroscopic world. Thus, a model that reports good agreement and predictability to
a given date is not an absolute truth, but a construction on the basis of rationalisation
from empirical experience, and eventually the new advances in the different fields
may unveil previously unknown phenomena that escape from the models thus far
developed. This was what happened with the failure of classical mechanics, paving
the way for a more complete theory with the inclusion of the quantum mechanics,
that has in Bohr’s correspondence principle the linkage between the two. Two theo-
ries developed for the explanation of two apparently different physical worlds, but
connected in a complete and elegant fashion.

1.2 A wave function to rule them all

The construction process of the new theory was done by analogies with the already
known classical mechanics [9, 10, 13, 14]. According to Newton’s laws, known the
current state of a (macroscopic) particle, its future can be predicted. In classical me-
chanics it is sufficient to know the positions and velocities, along with the forces
acting on the target particles, to determine the future state of such objects. The
quantum world is nevertheless non-deterministic. Heisenberg’s uncertainty princi-
ple prevents the exact and simultaneous determination of conjugate properties such
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as position and momentum. Therefore, it is not possible to know the state (in classi-
cal mechanics parlance) of a microscopic particle at any time. To operate with such
systems and taking into account the wave-particle duality of the quantum world,
a wave or state function Ψ is postulated to act as a system’s state descriptor. It is
not a mathematical object to unequivocally determine the properties of the system
regarded, but rather a function that describes its behaviour in a probabilistic fashion.

The wave function of a system composed of N particles with masses {mi}i=1,N
depends on the 3N spatial coordinates of all its constituents {ri}i=1,N plus time t and
satisfies the Schrödinger wave equation (in reality a diffusion equation since a wave
equation presents a second derivative with respect to time and Schrödinger’s has
one [14]), that in its non-relativistic formulation reads

ih̄
∂Ψ(r1, r2, . . . , rN , t)

∂t
= Ĥ(r1, r2, . . . , rN , t)Ψ(r1, r2, . . . , rN , t). (1.4)

This equation relates the temporal evolution of the wave function with the Hamil-
tonian operator Ĥ as applied to Ψ. Ĥ is the operator associated to the total energy
of the system and can thus be split into a kinetic energy operator T̂ = ∑N

i=1− h̄2

2mi
∇2

i

and a potential energy one V̂(r1, r2, . . . , rN , t). When the system is subject to a time
independent potential, a solution to the partial differential equation can be of the
form

Ψ(r1, r2, . . . , rN , t) = ψ(r1, r2, . . . , rN)θ(t), (1.5)

where ψ does not evolve with time and is thus called a stationary state. For such
cases, the (time-dependent) Schrödinger equation becomes

ih̄ψ
dθ

dt
=

N

∑
i=1
− h̄2

2mi
θ∇2

i ψ + V(r1, r2, . . . , rN)ψθ. (1.6)

If we divide both sides by ψθ, we obtain

ih̄
1
θ

dθ

dt
=

N

∑
i=1
− h̄2

2mi

1
ψ
∇2

i ψ + V(r1, r2, . . . , rN), (1.7)

where only the left part shows dependency on time and the right on space. There-
fore, as time changes, only the left-hand side of the equation changes (and so does
the right-hand side when the spatial coordinates vary). Since both sides are equal by
the previous relation, both the time-dependent term and the spatial-dependent part
must equal a constant, which corresponds to the total energy E. The Schrödinger
equation can thus be separated into two differential equations

N

∑
i=1
− h̄2

2mi
∇2

i ψ + V(r1, r2, . . . , rN)ψ = Eψ (1.8)

ih̄
dθ

dt
= Eθ. (1.9)

The solution to the latter is
θ ∝ e−iEt/h̄, (1.10)

what, when applied to the spatial part ψ to obtain the complete wave function

Ψ = ψe−iEt/h̄, (1.11)
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only provokes a change in its phase. (Note that the time-dependent function θ is pro-
portional to the exponential. The constant of proportionality can be disregarded if
one seeks a normalised Ψ.) The energy is therefore not altered and dependent upon
the spatial, time-independent function ψ only —hence, its name stationary state.
Such function is a solution to the so-called time-independent Schrödinger equation
(succinctly referred to as Schrödinger equation in the following)

Ĥψ = Eψ. (1.12)

Equation 1.12 is in fact an eigenvalue equation, where the wave function is an
eigenstate of the Hamiltonian and the energy, its corresponding eigenvalue.

The wave function dictates the behaviour of a given system, however, the lack
of a physical analogue impedes a one-to-one correspondence with any measurable
feature or object. In other words, Ψ is not an observable. The wave function itself
does not reside in the real world, but can be interpreted in statistical terms. Accord-
ing to the Copenhagen or Born’s interpretation, Ψ is a probability amplitude and its
square modulus |Ψ|2 corresponds to a probability density. Thus, the probability of a
single particle to be found in the volume element dr around r (that is, between r and
r + dr) at time t is |Ψ(r, t)|2dr (whenever Ψ be normalised, otherwise the probability
is proportional). Note that if the particle is in a stationary state, the probability den-
sity is determined by ψ(r) alone. In fact, in Chemistry it is customary to speak about
electron density that is nothing but such a probability density applied to N-electron
systems. As will be explained in more detail in Section 2.1, a molecular wave func-
tion can be approximated as a stationary state of the electrons moving in the field
created by the fixed nuclei, and such a wave function does not only depend on the
positions of each electron, but on their spin coordinates s(σ) too, giving rise to the
spatial-spin coordinates x. Hence, the electron density ρ(r) is defined as

ρ(r) = N
∫

dσ1

∫
dx2 · · ·

∫
dxNψ∗(x1, x2, ..., xN)ψ(x1, x2, ..., xN), (1.13)

where the factor N accounts for the indistinguishability of electrons. Such electron
density therefore corresponds to averaging |ψ|2 over all but one spatial coordinate
and all the spin ones.

The probabilistic interpretation of the wave function implies that if we were to
find the particle described by a 1-particle Ψ, an infinite set of experiments would
locate it between r1 and r1 + dr1 with |Ψ(r1, t)|2dr1 frequency and between r2 and
r2 + dr2 with |Ψ(r2, t)|2dr2 regularity. Concerning a system composed of N equiv-
alent particles, such as electrons, ρ(r) accounts for the probability of finding those
electrons per volume element around r, and can be determined experimentally by,
for example, X-ray diffraction, representing the observed electron distribution in
space.

As regards to the calculation of properties, the distribution given by |Ψ|2 is utilised
to estimate the mean or expected value of a given observable. This means that if we
were to perform a measurement of a certain property, only if its associated quantum
mechanical operator Ô has Ψ as an eigenfunction, the property will be then well-
defined. Otherwise, a set of experiments will give rise to a set of different possible
values with a mean value ⟨O⟩ given by

⟨O⟩ =
∫

ψ∗Ôψdr∫
ψ∗ψdr

≡ ⟨ψ|O|ψ⟩⟨ψ|ψ⟩ (1.14)
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where for the right-side terms the Dirac bra-ket notation has been introduced (hence,
representing an integration over the whole domain of ψ). For a normalised wave
function, the mean or expectation value is simply given by the numerator of the
previous expression, since ⟨ψ|ψ⟩ = 1. It is also worth mentioning that when the
wave function is expanded in terms of other functions {ψm}, a matrix representation
of an operator Ô in such basis is possible (whenever the basis is finite), leading to
the so-called matrix elements Okm = ⟨ψk|O|ψm⟩ of the operator.

The wave function is thus a key concept in the theory of quantum mechanics.
Any scientist who seeks for modelling the microscopic world, predict or interpret its
behaviour needs first to adequately obtain a proper wave function for the system of
concern.

1.3 A physical basis for chemistry

1.3.1 The quantum theory applied to the simplest chemical systems

Once the foundations of quantum mechanics were settled, the study of the simplest
systems such as a those composed of a unique particle in different environments
(e.g., the free particle, the particle confined in a box or on a ring, the rigid rotor, etc.)
could be done. The following step was to address real but also simple systems such
as the hydrogen and other hydrogen-like (i.e., one-electron) atoms.

A hydrogen-like atom can be regarded as a system composed of two mutually-
interacting particles with a Hamiltonian operator of the kind

Ĥ = − h̄2

2m1
∇2

1 −
h̄2

2m2
∇2

2 + V(r1, r2). (1.15)

Particles 1 and 2 are, indeed, the nucleus, with a positive charge +Ze, and a unique
electron, with a negative unit of charge −e. This well-known two-body problem
can be simplified by taking into account that the potential acting on each particle
corresponds to the Coulomb potential, with the only dependency on the relative
coordinate r = |r1 − r2| [9, 14]. The Hamiltonian becomes

Ĥ = − h̄2

2mn
∇2

n −
h̄2

2me
∇2

e +
1

4πϵ0

Ze2

r
, (1.16)

where n stands for the nucleus, e for the electron and ϵ0 denotes the vacuum permit-
tivity. This fact can be exploited and the system treated as one composed of a hy-
pothetical free particle of mass M = mn + me, corresponding to the centre of mass,
and another with reduced mass µ (where 1

µ = 1
mn

+ 1
me

), describing the relative mo-
tion of the particles and subject to the Coulomb potential. These are non-interacting,
independent particles and, as such, their whole wave function can be split as the
product of the individual two. On the one hand, the well-known wave function of
the free particle (i.e., the translational motion of the atom as a whole) and, on the
other, the one corresponding to the relative motion of the nucleus and electron. The
Schrödinger equation for the latter reads

− h̄2

2µ
∇2ψ +

1
4πϵ0

Ze2

r
ψ = Eψ, (1.17)
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which is more convenient to be expressed in spherical coordinates, leading to

1
r

∂2

∂r2 rψ +
1
r2 Λ2ψ +

Ze2µ

2πϵ0h̄2r
ψ = −2µE

h̄2 ψ, (1.18)

where Λ2 represents the Legendrian, the angular part of the Laplacian. As can be
appreciated, the radial and angular parts are not coupled, and so is the solution to
it,

ψnlml (r, θ, ϕ) = Rnl(r)Ylml (θ, ϕ), (1.19)

a product of a radial function R and a spherical harmonic Y. The solution to this
problem of general form 1.19 is in fact a function of a set of parameters, namely
n, l and ml , the quantum numbers, whose values determine the explicit expression
of the wave function, in turn, composed by a set of functions and polynomials with
distinct forms depending on the value of the parameters. These also present different
associated energies and are the different states of the hydrogenic atoms.

The treatment employed for the two-body problem raised by a nucleus and an
electron is similar to considering the centre of mass as the pure nucleus and the par-
ticle of reduced mass as the electron. Such a similarity stems from the very different
mass ratio between the two particles that shall be used in the next sections as the
basis of an approximation central to molecular modelling. As such, the functions
ψnlml are known as atomic orbitals —a term derived from the word orbit, in analogy
with the classical theory— and determine the relative movement of a unique elec-
tron about a nucleus.

1.3.2 The many-body problem

The hydrogen atom (along with the rest of one-electron atoms) is the only chemical
system whose associated Schrödinger equation can be solved analytically, since it
can be reduced to two pseudo one-body problems. The inclusion of a third particle,
be it another nucleus or an electron, impedes the separation of variables in any co-
ordinate system due to the interdependence of each particle on the rest as accounted
for by the interaction terms. Thus, apart from the hydrogen-like atoms, the rest of
the atomic and the molecular wave functions cannot in principle be obtained exactly
due to their many-body nature. However, this fact does not preclude the usage of an
approximate treatment. In order to circumvent this issue, two main families of ap-
proximations emerged: those based upon the consideration of the interaction term
as a small perturbation of the non-interacting system —and thus called perturbative
approaches— and those seeking to attain a correct wave function by means of some
trial, approximate wave function with parameters to be optimised —the variational
method.

Perturbation theory

The (time-independent and non-degenerate) perturbation theory is based on a sim-
ple model system whose eigenstates (that shall be called {ψ(0)

m }m=0,1,2,...) are known
and that is subject to a certain small perturbation. The true system is characterised
by a Hamiltonian Ĥ that differs from that of the model system Ĥ0 by a small pertur-
bation Ĥ′ [13, 15]. Hence,

Ĥ = Ĥ0 + λĤ′, (1.20)
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where λ ∈ [0, 1] accounts for the level of perturbation acquired, λ = 0 represent-
ing the model system and λ = 1 the completely perturbed system, that is, the true
system. (It is a mere instrument to keep track of the perturbative order as shall be
seen.)

The set of known eigenstates of the model system, in turn, fulfil the property that
are mutually orthogonal (the inner product between two different states is zero).
They are also normalised, so that they are said to be orthonormal. This property can
be succinctly expressed as ⟨ψn|ψm⟩ = δnm, where δnm is the Kronecker delta and takes
value 1 for n = m and 0 otherwise.

Since the Hamiltonian depends on the parameter λ, so do its eigenfunctions ψm
and energies Em. By expanding them in a Taylor series about λ = 0,

ψm = ψm|λ=0 +
∂ψm

∂λ

∣∣∣∣
λ=0

λ +
∂2ψm

∂λ2

∣∣∣∣
λ=0

λ2

2!
+ · · · (1.21)

Em = Em|λ=0 +
dEm

dλ

∣∣∣∣
λ=0

λ +
d2Em

dλ2

∣∣∣∣
λ=0

λ2

2!
+ · · · , (1.22)

where ψm|λ=0 = ψ
(0)
m and Em|λ=0 = E(0)

m . Equations 1.21 and 1.22 become

ψm = ψ
(0)
m + λψ

(1)
m + λ2ψ

(2)
m + · · · (1.23)

Em = E(0)
m + λE(1)

m + λ2E(2)
m + · · · (1.24)

with

ψ
(k)
m =

1
k!

∂kψm

∂λk

∣∣∣∣
λ=0

and E(k)
m =

1
k!

dkEm

dλk

∣∣∣∣
λ=0

as the different kth-order corrections to either the wave function or the energy.
The Schrödinger equation for the real system then reads

(Ĥ0 + λĤ′)(ψ(0)
m + λψ

(1)
m + λ2ψ

(2)
m + · · · ) =

(E(0)
m + λE(1)

m + λ2E(2)
m + · · · )(ψ(0)

m + λψ
(1)
m + λ2ψ

(2)
m + · · · ) (1.25)

and can be reorganised to grouping the different kth-order terms as

Ĥ0ψ
(0)
m + λ(Ĥ0ψ

(1)
m + Ĥ′ψ(0)

m ) + λ2(Ĥ0ψ
(2)
m + Ĥ′ψ(1)

m ) + · · · =
E(0)

m ψ
(0)
m + λ(E(0)

m ψ
(1)
m + E(1)

m ψ
(0)
m ) + λ2(E(0)

m ψ
(2)
m + E(1)

m ψ
(1)
m + E(2)

m ψ
(0)
m ) + · · · (1.26)

Provided the model system has been chosen appropriately and the expansion
converges, the first-, second-order and subsequent corrections to both the wave func-
tion and the energy will produce smaller additional changes when including higher
order corrections. Since λ is arbitrary, all the terms of a given order at both sides of
Equation 1.26 must coincide. Thus, the model system is represented by the 0th-order
terms

Ĥ0ψ
(0)
m = E(0)

m ψ
(0)
m , (1.27)

the first-order correction comprises the solution to

(Ĥ0 − E(0)
m )ψ

(1)
m = (E(1)

m − Ĥ′)ψ(0)
m , (1.28)
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the second one to

(Ĥ0 − E(0)
m )ψ

(2)
m = (E(1)

m − Ĥ′)ψ(1)
m + E(2)

m ψ
(0)
m , (1.29)

and so on. By manipulating such expressions, the different kth-order corrections are
obtained.

First-order correction

In perturbation theory, the corrections to the wave function are treated as a mix-
ing of the zeroth-order m state with the rest of the same-order states. The perturba-
tion thus acts as a distortion on the reference system and induces virtual transitions
to other states. As such, the first-order correction to the m-state wave function is
expressed as

ψ
(1)
m = ∑

n
anψ

(0)
n . (1.30)

By substituting in the first-order equation and multiplying on the left by
〈
ψ
(0)
m
∣∣ (or,

equivalently, by multiplying by ψ
(0),∗
m and integrating),

∑
n

an(E(0)
n − E(0)

m )⟨ψ(0)
m |ψ(0)

n ⟩ = E(1)
m ⟨ψ(0)

m |ψ(0)
m ⟩ − ⟨ψ(0)

m |Ĥ′|ψ(0)
m ⟩. (1.31)

Since the states are orthonormal, the only surviving term in the summation over the
states is that for which n = m. Therefore, the whole left-hand side of the equation
vanishes and the first-order correction to the energy becomes just the matrix element
of the perturbation Ĥ′ on the reference state,

E(1)
m = ⟨ψ(0)

m |Ĥ′|ψ(0)
m ⟩ ≡ H′mm. (1.32)

This correction corresponds to the average effect of such a perturbation over the state
ψ
(0)
m .

The calculation of the corresponding first order correction to the wave function
implies obtaining an explicit form for the expansion coefficients an of Eq. 1.30. The
procedure for doing so is similar to the one described for E(1)

m . By taking the first-
order equation and multiplying on the left by a different bra

〈
ψ
(0)
k

∣∣ in this case so
that the left-hand side part does not vanish (and with it an),

∑
n

an(E(0)
n − E(0)

m )⟨ψ(0)
k |ψ

(0)
n ⟩ = E(1)

m ⟨ψ(0)
k |ψ

(0)
m ⟩ − ⟨ψ(0)

k |Ĥ′|ψ
(0)
m ⟩. (1.33)

The orthonormality condition leads in this case to n = k as the only surviving term
in the summation, ak thus becoming

ak =
H′km

E(0)
m − E(0)

k

, (1.34)

which is valid for non-degenerate states whenever k ̸= m.

Second-order correction

Similarly to the previous derivation of the first-order corrections, the starting
point for the second-order ones is the corresponding expansion of ψ

(2)
m in terms of
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the model system’s eigenstates

ψ
(2)
m = ∑

n
bnψ

(0)
n . (1.35)

By considering Equation 1.29 now, substituting the first- and second-order correc-
tions to the wave function and multiplying by

〈
ψ
(0)
m
∣∣ on the left, one is led to

∑
n

bn(E(0)
n − E(0)

m )⟨ψ(0)
m |ψ(0)

n ⟩ = ∑
n ̸=m

an⟨ψ(0)
m |E(1)

m − Ĥ′|ψ(0)
n ⟩+ E(2)

m ⟨ψ(0)
m |ψ(0)

m ⟩. (1.36)

Due to orthonormality, the left-hand side part and the term with E(1)
m are zero, so the

second-order correction to the energy becomes

E(2)
m = ∑

n ̸=m

H′nmH′mn

E(0)
m − E(0)

n

. (1.37)

Since H′nmH′nm = H′∗mnH′nm = |H′mn|2, the second-order contribution will always play
a stabilising role for ground states (m = 0).

Following the same receipe used so far, the second-order correction to the wave
function, the third-order ones, etc., could be obtained. However, for later discussion
only the energy corrections up to second order are needed. Moreover, the knowledge
of the first-order correction to the wave function suffices to derive corrections to the
energy up to third order (according to Wigner’s 2n + 1 rule which states that energy
corrections up to 2n + 1 order can be achieved provided the nth-order correction to
the wave function [16]).

This is the general procedure due to Rayleigh and Schrödinger. A simple appli-
cation is the search for the minimum energy state, that is, the ground state (GS) of
the helium atom. In such case, the problem can be viewed as two independent one-
particle systems subject to a perturbation caused by the mutual interaction between
electrons 1 and 2. Hence,

Ĥ0 = − h̄2

2me
∇2

1 −
h̄2

2me
∇2

2 −
1

4πϵ0

e2

r1n
− 1

4πϵ0

e2

r2n
(1.38)

and the perturbation,

Ĥ′ =
1

4πϵ0

e2

r12
. (1.39)

The model system is described by the product of the hydrogenic 1s wave function
of each electron. It yields an associated ground state energy in a 38% of error with
respect to the experimental one. The correction provided by the perturbation Ĥ′ up
to third order results in an almost perfect agreement with a small error of 0.02 eV.

Variation theory

An alternative scheme is provided by the variational method. It is based on the vari-
ational principle, that states that given a wave function ψtrial fulfilling the boundary
conditions of the problem at hand, its associated energy (i.e., the expectation value
of the Hamiltonian) is an upper bound to the exact ground state energy E0 given by
the Rayleigh ratio

E =
⟨ψtrial |Ĥ|ψtrial⟩
⟨ψtrial |ψtrial⟩

≥ E0. (1.40)
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The procedure of this method involves an optimisation of a set of parameters the
trial wave function is dependent upon so as to converge towards E0. When the set
of parameters allows an appropriate exploration of the Hilbert space, the converged
wave function corresponds to the the exact ground state one ψ0.

To exemplify the performance of this second method, the He atom can be again
evaluated. The aforementioned perturbation treatment acts over the hydrogenic
wave functions as model systems. If a similar trial wave function is used, replac-
ing the atomic number Z by a parameter ζ in the 1s hydrogen-like wave functions
of each electron, its optimisation leads to an energy 1.53 eV in error (a 1.9%) with
the exact value. Since any function fulfilling the boundary conditions can be used
as a trial function, another attempt can be done by introducing the interelectronic
repulsion term (absent in the previous variational wave function) multiplied by an
adjustable parameter. This was the spirit followed by Hylleraas and led to an im-
proved variational wave function whose energy was in a reduced error of 0.3 eV
(further corrected, in turn, by subsequent authors).

Nevertheless, the general usage of the variational method entails its linear for-
mulation by Rayleigh and Ritz. Having noticed the difficulties to come up with an
adequate trial wave function for each problem to be optimised, these authors pro-
posed the usage of linear variations only, making thus use of a trial wave function
of the form

ψtrial = ∑
i

ciψi. (1.41)

In such method, the wave function is expanded as a linear combination of a set of
fixed functions (the basis functions ψi), whose coefficients ci are the parameters to
be optimised. When introducing such trial function in the Rayleigh ratio, expression
1.40 becomes

E =
∑ij cicj⟨ψi|Ĥ|ψj⟩

∑ij cicj⟨ψi|ψj⟩
=

∑ij cicjHij

∑ij cicjSij
, (1.42)

where Hij are the matrix elements of the Hamiltonian and Sij the overlap integral
between functions ψi and ψj.

The optimisation therefore comprises the simultaneous minimisation of the en-
ergy with respect to each coefficient. Thus, ∂E/∂ck = 0 —whenever the coefficients
are independent; otherwise, using Lagrange’s method of undetermined multipliers
instead—, what ultimately leads to a set of secular equations

∑
i

ci(Hik − ESik) = 0. (1.43)

A non-trivial solution to the above equation entails that the secular determinant be
zero,

det(Hik − ESik) = 0, (1.44)

what leads to a set of values of E as the roots of their corresponding polynomials,
the lowest value being the approximate ground state energy.

1.3.3 Computational chemistry

The development of the quantum theory led to a new subfield of chemistry as the
branch dealing with the development and application of methods rooted in quan-
tum mechanics to unravel and solve chemical problems. The so-called quantum
chemistry also laid the foundations of a more general theoretical chemistry, that
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was intended to explain a predict chemical processes, physical properties of com-
pounds or to rationalise the structures they present on the basis of both conceptual
and mathematically rooted models. These models comprise the different and succes-
sive descriptions of chemical bonding, the explanation of the reaction rates observed
(chemical kinetics) or the rules for chemical reactivity derived from wave function
interpretation.

In the early ages of quantum mechanics, equations had to be solved by hand.
It was not until the invention of computers that more complex problems could be
addressed. Computers provided the means for performing individual operations
that otherwise would have been unaffordable. Even if an idealised large number
of individuals working ceaselessly were employed, the performance of a computer
would be much greater due to the rapid access to memory, connections among dif-
ferent processing units, etc. Provided a set of instructions as a sequence of logical
operations conforming an algorithm, a computer is capable of distributing the tasks
among its processors to speed up the whole process by means of parallelisation.
Methods in theoretical chemistry rose basing on different approaches and taking
advantage of the computer architectures at hand. As such, among the plethora of
methods available, it has been possible to implement really accurate ones to ob-
tain proper wave functions with calculated energies within narrow error ranges for
small and medium-sized molecules. Not only is the theoretical study of chemistry
based on quantum physics, but also on other subsequent incorporations to the set
of methods that go beyond the rigorous quantum mechanical treatment for atomic-
scale systems. These range from the application of classical physics to simulate the
dynamics of a large protein in solution to the more modern use of data mining to
predict chemical reactions mechanisms and products [17]. All these methods, al-
though may escape from the initially conceived quantum chemistry, are part of a
broader discipline focused on the application of the different theoretical approaches
(with the help of computers, hence its name) to chemical problems: computational
chemistry [18, 19].

Computational chemistry covers indeed a wide range of computational tools
rooted in very distinct approaches. These can be chiefly classified in quantum me-
chanical (QM), as those relying on obtaining a wave function from which all mea-
surable properties can be calculated, and molecular mechanics (MM) methods, that
make use of simplified models rooted in simpler classical physics laws to simulate
(usually huge) systems or even parts of them when the accurate description by QM
is not necessary and/or affordable. Indeed, QM methodologies have traditionally
been applied to not very large systems due to the rapid growth in computational
requirements with the number of atoms (specifically, electrons and basis functions).
As such, either hybrid QM/MM methodologies for large systems where a target
moiety is treated at the QM level while the rest is modelled classically, or simpler
QM techniques when a profound description is needed have been the choice for
those situations. It is the case of non-ab initio (i.e., those methods that do not ob-
tain a quantum mechanical wave function step by step from scratch) QM methods
such as semi-empirical methods, that aim to simplify costly (two-electron) integrals
by setting them to specific values (such as those provided by fitted parameters), or
density functional theory (DFT), that also makes use of a set of parameters to esti-
mate the energy and obtaining an approximate pseudo-wave function, as shall be
seen later. However, other full QM alternatives also exist. To cite a couple, quan-
tum Monte Carlo (QMC) and density matrix renormalisation group (DMRG), that
exploit very different approaches than traditional methods and achieve a high level
of accuracy while retaining moderate resources demands. Furthermore, the ongoing
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development of quantum computers opens new doors for the exact QM treatment
of bigger systems; methods whose implementation in classical computers made it
thus far unbelievable [20].

Chemistry began its adventure as a modern science, independent from the mys-
ticism that had accompanied alchemy over the years, as an eminent experimental
discipline. The rise of quantum mechanics, however, marked a turning point whose
effects can still be perceived nowadays. The current computational chemistry has its
own portion in scientific research, albeit it complements many experimental inves-
tigations and vice-versa. It has become an indispensable tool for experimentalists
for rationalising their results and, at the same time, it itself has marked many of the
research lines in synthetic chemistry. The proposition of new catalytic routes, novel
materials with promising mechanical or electrical properties or the search for more
specific and less harmful drugs have encouraged many experimental work, proving
the usefulness of theoretical research in promoting overall chemistry.

The usefulness of computational techniques lies on the set of tools to analyse
and interpret the results of a simulation. Special attention deserves the analysis of
the wave function, an object that does not belong to the real space but to Hilbert’s.
The reconciliation of chemistry with quantum mechanics has therefore been (and it
still is, indeed) a major concern among theoretical chemists. The interpretation of
quantum mechanical results in chemist’s parlance has provided a plethora of meth-
ods of analysis built upon many different theoretical views, what sometimes leads
to contradictory explanations depending on the particular model of choice.

Traditionally, and still reminiscent in the chemist’s mind, chemical interpretation
accompanied the method derived for the wave function calculation. The first quan-
tum mechanical treatment of a (neutral) molecule was due to Heitler and London in
1927 [13, 19]. They developed a theory known as Valence Bond (VB) that relied di-
rectly on overlapping atomic orbitals to describe bonding (initially) between pairs of
atoms. Their idea was successful from an interpretative point of view, but suffered
from the high computational demands that it required. By contrast, the Molecular
Orbital (MO) picture emerged as the preferred one for the so-called electronic struc-
ture calculations (i.e., the calculation of the electronic wave function under a fixed
nuclei approximation) due to its simply and effective implementation, though, in
turn, it suffered from an interpretative issue since this model is based upon linear
combinations of atomic orbitals that ultimately lead to highly delocalised molecu-
lar orbitals throughout the whole molecule. No clear bonds, nor atomic units are
found. Later developments led to molecular orbital models that localised the set of
orbitals, maintaining the global wave function unaltered, to more clearly visualise
bonds, associate electrons to atoms and explain chemical structure, reactions or sta-
bility in simple atomic terms. However, as can be averted from the previous words,
a wave function can be constructed from many different sets of orbitals (intercon-
verted through unitary transformations), all of them giving a proper final description
of the system. The most widely-used interpretative schemes have therefore been
linked to the particular method utilised for solving the Schrödinger equation, re-
sorting to non-physical objects such as orbitals to obtain chemical arguments.

A radically different perspective is taken under orbital-invariant techniques, such
as those relying on real space descriptors. In this family of computational methods,
orbitals are merely a means for constructing the target mathematical functions such
as the electron density or the more general reduced density matrices (RDMs), so that
the set of orbitals employed do not affect the final outcome. This is the theoretical
background this thesis aims to spread and popularise. In the following, and with
the aim of contextualise the work carried out in the present thesis, two controversial
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tasks within quantum chemistry are addressed. On the one hand, the way atoms
are defined in a more complex entity, such a molecule, and, on the other, how the
total energy obtained from a quantum mechanical calculation can be decomposed
and related to chemical concepts. Both conundrums are in the heart of the present
doctoral thesis.

1.4 The atomic identity in the molecular whole

The quantum mechanical treatment of chemical systems through the solution of the
Schrödinger equation results in a more or less accurate system’s wave function, de-
pending on the particular choice of the method to approximate it. Such a mathemat-
ical object that describes the behaviour of the system and determines its properties is
nevertheless irreducible to smaller parts. In the case of a molecule, the solution of the
corresponding Schrödinger equation permits the calculation of the molecular wave
function. But chemistry is about atoms interacting with each other, forming bonds,
a structured display where the positions of atoms that determine properties change
upon a chemical reaction. Moreover, the atomic framework is usually decomposed
into subunits, the functional groups, that are said to be transferable, what means that
those groups present specific properties that are carried from one molecule to an-
other where a given functional group is inserted.

The molecular structure hypothesis is in fact a pillar of the chemical science. An
isolated atom by itself is a diffuse entity as the electron density it comprises extends
to infinity. When approaching to another, there is no way of fully disentangle the
two interacting atoms whose electrons move throughout the whole system. The two
nuclei can be readily determined, but the sea of electrons about the two nuclear is-
lands cannot be measured as to belonging to one or another atom unequivocally.
The wave function reflects this experimental and just mental observation. If two
subsystems are in interaction, a correlation between them exists and hence a wave
function for the whole describes them. According to the probabilistic interpreta-
tion, this is similar to asserting that the wave function of a system does not equal a
product of the individual subsystems’ ones, that would be the non-correlated case.
Instead, the entire system appears to be indivisible. Fortunately, several theoretical
models have tackled this chemists issue and proposed atoms-in-molecules (AIM) de-
composition schemes that range from the simplest atomic charge assignment based
on atom-centred basis functions to more sophisticated charge density decomposi-
tions built upon more physical grounds [21].

The atomic division of a molecule can be performed in either the Hilbert space,
where the wave function resides, or in the three dimensional, real one. Among the
Hilbert space approaches is the Mulliken population analysis, probably the most fa-
mous of this group. When considering only the electron motion about nuclei and
the corresponding electronic wave function being expanded as a linear combina-
tion of atom-centred basis functions (such as molecular orbitals in terms of atomic
ones, as shall be seen in the following Chapter), the Mulliken scheme distributes the
electron charge carried by those basis functions as belonging to a particular nucleus
or equally split between two according to the overlap between those functions and
whether they are centred on the same or different atomic sites. Other techniques
that belong to the same group are the Löwdin and the natural population analyses
(NPA), the latter achieved from a particular set of atomic orbitals (the so-called natu-
ral orbitals) [19, 22]. More physical has been proved the second group of techniques.
Instead of resorting to orbitals, these decomposition methods partition the charge
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density (or simply and specifically the electron density that surrounds nuclei at a
given fixed molecular geometry) among atoms by making use of weight functions
wA(r) as follows:

ρ(r) = ∑
A

ρA(r) = ∑
A

∫
wA(r)ρ(r)dr, (1.45)

from which atomic charges Q(A) can be calculated by subtracting the electron den-
sity ascribed to a given atom to its corresponding nuclear charge,

Q(A) = ZA −
∫

ρA(r)dr. (1.46)

The total molecular density ρ(r) is therefore recovered from the sum of the atomic
ones ρA(r), and the weight functions fulfil

∑
A

wA(r) = 1 ∀r ∈ R3. (1.47)

With the previous requirement as a common feature, several definitions of weight
functions have appeared in the last decades and, depending on whether they pro-
vide well-defined boundaries or not, their resulting decompositions have been in
turn classified as fuzzy for the latter case and non-fuzzy for the former.

Within the fuzzy atomic decompositions, the Hirshfeld method is particularly
popular. This scheme relies on the promolecular density ρ0

pro(r) to weigh the different
atomic contributions to the molecular ρ(r). A promolecule is a fictitious molecule
constructed from the (usually spherically averaged) atomic ground state densities
ρ0

A(r) placed at the final atomic positions within the molecule,

ρ0
pro(r) = ∑

A
ρ0

A(r). (1.48)

The weights are calculated from the quotient between the atomic isolated density
and the promolecular one, yielding atomic densities within the molecule of the form

ρH
A(r) = wH

A (r)ρ(r) =
ρ0

A(r)
ρ0

pro(r)
ρ(r). (1.49)

The Hirshfeld scheme provide atoms as close as possible to the isolated ones and can
also be derived from information entropy [21]. It was shown that Hirshfeld weights
wH

A (r) correspond to the functions that minimise the information loss I between the
promolecule and the true molecular entity

I = ∑
A

∫
ρA(r) ln

(
ρA(r)
ρ0

A(r)

)
dr (1.50)

whenever the atoms in the molecule maintain the same number of electrons they
possess as isolated species. A generalisation that overcomes some issues of the orig-
inal formulation, such as the large dependency on the promolecule chosen, is its
iterative version by Bultinck et al. [21].

However, when considering a molecule, such as the water molecule, given by a
set of points representing the compact atomic nuclei immersed in a continuous elec-
tron density, the simplest way of assigning electrons to nuclei and therefore visualis-
ing atoms within a molecule is probably through Voronoi polyhedra [23]. A Voronoi
diagram is a partition of space filled with distributed objects in regions whose points
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FIGURE 1.1: Voronoi diagram of the water molecule where each
atomic region possesses the spatial points closer to its correspond-
ing nucleus and not others. The molecular representation has been

obtained from AIMAll [24].

are closer to each object than to others. Therefore, as shown in Figure 1.1, the atomic
regions as Voronoi polyhedra for the planar water molecule are delimited by sepa-
ratrices traced perpendicular to each bond or linking line between atoms.

Based on this simple scheme various AIM methodologies are found. On the one
hand, Becke’s scheme [25] partitions space in fuzzy Voronoi cells by softening the
weight functions. A such, Becke’s procedure starts from an ordinary Voronoi par-
tition and then uses polynomials to smooth the weights that are otherwise binary
step functions that assign every point of space to one and only one nucleus. Simi-
lar procedures were taken by Clark and Davidson [26] and by Mayer and Salvador
[27], with the slight modification of including two simultaneous weight functions
so as to discriminate between the proper atomic density and that shared between
two atoms. By contrast, Fonseca Guerra et al. [22] employed Voronoi deformation
densities (VDD) as

ρVDD
A = wV

A(r)ρde f (r) = wV
A(r)

(
ρ(r)− ρ0

pro(r)
)

, (1.51)

focusing on the density change from the promolecule to the true molecular distribu-
tion and partitioning it by means of Voronoi weights wV

A(r).
Since the definition of atoms in molecules is not and cannot be unique —they

cannot be observed by any experiment—, there are very distinct approaches, not
only in Hilbert space relying on one or another set of orbitals, but also in Cartesian
space. A very different approach to the above-mentioned ones where this dissimilar-
ity is readily appreciated was accomplished by Li and Parr [28], who relied on atomic
densities following a minimum promotion energy, defined as the energy difference
between the isolated atomic density and the final atomic portion of the molecular
charge distribution.

Among all the AIM schemes, there is one that itself inaugurated a new theory
to interpret quantum mechanical results, whose grounds served to accomplish a
fruitful connection between chemical concepts such as chemical bonds, bond or-
der, Lewis pairs, acidity or basicity and the information contained in the inscrutable
wave function. It is Bader’s Quantum Theory of Atoms in Molecules (QTAIM) [29,
30]. Although it constitutes an extensive theory, we are for the moment only con-
cerned with how such a theory recognises atoms as belonging to a more complex
entity. Bader’s approach is based on the electron density, as the previously-cited
AIM schemes, but more specifically, it relies on the topology of such scalar field.
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FIGURE 1.2: Bader’s QTAIM atomic partitioning of the water
molecule. This graphic has been obtained with the AIMAll program

[24].

Hence, the name Quantum Chemical Topology (QCT), coined by Paul L.A. Popelier
to refer to the set of techniques rooted in the topological study of quantum me-
chanical functions, such as the electron density, the Laplacian of ρ or the electron
localisation function (ELF) [31].

Paramount to QTAIM is the gradient field of ρ: ∇ρ(r). It constitutes a vector
field, a collection of all gradient paths that connect sources to attractors; trajectories
that (essentially) originate at infinity where ρ vanishes and (usually) end up at the
nuclei. However, not all these trajectories terminate at nuclear positions: some trace
paths that end up at points between two nuclei and configure a surface of trajectories
that are tangential to those terminating at the nucleus. In other words, these surfaces
fulfil

∇ρ(r) · n̂ = 0 ∀r ∈ S(Ω), (1.52)

where n̂ is a unitary vector normal to the surface S enclosing the three-dimensional
region Ω. These are the interatomic surfaces (IAS) in QTAIM and represent the bound-
aries of the topological atoms. They are also called zero-flux surfaces, since no density
flux crosses them, what entails interesting consequences that shall be described in
more detail in following sections.

Bader’s atoms are therefore described by the weight function

wB
A(r) =

{
1 if r ∈ ΩA

0 elsewhere,
(1.53)

which yields an exhaustive (i.e., ∪AΩA = R3 and ∩AΩA = Ø), non-fuzzy atomic
decomposition of the three-dimensional space. The Voronoi partition presents an
equivalent weight function, but as a result of the previous definition of the QTAIM
boundaries, the size of Bader’s atoms depends on how electron density is distributed
in space, not only depending on the relative positions of the atomic nuclei. Conse-
quently, the real space picture of topological atoms differs to a large extent from
that provided by Voronoi (though it can be attenuated by adapting Voronoi cells
by means of chemical size measures such as van der Waals radii [23]). By consid-
ering again the example of the water molecule (Fig. 1.2), under QTAIM the elec-
tron deficient hydrogen atoms compress a smaller domain, whereas the electron rich
and highly electronegative oxygen dominates a larger portion of space that under a
Voronoi decompostion is shared with hydrogens.

The so-called topological atoms are therefore parameter-free; they are built upon
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the shape, in topological terms, of the electron density, and hold a straightforward
chemical picture: a tiny hydrogen atom attached to an electronegative one loses its
entity to a large extent, whereas its partner spans so as to acquire a more nega-
tive charge (as obtained from the integration of the total charge density within the
corresponding boundaries) withdrawn from the hydrogen; two carbon atoms in a
hydrocarbon trace a separatrix that divides the space equally between them, as they
are equivalent from the chemical and also topological point of view. The QTAIM
atoms arise from a theoretical sound approach; however, they do not appear alone
in nature, but in a permanent interaction with their surrounding partners with which
they exchange electrons continuously (they are open quantum subsystems). The atomic
identity is therefore diluted and the decision of taking one or another approach to
disentangle the continuous electron density so as to achieve a final partition in what
chemists call atoms is just a choice. Nonetheless, this apparent ambiguity does not
preclude a preferential reasoned used of one method over the others, and this is why
only QTAIM atoms have been considered in this thesis, since those are more robust
and arguably more physical than others.

1.5 Energy components as a link with chemical ideas

According to the Schrödinger equation, the wave function is the eigenfunction of
the Hamiltonian operator, the energy of the system being its eigenvalue. Similarly
to the molecular decomposition in terms of atoms, the energy can only be unequiv-
ocally split according to the energy terms in the Hamiltonian, but dispersion, in-
duction, charge transfer or dipole-dipole interactions that cope an important part of
the chemist’s imaginary are not found within it. Here is where energy decomposi-
tion analyses (EDAs) [32] come into play. From the perturbative SAPT (symmetry-
adapted perturbation theory) to the QCT-rooted IQA (interacting quantum atoms),
the set of techniques for analysing the global energy of a system by dissecting it into
chemically meaningful contributions have been very fruitful in, for example, ascrib-
ing binding of a molecular aggregate to a specific source, measuring the role played
by different parts of a molecule in the global stability or in ascertaining the character
of a chemical bond or more general interaction.

As described for the atomic decomposition of the molecular system, the corre-
sponding schemes for dissecting the global energy are also based on very distinct
approaches. These can be classified in three main groups, namely, perturbative ap-
proaches, supermolecule, orbital-based procedures and those rooted in real space
techniques. One important feature common to all these methods is the definition of
fragments [32, 33]. Those can be complete molecular entities such as two monomers
that come into interaction, molecular fragments defined at will or the atoms or
groups defined within the different AIM schemes. First of all, perturbation the-
ory, although is a method of approximating both wave function and energy, it also
permits the extraction of chemical information from energetics. This can be accom-
plished by identifying the energy corrections with physical processes. As such, the
electrostatic energy between the separate molecular fragments —and, analogously,
the different multipolar terms in which it can be decomposed— comes from the first
order correction to the energy, the second encompassing induction and dispersion.
The problem of its bare application is that it does not fulfil some requirements con-
cerning the entanglement between fragments, that cannot be disregarded unless a
long-range regime is considered. For closer distances, however, perturbation theory
is, in principle, not applicable. To overcome this issue, several related procedures
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have been derived, such as Stone-Hayes’ intermolecular perturbation theory (IMPT)
[34] or symmetry-adapted perturbation theory (SAPT), developed by Jeziorski, Sza-
lewicz and co-workers [35]. Since they make use of different ansätze, so are their
resulting energy terms. Thus, SAPT in its most common implementation is able to
distinguish between electrostatic, exchange-repulsion, -induction and -dispersion,
and just induction and dispersion energies. A different perspective is taken under
the supermolecule approach. In this case, the total interaction energy between two
monomers or fragments is intended to be decomposed basing on different inter-
mediate states between the completely isolated species and the final arrangement
whose difference determines the total interaction energy. The original procedure
is due to Morokuma [36] and several improvements led to the more common ver-
sions used nowadays, such as that proposed by Bickelhaupt and Baerends [37]. This
EDA provides four main contributions to the interaction energy: the preparation
energy arisen from the distortion both fragments suffer when they begin to inter-
act, the electrostatic component between the fragments in their final conformations,
Pauli repulsion (similar to the exchange-repulsion term in perturbative approaches)
from the antisymmetrisation of the supermolecular wave function and, finally, the
orbital interaction energy comprising the final relaxation of the electron clouds in
the presence of one another. These are orbital-based EDAs, since they resort to or-
bitals to calculate the different quantities. This fact can be viewed as chemically
intuitive or, on the contrary, artificial. On the one hand, such an interpretation as-
signs electrons to interacting fragments, even when those are placed close together.
Since electrons are indistinguishable, no assignment done in isolation is maintained
in interaction with other species. Similar considerations deserve the orbitals. In the
supermolecule, those are constructed from the contributions of the different atoms
and a satisfactory assignment is not always possible, especially when the MOs are
delocalised and one pretends to associate them to only one fragment, even though
they have similar contributions from the other. Therefore, the definition of frag-
ments on which these EDAs are based may be controversial [32]. The last energy
partition comes from a real space analysis: the interacting quantum atoms (IQA)
energy decomposition method [38]. In contrast to the previous schemes, this is an
orbital-invariant, reference-free technique to decompose the total energy into atomic
or group contributions. Not only does it perform an atomic partitioning of the en-
ergy (according to the desired AIM scheme), but it also provides a separation of
the different sources of the energy in a physically sound way. IQA is based on the
real space partitioning of the so-called reduced density matrices (RDMs), mathemati-
cal objects through which all the energy terms contained in the Hamiltonian can be
calculated. Moreover, they allow for the further decomposition of the interelectronic
potential energy into the classical, uncorrelated Coulomb product of independent
densities and that due to their interdependence according to their quantum nature,
what constitutes a direct link to either the ionicity or covalency of a given bond or
non-bonding interaction.

1.6 New horizons in the interacting quantum atoms energy
partition

The previous two sections have shown that, although there is no unique way of de-
composing both the global, molecular wave function (or related functions such as
the electron density) into atomic subunits and the energy of the system into chem-
ically meaningful terms, especially those ascribed to specific parts of the molecule,
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the QCT provides a tempting and coherent choice for addressing these problems.
As commented before, quantum chemical topology techniques are orbital-invariant,
since in contrast to orbital-based techniques, the QCT only needs a proper wave
function through which to calculate its particular descriptors, regardless of the set of
orbitals such a wave function is built upon.

Within this conceptual framework, the previously-mentioned interacting quan-
tum atoms energy decomposition has been shown as a valuable tool for shedding
light in many different situations. To cite a few from a recent review by Guevara-
Vela et al. [38], IQA has been capable of unveiling the role played by electrostatics
and covalency in different bond situations, from the most typical hydrogen bonds
(HB) to more controversial H-H bonds in planar biphenyl or non-covalent interac-
tions (NCIs) such as anion-π, halogen or tetrel bonding. It has also been employed
as following the reaction path to disclose the mechanism of different organic reac-
tions, as well as to provide a real-space picture of steric repulsion. Indeed, IQA is
not limited to ground states, and as such it has been applied to excited states, too.
Nevertheless, and although its popularisation has increased enormously in the past
years, there is still room for improvement. The quantum mechanical methods that
supply the wave functions from which the RDMs are calculated have been widened
since the initial restriction to single-determinant wave functions (as shall be further
explained in the next Chapter) and the use of multiconfigurational methods as well
as density functional theory (DFT) has been enabled. The set of methods compati-
ble with IQA is nowadays wide, but the treatment of medium-large systems is still
challenging. In order to bypass this issue, some tricks have been proposed to reduce
the high computational demands the calculations require. As such, localisation tech-
niques and the specific selection of a reduced number of atoms of interest in a larger
molecular system provide promising solutions to this major problem.

One field of computational chemistry research that has shown reluctant to the
application of IQA thus far is that corresponding to biochemical systems. Their
usual large size and the frequent need to also model the surrounding environment,
such as the solvent that in many occasions is determinant in the properties a target
biomolecule exhibits, have precluded a wider application of this energetic analysis.
The present thesis, however, aims to contribute to a turning point in the underuse
of IQA in the solution of biochemical problems. The selected systems for which
it has been applied constitute valuable examples of the information IQA is capa-
ble of providing. However, before addressing biochemically related instances, the
extension of the combined IQA-DFT methodology is mandatory for future applica-
tions where electron correlation cannot be disregarded. As such, different density
functionals have been evaluated in the description of hydrogen-bonded and coop-
erative systems as water clusters are, what may serve as a benchmark for larger
HB-featuring organic molecules. Following this first work is the study of fluorine
conformational effects in small and medium-sized organic molecules, that serves
to deepen in the understanding of the effect different substituents in interaction
with fluorine present, what might be exploited in future design of shape-controlled
bioactive peptides. Next, the inclusion of solvation effects by means of a continuous
solvation model allows for the IQA decomposition of the corresponding solvation
energies into atomic and group contributions. To close this research line, a final
study is devoted to the IQA scrutiny of intermolecular electrostatic interactions and
the so-called charge penetration effect, that reveals a direct link between the electro-
static energy, of great importance in biochemical modelling, and the IQA descriptors,
what permits the subsequent assessment of the energetic effect the interpenetration
of molecular densities provokes.
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An effort for the extension and a wider application of this methodology to bio-
chemical problems is presented. But, what is more, the thesis is intended to also
encompass other relevant instances related to the IQA field of expertise: chemi-
cal bonding. Accordingly, a second grand direction is towards the assessment of
controversial non-covalent interactions such as beryllium, halogen and charge-shift
bonding, where IQA, as well as other QCT techniques, may shed new light on the
conundrum these bonding classes entail.
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Chapter 2

Methodology

This second Chapter aims at introducing the main computational chemistry meth-
ods used in the development of the present thesis. Since it is devoted to the wave
function analysis and, especially, to the energy decomposition that follows the acqui-
sition of a proper molecular wave function, the first part of the Methodology section
focuses on the different methods for obtaining such wave functions. A second part
traverses some quantum chemical topology tools for the subsequent analyses, with
special attention to the interacting quantum atoms energy decomposition, whose
capability of fruitfully studying chemical phenomena on a firm physical basis, re-
gardless of the method used to obtain the wave function, is aimed to be remarked.

2.1 Initial considerations to electronic structure calculations

Henceforth, the atomic unit system will be utilised. This way, the electron mass (me),
electron charge (e), reduced Planck constant (h̄), Bohr radius (a0), the atomic unit of
energy (Hartree) or the vacuum permittivity (ε0) are the basis of each corresponding
magnitude, thus equalling a unit (the whole factor 4πε0 in the case of the permit-
tivity) [19]. Similarly, since no time dependence will be considered, capital Ψ letters
will denote the total wave functions of the systems.

2.1.1 The Born-Oppenheimer approximation

Chemical systems are composed of atoms, and atoms, in turn, are built upon nuclei
and electrons. Both constituent particles are interacting mutually, but there exists a
major difference that enables a distinct treatment of the two: the large difference in
mass. An electron is about 1836 times lighter than a proton, and a single proton is the
simplest nucleus. When progressing in the periodic table, more and more neutrons
are added, each being 1839 times heavier than electrons. Such huge ratio between
the masses of the two particles translates into different orders of magnitude between
the electronic kinetic energy and that of nuclei for ground states [9]. This fact was
exploited by Born and Oppenheimer, who inaugurated an approximation central to
analysing chemical systems and calculating their properties.
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The non-relativistic, time-independent Hamiltonian operator associated to a given
molecule composed by M atoms —and so nuclei— with N electrons reads

Ĥ = −
M

∑
α=1

1
2mα
∇2

α −
N

∑
i=1

1
2
∇2

i

+
M−1
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α
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ZαZβ

Rαβ
+
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∑
α
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i

Zα
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∑
i

N

∑
j>i

1
rij

= T̂n + T̂e + V̂nn + V̂ne + V̂ee, (2.1)

where T̂n and T̂e represent the nuclear and electronic kinetic energies, respectively,
and V̂nn, V̂ne and V̂ee, the nucleus-nucleus, nucleus-electron and electron-electron
interaction energies. The Born-Oppenheimer (BO) approximation takes advantage
of the very fast electrons in comparison with the nuclei and decouples both move-
ments. Therefore, for ground and not very high excited states, it is a good approxi-
mation to consider electrons as moving around fixed nuclear positions and their de-
pendency as parametrical. The whole wave function can therefore be decomposed
as a product of a nuclear wave function Ψn (that describes translation, rotation and
vibration) and an electronic one Ψe:

Ψ({ri}, {Rα}) = Ψn({Rα})Ψe({ri}; {Rα}), (2.2)

where {ri} and {Rα} denote the set of electronic and nuclear coordinates, respec-
tively. Accordingly, the Hamiltonian is split and two Schrödinger equations are to
be solved for both the electrons in the electric field created by fixed nuclei and nuclei
immersed in a spatial electron distribution. The electronic equation reads

ĤeΨe({ri}; {Rα}) = Ee({Rα})Ψe({ri}; {Rα}), (2.3)

where
Ĥe = T̂e + V̂ne + V̂ee. (2.4)

By adding the internuclear repulsion Vnn, the total energy for fixed nuclei is ob-
tained:

U({Rα}) = Ee({Rα}) + Vnn. (2.5)

U({Rα}) therefore comprises all but the nuclear kinetic energy term from the molec-
ular Hamiltonian and represents the total energy for a given nuclear arrangement.
Obtaining U({Rα}) for different nuclear positions gives rise to a potential energy
landscape or potential energy (hyper)surface (PES). In reality, when solving the elec-
tronic equation, not only is a solution obtained, but a set of wave functions and as-
sociated energies accounting for different electronic states. Whenever the PESs are
separated enough and do not cross with one another, the BO approximation is ap-
plicable; otherwise it fails in describing correctly the systems under consideration.

The second equation is the nuclear Schrödinger equation

ĤnΨn({Rα}) = EnΨn({Rα}), (2.6)

where the Hamiltonian operator results from the addition of the nuclear kinetic en-
ergy operator to the previous U({Rα}):

Ĥn = T̂n + U({Rα}). (2.7)
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As done with the hydrogenic atoms, the nuclear wave function can be trans-
formed into a product of a wave function describing the translational movement of
the molecule under consideration (as accounted for by its centre of mass), and an-
other comprising the internal motion, that is, rotation and vibration. Only when the
translational motion is decoupled, the molecular Hamiltonian presents a finite and
discrete spectrum.

2.1.2 The many electron wave function

Chemical reactivity, spectroscopic properties related with ultraviolet or visible light
or band structure in solids and their conductor-insulator character are properties
that can be determined under the fixed nuclei approximation. Indeed, the calcula-
tion of the so-called electronic structure is central to quantum chemistry. To this end,
a general many-electron wave function (that we shall simply call Ψ, without explicit
reference to electrons) is to be calculated, that must fulfil a number of conditions.

The electronic wave function Ψ(x1, x2, ..., xN) is parametrically dependent upon
the nuclear positions (hence the current notation without explicit reference to them),
but is a function of the spatial coordinates of all electrons r1, r2, ..., rN plus their spin
variable σ1, σ2, ..., σN , giving rise to the joint spatial and spin coordinates xi = (ri, σi).
The spin is an intrinsic angular momentum of subatomic particles sometimes mis-
takenly regarded as coming from the rotation (spinning) about some particular axis
those particles would experience, but it is actually a purely quantum mechanical
effect that is better explained within quantum field theory [39, 40]. In fact, in the
non-relativistic formulation used so far, the existence of the spin angular momen-
tum is postulated so as to being able to explain the fine structure of atomic spec-
tra. More natural is its appearance in the relativistic formulation proposed by Dirac
when combining quantum mechanics and special relativity [10, 14], though such a
framework lies beyond the scope of this thesis.

In atomic units (h̄), the spin can take values 0, 1
2 , 1, 3

2 , ... and, since it is inherent
to the elementary particle under consideration, these can be classified according to
their associated spin value. All the particles chemists deal with (electrons, protons
and neutrons) present a spin of 1

2 . Others, such as π-mesons (pions), present a zero-
valued spin, while that of photons is one [9, 41]. Besides the collective behaviour of
ensembles of these particles, the classification in terms of their either integer or half-
integer spin also imposes some requirements in their associated wave functions and
the incorporation of a fourth quantum number ms (that can take + 1

2 or − 1
2 values in

the case of electrons according to their projection along the Z-axis) to the previous
three from Eq. 1.18.

Electrons are indistinguishable particles: one cannot label any as being electron
1, 2 or 15 and follow its trajectory, as this would violate the uncertainty principle.
They are identical, and thus, indistinguishable. This fact is a property that must
somehow be manifested in the wave function describing their behaviour. In fact,
when two identical particles, as in an N-electron system, are interchanged (that is,
their coordinates, both spatial and spin) the probability density must not be affected,
and thus, the squared-norm of the wave function must be kept:

|Ψ(x1, ..., xi, ..., xj, ..., xN)|2 = |Ψ(x1, ..., xj, ..., xi, ..., xN)|2. (2.8)

The previous requirement is equally fulfilled by two types of wave functions:
those that are symmetric with respect to the coordinates interchange and those that
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antisymmetric, that is, those whose sign changes when permuting two particle posi-
tions and spins [14]. The former is the case of bosons, that present also a characteristic
integer-valued spin; the electrons, in turn, are fermions, a kind of particles that, in ad-
dition to their half-integer spin, are described by a wave function that must obey

Ψ(x1, ..., xi, ..., xj, ..., xN) = −Ψ(x1, ..., xj, ..., xi, ..., xN). (2.9)

A direct consequence of the antisymmetry of the electronic wave function is the
so-called Pauli exclusion principle, that states that no two electrons can pertain to
the same state whenever the wave function is represented by a set of monoelec-
tronic functions (i.e., orbitals). The many electron wave function must therefore be
continuous, well-behaved, vanishing at infinity and must also incorporate the anti-
symmetry condition and fulfil the exclusion principle.

2.1.3 Hartree product

The basic requirements that an N-electron wave function must fulfil have been pre-
sented. However, no indication has been provided yet to construct such a wave
function. As seen in Section 1.3.2, a chemical system composed of more than one
electron precludes the Schrödinger equation from being solved analytically due to
the interelectronic repulsion term. The simplest approximation is thus omitting this
term and considering the system as composed of non-interacting electrons [15]. In
such a case, the Hamiltonian can be built upon N monoelectronic Hamiltonians as

Ĥ =
N

∑
i=1

ĥ(i), (2.10)

where ĥ(i) = T̂(i) + V̂ne(i). This leads to N independent eigenvalue equations for
which the solutions {ψj} are available:

ĥ(i)ψj(xi) = ε jψj(xi). (2.11)

(Note that the labelling of functions {ψj} and electrons {i} go separately, since each
of them can be reallocated in one or another function.) Due to Pauli exclusion prin-
ciple, each electron must be described by its own wave function ψj(xi) different to
the rest. These are termed spin-orbitals and equal the product of a monoelectronic
spatial wave function (that is, the orbital) ϕ(r) and its spin part s(σ),

ψj(xi) = ϕj(ri)sj(σi). (2.12)

Note that the differing aspect between two monoelectronic wave functions can
be either the spatial part, the spin state or both, what implies that two electrons are
allowed to share the same spatial orbital whenever they present an opposite spin so
that the Pauli exclusion principle is fulfilled. The spin function s(σ) can be either α
or β, according to the ms value of + 1

2 or − 1
2 , respectively. An important property of

these functions is that they are orthonormal, that is, their inner product yields one
for same-spin functions, since they are normalised, or zero if they represent opposite
spin states. This property can be cast into the relation ⟨sj(σi)|sk(σi)⟩ = δjk.

Consequently with the use of independent one-electron Hamiltonians, the to-
tal wave function corresponds to the product of N independent, one-electron wave
functions:

ΨHP(x1, x2, ..., xN) = ψi(x1)ψj(x2) · · ·ψk(xN). (2.13)
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Such a wave function is called a Hartree product and presents an associated eigen-
value

E =
N

∑
j=1

ε j. (2.14)

Of course, this is an imaginary system; electrons are charged particles and charged
particles do interact through the Coulomb term in the Hamiltonian. A Hartree prod-
uct wave function therefore lacks entirely of electron correlation, since the probabil-
ity density can be decomposed likewise into a product of independent probability
densities; in other words, the movement of one electron does not alter that of the
others, no matter how close the eventually become. Moreover, the previous assump-
tions translate into a distinguishable electron model, what contradicts an essential
condition that identical particles must satisfy.

2.1.4 Slater determinants

A correct wave function fulfilling the required conditions is obtained by introduc-
ing antisymmetry. Let us consider the case of a two-electron system described by
the Hartree product of two spinorbitals ψ1 and ψ2. One may place electron 1 to
ψ1 and electron 2 to ψ2 or, conversely, e− 1 in ψ2 and e− 2 in ψ1. Any of these
two solutions is acceptable according to a Hartreee product wave function, but in
both cases electrons are distinguishable. If one considers a linear combination of
the two possibilities a correct 2-electron wave function may be obtained. In this
way, Ψ(x1, x2) = 2−1/2 (ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)) (where 2−1/2 is a normalisa-
tion factor) ensures electron indistinguishability —each electron can be in one or
another spinorbital— and is antisymmetric upon electron interchange.

The previous 2-electron wave function can be rewritten as a determinant,

ΨSD(x1, x2) = 2−1/2

∣∣∣∣∣
ψ1(x1) ψ2(x1)

ψ1(x2) ψ2(x2)

∣∣∣∣∣ , (2.15)

and it leads to a generalisation to N-electron systems as

ΨSD(x1, x2, ..., xN) = (N!)−1/2

∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψN(x1)

ψ1(x2) ψ2(x2) · · · ψN(x2)
...

...
. . .

...
ψ1(xN) ψ2(xN) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣∣

. (2.16)

These are the so-called Slater determinants (SDs), a fundamental piece in elec-
tronic structure methods, and can be succinctly expressed in terms of the main diag-
onal elements as

ΨSD(x1, x2, ..., xN) ≡ |ψ1ψ2 · · ·ψN | ≡ |ψ1ψ2 · · ·ψN⟩ (2.17)

with either a determinantal expression or a ket notation where the normalisation of
the wave function is implicit.

There are two important consequences arising from the properties of determi-
nants. On the one hand, the Pauli exclusion principle is fulfilled since a determinant
having two equivalent columns (two electrons occupying the same spinorbitals) is
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zero. Moreover, the interchange of one row by another (change in electron place-
ment) does not alter the result of the determinant, but its sign (the functions are
antisymmetric upon particle interchange).

Besides the basic properties of SDs, these wave functions no longer represent a
system of totally uncorrelated particles. When using an SD, the so-called exchange
(x) or Fermi correlation is introduced [42]. Electron correlation can be classified in
two kinds: that corresponding to the interdependence of parallel-spin electrons and
that coming from their charged nature. The first kind is implicit in an SD as it en-
sures that two electrons with same spin cannot be in the same point of space and
are very unlikely to be close. This is a consequence of the diminished probability of
finding another electron with same spin than a reference one in its vicinity, which is
measured by the Fermi hole. By contrast, two opposite-spin electrons can in princi-
ple occupy the same position in space, although they are repelled by the Coulomb
force. This kind of correlation (what is usually understood as electron correlation) is
accounted for by the Coulomb hole, absent in a simple SD representation.

2.1.5 Molecular orbitals and basis functions

The general form of a many-electron wave function fulfilling the basic necessary
conditions has been introduced as a Slater determinant, which are constructed from
a set of spinorbitals. However, no indication has been given about how those spinor-
bitals should look like. At this point it becomes worthwhile remarking the fact that
there is no unique recipe to calculate neither those single-electron functions nor any
general system’s wave function and, as could have been averted from these and the
prior pages, the type of system under consideration and the approximations taken
to address the specific problem of finding a suitable, by definition, non-exact (multi-
electron) wave function may lead to different kinds of functions yielding all of them
accurate results, but obtained by rather different procedures.

The focus of this thesis has been on molecular systems and their properties and
associated theoretical grounds. Therefore, non-relativistic, electronic structure calcu-
lations have been the means for obtaining the desired data through which to solve
the different issues addressed herein. Thus, in order to obtain a proper molecular
wave function, the methods used have exploited the fact that molecules are a collec-
tion of atoms, and that when two atoms come into contact, the internuclear region
undergoes an accumulation of electron density, thus forming a chemical bond. This
can be viewed as a constructive interference between the waves of each atom [14],
leading to a very tempting way of constructing the spatial orbitals as linear com-
binations of the well-known atomic orbitals. Such a procedure is the basis of the
molecular orbital (MO) theory, that, as commented in Section 1.3.3, is the preferred
method due to its simply and effective implementation in electronic structure codes,
leading to accurate results with an efficient use of computational resources. A fur-
ther justification of the use of molecular orbitals relies on an observation in the only
molecule for which the BO approximation suffices to solve the Schrödinger equa-
tion exactly: the hydrogen molecule-ion H+

2 (and analogous). When its only electron
approaches one nucleus, its Hamiltonian can be approximated as neglecting the de-
pendence on the attraction to the other nucleus. This leads to a Hamiltonian similar
to that of a hydrogen atom, whose wave function will resemble a hydrogen-like or-
bital. The fact that it occurs equivalently for one or another nucleus is captured by a
linear combination of the two atomic orbitals.

Thus, in MO theory, the set of spinorbitals that gives rise to the SD makes use of
spatial orbitals that are spanned over the molecule as a linear combination of atomic
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orbitals (LCAO) {χν(r)} that constitute the basis set of the expansion [19]:

ϕi(r) =
K

∑
ν

cνiχν(r). (2.18)

In this way, an energy minimisation with respect to the coefficients of the expan-
sion {cνi} would lead to the set of MOs describing the electronic structure of the
system, as explained in Section 1.3.2. Ideally, an infinite number of atom-centred
basis functions should be available for a precise recreation of any molecular orbital
(in this case, the basis set is said to be complete). However, this is not possible and
the size of the basis set must be finite. The type of functions comprising the basis
set is not restricted to a particular one or another, and any type can in principle be
used: exponential, Gaussian, polynomial, plane waves, etc. The only requisite is
that the chosen type be congruent with the physics of the problem. However, from
a practical point of view, the chosen set of basis functions must reduce the compu-
tational cost as much as possible, while assuring accurate results. Thus, hydrogenic
and other related exponential functions such as Slater-type orbitals (STOs), with a
functional form

χSTO
ζnlml

(r, θ, φ) = NYlml (θ, φ)rn−1e−ζr (2.19)

mimicking exact hydrogen orbitals, can be a good choice from a theoretical point of
view, and a small number may give very accurate results. The problem in this case
is the treatment of integrals (that shall be presented in the next Section), for which
no analytical solution is available and, thus, costly numerical integrations have to be
invoked. On the contrary, Gaussian-type orbitals (GTOs)

χGTO
ζnlml

(r, θ, φ) = NYlml (θ, φ)r2n−2−le−ζr2
(2.20)

are much easier to handle and the integrals in which they are involved frequently
present an analytical solution. The problem of this kind of functions emerges as a
consequence of their poorer ability to describe the cusp of the wave function on nu-
clei and their appropriate decay, what makes the use of a higher number of functions
with different angular momentum values and exponents necessary. As another ex-
ample, periodic systems can be well described in terms of periodic functions such as
plane waves, that are much more tractable, especially when a large number of atoms
(usually also with a large number of electrons each one) is involved.

Since the systems inspected in this thesis are molecular ones with usually atoms
of representative elements from the first rows of the periodic table, GTO-based basis
sets have been the choice for the electronic structure calculations.

2.2 Ab initio methods

The solution of the Schrödinger equation can be achieved with the only previous
assumptions, without resorting to additional data other than the fundamental con-
stants and the atomic numbers [14, 19]. Methods of this kind are named ab initio, and
will be the focus of this Section. By contrast, those that also incorporate adjustable
parameters to experimental data are called semiempirical and are intended to simplify
costly integral calculations that may become a bottleneck for large systems.

The present thesis has dealt with small and medium-sized molecules, and a pure,
ab initio approach has been preferred. This Section is devoted to the introduction to
this family of electronic structure methods.
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2.2.1 Hartree-Fock

At the heart of most ab initio methods is the Hartree-Fock (HF) approximation. The
ansatz behind HF is the simple use of an SD as the approximate wave function with
which to solve the Schrödinger equation [15]. By summarising, this procedure aims
to replace the N-body problem by N one-body ones, each of the electrons perceiving
an average field created by the fixed nuclei and the averaged positions of the rest of
the electrons. This model greatly simplifies the problem at hand, but is also unable
to correctly model systems where correlation energy acquires relevance.

In HF there is no approximation in the Hamiltonian operator, that is hence exact
and differs from that of the previously introduced independent particle model (the
so-called core Hamiltonian) by the interelectronic Coulomb operator r−1

ij :

Ĥ = ∑
i

ĥ(i) +
1
2 ∑

i ̸=j
r−1

ij , (2.21)

where the summation runs over the N electron indices i. The approximation is cer-
tainly introduced in the form of the trial wave function, that is an SD, and the pro-
cedure of solving the Schrödinger equation is based on the variational method. Ac-
cordingly, the best trial wave function is the one that minimises the energy. There-
fore, when it comes to an SD wave function, it is equivalent to finding the set of
spinorbitals {ψi} for which the (ground state) energy is minimal. This optimisa-
tion procedure is subject to the constraint that the spinorbitals be orthonormal, that
is, ⟨ψi|ψj⟩ = δij, what leads to the HF integro-differential equations, as will be ex-
plained in the following lines.

With an SD wave function, the expectation value of the Hamiltonian for the GS
takes the form

E0 = ⟨Ψ0|Ĥ|Ψ0⟩ = ∑
i

[
ψi
∣∣ĥ
∣∣ψi
]
+

1
2 ∑

ij

([
ψiψi

∣∣ψjψj
]
−
[
ψiψj

∣∣ψjψi
])

, (2.22)

where the Slater-Condon rules have been used to reach the final expression.1

In the prior equation a specific notation for electronic integrals has been used.
For one-electron integrals, it is equivalent to using bra-kets, thus

[
ψi
∣∣ĥ
∣∣ψi
]
≡
〈
ψi
∣∣ĥ
∣∣ψi
〉
= hii =

∫
ψ∗i (x1)ĥ(1)ψi(x1)dx1, (2.23)

but in the case of bielectronic integrals, spinorbitals at one or another side refer to
the same electron and, consequently,

[ψiψj|ψkψl ] ≡ ⟨ψiψk|ψjψl⟩ =
∫

ψ∗i (x1)ψj(x1)r−1
12 ψ∗k (x2)ψl(x2)dx1dx2, (2.24)

which might be a more convenient representation within the HF theory, as shall be
seen below. Note that the previous equation refers to any two electrons 1 and 2.
Since they are indistinguishable, we shall adopt this numbering for differentiating
the interacting pair of electrons from the spinorbitals in which they are placed.

1The Slater-Condon rules provide simple expressions for the matrix elements involving SDs. These
are based on the orthonormality of the spinorbitals and how either a monoelectronic operator (such as
ĥ(i)) or a bielectronic one (the Coulomb operator r−1

ij ) act on them (e.g., the spinorbitals are eigenfunc-
tions of the core Hamiltonian, what serves to simplify expressions). For further information, Ref. 15,
pp. 68-80, contains full details.
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To derive the HF equations the functional variation is used [14]. E0 is said to be a
functional of {ψi}, since it is a function of a function, in this case, the SD that in turn
is composed of spinorbitals. Resorting to the variational principle, the best set of
spinorbitals is that for which E0 [{ψi}] is minimum and approaches the true ground
state energy. However, there is a constraint that the set of spinorbitals giving rise to
Ψ0 must fulfil: the set {ψi} must be orthonormal (i.e., [ψi|ψj] ≡ ⟨ψi|ψj⟩ = δij). Such
a constrained minimisation can be solved by Lagrange’s method of undetermined
multipliers.

In search for the appropriate set of spinorbitals, the Lagrange functional is con-
structed as

L [{ψi}] = E0 [{ψi}]−∑
ij

λji([ψi|ψj]− δij), (2.25)

where λji correspond to the undetermined multipliers. An arbitrary infinitesimal
change in ψ must not produce any change inL and hence δL [{ψi}] = 0. By applying
this condition to Eq. 2.25 and expanding the energy term following expression 2.22,
one is led to

δL = ∑
i

[
δψi|ĥ|ψi

]

+ ∑
ij

([
δψiψi|ψjψj

]
−
[
δψiψj|ψjψi

]
− λji

[
δψi|ψj

] )
+ cc = 0, (2.26)

after recognising the different complex conjugates (cc) present and that
[
ψiψj|ψkψl

]
=[

ψkψl |ψiψj
]
.

The previous expression can be factorised and simplified after introducing two
operators of paramount importance in HF: the Coulomb ( Ĵj) and exchange (K̂j) op-
erators.

On the one hand, the Coulomb operator as applied to a given spinorbital ψi(x1),

Ĵj(1)ψi(x1) =

[∫
dx2ψ∗j (x2)ψj(x2)r−1

12

]
ψi(x1), (2.27)

represents a one-electron potential felt by such electron 1 due to the average inter-
action with electron 2 over all space and spin coordinates. Its exchange counterpart,
in turn, has no classical interpretation. It arises from the antisymmetry of the wave
function and acts as exchanging electron 1 and electron 2 in spinorbitals i and j with
respect to the previous Coulomb term:

K̂j(1)ψi(x1) =

[∫
dx2ψ∗j (x2)ψi(x2)r−1

12

]
ψj(x1). (2.28)

With these operators, Eq. 2.26 can be reexpressed as

δL = ∑
i

∫
δψ∗i (x1)

(
ĥ(1)ψi(x1)

+ ∑
j

{
Ĵj(1)ψi(x1)− K̂j(1)ψi(x1)− λjiψj(x1)

})
+ cc = 0, (2.29)
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and, since δψ∗i is arbitrary (it is not necessarily zero), each term in the parenthesis
must be independently zero, leading to a set of N one-electron equations:

[
ĥ(1) + ∑

j

(
Ĵj(1)− K̂j(1)

)
]

ψi(x1) = ∑
j

λjiψj(x1), i = 1, 2, ..., N. (2.30)

The operators (in squared brackets) acting on spinorbital ψi constitute the Fock oper-
ator f̂ ,

f̂ (1) = ĥ(1) + ∑
j

(
Ĵj(1)− K̂j(1)

)
= ĥ(1) + vHF(1), (2.31)

an effective monoelectronic Hamiltonian comprising the core-Hamiltonian ĥ(1) and
an effective one-electron potential: the Hartree-Fock potential vHF(1), that repre-
sents the effect the N − 1 remaining electrons cause, on average, on a reference elec-
tron 1.

With the definition of the Fock operator, the equations for spinorbitals become

f̂ (1)ψi(x1) = ∑
j

λjiψj(x1), (2.32)

which reminds of an eigenvalue equation but it is not, since the right-hand side
corresponds to a linear combination of scalars multiplying ψj and not only one of
these. This is the manifestation of a property that SD wave functions have, that there
exists a certain degree of flexibility among them so that the spinorbitals they are
composed of can be mixed without changing the expectation value (e.g., the energy)
of the final wave function. In fact, by applying unitary transformations one set of
spinorbitals can be transformed into another, leaving the Fock operator unaltered (it
is said to be invariant upon unitary transformations). One of those sets diagonalises
the matrix of Lagrange multipliers λji such that

f̂ (1)ψi(x1) = ε iψi(x1). (2.33)

These are the standard Hartree-Fock equations (pseudo-eigenvalue equations due
to the functional dependence of f̂ (1) on {ψi}) and the set {ψi} that diagonalises the
matrix of Lagrange multipliers giving rise to the orbital energies ε i are called canon-
ical spinorbitals. These spinorbitals, however, tend to be delocalised over the entire
molecule or several atoms. Nonetheless, as commented a few lines above, once a set
of spinorbitals minimising the energy is obtained, an infinite number of new {ψ′i} is
available upon unitary transformations, that can be chosen so as to be more localised
and giving thus rise to a more chemical picture of electronic structure.

The Roothaan-Hall equations

It was in 1951 when C. C. J. Roothaan and G. G. Hall independently proposed
the use of a known set of basis functions with which to expand the unknown orbitals
(the spatial part of the spinorbitals), thus transforming the HF differential equation
into a set of algebraic equations that could be solved by standard matrix thechniques.
The way this procedure is implemented differs from being applied to closed-shell
systems —those with an even number of electrons, each pair placed in one spatial
orbital— or to open-shell systems —with at least one unpaired electron. We shall
consider the former case only.

The restricted Hartree-Fock (RHF) formalism results from the application of the
HF method to closed-shell systems. A first step towards the explicit formulation of
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this problem is to achieve an HF equation regardless of the spin states of the elec-
trons. By reexpressing the HF equation separating the spatial and spin parts of the
spinorbital as ψi(x1) = ϕj(r1)sj(σ1), integration of the spin coordinates after multi-
plication on the left by the complex conjugate spin function s∗j (σ1) reveals that the
eigenvalues of the equation (the energies) remain unchanged and are characteristic
of the spatial orbitals ϕj(r1):

[∫
dσ1s∗j (σ1) f̂ (x1)sj(σ1)

]
ϕj(r1) = ε jϕj(r1), (2.34)

Letting now f̂ (1) ≡ f̂ (r1) =
∫

dσ1s∗j (σ1) f̂ (x1)sj(σ1), the left-hand side term becomes

f̂ (1)ϕj(r1) =

[∫
dσ1s∗j (σ1)ĥ(1)sj(σ1)

]
ϕj(r1)

+

[
∑

k

∫
dσ1s∗j (σ1)

(
Ĵk(1)− K̂k(1)

)
sj(σ1)

]
ϕj(r1). (2.35)

Considering the general closed-shell system, the expansion of the former equation
in different spin combinations (i.e., of α(σ1) and β(σ1) functions) yields

f̂ (1)ϕj(r1) = ĥ(1)ϕj(r1)

+
N/2

∑
k

(
2 Ĵk(1)− K̂k(1)

)
ϕj(r1)

= ε jϕj(r1), (2.36)

where the summation over the N spinorbitals has been replaced by the previous
one running over the N/2 spatial orbitals. It is important to remark that all the
expanded terms corresponding to the Coulomb operator survive, whereas in the
exchange counterparts half of the terms involving mixed spin states for the same
electrons cancel out.

The closed-shell energy thus becomes

E0 = ⟨Ψ0|Ĥ|Ψ0⟩ = 2
N/2

∑
i

[
ϕi|ĥ|ϕi

]
+

N/2

∑
i

N/2

∑
j

(
2
[
ϕiϕi|ψjϕj

]
−
[
ϕiϕj|ϕjϕi

])

= 2
N/2

∑
i

hii +
N/2

∑
i

N/2

∑
j

(
2Jij − Kij

)
, (2.37)

Jij and Kij being the corresponding Coulomb and exchange integrals.
Having eliminated spin, the next step is to find the appropriate set of molecular

orbitals (or, more generally, spatial orbitals, since atomic electronic states can also
be calculated through this formalism) fulfilling Eq. 2.36. As commented above, this
equation can be solved by standard matrix methods when an expansion of the un-
known MOs is used, as also anticipated in Section 2.1.5 (recall Eq. 2.18). In this
way, the problem of solving the HF integro-differential equation to calculate MOs
reduces to calculating the appropriate set of expansion coefficients {cνi}. Hence, the
HF equation becomes

f̂ (1)∑
ν

cνiχν(r1) = ε i ∑
ν

cνiχν(r1), (2.38)



34 Chapter 2. Methodology

where the summations run over the total K basis functions. Multiplying on the left
by χ∗µ(r1) and integrating, the integro-differential equation transforms into a matrix
equation, which can be concisely represented after introducing two matrices, namely
the overlap matrix S, with elements

Sµν = ⟨χµ(r1)|χν(r1)⟩ (2.39)

and the Fock matrix F —the matrix representation of the Fock operator in a given
basis {χµ}—, composed of

Fµν = ⟨χµ(r1)| f̂ (1)|χν(r1)⟩ (2.40)

terms.
With the previous definitions, we arrive at the integrated HF equation of the form

∑
ν

Fµνcνi = ε i ∑
ν

Sµνcνi (2.41)

for all the (N/2 occupied and K − N/2 virtual) K molecular orbitals ϕi. These are
the Roothaan-Hall equations and can be expressed in a matrix form as

FC = SCε, (2.42)

where C is the matrix of the coefficients and ε a diagonal matrix comprising the
orbital energies. These are the Roothaan-Hall equations.

As commented previously, the HF equations are not true eigenvalue equations
due to the dependence of the Fock operator on the set of spinorbitals used. There-
fore, it is mandatory to resort to some procedure besides the diagonalisation of the
corresponding matrix in its Roothaan-Hall form. Such a strategy is called the self-
consistent field (SCF) method. It involves an initial guess of orbitals (through their
coefficients giving rise to C) from which the Fock matrix F can be constructed (S,
in turn, is available from the beginning since it comprises the overlap integrals be-
tween each pair of basis functions). Once it is done, F is diagonalised so as to obtain
a new set of coefficients. With it, their associated orbital energies are achieved. But
these correspond to the system where the mean field each electron experiences has
been previously determined in the initial guess. The new set of coefficients there-
fore results in a better guess, but it is not necessarily the best one or, in other words,
the set of coefficients that yield the minimum energy. This is why from an initial
set of MOs, several steps involving the calculation and later diagonalisation of F to
obtain new and more accurate MOs are needed. It turns out to be an iterative pro-
cedure that lasts until consistency is reached, hence the name self-consistent field;
the solution of the Roothaan-Hall equations involves ameliorating the mean field
created by the electronic structure of the system until it becomes constant and exact
(or, more accurately, the energy changes with the previous step are within a certain
small threshold that we consider negligible).

The final set of MOs is usually greater than half the number of electrons, depend-
ing on the K number of basis functions. An ordering of the orbitals in increasing
energy permits their classification in occupied, as the N/2 low-lying orbitals repre-
senting the GS electronic state, and virtual, representing the possible states they can
reach upon excitations. The ground state HF wave function ΨHF comprises the oc-
cupied orbitals only and yields an energy EHF that is an upper bound to the exact
GS energy E0 of the system. One of the errors that affect such difference depends
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on the adequacy of the basis set used to correctly express the HF-SCF MOs and ap-
proximate them to the exact HF ones, that would be achieved in case a complete
(i.e., infinite) basis set were used. This error is known as the basis set truncation
error. Another one lies in the heart of HF and cannot be solved within this method.
Since HF is a mean field method, it does not account for interelectronic repulsion
instantaneously, but rather in an average fashion. This is why HF is considered as
a non-correlated method, although it does account for Fermi correlation between
parallel-spin electrons, but not for the Coulomb one, the type of correlation usually
meant by the term electron correlation in electronic structure calculations. Therefore,
the HF energy in the basis set limit is taken as the reference to measure the electron
correlation recovered by other post-Hartree-Fock methods, that is therefore defined
as

Ecorr = E0 − EHF, (2.43)

where EHF corresponds to the energy achieved in the HF limit.

2.2.2 Configuration interaction

The HF mean-field description can be enhanced with the inclusion of more con-
figurations in which electrons are placed in higher-energy spinorbitals, thus cor-
responding formally to excited electronic configurations. Slater determinants can
therefore be used to construct an exact wave function where the deficiencies of a
single-determinant representation are corrected by the inclusion of other configura-
tions. Accordingly, the exact GS wave function can be expanded as

Ψ0 = CHFΨHF + ∑
a,p

Cp
a Ψp

a + ∑
a<b
p<q

Cpq
ab Ψpq

ab + ∑
a<b<c
p<q<r

Cpqr
abc Ψpqr

abc + · · · , (2.44)

where the different summations in the above expansion collect all the single, double,
triple... excitations as those having one, two, three... super- and subscripts in their
expansion terms. This way, a singly excited determinant Ψp

a differs from the HF one
by the interchange of two spinorbitals a and p reflecting the promotion an electron
originally located in ψa undergoes to the virtual ψp:

Ψp
a = |ψ1 · · ·ψa−1ψpψa+1 · · ·ψN |, (2.45)

The following terms comprise simultaneous double excitations from ψa and ψb to
ψp and ψq, and so on. The method in which such an expansion is used is called
configuration interaction (CI).

In a similar fashion than the symmetry of atomic orbitals can be used to con-
struct one or another LCAO, SDs can also be classified according to their symmetry
and definite spin, and combined in configuration state functions (CSFs). The use of
all CSFs for a given basis set is called full CI (FCI) and recovers all the correlation
energy attainable with such a basis. The exact energy E0 would only be available if
the basis set were infinite, what is not feasible. Nor is using a large number of CSFs.
In fact, the total number of determinants grows factorially with both basis functions
and electrons. For a single determinant, the computational complexity of solving the
SCF equations grows formally with the fourth power of the number of basis func-
tions: O(K4). Therefore, CI calculations are usually limited to the inclusion of single
and double excitations (giving thus rise to the CISD method) so that the number of
determinants included in the expansion (Eq. 2.44) remains tractable (CISD formally
scales as O(K6)). Nonetheless, the penalty paid for these limited CI calculations is
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the lack of size-consistency, what is manifested in the mismatch between, for example,
the energy of a dimer AB in the non-interaction limit and the sum of the monomeric
ones, that should coincide.

A related concept is that of size-extensivity. A size-extensive method ensures a
linear scaling with the number of interacting particles (e.g., electrons). A truncated
CI expansion is not size-extensive (nor is it size-consistent) and it thus recovers less
and less electron correlation when enlarging the system. In the example of a dimer,
a CISD calculation allows up to two simultaneous excitations in the dimer, whereas
the separate monomers can independently be doubly-excited, what would imply a
quadruple excitation in the complex. Such lack of flexibility prevents a good recov-
ery of the N-fragment system’s energy [15, 19].

2.2.3 Multiconfiguration and multireference methods

In a CI calculation the expansion coefficients for the CSFs in Eq. 2.44 are determined.
The determinants are constructed from the occupied and virtual orbitals obtained in
an HF calculation. However, only the occupied ones are optimal for a given config-
uration —these are the ones that contribute to the energy—, what leaves the virtual
orbitals unoptimised and subject to the only condition of being orthonormal [19, 43].
In multiconfiguration self-consistent field (MCSCF) methods a double optimisation
is performed. Since the energy is now also a functional of those previously unoccu-
pied orbitals, this ansatz allows for the variational optimisation of each orbital at the
same time that the expansion coefficients of the different configurations are deter-
mined in search for a minimum energy. In the closed-shell case, not only zero or two
occupations are possible, but also fractional numbers in between. Accordingly, each
occupation number ni associated with an MO ϕi is determined as

ni,MCSCF =
CSFs

∑
j

C2
j ni,j, (2.46)

where, since each MO does not appear in general in only one configuration, the
summation averages the occupation it presents in every CSF with its relative contri-
bution to the final wave function.

A popular MCSCF method is the complete active space self-consistent field (CASSCF).
CASSCF restricts the excitations to a subspace of orbitals called the active space,
where all possible excitations take place (see Figure 2.1), thus being equivalent to
a reduced FCI calculation. Complementary, the inactive space contains those orbitals
whose excitations are not expected to contribute significantly to the improved wave
function. Therefore, after ordering the HF orbitals in increasing energy, the inactive
space contains the lowest lying ones and the highest virtual MOs that are not ex-
pected to mix with the occupied orbitals. The active space is typically defined by
the n electrons participating in the excitations and the m orbitals in which they are
distributed, leading to the notation [n,m]-CASSCF specifying a given calculation. It
is formed by the occupied and virtual orbitals whose mixing would recover a large
fraction of the correlation energy and, consequently, CASSCF is intended to pro-
vide a size-extensive alternative to CI, thus yielding accurate results when the active
space chosen is appropriate. In fact, the selection of such an active space is the main
concern when performing a CASSCF calculation. The orbitals involved typically
correspond to MOs with a high presence of valence AOs, but that must be carefully
examined in each case.
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Active
space

All
excitations

RAS1

RAS2

RAS3

All

No more than
a specified
number of
excitations
from RAS1

and to RAS3

FIGURE 2.1: Schematic representation of the CASSCF (left) and
RASSCF (right) procedures. Adapted from Ref. 19.

One problem inherent to the CASSCF formulation is the rapid growth of the com-
putational requirements with the system size, since more and more orbitals must in
principle be included in the active space. An alternative to reduce the size of the ac-
tive space while guaranteeing a given accuracy through the inclusion of the orbitals
needed for describing an enough number of excitations is the restricted active space
self-consistent field (RASSCF) method. In this case, the active space is further split into
three parts, namely, RAS1, RAS2 and RAS3. The second one, RAS2, is the equivalent
to the CASSCF active space and comprises the doubly occuppied MOs that partic-
ipate in the FCI calculation with the corresponding virtual ones. The RAS1 section
precedes the RAS2 in the active space as those orbitals that participate in it, but in
a different manner: only a specified number of electrons are allowed to simultane-
ously participate in the excitations with the RAS2 and RAS3 spaces. Similarly, only
a given number of electrons can be promoted to the RAS3 empty orbitals at the same
time.

In many cases, the HF wave function provides at least a good qualitatively de-
scription of the system near equilibrium. It is not always like this and some molecules
necessitate more than one CSF as a reference, i.e., when their contributions become
similar. A truncated CI procedure in which the excitations are taken from more than
one determinant is named multireference configuration interaction (MRCI). One associ-
ated problem becomes evident: the inclusion of more reference configurations leads
to a higher number of excited determinants, what can be computationally very in-
tensive. However, the size-extensivity error can be reduced significantly.

2.2.4 Møller-Plesset perturbation theory

Configuration interaction, multiconfigurational and multireference methods have
the HF ground state as the starting point for a recovery of the correlation energy
by means of the inclusion of excited configurations that allow the wave function to
be more flexible in the minimisation process. In the Introduction, two different ap-
proaches for solving the many-body problem have been presented. On the one hand,
the variational method that lies behind the previous electronic structure methods.
On the other, there is perturbation theory (PT). The application of PT to ΨHF as the
zeroth-order wave function (i.e., that of the reference, model system) dates back to
the 1930s, the early times of quantum mechanics, and was proposed by Møller and
Plesset, thus being known as Møller-Plesset perturbation theory (MPPT) [14, 15, 19].
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In MPPT, the unperturbed system’s ground state therefore corresponds to Ψ(0)
0 =

ΨHF, with an associate energy E(0)
0 = EHF. In HF, the Hamiltonian operator is exact

and the main approximation behind this method is the wave function as a Slater
determinant, which is an eigenfunction of

ĤHF = ∑
i

f̂ (i) = ∑
i

(
ĥ(i) + vHF(i)

)
= Ĥ0. (2.47)

In this way, the perturbation Ĥ′ that leads the model system to the true one becomes

Ĥ′ = Ĥ − ĤHF. (2.48)

The 0th-order energy results from

E(0)
0 =

〈
Ψ(0)

0

∣∣Ĥ0∣∣Ψ(0)
0

〉
=
〈
ΨHF∣∣ĤHF∣∣ΨHF〉 = ∑

i
ε i, (2.49)

whereas the addition of the first-order correction2

E(1)
0 =

〈
ΨHF∣∣Ĥ′

∣∣ΨHF〉 =
〈
ΨHF∣∣Ĥ − ĤHF∣∣ΨHF〉

=
1
2 ∑

ij

〈
ΨHF∣∣r−1

ij

∣∣ΨHF〉−∑
ij

〈
ΨHF∣∣ Ĵj(i)− K̂j(i)

∣∣ΨHF〉

=
1
2 ∑

ij

([
ψiψi

∣∣ψjψj
]
−
[
ψiψj

∣∣ψjψi
])

− ∑
ij

([
ψiψi

∣∣ψjψj
]
−
[
ψiψj

∣∣ψjψi
])

= −1
2 ∑

ij

([
ψiψi

∣∣ψjψj
]
−
[
ψiψj

∣∣ψjψi
])

(2.50)

leads to the HF energy
E(0)

0 + E(1)
0 = EHF. (2.51)

Thus, the first correction to the HF energy comes from second order. By recall-
ing expression 1.37, the second-order energy correction corresponds to a summation
over all states but the GS, hence comprising single, double, triple... excitations:

E(2)
0 = ∑

n ̸=0

∣∣〈ΨHF
∣∣Ĥ′
∣∣Ψn

〉∣∣2

E(0)
0 − E(0)

n

= ∑
S

∣∣〈ΨHF
∣∣Ĥ′
∣∣ΨS

〉∣∣2

E(0)
0 − E(0)

S

+ ∑
D

∣∣〈ΨHF
∣∣Ĥ′
∣∣ΨD

〉∣∣2

E(0)
0 − E(0)

D

+ ∑
T

∣∣〈ΨHF
∣∣Ĥ′
∣∣ΨT

〉∣∣2

E(0)
0 − E(0)

T

+ · · · (2.52)

where S states for single (Ψp
a ), D for double (Ψpq

ab ) and T for triple (Ψpqr
abc ) excitations.

2To reach the final expression for E(1)
0 the Slater-Condon rules have been used.
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Examination of the singly-excited terms leads to the conclusion that they do not
contribute,

〈
ΨHF∣∣Ĥ′

∣∣ΨS
〉
=
〈
ΨHF∣∣Ĥ

∣∣Ψp
a
〉
−
〈
ΨHF∣∣ĤHF∣∣Ψp

a
〉
= 0, (2.53)

since the first terms is zero according to Brillouin’s theorem,3 and the second due to
the fact that Ψp

a is an eigenfunction of ĤHF and that the determinants are orthonor-
mal to one another. Moreover, matrix elements comprising triple and higher-order
excitations are null for 1- and 2-electron operators, as is the case of the Hamiltonian.
Therefore, the only contributions to E(2)

0 arise from double excitations.
Taking into account that

〈
ΨHF∣∣Ĥ

∣∣Ψpq
ab

〉
=

〈
ΨHF∣∣∑

i
ĥ(i) + ∑

ij
r−1

ij

∣∣Ψpq
ab

〉

=
[
ψaψp

∣∣ψbψq
]
−
[
ψaψq

∣∣ψbψp
]

=
〈
ψaψb

∣∣ψpψq
〉
−
〈
ψaψb

∣∣ψqψp
〉

=
〈
ψaψb

∣∣∣∣ψpψq
〉

(2.54)

(see Ref. 15 for further details about matrix elements between SDs), and that

ĤHF∣∣Ψpq
ab

〉
= (E(0)

0 − εa − εb + εp + εq)
∣∣Ψpq

ab

〉
, (2.55)

the second-order correction to the energy becomes

E(2)
0 =

1
4

occ

∑
ab

virt

∑
pq

∣∣〈ψaψb
∣∣∣∣ψpψq

〉
|2

εa + εb − εp − εq
, (2.56)

where 1/4 has been added to avoid double counting in the summations of the occu-
pied and the virtual spinorbitals.

In MPPT, the second-order energy correction gives rise to the MP2 method. In
general, MPPT methods are labelled as MPn, where n indicates the level of trun-
cation in the perturbative expansion of the energy. The least computationally de-
manding MPPT method is indeed MP2, that usually employs similar timings than
HF (with a formal scaling ofO(K5)). It is found that most of the correlation energy is
hidden in double excitations, MP2 being able to recover about 80%-90% of Ecorr [19].
Further corrections include more and more correlation energy: MP3 accounts for a
90%-95%, whereas MP4 reaches about a 95%-98% of the total Ecorr while maintain-
ing a usually affordable computer time (O(K6) formally), similar to CISD. For many
cases, MP2 yields good enough results that are not always ameliorated when follow-
ing the MPn series. Since MPPT is not variational, MPn methods may yield energies
above as well as below the exact energy. In the ideal case, there is a monotonical
convergence from HF to increasing orders of MPn; however, this is not ensured and
depending on the system, the MPn series may oscillate and not converge. Especially
dramatic errors may be given when the HF wave function does not provide a close
enough description of the true system (e.g., a multireference case). In any case, MPn
methods are size-extensive (and consistent), and usually provide accurate results for
single-reference systems in their ground states. Among all of them, MP2 represents
a rather successful compromise between accuracy and computational cost [16].

3The Brillouin’s theorem states that the reference ΨHF does not interact directly with singly excited
determinants ΨS, what makes the corresponding matrix elements ⟨ΨHF|Ĥ|ΨS⟩ vanish.



40 Chapter 2. Methodology

2.2.5 The coupled cluster ansatz

A different non-variational and size-extensive method that relies on excitations from
the HF wave function to account for electron correlation is the coupled cluster (CC)
method. CC aims at incorporating corrections of a given type to infinite order, in
contrast to perturbation approaches, that include all corrections to a given order
(single, double, triple, etc.). [14, 19]. The CC machinery is based on the application
of the cluster operator T̂,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂N , (2.57)

which comprises all possible excitations in an N-electron system (in this case, each
type of excitation is denoted by a number, 1 standing for single, 2 for double and so
on). Thus, the application of a given T̂i operator on an HF wave function induces all
ith-order excited determinants, such as

T̂2ΨHF =
occ

∑
a<b

virt

∑
p<q

tpq
ab Ψpq

ab . (2.58)

These t expansion coefficients are typically called amplitudes.
In coupled cluster theory, the N-electron wave function reads

Ψ = eT̂ΨHF, (2.59)

where the exponential operator acting on ΨHF is expanded as

eT̂ = 1 + T̂ +
1
2

T̂2 +
1
6

T̂3 + · · ·

= 1 + T̂1 +

(
T̂2 +

1
2

T̂2
1

)
+

(
T̂3 + T̂2T̂1 +

1
6

T̂3
1

)
+ · · · , (2.60)

the latter version grouping all the excitation forms of a given order. As can be ap-
preciated, not only T̂i originates ith-order excited states, but different combinations
of lower-order operators adding up to i also yield excited determinants of the same
kind. These are named disconnected excitations, such as T̂2

1 double excitations or
T̂2T̂1 triple ones. By contrast, T̂2, T̂3, T̂4... are connected double, triple, quadruple...
excitations. The difference between the two classes stems from whether the excited
electrons interact among all of them or in groups (clusters) of a lower number of
electrons. In this way, a connected excitation T̂3 involves three excited electrons in-
teracting simultaneously, whereas T̂2T̂1 implies two interacting electrons and a third
non-interacting one.

The CC energy results from the solution of the corresponding Schrödinger equa-
tion:

ĤeT̂∣∣ΨHF〉 = EeT̂∣∣ΨHF〉 (2.61)

Multiplication on the left by
〈
ΨHF

∣∣,
〈
ΨHF∣∣ĤeT̂∣∣ΨHF〉 = E

〈
ΨHF∣∣eT̂ΨHF〉

= E
〈
ΨHF∣∣(1 + T̂1 + T̂2 + · · ·

)
ΨHF〉, (2.62)

and taking into account that the different Slater determinats are orthonormal, one is
led to

E =
〈
ΨHF∣∣ĤeT̂∣∣ΨHF〉. (2.63)
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Since the Hamiltonian is a two-electron operator, excitations higher than second-
order ones can be disregarded in the expansion of the exponential. Moreover, ac-
cording to Brillouin’s theorem, single excitations do not mix with the HF ground
state wave function. Accordingly,

E =
〈
ΨHF∣∣Ĥ

∣∣(1 + T̂1 + T̂2 +
1
2

T̂2
1
)
ΨHF〉

=
〈
ΨHF∣∣Ĥ

∣∣ΨHF〉+
〈
ΨHF∣∣Ĥ

∣∣T̂1ΨHF〉

+
〈
ΨHF∣∣Ĥ

∣∣T̂2ΨHF〉+ 1
2
〈
ΨHF∣∣Ĥ

∣∣T̂2
1 ΨHF〉

= EHF +
occ

∑
a<b

virt

∑
p<q

(
tpq

ab + tp
a tq

b − tq
atp

b

)
⟨ψaψb||ψpψq⟩. (2.64)

As can be appreciated, the correlation energy in coupled cluster is completely deter-
mined by the singles and doubles amplitudes as well as the two-electron integrals.

It is in the derivation of the expressions for the amplitudes where the rest of the
excitations appear. However, it is again not feasible to include all excitation levels
(from T̂1 to T̂N) and the expansion of the cluster operator must be truncated some-
where. Since no single excitation mixes with the HF ground state, the first method
within the CC family is coupled cluster doubles (CCD), that can be improved with
single excitations that do mix with doubles in the popular coupled cluster singles
and doubles (CCSD) method. The inclusion of single excitations does not entail any
significant increase in the computational effort (both CCD and CCSD are formally
O(K6) methods) and provides a more complete model. In CCD, double excitations
and their powers (disconnected quadruples, sextuples, etc.) are included, while the
CCSD expansion gives

eT̂1+T̂2 = 1 + T̂1 +
(

T̂2 +
1
2

T̂2
1

)
+
(

T̂2T̂1 +
1
6

T̂3
1

)
+
(1

2
T̂2

2 +
1
2

T̂2T̂2
1 +

1
24

T̂4
1

)
+ · · · ,

(2.65)
including all combinations of singles and doubles until order N (excitations involv-
ing more than N electrons are of course not considered). In this way, and contrarily
to CI, a truncated CC method is size-extensive since, provided one or several types of
excitations (S, D, T...), all possible orders are generated. It is worthwhile mentioning
that connected and disconnected forms of same-order excitations are not equivalent
and in principle all of them should be included to achieve full accuracy. Nonethe-
less, very good approximations can be made by means of disconnected terms in, for
example, accounting for quadruple excitations by two disconnected doubles, etc.

2.3 Density Functional Theory

Wave function-based methods rely on the Hartree-Fock approximation, where the
target wave function is shaped as a Slater determinant and electron correlation is
not included by definition (i.e., each electron experiences the average effect of the
others rather than an instantaneous repulsion with each of the remaining electrons
in the system). In this way, correlation effects are accounted for a posteriori, and
improvements of this description involve the mixing of the HF determinant with
different excitations to allow the wave function to relax and better adapt to the real
situation at hand. Whereas HF may be appealing due to the simplicity of the model
and its computational efficiency, its further corrections become untractable for large
systems, especially when a high degree of correlation is aimed to be recovered.
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At this stage, one may wonder whether other possible alternatives to model
chemical systems exist. The answer is yes, and that is the purpose of density func-
tional theory (DFT). Whereas the complicated wave function is the milestone of ab
initio methods, a much simpler electron density (i.e., the electronic probability den-
sity) is the central object in DFT. As has been explained previously, the wave function
of a system contains all the information concerning it. If such a function is found,
one gains, in principle, access to all the properties that characterise the system. How-
ever, the N-electron wave function depends on 4N variables (3N spatial ones plus
N accounting for spin), what makes it increase enormously in complexity when in-
creasing the number of electrons. Moreover, this mathematical object does not reside
in the real space, but in Hilbert’s: the wave function is not an observable. A rather
different approach is followed by DFT, that relies on the electron density ρ(r) as
the central quantity through which to calculate all the properties of interest, what
becomes very advantageous from the computational point of view [42].

2.3.1 The electron density

The electron density is simply a probability density function describing the (contin-
uous) distribution of electrons in space (as advanced in Section 1.2). It represents
the probability per volume element of finding one of the N electrons of a system,
following the probabilistic interpretation of the wave function. This magnitude is
therefore closely related to Ψ by Eq. 1.13.

A hypothetical substitution of the complicated wave function by ρ(r) would not
only lead to a measurable object, but also to a much simpler one: a function of
only three (spatial) coordinates, equally for every system. In fact, the solution of
the Schrödinger equation, in principle, only requires the knowledge of the Hamil-
tonian operator, which is uniquely determined by the number of electrons N, the
positions of the nuclei {RA} (recall we are assuming a time-independent and Born-
Oppenheimer regime) and their corresponding charges {ZA}. The electron density
integrates to the total number of electrons

∫
ρ(r)dr = N, (2.66)

presents maxima (as cusps) only at nuclear positions and gives their associated {ZA}
according to Kato theorem:

lim
r→RA

[
∂

∂r
+ 2ZA

]
ρ̄(r) = 0, (2.67)

where ρ̄(r) denotes the spherical average of ρ(r). As can be appreciated, the electron
density itself provides all the information required to specify a given system.

2.3.2 Early attempts

The physical basis for the use of the electron density to specify the Hamiltonian is
due to Pierre C. Hohenberg and Walter Kohn [44]. The so-called Hohenberg-Kohn
(HK) theorems prove that the GS energy E0 (and wave function) is a unique func-
tional of the corresponding GS density, and that a trial density satisfying the contour
conditions yields an upper bound to the true E0, which is attained if and only if ρ0 is
supplied (it follows the variational principle).
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Although the physical justification was not given until 1964, the first attempts to
use the electron density as the means for the calculation of properties of interest of
chemical systems date back to the late 1920s, when Llewellyn H. Thomas and Enrico
Fermi proposed the calculation of the kinetic energy basing on a uniform electron
gas model and treating the remaining energy terms classically. Supposing that the
energy is a functional of the density, so must be the different energy contributions.
Under the BO approximation, the electronic energy E[ρ] of an isolated system be-
comes

E[ρ] = T[ρ] + Eee[ρ] + Een[ρ]. (2.68)

Supposing that electrons interact classically (that is, only the Coulomb potential is
considered), the two potential energy terms can be expressed in terms of ρ as

Eee[ρ] ≡ J[ρ] =
1
2

∫
dr1

∫
dr2

ρ(r1)ρ(r2)

r12
(2.69)

Een[ρ] = −∑
A

ZA

∫
dr1

ρ(r1)

r1A
, (2.70)

where J[ρ] denotes the classical electronic energy only. The Thomas-Fermi (TF)
model centres its attention on the kinetic energy functional and provides the fol-
lowing expression considering a system of constant electron density:

TTF[ρ] =
3
10

(3π2)2/3
∫

ρ5/3(r)dr. (2.71)

This model resorts to a coarse approximation and hence the errors are usually large.
Neither is it able to predict chemical bonding, but it provides a first energy functional
in terms of the density [19].

A further step was taken by Dirac, leading to the Thomas-Fermi-Dirac model
with the addition of an exchange term (first derived by Bloch):

KD[ρ] = −
3
4

(
3
π

)1/3 ∫
ρ4/3(r)dr, (2.72)

later improved by Slater with the inclusion of a semiempirical parameter α, leading
to Slater’s Xα method

EXα[ρ] = −
9
8

(
3
π

)1/3

α
∫

ρ4/3(r)dr, (2.73)

that enjoyed popularity among physicists, although was not very accepted by chemists.

2.3.3 The construction of modern DFT: the Kohn-Sham prescription

The first functionals of the density resulted unsatisfactory, mainly due to the im-
precise representation of the kinetic energy by the Thomas-Fermi model. With the
aim of improving the description, Walter Kohn and Lu J. Sham proposed a scheme
mirroring the HF model where this energy is much better represented.

As commented above, the HK theorems prove that the ground-state energy is a
functional of the (also GS) density and so must be the terms giving rise to the to-
tal energy. These can be categorised as system-dependent or universal according
to whether their form is maintained for every system or does change. Recalling
Eq. 2.68, it can be seen that the electron-nucleus attraction term will change with



44 Chapter 2. Methodology

the system under consideration —it explicitly depends on the nuclear positions and
charges. By contrast, both the kinetic energy and the electron repulsion energies are
independent upon the number of electrons or nuclear scaffold, and therefore can be
cast in what is known as a (the) universal functional F[ρ]. It follows that if F[ρ] were
known, the Schrödinger equation could be solved exactly and the calculated prop-
erties of the system would be likewise exact. The HK theorems prove the existence
of such a functional but give no indication about how to calculate it.

Looking at the HF method where the lack of accuracy comes from the approx-
imate form of the target wave function (the Slater determinant) but that yields the
exact kinetic energy associated to it (i.e., that of non-interacting fermions subject to
an effective potential vHF), Kohn and Sham came up with an idea to much better
approximate T[ρ]. Since the electron density is obtained by quadrature (Eq. 1.13),
several wave functions may give rise to the same ρ(r). The Kohn-Sham (KS) scheme
considers the target GS density ρ0 of the system under study equivalent to that of a
hypothetical non-interacting electrons one. In this way, under this premise the SD
wave function representing such a system can be used to calculate the kinetic energy
of the real one:

TS = −1
2 ∑

i

〈
ϕi
∣∣∇2∣∣ϕi

〉
, (2.74)

where ϕi are the KS orbitals, in analogy with the HF ones. These orbitals are the
solution to a set of one-electron equations: the Kohn-Sham equations,

f̂ KSϕi = ε iϕi, (2.75)

where the KS operator corresponds to

f̂ KS = −1
2
∇2 + vS(r), (2.76)

hence, a monoelectronic operator where the potential energy is represented by an
effective, local potential vS(r). The resultant monoelectronic functions of the non-
interacting system give rise to the density that equals the real one

ρS(r) = ∑
i
|ψi(r)|2 = ρ0(r). (2.77)

The kinetic energy calculated as in Eq. 2.74 is not exactly the same as that of a
real, interacting system. It is rather an approximation, but a very close one. The
remaining kinetic energy as well as the effects that are not captured by the classical
potential energy expressions (i.e., by the electronic Coulomb repulsion from Eq. 2.69)
are grouped into the exchange-correlation (xc) functional Exc[ρ]. When adding the
electron-nucleus attraction energy to the universal functional, that reads

F[ρ] = TS[ρ] + J[ρ] + Exc[ρ], (2.78)

the total DFT electronic energy is obtained:

EDFT[ρ] = F[ρ] + Een[ρ]. (2.79)

By equating EDFT to the exact energy E0, the exchange-correlation functional is de-
fined:

Exc[ρ] = (T[ρ]− TS[ρ]) + (Eee[ρ]− J[ρ]) = TC[ρ] + Encl [ρ]. (2.80)
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The exchange-correlation functional therefore comprises the non-classical energy ef-
fects associated to the interelectronic repulsion Encl [ρ] and the remaining kinetic en-
ergy TC[ρ] that is not captured by the non-interacting model system. This term is the
only unknown in the decomposition of the energy functional (Eq. 2.79).

The different energy contributions can be readily expressed in terms of the or-
bitals (all but the exchange-correlation, of course), and their constrained minimisa-
tion subject to the orthonormality condition of the orbitals leads to a set of mono-
electronic equations similar to those associated with the non-interacting reference
system (Eq. 2.75):

(
−1

2
∇2 +

[∫
ρ(r2)

r12
dr2 + vxc(r1)−∑

A

ZA

r1A

])
ϕi = ε iϕi. (2.81)

The terms in squared brackets can be grouped into an effective potential, that is
identical to the previous vS. Therefore, the KS equations are valid for a real, inter-
acting system that shares the same electron density than the model non-interacting
one. The orbitals thus obtained are the means to construct such density and there-
fore serve to calculate the different energy functional contributions independently.
Again, if the form of all these functionals were known, the Schrödinger equation
could be solved exactly, which is not the case. Within the universal functional de-
composition, it is the xc term which is completely unknown, and the formulation of
a (the) correct one has been (and it still is, indeed) matter of intense investigation.

Once Eq. 2.81 is fed with some exchange-correlation potential, it yields a more
or less accurate set of KS orbitals and, hence, density depending on the accuracy of
vxc. However, Kohn and Sham do not provide any guidance on how to obtain or
approximate vxc (or, alternatively, the xc energy functional) other than the definition
of the potential as the functional derivative of the corresponding energy with respect
to the density:

vxc =
δExc

δρ
. (2.82)

2.3.4 Approximations to the exchange-correlation functional

Many different approaches have emerged over the years in an attempt to provide a
successful approximation to Exc[ρ]. The common ground to all (or at least most) of
them is the homogeneous electron gas (for which the exact exchange is known; see
Eq. 2.72) that gives rise to the so-called local density approximation (LDA).

Local density approximation

Within the xc approximations, it is customary (although not physical) to split
the xc energy into exchange (x), on the one hand, and correlation (c), on the other,
and to approximate the two contributions independently. Besides, these functionals
are usually expressed in terms of the corresponding energy densities (energy per
particle) εx and εc as

Exc[ρ] = Ex[ρ] + Ec[ρ] =
∫

ρ(r)εx[ρ]dr +
∫

ρ(r)εc[ρ]dr. (2.83)

The LDA model utilises the x energy given by the Dirac expression (Eq. 2.72)
for the total density. For open-shell systems, however, an LDA version where spin
density —the density associated to electrons of a given spin function— is treated
explicitly is preferred: the local spin density approximation (LSDA), that accounts for
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density polarisation in these systems with unpaired electrons. When considering the
correlation energy, however, there is no explicit expression available and alternatives
based on fitting procedures from accurate Monte Carlo methods are used instead. It
is the case of the Vosko, Wilk and Nusair (VWN) functional that, in combination
with Slater exchange, gives rise to the SVWN functional.

The real systems (other than crystalline metallic solids) normally differ signifi-
cantly from that of a uniform electron gas. The LDA/LSDA approximation not sur-
prisingly results in usually large errors, both from the exchange and the correlation
parts.

Generalised gradient approximation

Having LDA as the basis, further improvements accounting for the anisotropy of
electron density can be introduced in terms of subsequent derivatives of the electron
density (following a Taylor expansion series). A direct expansion does not lead to
any improvement, but to even worse results. However, other strategies that also in-
clude the first derivatives (gradient) do provide more accurate results. These belong
to the generalised gradient approximation (GGA) functionals, such as that proposed
by Perdew and Wang that modifies the LSDA exchange (similar expressions are used
for the closed-shell case) as

εPW86
x = εLSDA

x (1 + ax2 + bx4 + cx6)1/15, (2.84)

where a, b and c are constants and

x =
|∇ρ|
ρ4/3 (2.85)

is the reduced density gradient (equivalently for each α or β densities), that acts
as local inhomogeneity parameter. Other examples comprise the popular Perdew-
Burke-Ernzerhof (PBE) functional or Becke’s B88 and Perdew-Wang’s PW91, that
incorporates the reduced density gradient as well as a hyperbolic sine to correct the
asymptotic behaviour of the energy density.

Further corrections adding either the Laplacian of the density ∇2ρ or the kinetic
energy density, that includes derivatives with respect to the orbitals, serve to im-
prove the GGA results and belong to a new class called meta-GGA (or mGGA) [45].
Examples of this family are Perdew’s TPSS or Becke-Roussel’s BR.

At this stage one should be warned about the physical significance of the differ-
ent functionals derived as corrections to the homogeneous electron gas. Although
inaccurate, the latter has indeed physical grounds, whereas those DFT functionals
that typically give much accurate energies and general properties rely on parame-
terised schemes, mixing different terms from other functionals or introducing sim-
pler corrections, such as in Eq. 2.84, that permit the final functional being more free
to fit the desired data with the adjustable parameters. This has been indeed subject of
criticism. However, the computational advantages of DFT in front of other quantum
mechanical methods due to the well balance between accuracy and computational
cost —indeed, its formal scaling isO(K4), similar to HF, and can even be reduced by
invoking further approximations— have made it one of the most popular methods
in computational chemistry.

Hybrid functionals
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The exchange energy dominates considerably the exchange-correlation part. There-
fore an accurate representation of exchange is a need for the development of any
accurate DFT functional. Noticing that the exchange energy in HF is exact, the so-
called hybrid functionals arise from the inclusion of some amount of HF-like ex-
change. One example of this type is Becke 3 parameter functional (B3):

EB3
xc = (1− a)ELSDA

x + aEHF
x + b∆EB88

x + ELSDA
c + c∆EGGA

c (2.86)

The a, b and c parameters are fitted to experimental data and control the amount
of exact (HF) exchange in the case of a, or the exchange and correlation gradient
corrections to LDA in the case of b and c.

A simpler hybrid functional is the half-and-half (HH) one, that combines half of
the exact exchange with half of LDA exchange-correlation. Other popular examples
cover B3 functional in combination with GGAs or mGGAs, such as B3PW91, B3P86,
or the probably most common example of a hybrid DFT funtional, B3LYP (with an
explicit form close to Eq. 2.86).

Minnesota functionals

Although the main families of DFT functionals have already been presented,
more recent developments due to the Thrular group at University of Minnesota de-
serve special consideration due to their popularity [46, 47]. These are heavily param-
eterised functionals that include the semiempirical mGGA M06-L and M11-L, or the
global hybrid M06, M06-2X or M06-HF density functionals.

To conclude this Section, it is worth mentioning that recent developments in-
spired by wave function-based methods that typically combine HF exchange with
PT2 correlation energy have resulted in another category named as double hybrid
functionals.

2.4 Density Matrices

The previous section introduces a quite different paradigm in molecular modelling,
replacing the quantum mechanical wave function by a simpler function which re-
sides in the real space and from which all properties can in principle be calcu-
lated likewise. Nevertheless, the lack of a universal (or, equivalently, an exchange-
correlation) functional precludes the exact calculation of properties in DFT, and ap-
proximations based on adjustable parameters are currently the most common as-
sumptions.

The calculation of molecular properties without the direct use of the wave func-
tion is not restricted to DFT. A different formalism vital in the present thesis is the
one based on the use of the reduced density matrices (RDMs) [48].

2.4.1 Expectation values as functionals of the density matrices

Let us begin by examining how an expectation value looks like. Recalling Eq. 1.14,
for a normalised 1-electron wave function, the expectation value of an operator Ô
reads

⟨O⟩ = ⟨Ψ|O|Ψ⟩ =
∫

Ψ∗(x)ÔΨ(x)dx. (2.87)
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If Ô is a multiplicative operator, its expectation value can simply be expressed in
terms of the electron density:

∫
Ψ∗(x)ÔΨ(x)dx =

∫
ÔΨ∗(x)Ψ(x)dx =

∫
Ôρ(x)dx =

∫
Ôρ(r)dr. (2.88)

However, if Ô is not a multiplier, but rather an integral or a differential operator,
such as that associated to the kinetic energy, the previous steps cannot be followed
and ⟨O⟩ cannot be expressed in terms of the electron density. A trick to circumvent
this issue in the use of this formulation is to change the variable Ψ∗ is dependent
upon when applying the operator and restore the original one before integration.
Following this recipe, Ψ∗(x) → Ψ∗(x′), so that the expectation value of any mono-
electronic operator can be calculated as

⟨O⟩ =
∫

x′=x
Ψ∗(x′)ÔΨ(x)dx =

∫

x′=x
ÔΨ(x)Ψ∗(x′)dx =

∫

x′=x
Ôρ(x; x′)dx, (2.89)

where ρ(x; x′) is termed density matrix, or more accurately, first-order reduced density
matrix (1-RDM).

The prior case was for a 1-particle system. For a general N-electron one, the
1-RDM is defined as

ρ1(x; x′) ≡ ρ(x; x′) = N
∫

Ψ(x1, x2, ..., xN)Ψ∗(x′1, x2, ..., xN)dx2 · · · dxN , (2.90)

where the factor N accounts for the indistinguishability of electrons.
For two-body properties, the analogous second-order matrix (2-RDM) can be

utilised:

ρ2(x1, x2; x′1, x′2) = N(N − 1)
∫

Ψ(x1, x2, ..., xN)Ψ∗(x′1, x′2, ..., xN)dx3 · · · dxN , (2.91)

that, as can be appreciated, integrates to the total number of electron pairs N(N− 1).
With this procedure, any n-RDM can be calculated at will from the wave func-

tion; however, the non-relativistic Hamiltonian of an isolated system (recall Eq. 2.1)
possesses only one- and two-body dependencies, what leads to the 1- and 2-RDMs as
the only matrices needed for our current purposes. Moreover, since such a Hamil-
tonian does not act on the spin coordinates, we can refer to the spin-independent
matrices ρ(r; r′) and ρ2(r1, r2; r′1, r′2) obtained upon further integrating the spin of the
remaining electrons in Eqs. 2.90-2.91.

Let us examine the explicit form that the electronic energy acquires under this
formulation. The first term in the associated Hamiltonian (Eq. 2.4) is the kinetic
energy operator, whose expectation value becomes

⟨Te⟩ =
∫

Ψ∗(x1, ..., xN)

[
1
2 ∑

i
∇2

i

]
Ψ(x1, ..., xN)dx1 · · · dxN

=
1
2

N
∫

x′1=x1

∇2
1Ψ(x1, ..., xN)Ψ∗(x′1, ..., xN)dx1 · · · dxN

=
1
2

∫

x′1=x1

∇2
1ρ(x1; x′1)dx1 =

1
2

∫

r′=r
∇2ρ(r; r′)dr. (2.92)
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The second monoelectronic operator involves the electron-nucleus attraction:

⟨Vne⟩ =
∫

Ψ∗(x1, ..., xN)

[
−∑

αi

Zα

rαi

]
Ψ(x1, ..., xN)dx1 · · · dxN

= −∑
α

∫

r′1=r1

Zα

rα1
ρ(r1; r′1)dr1 = −∑

α

∫ Zα

rα1
ρ(r1)dr1, (2.93)

that can be readily expressed in terms of the electron density since it is a multi-
plicative operator. The third term in the electronic Hamiltonian is the two-body
interelectronic repulsion, whose expectation value can be expressed as

⟨Vee⟩ =
∫

Ψ∗(x1, x2, ..., xN)

[
∑
i<j

r−1
ij

]
Ψ(x1, x2, ..., xN)dx1dx2 · · · dxN

= N(N − 1)
∫

x′1=x1
x′2=x2

r−1
12 Ψ(x1, x2, ..., xN)Ψ∗(x′1, x′2, ..., xN)dx1dx2 · · · dxN

=
∫

r′1=r1
r′2=r2

r−1
12 ρ2(r1, r2; r′1, r′2)dr1dr1 =

∫
r−1

12 ρ2(r1, r2)dr1dr2, (2.94)

although other normalisations are possible. Again, it turns out to be a multiplier,
and thus no primed variables are needed so that the 2-RDM can be replaced by the
pair density ρ2(r1, r2). In fact, both ρ(r) and ρ2(r1, r2) are particular cases of either
the 1- or 2-RDMs. These are obtained when the primed variables equal the original
ones and therefore correspond to the respective diagonal matrices.

2.4.2 The pair density and electron correlation

The significance of the pair density is analogous to that of the electron density but, in
this case, referring to two distinct electrons. Hence, ρ2(r1, r2)dr1dr2 gives the prob-
ability of finding any two electrons in volume elements dr1 and dr2 about r1 and
r2, respectively, with any spin (for two specific spins σ1 and σ2, ρ2(x1, x2) must be
used instead). It also reflects the antisymmetry requirement of the wave function
[42] and, accordingly (in this case only applicable to the strict pair density with joint
spatial-spin coordinates),

ρ2(x1, x2; x′1, x′2) = −ρ2(x2, x1; x′1, x′2). (2.95)

For the special case of x′1 = x1 and x′2 = x2 = x1,

ρ2(x1, x1) = −ρ2(x1, x1) = 0. (2.96)

Therefore, ρ2(x1, x1) fulfils the Pauli exclusion principle. Moreover, ρ2(x1, x1) in-
cludes all the information about electron correlation, since it dictates the behaviour
of electron pairs, that is the way in which electrons interact (matrices accounting for
higher-order clusters are therefore not needed).

The pair density can be expressed as the sum of two terms, namely a product of
the independent electron densities of the two electrons considered, representing the
totally uncorrelated situation, and an exchange-correlation counterpart, regarded as
a correction to the former description:

ρ2(x1, x2) = ρ(x1)ρ(x2) + ρxc(x1, x2) = ρ(x1)ρ(x2)
[
1 + f (x1|x2)

]
, (2.97)
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where f (x1|x2) is the correlation factor that accounts for exchange and Coulomb
correlation and introduces corrections to the self-interaction error. Indeed, this term
is needed to ensure a correct integration of electron pairs rather than the wrong N2

obtained from ρ(x1)ρ(x2). ρ2(x1, x2) is also closely related to the conditional probability
Ω(x2|x1), that gives the probability of finding a second electron at x2 given a first
electron placed at the spin-spatial point x1:

Ω(x2|x1) =
ρ2(x1, x2)

ρ(x1)
. (2.98)

The difference between the conditional probability of finding an electron at x2 and its
uncorrelated counterpart constitutes the so-called exchange-correlation hole hxc(x1|x2):

hxc(x1|x2) =
ρ2(x1, x2)

ρ(x1)
− ρ(x2) = ρ(x2) f (x1|x2), (2.99)

so that
ρxc(x1, x2) = ρ(x1)hxc(x1|x2). (2.100)

hxc(x1|x2) integrates to -1 —it contains the charge of one electron— and, therefore,
ρxc(x1, x2) does to−N so that the decomposition of the pair density in Eq. 2.97 yields
the correct number of electron pairs N(N − 1).

As advanced in Sections 2.2.1 and 2.3.4, electron correlation can be classified in
two groups, namely Fermi correlation, including same-spin effects (i.e., self-interaction
and exchange), and Coulomb correlation, that accounts for the instantaneous repul-
sion that each electron experiences in the presence of another electron due to their
charged nature. Accordingly, the xc hole regardless of spin can be split as

hxc(r1|r2) = hσ1=σ2
x (r1|r2) + hσ1,σ2

c (r1|r2), (2.101)

where, by definition, the Fermi hole hx(r1|r2) relates the positions of parallel-spin
electrons and the Coulomb term hc(r1|r2) is valid for any combination. Among the
prior two components, it is the Fermi hole that integrates to -1 and guarantees Pauli
exclusion since

hx(r2 → r1|r1) = −ρ(r1). (2.102)

It is in fact a negative function that dominates the full hxc(r1|r2). On the other hand,
the Coulomb hole integrates to zero and is therefore not restricted to negative values.

2.4.3 RDMs for single-determinant wave functions

A Slater determinant may become a useful choice of wave function in many situa-
tions. It constitutes the basis of the HF method that, in turn, serves as the starting
point for further improvements of the simple description it provides.

For an SD wave function expressions 2.90 and 2.91 can be greatly simplified. In
fact, since such wave functions are constituted by a set of monoelectronic spinor-
bitals, it is possible to write the 1-RDM and 2-RDM as expansions in terms of {ψi}
[48, 49]:

ρ(x; x′) = ∑
i,j

dj
iψi(x)ψ∗j (x

′) (2.103)

and
ρ2(x1, x2; x′1, x′2) = ∑

ij,kl
dkl

ij ψi(x1)ψj(x2)ψ
∗
k (x
′
1)ψ

∗
l (x
′
2), (2.104)
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where dj
i and dkl

ij are the expansion coefficients in each case of each density matrix.
Within the HF method, the use of an SD to shape the eigenfunction of Hamilto-

nian 2.21 leads to the expression of the energy in terms of spinorbitals 2.22. A close
inspection reveals a simpler form of both density matrices. On the one hand, the
1-RDM results in a summation of the products of same spinorbitals, the expansion
coefficients thus corresponding to a Kronecker delta δij:

ρSD(x; x′) = ∑
i

ψi(x)ψ∗i (x
′). (2.105)

The 2-RDM, that participates in the bielectronic part, in turn becomes

ρSD
2 (x1, x2; x′1, x′2) = ∑ij

[
ψi(x1)ψj(x2)ψ

∗
i (x
′
1)ψ

∗
j (x
′
2)

− ψj(x1)ψi(x2)ψ
∗
i (x
′
1)ψ

∗
j (x
′
2)
]
. (2.106)

By considering the SD form of the 1-RDM, ρ2(x1, x2; x′1, x′2) can be expressed in
terms of the latter:

ρSD
2 (x1, x2; x′1, x′2) = ρ(x1; x′1)ρ(x2; x′2)− ρ(x2; x′1)ρ(x1; x′2), (2.107)

an expression that resembles Eq. 2.97, where only Fermi correlation is included. In
fact, the previous decomposition in terms of the sometimes called Fock-Dirac density
matrix (1-RDM) leads to the conclusion that, under HF and the single-determinant
approximation, everything is determined by such a density function.

If the primes are removed in Eq. 2.107, the fist part equals that of Eq. 2.97, whereas
the second does not loose its dependency on the off-diagonal elements of the 1-RDM
and thus

ρSD
xc (x1, x2) = −ρ(x2; x1)ρ(x1; x2). (2.108)

The previous expressions for both density matrices have been given in terms of
spinorbitals. However, as commented above, a Hamiltonian that does not act on the
spin of electrons permits the use of ρ(r; r′) and ρ2(r1, r2; r′1, r′2) in the calculation of
properties such as the energy. For the closed-shell case, both density matrices can
be expanded in terms of the spatial MOs. The 1-RDM needed for the kinetic energy
calculation (see Eq. 2.92) reads

ρRHF(r; r′) = 2 ∑
i

ϕi(r)ϕ∗i (r
′) (2.109)

and becomes the simple electron density when using unprimed variables (the diag-
onal 1-RDM for Vne, Eq. 2.93). In the case of the 2-RDM, only the diagonal matrix is
needed for Vee:

ρRHF
2 (r1, r2) = ρ(r1)ρ(r2)−

1
2

ρ(r2; r1)ρ(r1; r2). (2.110)

In the above expression, the xc —in reality pure exchange in the HF case— density,
which corresponds to the second term, is calculated as

ρRHF
xc (r1, r2) = −

1
2

ρ(r2; r1)ρ(r1; r2) = −
1
2 ∑

ij
ϕi(r2)ϕj(r1)ϕ

∗
i (r1)ϕ

∗
j (r2). (2.111)
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As has been seen, the RDMs can be easily computed from the HF MOs. How-
ever, for correlated methods, expressions 2.109 and 2.111 may adopt a much more
complicated form. The use of linear combinations of SDs to account for electron
correlation permits the expansion of the 1- and 2-RDM as in Eqs. 2.103 and 2.104,
but with non-trivial dj

i and dkl
ij coefficients. These must incorporate the products

of the expansion coefficients accompanying the SDs and must also account for the
Slater-Condon rules for each product of determinants. Therefore, the major problem
in these methods concerns the computational cost of those computations, that are
frequently not implemented in quantum chemistry packages. On the other hand,
methods based on perturbative approaches such as MPn or CC, that do not yield
a wave function consistent with the energy they provide, or DFT, where the wave
function is completely absent, have necessarily to rely on some approximation to
construct the required RDMs.

Whenever the RDMs are available, however, these constitute an appealing alter-
native in computational chemistry A remarkable property of density matrices is that
they are invariant under orbital transformations. If a set of orbitals is transformed
into another, since the final wave function remains unaltered, the sum of orbital
products gives rise to the same density function. Such a robustness of density matri-
ces results in an appealing real space alternative to calculate properties, as shall be
explained a few pages further on.

2.5 The quantum chemical topology toolbox for wave func-
tion analyses

Once the main methods for obtaining a system’s wave function have been presented,
we are in a position to present the family of tools for analysing the chemically rele-
vant information contained in such a complicated mathematical object. The method
for obtaining global properties, such as energy and others, has been presented in
terms of their associated quantum mechanical operators as expectation values. Nev-
ertheless, as advanced in the Introduction (Section 1.4), the chemical theory is con-
structed upon the molecular structure hypothesis and most concepts and ideas in the
chemist’s world are formulated in terms of atoms interacting with each other, lone
pairs or charge deficient regions that make a particular atom more or less prone to
being attacked by another, orbital interactions that provide stability to a compound
or a given ligand in a particular position of the coordination sphere, particular reac-
tions that a certain functional group may trigger, etc. In all these situations a further
dissection of the wave function is needed and with this purpose a set of wave func-
tion analyses based on very different approaches have emerged over the years.

With the aim of giving a theoretically sound basis to the different chemical con-
structs, Bader and coworkers developed a theory called the quantum theory of atoms
in molecules (QTAIM) [30], rooted in the topology of the electron density from which
a diversity of chemical concepts emanate naturally. It is the case of the aforemen-
tioned molecular structure hypothesis, that appears unequivocally when regarding
the gradient field of the electron density in terms of the attraction basins in which
the whole space becomes divided. The manner in which QTAIM defines atoms in
a molecule, as advanced in the Introduction (Section 1.4), comprises more than a
mere and accidental definition; it rather presents interesting properties that makes it
a physically appealing AIM scheme.
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Let us examine how the kinetic energy density looks like. The kinetic energy
density is a local property that is well-defined when integrating over the whole sys-
tem. However, a local definition is not unique [30, 50]. Recalling expression 2.92, the
total kinetic energy of an N-electron system is proportional to the Laplacian of Ψ∗Ψ
integrated to all space, that can be developed as

∇2(Ψ∗Ψ) = (∇2Ψ∗)Ψ + Ψ∗(∇2Ψ) + 2∇Ψ∗∇Ψ. (2.112)

Integration of the previous terms over all coordinates but a spatial one (represented
jointly by letter τ′) leads to the definition of the following functions:

L(r) = −1
4

N
∫
∇2(Ψ∗Ψ)dτ′ = −1

4
∇2ρ(r) (2.113)

K(r) = −1
4

N
∫
(Ψ∗∇2Ψ + Ψ∇2Ψ∗)dτ′ = −1

4
(∇2 +∇′2)ρ(r, r′) (2.114)

G(r) =
1
2

N
∫
∇Ψ∗∇Ψdτ′ =

1
2
(∇∇′)ρ(r, r′), (2.115)

where K(r) and G(r) are two distinct definitions of the kinetic energy density and
L(r) represents a function of the Laplacian of the electron density ∇2ρ(r). In the
previous expressions, ∇ operators act on the spatial coordinate r not included in τ′,
the primed analogue ∇′ acting on the primed coordinate r′. It follows that

K(r) = G(r) + L(r). (2.116)

Indeed, the two different kinetic energy densities differ from one another by the L(r)
term. Globally, such a difference disappears, since L(r) vanishes when intergrating
over the whole space according to Gauss’s divergence theorem (it can be proved
some lines below), but when considering an arbitrary region it is not in general the
case. Among the many different ways in which a molecule can be partitioned into
atoms, QTAIM atomic basins do provide well-defined energies.

Considering the gradient of the electron density as the vector field in Gauss’s
theorem, for an arbitrary volume Ω delimited by a surface S it reads

∫

Ω
∇∇ρ(r)dr =

∮

S
∇ρ(r)n̂dS. (2.117)

As can be appreciated, the left-hand side term involves the Laplacian of ρ(r), what
can be used to reexpress L(r) in terms of the density flux across the boundaries of
Ω. Given that the QTAIM atomic basins are enclosed by a zero-flux surface (recall
Eq. 1.52), these regions fulfil T(Ω) = K(Ω) = G(Ω).

These quantum mechanically meaningful fragments shape the grounds of QTAIM,
that, in turn, is the origin of a wider family of real space, orbital-invariant techniques
for wave function analysis: the so-called quantum chemical topology (QCT). The
present thesis has made use of various methods pertaining to the QCT family that
have proven to be of great help in the study of the elusive chemical bond or more
general interactions, as well as to ascertain the causes of stability/instability of a
given compound or aggregate.

2.5.1 Characterisation of the ρ(r) scalar field

The topology of the electron density and, with it, the characterisation of the chemical
systems can be preformed in terms of the set of critical points rc of ρ(r). These are
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TABLE 2.1: Classification of the stable critical points of the electron
density.

Type Acronym (r, s) Description

(Non-)nuclear attractor (N)NA (3,−3) Local maximum of ρ(r) with three
negative curvatures.

Bond critical point BCP (3,−1) ρ(r) is maximum in two directions
and minimum in one (that con-
necting two NAs).

Ring critical point RCP (3,+1) One curvature is negative, while
the other two are positive. It is a
maximum in only one direction.

Cage critical point CCP (3,+3) Local minimum of ρ(r). Gradient
paths pointing to each direction
emanate from this critical point.

determined by the vanishing first derivative of the density, thus being those points
for which∇ρ(rc) = 0, and comprise the maxima, minima and saddle points of such
a scalar field.

The classification of critical points is performed in terms of the second deriva-
tives of ρ(r) at such points through the Hessian matrix, that, for an adequate inter-
pretation, is diagonalised. This particular form is acquired when the coordinate axes
coincide with the principal axes of curvature, which are nothing but the eigenvectors of
this real, symmetric matrix. When inspecting the corresponding eigenvalues, three
possibilities appear: they can be either positive, negative or zero and, according to
it, the critical points are classified in terms of their rank r and signature s as (r, s). The
signature corresponds to the sum of the signs of the three eigenvalues —i.e., the sum
of the signs of the curvatures of a particular ρ(rc)—, whereas the rank represents the
number of non-zero curvatures, that can be either positive, negative or even zero. It
turns out, however, that the rank of critical points in the majority of cases of molec-
ular arrangements at and near equilibrium geometries is three. Any non-accidental
or non-symmetry related zero curvature would indicate an unstable structure in the
sense that a small change in the geometry would make the critical point vanish or bi-
furcate into other stable (r = 3) ones. Therefore, molecular structure is characterised
in terms of three-ranged critical points.

Accordingly, four possible stable critical points emerge, whose description and
classification in terms of (r, s) can be found in Table 2.1. In order to provide a visual
comparison of the four, Figure 2.2 depicts the tetrahedrane molecule along with all
its critical points of the electron density. Starting from the points where all gradient
paths terminate, the nuclear attractors (NAs) correspond to the local maxima of ρ(r),
that coincide with the nuclear positions (these are the atoms in Fig. 2.2). This is a
consequence of the singularity in the Coulomb potential, that makes the electron
density present a cusp at the nucleus. In some occasions, however, other attractors
different from the nuclei appear, and are thus called non-nuclear attractors (NNAs).

Following the classification in Table 2.1 of increasing s value, the next critical
point is probably the most chemical one: the so-called bond critical point (BCP). It
appears on a particular site of the interatomic surface (IAS) separating two topolog-
ical atoms where ρ(r) is locally maximum (therefore the point where the gradient
paths defining the IAS terminate) and owes its name to its association with chemical
bonds as it is the topological manifestation of the charge accumulation that follows
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FIGURE 2.2: Critical points of the electron density in the tetrahedrane
molecule obtained with AIMAll [24]. BCPs are depicted in green,
RCPs in red and the CCP in blue. The bond paths connecting bonded

atoms are also shown.

the formation of a bond. In fact, the presence of a bond is usually characterised by
the bond path, the line connecting two NAs defined by the gradient paths originated
at the BCP and terminating at such nuclei subject to some additional conditions. A
BCP presents, indeed, a maximum value of the charge density along two directions
(it is a region of charge accumulation), but a minimum along that connecting the two
nuclei (ρ(r) increases when approaching an NA). Both BCPs and bond paths are de-
picted in Fig. 2.2. These bond paths correspond to the lines connecting two atoms,
and the green points on them are the BCPs marking the limits of each topological
atom with respect to its neighbours along such a line closely related with chemical
bonds. In the orthodox QTAIM, however, the presence of a bond is determined by
an additional condition: the molecule must be in a minimum of its PES, making the
forces acting on nuclei vanish. This condition limits the application of this topo-
logical characterisation of chemical bonds to equilibrium geometries, but in these
situations the values of ρ(rBCP), for example, for a pair of atoms are good indicators
of their relative bond strengths in different chemical environments.

A stable critical point with a positive +1 signature is a ring critical point (RCP).
As its name suggests, it is found in planar moieties, such as the triangular faces
of the tetrahedron formed by the C atoms in Fig. 2.2, or in planar species such as
benzene. A RCP presents a maximum along one direction as that approaching the
molecule, but it is a minimum in the plane in which it is found, since any movement
on it would entail an increase in ρ(r) as it approaches any of the surrounding nuclei.

Finally, the cage critical points (CCPs) are those where the gradient paths em-
anate to any direction. These are local minima of the electron density and originate
gradient lines that may terminate at either a (N)NA, BCP or RCP. Not surprisingly,
it appears at the centre of the molecular tetrahedron of tetrahedrane (the blue point
in Fig. 2.2), or in similar cage molecules such as cubane, from which a displacement
in any direction provokes an increase in ρ(r). It is also remarkable that the wave
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function and hence ρ and its derivatives vanish at infinity, what results in an infinite
number of critical points from which infinite gradient paths emerge. Some are at-
tracted by the nuclei, some by RCPs and others by RCPs, but clearly not by any CCP,
since the latter is a local minimum of ρ(r) and presents no negative curvature.

2.5.2 Chemical insight from the Laplacian of ρ(r)

Another scalar field whose topological properties can be readily linked with chemi-
cal concepts is the Laplacian of ρ(r). This is indeed derived from ρ(r), but contains
information that is not directly accessible with the electron density itself. Rather,
∇2ρ(r) is able to unveil the charge concentration and depletion regions hidden in a
bare ρ(r) representation.

The Laplacian of the electron density provides a measure of the local curvature
of such a function in all its three dimensions. It in fact corresponds to the trace of the
diagonal Hessian matrix of ρ(r), giving thus rise to an overall picture of the molec-
ular regions of charge accumulation or depletion depending on the value ∇2ρ(r)
presents. A negative Laplacian indicates that the function (in our case, the electron
density) is locally concentrated, whereas when it is positive, the function is locally
depleted at such point.

FIGURE 2.3: Laplacian of ρ(r) on the molecular plane of formalde-
hyde obtained with AIMAll [24]. The values of ∇2ρ(r) are colour-
coded. Accordingly, green-blue values represent regions with
∇2ρ(r) > 0, whereas reddish colours denote ∇2ρ(r) < 0 regions.

The fine structure revealed by ∇2ρ(r) consists of successive pairs of charge con-
centration and charge depletion regions corresponding to the quantum shells K, L,
M, etc. in the proximities of each atom, as can be observed in Figure 2.3. The most
interesting shell from the chemical point of view is the outer one: the valence shell.
It is divided in a first inner part characterised by a ∇2ρ(r) < 0 and thus called the
valence shell charge concentration (VSCC), and an outermost region with ∇2ρ(r) > 0.
A close inspection to the topology of∇2ρ(r) —with its corresponding critical points
calculated in a same fashion than the previous ρ(r)— not only reveals charge accu-
mulation in the bond regions of a molecule, but also other points about the atoms
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where ∇2ρ(r) is minimum. These non-bonded charge concentration regions are as-
sociated to lone pairs (the two reddish regions about the O atom in Fig. 2.3), as a
physical manifestation of purportedly localised electron pairs that the VSEPR (va-
lence shell electron pair repulsion) model predicts. In fact, the empirical VSEPR,
that aims to predict the geometry of different compounds according to a few sim-
ple rules, finds valuable support in QTAIM. The electron pair model is a pillar of
VSEPR since this model rationalises the most likely arrangement that a given com-
pound may present basing on the minimisation of the electron pair repulsion. These
electron pairs can be bonding or non-bonding and their relative position seeking
a minimum repulsion (therefore maximally separated) is presumed to determine
the final geometry of the compound. The successful mapping between the VSEPR
model and the critical points of the VSCC therefore provides an appealing physical
basis for the former.

The previously seen capabilities of ∇2ρ(r) are readily applied to chemical reac-
tivity. This way, the charge concentration regions can be associated with Lewis bases
or nucleophiles, or possible protonation sites. On the contrary, Lewis acids or elec-
trophiles are linked with charge depletion regions whose interaction with electron
rich moieties could entail a stabilising interaction.

2.5.3 Covalency and ionicity in real space: the delocalisation index

The definition of topological atoms permits an unambiguous calculation of atomic
properties by integration of different operator densities over the atomic basins. The
study of chemical bonding is not restricted to the topology of ρ(r) and its Laplacian
and, as such, other functions can be used to gain further insight into the nature and
types of chemical bonds without resorting to any orbital model.

The topological study of the Laplacian of the electron density has been shown to
provide real space signatures of the electron pair model by carefully identifying the
VSCC regions and its maxima with either bonding or non-bonding localised electron
pairs. Thus, the physical basis of the electron pair model may actually be found in
the Fermi hole [51].

Given a position r1 of a reference electron, when a same-spin one approaches it,
its probability density is penalised in that region until becoming null at that position
(recall Eq. 2.102). If this behaviour persists when moving away from r1, the hole is
said to be localised and no other same-spin electron will be allowed to occupy si-
multaneously that region of space. Furthermore, if this feature is shared by another
electron with opposite spin (such as in closed-shell molecules [52]), the electron pair
arises. Therefore, electron pairing emerges as a consequence of Pauli exclusion prin-
ciple as determined by the Fermi hole. A measure of localisation and delocalisation
of electron pairs can in turn be made basing on the extent this function is spread
over one or several atomic basins. This way, the real space analogue of bond order
between a pair of atoms, termed delocalisation index (DI(A, B) or δAB), is defined as

DI(A, B) ≡ δAB = −2
∫

ΩA

∫

ΩB

ρxc(r1, r2)dr1dr2, (2.118)

where the xc density, accounting for both the Fermi and Coulomb holes, is exploited
to measure the number of electron pairs shared by those basins ΩA and ΩB [53].
[Note that since δAB = δBA, a factor of 2 has been included in the definition.] When
both integrations take place in the same basin, a measure of how localised the xc
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hole is appears. Accordingly, the localisation index (LI(A) or λA) corresponds to

LI(A) ≡ λA = −
∫

ΩA

∫

ΩA

ρxc(r1, r2)dr1dr2. (2.119)

In general, the localisation index of a topological atom does not account for the
whole electron population it presents (i.e., |λA| < N(A)). This fact signals the spread
of the xc hole over other atomic basins with which atom A shares electrons. The
electron population in A is therefore recovered when accounting for the total hole
related to that atom:

λA +
1
2 ∑

B ̸=A
δAB = N(A). (2.120)

It follows that

−
∫

dr1

∫
dr2ρxc(r1, r2) = N = ∑

A
λA +

1
2 ∑

A
∑

B ̸=A
δAB (2.121)

when the xc density is integrated over the whole space. Sometimes a different
sign criterion is used and the pair density is defined as ρ2(r1, r2) = ρ(r1)ρ(r2) −
ρxc(r1, r2) (note the different sign accompanying the xc density than that used in Eq.
2.97). Consequently, the xc density would integrate to a positive number of electrons
rather than a negative one as described above so that the minus signs preceding the
prior integrals would not be needed.

The localisation and delocalisation indices have profound statistical roots. They
are closely related to the fluctuation in the average electron population of a given
atom N(A) through the variance [52]:

var(N(A)) = N(A)− λA =
1
2 ∑

B ̸=A
δAB. (2.122)

Moreover, the DI is proportional to the covariance between the electron populations
of two distinct basins as it is in fact a measure of the correlation between atomic
populations [31]:

δAB = −2cov(N(A), N(B)). (2.123)

All the previous properties suggest that the DI can be related to the higher or
lower sharing of electrons between atoms and thus to the bond order between them.
When an electron pair is prefectly delocalised between two atoms, its DI equals 1.
When the same happens with a couple of them, the number is doubled. This is
why the DI is considered as the real space analogue of bond order and serves to
characterise quantitively such electron sharing between pairs of atoms. Besides, its
relation with the LI and the average number of electrons in a basin (or simply, its
electron population) permits the classification of bonds as covalent or ionic, with
all possible degrees of polar covalency that lye in between. For instance, if electron
correlation is neglected, the DI for a two-center, two-electron bond varies between 0
and 1 and provides an ionicity-covalency ruler. An ideal ionic bond will lead to DI =
0, and an ideal covalent one to DI = 1. Accordingly, the HF description provides a
DI = 0.22 for the prototypical ionic bond of the diatomic NaCl, whereas dihydrogen
presents a DI = 1.00 [53]. When analysing multiple bonds the correspondence is
also found. This way, ethylene shows a DI between its carbon atoms of 1.88 and that
of the nitrogen molecule becomes 3.04.
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2.5.4 Natural adaptive orbitals: one-electron functions from real space

So far, different QCT descriptors have been presented. These are orbital-invariant
and, accordingly, no reference has been made to orbitals other than for the process
of their construction from orbital-based wave functions. However, and although
at first sight it may seem contradictory, it is also possible to use real space-based
orbitals, one-electron functions with direct links to other QCT descriptors. This is
the case of the natural adaptive orbitals (NAdOs), a set of orbitals obtained upon
diagonalisation of the cumulant densities integrated over different domains [54].

In Section 2.4 it has been shown that all the information required in the calcula-
tion of any n-body property is available in the respective nth-order RDM. Accord-
ingly, a measure of bond order (and degree of covalency and ionicity) between a pair
of atoms is done in terms of the two-centre integration of the two-body density com-
ponent accounting for all the correlation between electrons: the xc density. This way,
the double integration in the same basin leads to the localisation index, and when
two distinct ones were used, to the delocalisation index, a real space (two-centre)
bond order proportional to the covariance between those two electron populations.
Going a step further, it is possible to generalise the concept of bond orders to account
for n-centre correlations, and this is done by means of an, in turn, generalisation of
the xc density: the cumulant densities (CDs).

As in the two-electron case, generalised exchange-correlation densities can be de-
fined so as to represent n-electron fluctuations. This is done in what is known as
nth-order CDs ρC

n (r1, r2, ..., rn), by means of which the RDMs can be expanded. This
way,

ρ(r) = ρC
1 (r) (2.124)

ρ2(r1, r2) = ρC
1 (r1)ρ

C
1 (r2) + ρC

2 (r1, r2) (2.125)
ρ3(r1, r2, r3) = ρC

1 (r1)ρ
C
1 (r2)ρ

C
1 (r3)

+ ρC
1 (r1)ρ

C
2 (r2, r3) + ρC

1 (r2)ρ
C
2 (r1, r3) + ρC

1 (r3)ρ
C
2 (r1, r2)

+ ρC
3 (r1, r2, r3), (2.126)

etc., with ρC
2 (r1, r2) ≡ ρxc(r1, r2), and where for the sake of simplicity, the diagonal,

spin-free RDMs have been presented (similar relationships are found for the more
general non-diagonal, spin-resolved RDMs [55]). Important recurrence relationships
appear among the CDs, by which knowledge of an n-CD permits the calculation of
the (n− 1)-CD, and so the rest of the lower-order CDs:

∫
ρC

n (r1, r2, ..., rn)drn = (−1)n(n− 1)ρC
n−1(r1, r2, ..., rn−1). (2.127)

Continuing with the formulation introduced in Section 2.4 according to which the xc
density integrates to−N, the previous relationship permits the correct integration of
the 2-RDM to the N(N − 1) number of electron pairs, the 3-RDM to N(N − 1)(N −
2), and so on.

As can be appreciated, each nth-order RDM can be decomposed into lower-order
densities plus a remainder: its corresponding same-order cumulant. This is the ob-
ject that contains the sought nth-order fluctuations. One interesting property of CDs
is that, by virtue of Eqs. 2.121 and 2.127, each CD integrates to N multiplied by
a given factor. In other words, getting rid of the (−1)n(n − 1) factors in Eq. 2.127
and moving them to the expansions of the RDMs, integration of the cumulant den-
sities yields the total number of electrons in the system and, at the same time, they
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carry the nth-order correlation. By generalising what has been done with the de-
localisation index, it is possible to define general n-centre bond indices ⟨Nab...n⟩ by
integration of the nth-order CD as

⟨Nab...n⟩ =
∫

Ωa

dr1

∫

Ωb

dr1 · · ·
∫

Ωn

drnρC
n (r1, r2, ..., rn), (2.128)

from where
∑

ab...n
⟨Nab...n⟩ = N, (2.129)

thus providing an n-centre decomposition of the electron population and a measure
of n-centre bonding closely related to the DI. Moreover, integration of all but one
coordinates and summation over all possible combinations of basins simply yields
the electron density:

ρ(r) = ∑
ab...n

ρC
ab...n(r)

= ∑
ab...n

∫

Ωa

dr1

∫

Ωb

dr2 · · ·
∫

Ωn

drnρC
n+1(r1, r2, ..., rn+1). (2.130)

Similarly, when non-diagonal CDs are used, the, in turn, non-diagonal 1-RDM is
obtained. As seen in Eq. 2.103, the 1-RDM can be expressed as an expansion in
terms of the occupied MOs of the system and, on the same footing, the ρC

ab...n(r; r′)
cumulant density matrices can be decomposed as

ρC
ab...n(r; r′) = ϕ(r)Dab...nϕ(r′), (2.131)

where ϕ(r) denotes the vector containing all the occupied MOs and Dab...n is the
matrix comprising the expansion coefficients. If ρC

ab...n(r; r′) is diagonalised, a set of
multicentre natural orbitals {ϕab...n

i } —the natural adaptive orbitals (NAdOs)— is
obtained,

ρC
ab...n(r) = ∑

i
nab...n

i
∣∣ϕab...n

i (r)
∣∣2, (2.132)

with their corresponding occupation numbers {nab...n
i } fulfilling

∑
i

nab...n
i = ⟨Nab...n⟩. (2.133)

NAdOs therefore provide a one-electron (i.e., orbital) picture of n-centre bond-
ing, their occupation numbers decomposing the corresponding n-centre bond index
⟨Nab...n⟩ —which is equivalent to the n-centre DI though following a different nor-
malisation. These orbitals are a means to detect and visualise multicentre bonding.
NAdOs being completely localised over n centres are those that describe n-centre
bonding. By contrast, those that are only partly localised over those atoms signal the
existence of higher-order multicentre bonding.

2.5.5 Electron distribution functions

An alternative way of conceiving bonding is neither based on energetics nor on the
delocalised orbitals between two fragments, but on the statistics of the electron dis-
tribution in space [56, 57].

Let us consider a general one-electron wave function and an exhaustive, ar-
bitrary partition of space into m three-dimensional domains {Ωi}i=1,...,m fulfilling
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∪iΩi = R3 and Ωj ∩Ωk = ∅ ∀ Ωj, Ωk ∈ {Ωi}. According to Born’s interpretation,
the probability of finding the electron described by ϕ(r1) in one of such regions is

p(r1 ∈ Ωi) =
∫

Ωi

|ϕ(r1)|2dr1, (2.134)

and provided ϕ is normalised, the sum of all distinct probabilities associated to each
domain yields unity: ∑i p(r1 ∈ Ωi) =

∫
R3 |ϕ(r1)|2dr1 = 1.

For the more general N-electron case, |Ψ|2dr1dr2 · · · drN gives the probability
of electron 1 being found in infinitesimal volume element dr1 around r1, electron
2 in dr2, and so on, and integration over three-dimensional regions Ωi, Ωj, ..., Ωm
gives the probability of those electrons to be found in such particular domains.
Since electrons are indistinguishable, an N! factor must be added so that all pos-
sible permutations are considered. However, this would correspond to the case in
which only one electron is contained in each domain. For a more general situation
in which n1 electrons are assigned to Ω1, n2 to Ω2, etc., only permutations among
electrons inside the same region are allowed. For this reason, in an N-electron sys-
tem, the probability of a given distribution of electrons S ≡ {n1, n2, ..., nm} satisfying
n1 + n2 + · · ·+ nm = N in real-space domains is

p(S) =
N!

n1!n2! · · · nm!

∫

Ω1

dr1dr2 · · · drn1

∫

Ω2

drn1+1drn1+2 · · · drn1+n2

· · ·
∫

Ωm

drN−nm+1drN−nm+2 · · · drN |Ψ(r1, r2, ..., rN)|2. (2.135)

These are the electron number distribution functions (EDF) [56] that provide valu-
able information concerning chemical bonding, being equally applicable to all sys-
tems provided their wave functions are accessible.

It is also possible to focus on the population of only one domain. Once all the
p(S) have been obtained, the probability of a one-domain population can be calcu-
lated by the standard rules of statistics adding up all the relevant probabilities that
yield the requested marginal:

p(ni) = ∑
S|ni

p(n1, ..., ni, ..., nm). (2.136)

In a similar fashion, the probability of having ni electrons in Ωi and nj in Ωj can be
calculated as

p(ni, nj) = ∑
S|ni ,nj

p(n1, ..., ni, ..., nj..., nm), (2.137)

and equivalent expressions are found for the subsequent probabilities of three-, fourth-
, etc., domain population assignments.

With the one-domain EDFs the average number of electrons within such a region
⟨ni⟩ ≡ Ni is available through

⟨ni⟩ =
N

∑
nj=1

nj p(ni = nj), (2.138)

Analogously, the average number of electron pairs that can be formed between Ωi
and Ωj is

⟨ninj⟩ =
N

∑
nk ,nl

nknl p(ni = nk, nj = nl). (2.139)
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This information provides an independent route for calculating the variance and the
covariance of the electron populations associated to particular domains as

var(ni) =
N

∑
nj

(nj − Ni)
2 p(ni = nj) = ⟨n2

i ⟩ − ⟨ni⟩2 (2.140)

and

cov(ni, nj) = ⟨(ni − Ni)(nj − Nj)⟩

=
N

∑
nk ,nl

(nk − Ni)(nl − Nj)p(ni = nk, nj = nl)

= ⟨ninj⟩ − ⟨ni⟩⟨nj⟩ (2.141)

that, in turn, constitute the statistical basis of the localisation and delocalisation in-
dices (recall Eqs. 2.122-2.123).

EDFs give access to averages of general functions of n1, n2, ..., nm

⟨ f (n1, n2, ..., nm)⟩ ≡ ⟨ f (S)⟩ = ∑
S

f (S)p(S) (2.142)

that may serve, for instance, to calculate generalised covariances by employing f (nr, ns, ..., nt) =
(nr − Nr)(ns − Ns) · · · (nt − Nt):

cov(ni, nj, ..., nk) = ⟨(ni − Ni)(nj − Nj) · · · (nk − Nk)⟩
= ∑

nr ,ns,...,nt

f (nr, ns, ..., nt)p(ni = nr, nj = ns, ..., nk = nt). (2.143)

Such statistical measurements of the electron populations can be readily exploited
to construct generalised K-centre delocalisation indices

δij···k =
(−2)K−1

(K− 1)!
cov(ni, nj, ..., nk) (2.144)

where K denotes the number of domains involved, thus providing a direct link with
K-centre NAdOs through their occupation numbers: δij···k ∝ ⟨Nij···k⟩. Both indices
are two sides of the same coin since both are built upon the K-centre covariance.

Although arbitrary three-dimensional regions can be used, when adopting a
QTAIM scheme a given partition S is then called real space resonance structure (RSRS).
By considering the simple example of the hydrogen molecule, which is a 2c-2e sys-
tem, three possible RSRSs with their associated EDFs emerge: (1, 1), (2, 0) and (0, 2),
thus assigning one electron to each atom, two for the first hydrogen and none for the
second, and vice-versa. These correspond to a covalent-like resonance structure (in
turn, the result of two possible spin combinations, whose individual probabilities
can be calculated through the spin-resolved EDFs) and two ionic-like ones.

Therefore, the EDFs are not only linked with ionic or covalent real space indices
(be them 2-, 3- or n-centre quantities), but also provide themselves a neat picture of
how electrons tend to be distributed in integer packages.



2.5. The quantum chemical topology toolbox for wave function analyses 63

2.5.6 Interacting quantum atoms: a real space energy decomposition

The closing Section for the Methodology chapter concerns the focus of this thesis.
As described in the Introduction (Section 1.5), there is no unique way of assign-
ing atoms in a molecule, so a similar non-uniqueness arises for the decomposition
of its quantum mechanical energy. Nonetheless, not all the AIM methods possess
an equally sound theoretical scaffold, what has led this thesis to rely on that pro-
vided by QTAIM. In a similar fashion, not all energy decomposition analyses (EDAs)
present the same invariance properties and some of the most widely used ones may
yield different conclusions when varying the set of orbitals used or the intermedi-
ate or reference states chosen. In this context, the interacting quantum atoms (IQA)
approach presents an orbital-invariant alternative as it is (most frequently) based
on the spacial partitioning of the (spinless) 1- and 2-RDMs to calculate atomic or
fragment energies [58, 59].

Expressions 2.92-2.94 show that the different energy contributions can be calcu-
lated by means of the RDMs. IQA exploits its decomposition into atomic parts to
obtain associated atomic energies. Similarly as QTAIM partitions the charge density
by using spatial atomic weight functions, an atomic decomposition of the 1-RDM
using weights can also be obtained:

ρ(r1; r′1) = ∑
A

ρA(r1; r′1) = ∑
A

wA(r′1)ρ(r1; r′1). (2.145)

In the case of the 2-RDM, only the diagonal one (i.e., unprimed) is required. Its cor-
responding partition is obtained in this case by applying two simultaneous weight
functions as

ρ2(r1, r2) = ∑
A

∑
B

ρAB
2 (r1, r2) = ∑

A
∑
B

wA(r1)wB(r2)ρ2(r1, r2). (2.146)

These atomic matrices permit the computation of the different energy contributions
by replacing the full ρ(r1; r′1) and ρ2(r1, r2) by ρA(r1; r′1) and ρAB

2 (r1, r2) in Eqs. 2.92-
2.94. The previous Equations 2.145 and 2.146 show the general form of partitioning
the RDMs, valid for different kinds of weight functions. When it comes to Bader’s,
the computation of the atomic energy terms is equivalent to delimiting the respec-
tive integrations to the three-dimensional basins. Therefore, the atomic kinetic and
potential energies become

TA =
1
2

∫

r′=r
∇2ρA(r; r′)dr =

1
2

∫

ΩA

∇2ρ(r; r′)
∣∣
r′=rdr, (2.147)

VAB
en = −

∫
ρA(r1)

ZB

r1B
dr1 = −

∫

ΩA

ρ(r1)
ZB

r1B
dr1 (2.148)

and

VAB
ee =

∫
dr1

∫
dr2

ρAB
2 (r1, r2)

r12
=
∫

ΩA

dr1

∫

ΩB

dr2
ρ2(r1, r2)

r12
. (2.149)

Finally, the partition of the nucleus-nucleus repulsion is straightforward since nuclei
are considered as point charges:

VAB
nn =

ZAZB

rAB
. (2.150)

Hence, the total energy E is exhaustively decomposed into intraatomic (A = B) and
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interatomic energy contributions (A ̸= B). On the one hand, the intraatomic quan-
tities comprise the kinetic energies TA plus all the interactions inside a particular
basin ΩA: VAA

ee and VAA
en . These three energies can be cast into the atomic self or net

energy EA
net:

EA
net = TA + VA

ee + VA
en, (2.151)

On the other hand, the interatomic contributions comprise the interaction energies
between the particles belonging to a given ΩA and those ascribed to ΩB:

EAB
int = VAB

ee + VAB
en + VAB

nn . (2.152)

Note that the order of the sub- and superscripts matters. This way, VAB
ee = VBA

ee or
VAB

nn = VBA
nn , but VAB

en ̸= VBA
en . The superscripts indicate the basins the corresponding

first and second elements of the subscripts belong to. Accordingly, VAB
en = VBA

ne and
when the two elements in either the superscript or the subscript are the same, a
permutation does not alter the significance of such energy term (e.g., VAA

en = VAA
ne ).

To shorten a little bit the notation, interactions corresponding to a same basin will
be referred in the following with an only one letter (e.g., VAA

en ≡ VA
en).

The grouping carried out in Eqs. 2.151 and 2.152 allows for an exhaustive decom-
position of E as

E = ∑
A

EA
net + ∑

A
∑

B>A
EAB

int . (2.153)

It is also possible to redissect the total energy in additive atomic contributions as
E = ∑A EA

add by defining this effective quantity, the additive energy, as the sum of the
net energy of an atom plus half all the interaction energies it presents with the rest
of the atoms in the system:

EA
add = EA

net +
1
2 ∑

B ̸=A
EAB

int . (2.154)

As it can be seen, IQA provides a chemically appealing additive scheme that
allows for the decomposition of the total energy in associations of atoms. In other
words, the very chemical concept of functional groups is found within IQA. As such,
E can alternatively be decomposed (or recovered) as a sum of group net energies and
their interactions with the rest:

E = ∑
G

EGnet + ∑
G

∑
H>G

EGHint . (2.155)

The group net energies EGnet are analogous to the atomic ones in the sense that they
comprise the kinetic energies of the particles confined in their extent plus their in-
teractions. Hence, atomic net energies and interatomic interactions within the group
are involved:

EGnet = ∑
A∈G

EA
net + ∑

B>A
B∈G

EAB
int . (2.156)

Accordingly, the inter-group interaction energies are defined as the sum of those
comprising atoms of one group with those of the other:

EGHint = ∑
A∈G

∑
B∈H

EAB
int . (2.157)

Additionally, group additive energies can be defined likewise.
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Clearly, not only predefined functional groups are possible to be established, but
also general groups or molecular fragments. Sometimes, in order to distinguish from
the atomic analysis, the use of fragment energies is referred to as interacting quantum
fragments (IQF). This different naming will be used in the present thesis for those
works that present a clear distinction of both levels of analysis.

IQA provides a neat picture of the energetics a molecule presents with a partic-
ular atomic arrangement, but in many occasions it is the relative energies which are
more insightful. It is the case of the binding or formation energy E f orm, that collects
all the energy changes undergone in a given chemical process. A related quantity is
the deformation energy Ede f , accounting for the inner changes produced during that
process in an atom or fragment (or globally in the molecule), and thus collects the
effects associated to the geometrical (nuclear) and electronic rearrangements. This
quantity corresponds to the net energy change of that particular atom or fragment:

EA
de f = ∆EA

net = EA
net − EA,0

net , (2.158)

where EA,0
net denotes the atomic net energy of an initial state (the same expression

can be generalised to groups of atoms). In the case of a full formation process from
the isolated atoms, this quantity represents the in vacuo energy EA,0 of those and,
consequently, the associated formation energy becomes

E f orm ≡ ∆E = ∑
A

EA
de f + ∑

A
∑

B>A
EAB

int = E−∑
A

EA,0. (2.159)

Some remarks concerning the latter and the former expressions: on the one hand,
the formation energy, that for a full process from the isolated atoms equals the dif-
ference between the final energy of the molecule and the sum of the atomic ones
in isolation, presents two general sources, namely, the deformation of these atoms
(generalisable to fragments) and the interaction they acquire when brought from
infinity to the final arrangement (that, when some already belong to a preexistent
species, an energy difference is used instead: ∆EAB

int ). A formation process therefore
results from the balance between the usually non-favourable deformation and the
frequently energy lowering upon interaction the atoms or fragments finally gain.
On the other hand, in search for an energetic descriptor carrying the transferable
properties of atoms, the net energy emerges as a promising candidate. It coincides
with the total energy of an isolated species and when an atom or a functional group
is carried from one chemical environment to another, unless both differ to a large
extent, the net energy remains very similar and the energy change due to formation
consequently becomes mainly explained by the new interactions with the surround-
ing groups.

The IQA interaction energies are not only able to distinguish among their differ-
ent two-body sources (i.e., e-e, n-n or e-n) but, given relation 2.97, they can also be
split into a classical or Coulomb part Eclass and a quantum mechanical xc one Exc.
Hence, for a given pair of atoms,

EAB
int = EAB

class + EAB
xc . (2.160)

Moreover, the Coulomb term in the previous equation does not necessarily account
only for classical electron repulsion (obtained after a direct substitution of ρ2(r1, r2)
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in Eq. 2.94 by its two-term decomposition from Eq. 2.97), but the classical electron-
nucleus and nucleus-nucleus interaction energies can also be incorporated by sup-
plying a total density

ρtot(r) = ∑
α

Zαδ(r− Rα)− ρ(r) (2.161)

for the Coulomb part, leading to a general partition of the interaction energy among
all particles.

To conclude, as commented initially not all EDAs fulfil the same conditions or
present the same properties that make them more or less suitable when analysing
energetics. IQA fulfils in fact three conditions that give it its particular flavour: 1)
IQA is able to unequivocally distinguish between atomic (and group) energy com-
ponents, giving complete recovering of the total energy, 2) it provides a detailed
description of the interactions among them and 3) no approximation or references
are needed in its development.

2.5.7 The multipole expansion applied to IQA

Without going into details about the specific implementation IQA has in the original
code for this energy decomposition analysis (PROMOLDEN [60]), it is worth mentioning
that the costly 2-electron integrals can be more easily tackled by invoking either the
Laplace or the bipolar expansions of r−1

12 [49]. These are generalisations of the mul-
tipole expansion, an expansion series of the interaction energy between two charge
densities by means of multipole moments describing the (usually) anisotropic dis-
tribution of electrons and nuclei in space.

Let us consider two molecules A and B located at positions RA and RB with total
interpenetrating charge densities ρtot,A(r) and ρtot,B(r). The electrostatic interaction
between the two species reads

EA,B
elec ≡ EA,B

class =
∫

R3

∫

R3

ρtot,A(r1)ρtot,B(r2)

r12
dr1dr2. (2.162)

[Note that in this case A and B do not refer to topological atoms, but to complete
molecules whose charge densities have no boundaries]. Such interaction between
two charge densities can also be seen as the interaction experienced by molecule A
in the presence of the potential due to ρtot,B(r) [33] (or vice-versa):

EA,B
elec =

∫

R3
ρtot,A(r)VB(r)dr. (2.163)

By expanding VB(r) in a Taylor series about position RA, one arrives at

VB(RA) = qB 1
R
−

3

∑
i

µB
i ∇i

1
R
+

3

∑
i

3

∑
j

1
3

ΘB
ij∇i∇j

1
R
− · · ·

=
∞

∑
n

3

∑
i

3

∑
j
· · ·

3

∑
p

(−1)n

(2n− 1)!!
T(n)

ij...pξ
B(n)
ij...p , (2.164)

where indices i, j, ..., p denote the specific components in Cartesian coordinates of
the succinctly expressed multipole moments ξ

B(n)
ij...p of order n, that are tensors of rank

0 (charge, q), 1 (dipole, µ), 2 (quadrupole, Θ), etc. The contravariant T(n)
ij...p tensors
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that accompany them represent the successive derivatives

T(n)
ij...p = ∇i∇j · · · ∇p

1
R

(2.165)

of the inverse of the distance between the two molecules (R = |RB − RA|). These
derivatives introduce position operators, such as Tx = − x

R3 or Tyz = 3yz
R5 , trans-

forming Eq. 2.163 into a series of multipolar interactions between multipoles from
ρtot,A(r) and ρtot,B(r) charge distributions:

EA,B
elec ≈ EA,B

elec,mp = qA[TqB −∑
i

Tiµ
B
i +

1
3 ∑

i
∑

j
TijΘB

ij − · · ·
]

+ ∑
i

µA
i
[
TiqB −∑

j
Tijµ

B
j +

1
3 ∑

j
∑

k
TijkΘB

jk − · · ·
]
+ · · ·

= TqAqB −∑
i

Ti(qAµB
i − µA

i qB)

+ ∑
i

∑
j

Tij(
1
3

qAΘB
ij − µA

i µB
j +

1
3

ΘA
ij qB) + · · · , (2.166)

therefore approximating4 the electrostatic energy as a summation of charge-charge,
charge-dipole, dipole-quadrupole, etc. terms. Formally, the summation extends to
infinity, but it is frequently enough to consider multipoles up to the quadrupoles
for molecules so that the electron distribution in space becomes sufficiently well
described. It is important to note that the higher weight of some particular terms
over the others comprises valuable information about how a given charge density
is distributed. In the case of a completely spherical system, for instance, only the
charges will survive, whereas when the species has cylindrical symmetry, both the
total charge and the dipoles will be able to contribute (though they can always be
zero if the species considered is neutral in the case of the charge, or has a zero dipole
if the one-dimensional distribution is symmetric with respect to the centre of inver-
sion).

The previous formulation has been presented in terms of the usual Cartesian
coordinates. However, Eq. 2.166 can be reexpressed in spherical coordinates in a
simpler way that is particularly appealing from the programmer point of view:

EA,B
elec,mp =

∞

∑
l1m1

∞

∑
l2m2

Cl1m1l2m2(R̂)
QA

l1m1
QB

l1m1

Rl1+l2+1 , (2.167)

where mi runs from−li to +li, Cl1m1l2m2(R̂) are known coefficients calculated for each
(l1m1, l2m2) quartet, that depend on the angular coordinate R̂ ≡ (θB − θA, ϕB − ϕA)
determining orientation and QA

l1m1
and QB

l2m2
are the spherical-coordinate multipoles

of each molecular density. These are obtained through real spherical harmonics Slm
(see Ref. 49) as

Qlm = Nl

∫

R3
rlSlm(r̂)ρ(r)dr, (2.168)

4Given that we are focusing on the electrostatic interaction between two interpenetrating molecular
densities, Eq. 2.166 is an approximation to EA,B

elec , but they do not exactly coincide. As explained below,
the Taylor series cannot yield an exact expansion of the electrostatic energy if the charge distributions
interpenetrate one another.
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where Nl is a constant dependent on l, and r and r̂ represent the radial and the
angular coordinates, respectively.

Since the multipolar energies EA,B
elec,mp derive from a Taylor series expansion, they

equal EA,B
elec whenever some conditions are fulfilled. On the one hand, the Taylor

series is formally infinite, although it can be truncated at some point preserving a
sufficient accuracy. On the other, the convergence of the series is limited to a certain
domain of R, those values for which R ⩾ |r1 + r2|. In the case of two interacting
infinite charge densities, EA,B

elec,mp does in principle not converge since these densities
interpenetrate each other and the convergence condition is not fulfilled. However,
although the electron density is spread throughout the whole space, it is mostly con-
centrated around the nuclei and decays exponentially out of them. Moreover, in case
the intermolecular distance is not sufficiently large, the convergence problems can
be solved by distributing multipoles throughout the molecule [61]. Moving now to
the QTAIM case, EAB

elec,mp is obtained as in Eq. 2.167 by summing all the atomic pairs
I ∈ A− J ∈ B, maintaining the notation A, B for the interacting molecules. Although
group multipoles can also be constructed, this is a distributed multipole scheme.
Moreover, topological atoms are not interpenetrating by definition. Nonetheless,
much care has to be put on this fact, since the condition R ⩾ |r1 + r2| is not always
fulfilled. In the QTAIM, a maximum atomic radius RI from the atomic position (i.e.,
from the atomic nucleus) to the farthest point of the IAS is taken so as to define the
convergence sphere of such atom. Whenever R ⩾ RI + RJ , the multipolar approxi-
mation will release an accurate EI J

ele,mp energy (provided the electron distribution is
well represented by the finite number of multipoles considered). For those QTAIM
atoms whose outmost borders extend to infinity, the same consideration than for the
infinite molecular densities can be applied, and RI can be taken as finite when the
portion of electron density not considered is negligible.

As a final remark, the previous application of the multipole expansion has been
devoted to Coulomb energies. However, it is not restricted to electrostatics and the
computation of the exchange-correlation energy can also take advantage of this ap-
proximation [62], although no more details will be given since the present thesis
makes use of the information provided by the Coulomb multipole expansion only.

2.5.8 Implementation of IQA in density functional theory

IQA is a powerful and physically sound energy decomposition, but since it resorts
to the RDMs to compute the energies, the family of DFT methods is in principle not
compatible with IQA. In DFT there is no wave function, but a pseudo-wave function
constructed from the KS orbitals, so no density matrix (other than the diagonal 1-
RDM, that is, the electron density) can be exactly constructed. It is not a problem
for the kinetic energy decomposition —it is calculated as the expectation value of
the corresponding operator in a given spacial region—, nor is it for the Coulomb
interaction —in this case only the charge density is needed, which can be easily
partitioned—, but the assignment of the exchange-correlation energy to a given atom
or to an interaction between a couple of them is not an easy task, and, in any case,
some approximation must be followed. This issue has been matter of concern due
to the predominance of DFT in electronic structure calculations, but a few years ago
a promising scaling technique was proposed to by-pass this limitation [63].

Given a particular exchange-correlation functional yielding an energy density
εxc[ρ(r), |∇ρ(r)|, ...] ≡ εxc(r), the total DFT exchange-correlation energy can be easily
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computed as

EDFT
xc =

∫

R3
ρ(r)ε(r)dr + a0EKS

x , (2.169)

where for hybrid functionals, the fraction of pure HF exchange EKS
x is modulated

by a0. This quantity is readily obtained from the KS orbitals, that do permit the
construction of an exchange matrix following Eq. 2.111.

By delimiting the previous integral to a particular atomic basin (recall that R3 =

∪AΩA), the total xc energy is split into additive atomic contributions EDFT,A
xc,add , involv-

ing both intra- and inter-basin energies. To enable a distinction of these two sources
of the xc energy, a scaling procedure based on the EDFT

xc /EKS
x ratio within each basin

can be used. The prescription implemented in PROMOLDEN begins with a first calcula-
tion of all these ratios as the λA parameters

λA =
EDFT,A

xc,add

EKS,A
x,add

= a0 +
1

EKS,A
x,add

∫

ΩA

ρ(r)εxc(r)dr. (2.170)

The additive Hartree-Fock exchange is calculated through

EKS,A
x,add = EKS,A

x +
1
2 ∑

B ̸=A
EKS,AB

x , (2.171)

where the intra-atomic (B = A) or inter-atomic (B ̸= A) exchange energies are com-
puted by means of the exchange density ρKS

x (r1, r2) as

EKS,AB
x =

∫

ΩA

dr1

∫

ΩB

dr2r−1
12 ρKS

x (r1, r2). (2.172)

Once the set of λA parameters is available, these are utilised to approximate the
intra- or inter-atomic DFT xc energies as follows:

ẼAB
xc =

1
2
[λA + λB] EKS,A

x,add . (2.173)

Consequently, the xc energy is reconstructed from (or split into) intra-atomic and
inter-atomic contributions:

EDFT
xc = ∑

A
ẼA

xc + ∑
B ̸=A

ẼAB
xc . (2.174)

Although the presented scheme is one of the many that could be used to approx-
imate DFT-IQA energies, the experience with this scaling technique results valuable
and demonstrates that this partitioning is robust and consistent, giving rise to very
useful energies, comparable with those provided by HF [63–65].

2.5.9 IQA partitioning in continuum solvation models

Gas-phase descriptions are convenient in many situations, but when the purpose is
to model a molecule in solution, in which the solute-solvent interactions may change
dramatically its properties, a correct representation of the solvent is required. In
contrast to explicitly treating solvent molecules as part of the whole QM system,
continuum models opt for a continuous description of the solvent medium as an
unstructured dielectric fluid [66, 67].
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A main feature that characterises the distinct continuum solvent models is the
manner in which they treat electrostatics, that is, how the molecular charge density
defines the molecular potential that originates the solvent reaction potential (com-
monly known as reaction field), and how it is described. Among them, some models
make use of multipoles to describe the solute charge density at the molecular ori-
gin, while others distribute them to different centres; some do not change the initial
distribution upon interaction with the medium and others consider back polarisa-
tion effects (i.e., the polarisation suffered by the solute due to the polarised solvent
medium). A second feature to distinguish among continuum solvation models is
the definition of the cavity in which the solute molecule is placed. This cavity is
enclosed by a solvent accessible surface (SAS), the interface between solute and the di-
electric medium, whose definition ranges from the use of an isovalue surface of the
electron density to the more common superposition of van der Waals-like atomic
spheres.

There exist different implementations to cope with the electrostatic problem and
thus to calculate the solvent potential. One of them is the apparent surface charges
(ASC) method, according to which the SAS is discretised and divided in segments
(tesserae) to which a set of point charges {qk} are associated. These charges act as
the electrostatic response of the solvent medium to the polarisation exerted by the
solute and are thus responsible for the solvent reaction potential. Accordingly, the
solute-solvent (X− S) electrostatic interaction energy [68] can be expressed as

EX−S
int = ∑

A
∑

k

ZAqk

|RA − sk|
+ ∑

k

ρ(r)qk

|r− sk|
dr = ∑

k
VX(sk)qk, (2.175)

where VX(sk) denotes the total electrostatic potential due to the solute at the kth
charge position sk.

When studying the process of solvation, some energy is spent in polarising the
solvent when inserting the solute [69]. By considering a linear response of the medium
(whose details can be read in Ref. 69), one half of the total interaction energy will be
spent in such process. The corresponding energy associated to the solvated state
(sol) reads

Esol ≡ Gsol = E({RA}sol) +
1
2

EX−S
int , (2.176)

where E({RA}sol) is the QM energy of the solute in the presence of one half the
solvent potential, therefore accounting for polarisation effects. This energy indeed
corresponds to a free energy, as it can be regarded as the work spent in assembling all
the constituent particles in a final arrangement within a polarised dielectric. Its dif-
ference with the energy in the gas phase EGP ≡ E({RA}GP) gives the (electrostatic)
free energy of solvation:

∆Gsolv = Esol − EGP. (2.177)

The previous quantity takes into consideration electrostatic effects only. This is
the minimum requisite of any implicit solvation model and it is in fact the main en-
ergy contribution to solvation when, for example, polar solvents are used [66]. Im-
provements can be achieved by considering non-electrostatic effects such as disper-
sion or cavitation —that is, the formation of the cavity within the solvent medium—,
thermal corrections being usually small.

So far, global energies associated to solvation have been presented. Nonetheless,
one of the purposes of this thesis is to extend the use of IQA to biochemical systems
for which solvent effects are in many cases crucial. Therefore, the use of implicit
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solvation methods based on the ASC approach results very appealing from the IQA
decomposition point of view. On the one hand, the atomic decomposition of the so-
lute potential is straightforward —it is the potential due to the partitioned molecular
density—, what serves to define atomic interaction energies with the solvent as

EX−S,A
int = ∑

k
VA(sk)qk. (2.178)

With the previous partitioning, all the ingredients for a full decomposition of Esol

become available,

Esol = ∑
A

Esol,A
add = ∑

A

(
EA

add({RA}sol) +
1
2

EX−S,A
int

)
, (2.179)

and additive energies of the solvated atoms can be defined by adding one half the
atomic interaction energy with the solvent to the electronic and nuclear additive en-
ergy. Following this scheme, the IQA decomposition of the electrostatic free energy
of solvation results in

∆Gsolv = Esol − EGP = ∑
A
(Esol,A

add − EGP,A
add ) = ∑

A
∆GA

solv. (2.180)

2.5.10 Dispersion-augmented IQA decomposition of HF/DFT energies

Dispersion interactions are crucial in large biomolecular systems and complexes.
They involve the long-range correlation of electron clouds between atoms or frag-
ments. As such, wave function-based methods accounting for correlation may re-
lease an accurate global energy, although at the expense of high computational de-
mands. To circumvent this issue, several models have been proposed over the years.
Special attention deserve those developed as a complement of DFT (and HF) meth-
ods, that make accurate results much more accessible. One of the most popular ones
is Grimme’s third generation dispersion correction (D3), a semiempirical potential
based on the London formula, that presents an R−6 dependence on the interatomic
distance and also depends on the respective atomic polarisabilities [70, 71].

Such a dispersion correction is directly added to the mean-field (i.e., either DFT
or HF) energy EMF as

EMF−D3 = EMF + Edisp, (2.181)

giving thus rise to the either DFT-D3 of HF-D3 methods. When applied to HF, Edisp
is a new energy source as it contains all the dispersion energy that HF, by definition,
lacks. By contrast, Edisp is only a part of the total dispersion energy in DFT methods,
as they already account for a fraction of it.

The dispersion term is formally the result of two contributions, stemming from a
two- and a three-body interaction; however, in line with the pairwise spirit of IQA,
all the attention will be paid to the two-body term. In its original formulation, there
is a singularity when two atoms A and B approach one another and hence the inter-
atomic separation RAB tends to zero. To avoid this problem and guarantee a correct
asymptotic behaviour reaching a constant value at short distances, a damping func-
tion can be added. A popular prescription is that due to Becke and Johnson (BJ),
leading to a D3(BJ) dispersion correction of the form (as implemented in the ORCA
package [72, 73])

Edisp = − ∑
A<B

∑
n=6,8

sn
CAB

n

Rn
AB + f n(RAB

0 )
, (2.182)
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where CAB
n is the nth-order dispersion coefficient of the pair AB, obtained from ac-

curate dynamic polarisabilities, sn is a scaling factor dependent on the density func-
tional used and f (RAB

0 ) is the BJ damping function, linearly dependent on the ratio

RAB
0 =

√
CAB

8 /CAB
6 .

The inclusion of an extra pairwise term in the IQA scheme is straightforward.
As such, the IQA-D3 methodology [64] combines the HF or DFT Coulomb and
exchange-correlation energies with the corresponding EAB

disp term, that can be cast
into the total pair interaction energy, giving rise to an enhanced energy decomposi-
tion

E = ∑
A

EA
net + ∑

B>A
EAB

int = ∑
A

EA
net + ∑

B>A

(
EAB

class + EAB
xc + EAB

disp
)
, (2.183)

where it is worth remarking that the pairwise dispersion energy used has an empir-
ical origin and hence is not included in the xc term although dispersion is formally a
correlation effect. This way, we restrict the Exc term to the pure energy contribution
calculated from ρxc(r1, r2), that is not affected by the D3 potential.
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Chapter 3

Results & Discussion

This Chapter summarises the research work carried out in this thesis and already
published in seven different manuscripts fully reproduced in Chapter 5. Two sep-
arate lines in the object of research, but complementary in what this thesis pur-
sues —i.e., the popularisation of the IQA methodology, in conjunction with other
orbital-invariant techniques—, can be found. On the one hand, the first steps carried
out towards the extension of IQA to the computational biochemistry world; on the
other, the elucidation and characterisation of controversial chemical bond classes,
with special attention to non-covalent interactions, by means of IQA and other QCT
techniques.

3.1 Towards a biochemical application of IQA

Biochemistry is full of complex chemical processes where subtle changes in the struc-
ture of a molecule can be determinant in enabling or impeding its activity. The focus
in computational biochemistry is primarily placed on large systems, whose complete
treatment in QM terms is prohibitive and hence, QM/MM mixed methodologies
combining the quantum mechanical description of a specific region and simplified
models of the environment surrounding it are the dominant choice. In this regard,
IQA offers the possibility of introducing in a theoretically sound way an atomic par-
tition of the specific effects that this simplified representation of the environment
causes on the QM region.

The four research works included in this first Section of Results address the de-
velopment and application of IQA to larger and more complex systems than those
typically studied so far, focusing on specific problems that commence to be fixed,
and paving the way for a general strategy of systematically applying IQA to bio-
chemical systems as a QM/MM-IQA combined description with a QM part encom-
passing around a hundred atoms. Accordingly, Section 3.1.1 addresses the per-
formance of the IQA implementation of DFT in the most prototypical hydrogen-
bonded systems: water clusters. Section 3.1.2, in turn, extends the IQA-D3 com-
bined methodology to the elucidation of the local energetic effects that fluorine-
containing organic molecules may provoke in the presence of different functional
groups, leading to one or another preferred conformation of medium-sized fluori-
nated biomolecules (e.g., drug compounds). Environmental effects are introduced
in IQA for the first time as those caused by a continuum solvent on a solute molecule
in Section 3.1.3, partitioning the electrostatic component of the solvation free energy.
Finally, a thorough analysis of intermolecular electrostatic interactions is performed
in Section 3.1.4, where the IQA/IQF energy terms are inspected so as to describe
non-covalent binding in close comparison with widely-used MM potentials, and
where the energetic impact of electrostatics in the short range is carefully investi-
gated.
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3.1.1 DFT performance in the IQA energy partition of small water clus-
ters

The applicability of IQA was initially restricted to wave function-based methods
such as HF, CASSCF, CISD or CCSD, therefore limiting its use to a large extent if
correlation effects were desired to be included. Notwithstanding, the high computa-
tional demands of the IQA machinery for correlated wave functions can be overcome
resorting to density functional theory. With the aim of paving the way for future
IQA analyses of hydrogen bonding (HB) in multiple scenarios, especially for large
systems, this work presents an assessment of the performance of sixteen different
density functionals in the IQA description of HB non-additive effects.

HB is an ubiquitous non-covalent interaction (NCI). It is present in many bio-
chemical aggregates, determining their conformation and activity; crystalline solids,
influencing the packing some compounds exhibit; or water systems, where it largely
determines the properties of water both as a solid and as a liquid. Not only is HB a
strong local interaction, but it also affects the global properties of the aggregates it
forms. For instance, HB is responsible for non-additive properties such as energy in
water clusters. This way, the higher or lower stability of water systems when adding
more and more molecules to the cluster depends on the HB network that has been
formed, which may present both cooperative or anti-cooperative effects.

Mirroring two previous studies on those effects in small water clusters [74, 75],
the archetype of hydrogen-bonded systems, this work focuses on (H2O)n systems
from n = 2 to n = 6 [65]. On the one hand, cooperative effects are studied on
the basis of homodromic clusters, that is, those systems where each water molecule
acts both as a hydrogen-bond donor and acceptor. These water clusters range from
the water trimer to the ring hexamer (see Figure 3.1). Concerning the latter, it is
in the water hexamer where the flexibility of orientations and arrangements leads to
different possible isomers where cooperative and anti-cooperative effects compete to
yield more or less stable structures. In fact, the ring hexamer is the only six-member
cluster that can be considered as homodromic, whereas anti-cooperativity also takes
place in the book-, cage- and prism-shaped hexamers. The diversity of HB in all
these clusters allows for a classification of HB in a strength hierarchy, which has also
been inspected under the DFT prism.

Following this approach, the aforementioned HB effects were studied in the pre-
viously reported CCSD/aug-cc-pVDZ geometries from the work of Segarra-Martı́
[76], and other optimised monomer and cage, prism and book hexamers with the
same level of theory. The electronic structure calculations prior to the IQA analysis
comprised HF, MP2 (up to the pentamer) and CCSD (only for global energies) calcu-
lations, as well as 16 DFT functionals comprising: the LDA SVWN, GGA functionals
B97, BLYP, BP86, OLYP, PBE and PW91; the hybrid B3LYP, B3P86 and B3PW91; the
mGGA TPSS and the heavily-parameterised Minnesota functionals M06, M06-2X,
M062L, M06-HF and M11-L.

First of all, cooperative effects emerge in the formation energies of the aggregates
as forces providing further strengthening and stability to the n-clusters formed in
the process (H2O)n–1 + H2O (H2O)n. They can be evaluated by comparing the
formation energy ∆En of each cluster relative to that of the dimer. With this prescrip-
tion,

∆∆En = ∆En − ∆E2 (3.1)

indicates the presence of cooperative effects when negative (the inclusion of another
water molecule produces a higher stabilisation than the formation of a single HB),
and the more negative its value, the stronger the HB cooperative effects. For the
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FIGURE 3.1: Water clusters inspected in this work.

cases under consideration, all the n = 3− 6 energies are negative, reaching a mini-
mum at n = 4 and diminishing the additional stabilising effect for the pentamer and
ring hexamer. It is found that the trends dictated by the reference methods are repro-
duced by most of the density functionals analysed (see Figure 3.2). Some exceptions
are the SVWN functional that overestimates HB cooperativity to a large extent —it is
a very simple LDA one—, whereas OLYP underestimates ∆∆E and Minnesota func-
tionals predict very similar ∆∆E3 and ∆∆E4 although CCSD yields ∆∆E3 > ∆∆E4.

As commented in Section 2.5.6, binding or formation can be viewed as the re-
sult of two contributions, namely, the deformation of the fragments (Ede f ) plus the
interaction they experience (Eint): E f orm = Ede f + Eint. The trends provided by the
different DFT functionals for these energies are identical and follow those dictated
by the reference methods (Figure 3.3). Nonetheless, SVWN becomes again the most
distant density functional as seen in the significantly deviated value of E f orm per
molecule.

The natural decomposition of Eint in IQA is into a classical or electrostatic com-
ponent Eclass and a QM exchange-correlation one Exc. This decomposition serves to
ascertain the energetic preponderance of one or another kind in a given chemical
bond. Such a decomposition applied to the covalent O-H bond of water captures
the effect that the formation of an H-bond with another molecule causes on it. Fig-
ure 3.4 presents the average interaction energies of this bond along with its two
components with respect to the monomeric O-H ones. As can be appreciated, all
the DFT functionals studied describe the strengthening of the bond due to electro-
statics and the lesser degree of covalency dictated by the higher and higher EO−H

xc
when increasing the cluster size. In this case, although SVWN becomes again sepa-
rated from the majority of the functionals, it is more remarkable to see how HF and
the HF-like M06-HF, along with MP2, result in considerably lower classical energies
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FIGURE 3.2: nth cluster formation energies relative to the water
dimer.
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FIGURE 3.3: Formation (solid), deformation (dashed-dotted) and in-
teraction (dashed lines) energies per molecule in the respective nth

water cluster.
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FIGURE 3.4: Average classical (dashed), exchange-correlation
(dashed-dotted) and total interaction energies (solid lines) of O-H
bonds in which the H atom is an H-bond donor. The energies are

relative to the monomer O-H ones.

while overestimating the raise in EO−H
xc with n. This might be due to the overdelo-

calised electron density provided by HF that yields larger atomic charges than those
provided by correlated calculations.

Up to this point, it has been seen that most of DFT functionals —in general, those
based on GGA and subsequent developments— not only provide correct trends, but
also fairly accurate energies related to HB cooperativity. Going beyond the restric-
tion to this kind of non-additive effect, the different water hexamers, such as those
studied in Ref. 75, exhibit H-bonds that cooperate but also anticooperate among them.
The hierarchy in strength proposed in the previous work, that classifies HBs accord-
ing to the number of moieties from which a water molecule is H-bond acceptor or
donor, can be also tested under DFT to verify the prior findings. Accordingly, the ad-
ditive interaction energies defined in Eq. 7 of the publication concerning this work
(Ref. 65) provides a valuable energetic descriptor of the performance of DFT in these
cases. Nevertheless, let us focus on a non-energetic descriptor but a statistical one:
the DI. The HB classification in increasing strength must be followed by an increase
in bond order or, in other words, in covalency. This can be measured by the DI that,
in light of the results reported in Figure 3.5, supports the mentioned classification.
The only discrepancy concerns the values for HB type 3, that do not follow the in-
creasing trend and give a similar and slightly smaller DI than that found for type 2.
However, and focusing on the performance of the different DFT functionals tested,
the trend dictated by HF is again reproduced by all of them, leading to the double
conclusion that i) most DFT functionals behave not only qualitatively (trends) but
also quantitatively well (accuracy) when describing HB non-additivities, and that
ii) the DFT-IQA implementation based on a scaling technique fruitfully overcomes
the limitations of DFT in the lack of a true wave function and provides an appealing
and successful scheme for its combination with IQA. The conclusions found provide
a firmer basis for applying DFT-IQA to larger H-bonded systems for which ab initio
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FIGURE 3.5: Average DI for each type of H-bond in water hexamers.

method may result unaffordable.

3.1.2 Fluorine conformational effects characterised by IQA

Fluorine-containing compounds have arisen as promising chemicals in numerous
fields. The small size and compactess of fluorine make it a good candidate for hydro-
gen substitution in organic molecules, with the introduction of new properties due
to the high polarity an the lone pairs of the X-F bond. The effects that accompany flu-
orine insertion are thus electrostatic and stereoelectronic, and their role in conforma-
tional preferences has not been fully disclosed yet as it is still matter of controversy.
It is the case of the extensively studied fluorine gauche effect in 1,2-difluoroethane.
In this molecule, the gauche conformation turns out to be more stable than placing
the two fluorine atoms in opposite positions as found in the anti arrangement. This
fact has produced extensive literature with not always matching conclusions. For
example, natural bond orbital (NBO) analyses assign the gauche preference to he
σCH → σ∗CF hyperconjugative interactions (stereoelectronic effects) [77–79], whereas
energy decompostion analysis (EDA) finds equally-favourable orbital and electro-
static contributions to the gauche effect [80, 81]. Further support for electrostatics
comes from IQA analyses, that highlight the Coulomb contribution from the inter-
action between C and F in positions 1,3 [82].

It becomes clear that no consensus has been achieved on this topic, probably due
to the difficulty of directly comparing the results of very diverse methodologies.
Paying attention not only to the atomic, but, more importantly, to the group contri-
butions to one or another preferred conformation on the basis of the IQA real space
energetic analysis, we have investigated a variety of fluorine-containing molecules
of the kind F CH2 CH2 X and F CH2 CO X, as well as selected conformers of
an α,β-difluoro-γ-aminoacid derivative (see Figure 3.6). For this, HF-D3(BJ)/cc-
pVTZ and RI-MP2/cc-pVTZ full optimisations in the gas phase were carried out,
followed by DLPNO-CCSD(T)/aug-cc-pVTZ single point calculations on the MP2
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converged geometries. In the case of the larger 14 molecule, automatic conforma-
tional analyses were performed, from which the most stable conformers were se-
lected and reoptimised at the HF-D3(BJ)/cc-pVTZ level of theory [83].

FIGURE 3.6: Fluorine-containing molecules analysed in this Section.
These comprise the majority of the full set investigated in Ref. 83,
where further details about the IQA conformational analyses can be

found.

Figure 3.7 shows the ball-and-stick representation of 1,2-difluoroethane along
with the energy difference ∆E = Egauche − Eanti between both conformers. As can be
appreciated for the full set of compounds in Ref. 83, Figs. 1-2, ∆E values calculated
with HF-D3 are very close to those computed with MP2 and CCSD(T) on the MP2
geometries. These results constitute a validation of the HF-D3 model and, as such,
only HF-D3 will be used for the subsequent IQA analyses.

IQA analysis of 1,2-difluoroethane

Starting from the reference case, the energy difference between conformers is very
small: −0.3 kcal mol−1 in favour of the gauche conformer at the HF level. Among
the energy contributions favouring this conformation, it is the electrostatic ones
∆EAB

class that present the largest differences between isomers. Accordingly, C1 · · · F6
and F2 · · · C5 interactions favour the gauche conformation by −8.0 and −7.9 kcal
mol−1, respectively. However, this significant stabilisation of the gauche conformer
is largely compensated by the strongly repulsive F2 · · · F6 and C1 · · · C5 contacts, of
12.1 and 6.9 kcal mol−1. Overall, considering the full set of interactions, it is found
that both the electrostatic and exchange-correlation components favour similarly the
gauche conformation (∆EAB

class = −2.3 kcal mol−1 and ∆EAB
class = −1.9 kcal mol−1).
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FIGURE 3.7: Gauche (left) and anti (right) conformations of 1,2-
difluoroethane (compound 1). Distances (Å) comprising C-F and C-C
bonds, F-C-C-F dihedral angles (°) and gauche-anti energy differences
(kcal mol−1) are shown. The numbers without any parenthesis cor-
respond to the HF-D3 results, whereas parenthesis refer to MP2 and

brackets to CCSD(T).

An alternative view can be given in terms of interacting quantum fragments
(IQF). This way, the four atoms at one and the other side of the rotatable bond can be
grouped and their interaction energy studied as that coming from the atoms of one
group P interacting with those of the other fragment Q (recall Eq. 2.157). Follow-
ing this analysis, Table 3.1 shows a more clear picture than the atomic one. On the
one hand, the genuine energy contribution placing the gauche conformation as the
most stable one is the exchange-correlation energy between groups ∆EPQ

xc (−3.5 kcal
mol−1), accounting for non-classical interactions such as those due to hyperconjuga-
tion, in orbital parlance. By contrast, its Coulomb counterpart ∆EPQ

class clearly favours
the anti isomer (+2.1 kcal mol−1), partly (55 %) due to the dipole-dipole alignment.
It is also worth mentioning that the differences in group net energies ∆EP

net and ∆EQ
net

are very small in comparison with the interaction ones (0.4− 0.6 kcal mol−1)1.
As can be appreciated, alternative views can be obtained by resorting to an

atomic or a group description of the system. Both IQA and IQF analyses are proba-
bly adequate and useful but, since chemists usually employ a functional group view
to explain molecular properties, we believe this higher level of description may be
more appropriate, especially when analysing large molecules for which the atomic
interpretation may become a mess. Consequently, the following analyses will be
carried out in terms of atomic groups.

Substituent effects on conformational preferences of simple fluorine-containing
systems

The simplest system turns out to be similarly stable in both gauche and anti con-
formations. This fact precludes the usage of vicinal fluorine atoms to modulate
conformational preferences in synthetic molecules. Luckily, other conformational
effects associated to fluorine can be exploited by changing the groups with which
the FCH2 moiety interacts.

1∆EP
net and ∆EQ

net do not exactly coincide due to some small numerical error introduced during their
calculation.
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TABLE 3.1: IQF analysis of the energy difference (kcal mol−1) be-
tween either gauche/anti (for FCH2 CH2X systems, from 1 to 7)
or cis/trans (for FCH2 COX, 8 to 10) conformers. A two-fragment
partitioning scheme has been adopted (P=CH2F and Q=CH2X or
Q=COX). The IQA reconstructed energies are shown along with their
decomposition into net energy variations and different components
of the inter-fragment interaction energies. The classical energy is fur-
ther analysed in low-order multipolar components (charges, c, and

dipoles, d).

Sys. ∆EIQA ∆EP/Q
net ∆EPQ

disp ∆EPQ
xc ∆EPQ

class ∆EPQ
cc ∆EPQ

cd/dc ∆EPQ
dd

1 -0.5 0.6 / 0.4 0.0 -3.5 2.1 0.0 0.0 1.1
2 -0.5 0.7 / 0.5 0.0 -3.1 1.4 0.0 0.0 / 0.0 -0.7
3 -1.2 0.0 / 1.4 0.0 -1.1 -1.5 -0.1 -0.4 / 0.0 -0.4
4 -2.1 -0.6 / 2.1 -0.2 -2.1 -1.4 -0.2 -0.6 / 0.1 -1.0
5 -0.5 2.0 / 1.5 -0.3 -3.6 -0.1 0.0 0.0 / 0.0 0.1
6 -7.3 1.6 / 4.7 -0.6 -6.9 -6.0 2.4 1.3 / -3.5 -4.6
7 -5.1 1.0 / 3.5 -0.3 -5.5 -3.7 0.9 0.2 / -6.1 -0.3
8 -2.8 0.1 / 0.6 0.0 1.5 -4.9 0.0 -0.1 / 0.1 -2.9
9 -0.1 0.6 / 0.5 0.0 0.3 -1.4 0.0 0.7 / 0.2 -2.8
10 -5.8 2.1 / 2.7 -0.2 -4.1 -6.3 0.0 0.2 / 0.1 -5.2

To assess the conformational preferences associated with other groups interact-
ing with the FCH2 unit, the closest systems to FCH2 CH2F with which to start
the analysis are those where the second fluorine atom has been replaced by other
possibilities. Hence, this Section focuses on CH2F CH2X species, that correspond to
compounds 2-7 in Table 3.1. As can be seen, all gauche conformations are energeti-
cally favoured, the ionic systems 6 and 7 showing the strongest gauche stabilisation.
Replacing F by an acetate group (2) results in similar energies, with, in this case, a
slightly favoured gauche conformation by dipole-dipole interactions (∆EPQ

dd = −0.7
kcal mol−1). Aldehyde (3) and amide (4) groups lead to classical energies favouring
the gauche conformation (−1.5 and−1.4 kcal mol−1, respectively), similarly as the xc
component does (−1.1 and −2.1 kcal mol−1), although the ∆EQ

net changes become of
the same order than the interaction ones, penalising in this case the gauche isomers.
On the other hand, the introduction of an isoindole derivative (5) gives the ∆EPQ

xc en-
ergy the preponderance of gauche stabilisation, although becomes almost cancelled
out by the ∆EP

net + ∆EQ
net intra-fragment contributions. Finally, the substitution of F

by a cationic group (ammonium in 6 and pyridinium group in 7) makes the gauche
conformer undergo a strong stabilisation with respect to the anti one. This fact is
commonly explained in electrostatic terms but, in reality, the classical energies are
surpassed by the xc ones in favouring the gauche conformation: ∆EPQ

class = −6.0 kcal
mol−1 for 6 and −3.7 for 7, whereas ∆EPQ

xc are, respectively, of −6.9 and −5.5 kcal
mol−1. It is nonetheless remarkable that there is a larger energy gap between con-
formers after substitution by a cationic group, and that the preferences of the classi-
cal energies are dominated by charge-dipole and dipole-dipole interactions. In fact,
a fraction of the total positive charge is delocalised over the entire molecule, lead-
ing to positive charge-charge interactions that increase in the gauche orientation. By
contrast, it is the charge-dipole and dipole-dipole interactions that dictate the final
∆EPQ

class value. All the previous interactions, along with the dispersion ones (that are
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quite less remarkable) overcome the also enhanced deformation energies cast into
the net energy variations (a total of 6.3 and 4.5 kcal mol−1 favouring anti in each 6
and 7 compound).

When placing a carbonyl group adjacent to a fluorine atom (FCH2 (C O)X),
cis and trans minimum energy conformations emerge. In this case, it is assumed
that electrostatic effects are responsible for the trans preference of the species, led
by the antiparallel interacting dipoles of each group (mainly due to the C F/C O
trans bonds). The IQF analysis points toward the same direction: compounds 8 (ke-
tone) and 9 (acetate) present the classical interaction term as the only one favouring
the preferred trans conformation, the d-d interaction causing a significant contri-
bution to ∆EPQ

class where higher order multipole effects seem also relevant. Whereas
a high stabilisation of the trans conformation is gained after insertion of a ketone
(∆EIQA = −2.8 kcal mol−1), the effect is hampered if another oxygen atom is at-
tached to the carbonyl carbon as in an acetate group (∆EIQA = −0.1 kcal mol−1

only). However, employing a nitrogen in an amide group (compound 9) leads to an
even higher conformational preference (∆EIQA = −5.8 kcal mol−1), thus enhancing
both the d-d interactions (−5.2 kcal mol−1) and leading the xc energy to strongly
favour the trans conformer in this case (−4.1 kcal mol−1, although it is even over-
come by the large deformations pointed out by ∆EP

net + ∆EQ
net = 4.8 kcal mol−1).

Up to this point, it has been shown that IQA energies capture both stereoelec-
tronic and electrostatic effects, the latter being possible to be further decomposed
into multipolar contributions (e.g., c-c, c-d or d-d interaction energies). This is an
aspect that has not been considered in other studies, but that may become very in-
sightful as it reveals counterintuituve effects in some cases.

Competition between several conformational effects

The previous studies of model molecules focus on the specific impact that differ-
ent functional groups have on conformational preferences when interacting with a
fluorinated moiety. For larger molecules, however, these effects compete to finally
prioritise one conformation over others. In the following lines, an α,β-difluoro-γ-
aminoacid derivative will be analysed: 14 (diastereomer 14a in Ref. 83, where addi-
tional compounds 11, 12, 13 and 14b complete the study herein summarised).

The conformational preferences of 14 are largely determined by intramolecular
factors, as the most stable conformer in the gas phase is quite close to the crystal-
lographic ones. This structure presents F C C F and F C C N units in gauche,
which are generally expected to be energetically favoured. However, there are other
cases of low energy conformers that escape from the simple rationalisation accord-
ing to gauche preferences and four of them were considered for the IQF analysis:
conf1, conf2, conf5 and conf6, depicted in Figure 3.8.

Starting from the relative stability (see Figure 3.8 for the HF energies and Ta-
ble 3.2 for the IQA reconstructed ones) of each conformer, conf2 is slightly more sta-
ble than conf1, whereas conf1 is clearly favoured with respect to conf5 and conf6.
At first sight it might seem that minor changes occur when passing from conf1 to
conf2, but the IQF analysis (Table 3.2) reveals profound changes affecting both the
net energies (deformation) and the interaction between groups, leading to a nearly
mutual cancellation reflected in the small value of ∆E. The main appreciable change
from conf1 to conf2 is the shorter contact between the phenyl group (included in
O) and the isoindol derivative (in group R). Accordingly, ∆EOR

disp, ∆EOR
xc and ∆EOR

class
dominate each energy change (see Table 3.3).
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FIGURE 3.8: Selected conformations of compound 14. HF-D3 En-
ergies with respect to conformer 1 are given in kcal mol−1 along
with distances (Å) associated with the most remarkable contacts and

F C C F, F C C N and F C C O dihedral angles (°).

When assessing conf5 and conf6, notable structural changes are observed. In
addition to the anti conformation of fluorine atoms, the most remarkable feature in
conf5 is the alignment of groups O and R, resulting in a high contribution of disper-
sion energy favouring conf5 (9.8 kcal mol−1) emanating essentially from ∆EOR

disp (12.5
kcal mol−1). Similar results are obtained for the helical conf6 (a total ∆Edisp = 9.9
kcal mol−1 for which ∆EOR

disp = 12.8 kcal mol−1), although, in this case, the acetate
group of O is responsible since the phenyl group remains now aside from the other
parts of the molecule. The conf5 and conf6 conformations are also favoured by elec-
trostatics and, much more importantly, by xc interactions, that can become larger
than 20 kcal mol−1, favouring both cases with respect to conf1. Nonetheless, it is
conf1 that is globally preferred. The total change undergone in a process, such as
formation of a new species, is balanced by both the interaction energy and the defor-
mation one, and it is the intra-group energies that largely penalise both conf5 and
conf6 conformations (especially those affecting the O and R groups), resulting in the
final observed preference of conf1 geometry.

From the previous analysis, it has become clear that it is the competition of sev-
eral contributions that yields a final preferred structure. In the case of compound 14
the effects associated to fluorine are diluted in the global energies, for which the in-
teractions between other groups can be of a greater importance. It is also remarkable
that a bare explanation of conformational preferences in terms of the interactions
that take place between several groups may result insufficient. Rather, deformation
energies can play a major role and be determinant in the conformational preferences
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TABLE 3.2: IQF energy decomposition for the energy differences (kcal
mol−1) of conformers 2, 5 and 6 with respect to 1 of compound 14.
The fragments chosen have been O=CH3OCOCH(CH2Ph)NHCO ,

P= CHF , Q= CHF , and R= CH2-isoindol-1,3-dione.

Conf. ∆EIQA ∆EO
net ∆EP

net ∆EQ
net ∆ER

net ∆Edisp ∆Exc ∆Eclass

2 0.3 -5.5 -1.2 2.8 -9.7 3.4 8.9 1.7
5 -2.2 -17.5 -1.0 4.5 -19.8 9.8 20.3 1.5
6 -2.1 -16.9 -3.4 3.2 -21.7 9.9 21.4 5.3

TABLE 3.3: Components of the interaction energy differences be-
tween groups (kcal mol−1).

∆Edisp ∆Exc ∆Eclass

Conf.
OP PQ QR OP PQ QR OP PQ QR
OQ OR PR OQ OR PR OQ OR PR

2
0.1 0.3 0.2 1.6 1.5 0.2 -0.8 -0.9 0.8
-0.9 4.5 -0.8 -7.6 17.6 -4.4 -1.0 4.7 -1.1

5
0.1 0.3 -0.4 2.2 -2.5 -0.5 0.5 2.8 -0.2
-1.8 12.5 -0.9 -9.6 35.2 -4.5 -3.2 2.8 -1.2

6
-0.4 0.3 -0.7 -2.4 -1.5 -4.6 -6.7 2.5 2.0
-0.8 10.8 0.7 -4.9 33.7 1.1 1.1 6.5 -0.1

of medium- and large-sized molecules, thus penalising the favoured structure by
inter-fragment interactions and giving rise to a probably unexpected preferred con-
formation. All these conformational effects can be well characterised by IQF analy-
ses with a simple HF-D3 wave function, whose application to larger biomolecules of
interest might open new scenarios for the rational design of functionalised deriva-
tives favouring specific conformations.

3.1.3 Assessing atomic and group contributions to the electrostatic free
energy of solvation

The interacting quantum atoms energy partition was initially developed for wave
function-based methods, from which the 1- and 2-RDM are available. Later on, this
formalism has been broadened with the implementation of DFT methods [63] and
empirical dispersion corrections [64]. In fact, the essence of IQA relies on a real space
partition of the molecule under consideration, but once the atoms have been defined,
any additional pairwise potential can in principle be incorporated to the underlying
energetic decomposition, as well as the effect of an external potential on each atom,
such as that caused by a continuum solvent medium.

In Statistical Mechanics, the free energy of solvation is a non-additive magnitude
because its calculation involves the ensemble averaging of an exponential term that
cannot be factorised [84]. This is translated into the fact that the coordination spheres
of atoms are correlated. Nonetheless, different investigations have been devoted to
predicting free energies of solvation from group contributions that obviously rely
on an additivity assumption [85–88]. Moreover, as explained in Section 2.5.9, it is
possible to decompose the electrostatic interaction energy of a solute with an implicit
solvent, what is followed by the effective atomic decomposition of the electrostatic
contribution to the free energy of solvation.
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Having as a final goal the exploitation of IQA in computational biochemistry, it is
undeniable that accounting for solvation effects into the IQA partition is mandatory.
In this work we have applied the decomposition of the (electrostatic) free energy of
solvation presented in Section 2.5.9 both to atoms and groups. For this, a temptative
definition of functional groups has been proposed and, with them, the additivity
assumption of the electrostatic free energy of solvation has been tested. The chosen
continuum solvation model has been the conductor-like screening model (COSMO)
[89, 90], an ASC-like method that provides a set of point charges surrounding the
molecule and from which the interaction with the solute charge density is readily im-
plemented. Such an IQA descomposition of the solute-solvent interaction has been
coded in a new modular version of PROMOLDEN, that provides the separate atomic
interaction energies with the COSMO charges. These tesserae point charges, along
with their coordinates, are obtained using a locally modified version of the GAMESS

code [91] that has been tested for a total set of 412 molecules from the Minnesota
solvation database (MNSol) [92, 93], comprising 309 neutral molecules as well as
49 cationic and 57 anionic species. These have been fully optimised both in the gas
phase and in the continuum solvent (for which a dielectric constant ε = 80 for mim-
icking water has been selected) at the HF/aug-cc-pVTZ level and their energies have
been compared with the experimental ones.

FIGURE 3.9: Comparison between the COSMO-HF hydration ener-
gies (∆Gcalc) and the experimental ones (∆Gexp) for the selected struc-
tures from the MNSol. The correlation between them is studied by
means of the coefficient of determination (R2), the Spearman corre-
lation coefficient (ρ) and the root mean square errors (RMS). Values
corresponding to the whole set are given in black, while those as-
cribed to neutral species are in red, anionic in blue and cationic in

magenta.

As can be seen in Figure 3.9, there is a strong correlation (R2 = 0.993) between the
experimental free energies and those calculated at the HF level through the COSMO
model. In spite of this, the root mean square error is high (RMS = 4.5 kcal mol−1),
what can be due to the lack of electron correlation and non-polar contributions to the
solvation energies, as well as the absence of conformational sampling. In any case,
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the HF results are reasonable, capturing the trends shown by the experimental val-
ues. It is also remarkable how the accuracy and adequacy of the description depends
on the charge state of the systems. Whereas neutral and anionic species show fairly
good correlations (R2 = 0.831 and 0.847, respectively), cationic molecules provide
worse values (R2 = 0.679). It may be noticed, however, that other levels of theory
coupled with more sophisticated solvent models exhibit a similar performance (see
Ref. 68 for more details).

IQA decomposition of solvation energy

Before starting with the analysis of the IQA electrostatic solvation energies it is worth
evaluating the extent of numerical error these energies are subject to. To estimate
it, the IQA-reconstructed energies have been compared with those calculated with
COSMO-HF. The IQA numerical error in the decomposition of hydration energies
turns out to be similar to the previously reported one for the formation energies of
non-covalent complexes [64]: a mean value of 0.76 ± 1.36 kcal mol−1, that corre-
sponds to an average error per atom of 0.06± 0.10 kcal mol−1. In the case of frag-
ments, our actual focus, these range from 0.5 to tens of kcal mol−1.

FIGURE 3.10: ∆GA
solv (kcal mol−1) for two neutral (left) and two ionic

(right) species. The atomic charges are also indicated (in parentheses)
as well as the total ∆Gsolv (in red) of the molecule.

Figure 3.10 presents a set of four molecules for which the global ∆Gsolv values
as well as the effective atomic ones ∆GA

solv are given. As can be seen, the neu-
tral molecules (on the left) present electrostatic free energies of solvation one order
of magnitude smaller (in absolute value) than those reported for charged species
(on the right). The atomic contributions of C and H in hydrocarbon molecules
are quite small (about 0.5 − 2.0 kcal mol−1 in absolute values), although they in-
crease in strength when attached to polar atoms. As expected, polar groups concen-
trate stronger hydration contributions, thus inducing larger hydration energies (e.g.,
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∆Gsolv = −8.8 kcal mol−1 for the nitroethane, its polar atoms comprising ∆GA
solv of

−6.5, +6.3 and −8.2 kcal mol−1). This fact is enhanced in charged species. For ex-
ample, protonated ethanol presents a ∆Gsolv of −71.7 kcal mol−1, the most charged
atoms contributing −49.7, −49.6 and +85.2 kcal mol−1, respectively. We also exam-
ined the correlation between atomic charges and ∆GA

solv values: the correlation plot
found in Figure 3.11 shows that a very good correlation exists both for the anions
(R2 = 0.984) and for the cations (R2 = 0.970). This result reveals that hydration of
ionic solutes is closely determined by the distribution of the Bader atomic charges.
In turn, electrostatic hydration energies of neutral solutes are probably controlled
by other multipolar terms accounting for the anisotropy of the electron distribution,
such as dipoles or quadrupoles.

FIGURE 3.11: Correlation between QTAIM atomic charges and cor-
responding ∆GA

solv atomic contributions to solvation. Data in blue
correspond to cations, whereas red represents anions.

Assessment of fragment contributions to solvation energy

Once the main atomic features have been inspected, it is our belief that the best
strategy to analyse IQA solvation contributions is to adopt a united atom approach.
This way, a given organic molecule can be built from these smaller building blocks,
be them specific atom types or functional groups. The set of fragments used in this
work relies on the 130 fragments defined by Meylan and Howard to assess atom
/fragment contribution to a quantity related to ∆Gsolv [94]. Ours are listed in Table 1
in the original manuscript (Ref. 68) and comprise 51 atom types/functional groups
appearing at least 5 times in the MNSol structures chosen.

Focusing on the IQA fragment decomposition of the electrostatic solvation en-
ergy (∆GG

solv), a distribution of group solvation energies is obtained when analysing
the different MNSol molecules. Hence, an appropriate manner of studying the dis-
tribution of energies obtained is by means of histograms. Figure 3.12 collects six ex-
amples of the 51 groups analysed. On the one hand, the methylene group ( CH )
shows a distribution of energies from negative to positive values, but concentrated
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around its mean value, a positive and thus destabilising contribution to the solva-
tion energy. Different parts in the distribution can be associated to different envi-
ronments the group finds. Hence, the main peak corresponds to methylene attached
to 0 or 1 polar groups, whereas the shoulder is due to the presence of polar atoms
at both sides of the group. When incorporating a charge in the molecule the picture
may change dramatically. It is the case of methylene groups found in anionic species
( CH [-]), that present a much wider and homogeneous distribution of energies,
with no central peak representative of the whole distribution (see Figure 3.12). Po-
lar groups may present very different distribution patterns. Chlorine, for instance,
shows a wide and flat histogram, the most favourable contributions stemming from
monosubstituted aliphatic hydrocarbons. By contrast, the amine group ( NH2) —
and, in general, polar groups different from halogen atoms— presents a very narrow
range of hydration energies. Even when this group becomes protonated, NH3( )
gives concentrated ∆GG

solv values. Again, the situation is not hold when an anionic
group is inspected, and alkoxide ( O( )) results in scattered data over a wide range
of 40 kcal mol−1.

FIGURE 3.12: Histograms showing the distribution of ∆GG
solv in six

selected neutral and ionic groups. The mean (µ) as well as the stan-
dard deviation (σ) are also shown.
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As seen, the distribution of ∆GG
solv energies is heterogeneous: some groups present

a narrow energy histogram, whereas others show flat, wide distributions that ham-
per the association of their mean value with a representative group energy for dif-
ferent situations. This feature is more frequently found in charged species, both in
specifically charged groups and also in neighbouring fragments.

Additivity of fragment contributions

The analysis of the ∆GG
solv energy distribution therefore confirms the ability of the

IQA energy decomposition of the COSMO-HF solvation energies to provide a de-
tailed assessment of fragment contributions to solvation. Within the different kinds
of groups, those belonging to neutral molecules present the least dispersion (low σ
values generally < 2 kcal mol−1; see Table 1 in the original publication 68). Accord-
ingly, it seems reasonable to check whether or not these group energies are additive.
With this aim, a final analysis shown in Figure 3.13 relates the IQA-reconstructed
free energies (∆Gestimated = ∑G⟨∆GG

solv⟩) from the different group mean values with
the calculated ones with COSMO-HF (∆Gcalc) for a set of 32 MNSol molecules not
considered initially. The computed and estimated values show only a moderate cor-
relation (R2 = 0.705) with an RMS error close to 6 kcal mol−1. It is found that
the largest discrepancies correspond to compounds with large aliphatic or aromatic
moieties, while those presenting two or more polar groups tend to agree to a larger
extent.

FIGURE 3.13: Correlation plot of the COSMO-HF calculated eletro-
static hydration energies (∆Gcalc) with those estimated from fragment

mean values (∆Gestim).

The model tested herein is not intended to provide a working additive solva-
tion model, but it is rather the result of an initial assessment of IQA-based fragment
contributions to the electrostatic free energy of solvation. As has been proven, IQA
opens a field to be further explored given that the distribution of the group contribu-
tions examined in this work results in some structure-activity relationships. Hence,
the detailed analysis induced by the IQA decomposition may become a useful tool
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for ascribing solvation energetic contributions to particular functional groups in a
consistent manner. Nonetheless, this research is open to more precise atomic group-
ing (further distinguishing for example between halogen atoms attached to aliphatic
carbons or aromatic ones), correction factors accounting for the influence of nearby
ionic or polar groups, or the inclusion of non-electrostatic effects such as those pro-
vided by the GCDS empirical potential, that belongs to the SMD model [95] and
whose incorporation to IQA has been recently accomplished.

3.1.4 A quantum chemical topology picture of intermolecular electrostatic
interactions and charge penetration energy

A correct description of electrostatic interactions is essential in molecular modelling.
The relative abundance of polar atoms and charged species makes electrostatics
play a major role in the control of the stability and activity of many biomolecules
such as proteins, nucleic acids and lipids [96, 97]. In this respect, molecular me-
chanics (MM) potentials relying on point-charge or multipolar descriptions of the
anisotropic charge distribution have led to accurate electrostatics in the long range.
However, the divergence with the exact computation of the interaction between
continuous charge densities at short distances has been a matter of concern. For
this reason, corrections aimed at incorporating the so-called charge penetration (CP)
energy —that is, the energy difference between the exact Coulomb interaction be-
tween charge densities and that approximated by a multipolar series— have been
proposed [98–102]. These are rooted in the symmetry-adapted perturbation theory
(SAPT) electrostatic energy [35] —known as first-order polarisation energy within
this model—, an energy decomposition analysis (EDA) that, indeed, somehow mim-
ics the separation of energy contributions done in MM methods. Therefore SAPT
seems a reasonable theoretical reference to help parameterise MM potentials. A
question on its appropriateness raises, however, when evaluating different EDAs.
In fact, different interpretations of the energetic effects involving the overlap of the
electron densities of two molecular fragments may be possible depending on the
particular EDA of choice.

In the present work [103] we decided to reexamine the nature of intermolecular
electrostatic interactions under the prism of an orbital-invariant, reference free EDA,
IQA, with a twofold goal. On the one hand, we aim to compare in a consistent and
systematic manner the atomic and fragment contributions to the total electrostatic
energy through a hierarchy of QM and MM methodologies. On the other hand, we
examine the CP concept and establish clear links with our real space methodolody,
for which we propose a novel definition of CP based on a joint orbital and real space
decomposition.

With the previous purposes, we examined the S66 dataset of non-covalent com-
plexes as well as a selection of 12 complexes from the S66x8 dataset, which consti-
tutes an extension of the S66 set to eight fractions of the equilibrium geometries. HF-
D3(BJ)/cc-pVTZ calculations were preformed on the S66/S66x8 geometries, both
on the entire complex and on the separate monomers, followed by IQA analyses
and the computation of QTAIM multipoles. For the sake of comparison, restrained
electrostatic potential (RESP) atomic charges were computed following the general
Amber force field (GAFF) prescriptions [104], as well as AMOEBA (atomic multi-
pole optimised energetics for biomolecular simulation) multipoles [105] up to the
quadrupoles (for more details, see Ref. 103).
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Zeroth-order electrostatic energy and charge penetration

In the Methodology section (Eq. 2.162), the expression for the electrostatic energy be-
tween two charge densities has been presented. For weakly interacting compounds,
the total charge density of a complex AB (ρtot,AB(r) ≡ ρ(r) in the following) can be
approximated by the sum of the unperturbed monomer densities as

ρ0(r) = ρ0
A(r) + ρ0

B(r), (3.2)

that we shall call the zeroth-order approximation. For this case, the electrostatic contri-
bution to the formation energy of the complex corresponds to

∆E0
elec =

∫

R3

∫

R3

ρ0
A(r1)ρ

0
B(r2)

r12
dr1dr2. (3.3)

This zeroth-order electrostatic energy also corresponds to the first-order polar-
isation energy in SAPT, and serves as the reference to define the CP energy Epen
through

Epen = ∆E0
elec − ∆E0

elec,mp, (3.4)

where ∆E0
elec,mp is the multipolar analogue of ∆E0

elec. Following its formal definition
some aspects can be pointed out. On the one hand, and recalling the IQA definition
of the formation energy (Eq. 2.159), both intra- and intermolecular contributions are
mixed in Epen since a global contribution to the formation energy involves net en-
ergy changes (intramolecular) and those associated with inter-fragment interaction
energies (intermolecular). A second point concerning Epen is that ∆E0

elec,mp can be
affected by a truncation error (depending on the order at which the expansion series
is truncated) that mixes with the energy error due to the inadequacy of applying the
multipole expansion for interpenetrating charge densities, what would correspond
to a pure error of the multipolar description due to penetration.

If the zeroth-order approximation is combined with a Bader partitioning of the
three-dimensional space into the basins of attraction of each molecule in the complex
(R3 = ΩA + ΩB), the total electrostatic energy of AB becomes split in several terms:

E0
elec = EA

elec(ρ
0
A, ρ0

A) + EA
elec(ρ

0
B, ρ0

B) + EA
elec(ρ

0
A, ρ0

B) (3.5)
+ EB

elec(ρ
0
A, ρ0

A) + EB
elec(ρ

0
B, ρ0

B) + EB
elec(ρ

0
A, ρ0

B)

+ EAB
elec(ρ

0
A, ρ0

A) + EAB
elec(ρ

0
B, ρ0

B) + EAB
elec(ρ

0
A, ρ0

B) + EBA
elec(ρ

0
A, ρ0

B),

each term representing the electrostatic energy due to the interaction between the
fraction of the densities in parentheses contained in the respective basins, repre-
sented by the superscripts in the order given. This way, EBA

elec(ρ
0
A, ρ0

B) stands for∫
ΩB

dr1
∫

ΩA
dr2ρ0

A(r1)ρ
0
B(r2)r−1

12 and EB
elec(ρ

0
A, ρ0

B) =
1
2

∫
ΩB

dr1
∫

ΩB
dr2ρ0

A(r1)ρ
0
B(r2)r−1

12 ,
for which the single superscript denotes a double integration over the same basin.

When applying the same decomposition to one of the fragments (such as A; anal-
ogously for B) within the same Bader partitioning of the real space (i.e., ΩA + ΩB),
the total electrostatic energy of the original species results from the sum

Eelec(ρ
0
A, ρ0

A) = EA
elec(ρ

0
A, ρ0

A) + EB
elec(ρ

0
A, ρ0

A) + EAB
elec(ρ

0
A, ρ0

A), (3.6)

therefore encompassing both intramolecular (same-basin interactions) and intermolec-
ular (between different molecular basins) contributions in the partition induced by
ρ0(r).
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FIGURE 3.14: Schematic representation of the four contributions giv-
ing rise to ∆E0

elec from the double Bader’s and zeroth-order den-
sity partitioning. The IQF electrostatic interaction term between two
molecular basins ΩA and ΩB is also depicted to highlight its differ-
ence with EAB

elec(ρ
0
A, ρ0

B), as E0,AB
elec accounts for the interaction between

the total densities inside each basin (the original ρ0
A or ρ0

B and the tail
of the opposite one that has penetrated into either ΩA or ΩB).

By subtracting the fragment energies Eelec(ρ
0
A, ρ0

A) and Eelec(ρ
0
B, ρ0

B) from E0
elec in

Eq. 3.5, the electrostatic contribution to the formation energy is recovered:

∆E0
elec = EA

elec(ρ
0
A, ρ0

B) + EB
elec(ρ

0
A, ρ0

B) + EAB
elec(ρ

0
A, ρ0

B) + EBA
elec(ρ

0
A, ρ0

B). (3.7)

Among the four surviving terms (whose graphical representation is shown in Fig-
ure 3.14), EAB

elec(ρ
0
A, ρ0

B) is the ordinary interaction term between density ρ0
A associated

with molecule A and density ρ0
B corresponding to basin B. It indeed matches ∆E0

elec
at long distances (limRAB→∞ EAB

elec(ρ
0
A, ρ0

B) = ∆E0
elec), whereas the other three terms

present an opposite behaviour, becoming more and more relevant when shorten-
ing RAB. As such, those terms can be directly related to the energy associated with
the interpenetration of molecular densities, thus being grouped in an IQF-like —we
shall distinguish between IQA and IQF when dealing with either atomic or fragment
decompositions— electrostatic charge penetration energy

EIQF
elec,pen = EA

elec(ρ
0
A, ρ0

B) + EB
elec(ρ

0
A, ρ0

B) + EBA
elec(ρ

0
A, ρ0

B), (3.8)

that satisfies limRAB→∞ EIQF
elec,pen = 0 and so its three components.

IQF-D3 partition and pairwise approximation

In search for the most appropriate IQF descriptor of binding, it is found that the
pairwise electrostatic term in conjunction with D3 dispersion (EAB

elec + D3) yields the
best correlation and lowest errors with the benchmark formation energies (see Fig-
ure 3.15, left), a global trend that is widely maintained in the three main groups
in which the S66 complexes can be classified, namely H-bonded (represented in
magenta), dispersion-dominated (turquoise) and, to a slightly lesser extent, mixed
(in yellow) complexes. In fact, the use of the total electrostatic contribution ∆Eelec
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(comprising both the inter-fragment interaction terms and the intra-fragment defor-
mation ones) results in a poorer correlation and higher RMS errors (R2 = 0.888,
RMS = 17.3 kcal mol−1), what is explained on the basis of the unbalanced descrip-
tion provided by the inclusion of intramolecular energies that tend to cancel out with
the kinetic and xc energy changes in the formation process and that are absent in the
present description (see Figure 3.15, right).
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FIGURE 3.15: Left: correlation between the dispersion-augmented
IQF intermolecular electrostatic energy EAB

elec + D3 and the S66 refer-

ence binding energies ∆Ere f
f orm. Right: anticorrelation featured by the

intrafragment electrostatic contribution to formation ∆EA
elec + ∆EB

elec
and the total kinetic plus exchange-correlation contributions ∆T +
∆Exc. The statistical measurements comprise the coefficient of deter-
mination R2, Spearman’s rank correlation coefficient ρ and the root
mean square error RMS. All the energies are in kcal mol−1. Data cor-
responding to the whole set of complexes is depicted in black, that
ascribed to the H-bond group in magenta, while mixed and disper-

sion complexes are in yellow and turquoise, respectively.

When approximating the wave function of the system as the Hartree product
of the independent monomeric ones (i.e., the zeroth-order approximation), the re-
sulting zeroth-order IQF terms plus dispersion E0,AB

elec + D3 produce similar results
than the previous ones for the fully relaxed systems. Indeed, the RMS errors remain
low (3.1 kcal mol−1) and the correlation fairly good (R2 = 0.971), although that of
the mixed subset becomes somewhat deteriorated (R2 = 0.755). This happens at
the equilibrium geometries, but seemingly the same conclusions can be extended to
other intermolecular separations RAB, in light of the similar trends exhibited by both
descriptions in Figure 3.16 (the complete set of 12 S66x8 complexes investigated can
be found in the original article 103). In spite of this, significant deviations antici-
pating CP (and other effects such as charge transfer or charge polarisation) emerge
for short distances. Moreover, the magnitude of these effects as well as the shape
and slope of the EAB

elec and E0,AB
elec curves are clearly system-dependent, thus revealing

further details about the role of electrostatics in these complexes.

Comparison between E0,AB
elec and the pairwise MM energies

The proved validity of both the pairwise and the zeroth-order approximations pro-
vide an insightful theoretical support for the construction and analysis of MM elec-
trostatic potentials. Accordingly, QTAIM and AMOEBA multipolar energies (up to
the quadrupolar interactions) along with those provided by RESP atomic charges
have been compared with the IQF terms. According to the statistical descriptors,
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the three multipolar/point-charge energies correlate considerably well with E0,AB
elec ,

yielding R2 > 0.95 and RMS ≈ 1 kcal mol−1 for the whole S66 set and also similar
values for the H-bond and dispersion groups. The less abundant mixed complexes
present a lower agreement, QTAIM/AMOEBA multipoles yielding a higher corre-
lation degree than the RESP point charges (R2 ≃ 0.6− 0.8 for the former vs. 0.5 for
the latter). Insightful is also the evolution of these energy terms with the intermolec-
ular separation. As can be appreciated in Figure 3.16 (and the rest of the systems
in Ref. 103, Figure 3), the point-charge and multipolar energies evolve quite closely
to E0,AB

elec , what suggests that the fitting procedure carried out for the derivation of
the RESP charges may incorporate in an effective way higher order effects, given the
similarity between these monopoles with the, in principle, more complete descrip-
tions that consider dipoles and quadrupoles.

FIGURE 3.16: Intermolecular electrostatic interaction energies (in kcal
mol−1) as a function of the distance (relative to the equilibrium dis-
tance, RAB/Req) for the acetic acid dimer (H-bond class) and the
benzene-methanol complex (mixed group). For comparative pur-
poses, the total zeroth-order electrostatic contribution to formation

is also included.

Comparison of diatomic electrostatic interactions

So far, global molecular energies have been inspected. However, a more detailed
analysis in terms of interacting atomic pairs is feasible thanks to the IQA ability to
unambiguously decompose global energies into atomic ones. QTAIM multipoles, as
they follow the same atomic partitioning, also provide coherent multipolar descrip-
tions. In turn, the RESP/AMOEBA potentials are based on distributed charges/-
multipoles that are located at nuclear positions, thus making a comparison of the
different methodologies at this level very pertinent.

Establishing the IQA term E0,I J
elec as the reference to compare with, Figure 3.17

shows a non-surprising almost perfect match between the IQA energies and the
QTAIM multipolar ones. As mentioned, both methods follow the same partition of
the density, giving rise, on the one hand, to exact energies by integration of the con-
tinuous densities contained inside the atomic basins and, on the other hand, those
approximated by the multipoles derived from exactly the same densities. Only sig-
nificant deviations are found for polar contacts, especially for some HO · · · H H-
bonds, the rest of the interactions presenting much lower differences (Figure 3.17,
top right). On the contrary, AMOEBA multipoles (and also RESP charges that can
be found in Ref. 103, Fig. 4) provide significantly less correlated energies (R2 = 0.7)
and large RMS errors (34.2 kcal mol−1, while QTAIM multipoles present a value of
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only 0.6 kcal mol−1). When comparing E0,I J
elec and EI J

elec,AMOEBA, the discrepancies are
in this case of an order of magnitude higher than the previous ones, and amount
to hundreds of kcal mol−1, involving not only short polar contacts, but methyl C
atoms too. These discrepancies, which are also found in the RESP charges, are not
entirely unexpected given that (a) the AMOEBA multipoles are obtained by means
of the distributed multipole analysis (DMA) [106] and (b) the RESP charges are fitted
against the molecular electrostatic potential. Hence, AMOEBA/RESP rely on a very
distinct charge assignment.
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FIGURE 3.17: Comparison of the QTAIM (E0,I J
ele,mp) and AMOEBA

(E0,I J
ele,AMOEBA) multipolar atomic descriptions with the IQA one

(E0,I J
ele ). On the left are the correlation plots and, on the right, each dif-

ference as a function of the interatomic distance (Å). The set of atomic
contacts has been divided in polar (magenta), non-polar (turquoise)

and mixed (yellow). All the energies are given in kcal mol−1.

Charge penetration under the QTAIM scrutiny

Once the intermolecular and interatomic electrostatic interactions have been anal-
ysed, further insight into intermolecular electrostatics can be gained by inspecting
the CP energy. Following the previously-derived double decomposition of ∆E0

elec
(Eq. 3.7), Figure 3.18 includes the energies emanating from such decomposition for
the H-bonded compounds —this is the most representative group since they show
the strongest interactions and more pronounced CP energies; for further details
about the rest of complexes, see Fig. 5 from Ref. 103.

As can be appreciated, EAB
elec(ρ

0
A, ρ0

B) is stabilising in all cases but is very far from
accounting for all ∆E0

elec. It is the IQF penetration energy that recovers the remaining
fraction of ∆E0

elec not captured by EAB
elec(ρ

0
A, ρ0

B), which in H-bond complexes amounts
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FIGURE 3.18: Decomposition of ∆E0
elec into EAB

elec(ρ
0
A, ρ0

B) and the three
IQF penetration terms EA

elec(ρ
0
A, ρ0

B), EB
elec(ρ

0
A, ρ0

B) and EBA
elec(ρ

0
A, ρ0

B) for
the H-bond group of complexes. Energies are given in kcal mol−1.

to ca. 50 % of the total electrostatic formation energy. What is more, among the
three terms giving rise to EIQF

elec,pen, the other intermolecular energy, EBA
elec(ρ

0
A, ρ0

B), gives
no significant contribution at all and is even destabilising. The missing stabilising
effect is thus accounted for by the two intramolecular contributions EA

elec(ρ
0
A, ρ0

B) and
EB

elec(ρ
0
A, ρ0

B), representing the attraction between the tail of each density ρ0
A and ρ0

B
and the nuclei of the molecule in whose domains those densities have penetrated.

Among the many formulations of CP-corrected potentials is AMOEBA+ [107]. A
combined picture of the CP energy supplied by this model and that defined for IQF
is shown in Figure 3.19, where both ∆E0

elec energies reconstructed from IQF quanti-
ties, and the total ∆EAMOEBA+

elec obtained from the addition of the AMOEBA+ pene-
tration energies EAMOEBA+

pen (calculated with the corrections found in Ref. 107) to the
corresponding multipolar ones EAB

elec,AMOEBA, match almost perfectly. This result is
nothing but the verification that both energies are the same and, consequently, the
comparison between the penetration energies defined in both models, EAMOEBA+

pen

and EIQF
elec,pen, is very pertinent. A close look at the evolution of the latter energies

reveals similar trends in both definitions of the penetration energy, that in H-bond
complexes, such as the H-bonded uracil dimer (Fig. 3.19 left), gradually splits when
decreasing RAB. The intensity of the electrostatic effects in the dispersion complexes
is, by contrast, much less pronounced and all the energies behave very close such as
in the benzene dimer (Fig. 3.19 right). The evolution of the penetration energies is
also mirrored by the intramolecular terms EA

elec(ρ
0
A, ρ0

B) and EB
elec(ρ

0
A, ρ0

B), providing
further evidences of the intramolecular nature of CP energy corrections.

Concluding remarks

As has been shown, the zeroth-order IQF interfragment energies E0,AB
elec provide a

faithful description of intermolecular electrostatic interactions, the HF-D3 EAB
elec + D3

energies being a good approximation to the binding energies of non-covalent com-
plexes. This fact also supports the pairwise approximation adopted by MM po-
tentials and a direct comparison between E0,AB

elec and the intermolecular electrostatic
energies supplied by the, on the one hand, QTAIM multipoles and, on the other
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FIGURE 3.19: Comparison between the AMOEBA+ energies and the
zeroth-order IQF ones for an H-bond complex (left) and a disper-
sion one (right) from the S66x8 dataset. Energies (Y-axis) are given
in kcal mol−1 and distances (X-axis), relative to the equilibrium ones

(RAB/Req).

hand, RESP point-charge model and the multipole-based AMOEBA potential re-
veals a similar description of intermolecular electrostatics according to the different
models. However, this does not hold at a deeper atomic level, where the different
methodologies employed to assign a portion of the charge distribution to each atom
evidence their discrepancies. In fact, these MM potentials are parameterised so as
to reproduce global energies, as they do, but more questionable is the local atomic
description they provide, in contrast to the QTAIM multipolar description, whose
robustness may inspire the creation of novel and more insightful MM potentials
(such as FFLUX [108, 109]).

On the other hand, IQF emerges as a powerful tool of analysis to elucidate the
nature of the so-called charge penetration energy. The proposed double decompo-
sition of zeroth-order densities and QTAIM three-dimensional partitioning leads to
an insightful IQF penetration energy describing the effect that the penetration of a
molecular density into the domain associated to another molecule entails. This effect
has been characterised in intramolecular electrostatic terms and the analysis of the
penetration energy calculated in the CP-corrected potential AMOEBA+ has pointed
to the same direction. This aspect therefore warns about the appropriateness of those
CP-corrected potentials mimicking ∆Eelec that become only partly corrected and for-
get other quantum-mechanical effects with which the CP energy mainly cancels out.
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3.2 Real space elucidation of controversial chemical bonds

Since the emergence of quantum mechanics and the first proposals to approximate
many-electron wave functions resorting to hydrogen-like ones, chemical imaginary
has been forged on an orbital image of bonding. Needless to say, orbitals are not
physical observables, and their use in setting up a wave function is not mandatory,
but a choice among others. Thus, orbital-free interpretations based upon measur-
able objects and reference-independent arguments probably constitute a need for
the understanding of the most fundamental ideas in chemistry.

Chemical bonding is indeed one of those cornerstones of the chemical edifice
for which a convincing precise definition has remained elusive. A general agree-
ment is that a chemical bond must entail some energy lowering with respect to non-
interaction, some stability gain that provokes a given pair of atoms (in the simplest
case) to remain close to each other. It is with these energetic arguments where IQA
can deploy its artillery and help clarify the role played by the different atoms and
energy sources. A chemical bond is established upon the (strong) interaction be-
tween at least two partner atoms. But interactions exist among all the constituent
particles of a system, or, after having defined atomic entities, among atoms. On
some occasions, especially when different species take part, the strength of the in-
teraction is not sufficient to be considered as a real bond and the term non-covalent
interaction (NCI) is preferred. From the archetypal hydrogen bonds to the more re-
cently characterised halogen bonds, NCIs have focused researchers’ attention given
the large variety of specific atomic interactions and their potential exploitation in
supramolecular chemistry.

Three research works constitute the second and third parts of the Chapter of
this thesis devoted to Results. The first one, in Section 3.2.1, is devoted to the real
space characterisation of beryllium bonding, a quite recent bonding category found
between a Be-containing species and a Lewis base. Section 3.2.2 focuses on the well-
established halogen bonding, for which naive interpretations in terms of the pur-
portedly attractive electrostatics dictated by a positive-valued electrostatic poten-
tial region of a halogen and an attacking electron-rich atom still persists. A final
effort with which this thesis concludes explores the charge-shift bond (subsection
3.2.3), given the extraordinary claim there exist to give it the same status in chem-
ical bonding theory as covalent and ionic bonding. IQA as well as other quantum
chemical topology techniques are therefore not only used to clarify conundrums in
the literature concerning the previous NCIs, but they are also tested so as to check
the outreach of these orbital-invariant methods in dissecting the different facets the
above-mentioned bonding situations may present.

3.2.1 Beryllium bonding in the light of modern quantum chemical topol-
ogy tools

Among the many categories of non-covalent interactions (NCI) we find beryllium
bonding. Known to be very good Lewis acceptors, beryllium derivatives were pro-
posed to form complexes with Lewis bases (LBs) [110]. The success of this idea
can be recognised in the numerous works that, since then, have studied the nature
of these weak bonds. Beryllium bonds have been found in both σ- [110] and π-
complexes [111], and the set of theoretical methods used to assess their nature, that
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comprise orbital-based EDAs such as LMOEDA, natural bond orbitals (NBO) anal-
yses, QTAIM or electron localisation functions (ELF), among others, point to elec-
trostatics as a major source for their stability, although non-classical contributions
cannot be ignored [112].

In order to revisit this class of NCI, we explore in this work [112] beryllium bonds
using different methods, all of them belonging to the QCT family. These comprise
i) IQA energy decompositions so as to gain access to the prevailing energy com-
ponents, ii) natural adaptive orbitals (NAdOs) to provide a one-electron image in-
cluding correlation effects, and iii) electron distribution functions (EDFs) to describe
the distribution of electron populations. With this aim, σ-complexes (BeX2 LB sys-
tems) and π-complexes constituted by BeX2 moieties in combination with ethylene
and acetylene have been optimised at the B3LYP/def2-tzVPD level, followed by
B3LYP/def2-qzVPD single point calculations for the subsequent analyses. Since Be
is a compact atom whose interactions are not expected to be very influenced by dis-
persion, no such corrections have been considered. In addition, one-electron bonds
such as those found in BeLi, BeNa or BeLiBe have also been considered, for which
CASSCF/aug-cc-pVQZ calculations have been preferred.

Beryllium σ-complexes

The first set of complexes studied comprise BeX2 units (for X=H, F and Cl) in interac-
tion with H2O, NH3 and CO Lewis bases. When the very ionic BeX2 species interacts
with an LB, it undergoes a charge transfer (CT) process by virtue of which it acquires
a higher electron population or, on the contrary, it transfers electron density to the
counterpart moiety, as evidenced by the QTAIM charges in Table 3.4. The CT values
there shown are generally larger than in typical H-bonded systems (e.g., 0.08 e in
X2Be · · · CO), and some of the LBs become negatively charged, what points towards
the existence of back-donation channels between the beryllium compound and the
Lewis base.

Regarding the energetic analysis, both classical and xc components contribute
similarly to the stability of the complex. When inspecting the deformation ener-
gies, it turns out that these are not overcome by the xc energy, a characteristic fea-
ture of very ionic bonds explained by electrostatic bonding models. However, as
mentioned, EAB

class is not capable of explaining the stability of the complexes, but re-
quires the assistance of its EAB

xc counterpart. In fact, covalency emerges as a very rel-
evant contribution in view of the unusually high DIs (between ∼ 0.3− 0.6), that are
much larger than in, for example, hydrogen bonds (HBs) —for instance, the strongly
bound FHF– system presents a δAB ≈ 0.2. These DIs are the result of various con-
tributions or delocalisation channels. An orbital picture for them is provided by the
2-centre NAdOs, whose occupation numbers sum up to half the DI between two
centres, and correspond to the individual contributions of the 2-centre delocalisa-
tion channels to the total δAB. As a representative example, H2Be · · · OH2 presents
a δAB = 0.467 that can be decomposed into four main channels accounting for a to-
tal δAB = 0.459, as depicted in Figure 3.20. The dominant channel in this and the
rest of the systems (see Ref. 112) is due to the σ lone pair of the LB. The purport-
edly second most relevant channel involving donation to the pBe orbital according
to the NBO analysis corresponds to the fourth component in the current NAdO de-
scription, contradicting the NBO result. More relevant than the latter are the back-
donation channels found, that involve the Be X σ bonds (Be H in this case). This
back-donation capacity depends on both the Be-containing system and the LB. In
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TABLE 3.4: Binding energy of the complex, deformation energies of
the fragments and classical and exchange-correlation contributions to
the interaction energy between the interacting species (kcal mol−1).
A refers to the beryllium-containing compound and B denotes the
LB the former faces, whereas for the π-bonded complexes, a denotes
a parallel alignment and b and orthogonal one. QTAIM charges (e)
are also shown as well as the DI between both units (electron pairs).
Only the charge of the BeX2 units are given since QA = −QB for

guaranteeing global charge neutrality.

System EAB
bind EA

de f EB
de f EAB

class EAB
xc QA δAB

H2Be· · ·OH2 -25.31 35.27 50.45 -54.30 -56.73 0.014 0.467
H2Be· · ·NH3 -32.15 34.17 52.45 -60.89 -57.88 -0.010 0.481
H2Be· · ·CO -12.34 44.94 45.90 -38.16 -65.02 0.076 0.593
H2Be· · ·C2H4

a -15.38 52.67 51.48 -39.71 -79.82 0.080 0.755
H2Be· · ·C2H4

b -3.39 10.81 21.95 -7.42 -28.73 -0.030 0.311
H2Be· · ·C2H2

a -19.57 60.25 59.51 -49.00 -90.34 0.103 0.826
H2Be· · ·C2H2

b -0.62 5.32 9.48 -1.84 -13.57 -0.014 0.162
F2Be· · ·OH2 -29.75 27.35 44.99 -52.19 -49.90 -0.024 0.387
F2Be· · ·NH3 -37.79 26.83 48.83 -59.95 -53.51 -0.045 0.422
F2Be· · ·CO -10.83 20.90 34.61 -23.72 -42.62 -0.020 0.372
F2Be· · ·C2H4

a -9.62 16.84 30.94 -16.33 -41.07 -0.047 0.399
F2Be· · ·C2H4

b -11.44 16.21 32.67 -19.17 -41.15 -0.050 0.394
F2Be· · ·C2H2

a -11.87 19.55 34.17 -21.35 -44.24 -0.041 0.416
F2Be· · ·C2H2

b -8.11 13.54 28.48 -14.48 -35.64 -0.045 0.346
Cl2Be· · ·OH2 -32.35 39.26 55.75 -67.44 -59.93 -0.001 0.502
Cl2Be· · ·NH3 -40.56 37.21 59.54 -74.89 -62.43 -0.027 0.527
Cl2Be· · ·CO -13.15 39.47 47.78 -40.29 -60.11 0.029 0.563
Cl2Be· · ·C2H4

a -10.94 25.53 42.44 -24.96 -53.95 -0.028 0.557
Cl2Be· · ·C2H4

b -11.84 22.43 42.41 -25.83 -50.85 -0.037 0.521
Cl2Be· · ·C2H2

a -14.05 31.52 47.64 -33.89 -59.32 -0.017 0.590
Cl2Be· · ·C2H2

b -7.70 19.98 36.77 -20.29 -44.16 -0.035 0.457

this respect, NAdOs serve to order the LB donating and BeX2 back-donating capac-
ity, that becomes CO ≈ NH3 > H2O for the former and BeH2 > BeCl2 > BeF2 for the
latter.

π-bonded complexes

π-beryllium complexes are generally weaker than σ-bonded ones, but still their
binding energies are comparable to those of HB systems (see Table 3.4). In addition
to the variability in the Be species (by changing X in BeX2 by H, F and Cl) in com-
bination with different LBs (in this case, ethylene and acetylene), we have studied
two distinct conformations between the two interacting species. On the one hand,
BeF2 and BeCl2 prefer a parallel alignment (a) with acetylene, whereas an orthogo-
nal arrangement (b) becomes more stable for ethylene acting as an LB, although both
conformations remain energetically close. On the other hand, BeH2 presents more
pronounced differences, favouring the parallel alignment in each case.
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δAB = 0.154 δAB = 0.121 δAB = 0.119

δAB = 0.048 δAB = 0.017

FIGURE 3.20: H2Be · · · OH2 highest occupied NAdOs showing their
corresponding contribution to the delocalisation index δAB.

CT in these π-systems is also very relevant. In general, it is the BeX2 unit that
increases its electron population, but when it comes to BeH2 in its most stable ar-
rangement, either the ethylene or acetylene becomes more populated. In fact, in
these complexes, the BeH2 moiety becomes more deformed than the Lewis base, a
feature that is greatly inverted for the rest of the systems (that is, all but the par-
allel BeH2 · · · LB π-complexes present Ede f (BeX2) << Ede f (LB)). The characteristic
high deformations of BeH2 anticipate the important role that hydrogens play in the
stabilisation, leading again to back-donation issues.

Inspection of the most relevant NAdOs in BeH2 · · · LB π-systems (Figure 3.21)
reveals that indeed back-donation, very relevant in the parallel complexes (cen-
tral NAdOs in Figure 3.21), is largely hampered in the perpendicular conformation.
Moreover, not only is the σ back-donation impeded, but also the π-channels from
ethylene and acetylene to BeH2 are greatly restricted. Concerning the geometries of
the interacting species, as mentioned above, a larger distortion of the BeH2 unit is
related to a higher degree of electron delocalisation with the LB as reflected by the
bent geometries in the first two rows of Figure 3.21 and the more linear ones in the
last two.

Contrarily to BeH2, its halogen-substituted counterparts BeF2 and BeCl2 show
delocalisation channels with similar contributions to δAB in both the parallel and
orthogonal conformations (see Figure 3 in the original publication 112). This can be
ascribed to the higher electronic flexibility that halogen atoms provide as compared
to hydrogen, as the former present more flexible electron densities than H due to
higher angular momentum contributions.

Finally, returning to the energetic analysis of Table 3.4, it becomes evident (in
view of EAB

class vs. EAB
xc ) that from the energetic point of view, the π-complexes are

worse described by Coulomb models alone and the non-classical xc contribution
acquires a higher relevance than in the σ-complexes inspected.



102 Chapter 3. Results & Discussion

δAB = 0.348 δAB = 0.248 δAB = 0.093

δAB = 0.393 δAB = 0.236 δAB = 0.099

δAB = 0.047 δAB = 0.158 δAB = 0.080

δAB = 0.019 δAB = 0.079 δAB = 0.048

FIGURE 3.21: Highest occupied NAdOs of the BeH2 · · · LB systems,
LB being the parallel C2H4

a and C2H2
a in the first two rows, respec-

tively, and the orthogonal C2H4
b and C2H2

b in the lower half of the
Figure. These delocalisation channels account for a ∼ 90 % of the to-

tal δAB.

One-electron beryllium bonds

Besides the σ and π bonding, Be has been also observed to form one-electron bonds.
To study this bonding pattern, BeLi, BeNa, BeLiBe and the 1,8-BeH-disubstituted
naphtalene anion have been analysed in their lowest doublet electronic state. In
these systems, and according to the electronegativity differences, Be becomes neg-
atively charged in combination with Li and Na. This translates into a progressive
destabilisation of the atomic net energies with the accommodated negative charge
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(see Table 3.5). In the diatomic molecules, it is seen that the classical interaction
energy largely depends on the magnitude of the opposite-sign charges of the inter-
acting atoms. Accordingly, BeLi system is characterised by EAB

class << EAB
xc , a relation

that is inverted in BeNa following the lowering of |Q| values of each atom. At the
same time EAB

xc are not affected and remain almost the same, also in accordance with
a similar DI of about 0.5 electron pairs, thus corresponding to a one-electron bond.

TABLE 3.5: IQA and related properties of one-electron bonded LiBe,
NaBe, and BeLiBe linear molecules and the C10H6Be2H –

2 anion. For
the triatomic species BeLiBe (a), both the Be Li and Be · · · Be bonds
are inspected, whereas for the poliatomic C10H6Be2H –

2 system (b)
only the Be · · · Be bond analysis is presented. EA

net and EB
net are given

in atomic units, EAB
xc and EAB

class, in kcal mol−1, QA values are in elec-
trons and δAB, in electron pairs. A and B indices denote the first and

second atom of the first column, respectively.

System EA
net EB

net EAB
xc EAB

class QA QB δAB

BeLi -14.557 -7.285 -37.47 -95.89 -0.707 0.708 0.466
BeNa -14.594 -161.796 -35.40 -19.52 -0.330 0.330 0.550
LiBea -7.286 -14.584 -19.27 -49.46 0.738 -0.369 0.223
Be · · · Bea -14.584 -14.584 -13.74 14.17 -0.369 -0.369 0.323
Be · · · Beb -14.114 -14.114 -38.75 177.18 1.258 1.258 0.293

The BeLiBe case is directly related to the BeLi results. As Table 3.5 shows, the
sum of both ELiBe

xc energies adds to approximately the value it presents in the corre-
sponding diatomic molecule. In line with this, the DI of each LiBe pair is halved with
respect to that found in the diatomic species, in accordance with a 3c-1e (three-centre
one-electron) bond. A generalisation of the 2-centre delocalisation index used so far
permits the study of n-centre bonding (recall Eq. 2.128 from Section 2.5.4). By doing
so, the δBeLiBe index found presents a value of 0.186, one of the largest ever reported.

Further insight about bonding can be gained by inspecting the EDFs, the proba-
bility of a given real space resonance structure (a given integer distribution of elec-
trons among QTAIM atoms). Table 3.6 shows that the electron distribution is concen-
trated in two resonance structures in the BeLi and BeNa cases, the delocalised elec-
tron being heavily polarised towards the Be atom in BeLi, whereas BeNa presents the
opposite situation, albeit less pronounced. BeLiBe concentrates, in turn, the variabil-
ity of distributions about three structures, highlighting the polarisation experienced
towards the two terminal Be atoms.

TABLE 3.6: Electron distribution functions (EDFs) for the one-electron
bonded LiBe, NaBe, and BeLiBe linear molecules. The atoms are la-

belled in the order in which they are written.

BeLi BeNa BeLiBe

nA nB p(nA, nB) nA nB p(nA, nB) nA nB nC p(nA, nB, nC)

5 2 0.710 4 11 0.619 4 2 5 0.370
4 3 0.275 5 10 0.354 5 2 4 0.370
3 4 0.009 3 12 0.025 4 3 4 0.219
6 1 0.004 6 9 0.001 5 3 3 0.013

3 3 5 0.013
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FIGURE 3.22: Intramolecular delocalisation channel between the two
Be atoms in the C10H6BeH –

2 naphthalene derivative anion.

The last system considered is the naphthalene derivative depicted in Figure 3.22.
This anion has been reported as presenting a relatively strong one-electron intramolec-
ular Be-Be bond [113]. According to the values gathered in Table 3.5, this homonu-
clear interaction is characterised by a strongly destabilising electrostatic interaction,
in line with the high positive charges (1.26 e) each atom bears. The xc interaction
only partially compensates this feature. To properly understand this bonding situ-
ation an IQF perspective (i.e., based on fragments) has to be adopted. Accordingly,
the interaction between the two CnaphBeH triatomic fragments reveals a total EAB

int
energy of about −62 kcal mol−1, the EAB

class contribution accounting for only -8 kcal
mol−1. It becomes clear that a rather important stabilisation comes from the Be-Be
bond formation. A neat image of this bond is provided by a unique NAdO rep-
resenting the major part of the delocalisation between both atoms, as depicted in
Figure 3.22.

Concluding remarks

So far, the interactions comprising regular chemical bonds and other NCIs have suc-
cesfully been explained in the energetic terms provided by the IQA descriptors. Nev-
ertheless, when it comes to more exotic bonds, such as Be bonding, some relevant
effects are not directly captured within the IQA framework and other complemen-
tary techniques are thus required.

Without any loss of consistency, these complementary techniques can be retrieved
from the QCT toolkit IQA belongs to, allowing thus for a systematic analysis of dif-
ferent bonding situations, no matter the strength, properties of the atoms involved
or class of the interaction (e.g., intramolecular covalent bond or non-covalent inter-
action).

As shown for the specific case of Be bonds, IQA assisted by the real space-based
natural adaptive orbitals, that complement the energetic description with an appeal-
ing one-electron picture of electron delocalisation, is able to extract the most relevant
features that characterise this class of chemical bonding. Accordingly, these tools
have shown that electrostatics indeed play a significant role, in line with previous
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studies, but also that it is the energetic contribution due to electron delocalisation or
sharing (i.e., the covalent contribution) that properly complements the overall bond-
ing picture. A further analysis of this contribution reveals interesting patterns that
characterise the different bonding situations. For example, the NAdOs picture pro-
vides a neat orbitalic image of electron delocalisation channels describing forward-
and back-donation that can provide a great support in the analysis of chemical bond-
ing with traditional chemical concepts.

3.2.2 Challenging the electrostatic σ-hole picture of halogen bonding: an
IQA analysis

Halogen bonding (XB) has traditionally been explained in electrostatic terms, resort-
ing to the concept of the σ-hole: a charge-depleted region that is able to interact with
electron-rich moieties. According to this interpretation, electrostatics is the driving
force in the formation of XBs, whose fingerprint is in the positive value of the elec-
trostatic potential (ESP) around a halogen atom that points towards the electron-rich
species with which it interacts. Albeit chemically appealing for its simplicity, such
a traditional view has been challenged in the last few years by complementary the-
oretical techniques. As such, XB has been analysed by orbital-based methods that
include natural bond orbitals (NBO), Kohn-Sham based EDAs, block-localised wave
functions (BLWs) within the valence bond (VB) realm, or symmetry-adapted per-
turbation theory (SAPT) [114–121]. These methods have already warned about the
importance of non-electrostatic contributions, such as charge transfer, polarisation
or dispersion, that have their mirror image in the exchange-correlation energies of
IQA. It is the latter orbital-invariant description which may provide more robust
conclusions, as advanced in previous works [120, 122–130].

To help clarify the real role of electrostatics in XB as well as the limitations behind
the bare ESP description, we have carried out a thorough IQA analysis in combina-
tion with other QCT techniques on a set of triatomic linear halogen anions compris-
ing different combinations [X · · · Y · · · X]– of Cl, Br and I atoms [131]. This choice is
the result of an attempt to capture the most relevant features of XB while maintain-
ing simplicity. In this respect, M06-2X/x2c-TZVPPall D3-corrected calculations have
been performed for [X · · · Y · · · X]– species with X, Y = Cl, Br; iodine-containing sys-
tems being analysed with the scalar relativistic RESC approach. The optimisation
procedures have led to symmetric [X1 Y2 X3]– systems, and in search for a geom-
etry closer to the crystallographic ones, minimum energy X1 Y2 · · · X –

3 species with
frozen X1 Y2 distances (as those found in the isolated diatomic molecules) have
been added to the set of systems analysed.

Atomic charges and interatomic interaction energies

Halogen bonds are expected to be formed with a significant contribution arising
from electrostatics, at least this is what we should expect from the σ-hole model.
However, a positive area on a given isosurface of the ESP of one species facing
a negative one of its counterpart is not necessarily a representative picture of the
interaction that takes place between both moieties. Instead of resorting to a two-
dimensional distribution (i.e., that found on a surface), IQA makes use of the total
three-dimensional one comprised in a given volume. Consequently, IQA provides a
complete energetic picture that allows for a precise assignment of the stability of a
given interaction to a particular energy term.
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TABLE 3.7: Atomic charges (electrons), delocalisation indices (elec-
tron pairs) and interaction energies (in kcal mol−1) for each atomic
pair in the chlorine series (the rest of the systems can be found in Ta-
ble 1 in Ref. 131). Negative charges are coloured in red, positive in

blue and those close to zero in green.

Complex Pair DI Eint Exc Eclass

1-2 1.278 -161.44 -182.49 21.05
Cl –0.30

1 Cl +0.04
2 · · · Cl –0.74

3 2-3 0.542 -66.78 -60.61 -6.17
1-3 0.149 6.86 -5.44 12.31
1-2 0.872 -104.72 -107.16 2.44

[Cl –0.50
1 Cl +0.01

2 Cl –0.50
3 ] 2-3 0.872 -104.50 -107.17 2.67

1-3 0.211 7.86 -7.65 15.51
1-2 1.169 -159.84 -156.46 -3.39

Cl –0.46
1 Br +0.16

2 · · · Cl –0.70
3 2-3 0.674 -94.12 -76.97 -17.15

1-3 0.152 15.02 -5.44 20.46
1-2 0.877 -113.75 -104.49 -9.27

[Cl –0.56
1 Br +0.12

2 Cl –0.56
3 ] 2-3 0.877 -113.92 -104.55 -9.37

1-3 0.179 13.50 -6.23 19.73
1-2 1.061 -174.50 -130.45 -44.04

Cl –0.61
1 I +0.34

2 · · · Cl –0.73
3 2-3 0.696 -115.65 -75.89 -39.76

1-3 0.118 25.32 -4.00 29.32
1-2 0.836 -128.55 -93.22 -35.33

[Cl –0.65
1 I +0.30

2 Cl –0.65
3 ] 2-3 0.835 -128.07 -93.11 -34.96

1-3 0.129 22.94 -4.23 27.17
1-2 1.243 -142.25 -165.85 23.60

Br –0.22
1 Cl –0.10

2 · · · Br –0.69
3 2-3 0.590 -58.30 -64.18 5.87

1-3 0.192 -0.49 -6.57 6.08
1-2 0.883 -93.22 -103.46 10.23

[Br –0.45
1 Cl –0.10

2 Br –0.45
3 ] 2-3 0.881 -93.03 -103.24 10.20

1-3 0.251 2.31 -8.48 10.79
1-2 1.208 -141.70 -147.38 5.69

I –0.06
1 Cl –0.28

2 · · · I –0.66
3 2-3 0.542 -37.72 -53.69 15.98

1-3 0.24 -9.26 -7.41 -1.85
1-2 0.853 -80.02 -92.05 12.03

[I –0.37
1 Cl –0.26

2 I –0.37
3 ] 2-3 0.851 -79.78 -91.86 12.08

1-3 0.317 -3.62 -9.73 6.12

Table 3.7 gathers the IQA interaction energies as well as the atomic charges and
delocalisation indices between each pair of atoms in the set of chlorine-containing
systems. Before discussing the relative contribution of each classical and non-classical
energy to the total interaction one, there is a feature that attracts one’s attention: the
large charge transfer (CT) undergone by the attacking halide X –

3 populating the di-
atomic species X1 Y2, that is reflected in the charge borne by the terminal atom
X1. Indeed, the charge differences are ∆Q(X3) ≈ ∆Q(X1) with respect to each iso-
lated species (see Table 3.8). Moreover, the central atom in both [X1 Y2 X3]– and
X1 Y2 · · · X –

3 systems is seen to show a net charge very similar to that found in the
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TABLE 3.8: IQA interaction energies (kcal mol−1), atomic charges
(electrons) and delocalisation indices (electron pairs) for the in vacuo
diatomic molecules combining chlorine with itself, bromine and io-
dine. Negative charges are coloured in red, positive in blue and those

close to zero in green.

Diatomic molecule DI Eint Exc Eclass

Cl0.00 Cl0.00 1.440 -170.07 -199.99 29.92
Cl–0.14 Br+0.14 1.407 -164.86 -181.86 17.01

Cl–0.33 I+0.33 1.323 -178.78 -155.43 -23.35

diatomic species, leading to a highly polarised edge-to-edge situation that is maxi-
mal in the symmetric [X1 Y2 X3]– systems.

Moving to the energetic analysis, it is found that contrary to the common as-
sumption that the covalent part of an interaction is not significantly involved in XB,
IQA demonstrates that this is not true for the model systems considered and the xc
contribution to the interaction energy is of great importance in all the studied cases.
This is in line with previous assessments of the role of each interaction energy type
in different σ-hole instances [120, 122–130]. A closer look at the atomic pair ener-
gies reveals that the classical contribution to the interaction between the 2-3 pairs is
many times destabilising (following in general the trends marked by the magnitude
and sign of the atomic charges involved). Moreover, even when Eclass energies are
favourable, the non-classical ones dominate.

The total interaction energies between a couple of atoms also depends on the
distance. Accordingly, the 2-3 pair interaction becomes reinforced in the symmetric
systems with respect to the asymmetric X1 Y2 · · · X –

3 ones. Also, the 1-2 interac-
tions are largely affected by the presence of the third, attacking atom. |Exc(X1, Y2)|
decreases upon interaction, the [X1 Y2 X3]– species presenting the largest xc desta-
bilisations with respect to the diatomic molecules. Eclass(X1, Y2) energies show, in
turn, a richer behaviour. In some cases, the Coulomb interaction between the two
atoms weakens, but in others it strengthens upon complexation. This is due to CT
that takes place and ends up increasing the differences between the opposite-sign
charges the two atoms exhibit. For instance, Cl presents a charge of −0.14 e in the
ClBr molecule. When the attack of a chloride leads to the Cl1 Br2 · · · Cl –

3 complex,
Br maintains roughly the same slightly positive charge, while Cl gains 0.16 extra
electrons, yielding an electrostatic stabilisation of ca. 20 kcal mol−1.

In general, the electrostatic interactions between halogen atoms are very depen-
dent on their polarisable-polarisant character. Thus, the most stabilising Eclass(Y2, X3)
is found in Cl I · · · Cl– and [Cl I Cl]– systems, followed by Br I · · · Br– and [Br I Br]–

(see Table 1 in the original article 131). The opposite situation is led by I Cl · · · I– and
[I Cl I]–, where the most polarisable atom is now placed at the attacking position,
the least polarisable (and most polarisant) one being the atom that has to adapt its
electron cloud to the incoming anion.

The last bonding descriptor is the delocalisation index. Probably, the most rel-
evant feature is the relatively large DI for the edge atoms that, in conjunction with
the previous findings about the charge distribution and relevance of the xc energy,
is fully consistent with a purely orbital model to explain bonding in these systems:
the Pimentel-Rundle model for 3c-4e (3-centre 4-electron) bonds [132, 133].
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Charge transfer along the Y2 X –
3 stretching

One of the most striking results highlighted above is the large CT from the attack-
ing X –

3 to the diatomic species with which it interacts. The resulting distribution
concentrates the charge on the farthermost atom X1, leaving the central atom almost
unaltered. To check whether this observation follows a concerted CT mechanism
where the central atom is not affected or it is a stepped process in which CT and po-
larisation are decoupled, several scans over the Y2 X3 distance have been performed
with frozen X1 Y2 separation.

FIGURE 3.23: Evolution of the atomic charges in Cl1 Br2 · · · Cl –
3 with

the Br2 Cl3 distance.

In the distance range sampled in each case, the central atom is indeed not affected
by the proximity of the attacking X –

3 halide, and hence displays a constant charge
regardless of its separation with the X –

3 atom for distances > 2.1 Å. On the contrary,
the terminal atoms present mirror evolutions. These results demonstrate that the
CT seen is a one-step process involving the most external atoms, an observation that
further highlights the relevance of electron delocalisation and non-classical effects in
these systems.

Fragment contributions to the formation energies

The formation of a bond does not only affect the atoms directly involved; the rest of
the molecule also adapts to the new situation. Therefore, it may be more insightful
to focus on energies concerning the halide, on one side, and the diatomic species, on
the other. To this end, IQA formation energies and their decomposition serve to ad-
dress the energetics of the XB formation. By considering again the Cl series, Table 3.9
shows how penalising the deformation energies become, especially those ascribed
to the attacking anion. These higher deformations can be understood by recognising
the larger number of relaxation channels in the diatomic molecule that permit an
easier accommodation to the final arrangement within the complex. Interestingly,
X1 Y2 in [I Cl I]– (and also in [I Br I]–, see Table 3 from Ref. 131) shows a nega-
tive Ede f , that is, the I Cl fragment is internally stabilised upon complexation. This
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is in reality a non-surprising result given the high electron affinity of iodine, that
becomes more electronically populated.

TABLE 3.9: IQA formation energies (in a very small numerical er-
ror with respect to the electronic structure calculation ones) for the
chlorine-containing complexes obtained from the balance between
the deformation of the fragments X1 Y2 and X3, and their mutual in-
teraction. The exchange-repulsion energies (XCR) are also included.

All the energies are in kcal mol−1.

Complex EIQA
f orm Ede f (X1 Y2/X3) Eint Exc Eclass XCR

Cl Cl · · · Cl– -21.61 14.18 / 24.13 -59.92 -66.06 6.14 -27.75
[Cl Cl Cl]– -28.76 14.29 / 53.59 -96.64 -114.82 18.17 -46.94
Cl Br · · · Cl– -32.64 14.10 / 32.35 -79.10 -82.41 3.31 -35.95
[Cl Br Cl]– -39.28 11.38 / 49.76 -100.42 -110.79 10.37 -49.65
Cl I · · · Cl– -35.47 21.59 / 33.27 -90.33 -79.89 -10.44 -25.03
[Cl I Cl]– -40.28 21.02 / 43.84 -105.13 -97.34 -7.79 -32.49

Br Cl · · · Br– -22.14 10.67 / 25.99 -58.80 -70.75 11.95 -34.09
[Br Cl Br]– -29.01 6.75 / 54.96 -90.72 -111.71 20.99 -47.00

I Cl · · · I– -16.53 3.93 / 26.53 -46.99 -61.05 14.06 -30.59
[I Cl I]– -21.56 -0.09 / 61.93 -83.40 -101.60 18.20 -39.76

The formation energies are in all cases favourable, and this is the result of the
highly stabilising interactions. Among the two components of Eint, the electro-
static energy Eclass is seen to correlate with E f orm. However, and again modelled
by the polarisant-polarisable character of the atoms directly involved in the interac-
tion via the σ-hole, Eclass is in general destabilising, presenting negative values only
for the extreme σ-hole bearing Cl I · · · Cl– and [Cl I Cl]– systems. As can be seen, al-
though Eclass may contain valuable information about the interacting species, it is not
enough to describe XB in the cases studied herein (it becomes even unfavourable).
Exc, in turn, are the dominant energetic contribution and the one that mostly ex-
plains bonding in these cases (contrary to the frequently positive Eclass values, Exc is
always negative and very strong). These findings were also pointed out by Wolters
and Bickelhaupt [134], who reported stabilising electrostatics for the trihalides here
considered. This is a not surprising outcome from an orbital EDA methodology, that
computes the energy associated to interpenetrating electron densities, thus incorpo-
rating further stabilising effects coming from the interpenetrating electrons of one
species and the nuclei from the other they find.

The final energetic descriptor, the exchange-correlation-repulsion energy (XCR),
results from the sum of the deformation energies and the xc ones and is usually
linked to Pauli repulsion in the long range. The strongly negative character of this
energy points out the non-perturbative regime of the interactions and the relevant
role that orbitalic (or xc in IQA parlance) interactions play, that overcome (and to a
large extent) the deformation energies, thus signaling that equivalently, Pauli repul-
sion is overcome by the effect of electron delocalisation. This last descriptor remarks
the conclusion that has been emerging throughout the whole analysis, that is, halo-
gen bonding as exhibited by the [X · · · Y · · · X]– model systems cannot be described
by an electrostatic model alone. By contrast, it is the effect of electron sharing and
delocalisation that accounts for the most part of bonding, as evidenced by numerous
descriptors such as Exc energies, the charge distribution or the anomalously high DIs



110 Chapter 3. Results & Discussion

between the edge atoms, that point towards a 3c-4e orbital model as the most fruitful
description.

3.2.3 Electron-pair bonding in real space. Is the charge-shift family sup-
ported?

The nature of a (bicentric) chemical bond is normally regarded as neither purely
ionic nor purely covalent, but rather as a mixture of the two extreme cases. Thus,
it is customary to speak about bonds as having a certain degree of covalency and
a remaining one of ionicity —a range in which the so-called polar covalent bonds
and other possible classifications find their way to be characterised. Notwithstand-
ing, the existence of these two families to cover the different bond situations between
pairs of atoms has been challenged in the last years with the appearance of a purport-
edly new category that should not be classified as any of the former two: charge-shift
bonding (CSB) [135, 136].

The original proposal was conceived within non-orthogonal valence bond theory
(NOVB) after realising that neither the ionic nor the spin-paired (i.e., covalent) va-
lence bond (VB) structures (Ψion and Ψcov) were able to explain bonding in molecules
such as F2, H2O2 or H3SiF. Rather, it is the resonance of the two (as a linear combi-
nation giving rise to ΨVB) that provides most of the stabilising energy that enables
bonding. The stabilisation this mixture leads to is called CS resonance energy (RE),
computed as the remaining part of the bond energy that is not accounted for by the
principal VB structure (either one of the possible Ψion or Ψcov). This RE is associ-
ated to the shift of only one electron between the constituent fragments, hence its
name charge-shift resonance energy that leads to CSB when this is the major ener-
getic contribution to bonding. A qualitative representation of the VB description of
F2, the prototypical example of a CSB molecule, can be found in Figure 3.24.

Dcov
Dion

RE

F· F·
Ψcov

Ψion

Ψ

E

FIGURE 3.24: Schematic representation of the F2 energy diagram. On
the left is the energy of the separate F atoms, followed by the VB co-
valent structure Ψcov that, in the case of F2, is the closest one to the
true wave function Ψ, although its associated energy lies above that
of the separate atoms. The ionic structure is even less stabilised, be-
ing impossible to describe a bound state between the two fluorines
with only one resonance structure. It is however the mixing of the
two that provides the bonded situation with an associated energy
lower than that of the independent atoms. Dcov and Dion are the
energy differences between the either cov or ion VB structures and
the non-interacting atoms, whereas RE denotes the resonance energy
measured from the final VB wave function to the covalent one. The

relative position of each energy level is qualitative.
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However striking this evidence might be, resonance is representation-dependent,
that is, a change in the basis for constructing Ψion and Ψcov wave functions changes
the RE value. Since the existence of a third distinct grand category of chemical bond-
ing must be followed by characteristic signatures regardless of the theoretical (or ex-
perimental) method used to study it, efforts for proving the distinct nature of CSB
have been made resorting, for example, to two-configuration self-consistent field in
MO theory, or the Laplacian of the electron density within QTAIM.

In order to examine whether this new category of chemical bonding can be con-
sidered as such, we have analysed several CSB-featuring systems [137], although,
for the sake of simplicity, only the most representative one shall be considered in
this summarised Section. With the aim of providing arguments on a simple basis
but without loss of reliability, an easy-to-interpret two-electron, two-orbital model
has been the choice for carrying out this work. Accordingly, CAS(2,2)/6-31G* cal-
culations have been performed for both difluorine and dihydrogen molecules for
comparative purporses (the rest of the systems calculated and the arguments be-
hind the consideration of this simple model can be found in Ref. 137). The model
system wave functions are constructed from two atomic orbitals a and b (2pz in the
case of F2 and 1s in H2).

The MOs (labelled by symmetry) therefore correspond to g, u = Ng,u(a ± b),
Ng,u being the normalisation constant of either g or u, leading to a CASSCF wave
function of the form ΨCAS = λ|gḡ|+ µ|uū|. In NOVB, the Heitler-London structures
are, in turn, defined by Ψcov = Ncov(|ab̄| + |bā|) and Ψion = Nion(|aā| + |bb̄|), so
that the NOVB wave function becomes ΨVB = cΨcov + iΨion. For H2, Ψcov provides
a fairly accurate potential energy curve, whereas in the F2 case, neither Ψcov, Ψion
nor ΨHF describe bound states. This occurs only when moving to ΨVB and ΨCAS.
The use of this simple model permits a one-to-one correspondence (c, i) ↔ (λ, µ),
being possible to travel through Ψcov, Ψion, ΨHF ≡ |gḡ| and ΨCAS ≡ ΨVB when
orbitals are not allowed to relax and the wave function Ψ = cΨcov + iΨion = λ|gḡ|+
µ|uū|. Moreover, easy-to-interpret expressions for the 1- and 2-RDM are achieved
(see Ref. 137), showing that the |gḡ|-|uū| resonance (g-u mixing) lies only on the
two-electron term of the 2-RDM, pointing towards e-e repulsion as the driving force
of CSB, in opposition to the role usually ascribed to the kinetic energy.

Real space signatures

In real space, various arguments have been adduced for signaling a distinct be-
haviour of CSB. On the one hand, deformation densities ∆ρ show a density depletion
instead of density accumulation in the bonding region. On the other hand, Laplacian
values at the BCP, that are usually negative for homonuclear covalent bonds, are pos-
itive instead. Both arguments, while true, do not necessarily point to a new bonding
category. ∆ρ is, by definition, reference dependent, so a change from the spherically-
averaged atoms to other valence-prepared ones may cause a change of sign in the
internuclear region. Let us now focus on the ∇2ρ function. For the simplest (neu-
tral) molecular system, H2, each atomic density takes the form ρ(r) = Ne−ζr, so that
the Laplacian becomes ∇2ρ(r) = Ne−ζr(ζ2 − 2ζ/r). Such an analytical expression
anticipates an interesting property: that, after a critical distance, even dihydrogen’s
∇2ρ becomes positive, a condition met at 3.2 a0 of internuclear separation. Thus,
a positive ∇2ρ(rBCP) may be just an indication of a longer than usual interatomic
distance. Moreover, concerning the orbitals, u has a node at the central interatomic
point in homonuclear systems (i.e., the BCP), so a large mixing of states |gḡ| and |uū|
makes the Laplacian tend to positive values, no matter the distance when µ→ 1. Of
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TABLE 3.10: Electron density and Laplacian of the electron density at
the BCP obtained from different MOs of F2. All values in au.

Ψ ρ(rBCP) ∇2ρ(rBCP)

|gḡ| 0.22 0.46
|uū| 0.06 2.68
CAS
18 e 0.21 0.66
16 e 0.06 0.90
2 e 0.15 -0.23

course, these remarks must not be surprising since the previous descriptors derive
from the 1-RDM, and it is the second-order one that incorporates resonance (i.e., g-u
mixing), as commented before.

Concerning real calculations, Table 3.10 shows the ρ(rBCP) and∇2ρ(rBCP) values
for the F2 molecule. As can be seen, the electron density at the BCP is dominated
by the 2 e active subsystem, but ∇2ρ(rBCP) is not. Rather, the Laplacian presents a
positive value at this point that is due to the participation of the other non-bonding
electrons; the 2 e subsystem even provides a negative ∇2ρ, as in the H2 molecule.

Energetic evidence

Paying now attention to the energetic factors, CSB is characterised by a large RE, as
mentioned above, what has been linked to the mechanism behind bond formation.
Thus, the contraction experienced by orbitals during typical covalent bond forma-
tion leads to an increase in the kinetic energy T, which is not entirely compensated
by the lowering in the potential energy V. Hence, an additional mechanism must
take place to restore the virial ratio V/T = −2 at equilibrium, and here is where the
RE comes into play. This is a common feature, but it is in CSB-exhibiting systems
where the RE becomes crucial, especially when the additional effect of e-e repulsion
between bonding electrons and lone pairs (the so-called lone pair bond weakening
effect, LPBWE) has to be overcome. In the VB view, this is accomplished through
the mixing of the cov-ion configurations, what ultimately results in a T reduction.
In a fixed-orbital framework, however, T is a one-electron property and is thus not
affected by g-u (or, equivalently, cov-ion mixing).

Table 3.11 collects the energy components of F2 and H2 according to different
wave function descriptions. As can be appreciated, in the F2 case, HF (|gḡ|) displays
the smallest T, as it corresponds to symmetric single determinants but its density is
not compact enough, so that the total one-electron energy (h = T + Vne) is higher
than in the |uū| state, contrarily to what happens in dihydrogen. In the VB descrip-
tion, the covalent structure turns to have a very large T that, in conjunction with
Vee, leads to an energy lowering when mixing with Ψion. By separating Vee into core-
core (c-c), core-active (c-a) and active-active (a-a) e-e interactions it is seen that c-a
dominates the total Vee in the covalent structure, with specially large values in the
ion and |uū| states (for further details, consult Ref. 137). In the absence of lone pairs
(such as in H2), no c-a interactions are present, and the one-electron energy decreases
from |uū| to |gḡ|, with an additional stabilisation gained by a lower Vee when mix-
ing both states (or, analogously, Ψcov and Ψion). The presence of lone pairs leads
to the contrary behaviour, namely, a one-electron stabilisation towards |uū| and a
large mixing that seeks to decrease Vee, for which the c-a interaction is dominant.
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TABLE 3.11: Kinetic and potential energies of F2 (left) and H2 (right)
for different wave functions. h represents the one-electron energy
(T + Vne). All data in au. In the F2 case, 533 au have been added
to Vne and 198 and 108 au have been subtracted to T and Vee, respec-

tively.

Ψ TF2 VF2
ne hF2 VF2

ee TH2 VH2
ne hH2 VH2

ee

cov 1.229 -2.078 -0.849 0.482 1.202 -3.367 -2.165 0.594
ion 1.229 -2.078 -0.849 1.048 1.202 -3.367 -2.165 0.721
|gḡ| -0.034 -0.373 -0.407 0.025 1.133 -3.622 -2.489 0.655
|uū| 3.475 -5.110 -1.635 2.083 3.050 -4.036 -0.986 0.697
CAS 0.290 -0.811 -0.521 0.044 1.156 -3.619 -2.463 0.619

Therefore, it is not the kinetic energy that drives the F2 bond formation —arguments
based on the large value in Ψcov do not even consider the also large T found in the
ion counterpart—, but the reduction of the extremely large Vee energy that results in
a lengthening of the F-F distances.

Intra- and interatomic considerations

The previous analyses have made use of global energetic terms. A more insightful
study can, however, be carried out by means of the IQA energy decomposition. Ta-
ble 3.12 shows some relevant IQA terms along with the DIs of the model H2 and F2
molecules in which we have focused so far. Since both are homodiatomic molecules,
the corresponding atomic basins coincide, and they thus show similar DIs and co-
valent xc energies. As expected, H deformations are larger as H acquires a higher
hydride character, thus growing from cov to ion, where Ede f (H2) is maximum. In
H2, the optimal CAS (or optimal NOVB wave function) is close to cov, and the defor-
mations are mainly compensated by the covalent energy term Exc. The F2 molecule
presents much larger atomic Ede f energies than dihydrogen (in the case of the cov
structure its Ede f is about 20 times larger), but a lower stabilisation gain by interac-
tion (due to the very long internuclear distance and the compactness of F2 electron
distribution). Mixing increases the favourable effect of interaction and, at the same
time, decreases deformation owing to a considerable lowering in the intraatomic e-e
repulsion (VAA

ee ) from the cov configuration. In fact, the unusually large F-F distance
is a consequence of this intraatomic effect, which grows faster when approaching
the F atoms (see Ref. 137). Apart from this characteristic feature of F2 bonding, the
xc energies display the standard behaviour. Therefore, the abnormalities found in
F2 can be linked with the intraatomic electron repulsion that, through a lengthening
of the internuclear separation, seeks to be minimised. This fact can be ascribed to
the compactness of F and the LPBWE, that seems to play a major role in leading F2
bonding to its actual situation.

Concerning the electron distribution in space, it is found that only one electron
pair is delocalised in F2 and thus the non-negligible EDFs are p(9, 9) and p(10, 8) =
p(8, 10). The CAS solution shows no abnormal fluctuation in F2, with a p(10, 8)
even smaller than its equivalent in H2. This is compatible with a proto-bond with
hindered delocalisation. Therefore, in contrast to one of the main arguments used to
defend the CSB as a bonding category different from the ionic and covalent ones,
orbital-invariant analyses show an even smaller electron-pair fluctuation than in
normal covalent bonds.
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TABLE 3.12: Relevant IQA energy terms for different two-state wave-
functions of H2 and F2, as well as the delocalisation indices. All the

data are given in au.

EA
de f TA VAA

ee EAB
int EAB

xc VAB
ee δAB

H2

cov 0.005 0.601 0.136 -0.153 -0.194 0.321 0.715
ion 0.132 0.601 0.263 -0.280 -0.321 0.195 1.284
HF 0.043 0.567 0.198 -0.230 -0.262 0.269 1.000
CAS 0.013 0.578 0.165 -0.189 -0.222 0.296 0.833

F2

cov 0.092 99.614 40.435 -0.084 -0.122 27.611 0.397
ion 0.526 99.614 40.870 -0.387 -0.425 27.381 2.040
HF 0.173 98.983 40.270 -0.263 -0.297 27.484 1.206
CAS 0.077 99.145 40.237 -0.164 -0.199 27.569 0.713

Concluding remarks

With all the previous analyses it has been shown that the original arguments given
according to NOVB theory results cannot translate to the real space elucidation car-
ried out in this work. The specific bonding features exhibited by F2 (and other
molecules) can be well described in terms of the large LPBWE experienced that leads
to proto-bonding, but whose real space signatures do not differ significantly from
typical covalently-bonded systems. This topic, however, still generates controversy
[138], so wider and more profound analyses will be required to clarify the scope of
the CSB category.
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Chapter 4

Conclusiones

La presente tesis doctoral pretende establecer nuevas vı́as de aplicación del método
de átomos cuánticos interaccionantes (IQA) a sistemas de interés biológico, al mismo
tiempo que continúa mostrándose útil a la hora de esclarecer la naturaleza del enlace
quı́mico en situaciones complejas.

La primera parte del trabajo expuesto en esta tesis (Capı́tulo 3.1) se ha centrado
en la extensión de IQA a la modelización biomolecular, para la que, de manera ex-
itosa, se han dado los primeros pasos. En primer lugar, y en previsión de una fu-
tura necesidad de incorporar efectos de correlación a sistemas de mediano y gran
tamaño, se ha llevado a cabo un estudio de la idoneidad de diferentes funcionales
de DFT en la descripción de los enlaces de hidrógeno (HB) en pequeños cúmulos de
agua y de los efectos de cooperatividad y anticooperatividad asociados a estos. Esta
ubicua interacción no covalente (NCI), tan presente en sistemas de interés biológico,
resulta bien descrita por la mayorı́a de los funcionales estudiados, si bien algunos
proporcionan tendencias más alejadas de las referencias. Asimismo se demuestra
que la técnica de escalado empleada para las energı́as de xc DFT en IQA propor-
ciona términos energéticos consistentes.

A continuación se ha examinado la eficacia de la metodologı́a combinada IQA-
D3 en el estudio de los efectos conformacionales inducidos por el flúor. Para ello
se ha partido de cálculos HF-D3, que permiten el tratamiento completamente sep-
arado de dispersión e intercambio. Los resultados muestran la idoneidad de dicha
metodologı́a para conocer la importancia relativa de efectos electrostáticos, estere-
oelectrónicos o de dispersión en la determinación de las preferencias conforma-
cionales de los compuestos organofluorados, incluso en presencia de diversos gru-
pos funcionales. La versión de fragmentos de IQA, denominada IQF, agrupa los
resultados atómicos en términos moleculares con un significado quı́mico claro, posi-
bilitando ası́ un análisis más sencillo e intuitivo de las energı́as conformacionales en
los sistemas de interés.

En sistemas de interés biológico son especialmente relevantes los efectos del en-
torno quı́mico sobre la molécula o el fragmento de estudio. Como primer paso hacia
un tratamiento más general, se han incorporado por primera vez los efectos elec-
troestáticos del disolvente en la partición IQA. Ello se ha llevado a cabo conforme al
modelo de disolvente continuo COSMO, que describe la componente electrostática
de la solvatación por medio de un conjunto de cargas puntuales localizadas en la
superficie molecular del soluto . Dicho tratamiento permite una descomposición
directa en IQA de las energı́as de interacción de cada átomo del soluto con el disol-
vente, ası́ como la partición análoga de las energı́as libres de solvatación en contribu-
ciones efectivas tanto atómicas ∆GA

solv como de fragmento ∆GG
solv. Los resultados del

análisis muestran importantes relaciones entre la carga o entorno quı́mico de los
fragmentos y el valor de ∆GG

solv, demostrándose ası́ la viabilidad de aplicar la de-
scomposición IQA a los efectos del disolvente, ası́ como la riqueza de la información
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que proporciona.
Como colofón a la vertiente bioquı́mica de esta tesis se encuentra un exhaustivo

análisis de las interacciones electrostáticas intermoleculares. En complejos no cova-
lentes, la presencia de átomos polares que inducen una distribución no homogénea
de la carga en la molécula otorgan a la electrostática un papel dominante en nu-
merosas situaciones, papel que se ve complementado por la dispersión entre las
nubes electrónicas interaccionantes. Es por ello que la formación de estos complejos
se ve muy bien descrita por los términos IQF-D3 EAB

elec + D3. Más aún, la aproxi-
mación de orden cero que surge de considerar las densidades moleculares sin relajar
se muestra como una buena alternativa al cálculo QM del complejo completo. En
modelización biomolecular, sin embargo, las densidades continuas de carga se ven
reemplazadas por conjuntos de cargas puntuales o bien multipolos que simplifican
los cálculos de las interacciones entre estas. La comparación entre las energı́as in-
termoleculares IQF y las obtenidas a partir de cargas puntuales RESP y multipolos
AMOEBA demuestra que los términos E0,AB

elec siguen tendencias muy similares a las
de los campos de fuerzas. Por su parte, los multipolos QTAIM asociados a la par-
tición IQA resultan en energı́as muy similares a las IQF, tendencia que se mantiene
cuando se evalúan los términos atómicos individualmente y que no es, en este caso,
reproducida por los campos de fuerzas testeados. Finalmente, la doble partición del
espacio real y de las densidades moleculares permite evaluar conforme a las energı́as
IQF la llamada energı́a de penetración de carga. Dicha energı́a resulta de la diferen-
cia entre la calculada entre densidades continuas que se interpenetran mutuamente
y aquella obtenida por medio de la expansión multipolar. El análisis efectuado per-
mite asignarle principalmente una naturaleza intramolecular, lo que se puede tra-
ducir en energı́as descompensadas si dicha corrección es incorporada en un campo
de fuerzas sin tener en cuenta otros factores con los que tiende a cancelarse, como
los de xc intramoleculares.

La segunda lı́nea de trabajo de esta tesis (Capı́tulo 3.2) comprende el uso de IQA
en combinación con otras metodologı́as de la topologı́a quı́mico cuántica (QCT) para
desentrañar la naturaleza del enlace quı́mico en diversos casos de interés. Uno de
estos es el de los enlaces de berilio. Este tipo de NCI se da entre átomos de Be, que
actúan como ácidos de Lewis, y especies dadoras de electrones, que actúan como
bases. Por ello, la racionalización de este tipo de interacción se ha venido dando
fundamentalmente en términos electrostáticos, aunque, poco a poco, los nuevos
estudios que han ido surgiendo han apuntado hacia una nada despreciable con-
tribución covalente (o de xc). El estudio aquı́ realizado apunta en la misma dirección:
la electrostática es fundamental, si bien la deslocalización electrónica es también
muy relevante. Por su parte, el uso de NAdOs para interpretar los canales de dicha
deslocalización permite observar efectos no apreciables por otras técnicas, como la
retrodonación del BeH2 hacia la base correspondiente, todo ello amparándose en ar-
gumentos que no dependen del conjunto de orbitales empleado para construir la
función de onda.

También en términos electrostáticos se interpretan comúnmente los enlaces de
halógeno (XB), dados entre un átomo de halógeno y una base de Lewis. Un elemento
caracterı́stico de estas interacciones es la presencia del agujero σ, una zona positiva
del potencial electrostático en torno al halógeno en la dirección de interacción con la
base de Lewis. Dicho agujero σ, no obstante, no garantiza una preponderancia de
la interacción de Coulomb, ni tan siguiera que esta sea favorable. Las energı́as IQA,
por contra, consideran la distribución de carga completa en una región espacial y su
análisis en sistemas [X Y X]– y X Y · · · X– con distintas combinaciones de Cl, Br y
I sugiere que el papel de la electrostática es relativo y la formación de estos sistemas
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no se puede explicar sin la contribución asociada a la deslocalización electrónica o
covalencia. De hecho, aunque sean sistemas modelo de XB, el enlace queda bien
descrito por un modelo clásico de 3c-4e que únicamente descansa en argumentos
de interacciones entre orbitales o, en lenguaje del espacio real, de deslocalización
electrónica.

Como último caso de enlace controvertido se ha analizado el llamado enlace por
desplazamiento de carga (CSB). Desde su caracterización en NOVB, se habı́a argu-
mentado que no se trataba de una nueva subclase de enlace más, sino que era muy
diferente a los demás y, por tanto, merecı́a ser dotado de un estatus similar al de
las dos grandes familias de enlace quı́mico: iónico y covalente. La razón principal
era que enlaces como el del F2 no se pueden describir con las estructuras covalente
o iónicas de VB, sino que es necesaria su mezcla para alcanzar un estado enlazante,
dando lugar a una elevada energı́a de resonancia entre dichas estructuras. La QTC,
sin embargo, que es invariante orbital y, por tanto, no se ve afectada por si el método
de cálculo de la estructura electrónica es de VB o de MO, no muestra ninguna carac-
terı́stica anómala en dicho enlace, más allá de su longitud inusualmente larga debido
a la repulsión de los pares de electrones no enlazantes. Tanto IQA, como EDF o el
análisis de ∇2ρ no muestran resultados anómalos que no puedan ser explicados en
los anteriores términos. Una nueva categorı́a de enlace quı́mico deberı́a ser visible
ante los distintos descriptores que se emplean para caracterizar el enlace quı́mico;
sin embargo, en los sistemas estudiados, dichas caracterı́sticas propias del CSB no se
consiguen encontrar fuera de VB.

Las investigaciones aquı́ descritas comportan avances en la clarificación de los
diversos problemas planteados, pero, de manera más importante, se aúnan den-
tro de un proyecto mayor: el desarrollo y la popularización del método de átomos
cuánticos interaccionantes. Con todo lo aquı́ expuesto se ha pretendido contribuir a
mostrar que esta técnica, una de las tantas que los quı́micos computacionales tienen
a su disposición para descomponer las energı́as y dotarlas de diversos significados
fı́sicos, posee un conjunto de ventajas procedentes de su robustez y sus grandes ca-
pacidades explicativas y predictivas.
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ing the electrostatic σ-hole picture of halogen bonding using minimal mod-
els and the interacting quantum atoms approach. J Comput Chem. 2021, 42,
676–687.
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Fernando Jiménez-Grávalosa, José Luis Casals-Sainza, Evelio Franciscoa, Tomás Rocha-Rinzab,
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Abstract

This paper addresses an assessment of the performance of a large set of exchange-correlation

functionals in the description of hydrogen bonding within the Interacting Quantum Atoms

(IQA) energy partition. Specifically, we performed IQA analyses over a series of small water

clusters (H2O)n with n ≤ 6. Apart from LDA-like approximations, all the considered families

of exchange-correlation functionals (GGA, meta-GGA, and hybrid) reproduce the trends as-

sociated with hydrogen-bond non-additive effects computed with reference Møller-Plesset and

coupled cluster wave functions. In other words, the IQA energy partition together with most

of the functionals addressed herein produce good results concerning the study of non-additivity

in hydrogen bonds at a reduced cost as compared with correlated wave functions approxima-

tions. This conditions might be further exploited in the examination of larger hydrogen-bonded

complexes.

Keywords:

Quantum theory of atoms in molecules, Interacting quantum atoms, Density functional theory

Introduction

Density Functional Theory (DFT) is regarded as one of the most fruitful theories in computa-

tional chemistry. [1] Its widespread use arises from its convenient compromise between accuracy

and computational cost. [2] DFT has been applied to a wide range of problems, from the study of

small chemical systems to the analysis of large macromolecular aggregates. [3] Indeed, the fields

of application of DFT increases continuously: it is utilised in the understanding of catalytic

processes, the discovery of new drugs, and the development of new materials. [4, 5]
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Besides these applications, DFT also provides the basis for the understanding and exploita-

tion of concepts such as electronegativity and chemical hardness which are very useful in many

branches of chemistry. [6] The development of these concepts in the field of “conceptual DFT”

has provied a series of tools for the interpretation of molecular properties, in particular, those

concerned with chemical reactivity. [7, 8]

Likewise to conceptual DFT, the topological analysis of the electron density in accordance

with the Quantum Theory of Atoms in Molecules (QTAIM) has resulted in new insights about

molecules and molecular clusters as well as the processes undergone by these systems. [9, 10]

The charge distribution is not the only scalar field that can be examined in this way. Many

other functions, e.g. the electron localisation function, the source function or the virial field

have been studied with similar topological approaches than that employed in the QTAIM. [11–

13] The investigation concerning the properties of these scalar fields and its applications has

resulted in the emergence of the field of theoretical chemistry known as Quantum Chemical

Topology (QCT). [14]

The Interacting Quantum Atoms (IQA) [15, 16] energy partition is a notable method for wave

function analyses. This approach allows for the separation of the total electronic energy of a sys-

tem into physically-meaningful intra- and inter-atomic contributions. Initially, IQA could only

be applied to small systems due to the high computational burden required to perform this type

of partition of the electronic energy. Moreover, the set of available electronic structure methods

which could be coupled to IQA was limited to HF, CASSCF, CISD, FCI or CCSD. Popelier

and coworkers have however recently used IQA with the B3LYP functional, [17] and some of us

have extended this energy partition to the rest of the most common exchange-correlation func-

tionals. [18] The coupling of IQA and DFT reduces dramatically the computational cost when

an effective treatment of electron correlation is needed and, therefore, it opens new possibilities

for the applicability of the IQA analysis.

One of such opportunities is the study of the non-additivity in hydrogen bonding in wa-

ter clusters. These adducts are prototypical systems for the rationalisation of cooperative

and anticooperative effects in hydrogen bonding. For example, we have used IQA coupled

with Hartree-Fock and correlated wavefunctions to study cooperativity and anticooperativity

in (H2O)n [19, 20] clusters with n ≤ 6. These investigations lead to a hydrogen bond strength

hierarchy within water clusters in terms of the single and double character of the hydrogen

bonding donor and acceptor H2O monomers. We present herein an assessment of the perfor-
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mance of sixteen different functionals in the description of the non-additivity of hydrogen bond

in the small water clusters shown in Figure (1) with the IQA energy partition. Hereof, we

note that DFT describes hydrogen-bonded systems appropriately. On this subject, Michaelides

et al. [21] concluded that the general DFT description of water is acceptable and that hybrid

functionals performed the best in accounting for monomer properties and the non-additivity of

hydrogen bonding. However, Mendedev et al. showed that for many new hybrid functionals the

corresponding densities deviate from the exact ones because they sacrifice physical rigour for

the flexibility of empirical fitting. [22]

Figure 1: Small water clusters used as models in the present research.

Given this context, the present manuscript is structured as follows. First, we present a brief

outline of the IQA partition and an strategy for its application to DFT electronic energies,

emphasising the division of the exchange-correlation contribution. Later, we address the com-

putational details employed in this investigation to finally discuss the main results of this work.

Overall, we found that IQA/DFT analyses based on most of the functionals considered herein

describes suitably the non-additive effects previously described, thus paving the way for future

studies on relatively large hydrogen bonded systems.
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Interacting Quantum Atoms approach

The Quantum Theory of Atoms in Molecules (QTAIM) formulated by Bader and his cowork-

ers defines a partition of real space from the electron density of the molecular system under

study. [23] This division allows in turn to decompose the total electronic energy (E) into intra

and inter-atomic components by using the first (1-RDM) and second order (2-RDM) reduced

density matrices. Such an energy decomposition constitutes the Interacting Quantum Atoms

(IQA) approach: [15, 16]

E =
∑

A

EA
net +

∑

A

∑

A>B

EAB
int , (1)

where EA
net denotes the intra-atomic energy of region A and EAB

int corresponds to the interaction

energy between domains A and B. EA
net is obtained as

EA
net = TA + V AA

ne + V AA
ee , (2)

with TA, V AA
ne and V AA

ee being the kinetic energy of atom A, the nucleus-electron interaction

and the electron-electron repulsion within atom A, respectively. Similarly, EAB
int stands for the

sum of the nucleus-nucleus (V AB
nn ) and the electron-electron (V AB

ee ) repulsions, together with the

attraction between the electrons located in atom A and the nucleus in atom B (V BA
ne ) and vice

versa (V AB
ne ),

EAB
int = V AB

nn + V AB
ee + V AB

ne + V BA
ne . (3)

One attractive feature of IQA is the fact that it is based on orbital-invariant scalar functions

which enables the separation of E in terms corresponding to atoms and to atomic pairs in an

unambiguous and transparent manner. Another important feature of the IQA methodology in

the study of intermolecular interactions is the ability to put together atoms to form groups.

These groups, or superbasins, can be identified with functional groups within a molecule, or

with molecules within a molecular cluster. We can define in this way the energy of a collection

of atoms G as

EG
net =

∑

A∈G

EA
net +

1

2

∑

A∈G

∑

B∈G
A 6=B

EAB
int , (4)

while the interaction energy between groups G and H reads,
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EG ,H
int =

∑

A∈G

∑

B∈H

EAB
int . (5)

The change in energy related with the formation of a molecular cluster from molecules

G · · ·H · · ·I can be computed using the formula:

∆E =
∑

G

EG
def +

∑

G

∑

G>H

EG H
int , (6)

wherein EG
def is the difference of the energy of group G within the molecular cluster G · · ·H · · · I

and in its isolated state. [15, 20] It is possible to modify equation (6) by adding fractions of EG
def

and EH
def to EG ,H

int . The resulting expression is a pairwise sum G · · ·H of interacting monomers.

∆E =
∑

G

∑

G>H

(
EG H

int +

(
EG H

int∑
I 6=G E

I G
int

)
EG

def +

(
EG H

int∑
I 6=H EI H

int

)
EH

def

)

=
∑

G

∑

G>H

EG H ′
int . (7)

The electron-electron term can be further divided into Coulombic and exchange-correlation

terms. This division enables a rearrangement of the whole interatomic energy as the addition

of classical (V AB
cl ) and exchange-correlation (V AB

xc ) contributions,

EAB
int = V AB

cl + V AB
xc . (8)

V AB
xc and V AB

cl are identified with covalent and ionic components of the interaction between

atoms A and B. [16]

IQA implementation of DFT

The IQA energy decomposition implies the calculation of (i) the kinetic energy, which de-

pends on the 1-RDM, (ii) the Coulombic or classical (cl) interaction energy that is determined

solely by the electron density ρ(r) of the system and (iii) the exchange-correlation energy that

entails the computation of the corresponding density, ρxc(r1, r2), which is related to the pair

density ρ2(r1, r2), by the following relationship:

ρ2(r1, r2) = ρ(r1)ρ(r2) + ρxc(r1, r2) (9)
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The dependence of the IQA partition on 1-RDM and 2-RDM impedes the direct use of

DFT in IQA. This problem had been previously bypassed by assigning the exchange-correlation

energy not accounted by the exchange obtained directly from the Kohn-Sham determinant to

intra-atomic exchange-correlation terms. This approach leads to the complete recovery of the

electronic energy by the IQA partition, although, it overestimates systematically the exchange-

correlation component of V AA
ee in detriment of EAB

int . [17]

Some of us proposed an alternative approach that uses scaling arguments, which results in

a complete recovery of the total electronic energy and a correction of the intra- and interatomic

exchange-correlation energies. [18] We describe now this coupling of IQA and DFT, which is

the one followed in this work. For a non-hybrid exchange-correlation functional ε(r), the DFT

exchange-correlation energy, EDFT
xc , can be calculated as

EDFT
xc,loc =

∫

∞
drρ(r)ε(r), (10)

For hybrid functionals Equation (10) takes the form

EDFT
xc = EDFT

xc,loc + a0E
KS
x , (11)

a0 is the fraction of the Hartree-Fock exchange used by the functional εxc and EKS
x is the exchange

energy calculated using the Kohn-Sham molecular orbitals.

We define now the quantity λA as in reference [18]

λA = a0 +
1

EA,KS
x

∫

A

ρ(r)ε(r), (12)

in which

EA
xc = EAA

xc +
1

2

∑

B6=A

EAB
xc . (13)

with

EAA
xc =

1

2

∫

ΩA

dr1

∫

ΩA

dr2r
−1
12 ρxc(r1, r2), (14)
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and

EAB
xc =

∫

ΩA

dr1

∫

ΩB

dr2r
−1
12 ρxc(r1, r2). (15)

Now, we can define intra- (A=B) and inter-atomic (A6=B) IQA/DFT exchange-correlation

energies as

ẼAB
xc =

1

2
[λA + λB]V AB,KS

x , (16)

from which the total DFT exchange correlation energy (LHS of Eq. (11)) can be completely

recovered as

EDFT
xc =

∑

A

ẼAA
xc +

∑

A>B

ẼAB
xc . (17)

Computational Details

We decided to use previously reported CCSD/aug-cc-pVDZ homodromic water cluster struc-

tures, comprising from 2 to 6 water molecules, taken from the work of Segarra-Mart́ı et al. [24].

Given that the structure of the monomer was not reported in this reference, we optimised

the corresponding geometry using the same level of theory. Additionally, we optimised the

structures of other four water hexamers using the same approximation (see Figure 1). From

these geometries, we procured the electron density of the systems of interest from single point

calculations for sixteen different exchange-correlation functionals:

• an LDA functional, the Slater exchange in combination with local VWN correlation

(SVWN) [25]

• the generalized gradient approximations (GGA) B97, [26] BLYP, [27, 28] BP86, [27, 29]

OLYP, [28, 30] PBE [31] and PW91 [32]

• the hybrid B3LYP, [28, 33] B3P86, [29, 33] and B3PW91 [32, 33]

• the meta-GGA TPSS [34] and
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• the heavily parametrised Minnesota functionals M06, [35] M06-2X, [35] M06-L, [36] M06-

HF [37] and M11-L [38].

We also considered the Hartree-Fock, MP2 and CCSD wavefunction approximations. All the

electronic structure calculations were performed with the GAMESS-US [39] and PySCF [40]

packages. Later on, densities obtained from those single points were analysed and their cor-

responding eletronic energies partitioned under the IQA formalism, using our Promolden

code. [41] The calculation used β-spheres with radii between 0.1 and 0.3a.u. Restricted angular

Lebedev quadratures were used. Inside the β-spheres, we considered 451 mapped radial point

trapezoidal quadratures and L expansions truncated at l = 10. Outside the β-spheres, we in-

creased the number of mapped radial points to 651 and L up to l = 12. Finally, we visualised

our results with the Python library Matplotlib [42] and the Avogadro program [43].

Results

In order to give a comprehensive perspective about the quality of the IQA descriptors using

the exchange-correlation functionals addressed in this investigation, we assess the most relevant

energetic features of the studied water clusters. Namely, we consider (i) cooperative effects in

formation energies, (ii) IQA deformation and interaction energies and (iii) classical, exchange-

correlation and total interaction energies of covalent O−H bonds. Later on, we examine the

hydrogen bond hierarchy established by considering different structures of (H2O)6. We consider

(iv) the classical and exchange-correlation energies and (v) QTAIM delocalisation indices of

different types of hydrogen bond. The DFT functionals employed are tested against HF and

MP2 references, which show similar behaviours. Due to the excessive computational resources

requested to perform IQA analyses for medium and large-sized systems, comparisons with MP2

results without any approximation (like the one proposed by Müller [44]) cannot be extended to

water hexamers. [20] Moreover, CCSD calculations were also performed to serve as a reference

in the hydrogen bond cooperativity in homodromic structures.

Hydrogen bond cooperative effects

As discussed in the introduction, cooperativity is a prominent feature of hydrogen bonding

homodromic water clusters, (i.e., H2O rings in which every single molecule forms two hydrogen

bonds with two different molecules, being in one case the hydrogen donor and in the other,

the hydrogen acceptor) are widely regarded as prototypical systems in the study of hydrogen

8



bond cooperativity. [19] These effects are manifested in the mutual strengthening of hydrogen

bonding within these structures.

A way to assess the hydrogen bond cooperativity in cluster formation energies is to compute

the difference between the energy of the process (H2O)n−1 + H2O −−→←−− (H2O)n (∆En) and that

of the water dimer, (∆E2) for which there is only one hydrogen bond,

∆∆E = ∆En −∆E2. (18)
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Figure 2: ∆∆E computed using Equation (18) with all the exchange-correlation functionals and wavefunction

approximations considered in this investigation. Hydrogen bond cooperativity is indicated by negative values of

∆∆E.

Figure 2 shows the computed values of ∆∆E as a function of the cluster size (n = 2 − 6).

We note that ∆∆E is negative in all cases, which means that all the considered approximations

exhibit cooperativity in the examined homodromic water clusters. Concerning the wavefunction

reference methods, HF, MP2 and CCSD, they all behave in a similar manner, resulting in trends

and differences among them of a few kcal/mol. By considering CCSD calculations as reference,

we can say that MP2 overestimates hydrogen bond cooperativity but to a lesser extent than HF

9



underestimates it.

The CCSD reference behaviour is reproduced remarkably well by most DFT functionals

tested. There are, however, some notable exceptions. First, the LDA-like functional SVWN

strongly overestimates hydrogen bond cooperativity. This large deviation is not surprising given

the simplicity of the LDA-like functional. Second, every Minnesota functional predict very sim-

ilar values of hydrogen bond cooperativity for the water trimer and tetramer (∆∆E3 ≈ ∆∆E4),

while for the CCSD reference, we observe that |∆∆E4| > |∆∆E3|. The reason behind this dif-

ferent behaviour may lie in the heavy parameterisation of the Minnesota family of functionals,

although this should be further investigated. Finally, OLYP underestimates systematically the

amount of cooperativity with respect to the CCSD results, in a very similar fashion to HF. This

circumstance may result from the use of a different optimised exchange functional [30] in place

of the standard one developed by Becke. [27]

IQA’s deformation and interaction energies

We can understand the formation of a molecular cluster as a three-step process within the

IQA formalism. In the first step, the interacting monomers rearrange their nuclear positions

to those in the complex. This usually leads to a small energy penalty known as preparation

or strain energy. The electronic structure of the prepared monomers may then be envisaged to

suffer a distortion (that includes polarization, charge transfer, electron delocalisation, etc) that

leads to the final distribution as found in the complex. The sum of the energy penalties of these

two first steps will be called here deformation energy (Edef). [15] In the third step, the rearranged

molecules interact to form the molecular cluster in what is denominated as interaction energy

(Eint). [15] The value of Eint for stable compounds is always negative. The formation energy of

the molecular cluster is the sum of the deformation and interaction energies (Eform = Edef+Eint).

Figure 3 shows the deformation, interaction and formation energies per water molecule for the

studied clusters. The trends are identical for all the considered approximations: Edef and |Eint|
increase with the size of the cluster. Additionally, the magnitude of Eint rises faster than |Edef |
with respecto to the number of interacting monomers (n), which results in an enlargement

of Eform with the size of the cluster. In all cases, the three quantities exhibit an asymptotic

behaviour with n.

The only noticeable deviation from the CCSD reference values of CCSD concerning hydrogen

bond cooperative effects in small water clusters is the clear increase of |Eform| by the functional
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Figure 3: Formation (solid), deformation (dotted) and interaction energies (dashed lines) per water molecule in

homodromic water clusters (H2O)n (n = 2 – 6).

SVWN. This circumstance results from a combination of an underestimation of the deformation

energy, Edef, along with an overestimation of the interaction energy, Eint. The low values of Edef

are probably caused by the failure of SVWN to take into account the subtle changes ocurring

in the deformation processes of the formation of the molecular clusters under consideration.

Interaction energy of the O−H covalent bond

The effect of including extra water molecules to homodromic water clusters can be observed

not only in the IQA interaction and deformation energies, but also in the intramolecular bond

energies. In particular, the covalent O−H bonds in which the hydrogen atom is H-bonded to

another water molecule are expected to suffer a significant change due to the aforementioned

hydrogen bond cooperative effects. Figure 4 shows the differences in the interaction energy,

and its exchange-correlation and classical components, for the O−H covalent bond for the

homodromic water clusters (H2O)n with n = 2 – 6 with respect to the isolated monomer. The

covalency of the O−H interaction diminishes with the inclusion of an additional water monomer

(dotted lines) with a slight underestimation of ∆Vxc by the functional SVWN. We did not find
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any anomaly among the functionals beyond a moderate underestimation of Vxc by the LDA-like

functional SVWN.
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Figure 4: Differences in exchange-correlation (dotted), classical (dashed) and total interaction energies (solid)

for O−H bonds in which the hydrogen atom is H-bonded to another water molecule within the homodromic

clusters (H2O)n (n = 2 –6). The values are given with respect to the monomer average energies.

Regarding the classical component of the interaction energy shown in Figure 4 with dashed

lines, the magnitude of the charge of the O and hydrogen-bonded H basins increases when more

molecules are included in the system. [19] Accordingly, the addition of water molecules makes the

classical component of the O−H interaction energy more stabilising, because of the larger charge

of the involved atoms. Although all the approximations follow this trend, the MP2, HF, and the

HF-like M06-HF results are clearly separated from the rest. For example, HF overestimates ∆Vcl.

This overestimation might occur due to the overdelocalised electron density of the uncorrelated

HF method, that leads to larger atomic charges than those computed in correlated calculations,

and hence to an enlargement of the classical part of the interaction energy. [45] Finally, the

magnitude of the overall change in the O−H interaction energy in (H2O)n clusters raises with

n, because |∆V O–H
cl | > |∆V O–H

xc |. Once again, the MP2, HF and M06-HF values are separated
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Table 1: Scale of hydrogen bond formation energies within water clusters proposed in this study. The hierarchy

is presented in an increasing order of magnitude. Taken from reference [20].

Type of HB Description

(1) (i) the H atom involved in the hydrogen bond belongs to a double HB

donor and (ii) the oxygen that participates in the interaction acts as a

double HB acceptor.

(2) (i) the hydrogen of a double HB donor is bonded to the oxygen of a

single HB acceptor or (ii) the oxygen of a double acceptor interacts with

a hydrogen of a single donor.

(3) a hydrogen bond is formed between two double HB donors or two double

HB acceptors.

(4) a hydrogen of a single HB donor is bonded to the oxygen of a single HB

acceptor.

(5) (i) a hydrogen of a double HB acceptor is in contact with the oxygen

of a single donor or (ii) the O atom of a double donor interacts with a

hydrogen of a single acceptor.

(6) the oxygen of a double HB donor interacts with a hydrogen of a double

HB acceptor

from the rest of approximations considered herein, which describe ∆EO−H
int in a very similar way.

Types of hydrogen bonds

The water clusters studied so far are prototypical systems where only hydrogen-bond coop-

erativity takes place. We can also consider anticooperative effects (i.e., the weakening that the

ocurrence of certain hydrogen bonds cause on others) which appear in water hexamers different

from the ring structure. We suggested previously a hydrogen bond strength hierarchy based on

the coordination number of the hydrogen acceptor and donor involved in the interaction. [20]

This hierarchy is shown in Table 1. We assess now this hierarchy with the different functionals

considered herein.

Figure 5 depicts the classical and exchange-correlation parts of E ′int from Equation (7). In all

cases, the dominant term is the exchange-correlation contribution (in solid lines). The classical

part of E ′int is much smaller in absolute value but still an attractive contribution for all the
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Figure 5: Average values of the classical (dashed) and exchange-correlation (solid lines) contributions to the

interaction energy between water molecules computed with the aid of Equation (7).

examined exchange-correlation functionals. The trends in classical and exchange-correlation

components match overall those reported in reference [20]. The only appreciable disparity

concerns the exchange-correlation energies of the hydrogen bonds of types 2 and 3 (Table 1)

whose hydrogen bond strength are in the inverse order with respect to those previously reported

in reference [20]. Another noticeable feature of Figure 5 is the appreciable underestimation of the

exchange-correlation energy by the HF method. To further assess these results, we computed the

delocalisation indexes (DI) between the water molecules within the addressed water hexamers.

Figure 6 shows the average value of the delocalisation indices for the different types of hydrogen

bond for each functional and for HF. We observe again that hydrogen bonds of type 2 had a

larger covalent component. This in contrast with out previous results. [20]

Despite the slight discrepancies observed in the description of hydrogen cooperative and

anticooperative effects, most of the exchange-correlation functionals considered herein describe

suitably the hydrogen bond non-additivity within water clusters. This results paves the wave for

the utilisation of the addressed functionals in the study of larger warter clusters and hydrogen-
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Figure 6: Averages of the delocalisation indices for the type of hydrogen bonds in Table 1.

bonded molecular clusters in general.

Conclusions

We have assessed the ability of a variety of DFT functionals to describe hydrogen bond

cooperative and anticooperative effects in different water clusters. Our results indicate that

most functionals correctly characterise the tendencies of the IQA partition of the electronic

energy computed with ab-initio methodologies. All but the SVWN, OLYP and Minnesota’s

functionals reproduce the hydrogen bond cooperativity profile of the reference. Only the SVWN

overestimates the interaction energy in an appreciable manner, and the interactions O−H and

O···H are adequately reproduced, being the HF-like M06-HF the closest functional to the HF

and MP2 references. When applied to the hydrogen bond hierarchy classification, the same

conclusions are found. Regarding the decrease in the quality of the electron densities reported

by Medvedev et al., [22] we have not found any appreciable effect in the newest functionals,

at least as the description of the non-additive effects in the hydrogen bonds addressed in this

investigation is regarded. Overall, we hope that this study represents a basis for the application
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of IQA/DFT to a larger vaierty of chemical systems, such as, large water clusters.
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Abstract 

Electrostatic and stereoelectronic effects associated to fluorine atoms can be exploited as 

conformational tools for the design of shape-controlled functional molecules. To gain further 

insight into the nature and strength of these effects, we use the Interacting Quantum Atoms 

(IQA) method augmented with the semiclassical pairwise dispersion potential to decompose 

the conformational energies of fluoro-substituted molecules into fragment-based energy 

contributions, which include deformation/distortion terms and the electrostatic, exchange-

correlation and dispersion interactions. The studied molecules comprise various F-CH2-CH2-

X and F-CH2-CO-X systems, as well as selected conformers of an α,β-difluoro-γ-amino-acid 

derivative that is potentially useful for the design of shape-controlled bioactive amino acids 

and peptides. We identify the most relevant exchange-correlation and/or electrostatic 

interaction terms contributing to the stability of the various conformers, and we show that IQA 

can assess the gauche/anti or trans/cis preferences in molecules with two or more rotatable 

bonds as well as to study the roles played by other concomitant effects (e.g., CH/OH/NH···F 

contacts). For the α,β-difluoro-γ-amino acid derivatives, our theoretical analysis points out 

that the gauche/anti and trans/cis effects associated to fluorine bonds can be significantly 

attenuated by other specific intra-molecular contacts. 
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Introduction  

In the last decades, fluorine has arisen as a remarkable element in numerous applications. 

Some of the most successful drugs on the market today include one or more fluorine atoms 

in their structures. Fluorine-containing molecules have made a significant contribution to the 

development of modern crop protection agrochemicals (herbicides, insecticides, and 

fungicides).2, 3 Fluorinated materials are widely used in liquid crystal displays4 and in 

photovoltaic solar cells.51 Specific fluorine substitution redefines the reactivity of non-

fluorinated substrates and catalysts in terms of reaction yields, diastereo- or enantiomeric 

ratios, and mechanistic pathways.6, 7 Similarly, fluorination modifies hydrophobicity, ring 

puckering and secondary structure propensity of amino-acids, and influences peptide/protein 

folding, stability and intermolecular interactions.8  

The introduction of fluorine into a molecule can affect different physicochemical 

properties (i.e. hydrophobicity, reactivity, conformation, noncovalent interactions, etc.) due to 

electrostatic and stereoelectronic effects. Fluorine is a small atom that can replace hydrogen 

in organic molecules with a minimal steric impact, but with significant electronic 

consequences. It is the most electronegative element and, accordingly, the C−F bond 

presents a high polarity (i.e. Cδ+−Fδ−) and a low polarizability. This results in a strong ionic 

character and a large dipole moment for the C−F moiety that influence the chemical 

properties of adjacent groups.9 For example, pKa values of acetic acid and its successive α-

fluorinated derivatives change from 4.76 (CH3COOH) to 0.23 (CF3COOH) upon fluorine 

substitution.10 In addition, numerous examples show that stereoselective introduction of 

fluorine atoms within a molecule results in different conformational properties.11-15 On one 

hand, the C−F bond tends to align antiparallel to adjacent C=O bonds to confront the 

corresponding dipole moments,11 and to orient itself close to positively charged groups in 

order to maximize favorable charge/dipole interactions.16 On the other hand, the high 

electronegativity of fluorine determines the presence of a low energy *
C Fσ −  antibonding orbital 

that can accommodate electron density from stereoelectronically aligned lone pairs or 

adjacent σ and π bonds. Although this stereoelectronic effect (hyperconjugation) is 

energetically small, it has been traditionally invoked to explain the stabilization of certain 

molecular conformations.9  

Traditionally, 1,2-difluoroethane has been considered the benchmark case for 

understanding the origin of the gauche structural preference (i.e. F-C-C-X angle around 60º). 
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In previous computational works,17-19 the natural bond orbital (NBO) method20 ascribes the 

gauche preference in 1,2-difluoroethane to the *
CH CFσ σ→  hyperconjugative interactions 

arising when adjacent C-H and C-F bonds align antiparallel. However, the ability of NBO to 

provide a right balance between Lewis (i.e. steric and electrostatic) and non-Lewis 

contributions has been questioned21 by the Energy Decomposition Analysis (EDA) 

approach,22 which similarly dismisses the central role of hyperconjugation in the 

conformational gauche effect. Thus, when EDA characterizes the interaction between two 

CH2F radicals in the gauche/anti geometries of 1,2-difluoroethane, it turns out that equally-

favorable orbital and electrostatic interactions contribute to explain the gauche effect.23 

Further support for the role of electrostatic interactions comes from an Interacting Quantum 

Atoms (IQA) analysis, in which the largest diatomic contribution to gauche stability is provided 

by the electrostatic interaction between carbon and fluorine atoms in positions 1,3.24 As a 

result, the authors conclude that the origin of the gauche effect in 1,2-difluoroethane is 

electrostatic rather than hyperconjugation.  

Besides 1,2-difluoroethane, the conformational effects associated to the presence of 

fluorine atoms have been computationally analyzed in related compounds. For instance, DFT 

energy profiles connecting the gauche and anti conformers and atomic charges have been 

evaluated for a series of 16 β-substituted α-fluoroethanes (F-CH2CH2-X) in order to assess 

the influence of steric and electrostatic interactions, meanwhile NBO analysis are employed 

to disclose the role of hyperconjugation.18 These results point out that both electrostatic and 

hyperconjugative effects may contribute to conformer stability. In general, the role of 

hyperconjugation stabilizing the gauche structures increases with the electronegativity of the 

first atom in the X moiety. Favorable electrostatic interactions between fluorine and 

electropositive atoms in the X substituent also contribute to the gauche preference, with a 

remarkable gauche stabilization observed for positively charged groups like in 2-

fluoroethylammonium (F-CH2CH2-NH3+).16, 18, 25 It has been also found that F atoms adjacent 

to carbonyl groups stabilize the trans/gauche F-C-C=O arrangements in the gas-phase, 

although this intrinsic preference can be reversed to the alternative cis form in polar solvents 

as suggested by DFT calculations coupled with a continuum solvent model.26-28 On the other 

hand, the NBO characterization of the 2-fluoroethanol (F-CH2CH2-OH) conformers has 

explained the largest stability of a particular gauche structure by the presence of a favorable 

electrostatic O-Hδ+∙∙∙δ-F interaction, which is termed as a non-classical hydrogen bond.29 In 

contrast, a very recent work interprets the 4JHF couplings in α-fluoro amides as a genuine N-
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H···F hydrogen bond.30 Finally, the anti/gauche conformers around the F-C-C-S sequence in 

sulfur-containing systems have been subject to EDA considering the FH2C∙ and ∙CH2SX 

radicals as reference fragments.31 The electrostatic interaction favors preferentially the 

gauche conformer followed by the orbital interaction energy accounting for charge transfer 

effects. In the same study, 31 NBO indicates that stereoelectronic effects work in favor of 

gauche conformers. 

Other more complex systems have been also computationally examined to analyze 

the conformational effects associated to the introduction of fluorine atoms. DFT geometry 

optimizations followed by MP2 single point calculations have revealed that the conformational 

landscape of a series of 25 benzyl alcohols  is significantly influenced by the presence of one 

or two fluorine atoms in the ortho position.32 Intramolecular interactions characterized in terms 

of Atoms in Molecules (AIM), Noncovalent Interactions (NCI) and NBO analyses, show that 

OH∙∙∙F, CH∙∙∙F and/or CH∙∙∙O intramolecular contacts contribute to the stabilization of the 

various conformations.32 On the other hand, the origin of the drastically different structure 

adopted by linear perfluoroalkanes and hydrocarbons (i.e helical vs zig-zag) has been 

inspected by means of NBO/NCI analyses using DFT wave functions. The energetic 

preference for the helical structures increases monotonically with the chain length of the 

perfluorated alkane, what has been explained in terms of *
CC CFσ σ→  hyperconjugative 

interactions, which are absent in the zigzag conformation.33 
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Scheme 1 

From our review of the former computational investigations, it turns out that a variety 

of effects may be behind the conformational preferences observed in fluorinated systems. 

However, direct comparisons among the results obtained in these studies are largely 

hampered by the diversity of methodologies employed. Therefore, we pursue in this work to 

reexamine the conformational effects exerted by fluorine atoms using a common 

methodology based on the IQA energy partitioning augmented with pairwise dispersion 

energies. The dispersion-corrected IQA approach facilitates the decomposition of the global 

conformational energies into fragment contributions that can be further separated into various 

quantum mechanical and classical electrostatic terms. To better appreciate the 

conformational impact of these energy contributions, we will consider two classes of organic 
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compounds. On one hand, we will evaluate intra and inter-atomic contributions to the relative 

energy of the gauche/anti conformers of fluoroethylene-derived systems (1-7 in Scheme 1), 

the trans/cis conformers in carbonyl containing systems (8-10), and the combined gauche-

gauche or gauche-trans preferences (11-13). On the other hand, we will characterize in detail 

the conformational properties of two diastereomers of an α,β-difluoro-γ-amino-acid derivative 

(14a/14b in Scheme 1) that have been proposed to be particularly relevant for the design of 

shape-controlled bioactive amino acids and peptides,14 as they may link to other amino acids 

resulting in peptides with predictable conformational behavior. According to their crystal 

structures, the different stereochemistry at the α and β carbons, (R,R) for 14a and (R,S) for 

14b, results in a different backbone conformation (extended zig-zag in 14a and partially bent 

in 14b). Both structures exhibit the normally expected gauche orientation in the F23-C22-C19-

F20 and F20-C19-C16-N13 bonds and the antiparallel alignment (trans-planar) of the F23-C22-

C25=O26 moiety. In fact, these three effects are supposed to determine the final conformation 

of the 14a and 14b molecules. All in all, we report theoretical results obtained for typical 

model systems prone to characterize specific conformational effects, but also for actual 

fluorinated compounds of synthetic and biochemical interest. The IQA methodology will allow 

us to treat them on the same basis, yielding thus a full energetic description of the various 

effects influencing their conformational preferences.  

 

Computational methods 

IQA energy decomposition 

The IQA approach34 partitions the first- and second-order reduced density matrices into 

atomic regions such as the attraction basins (ΩA) that stem from the topological properties of 

the charge distribution ρ(r) as commonly defined within the framework of the quantum theory 

of atoms in molecules (QTAIM). Two scalar fields derived from quantum mechanical (QM) 

wavefunctions are required to accomplish the IQA decomposition: the first order reduced 

density matrix ρ1(r1,r1’) and the pair density, ρ2(r1,r2). Then IQA decomposes the total energy 

of a molecular system in the gas-phase as 

( ) ( )int
A AB A AA AA AB AB BA AB
net ne ee nn ne ne ee

A A B A A B

E E E T V V V V V V
> >

= + = + + + + + +        (1) 
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where ( )A
net net AE E≡ Ω  is the net electronic energy of atom A that includes the kinetic energy 

TA and the potential energy due to nuclei-electron (ne) attractions and electron-electron 

repulsions (ee) within ΩA. The interaction energy ( )int int ,AB
A BE E= Ω Ω  between atoms A and B 

in the molecular system collects various potential energy terms (nn, en, ne and ee). We stress 

that, according to the IQA terminology, an interaction energy is a diatomic contribution to the 

total energy of a molecule. In fact, the interaction energy int
ABE  can be divided into classical 

and non-classical contributions, allowing thus to define a purely classical (electrostatic) 

component of the interaction energy, int, ,
AB AB AB BA AB

class nn ne ne ee CoulE V V V V= + + +  , along with a quantum 

(exchange-correlation) contribution such that int int, int,
AB AB AB

class xcE E E= + . In this respect, we note 

also that the classical IQA components are distinguished only in the diatomic interaction 

terms int
ABE , but not within the atomic net energies A

netE .  

By summing separately all the atomic and diatomic terms in equation (1), the total 

energy of a molecule is readily decomposed into net and interaction energy components (

int, int,class, ,...A AB
net net class

A A B

E E E E
<

= = ∆  ). By inserting the corresponding IQA energies for a given 

pair of gauche and anti conformers, the energy difference Egauche−Eanti can be written as 

int,class int,
gauche anti

net xcE E E E E E∆ = − = ∆ + ∆ + ∆        (2) 

Dispersion corrected IQA 

In previous work,35 we have shown that IQA calculations can be complemented with the 

pairwise formulation of the third-generation dispersion (D3) correction for DFT and HF 

methods,36 which is a semiclassical potential inspired on the London formula for the 

dispersion attraction between two atoms A and B at large distance and that does not alter the 

underlying charge density. The correct asymptotic behavior of the A-B dispersion energy can 

be reproduced using the Becke-Johnson (BJ)37 rational damping function, resulting in the 

D3(BJ) dispersion energy correction (termed simply as D3 in the manuscript) that can be 

readily combined with the IQA decomposition scheme. To this end, we simply add the 

dispersion interaction energies int,
AB

dispE  to the rest of the IQA interaction energy terms such 

that the total D3-corrected IQA decomposition results,  
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( )int, int, int,
A AB AB AB
net class xc disp

A A B

E E E E E
>

= + + +          (3) 

To keep the computational cost of the IQA calculations withtin reasonable bounds, all the 

IQA-D3 calculations are done with HF wavefunctions. In fact HF-D3 method provides a 

reasonable description of molecular structure and energetics,38, 39 and offers a 

straightforward physical partitioning because HF entirely lacks dispersion energy. To further 

assess the utility of the HF-D3 IQA decomposition, we briefly compare in the Supporting 

Information (Table S12) the HF-D3 IQA results on 1,2-difluoethane with those obtained with 

correlated methods (B3LYP-D3 and MP2). 

Interacting Quantum Fragments (IQF-D3) 

In principle, the grouping of the atomic IQA energy components into chemically-meaningful 

fragment contributions can be done using different notations and protocols depending on the 

particular problem at hand. For example, to characterize the conformational energy variation 

upon an internal rotation about a single bond, we will distinguish at least two molecular 

fragments, P and Q, that are covalently linked (P-Q) through the rotating bond. Such 

interacting quantum fragments (IQF) partitioning of a molecular system splits the total energy 

in intra-fragment and inter-fragment energy terms. The intra-fragment net energy ( P
netE  and 

Q
netE ) collects the atomic net energies and the interaction energies among the atoms placed 

in the same fragment, whereas the inter-fragment term ( int
PQE ) sums the classical and quantum 

interaction energies between atoms in different groups.  

Using IQF-D3 quantities, the relative energy ∆E between the gauche and anti 

conformers around the P-Q bond can be expressed as: 

int,class int, int,
P Q PQ PQ PQ
net net xc dispE E E E E E∆ = ∆ + ∆ +∆ + ∆ + ∆       (4) 

where the relative IQF terms in the right hand are just the corresponding gauche/anti 

differences of the grouped terms (e.g, ,gauche ,P P P anti
net net netE E E∆ = − ) and the int

PQE∆  term is split into 

the classical interaction energy int,class
PQE∆  and the purely QM correlation-exchange contribution 

int,
PQ

xcE∆ . 

To further clarify the meaning of the IQF terms, it may be useful to briefly discuss the 

similarities and differences between IQF and the energy decomposition analysis (EDA).40, 41 
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Assuming that EDA is applied to analyze the energy difference between two conformers of 

the P-Q system with reference to separated (unrelaxed) P· and Q· radical fragments, ∆E would 

be the sum of three terms:  a classical electrostatic interaction energy between P· and Q· (

elstatV ), a Pauli repulsion term ( PauliE∆ ) that incorporates the kinetic and potential energy 

changes due to the antisymmetrization of the fragment wavefunctions, and an orbital 

relaxation energy ( orbE∆ ) that arises from inter-fragment charge transfer and polarization 

effects. In general, the int,
P Q PQ
net net xcE E E∆ + ∆ + ∆  sum in IQF (termed as exchange-correlation-

repulsion) resembles the Pauli orbE E∆ + ∆ sum in EDA, while int,class
PQE∆  would correspond to elstatV  

although this identification is exact only in the limit of weakly interacting fragments for which 

orbE∆  tends to zero.42 Nevertheless, the grouped EDA and IQF terms admit a similar 

interpretation on the basis of electrostatic and/or QM effects. However, the IQF balance 

between intra-fragment deformation ( P Q
net netE E∆ + ∆ ) and inter-fragment exchange-correlation 

effects ( int,
PQ

xcE∆ ) provides an alternative description of the QM effects embedded in the 

Pauli orbE E∆ + ∆  term without referring to separate fragments.   

Charge and Dipole electrostatic interactions 

In order to deepen the description of the IQF int,class
PQE∆  term, the multipole expansion of the 

electrostatic potential may be useful for assessing the role of the charge distribution in the P 

and Q regions. In fact the QTAIM and IQA approaches allow us to express the Coulombic 

energy as a multicenter multipole expansion in a natural way.43 It is well known that the 

electrostatic potential exerted by a set of point charges at a sufficiently distant point can be 

expanded in terms of multipole moments. In our study we focus on the first two contributions 

to the electrostatic potential, i.e., the total charge of a given basin (q) and the dipole moment 

(d) emerged from its distribution. Hence, only the charge-charge, charge-dipole and dipole-

dipole interactions have been considered. Their respective analytical formulation are given in 

Eqs. (5)-(7) (in atomic units): 

P Q

qq

q q
E

R
=             (5) 

3

P Q

qd

q
E

R

µ= R
           (6) 
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2

5

3( )( )P Q P Q

dd

R
E

R

−= μ μ μ R μ R
         (7) 

where the superscripts P and Q denote the two fragments considered, R represents the 

distance between their centers of mass, qP / qQ are the total charge in P/Q (i.e., P A

A P

q q
∈

= ) 

and µP/µQ are the dipole moment generated by the total charge distribution within P/Q.  

Starting from the atomic dipoles arisen upon a particular 3D partitioning of the space, 

it is not, in general, straightforward to reconstruct fragment dipoles from atomic ones. The 

simple addition of the corresponding dipole components is not sufficient for the study of the 

charge-dipole or dipole-dipole fragment interactions. For neutral molecules but not for ions, 

µ is origin independent since any coordinate transformation 0'+r = r R  gives 

( ) ( ) ( ) ( )0 0 0 0 0' ' ' ' ' ' ' 'd d d d qρ ρ ρ ρ= = + + + = + +   μ r r r r r R r R r R r r r R r R    (8) 

so that the charge-translation 0qR term vanishes for neutral molecules. To derive an atomic 

decomposition of µ, the charge density ρ can be partitioned into disjoint atomic regions with 

their own origin of coordinates at positions 0
AR , and performing thus a transformation 

0
A Ar = r + R  in each basin. The total dipole is then expressed as 

( ) ( )( ) ( )0 0 0 0
A A

A A A A A A A A A A A
int

A A

d d qρ ρ
Ω Ω

= + + + = +  μ r r R r R r R r μ R    (9) 

Eq. (9) shows that µ is the summation of atomic dipoles µA that have two contributions: the 

intrinsic term A
intμ that comes from the integration of the dipole density function within the 

atomic basin plus the corresponding charge-translation term . Fragment-based dipoles 

P
μ can be likewise defined by considering both the intrinsic contributions and the net charges 

qA of the atomic basins that constitute fragment P:  

( )0 0
P A A P A

int
A P A P

q
∈ ∈

= + − μ μ R R         (10) 

The reconstructed dipoles P
μ depend on the origin of coordinates which, in this work, are 

selected as the center of mass of fragment P ( 0
PR ). We note that, in the case of neutral 

molecules, the dependency of the P
μ  values on the origin of coordinates is small. We also 

0
A AqR
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emphasize that the total electrostatic interaction energy among the various atoms/fragments 

in a given molecule computed from the multipolar expansion is always origin-independent. 

QM calculations 

Initial coordinates for the small and medium-sized models were generated using the UCSF 

Chimera program.44 Starting from 1,2-difluoroethane in the gauche conformation, all the 

CH2F-CH2X systems were built in the gauche conformation by replacing the second fluorine 

atom by the appropriate X group. Then the initial geometries of the corresponding anti 

conformers were obtained by adjusting the F-C-C-X angle to 180o. Similarly, we built the initial 

trans/cis conformers for the CH2F-COX systems. 

All the gauche/anti and trans/cis structures of the small models were fully optimized in 

the gas-phase with no symmetry constraints at the HF-D3/cc-pVTZ and the RI-MP2/cc-pVTZ 

levels of theory. These calculations were done with the ORCA 4.0.1 package.45 The HF-

D3/cc-pVTZ energy minimizations were carried out with the D3 dispersion energy and 

gradient corrections choosing the Becke-Johnson (BJ) damping function.36, 37 The resolution-

of-the-identity (RI) approximation was activated for the MP2 calculations using the 

appropriate auxiliary basis set. To further estimate electron correlation effects on the 

conformational energies, we employed the domain-based Local Pair Natural Orbital (DLPNO) 

coupled cluster method45, 46 as implemented in the ORCA 4.0.1 package. More specifically, 

we performed DLPNO-CCSD(T)/aug-cc-pVTZ single point calculations on the MP2/cc-pVTZ 

geometries using tight thresholds to control the DLPNO approximations. The DLPNO-

CCSD(T) method exhibits near linear scaling at the cost of introducing small deviations from 

the canonical coupled cluster methods. For tight DLPNO thresholds, the typical errors with 

respect to canonical results are below 0.25 kcal/mol.47 

For 1,2,3-trifluoropropane and the related CH2F-CHF-CH2X system with an isoindole-

derivative as the X substituent, initial coordinates were generated by setting the F-C-C-F and 

F-C-C-X angles to ±60º and/or 180º, resulting in nine structures accordingly named g+/g+, 

g+/g-, g+/anti, etc. In the case of the CH2F-CHF-CONHCH3 molecule, the F-C-C=O angle 

takes the values 180º for the trans and 0º for the cis conformers, which combined with the 

three options available for the F-C-C-F torsion result in six initial structures termed g+/trans, 

g+/cis, g-/trans, etc. As in the smaller CH2F-CH2X systems, initial geometries were fully 

optimized in the gas-phase at the HF-D3/cc-pVTZ and the RI-MP2/cc-pVTZ levels of theory 
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followed by single point DLPNO-CCSD(T)/aug-cc-pVTZ calculations on the MP2/cc-pVTZ 

geometries. 

For the 14a and 14b compounds, automatic conformational analyses were performed 

using the multiconformer generator MS-DOCK program.48 Starting from the corresponding 

crystal structures,14 we used the antechamber program to optimize the initial geometries and 

to assign AM1-BCC atomic charges and SYBYL atom types.49 Subsequently, 50 different 

conformers were generated for 14a and 14b using the MS-DOCK software and the resulting 

structures were optimized using the MMFF94 force field. During conformer generation, a filter 

based on the root mean squared deviation of the Cartesian coordinates and the energy was 

applied to eliminate similar structures. The 14a and 14b different conformers were then 

optimized at the HF-D3/cc-pVDZ level of theory using the ORCA 4.0.1 program.45 After 

inspection of the structure and energy of the minimized structures, only 20 different 

conformers remained for 14a and 14b. These were reoptimized at the HF-D3/cc-pVTZ level 

of theory using ORCA both in the gas phase and in chloroform using the SMD continuum 

solvent model.50 For the five more stable conformers of 14a and 14b, selected NMR vicinal 

proton-fluorine coupling constants 3JH,F were estimated using a seven-parameter Karplus-

type relation.51 The equation correlates a 3JH,F value with the corresponding H-C-C-F torsion 

angle and it also includes correction terms for substituent electronegativity a well as for H-C-

C and F-C-C bonds angles. The 3JH,F values were computed using the HF geometries 

optimized in chloroform, whereas the electronegativity values for the Cα-Cβ substituents (1.4 

for fluorine, 0.9 for carbon and 0.0 for hydrogen) were taken from reference 51.  

Promolden calculations 

The IQA decomposition of molecular energies at the HF-D3/cc-pVTZ level was performed 

with a modular version of the PROMOLDEN program52 that is being developed in our 

laboratory. As previously noticed, the pairwise dispersion energies computed with the DFTD3 

program53 are combined with the various IQA terms ( ( ) ( )net int, ,A A BE EΩ Ω Ω , …) to formulate 

the IQA-D3 energy decomposition of the corresponding HF-D3 energies (i.e., three-body 

dipole−dipole−dipole dispersion energy is not included). The IQA quantities are numerically 

integrated over the atomic basins ΩA, which constitute finite and irregular integration 

domains, using very large angular and radial grids in atomic spherical quadratures. We 

adopted integration settings that represent a compromise choice between computational cost 

and accuracy for small and medium-sized molecules. Thus, a β−sphere around each atom 
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was considered (i.e., a sphere completely contained inside the atomic basin), with a radius 

equal to 60 % the distance of its nucleus to the closest bond critical point in the electron 

density. High-quality Lebedev angular grids were used with 5810 and 974 points outside and 

within the β-spheres of heavy atoms, respectively, (3890 and 590 points for hydrogen atoms). 

Euler-McLaurin radial quadratures were employed with 512 and 384 radial points outside and 

inside the β−spheres of heavy atoms, respectively (384 and 256 points for H). The largest 

value of the radial coordinate in the integrations was 15.0 au for heavy atoms (10.0 au for H 

atoms). Maximum angular moments, λmax, of 10 and 6 were assigned to the Laplace and 

bipolar expansions of the 1/r12 operator outside and within the β-spheres.  

Most of the IQA calculations reported in this work were computed with the conventional 

O(N4) algorithm implemented in PROMOLDEN that employs the N occupied canonical 

molecular orbitals (MO) to expand the first and second-order density matrices. For the 

14a/14b compounds that have 51 atoms, the O(N4) algorithm is exceedingly expensive and, 

therefore, we used a variant that uses localized MOs and employs the multipolar approach54 

for computing selected interatomic exchange-correlation (xc) energies. The LMOs were 

computed with the Pipek-Mezey algorithm55 as implemented in the ORCA 4.0.1 package. For 

each atomic basin ΩA, a subset of LMOs { }LMO
i A

φ  is then built by requiring that their diagonal 

contribution to the atomic overlap matrix (
2

A

LMO
i dφ τ

Ω ) is greater than 10-6 au. The calculation 

of the IQA ( )net AE Ω  terms are done using the corresponding subset { }LMO
i A

φ  for each basin. 

For the calculation of the diatomic ( )int ,A BE Ω Ω  terms, the LMO sets of the pair of basins are 

combined as the union { } { }LMO LMO
i jA B

φ φ∪  or intersection { } { }LMO LMO
i jA B

φ φ∩ in order to 

integrate the Coulombic or exchange-correlation interactions, respectively. The multipolar xc 

approximation at high order of the angular momentum series (L=10) is activated for 1-n (n>4) 

intramolecular interactions provided that the interatomic RAB distance is greater than 5.0 au. 

For RAB >17 au, the ( ),xc
int A BE Ω Ω  values are neglected. The goodness of these additional 

approximations was tested by comparing the results of conventional (MO-based) and LMO-

based IQA calculations on the conformers of 2,3-difluoro-N-methylpropanamide and 2-(2,3-

difluoropropyl)isoindoline-1,3-dione (12 and 13 in Scheme 1). The IQA error defined as 

IQAE E− , where E is the total energy obtained from the QM calculations and EIQA is the total 
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energy reconstructed from the IQA terms, had average values of  0.5 kcal/mol (12) and 0.9 

kcal/mol (13) for the MO-based IQA calculations. The corresponding values for the 

LMO/multipolar-based IQA calculations were similar: 0.5 kcal/mol (12) and 1.2 kcal/mol (13). 

Hence, the additional numerical error due to the LMO and multipolar approximations is 

expected to be small without compromising the conclusions of the IQA analysis.  

 

Results 

As above mentioned, 1,2-difluoroethane is usually considered as the reference system to 

analyze the gauche/anti conformational preference associated to adjacent fluorine atoms. 

For this reason, initial models for the gauche (F-C-C-F 60o) and anti (F-C-C-F 180o) 

conformers of 1,2-difluoroethane were optimized in the gas phase at the HF-D3/cc-pVTZ and 

MP2/cc-pVTZ levels of theory. Both geometry optimizations provided very similar structures, 

with the largest differences in the geometries located in the C-F bond lengths (see Figure 1). 

Relative energies were further reevaluated by means of DLPNO-CCSD(T)/aug-cc-pVTZ 

single point calculations performed on the MP2 geometries (see Figure 1), the gauche 

conformer being 0.7 kcal/mol more stable than the anti one in agreement with previous results 

(unless otherwise noticed ∆E values in the text correspond to DLPNO-CCSD(T) data).  

Clearly, the magnitude of the gauche effect in 1,2-difluoroethane seems too scarce to 

allow the design of molecules with a frozen conformation. Hence, it is interesting to examine 

how the gauche preference can be modulated in other systems. Actually, replacing one of 

the fluorine atoms in 1,2-difluoroethane for other functional groups could drive away the 

energy of the gauche and anti conformers, increasing the impact of a single C-F bond in 

selecting a particular conformation. To further clarify this point, we optimized the gauche and 

anti conformers for a number of β-substituted α-fluoroethanes (see 1-7 in Scheme1 and 

Figure 1). Among the neutral molecules in Figure 1, the largest gauche/anti conformational 

preference is achieved for acetamide with 1.6 kcal/mol favoring the gauche conformation. A 

more pronounced gauche preference is induced by a positive charge adjacent to the fluorine 

atom. Thus, gauche structures with either ammonium or pyridinium groups are 6.6 and 4.2 

kcal/mol, respectively, more stable than the corresponding anti ones. 
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Figure 1.  Ball-and-stick representation of the gauche/anti conformers optimized for different CH2F-CH2-X 

systems. The C-F and C-C bond distances (Å), the F-C-C-X dihedral angle (o), and selected intramolecular 

distances (Å) measured in the HF-D3/cc-pVTZ optimized structures (RI-MP2/cc-pVTZ in parentheses) are 

shown. Energy differences (Egauche−Eanti) in kcal/mol computed at the HF-D3/cc-pVTZ, RI-MP2/cc-pVTZ (in 

parentheses) and DLPNO-CCSD(T)/aug-cc-pVTZ  [in brackets] levels of theory are also included. 

1: 1,2-difluoroethane ∆E= -0.28  (-0.76)  [-0.75] 2: 2-fluoroethyl-acetate ∆E= -0.52  (-0.85)  [-0.84] 
 

 
gauche 

 

 
anti  

gauche 

 
anti 

3: 3-fluoropropanal ∆E= -0.91  (-0.65)  [-0.68] 4: N-(2-fluoroethyl)acetamide ∆E= -1.50  (-1.59)  [-1.65] 
 

 
gauche 

 

 
anti  

gauche  
anti 

5: 2-(2-fluoroethyl)isoindoline-1,3-dione ∆E= -0.28  (-0.46)  [-0.42] 

 
gauche 

 
                                                                  anti 

6: 2-fluoroethan-1-ammonium ∆E= -6.53  (-6.63)  [-6.56] 7: 1-(2-fluoroethyl)pyridin-1-ium ∆E= -4.16  (-4.30)  [-4.21] 
 

 
gauche 

 
 

 
anti 

 
gauche 

 
anti 
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When a carbonyl group is placed adjacent to a C-F bond as in α-fluoroamides, the 

trans-planar arrangement of the F-C-C=O moiety is energetically favored over the cis one. 

This is observed in Figure 2 for a ketone (8) and for an amide (10). In contrast, we computed 

an almost negligible cis/trans conformational preference for the ester (9). 

Figure 2.  Ball-and-stick representation of the cis/trans conformers optimized for different CH2F-CO-X systems. 

The C-F and C-C distances (Å), the F-C-C=O dihedral angle (o) and selected intramolecular distances (Å) 

measured in the HF-D3/cc-pVTZ optimized structures (RI-MP2/cc-pVTZ in parentheses) are shown. Energy 

differences (Etrans−Ecis) in kcal/mol computed at the HF-D3/cc-pVTZ, RI-MP2/cc-pVTZ (in parentheses) and 

DLPNO-CCSD(T)/aug-cc-pVTZ  (in squared brackets) levels of theory are also included. 

8: 1-fluoropropan-2-one ∆E= -2.79  (-2.06)  [-2.09] 

 
cis trans 

9: methyl-2-fluoroacetate ∆E= -0.09  (0.04)  [0.11] 
 

 
cis 

trans 
10: 2-fluoro-N-methylacetamide ∆E= 5.80 (5.81) [5.64] 

 
cis 

trans 
 

To analyze the origin of these energetic preferences, we carried out the IQA 

partitioning of the conformational energy differences at the HF-D3/cc-pVTZ level. In this 

respect, we note that relative energies in Figures 1 and 2 confirm that the HF-D3 ∆E values 

remain reasonably close to the DLPNO-CCSD(T) ones, the mean unsigned difference 

between them being 0.2 kcal/mol. Hence, we believe that this favorable comparison validates 

the use of the HF-D3 method in the subsequent IQA analyses. 
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Atomic and fragment-based IQA analysis of gauche/anti CH2F-CH2F  

As described in Methods, IQA56 decomposes molecular energy differences into a collection 

of atomic and interatomic terms. For 1,2-difluoroethane, the combination of the IQA quantities 

including the small dispersion contribution, results in an IQA reconstructed ∆E= Egauche − Eanti 

energy difference of −0.5 kcal/mol, which is close to the HF-D3/cc-pVTZ reference value (−0.3 

kcal/mol). This discrepancy is due to the numerical errors accumulated during the calculation 

of the IQA quantities. As the individual IQA terms are typically one or two orders of magnitude 

larger than ∆E, their expected relative error would be small.  

Inspection of the IQA energies shows that the largest differences between the gauche 

and anti conformers arise in the electrostatic interactions (see Table S2). Thus, the gauche 

conformation is largely favored by the int,classE∆  term corresponding to the C1∙∙∙F6 (-8.0 

kcal/mol) and F2∙∙∙C5 (-7.9 kcal/mol) electrostatic contacts. However, this gauche stabilization 

is widely compensated by the repulsive F2∙∙∙F6 (12.1 kcal/mol) and C1∙∙∙C5 (6.9 kcal/mol) 

electrostatic terms. Moreover, the overall gauche preference is also affected by other atomic 

and diatomic IQA terms, as the C1∙∙∙C5 exchange-correlation interaction (-3.2 kcal/mol), the 

F2, F6, and C1 electronic distortions (∆Enet = 1.1, 1.0 and 1.0 kcal/mol, respectively), etc. By 

summing over all the atomic and diatomic contributions (see Table S1), it arises that both the 

classical electrostatic (∆Eint,class=−2.3 kcal/mol) and the exchange-correlation (∆Eint,xc=−1.9 

kcal/mol) interactions favor the gauche conformation in 1,2-difluoroethane. 

By considering the 1,2-difluoroethane molecule as formed by two interacting quantum 

fragments (IQF), the gauche/anti conformational energy difference can be split into intra-

fragment deformation terms and electrostatic and quantum-mechanical inter-fragment 

contributions. Due to the symmetric character of the two CH2F groups, there is no net charge 

transfer between them so that P
netE∆  and Q

netE∆  collect the energetic impact of electronic 

reorganization within P and Q and of a minimal steric hindrance. The computed net energy 

differences for each CH2F group are 0.6 and 0.4 kcal/mol (these distinct values are again due 

to IQA numerical errors), but the overall deformation (1.0 kcal/mol) favoring the anti 

orientation is clearly smaller than the inter-fragment energy changes (see Table 1). Thus, the 

largest contribution to the stabilization of the gauche conformer comes from the non-classical 

exchange-correlation interaction (-3.5 kcal/mol) between the CH2F groups. In contrast, 

classical electrostatic effects clearly stabilize the anti conformer (2.1 kcal/mol), which is 

usually explained in terms of the repulsion arising from the nearly aligned C-F dipole moments 
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in the gauche orientation (i.e., F-C-C-F dihedral ~60º). This interpretation seems partly correct 

because, according to our analyses, the dipole-dipole interaction accounts for 55% of the 

difference in the CH2F∙∙∙CH2F electrostatic interaction between the gauche/anti conformers 

so that higher-order multipolar contributions would also be important. Anyway, it is the 

, ,
PQ PQ
int xc int classE E∆ + ∆  sum (-1.4 kcal/mol) that mainly controls the stability of the gauche conformer 

and, therefore, the IQF energy decomposition for 1,2-difluoroethane resembles those in 

previous proposals about the combined role of hyperconjugation and electrostatics to explain 

the gauche effect.23 Within the context of IQF, we propose then to measure the gauche 

stabilization in 1,2-difluoroethane and related systems as , ,
PQ PQ
int xc int classE E∆ + ∆ .  

Probably, either the IQA or the IQF analysis of the gauche/anti 1,2-difluoroethane may 

be adequate and useful. Nonetheless, chemists usually explain molecular properties in terms 

of the functional groups or the characteristic moieties that build up a molecule. For large 

systems, grouping the atomic terms into fragments simplifies the interpretation of the IQA 

data because the IQF terms smooth out the correlated fluctuations of the atomic quantities 

within a given group. Therefore, we decided to focus on the IQF results for the rest of the 

systems studied in this work, although the underlying atomic partitioning will also be used to 

better characterize some relevant inter- or intra-fragment contributions. 

Table 1.  IQF energy components at the HF-D3/cc-pVTZ level for the energy difference (kcal/mol) between the 

two confomers (gauche/anti or cis/trans) analyzed for a series of small systems related to 1,2-difluoroethane. 

Two-fragment partitioning scheme (P=CH2F and Q=CH2X) is assumed for the different systems. 

 

∆E = Egauche − Eanti Pq∆  P
netE∆  Q

netE∆  ∆Eint,disp ∆Eint,xc ∆Eint,class ∆Eint,class,qq ∆Eint,class,qd ∆Eint,class,dd ∆EIQA 

1: 1,2-difluoroethane 0.00 0.6 0.4 -0.0 -3.5 2.1 0.0 0.0 1.1 -0.5 

2: 2-fluoroethyl-acetate 0.00 0.7 0.5 -0.0 -3.1 1.4 0.0  0.0   0.0 -0.7 -0.5 

3: 3-fluoropropanal -0.01 0.0 1.4 -0.0 -1.1 -1.5 -0.1 -0.4   0.0 -0.4 -1.2 

4: N-(2-fluoroethyl)acetamide -0.02 -0.6 2.1 -0.2 -2.1 -1.4 -0.2 -0.6   0.1 -1.0 -2.1 

5: 2-(2-fluoroethyl)isoindoline-1,3-dione 0.00 2.0 1.5 -0.3 -3.6 -0.1 0.0 -0.0   -0.0 0.1 -0.5 

6: 2-fluoroethxan-1-aminium -0.01 1.6 4.7 -0.6 -6.9 -6.0 2.4  1.3   -3.5 -4.6 -7.3 

7: 1-(2-fluoroethyl)pyridin-1-ium -0.01 1.0 3.5 -0.3 -5.5 -3.7 0.9  0.2   -6.1 -0.3 -5.1 

∆E = Etrans − Ecis Pq∆  P
netE∆  Q

netE∆  ∆Eint,disp ∆Eint,xc ∆Eint,class ∆Eint,class,qq ∆Eint,class,qd ∆Eint,class,dd ∆EIQA 

8: 1-fluoropropan-2-one 0.01 0.1 0.6 0.0 1.5 -4.9 0.0 -0.1   0.1 -2.9 -2.8 

9: methyl-2-fluoroacetate 0.00 0.6 0.5 0.0 0.3 -1.4 0.0  0.7   0.2 -2.8 -0.1 

10: 2-fluoro-N-methylacetamide -0.02 2.1 2.7 -0.2 -4.1 -6.3 0.0  0.2   0.1 -5.2 -5.8 
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Substituent effects on the gauche/anti CH2F-CH2X conformers: Competition between IQF 

exchange-correlation and electrostatic interactions 

For the CH2F-CH2X molecules, the gauche conformer is energetically favored over the anti 

one (see Figure 1). In all the CH2F-CH2X molecules, the charge variation at the CH2F / CH2X 

moieties upon the anti→gauche rearrangement is null or minimal (~0.01 e) as computed from 

the corresponding QTAIM charges.  

Regarding 1,2-difluoroethane as the reference compound, we observe that replacing 

the second fluorine atom by an acetate group (2 in Scheme 1) results in very small changes 

in the IQF terms. Again the gauche conformer is stabilized by the exchange correlation 

interaction (∆Eint,xc=−3.1 kcal/mol). Electrostatics favors the anti geometry (∆Eint,class=1.4 

kcal/mol), but such effect does not arise from favorable µ-µ interactions (∆Eint,class,dd=−0.7 

kcal/mol). This is due to the internal geometry of the acetate group, in which the dipole 

moments along the C=O/C-O bonds combine in a total fragment dipole moment (~1.9 D) that 

is nearly orthogonal to the CH2F dipole (~2.2 D) in the anti conformer.  

Introduction of an aldehyde (3) or an amide (4) group leads to classical and exchange-

correlation inter-fragment interactions that stabilize the gauche conformer, being partially 

compensated by the unfavorable net energy change of the CH2X fragment (see Table 1). 

There are, however, some differences between the aldehyde and the amide groups. The 

largest inter-atomic electrostatic interaction involves the fluorine atom in the two systems, but 

the F2∙∙∙C8 interaction in the aldehyde 3 stabilizes the gauche structure (-15.9 kcal/mol), 

meanwhile the equivalent F2∙∙∙N6 contact stabilizes the anti conformation in 4 (27.9 kcal/mol). 

If we compare the electrostatic F2∙∙∙N6 interaction in the amide with F2∙∙∙O6 in 2 (20.8 kcal/mol) 

and F2∙∙∙F6 in 1 (12.1 kcal/mol), it arises an inverse relationship between the electronegativity 

of the X atom in the F-C-C-X sequence and the penalty for the gauche orientation due to the 

F∙∙∙X ∆Eint,class electrostatic term.  

In contrast with the 1-4 systems, the small gauche stabilization computed for the 

isoindole derivative 5 arises from a large and favorable exchange-correlation term (-3.6 

kcal/mol), mainly ascribed to the H3∙∙∙O19 and F2∙∙∙N20 interactions (see Table S2). But this 

favorable ∆Eint,xc term is cancelled by the intra-fragment net energies (2.0 and 1.5 kcal/mol). 

The change in the inter-fragment electrostatic interaction is almost negligible (-0.1 kcal/mol) 

due to the cancelation of large inter-atomic electrostatic interactions between fluorine and the 

heteroatoms in the isoindole moiety. 
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A cationic group adjacent to a C-F bond significantly stabilizes the gauche 

conformation, what is commonly explained in terms electrostatics. In effect, the ∆Eint,class terms 

in the gauche−anti energy difference in CH2F-CH2X+ become quite important: -6.0 and -3.7 

kcal/mol for the ammonium (6) and pyridinium (7) groups. These two cationic substituents 

have different size and charge distribution, what is reflected in their µQ dipole moments, ~2.5 

D and ~0.2/0.5 D for the ammonium and pyridinium CH2X+ groups, respectively. The global 

positive charge is delocalized between the P and Q fragments (e.g., qP=0.12 and qQ= 0.88 in 

the gauche 6 conformer) and these qP/ qQ charges repel more strongly in the gauche 

orientation. Thus, the charge-dipole and dipole-dipole fragment interactions explain the 

electrostatic preference for the gauche location of the ammonium group (see Table 1), while 

the rather small µQ value of pyridinum implies that only the interaction between the bulkier 

pyridinium charge and the CH2F dipole makes a relevant contribution to the gauche stability 

(-6.1 kcal/mol). As in the CH2F-CH2X neutral systems, the change in the fragment net 

energies stabilizes the anti orientation in the cationic systems albeit with a more pronounced 

influence (e.g., Q
netE∆ =4.7 and 3.5 kcal/mol for 6 and 7). However, the IQF data reveals that 

the exchange-correlation inter-fragment interactions reinforce the stability of the gauche 

orientation (see Table 1) and compensate the deformation energies. More particularly, in the 

gauche 6 structure, a short F···H-N contact rationalizes well the significant ,
PQ
int xcE∆ value of -

6.9 kcal/mol (see Table S2 and Figure 1). 

 

IQF description of trans/cis conformers in CH2F-(C=O)X: Electrostatic control 

When a carbonyl group is placed adjacent to a fluorine atom, electrostatic effects are 

assumed to stabilize the trans-planar orientation of the C=O and C-F groups over the cis one 

(see Figure 2). Our IQF calculations on the α-fluoroketone (8), α-fluoroester (9), and α-

fluoroamide (10) molecules confirm that the electrostatic interaction between the CH2F and 

(C=O)X moieties is the key element that explains the larger stability of the C-F/C=O trans  

arrangement ( ,int classE∆ =  -4.9, -1.4 and -6.2 kcal/mol for 8, 9 and 10; see Table 1). 

Furthermore, this electrostatic effect is mainly associated to the dipole-dipole interaction term 

in the three cases, although contributions from higher multipoles seem also relevant for the 

α-fluoroketone 8. The exchange-correlation term also contributes to the stability of the trans 

fluoroamide (-4.1 kcal/mol), whereas it favors the cis orientation in the fluoroketone (1.5 
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kcal/mol) and has little effect on the α-fluoroester. These ,xcintE∆ contributions mainly result 

from the F2∙∙∙O6 (4.5 kcal/mol)/F2∙∙∙C7 (-3.1) interactions in the cis/trans α-fluoroketone 8, and 

the F2∙∙∙N7 (-5.3)/F2∙∙∙O6 (4.7)/F2∙∙∙H8 (-3.0) contacts in the α-fluoroamide 10. Nonetheless, 

the favorable F∙∙∙H-N polar contact in 10 is nearly compensated by significant fragment 

distortion (see P
netE∆  and Q

netE∆  in Table 1) so that the electrostatic ,int classE∆  is the major 

stabilizing energy contribution to the trans preference between the vicinal C-F and C=O 

groups.  

 

−CF−CF−CF− motif: IQA discrimination among gauche effects, 1,3 dipole-dipole and 1,3 

CH···F contacts  

For large molecules bearing various fluorine atoms as well as other functional groups, several 

fluorine-associated effects may control their conformational preferences. For instance, the 

preferred conformations in polyfluorinated alkanes have been assumed to arise from 

maximizing gauche interactions between vicinal fluorine atoms and, simultaneously, 

minimizing unfavorable dipole-dipole interactions between 1,3-difluoro motifs.9, 13 To further 

analyze these effects, we optimized the nine conformers of 1,2,3-trifluoropropane (11) 

generated by the gauche g+ (~ 60o), the gauche g- (~ −60o) or the anti (~ 180o) orientations 

of the two consecutive F-C-C-F torsions. All the conformers remain within a narrow energy 

range of ~3 kcal/mol. In addition, some of the structures correspond to equally-stable 

conformational enantiomers (pair g+/g+ and g-/g-, pair g+/anti and anti/g-, and pair g-/anti 

and anti/g+) and, accordingly, only the first conformer within each pair was considered for the 

IQA analysis. Since the relative energies for the 1-7 compounds are given as ∆E=Egauche−Eanti, 

the relative energies for CH2F-CHF-CH2F given in the text and in Figure 3 are similarly 

expressed as ∆E = Eg+/g+ − Ei where i stands for any other conformer of 11. Hence, a negative 

∆E value means that conformer i is less stable than the g+/g+ one. 
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Figure 3.  Ball-and-stick representation of the different conformers obtained for 1,2,3-trifluoropropane (11 in 
Scheme 1). F-C-C-F dihedral angles (o) and selected interatomic distances (Å) measured in the HF-D3/cc-pVTZ 
optimized structures (RI-MP2/cc-pVTZ in parentheses) are shown. Energy differences (Eg+/g+ − Ei) in kcal/mol 
computed at the HF-D3/cc-pVTZ, RI-MP2/cc-pVTZ (in parentheses) and DLPNO-CCSD(T)/aug-cc-pVTZ  [in 
brackets] levels of theory are also included. 

g+/g+  
∆E= 0.00 (0.00) [0.00] 

g+/g-  
∆E= -1.18  (-1.23)  [-1.17] 

 
 

g+/anti  
∆E= 0.17  (-0.14) [-0.18] 

g-/g+  
∆E= -3.06  (-2.82) [-2.90] 

 

 
 

g-/anti  
∆E= 0.74  (0.50)  [0.39] 

anti/anti  
∆E= -2.07 (-2.53) [-2.59] 

 
 

 

Table 2 collects the IQF energy decomposition of the relative energies with respect to 

the reference g+/g+ structure considering three molecular fragments (i.e., P=CH2F-, Q=-CHF-

, and R=-CH2F). In line with previous proposals, the parallel alignment of the C1-F2  and C8-

F9 bonds in the less stable g-/g+ and anti/anti conformers is associated to unfavorable 

electrostatic interactions between the corresponding CH2F groups ( int,
P R

classE ⋅⋅⋅∆ of -2.4 and -2.1 

kcal/mol, respectively), which are mainly ascribed to dipole-dipole repulsion ( int, ,
P R

class ddE ⋅⋅⋅∆ of -2.0 

and -2.1 kcal/mol for g-/g+ and anti/anti). Hence, it seems reasonable to describe them as 

“1,3-dipole repulsions" in consonance with former suggestions.9  
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Table 2.  IQF relative energy components (in kcal/mol) at the HF-D3/cc-pVTZ level for the energetically different 

conformers of 1,2,3-trifluoropropane (11). A three-fragment partitioning scheme (P=CH2F, Q=CHF, and 

R=CH2F) is assumed for the different structures. Energy differences are computed as Eg+/g+ − Ei, so that a 

negative value means further stabilization of g+/g+.  

 P
netE∆  Q

netE∆  R
netE∆  ∆Eint,disp 

   P∙∙∙Q         P∙∙∙R         Q∙∙∙R 

∆Eint,xc 

   P∙∙∙Q         P∙∙∙R         Q∙∙∙R 

∆Eint,class 

   P∙∙∙Q         P∙∙∙R         Q∙∙∙R 

∆EIQA ∆EHF-D3 

∆E = Eg+/g+ − Eg+/g- 2.4 -1.9 0.6 -0.0,   -0.1,   0.0 0.6,    -1.4,    0.1 -0.3,   -0.6,   -0.9 -1.5 -1.2 

∆E = Eg+/g+ − Eg+/anti 0.7 -0.7 0.8 -0.0,   -0.0,   0.0 1.1,    -0.2,   -2.3 -0.4,   -0.1,    1.5 0.4 0.2 

∆E = Eg+/g+ − Eg-/g+ 0.6 0.1 -1.4 0.0,    -0.3,   0.0 0.1,    -0.7,   -0.2  0.8,    -2.4,    0.2 -3.2 -3.1 

∆E = Eg+/g+ − Eg-/anti 0.4 1.3 -1.7 -0.0,    0.0,   0.0 0.5,     1.0,   -2.7  0.2,     0.1,    1.6 0.8 0.7 

∆E = Eg+/g+ − Eanti/anti 1.7 0.3 -0.5 -0.0,   -0.3,   0.0 -1.8,   -1.1,   -2.1  2.1,    -2.1,    1.6 -2.1 -2.1 

 

The gauche effect is also expected to play a key role in determining the conformational 

landscape of 1,2,3-trifluoropropane. However, the missing gauche effects between vicinal 

fluorine atoms do not penalize the anti/anti structure as compared to the g-/g+ one (i.e., 

anti/anti is 1.0 kcal/mol more stable than g-/g+ at HF-D3/cc-pVTZ). The lack of a net gauche 

effect in the anti/anti structure is revealed by IQF because the ∆Eint,xc terms between 

consecutive fragments favoring the gauche arrangement (-1.8 for P∙∙∙Q and -2.1 kcal/mol for 

Q∙∙∙R) are nearly compensated by electrostatic interactions (∆Eint,class= 2.1 and 1.6 kcal/mol 

for P∙∙∙Q and Q∙∙∙R) favoring the anti conformation. Other differences between the g-/g+ and 

anti/anti structures arise in the intra-fragment net energies, that disfavor the g-/g+ structure (

net
RE∆ =-1.4 kcal/mol) though they stabilize the anti/anti one ( net

PE∆ =1.7 kcal/mol).  

The g+/anti and g-/anti conformers, with only one gauche arrangement, are nearly 

isoenergetic (g+/anti) or slightly more stable (g-/anti) than the reference g+/g+ conformer 

presenting two gauche effects (see Figure 3). IQF confirms that the gauche effect at F6-C5-

C8-F9 favors g+/g+ over g+/anti and g-/anti, because the exchange-correlation int,
Q R

xcE ⋅⋅⋅∆  term (-

2.3 and -2.7 kcal/mol for g+/anti and g-/anti, respectively) is greater in absolute value than 

the electrostatic int,class
Q RE ⋅⋅⋅∆ term (1.5 kcal/mol for g+/anti and 1.6 kcal/mol for g-/anti). The same 

comparison involving the int,
P Q

xcE ⋅⋅⋅∆  and int,
P Q

classE ⋅⋅⋅∆ terms suggest that the g+/anti conformer may 

exhibit a reinforced gauche preference in the F2-C1-C5-F6 angle.  

Inspection of the optimized geometries in Figure 3 suggests that C-H···F contacts can 

contribute to the conformational energies. As expected, the formation/loss of the C-H···F 

contacts can be traced back to modifications in either the deformation or the interaction IQA 

components involving the C-H···F atoms (Table S4). The best fingerprint of the C-H···F 



24 
 

contact is provided by the exchange-correlation int,
AB

xcE∆  energy between the F and H atoms 

because it scores among the largest int,
AB

xcE∆  terms and correlates well with the IQF exchange-

correlation energy. For example, the reference g+/g+ structure has an H4∙∙∙F9 contact (2.57 

Å) which is replaced by a similar H3∙∙∙F9 interaction in the g+/anti conformer (2.53 Å), and this 

change is linked to significant interatomic int,
AB

xcE∆  contributions (-1.6 kcal/mol for H4∙∙∙F9 and 

1.9 kcal/mol for H3∙∙∙F9 in Table S4). In the case of g-/anti, the H4∙∙∙F9 interaction in g+/g+ is 

preserved and one additional F2∙∙∙H10 contact (2.49 Å) is formed that results in a favorable 

interatomic  F2∙∙∙H10 ∆Eint,xc contribution (2.3 kcal/mol in Table S4). Furthermore, the lack of 

1,3 C-H∙∙∙F contacts in the g+/g- structure (e.g. ∆Eint,xc = -1.7 kcal/mol for H4∙∙∙F9) can be 

invoked to explain its lower stability (1.2 kcal/mol with respect to g+/g+) in spite of maintaining 

two gauche effects. Hence, we conclude that the conformational properties of 1,2,3-

trifluoropropane are more significantly influenced by through-space exchange-correlation 

interactions between fluorine and hydrogen atoms than the gauche effect between vicinal 

fluorine atoms, and that the IQA/IQF signature of these contacts is conveniently described in 

terms of the exchange-correlation interaction energies.  

 

IQF analysis of fragments from an α,β-difluoro-γ-amino-acid  

To help ascertain all the effects determining the conformational properties of the α,β-difluoro-

γ-amino-acids 14a/14b containing the -CHF-CHF- motif, we first examined compound 12 

formally derived from 11 by replacing one fluorine atom by a polar amide group (see Scheme 

1). Either a gauche or an anti orientation in the adjacent C-F bonds and a cis or a trans 

arrangement for the vicinal C-F and C=O bonds can appear in 12 (see Figure 4). Only five 

conformers were located on the HF and MP2 potential energy surfaces (g-/cis turned out to 

be unstable). Their relative energies given in Figure 4 are expressed as ∆E = Eg+/trans − Ei 

where i stands for any other conformer of 12.  

The positioning of the –(C=O)NHCH3 group in 12 results in a strong conformational 

selection in favor of the g+/trans or g-/trans conformers, which is unequivocally interpreted 

by the three-fragment (P=CH2F, Q=CHF, and R=CONHCH3) IQF partitioning. As already 

observed in 10, the cis alignment in the adjacent C5-F6 and C8=O9 bonds in 12 is clearly 

destabilized by the classical electrostatic interaction between fragments Q and R. The 
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corresponding int,class
Q RE ⋅⋅⋅∆ values are -7.5 and -8.4 for the g+/cis and anti/cis conformers, the 

exchange-correlation int,xc
Q RE ⋅⋅⋅∆   being also unfavorable (see Table 3). Some differences appear 

in the P∙∙∙Q and P∙∙∙R interaction terms that contribute to the relative stability of the g+/cis and 

anti/cis conformers. Thus, the lack of gauche effect between vicinal C-F bonds makes anti/cis 

less stable than g+/trans (e.g., int,xc int,class
P Q P QE E⋅⋅⋅ ⋅⋅⋅∆ + ∆ =-2.8 + 1.5= -1.3 kcal/mol). On the other hand, 

the terminal P∙∙∙R interaction through a F2∙∙∙H11-N10 contact favors anti/cis ( int,xc
P RE ⋅⋅⋅∆ =3.0 

kcal/mol and int,class
P RE ⋅⋅⋅∆ =3.4 kcal/mol) over g+/cis ( int,xc

P RE ⋅⋅⋅∆ =0.4 kcal/mol and int,class
P RE ⋅⋅⋅∆ =-2.0 

kcal/mol). With respect to the electrostatic terms, the partial alignment of the C1-F2 and amide 

dipole moments contributes to further destabilize g+/cis (the P∙∙∙Q dipole-dipole interaction 

amounts to -1.7 kcal/mol). 

Figure 4.  Ball-and-stick representation of the five conformers optimized for 2,3-difluoro-N-methylpropanamide 

(12 in Scheme 1). F-C-C-F and F-C-C-C=O dihedral angles (o) and selected interatomic distances (Å) measured 

in the HF-D3/cc-pVTZ optimized structures (RI-MP2/cc-pVTZ in parentheses) are included. Energy differences 

(Eg+/trans − Ei) in kcal/mol computed at the HF-D3/cc-pVTZ, RI-MP2/cc-pVTZ (in parentheses) and DLPNO-

CCSD(T)/aug-cc-pVTZ  [in brackets] levels of theory are also included. 

g+/trans   ∆E= 0.00  (0.00)  [0.00] g-/trans   ∆E= -0.25  (-0.18)  [-0.26] anti/trans   ∆E= -4.18  (-4.04)  [-3.95] 

 

 

 

 

 
 

g+/cis   ∆E= -8.05  (-7.61)  [-7.51] anti/cis   ∆E= -5.52  (-5.34)  [-5.18]  
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The magnitude of the relative energy of the anti/trans conformer of 12 (4.2 kcal/mol) 

as compared to the g+/trans structure is difficult to explain only in terms of the small gauche 

effect estimated as int,xc
P QE ⋅⋅⋅∆ + int,class

P QE ⋅⋅⋅∆ =-3.4 + 2.9= -0.5 kcal/mol. In contrast, the terminal P∙∙∙R 

interactions, int,xc
P RE ⋅⋅⋅∆ =-1.6 kcal/mol and int,class

P RE ⋅⋅⋅∆ =-2.6 kcal/mol, make a more significant 

contribution to the destabilization of anti/trans. These terms can be associated with the loss 

of the H3∙∙∙O9 contact ( 3 9
int,xc
H OE ⋅⋅⋅∆ =-2.1 kcal/mol in Table S5) when comparing g+/trans with 

anti/trans, while the electrostatic contribution can be connected to the partial alignment of the 

P and R dipole moments in the anti/trans structure (the P∙∙∙R dipole-dipole interaction amounts 

to -2.6 kcal/mol). Thus, we see again that either 1,3 dipole-dipole interactions or O/F···H 

contacts can be more determining than the gauche effect between adjacent C-F groups. 

Table 3.  IQF energy components at the HF-D3/cc-pVTZ level for the energy difference (kcal/mol) among the 

five conformers optimized for 2,3-difluoro-N-methylpropanamide (12). A three-fragment partitioning scheme 

(P=CH2F-, Q=-CHF-, and R=-CONHCH3) is assumed for the different conformers. Energy differences are 

computed as Eg+/trans − Ei, so that a negative value means further stabilization of g+/trans. 

 

 P
netE∆  Q

netE∆  R
netE∆  ∆Eint,disp 

P∙∙∙Q         P∙∙∙R         Q∙∙∙R 

∆Eint,xc 

P∙∙∙Q         P∙∙∙R         Q∙∙∙R 

∆Eint,class 

P∙∙∙Q         P∙∙∙R         Q∙∙∙R 

∆EIQA ∆EHF-D3 

∆E = Eg+/trans − Eg-/trans -0.8 -1.7 0.6  0.0,   -0.1,   0.0 -0.1,   -0.4,   1.3 0.0,   0.4,   -0.0 -0.7 -0.2 

∆E = Eg+/trans − Eanti/trans 0.1 -1.7 0.7 -0.0,   -0.4,   0.0 -3.4,   -1.6,   1.7 2.9,   -2.6,   -0.1 -4.3 -4.2 

∆E = Eg+/trans − Eg+/cis 1.1 1.7 2.0 -0.0,    0.3,  -0.4 -0.5,     0.4,  -4.8 0.4,   -2.0,   -7.5 -9.3 -8.0 

∆E = Eg+/trans − Eanti/cis 0.3 0.3 0.1  0.0,    0.6,  -0.4 -2.8,     3.0,  -3.9 1.5,   3.4,   -8.4 -6.3 -5.5 

 

In contrast with the case of compound 12, the positioning of the bulky isoindole-1,3-

dione group –(C=O)NHCH3 group in 13 has a minor conformational influence. For this 

reason, its analysis is reported in the Supplementary Material (Figure S1 and Tables S6-S7). 

 

Conformational analysis and QM calculations on the 14a and 14b dipeptides 

The QM and IQA calculations on the model compounds 1-13 characterize several 

conformational effects (gauche/anti, cis/trans, through space F···H, dispersion attractions, 

etc.) than can act simultaneously in the 14a/14b dipeptides. To better assess these and other 

effects, we investigated first whether or not additional conformations to those observed in the 

14a/14b crystal structures could be accessible. Thus, we performed an automated 

conformational search followed by HF-D3/cc-pVTZ geometry optimizations of the resulting 
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conformers in the gas-phase and in the solvent continuum (see Tables S8-S9 and Figures 

S2-S3).  

Most remarkably, inspection of the optimized geometries and relative energies of the 

14a and 14b conformers reveals that the X-ray conformations (labelled as 14a-conf1  and 

14b-conf1 ) are indeed among the most stable ones in the gas-phase and in the chloroform 

solution. In addition, we found that the structures presenting the expected F23-C22-C19-F20 

and F20-C19-C16-N13 gauche orientation and the trans F23-C22-C25=O26 arrangement (see 

Figure 5 for atom numbering) are, in general, energetically favored as expected by common 

assumptions. There are, however, low energy conformers, especially for 14a, that do not 

present the expected gauche orientation around the fluorine atoms (see for instance 14a-

conf4  and 14a-conf5 ). Moreover, it turns out that the conformer 14a-conf6  is not drastically 

penalized in the gas-phase despite presenting a cis F23-C22-C25=O26 alignment and an almost 

anti orientation for the F23-C22-C19-F20 and F20-C19-C16-N13 bonds.  

The results of our conformational search can be addressed with NMR experimental 

data. Thus, the NMR spectra of 14a and 14b have been recorded at 300 K in deuterated 

chloroform solution and their coupling constants determined by simulation/iteration 

sequences.14 We also estimated 3JHF coupling constants around the FC22-C19F bond using a 

Karplus-type relation51 for the five most stable conformers of 14a and 14b, and the 

corresponding values were Boltzmann-averaged at 300 K according to the HF-D3/cc-pVTZ 

relative energies in chloroform (Table S10). For 14a, the favorable comparison between the 

computed and experimental values validates the results of our conformational analysis (the 

computational averages for 3JFH (F23H21) and 3JHF (H24F20) are 27.4 and 28.2 Hz compared 

with the experimental ones of 27.0 and 28.9 Hz). It is interesting to note that some 

conformational variability of 14a in chloroform solution can be expected because the ∆E 

difference between the two most stable conformers is not large (1.0 kcal/mol). For 14b, the 

agreement between the estimated coupling constants and the experimental ones is only 

moderate (the calculated averages for 3JFH and 3JHF are 26.1 and 13.0 Hz while the 

experimental values are 23.0 and 21.4 Hz). However, the computed 3JFH and 3JHF values for 

14b-conf1  (30.8 and 8.1) and 14b-conf2 (6.6 and 31.7) would approach to the 

experimentally-derived ones (23.0 and 21.4) upon averaging, provided that these two 

conformers become nearly isoenergetic. Although the calculated ∆E value between 14b-

conf1  and 14b-conf2  is already small (0.7 kcal/mol), it is likely that method/basis-set 
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improvements in the QM level of theory and/or a better description of thermal and solvation 

effects would be required to increase the agreement with experimental data. 

 

IQF assessment of the conformational effects acting upon 14a 

Our QM calculations suggest that intramolecular factors largely determine the conformational 

preferences of 14a/14b as their low-energy conformers in the gas-phase are quite close to 

their crystallographic structures. Moreover, the intrinsic stability of the two diastereomers is 

similar and we expect that the same local effects influence their conformational energies. 

Taking also into account the large computational cost of the IQA calculations on these 

systems, we focused on the IQA analysis of the relative stability of selected 14a conformers. 

Thus, we performed IQA calculations on 14a-conf1  and 14a-conf2 , which are two different 

gauche forms (g+ and g-, respectively) that interconvert into each other through a ~120o 

rotation about the F23C22−C19F20 bond. We also selected conformer 14a-conf5 , which shows 

an anti conformation at F23−C22−C19−F20, and conformer 14a-conf6 , which is a helical-type 

compact structure presenting all anti (F23-C22-C19-F20 and F20-C19-C16-N13) and cis (F23-C22-

C25=O26) arrangements (see Figure 6). Table 5 summarizes the IQF decomposition of the 

HF-D3/cc-pVTZ relative energies involving a four-fragment O-P-Q-R partitioning in which 

fragments P and Q correspond to the central C22HF and C19HF units, respectively, fragment 

O comprises the Ace-CH(Ph)-NHCO− residue and fragment R contains the isoindole-1,3-

dione moiety. The relative energies are now expressed as ∆E = E14a-conf1  − E14a-confi where i=2, 

5, or 6. 
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Figure 5. Ball-and-stick representation of selected conformers optimized for 14a at the HF-D3/cc-pVTZ level of 

theory. F-C-C-F, F-C-C-N, and F-C-C-C=O dihedral angles (o) and selected interatomic distances (Å) measured 

in the HF-D3/cc-pVTZ gas phase optimized structures are included. Energy differences (E14a-conf1 − E14a-confi) in 

kcal/mol computed at the HF-D3/cc-pVTZ level of theory in the gas-phase and in chloroform (in Italics) are also 

included. 

14a-conf1      ∆E= 0.00  0.00 14a-conf2      ∆E= 0.74  -1.05 

  
 

14a-conf5       ∆E= -1.97  -2.14 

 

14a-conf6       ∆E= -2.64  -4.13 

 
 

 
 

 
 

We first analyze the variation of the F23-C22-C19-F20 dihedral from 67.5o in conformer 

14a-conf1  to -58.4º in 14a-conf2 , affecting the relative positioning of the O and R fragments 

(see Figure 5). As the two conformers are presumably stabilized by a similar gauche effect 

and the placement of the terminal isoindole-1,3-dione group in R with reference to the central 

P-Q fragments has little influence, their energy difference in the gas-phase is quite small, 0.7 

kcal/mol at the HF-D3/cc-pVTZ level favoring 14a-conf2 . Nonetheless, examination of the 

IQF terms collected in Table 4 reveals some fine details concerning this energy difference. 

On one hand, there are some indications about a more stabilizing gauche effect in 14a-conf2  

given that int,xc
P QE ⋅⋅⋅∆ + int,class

P QE ⋅⋅⋅∆ =1.5 - 0.9= 0.6 kcal/mol. On the other one, IQF reveals substantial 

energy compensation occurring upon the formation of new O···R contacts with simultaneous 
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loss of P··R and Q···R ones. Thus, the exchange-correlation interaction between fragments O 

and R largely stabilizes 14a-conf2  (17.6 kcal/mol, comprising specific H17∙∙∙O26=5.0 kcal/mol, 

C16∙∙∙O26=3.1, O12∙∙∙H42=3.0 and O12∙∙∙H44=2.3 pair interactions; see Figure 5 and Table S11). 

This attractive component is partly neutralized by the equivalent terms accounting for the 

O···Q and P∙∙∙R fragment interactions, which are -7.6 and -4.4 kcal/mol, respectively, reflecting 

the loss of the F20∙∙∙H44 and H21∙∙∙O26 contacts (-3.2 and -2.2 kcal/mol) and the F23∙∙∙H18 and 

F23∙∙∙C16 ones (-2.0 and -1.8 kcal/mol). In addition, the shortening of the O···R distance in 

14a-conf2  implies not only stabilizing inter-fragment energy contributions, but also a large 

intra-fragment distortion as in the case of intermolecular complexes. For example, the R
netE∆

term destabilizes 14a-conf2 by 9.7 kcal/mol. Altogether, these IQA components allow us to 

energetically weigh the formation/loss of intramolecular contacts upon the 14a-conf1→14a-

conf2 transition, which nearly compensate each other. 

Table 4.  IQF energy components at the HF-D3/cc-pVTZ level for the energy difference (kcal/mol) among 

selected conformers optimized for compound 14a. A four-fragment partitioning scheme (O = 

CH3OCOCH(CH2Ph)NHCO-, P = -CHF-, Q = -CHF-, and R = -CH2-isoindol-1,3-dione) is assumed for the 

different conformers. Relative energies are given as E14a-conf1 − E14a-confi so that a negative value means further 

stabilization of 14a-conf1. 

 O
netE∆  P

netE∆  Q
netE∆  R

netE∆  ∆Eint,disp 

P∙∙∙Q         P∙∙∙R         O∙∙∙P 

Q∙∙∙R         O∙∙∙Q         O∙∙∙R 

∆Eint,xc 

P∙∙∙Q         P∙∙∙R         O∙∙∙P 

Q∙∙∙R         O∙∙∙Q         O∙∙∙R 

∆Eint,class 

P∙∙∙Q         P∙∙∙R         O∙∙∙P 

Q∙∙∙R         O∙∙∙Q         O∙∙∙R 

∆EIQA ∆EHF-D3 

∆E = E14a-conf1 − E14a-conf2 -5.5 -1.2 2.8 -9.7 0.3,   -0.8,   0.1 

0.2,   -0.9,   4.5 

1.5,   -4.4,  1.6 

0.2,   -7.6,   17.6 

-0.9,   -1.1,  -0.8 

0.8,   -1.0,   4.7 

0.3 0.7 

∆E = E14a-conf1  − E14a-conf5 -17.5 -1.0 4.5 -19.8 0.3,   -0.9,   0.1 

-0.4,   -1.8,   12.5 

-2.5,   -4.5,   2.2 

-0.5,   -9.6,  35.2 

2.8,   -1.2,   0.5 

-0.2,   -3.2,   2.8 

-2.2 -2.0 

∆E = E14a-conf1  − E14a-conf6 -16.9 -3.4 3.2 -21.7 0.3,   0.7,   -0.4 

-0.7,   -0.8,   10.8 

-1.5,   1.1,   -2.4 

-4.6,   -4.9,  33.7 

2.5,  -0.1,   -6.7 

2.0,   1.1,   6.5 

-2.1 -2.6 

 

More interesting conformational effects act upon 14a-conf5 , whose overall shape 

differs significantly with respect to those of 14a-conf1/14a-conf2 . There is an anti F23-C22-

C19-F20 arrangement in 14a-conf5, which is 2.0 kcal/mol less stable than 14a-conf1 at HF-

D3/cc-pVTZ. However, this energy difference cannot be assigned to the loss of the gauche 

F23-C22-C19-F20 effect, because the IQF exchange-correlation term favoring the gauche 

orientation ( int,xc
P QE ⋅⋅⋅∆ =-2.5 kcal/mol) is completely canceled out by the electrostatic term (

int,class
P QE ⋅⋅⋅∆ =2.7 kcal/mol) favoring the anti one. Likewise the g+/g+ and anti/anti pair in 11, the 

exchange-correlation stabilization of the gauche F-C-C-F arrangement in 14a-conf1  is 

reversed by the electrostatic term favoring the anti orientation in 14a-conf5 , what is in 

contrast with the results obtained for the small models 1-5. Hence, the destabilization of 14a-
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conf5 with reference to 14a-conf1  is better rationalized in terms of the forming/breaking of 

intramolecular contacts. Thus, the intermediate distance (5.1 Å) between the center of mass 

of the aromatic rings in fragments O and R with an almost parallel arrangement of the ring 

planes (12.1o) may allow some π−π favorable interaction in 14a-conf5 , whereas the loss of 

the CH···F contacts characteristic of 14a-conf1  would disfavor it. The energetic impact of 

these structural changes can be assessed through the IQF components. One the one hand, 

the approaching of the terminal O···R groups gives large and stabilizing values for the ···
int,disp
O RE∆

(12.5 kcal/mol) and int,xc
O RE ⋅⋅⋅∆  (35.2 kcal/mol) terms. The int,xc

O RE ⋅⋅⋅∆  value stems from many inter-

atomic contributions involving the –CH2-N moiety in fragment R and the amide and phenyl 

groups in fragment O (e.g., H18∙∙∙O26 3.6 kcal/mol, N13∙∙∙C39 2.6 kcal/mol, C16∙∙∙O26 2.2 

kcal/mol, H17∙∙∙C35 2.1 kcal/mol, etc.). The closer O···R contacts are accompanied by opposite 

intra-fragment distortion effects for the O and R moieties (-17.5 and -19.8 kcal/mol) so that 

the sum ··· ···
int,disp int,

O R O R O R
net net xcE E E E∆ + ∆ + ∆ + ∆  amounts to 10.4 kcal/mol favoring 14a-conf5 . On the 

other hand, this contribution is overcompensated by the penalty associated with the loss of 

the contacts exhibited by 14a-conf1  (C16-H18∙∙∙F23, F20∙∙∙H44, and H21∙∙∙O26, see Figure 6) that 

is mainly accounted for by int,xc
P RE ⋅⋅⋅∆ =-4.5 and int,xc

O QE ⋅⋅⋅∆ =-9.6 kcal/mol, determining thus the lower 

stability of 14a-conf5 .  

As previously noticed, the cis F-C-C=O arrangement in 10 or 12 implies a large 

destabilization of more than 5 kcal/mol with respect to the trans orientation, basically due to 

the dipole-dipole interaction between the F-C and C=O groups. We see in Figure 6 that 14a-

conf6  has a cis F23-C22-C25=O26 orientation and two anti F23-C22-C19-F20 and F20-C19-C16-N13 

groups, but it is only 2.6 kcal/mol less stable than 14a-conf1 . Nevertheless, the impact of the 

cis F23-C22-C25=O26 dihedral in the electrostatic int,class
O PE ⋅⋅⋅∆  value is -6.7 kcal/mol, which is similar 

to those observed in 10 or 12.  The gauche effect is again reversed in the 14a-conf1 /14a-

conf6 pair as the sum int,xc
P QE ⋅⋅⋅∆ + int,class

P QE ⋅⋅⋅∆ equals to 1.0 kcal/mol. Further stabilization of 14a-

conf6 comes from the various O∙∙∙R interactions between the bulky terminal fragments, 

partially compensating the unfavorable cis F-C-C=O orientation. These interactions can be 

measured in terms of the sum ··· ···
int,disp int,

O R O R O R
net net xcE E E E∆ + ∆ + ∆ + ∆  = 5.9 kcal/mol. In addition, only 

one of the two CH···F contacts is lost upon the 14a-conf1→14a-conf6 transition, determining 

an energy change int,xc
P RE ⋅⋅⋅∆ + int,xc

O QE ⋅⋅⋅∆  = -3.8 kcal/mol, which does not neutralize the global effect 

of the O···R contacts. Therefore, IQF shows how the a priori strong preference for the trans 
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F-C-C=O conformation in the 14a-conf1/14a-conf6  pair is significantly reduced by the 

unexpected reversal of the gauche effect and the corresponding balance of interactions 

between the terminal groups.  

 

Discussion and Conclusions 

Among the major conformational effects associated with C-F bonds, the gauche preference 

in F-C-C-X moieties (X=F, O, N, or C), the repulsion between C-F bonds aligned parallel in 

1,3-positions, and the favored trans-planar arrangement in F-C-C=O moieties, are usually 

invoked to rationalize or foresee conformations in fluorine containing systems. However, 

either X-ray structures or NMR measurements have revealed molecular conformations that 

differ from those expected according to the usual fluorine effects.15 Moreover, two possible 

gauche orientations (+60º/-60º) are accessible to F-C-C-X moieties, which in most cases 

result in different molecular conformations. Hence, additional intramolecular interactions and 

environmental effects may play a significant role in order to explain the conformational 

preferences of fluorinated molecules. To gain further understanding of such effects, IQA, as 

a reference-free energy decomposition method, can be useful to express the conformational 

energies predicted by QM calculations into unambiguously contributions, which include 

electrostatic and exchange-correlation interatomic interactions.  

Concerning the prototypical gauche effect in 1,2-difluoroethane, the IQA method has 

been formerly employed24 to highlight specifically the gauche stabilization due to the 1,3 

Coulombic attraction between C and F atoms. However, we note that there are strong F∙∙∙F 

and C∙∙∙C repulsions as characterized by IQA that can be seen to compensate the C···F 

attractive energies. Moreover, the larger C-C-F angles and C···F distances obtained in the 

gauche form as compared to the anti one (110.3/108.1º and 2.34/2.32 Å) seem not 

compatible with explaining the gauche effect as the consequence of the 1,3 electrostatic 

attraction between C and F atoms. In addition, we also consider that other terms like the 

C···C and C···F exchange-correlation interactions contribute to the gauche stability. Thus, 

when the IQA atomic terms are grouped by defining two interacting CH2F fragments 

separated by the rotatable bond, it emerges that the gauche structure is stabilized by the 

exchange-correlation interaction and destabilized by the electrostatic CH2F···CH2F tem, 

involving only a minor distortion at each fragment. In this fragment-based IQF analysis, the 

electrostatic interaction can be further decomposed to show how the gauche destabilization 

is partially due to dipole-dipole repulsion, the dipoles being mainly associated to the C-F 



33 
 

bonds. We believe that the IQF interpretation of the gauche effect in 1,2-difluoroethane is 

more chemically appealing and, accordingly, we apply it to the rest of molecules considered 

in this work. We also note that, regardless of atomic contributions being grouped or not, IQA 

clearly shows that both electrostatic and exchange-correlation interactions should be 

considered to explain the gauche effect in 1,2-difluorethane.  

Examination of the 1,2-difluoroethane related systems 2-7 bearing different 

polar/charged substituents points out that the quantum exchange-correlation inter-fragment 

interaction systematically stabilizes the gauche conformation. In contrast, the electrostatic 

interaction term is system-dependent because the sign and magnitude of int,class
P QE ⋅⋅⋅∆  is mainly 

determined by the particular interaction(s) between the fluorine atom in fragment P and the 

closest atoms in fragment Q. For the positively charged systems, the exchange-correlation 

and the classical electrostatic inter-fragment interactions are large and comparable, which 

contrasts with previous assumptions explaining their gauche preference only in terms of 

electrostatic effects. IQF also emphasizes that the magnitude and nature of the electrostatic 

interactions depends on the particular characteristics of the charged moiety.  

As previously proposed,9 dipole-dipole interaction arises as the main contribution to 

the stability of the trans-planar F-C-C=O arrangement in the CH2F-COX molecules (8-10). 

However, the exchange-correlation term is also relevant for the ketone (8) and the amide (10) 

derivatives. More particularly, the interatomic F···HN interaction in 10 makes a large 

contribution to the int,xc
P QE ⋅⋅⋅∆  term. This relatively large exchange-correlation interaction between 

fluorine and nearby hydrogen atoms, also observed in 3-fluoropropanal (3) and 2-fluoroethan-

1-aminium (6), can be considered as the signature for a (weak) hydrogen bond. Fluorine is 

considered a poor hydrogen bonding acceptor although there are examples of crystal 

structures showing short intramolecular contacts between organic fluorine and HO-/HN- 

moieties9, 57 that have been assumed to result almost exclusively from dipole-dipole 

electrostatic interactions, excepting for F···HC contacts where it is thought that dispersion 

also plays a role. Nonetheless, our calculations help clarify the nature and impact of these 

F···HN and F···HC contacts that particularly affect the quantum mechanical interaction 

between the H-bonded groups, in line with recent 4JHF measurements and NBO calculations 

performed for α-fluoro amides.30 Thus, we conclude that the largest exchange-correlation 

IQA energies help identify the relevant F···HC/HN interactions.  
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To analyze the various fluorine effects in more complex settings, we examined all the 

possible conformations in 1,2,3-trifluoropropane (11) and two other compounds (12 and 13) 

related to 14a/14b. The two less stable conformers obtained for 1,2,3-trifluoropropane 

present the unfavorable parallel alignment of 1,3 C-F bonds previously described in 

polyfluorinated alkanes.9 IQF confirms the appearance of an unfavorable electrostatic 

interaction between the 1,3 CH2F groups and ascribes it to dipole-dipole repulsion. But 

unexpectedly, the most stable conformer obtained for 1,2,3-trifluoropropane does not result 

from maximizing the number of gauche effects and minimizing the 1,3 dipole-dipole 

repulsions. According to our analyses, the presence of 1,3 F···H-C interactions also 

contributes to explain the relative stability of the conformers. These F···H-C contacts are 

among the largest exchange-correlation interatomic interactions in 1,2,3-trifluoropropane and 

their stabilizing effect is larger than the gauche effect. The partial alignment of the amide 

dipole with a C-F bond and the presence of different F···H contacts also explain the 

conformational landscape obtained for 2,3-difluoro-N-methylpropanamide (12). 

The various analyses carried out on the model systems may help us to better ascertain 

the various effects determining the conformational properties of the difluorinated dipeptide 

14a and 14b diastereomers. According to X-ray crystallography, the (R,R) or (R,S) 

stereochemistry for the fluorination at the central C22 and C19 atoms leads to a different 

backbone conformation for the whole molecule.14 In the two crystal structures, the vicinal C22-

F23/C19-F20 and C19-F20/C16-N13 bonds are in gauche while the C22-F23 bond aligns antiparallel 

to the adjacent amide carbonyl, which seems in consonance with expectations. The QM-

refined conformational search performed for 14a/14b predicts that the lowest energy 

conformer either in the gas-phase or in the solvent-continuum is structurally close to the 

crystallographic structure. This seems to indicate that crystal packing and solvent effects 

would play only a minor role in the conformational preferences of 14a/14b, the intramolecular 

factors being dominant. However, the conformational search illustrates that the observed 

crystal structures are not the only conformers compatible with the effects usually assigned to 

fluorine atoms. For instance, two alternative gauche forms (g+ or g-) could be accessible for 

the vicinal C22-F23/C19-F20 and C19-F20/C16-N13 bonds in the gas-phase or in solution. This 

seems confirmed by our estimations of the 3JHF values in chloroform obtained for the vicinal 

fluorine and hydrogen atoms bound to C22/C19 in 14a/14b, which are in reasonable agreement 

with experimental data. Moreover, the energetic penalty associated to the presence of 

unfavorable anti or cis arrangements around the fluorine atoms is not dramatic (e.g., 2.5 
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kcal/mol), pointing thus towards the compensating roles of other stabilizing intra-molecular 

interactions.  

The IQA energy decomposition can treat relatively large molecules like the selected 

conformers of 14a. Three of them differ in the g+, g-, or anti arrangement of the F23-C22-C19-

F20 moiety, whereas the fourth one presents the less favorable F23-C22-C19-F20 and F20-C19-

C16-N13 anti and F23-C22-C25=O26 cis orientations. In all the cases, the careful examination of 

the IQF descriptors allows us to assess the energetic impact of the gauche/anti and cis/trans 

effects. In comparison with the smaller model systems 8-10 and 12, IQF indicates that the 

important electrostatic F-C-C=O trans preference (~6-8 kcal/mol) is appreciably transferable. 

Interestingly, the exchange-correlation and electrostatic balance favoring the gauche F-C-C-

F orientation can be altered in some of the 14a conformers (also in 11 conformers) resulting 

in a small inverted gauche effect (<1.0 kcal/mol) that benefits the anti F-C-C-F arrangement. 

Furthermore, our four-fragment IQA partitioning points out that the formation/rupture of other 

intramolecular contacts (e.g., π···π, F···H-C, etc.) can modulate and/or attenuate the F-C-

C=O trans and the F-C-C-F gauche effects. Therefore, our results stress that the gauche 

effect can be both system and conformation dependent, what is in consonance with previous 

studies19, 26-28 showing that environmental (solvent) effects can modulate or alter the gauche 

conformational preference.  

In summary, our QM calculations complemented with the HF-D3 IQF energy 

decompositions are useful to analyze in a systematic and consistent manner the energetic 

preferences of small fluorinated compounds having either gauche/anti or cis/trans 

conformations. Following the IQF approach, we find a clear correspondence between specific 

exchange-correlation and/or electrostatic fragment-interaction energies with the appearance 

of the gauche/anti or cis/trans effects, providing also insight into their magnitude and nature. 

The same IQF approach can be extended to assess those gauche/anti or cis/trans effects in 

molecules with two or more rotatable bonds as well as to study the roles played by other 

concomitant effects (e.g., specific CH/OH/NH···F contacts, 1-3 electrostatic interactions, etc.). 

For the relatively large α,β-difluoro-γ-amino acid derivatives, our conformational search 

followed by QM and selected IQF calculations complement well their crystallographic and 

NMR characterization. The conformational preferences of these compounds as detailed by 

the theoretical analysis point out that the gauche/anti and cis/trans effects associated to 

fluorine bonds may be attenuated in large molecules, where the most preferred 

conformations may be dictated by other non-fluorine specific intra-molecular interactions.  
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Finally, we note that similar computational protocols including solvent effects could 

help in the rational design of fluorinated molecules having a nearly frozen conformation 

tailored for a particular application. This is still a challenging task as most of the fluorinated 

compounds have emerged from broad chemical screening programs and the actual influence 

of fluorine is considered retrospectively.9 However, the QM and IQF assessments of the 

conformational effects associated to the presence of fluorine atoms (gauche effect, the 1,3 

C-F repulsion and other electrostatic interactions, the hydrogen bond acceptor capability of 

organic fluorine, etc.) could result in new guidelines to predict the conformation of structurally-

complex fluorinated molecules.  
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Abstract: The interacting quantum atoms (IQA) method decomposes the total energy of a molecular 

system in terms of one- and two-center (atomic) contributions within the context of the quantum theory 

of atoms in molecules. Here we incorporate electrostatic continuum solvent effects into the IQA energy 

decomposition. To this end, the interaction between the solute electrostatic potential and the solvent 

screening charges as defined within the COSMO solvation model is now included in a new version of 

the PROMOLDEN code, allowing thus to apply IQA in combination with COSMO-quantum chemical 

methods as well as to partition the electrostatic solvation energy into effective atomic and group 

contributions. To test the robustness of this approach, we carry out COSMO-HF/aug-cc-pVTZ 

calculations followed by IQA calculations on more than 400 neutral and ionic solutes extracted from 

the MNSol database. The computational results reveal a detailed atomic mapping of the electrostatic 

solvation energy that is useful to assess to what extent the solvation energy can be decomposed into 

atomic and group contributions of various parts of a solute molecule, as generally assumed by 

empirical methodologies that estimate solvation energy and/or logP values. 
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Introduction 

The Quantum Chemical Topology (QCT) methods1 take advantage of the topological properties of 

scalar fields (charge density and others) in order to gain new chemical information about bonding and 

molecular properties. Among them, the interacting quantum atoms (IQA) approach,2-3 employs the 

first- and second-order reduced density matrices to partition the expectation values into atomic regions 

such as the attraction basins (A) of the gradient field of the electron density. Thus, IQA provides self-

atomic energies, E(A), which tend to the free atomic energies at the limit of non-interacting atoms, 

and diatomic E(A,B) energies that unambiguously discriminate between classical electrostatic and 

exchange-correlation energy terms. Using DFT (and HF) charge densities, IQA can be augmented with 

the Grimme’s D3 potential,4-5 which yields pairwise dispersion energies Edisp(A-B) that complement 

the diatomic E(A,B) IQA terms, constituting thus an effective D3-IQA decomposition scheme6 

applicable to medium-sized and large systems. Thus, the IQA or D3-IQA decomposition has been 

successfully applied to quantify many different aspects of chemical bonds and intermolecular forces. 

Among the various topics that have been recently addressed using IQA, we find the nature and 

cooperativity of H-bond interactions,7-10 halogen bonding patterns,11 interactions within transition 

metal complexes,12-13 description of short-range repulsions,14 fine-tuning effects of electron correlation 

within covalent and non-bonded interactions,15 the categorization of non-covalent bonding and the 

atomic decomposition of intermolecular binding energies,6 etc..  

Up to date all the IQA calculations have been performed considering molecular species (single 

molecules, dimers, clusters) in the gas-phase. However, it is clear that solvent plays a major role in 

determining the stability and molecular properties of organic molecules and biomolecules in solution. 

Moreover, since we are interested in pursuing the application of D3-IQA to quantify atomic and group 

energy contributions in biomolecular systems with many functional groups, the treatment of solvent 

effects within the IQA framework is therefore a prerequisite. To this end, the combination of implicit 

solvent models and quantum mechanical (QM) methods constitutes probably the best methodological 
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choice given that the continuum treatment of solvent focuses on the degrees of freedom of the solute(s) 

while it provides an accurate description of the strong, long-range electrostatic forces that dominate 

solvation energies in high dielectric solvents.16 In these hybrid approaches, the solute-solvent 

electrostatic interaction is usually described in terms of the reaction (electric) field exerted on the QM 

charge density of the solute by the solvent that in turn is polarized. Other empirical and semiempirical 

methods, which generally do not affect the charge density of the solute, have been proposed to estimate 

the non-electrostatic contributions to solvation energy, which are significant, especially in non-polar 

solvents.17 

The decomposition of the QM energy in solution by IQA would render atomic and group 

contributions to the solute solvation energy. Nonetheless, the actual significance of this partitioning 

should be carefully considered. Thus, in classical Statistical Mechanics,18 the free energy of solvation 

of a rigid solute can be expressed as: 

 ln expsolv NPT
G RT V RT     

where V is the solute-solvent interaction potential and  represents the ensemble average over all 

possible configurations of the solvent molecules in the system. Although the total interaction energy 

V may be split into group/atomic contributions of the different solute atoms, the ensemble average in 

the above expression cannot be factorized into a product of two or more average quantities. Physically, 

this means that the solvation shells around the solute atoms/groups are correlated at varying degrees 

and, therefore, it is not feasible to achieve an exact additivity of Gsolv. Nevertheless, computational 

models have been developed for the fast prediction of hydration energies or partition coefficients (such 

as the logarithm of the octanol-water partition coefficient, which can be calculated as 

 octanol waterlog 2.303solv solvP G G RT   ) that rely on the assumption of atomic/fragment additivity for 

Gsolv and derive atomic/fragment parameters using different optimization strategies.19-23  
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In a previous work,24 QM calculations have been used to heuristically determine group contributions 

to the free energy of solvation. However, this study is limited to a family of closely-related heterocyclic 

compounds, although it is concluded that group contributions are slightly affected by the chemical 

environment. Therefore, the IQA decomposition of the solvation free energy into effective atomic 

terms, which ultimately arise from the topological partitioning of the solute charge density, constitutes 

an opportunity to further assess the additivity assumption.  

In the rest of the paper, we will briefly describe the theoretical details of the IQA extension to 

accomplish the decomposition of the QM energy of solute molecules embedded within a solvent 

continuum. In doing so, we will focus on the electrostatic solute-solvent interaction accounted for by 

the conductor-like screening model (COSMO). The IQA-COSMO protocol will be applied to a large 

set of organic molecules retrieved from the Minnesota Solvation database (MNSol),25-26 which collects 

experimental free energies of solvation for hundreds of solutes and QM optimized geometries for the 

corresponding solutes. For a subset of neutral and ionic solutes comprising 412 molecules, we perform 

geometry optimizations both in the gas-phase and in solution using the HF method with a triple- basis 

set followed by full IQA calculations. Then we will assess the accuracy of the calculated solvation 

energies and the numerical errors in the IQA-reconstructed energies. Subsequently, we will 

characterize statistically the fragment-based IQA contributions to the electrostatic solvation energies. 

The chemical fragments comprise united atom types and functional groups that are selected using 

similar prescriptions to those of Meylan and Howard.23 Finally, we will assess the goodness of the 

solvation energy additivity approximation by comparing between COSMO-HF energies and additive 

energies for an additional set of MNSol structures not considered in the IQA calculations. 

Theory 

IQA in the gas-phase 

Starting with the atomic basins (), which stem from the topological properties of the charge 

distribution (r), the IQA approach2, 27 needs two scalar fields derived from the QM wavefunction, the 
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first order reduced density matrix (r1,r1’) and the pair density, (r1,r2). Then IQA decomposes the 

total energy of a molecular system in the gas-phase (Egas) as 

 

 

int

gas A AB A A A

net ne ee

A A B A

AB AB BA AB

nn ne ne ee

A B

E E E T V V

V V V V





    

   

  


   (1) 

where  A

net net AE E   is the net electronic energy of atom A that includes the kinetic energy TA and 

the potential energy due to nucleus-electron (ne) attractions and electron-electron repulsions (ee) 

within A. The interaction energy  int int ,AB

A BE E     between atoms A and B in the molecular system 

collects various potential energy terms (nn, en, ne and ee). Note that in the IQA terminology, 

interaction energies are the diatomic contributions to the absolute energy of a molecule. By grouping 

half the interaction energy terms involving atom A and its net energy, we define its additive energy, 

     int

1
,

2

A

add add A net A A B

B A

E E E E


       ,  (2) 

so that the sum of all the A

addE terms reproduces the total energy Egas.  

Implicit solvent methods: COSMO 

Several excellent reviews have been published16-17, 28-29 that examine the various approximations 

underlying the implicit solvent methods. Herein, we briefly review the most basic concepts and some 

details of the COSMO method that are required to understand the IQA-COSMO protocol. Thus, the 

definition of the molecular cavity and the description of electrostatic solute-solvent interaction are the 

basic elements of a continuum solvent model.28 The shape and size of the cavity are typically defined 

by a solvent excluded surface (SES), which encloses the volume in which the solvent molecules cannot 

penetrate. Thus, the SES, which is the boundary of the molecular cavities, can be computed using 

different sets of atomic radii and numerical algorithms depending on the continuum model. Among 

the various techniques for solving the electrostatic problem, the apparent surface charges (ASC) 

method28 allows a direct implementation of continuum solvent effects within IQA. In this approach, 

the reaction field potential generated by the polarization of the dielectric medium is expressed in terms 
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of a set of point charges qk assigned to small surface segments (tesserae) located at positions sk. The 

values of qk are determined by imposing the proper boundary conditions on the SES that, in the 

COSMO model,30-31 correspond to the vanishing potential on and within a grounded conductor. The 

COSMO model mimics solvents with finite dielectric constant by scaling down the qk values by a 

factor ƒ(ε)=(-1)/(+x) with x=0.5 and 0.0 for neutral and ionic molecules, respectively. The so-called 

outlying charge, which arises from the tail of the solute electron density that lies outside the molecular 

cavity, can affect negatively the results of the continuum models. In the COSMO methodology, the 

outlying charge correction (occ) is an heuristic approximation that corrects both the apparent surface 

charges qk and the solute electrostatic potential (sk).
32 However, we found that the COSMO hydration 

energies with and without the occ term correlate with experimental data very similarly (see below) 

and, therefore, we decided not to include the occ term in the IQA decomposition. 

Knowing the values of the apparent surface charges qk, the solute-solvent electrostatic energy (Vsolv) 

is 

 
, ,e

kA k
solv solv n solv

A k kA k k

qZ q
V V V d


   

 
 

r
r

R s r s
    (3) 

where (r) is the electron charge density of the solute and ZA is the nuclear charge of the atom A 

located at RA. This expression can be rewritten as   

 solv k k

k

V q  s       (4) 

where (sk) is the total electrostatic potential created by the solute acting on the tesserae sk. This 

solute-solvent interaction energy accounts for the electric work (free energy) needed to transfer the 

unperturbed solute from the gas-phase to the solvent cavity in the presence of the qk charges located at 

the sk positions, but does not describe the polarization of the solvent continuum. Assuming a linear 

response regime, it can be shown that the free energy due to the building of the solvent polarization is 

equal to Vsolv/2.29 Therefore, the total free energy gain associated to the solvation process would be 

Vsolv/2 .  
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To solve the QM problem of the solute embedded in the continuum, the implicit solvent methods 

construct effective Hamiltonians that include both the solute-solvent interaction and the solvent 

polarization. Mutual solute-solvent polarization effects are considered through a self-consistent 

reaction field (SCRF) iterative process. For HF/DFT methods, the wavefunction/charge density in 

solution is iteratively obtained so that the molecular/Kohn-Sham orbitals and the reaction field 

potential (i.e., qk values in COSMO method) are updated at each self-consistent-field cycle. After 

convergence, the QM energy of a molecular system and the dielectric continuum is obtained by adding 

the Vsolv/2 term to the rest of kinetic and potential energy terms associated to the electronic and nuclear 

degrees of freedom of the solute.  

IQA partitioning of the solute-solvent interaction energy  

The IQA partitioning of the total QM energy in solution derived from the COSMO method relies on 

the monoelectronic character of the solute electrostatic potential, . Its decomposition into atomic 

contributions is straightforward, 

   A

k k

A

  s s      (5) 

so that (sk) is the electrostatic potential created by the nuclear charge and electron density 

confined within the atomic basin A. This quantity is readily computable within the IQA framework, 

yielding thus the atomic contribution to Vsolv, 

  A A

solv k k

k

V q  s      (6) 

Once that the SCRF process is converged and the corresponding density matrices become available, 

IQA decomposes the QM energy in solution as, 

 

1

2

sol A A A A

ne ee solv

A

AB AB BA AB

nn ne ne ee

A B

E T V V V

V V V V


 
    

 

   




  (7) 

Solvation free energy 
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Ignoring thermal corrections to the free energy associated with the solute degrees of freedom, it turns 

out 29 that the electrostatic solvation free energy Gsolv is the difference between the QM energies in 

solution and in the gas-phase  

sol gas

solvG E E        (8) 

Two separate contributions to solvG can be defined: the Coulomb term Coul

solvG  due to the electrostatic 

interaction between the unperturbed (i.e., not polarized) solute and the solvent continuum and the 

polarization or induction pol

solvG energy gained upon mutual polarization. By computing Esol through a 

single SCRF cycle with the unperturbed gas-phase charge density, Coul

solvG can be known and thereby 

pol Coul

solv solv solvG G G    . Inserting then the corresponding IQA additive energies, , Coul

solv solvG G  and pol

solvG

can decomposed into effective atomic solvation energies. For example,  

 , ,sol gas sol A gas A A

solv add add solv

A A

G E E E E G         (9) 

Let us stress that this is indeed an effective partitioning given that each Gsolv
A term collects the 

mutual solute-solvent polarization effects due to the charge density rof the solute within the basin 

A and all the apparent surface charges distributed over the molecular surface.  

Results and Discussion 

Solvation energy calculations 

The MNSol database contains the Cartesian coordinates of 533 molecules solvated by pure water 

and of other 106 molecules in mixed aqueous organic solvent (e.g., water-octanol). From these MNSol 

data, we selected 412 molecules to carry out the QM and IQA calculations on the basis of appropriate 

molecular size. Thus, small molecules containing one or two heavy atoms (e.g., water, ammonia, 

acetylene, hydroxide anion, etc.) were not considered as the emphasis is placed on the analysis of 

functional group contributions. Relatively big molecules containing more than 25 atoms were not 

selected neither in order to keep the computational cost of the expensive IQA calculations within 

reasonable bounds. In the final set, 57 anionic and 49 cationic species were included. The molecular 
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geometries of all the molecules were fully optimized at the HF/aug-cc-pVTZ level both in the gas-

phase and in the solvent continuum. 

Figure 1. Comparison between the COSMO-HF/aug-cc-

aqueous solvent. The determination coefficient (R2), the Spearman correlation coefficient 

root mean square (RMS) error in kcal/mol are also indicated for the whole data set (in black) and for 

the neutral molecules (in red), anionic (in blue) and cationic (in magenta) categories. The blue dashed 

line is the least squared fit line between the calculated and the reference data. 

 

In Figure 1 the experimental hydration energies of 364 molecules are compared with the COSMO-

HF/aug-cc-pVTZ Gsolv values. The global correlation between calculated and experimental data is 

strong as the determination coefficient R2 amounts to 0.993. The root mean squared (RMS) error is 

significant, 4.5 kcal/mol, which is not entirely unexpected due to the lack of electron correlation 

effects, non-polar solvation contributions and conformational sampling. The performance of the 

COSMO-HF/aug-cc-pVTZ level depends on the charge state of the solute molecules. Thus, the 
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solvation energies for neutral and anionic molecules show a good correlation with experimental values 

(R2=0.83 and 0.85, respectively) whereas the prediction capacity for the cationic species turns out to 

be lower (R2=0.68). We also note in passing that the COSMO-HF/aug-cc-pVTZ Gsolv energies 

including the outlying charge correction have very similar statistical metrics (R2= 0.992, 0.846, 0.844 

and 0.688 for the full set, neutral, anionic and cationic solutes, respectively). 

The reliability of the COSMO-HF Gsolv values is not far from that of more sophisticated QM 

solvent models like the embedded cluster reference interaction site model (EC-RISM) integral 

equation theory coupled with the MP2/6-311+G(d,p) ab initio method.33 This optimized EC-RISM 

protocol, which incorporates conformational sampling, yields a global R2=0.99 and RMS error of 2.4 

kcal/mol for the MNSol structures in water. The statistical measurements of the EC-RISM data are 

also less satisfactory if neutral and charged species are analyzed separately (R2=0.89, 0.88 and 0.85 

for neutrals, anions and cations, respectively). Hence, we conclude that the HF/aug-cc-pVTZ level, 

which is particularly suitable for carrying out the IQA calculations, captures reasonably well the trends 

exhibited by the hydration energies of neutral and anionic molecules, the case of cations being 

somewhat less satisfactory. 
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Figure 2. Atomic distribution of the IQA Gsolv
A energies (in kcal/mol) and Bader atomic charges (in 

parentheses) for some neutral MNSol molecules: E-2-pentene, m-xylene, 1,1,2-trichloro-1,2,2-

trifluoroethane, pentanol, butanal, 2-methylpyridine, nitroethane, and 3-chlorophenylurea. Total Gsolv 

values in kcal/mol are also indicated (in red).  
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IQA decomposition of solvation energy 

The calculation of the IQA energy terms involves six-dimensional numerical integration over the 

atomic basins, which is computationally expensive and introduces some numerical error.34-35 To 

estimate this error, we compared the solvation energies Gsolv derived from the gas-phase and COSMO 

HF calculations with their counterpart values obtained from the IQA-reconstructed energies 

(Gsolv
IQA). The absolute differences |Gsolv Gsolv

IQA| can be considered as a measure of the “IQA 

numerical error” in the decomposition of solvation energies. Its mean value is 0.76±1.36 kcal/mol, 

which corresponds to a average error per atom of 0.06±0.10 kcal/mol. The magnitudes of these error 

estimates are similar to those previously found in the IQA decomposition of formation energies for 

non-covalent complexes.6 We note again that the actual interest of the IQA energy partitioning resides 

in the atomic and/or fragment-based IQA components and they have values ranging from ~0.5 to tens 

of kcal/mol in absolute value (see below) that are well above the mean numerical error per atom.  

Figure 2 displays the stick models of the COSMO HF/aug-cc-pVTZ optimized structures for selected 

neutral solutes together with the Gsolv
A energies (in kcal/mol) and the charge corresponding to each 

atomic basin (Figure S1 in the supporting information shows the same data for the whole set of 

structures). For the non-polar hydrocarbon molecules, the effective atomic contributions to the 

electrostatic solvation energy are mainly negative (favorable) for the C atoms and positive for Hs, the 

absolute values of Gsolv
A being small (~0.5-2.0 kcal/mol). The atomic charges throughout these 

hydrophobic molecules are also quite small (0.01-0.05 in absolute value) and they are uncorrelated 

with the Gsolv
A values. Indeed another non-polar molecule, the halogen-substituted ethane, exhibits 

relatively large atomic charges (e.g., qA= -0.8, +1.7), but |Gsolv
A| values < 1.6 kcal/mol (see Figure 

2).  
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Figure 3. Atomic distribution of the IQA Gsolv
A energies (in kcal/mol) and Bader atomic charges (in 

parentheses) for some ionic MNSol molecules: N-ethylethanamine (+), acetonitrile (+), ethanol (+), 

acrylic acid (-), phenylmethanol (-), 3-chloroaniline (+).Total Gsolv values in kcal/mol are also 

indicated (in red). 

 

The stronger hydration induced by the polar groups (alcohol, aldehyde, amino, nitro, etc.) into the 

neutral solutes, whose total Gsolv values are around -6, -8 kcal/mol, arises from relatively large Gsolv
A 

contributions associated to the atomic basins of the polar functional groups. For example, the three 

atoms of the aldehyde HC=O group in butanal result in a Gsolv
CHO term of -9.0 kcal/mol, the molecular 

Gsolv value being -6.9 kcal/mol. The non-polar hydrocarbon moieties in the mono-substituted 

compounds yield atomic Gsolv
A values (~0.5-2.0 kcal/mol in absolute value) that are similar to those 

in the non-polar hydrocarbon molecules. The Gsolv
A and qA values of polar sites are more widely 

distributed than in non-polar molecules and exhibit R2 values ranging between 0.4 and 0.8 depending 
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on the solute molecule. Thus, it seems that atomic charges significantly determine the polar Gsolv
A 

contributions.  

Figure 4. Correlation plot between the Bader’s charges of atomic basins (qA, derived from COSMO-

HF/aug-cc-pVTZ density) and the corresponding IQA Gsolv
A energies for ionic molecules: cationic 

(in blue) and anionic (in red). The dashed lines are the least squared fit lines. The determination 

coefficient (R2) and the Spearman correlation coefficient () are also indicated. 

 

Ionic solutes are characterized by large solvation energies of tens or even hundreds of kcal/mol in 

water. For the cationic and anionic solutes shown in Figure 3, the IQA COSMO-HF calculations 

indicate again that the ionic functionalities (-OH2
+, -COO-, -NH3

+, …) concentrate the solute-solvent 

interaction and present the largest Gsolv
A energies. For example, the carboxylate group in the acrylic 

acid gives a Gsolv
COO- term of -67.1 kcal/mol while the calculated hydration energy is -71.7 kcal/mol. 

However, the global charge of the ionic species also affects the atomic Gsolv
A contributions of non-

polar sites that tend to have values from ±5 to ±20 kca/mol, the greater contributions occurring at the 

vicinal positions with respect to the charged groups. With respect to the neutral solutes, the Gsolv
A 
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energies and the Bader charges qA are distributed over much wider ranges so that a stronger 

dependency can be expected. As a matter of fact, linear regression in the (Gsolv
A, qA ) data set derived 

from all the anionic or cationic solutes results in overall R2 coefficients of 0.98 and 0.97 for cations 

and anions, respectively (see Figure 4). The COSMO-HF qA values were used in this correlation 

analysis, but nearly identical statistical parameters are obtained if the gas-phase HF charges are 

adopted instead. Therefore, we conclude that the Gsolv
A / qA relationship would be transferable for 

other ions and that the atomic charge distribution closely determines the hydration of the ionic solutes. 

We also note that, for the slightly polar or non-polar solutes, the electrostatic Gsolv
A values would 

probably be controlled by other multipolar terms (dipole, quadrupole, …) associated to the solute 

charge density.   

Assessment of atomic/fragment contributions to solvation energy 

Inspection of the Gsolv
A energies in Figures 2-3 shows that the solvation contributions of two 

covalently bonded atoms have opposite signs as they usually have opposite qA charges too. In the case 

of A-B polar bonds that imply a significant charge separation, the A and B contributions can be 

comparable to the total Gsolv and even larger for ionized groups. For example, the ammonium group 

-NH3
+ in 3-chloroaniline (see Figure 3) has a Gsolv

NH3+ of -20.7 kcal/mol arising from the sum of the 

N (+72.3 kcal/mol) and H terms (-31.1, -31.1 and -30.8). Therefore, we believe that the best strategy 

for standardizing and analyzing the IQA decomposition of the solvation energy would consist of 

adopting a united atom approach in such a way that H contributions in -XHn fragments are merged 

with that of the heavy atom X. Subsequently, the resulting united atom X’ groups can be useful to 

define a set of atom types and functional groups into which a given organic molecule can be formally 

decomposed.  

It may be interesting to note that the united atom approach suggested by the IQA analysis has been 

used in empirical solvation and/or logP methods like the atom/fragment contribution method of 

Meyland and Howard,23 which defines 130 fragments to estimate the logP of organic compounds. This 
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model employs multiple linear regression of thousands of compounds to estimate the logP in terms of 

fragment contributions (fG) using the following equation,  

log G G I I

G I

P f n c n b         (10) 

where b is a regression parameter, nG is the number of times that a group occurs in the structure and 

cI are specific correction terms that apply only for a subset of fragment combinations involving 

aromatic ring substituents, ring strain, electronic conjugation, etc. Thus, in this scenario, the fG terms 

could be somehow related to the IQA Gsolv
G terms. 

Table 1 lists the 51 atom types/functional groups (G) that were selected for analyzing the fragment-

based IQA contributions to the electrostatic solvation energy. The mean values and standard deviations 

of the corresponding Gsolv
G energies are also collected in Table 1. We decided to analyze the fragment 

contributions of groups that appear at least 5 times in the set of MNSol structures. For this reason, 

several groups appearing in the solute molecules (e.g., thiol –SH, phosphate –PO4, etc.) are not 

included in Table 1. Therefore, our analysis is not exhaustive and is not oriented to derive a working 

additive model of hydration energies for organic molecules, but to find out whether or not we can 

extract useful information from the IQA decomposition. 
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Table 1. Selected atom/functional groups (G) for the analysis of electrostatic solvation. The number 

of Gsolv
G values (n), their mean value ( in kcal/mol), standard deviation (), skewness (skw) and 

excess kurtosis (kurt) are given. The symbol of groups belonging to anionic/cationic compounds is 

augmented by (-)/(+), respectively. Charged groups are denoted by placing their sing into square 

brackets ([+]/[-]).  

Atom/ Group Description n   Skw Kurt 

-Br bromine 29 -4.7 3.0 0.0 -1.1 

=C< sp2 C 10 0.9 1.4 0.2 -1.7 

>C< sp3 C 39 -2.2 1.5 0.0 -1.2 

C(Ar) aromatic C 150 -0.8 1.0 0.0 0.4 

C(Ar)(-) aromatic C 25 25.5 27.9 -0.1 -1.8 

C(Ar)(+) aromatic C 24 -3.5 4.3 -1.4 1.7 

=CH- CH (sp2 C) 25 0.7 2.0 1.5 1.8 

>CH- CH (sp3 C) 28 0.2 1.2 0.1 -0.3 

=CH2 terminal CH2 (sp2 C) 13 -0.7 1.6 1.1 0.2 

-CH2- methylene 316 0.6 1.4 0.8 0.9 

=CH2(-) terminal CH2 (sp2 C) 6 -8.8 9.4 -0.3 -2.0 

-CH2-(-) methylene 33 22.1 20.9 -0.2 -1.7 

-CH2-(+) methylene 53 -22.8 11.8 0.3 -0.9 

-CH3 methyl 283 0.4 1.1 1.1 1.0 

-CH3(-) methyl 35 -4.0 4.1 0.4 -0.2 

-CH3(+) methyl 52 -24.0 15.2 -0.6 -1.0 

CH(Ar) aromatic CH 379 0.2 1.5 0.4 1.5 

CH(Ar)(-) aromatic CH 66 -2.6 3.4 0.5 -0.8 

CH(Ar)(+) aromatic CH  73 -8.9 5.0 -0.6 1.1 

-CHO aldehyde 7 -9.4 2.7 -0.4 -0.9 

>CH-(-) CH (sp3 c) 7 24.9 31.7 -0.6 -1.4 

-Cl chlorine 89 -2.1 2.4 -0.4 -0.7 

-Cl(-) chlorine 8 -17.4 4.1 0.3 -1.8 

-CN cyanide 8 -12.5 1.5 -0.3 -1.0 

-CO- carbonyl 44 -11.3 2.0 0.0 0.4 

-CONH- amide 5 -12.0 1.9 0.5 -1.9 
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-CONH2 terminal amide 7 -12.3 2.6 0.1 -1.7 

-COO- ester 9 -9.3 0.3 0.2 -1.4 

-COO[-] carboxylate 8 -62.2 8.4 0.2 -1.9 

-COOH carboxyl 8 -10.1 1.2 0.6 -0.7 

>C<(-) sp3 c 7 95.0 5.5 0.3 -1.4 

-F fluorine 92 -0.3 1.6 -1.1 0.5 

-F(-) fluorine 21 -36.8 2.2 0.0 -1.1 

>N- tertiary amine 7 -2.3 1.3 1.0 -0.7 

N(Ar) aromatic n 30 -6.8 4.7 1.0 0.0 

>NH-[+] tertiary ammonium 5 46.6 4.1 0.7 -1.4 

-NH- secondary amine 11 -3.4 0.9 0.8 -0.1 

-NH2 primary amine 17 -3.5 0.7 0.4 -0.7 

-NH2-[+] 

secondary 

ammonium 12 17.5 1.1 -0.5 -0.1 

-NH3[+] primary ammonium 14 -20.5 1.3 -1.1 0.5 

NH(Ar) aromatic NH 25 3.3 2.5 -0.1 -1.2 

-NHCONH2 carbamide 5 -11.0 1.9 -0.3 -2.2 

-NO2 nitro 13 -8.1 1.4 -0.3 -0.4 

-O- ether 40 -2.1 2.9 0.6 -0.7 

-O[-] alkoxide 27 -96.4 9.1 0.0 -0.9 

-OH alcohol 26 -4.3 1.9 0.5 -0.2 

-O(H)[-] H-bonded alkoxide 10 -89.5 5.2 0.6 -0.4 

-ONO2 nitrate 5 -3.8 2.2 -0.2 -2.0 

-S- sulfide 5 -6.8 2.1 -0.1 -2.2 

-SS- disulfide 11 1.7 7.1 -0.5 -1.4 

 

The selection and notation of the groups listed in Table 1 is partially based on the fragments defined 

by Meyland and Howard23 in their empirical logP method. For example, the symbol “>C<” stands for 

a tetra-substituted sp3 C atom, -CH2- for a methylene group, CH(Ar) for an aromatic CH fragment, -

NH2 for a neutral primary amine group, -NH2-[+] for a protonated secondary amine, and so on. A 

particular feature of our fragment selection is that, for the majority of neutral fragments G, we also 

distinguish two ionic versions labelled as G(-) and G(+) depending on the global charge of the molecule 
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bearing the corresponding fragment. For instance, -CH2-(+) and -CH2-(-) stand for the methylene 

groups in cationic and anionic molecules, respectively. This distinction is due to the significant 

variation in the Gsolv
G values due to the global charge of the molecule and the relative positioning of 

the G group with respect to the ionic groups (see below).  

Besides the mean values () of Gsolv
G and their standard deviations (), Table 1 contains the 

skewness (skw) and excess kutorsis indexes that measure, respectively, the asymmetry and the shape 

of the peak and tails of the underlying distribution with respect to the normal distribution (skw=0 and 

kurt=0). The Gsolv
G data corresponding to fragments in neutral molecules result in more or less narrow 

distributions (= ~2.0 kcal/mol) that are moderately asymmetrical, albeit with varying shapes as the 

kurtosis coefficient can be positive or negative. In the case of ionic solutes, both the ionic 

functionalities and the neutral fragments have Gsolv
G distributions that are quite wide (e.g., = ~9 

kcal/mol and above in anionic systems) and predominantly flat (i.e., negative excess kurtosis).  

To better characterize the width and shape of the Gsolv
G distributions, Figure 5 displays the 

histogram plots of a few selected groups. Closer inspection of the IQA data can reveal how the features 

of the various distributions are related to structural patterns. For example, electrostatic solvation of 

methylene (-CH2-) groups is, on average, not favorable and the distribution is quite concentrated 

around its mean value (=0.6, =1.4). The tallest distribution peak corresponds to the solvation of –

CH2- fragments attached to zero or one polar groups while the shoulder at Gsolv
G =+3.0 kcal/mol is 

due to di-substituted X-CH2-Y groups with X, Y=polar.  
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Figure 5. Histogram of selected fragment-based IQA Gsolv
G values. 

 

The presence of a global negative charge dramatically changes the Gsolv
G distribution, which 

becomes quite wide and flat over a 40 kcal/mol interval (see –CH2-(-) in Figure 5). Thus, all the –CH2- 

fragments attached to ionic groups (e.g., -NH3
+) have negative contributions to Gsolv (from -40 to -20 

kcal/mol). As a matter of fact, the solvation stabilization of tetrahedral ammonium groups stems from 

the positive Gsolv
A of the N atom and the negative (stabilizing) terms from the four surrounding groups 

including H atoms and -CH2- fragments (see N-ethylethanamine in Figure 3). Other methylene groups 

located at the  or  positions with respect to the positively charged group have also negative Gsolv
G 
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values (between -12 and -3 kcal/mol), which are below the values for –CH2- in neutral molecules. The 

CH(Ar) fragments in neutral solutes give a hydrophobic contribution (=0.2, =1.5) similar to that of 

the –CH2- groups. Most of the Gsolv
G data come from benzene ring groups although some CH(Ar) 

groups in heterocycles appear at the positive tail. The alkoxide –O and carboxylate –COO 

substituents at phenyl rings modify the hydration of the CH(Ar) groups, that become hydrophilic sites 

with negative Gsolv
G values. However, the aromatic CH groups are less perturbed by the ionic 

substituents than the aliphatic –CH2- fragments. The largest effect is at CH sites located at orto- 

positions with Gsolv
G ~ -7/-8 kcal/mol while those at the meta- and para- have values of ~-2/-3 

kcal/mol. 

Other examples of fragment hydration energy distributions in Figure 5 are those of the halogen 

substituents (Cl and Br), which exhibit quite wide and flat histograms (=-2.1, =2.4 for Cl and =-

4.7, =3.0 for Br). In fact a detailed examination shows that the more negative Gsolv
G values occur at 

monosubstituted aliphatic R-X compounds, the least favorable terms are those of polisubstituted 

halogenated alkanes and the values in between correspond to aromatic molecules. Neutral polar groups 

like –NH2, -OH as well as the cationic –NH3
+ tend to give relatively concentrated Gsolv

G distributions 

so that their corresponding average values  may be reliable estimators. In sharp contrast, anionic 

groups like the alkoxide –O result in scattered data over 40 kcal/mol interval (see Figure 5). In this 

case the more negative Gsolv
G values for –O are due to phenolate groups (~ -110 kcal/mol).  

Additivity of fragment contributions 

The analysis of the histograms in Figure 5 and other data in the Supporting Information confirms 

that the IQA decomposition of the COSMO-HF solvation energies can provide a detailed assessment 

of the fragment contributions to solvation. Although the amount of data gathered for some of the 

examined functionalities is limited, several structure-activity trends can be outlined regarding the 

constancy/dispersion of fragment contributions and their relationship with structural and substituent 

effects. In particular, the additivity of the mean values of the fragment Gsolv
G energies to estimate the 
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total solvation energy is not unreasonable for neutral solute molecules given that the dispersion () 

values collected in Table 1 tend to be moderate (< 2 kcal/mol).  

To find out to what extent the mean Gsolv
G values are additive, we calculated the COSMO HF/aug-

cc-pVTZ solvation energy for a set of 32 MNSol molecules not considered in the former IQA 

calculations. All of these molecules are neutral and possess the functional groups listed in Table 1 (see 

Figure S2 in the Supporting Information). In Figure 6 the calculated Gsolv and the fragment-based 

estimations G

estimated solv

G

G G    are compared. The computed and estimated values show a moderate 

correlation (R2=0.70) and the RMS error is 5.9 kcal/mol. The largest discrepancies arise in compounds 

that have large aliphatic or aromatic moieties (e.g., octanol 6.0, 0.2calc estimatedG G     ) whereas for 

molecules with 2 or more polar groups the simple additive model tends to work better (e.g., 3-

methylthiophenylurea 17.0, 18.0calc estimatedG G      ).  

Some empirical models developed for logP or hydration energy estimations exhibit a better 

performance (R2 ~0.8-0.9).22-23, 36 They include, not only atomic solvation parameters, but also 

exposure factors and/or correcting terms that modulate the sum of atomic terms. The results shown in 

Figure 6 suggest that a fragment-based method including weighing parameters to be fitted against a 

large set of hydration energies, could be also a reasonable approach. Further improvements in the 

additivity of the IQA-based solvation energies could be gained by defining new atom types/functional 

groups as suggested by the detailed analysis of histogram data. This could be the case of the halogen 

atom types that may be categorized as halogen attached to either aliphatic- or aromatic-C atom. These 

results also indicate that the electrostatic contributions of aliphatic and aromatic sites (and eventually 

their non-polar terms too) should receive a special attention. Thus, correction factors could be derived 

to take into account the influence of ionic/polar groups on the contributions of the nearby 

aliphatic/aromatic fragments. Nevertheless, these and other possible alternatives are beyond the scope 
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of the present work, which is focused on the description of the IQA-decomposition of solvation energy 

rather than in the development of a fragment solvation method. 

Figure 6. Comparison between the COSMO-HF/aug-cc-pVTZ calculated hydration energies (Gcalc 

in kcal/mol) and the estimated ones assuming the additivity of fragment contributions (Gestimated) of 

the selected MNSol structures in aqueous solvent. The determination coefficient (R2), the Spearman 

correlation coefficient () and the root mean square (RMS) error in kcal/mol are also indicated. The 

dashed line is the least squared fit line between the calculated and the estimated data.  

 

Coulomb and Polarization Effects 

The Coulomb contribution Coul

solvG  to the hydration energies of the MNSOL structures examined in 

this work was computed by means of single-point HF/aug-cc-pVTZ COSMO calculations on the gas-

phase geometries and using the unpolarized (gas-phase) wavefunction. The polarization term is then 

obtained by substraction, pol Coul

solv solv solvG G G    . Herein, we briefly comment on the results (see also 

Supporting Information). 

For the neutral solutes, the Coul

solvG  values correlate with experimental data (R2=0.83 and RMS error 

2.3 kcal/mol) similarly as the solvG  energies do. The cationic hydration energies are also similar. In 
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consonance with expectation, the lack of polarization in the Coul

solvG values of the anionic solutes results 

in less correlation (R2=0.78) with experimental data and larger absolute errors (~12 kcal/mol). 

Concerning the stability gained by solute-solvent mutual polarization, most of the calculated pol

solvG  

energies have values around -1, -2 kcal/mol. Only in those molecules containing the most polarizable 

groups (Cl, Br, anions, …), pol

solvG  have values between -2 and -7 kcal/mol.  

We also examined the distribution of group contributions, ,Coul G

solvG , using the same group definitions 

and statistical indexes as in Table 1 and Figure 5. In general, the dispersion () of the ,Coul G

solvG data for 

a given group is only slightly lower than that of G

solvG . Thus, the Coulomb ,Coul G

solvG contributions depend 

on the chemical environment much to the same extent as G

solvG . More significant variations are 

observed in the shape of the G

solvG and ,Coul G

solvG  distributions characterized in terms of the skewness and 

excess kurtosis. In particular, several non-polar groups (-CH2-, -CH3, CH(Ar)) in neutral molecules, 

which have very small group contributions to Gsolv, exhibit sharp-peaked distributions of their 

,Coul G

solvG values having also a large excess kurtosis. As a consequence, the corresponding polarization 

group components ,pol G

solvG are slightly positive (+0.5,+0.8, +0.7), what is more a statistical artefact than 

a physical effect. The rest of functional groups show negative stabilizing ,pol G

solvG values. Finally, we 

also examined the additivity of the mean ,Coul G

solvG values, finding a worse correlation with the calculated 

Coulomb solvation energies than in the case of the full solvation energies. Overall, we conclude that 

the separate treatment of the Coulomb and polarization electrostatic effects does not lead to an 

improved description of the fragment contributions to solvation energies. 

About the extension of IQA to other implicit solvent models 

The present COSMO-IQA calculations indicate that QM energies in implicit solvent are prone to be 

decomposed within the IQA method. COSMO belongs to the family of ASC methods that express the 

electrostatic solute-solvent energy as a single sum,  solv k k

k

V q  s , involving the solute electrostatic 

potential and the ASCs. As mentioned above, this feature enables IQA to absorb solvent effects into 
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the net atomic energies. Hence, it can be reasonably expected that other ASC methods including the 

original Polarizable Continuum Model (PCM) 28and the integral-equation-formalism PCM 

(IEFPCM)37 could be similarly coupled with IQA provided that qk and  data are available.  

IQA extensions to other QM SCRF methods as the generalized Born theory (GB) and the multipolar 

expansion methods would be more problematic. On one hand, the GB approach38 uses a modified and 

further parameterized Coulombic potential and evaluates the solvation energy as the total Coulomb-

like interaction over the atom pairs in the solute molecule and, therefore, it is not evident how to 

decompose it into meaningful atomic contributions. On the other, the multipolar expansion of the 

solute charge density can be extended to atom-centered expansions although there is an infinite number 

of manners of weighting the multipoles. 39-40 However, the resulting solute-solvent interaction energy 

is written in terms of diatomic reaction potential terms that do not admit an evident atomic partitioning 

either. 

In this work, we focus on the partitioning of the electrostatic solvation energy. However, the 

consideration of non-polar solvation effects within the IQA-like analysis could be feasible by means 

of empirical approaches. For example, cavitation free energy, solute-solvent dispersion and solvent-

structural effects can be accounted for by means of the GCDS empirical potential implemented in the 

SMD solvation method41: 

 M

CDS A A

A

G       

where A and M are molecular surface tension parameters and A is the solvent-accessible surface 

of atom A. Hence, the atomic contributions to GCDS could be combined with the electrostatic Gsolv
A 

terms to yield an atomic mapping of the total solvation energy. 
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Conclusions 

The computational results presented in this work demonstrate that it is feasible to incorporate 

electrostatic solute-solvent effects into the IQA energy decomposition method. In this way the usual 

IQA analysis of energy differences can be carried out including continuum solvent effects, extending 

thus its applicability. Basing on the extensive solvation energy calculations followed by the IQA 

decomposition of the electrostatic solvation energy, we have also shown that IQA yields a detailed 

atomic mapping of solvation energies and suggests a united atom approach for considering fragment 

contributions. A tentative selection of fragments has been made and their solvation energies have been 

characterized statistically, finding that the distributions of fragment solvation energies, which may 

have relatively large deviation for some groups, depend on structural and substituent effects. For 

neutral molecules, the simple additivity assumption, commonly adopted in empirical solvation 

methods, leads to approximate solvation energies that exhibit only moderate correlation with reference 

values and have significant errors of several kcal/mol. More specific fragment-types and extra-

parameters would be required to derive improved fragment solvation methods from QM SCRF and 

IQA calculations on a larger database of solute structures. 

Computational Section 

QM calculations 

Cartesian coordinates and reference hydration energies for all the solute molecules were retrieved 

from the MNSol database. The general ab initio quantum chemistry program GAMESS42-43 was used 

to perform all the QM calculations. First, we relaxed all the structures by means of unconstrained 

energy minimizations that were started from the corresponding MNSol geometries. These calculations 

were carried out first in the gas-phase combining the Hartree-Fock (HF) method with the aug-cc-pVTZ 

basis set.44-45 The solute geometries were also optimized at the HF/aug-cc-pVTZ level in combination 

with the COSMO solvation model.30 A dielectric =80 was selected for mimicking water as solvent 

while a multiplicative factor of 1.2 was applied to the standard van der Waals radii for cavity 
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construction. Each atomic sphere that contributes to build the molecular cavity is divided into 92 

tesserae. The cosprt module in GAMESS was locally modified to print out the charge and Cartesian 

coordinates of the apparent surface charges of the optimized HF-COSMO structures. The Chimera 

visualization system46 was used to draw the models of the solute molecules.  

IQA calculations 

The IQA decomposition of the total energies was performed with a modular version of the 

PROMOLDEN program 47 that is being developed in our laboratory. In this version, the program reads 

the apparent surface charge data generated by the COSMO implementation in GAMESS in order to 

compute the solute-solvent interaction term Vsolv using the same integration algorithm that is employed 

for computing the electron-nucleus interaction terms Ven.
2  

The IQA quantities are numerically integrated by PROMOLDEN over finite and irregular 

integration domains (i.e.,atomic basins A) using angular and radial grids in atomic spherical 

quadratures that are much finer than those typically used by other QM software. 2, 34 We employed 

similar integration settings to those used in previous work6 and that represent a compromise choice 

between computational cost and accuracy for small and medium-sized molecules. Thus, a sphere 

around each atom was considered (i.e., a sphere completely contained inside the atomic basin), with a 

radius equal to 60 % the distance of its nucleus to the closest bond critical point in the electron density. 

High-quality Lebedev angular grids were used with 5810 and 974 points outside and within the -

spheres of heavy atoms, respectively, (3890 and 590 points for hydrogen atoms). Euler-McLaurin 

radial quadratures were employed with 512 and 384 radial points outside and inside the spheres of 

heavy atoms, respectively (384 and 256 points for H). The largest value of the radial coordinate in the 

integrations was 15.0 au for heavy atoms (10.0 au for H atoms). Maximum angular moments, max, of 

10 and 6 were assigned to the Laplace and bipolar expansions of 1/r12 outside and within the -spheres.  
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ABSTRACT: Based on the Interacting Quantum Atoms ap-
proach, we present herein a conceptual and theoretical framework
of short-range electrostatic interactions, whose accurate description
is still a challenging problem in molecular modeling. For all the
noncovalent complexes in the S66 database, the fragment-based
and atomic decomposition of the electrostatic binding energies is
performed using both the charge density of the dimers and the
unrelaxed densities of the monomers. This energy decomposition
together with dispersion corrections gives rise to a pairwise
approximation to the total binding energy. It also provides
energetic descriptors at varying distance that directly address the
atomic and molecular electrostatic interactions as described by
point-charge or multipole-based potentials. Additionally, we
propose a consistent definition of the charge penetration energy within quantum chemical topology, which is mainly characterized
in terms of the intramolecular electrostatic energy. Finally, we discuss some practical implications of our results for the design and
validation of electrostatic potentials.

1. INTRODUCTION
Electrostatic interactions are central to molecular modeling
because of their slow decay and strength. Especially when polar
atoms or charged species are involved, they largely determine
the stability and activity of biomolecules such as proteins,
nucleic acids, or lipids, among others.1,2 As such, a reliable
description in molecular mechanics (MM) potentials is
essential both in the short- and in the long-range.
Within the framework of MM methods, interactions

comprising nonbonded atoms are usually represented by
pairwise potentials such as the Lennard-Jones and the
Coulomb ones. In the latter case, the use of point charges or
higher order multipoles to avoid the integration of interacting
charge densities has resulted in accurate electrostatics at long-
range, with significant improvements to speed up and facilitate
convergence such as the Ewald summation and its variants to
perform, for example, molecular simulations in solution under
periodic boundary conditions.3−8 At short-range, however, the
approximations taken for long distances become less accurate
or invalid,9 and a correct electrostatic description in this
regime stills poses a challenge. Hence, there is a growing
interest in improving short-range electrostatics (e.g., for
troublesome hydrogen bonds), mainly focused on capturing
the effects associated with the non-negligible interpenetration
of densities, leading to the so-called charge penetration (CP)
energy, which is typically defined as the difference between the
electrostatic energy computed from continuous charge density
distributions and that from multipolar approximations.10 Thus,

several investigations have been devoted in the last years to
incorporate the charge penetration energy into the MM
electrostatic potentials.10−14

The separation of various energy terms as implemented in
the MM potentials is somehow paralleled by the energy
decomposition analysis (EDA) methods.15 A major goal of any
EDA approach is to ascertain the nature and type of the
interactions among molecules as well as to rationalize their
stabilizing or destabilizing roles, which may have implications
for the design, parametrization, and validation of MM
potentials such as the electrostatic ones. However, there is
no unique recipe to decompose the energy, and thus many
EDAs have been developed rooted in different approaches.
Hence, symmetry-adapted perturbation theory (SAPT) makes
use of a perturbative approach to differentiate the distinct
nature of the intermolecular interactions,16,17 while orbital-
based EDAs exploit a stepped scheme to calculate the different
energies according to some reference electronic states,18−20

and the interacting quantum atoms (IQA) method relies on a
real space partition of the quantum mechanical (QM) density
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matrices,21,22 being thus classified as a quantum chemical
topology (QCT) method.
According to recent studies, in spite of their crude

approximations, it may be feasible to improve the classical
MM potentials by utilizing the information provided by
EDAs.23 More specifically, it has been shown that the SAPT
energy components (electrostatics, induction, exchange-
repulsion, and dispersion) can be modeled with relatively
simple MM functions.24,25 In particular, it has been
demonstrated that the combination of empirical damping
functions accounting for the CP energy with point multipoles
results in electrostatic energies at short-range that are quite
close to the SAPT ones. Actually, the SAPT electrostatic
energy provides the required reference to parametrize and
validate the CP-augmented potentials. However, different
interpretations of short-range energetic effects involving the
overlap of the electron densities of two or more fragments may
be possible depending on the particular EDA of choice.15 As
such, other schemes such as the absolutely localized molecular
orbital (ALMO) EDA, that relies on a different non-
perturbative decomposition of energy terms, have also been
proposed.26 In this work, we reexamine the nature of
electrostatic interactions under the prism of an orbital-
invariant, reference-free technique. The IQA approach fulfills
these requirements as it is a QCT, real-space energy
decomposition resorting to the partition of the reduced
density matrices (RDMs). IQA distinguishes not only between
electrostatic or exchange-correlation components of the
interaction energy but also between intra- or interatomic (or
fragment) contributions. Moreover, since IQA splits the total
energy of a system and not only the interaction between
selected fragments, it is capable of reconstructing (or
dissecting) the energy ascribed to both covalent and
noncovalent binding, allowing thus covalent bond energies to
be characterized27 as well as the accuracy of the energy
components handled by QM fragment methods to be
investigated.28

Herein, we study in detail the electrostatic interactions
involved in noncovalent complexes with a twofold goal. On the
one hand, we aim to compare in a consistent and systematic
manner the atomic and fragment contributions to the
electrostatic energy as evaluated throughout a hierarchy of
QM and MM approximations and at varying intermolecular
distances. In this way, we seek to identify the best
correspondence between the IQA and the MM electrostatic
terms. On the other hand, we critically examine the CP
concept and propose a novel definition relying on a joint
orbital and real-space decomposition scheme, which can give
new insight into the CP energy. To help fulfill these goals, the
rest of the manuscript is structured as follows. First, we present
and describe the theoretical scaffold that holds our work,
paying particular attention to the IQAand its IQF variant
energy decomposition, followed by subsections concerning the
zeroth-order approximation, the electrostatic MM potentials,
and a final assessment of the CP energy and the alternative
definition proposed in this work. Subsequently, we describe
some computational settings and the results of our test
calculations, which were carried out on the S66 and S66x8 data
sets.29,30 The various levels of description of the electrostatic
interactions are then discussed based on their statistical
correlation with benchmark data, their dependence with the
intermolecular separation, etc. The QM and IQA calculations
yield further information, not only about the magnitude of the

CP energy, but more importantly, about its different role in the
IQA descriptors. Finally, we conclude that the aim of
improving the electrostatic description is essentially fulfilled
at the expense of accounting for intramolecular effects.

2. THEORY AND METHODS
2.1. IQA Decomposition of QM Energies. The

interacting quantum atoms method is a robust and physically
sound approach to decompose the total QM energy of a
system into chemically meaningful components.21,22 It is based
on partitioning the first- and second-order RDMs, as can be
done with the real space partition proposed by Bader and co-
workers within their Quantum Theory of Atoms in Molecules
(QTAIM).31 Thus, the three-dimensional space is decom-
posed into atomic regions (ΩI) as the attraction basins of the
gradient field of the electron density.
Given a global energy E of a system, IQA permits its

decomposition into atomic components and pair interaction
energies according to

E E E
I

net
I

I J
int
IJ∑ ∑= +

< (1)

where Enet
I is called the net atomic energy and, under the

Born−Oppenheimer approximation, represents the energy due
to the kinetic energy of electrons plus all the interactions
involved (i.e., electron−electron and electron−nucleus) inside
the atomic basin of each atom I. Similarly, each Eint

IJ term
comprises the interaction energy between the electrons (e) and
nucleus (n) located in atom I with those ascribed to other
atoms J, which can be separated into n−e, e−e, and n−n
contributions.
In order to compute the potential energy, the pair density

ρ2(r1, r2) is required. This object can be split according to
ρ2(r1, r2) = ρ(r1)ρ(r2) + ρxc(r1, r2) in two contributions. On
the one hand, ρ(r1)ρ(r2) represents a noncorrelated product of
densities, whereas electron correlation is accounted for by the
exchange-correlation (xc) density ρxc(r1, r2). Accordingly, the
total interaction energy between two atoms can be
decomposed into a Coulomb or electrostatic term Eele

IJ and a

quantum mechanical exchange-correlation one Exc
IJ:

E E Eint
IJ

ele
IJ

xc
IJ= + (2)

the latter term comprising all the associated QM effects that
other (e.g., perturbative) approaches identify separately as
dispersion, charge-transfer, polarization, etc. However, such a
decomposition of Eint

IJ into two terms is particularly relevant
when assessing the nature of a given bond or interaction, since
the electrostatic term is associated with ionicity and the
exchange-correlation contribution with covalency.22

IQA admits the grouping of atomic terms into fragment
contributions (e.g., functional groups, molecules). Thus, a
fragment decomposition similar to eq 1 of a molecular
aggregate constituted by two moieties A and B involves

E E Enet
A

I A
net
I

J I

I J A

int
IJ

,

∑ ∑= +
∈ >

∈ (3)

E Eint
AB

I A
J B

int
IJ∑=

∈
∈ (4)
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where Enet
B can be calculated analogously. For practical

purposes, we use the IQA acronym to refer to the atomic
analysis, whereas for its fragment version the term interacting
quantum fragments (IQF) is preferred.
In a previous work,32 it was shown that IQF may be useful to

dissect the formation energy of noncovalent complexes.
Moreover, the IQA/IQF terms can be augmented with
Grimme’s D3 dispersion correction33 as combined with the
Becke-Johnson damping function34 to complement the DFT
and HF descriptions. Using the IQF-D3 protocol, the
formation energy of a two-fragment system AB given by the
process A + B → A···B is split as

E E E E E E

E E E

form net
A

net
B

ele
AB

xc
AB

D disp
AB

def
A

def
B

int
AB

3Δ = Δ + Δ + + +
= + +

−

(5)

The deformation term Edef
A (Edef

B ) in the above equation

corresponds to the net energy variation Enet
AΔ ( Enet

BΔ ) of
fragment A (B), whereas the interfragment interaction energy
Eint

AB comprises the electrostatic (Eele
AB), exchange-correlation

E( xc
AB), and dispersion (ED disp

AB
3− ) energies between the two

fragments, the latter being thus separated from the whole
exchange-correlation one. Overall, the contribution of electro-
statics and exchange-correlation to ΔEform is split between the
intrafragment deformation and the interfragment interactions.
2.2. Electrostatic Energy from Continuous Charge

Densities. The purely electrostatic energy for a given system
with total charge density ρ(r) (ρ(r) ≡ ρ tot(r) =

Z r R r( ) ( )I I I eδ ρ∑ − − , including both the electron density
ρe(r) and the nuclear charges ZI at positions RI) is readily
computed using the Coulomb law,

E
r

r r
r r

1
2

( ) ( )
d dele

1 2

12
1 23 3 

∫ ∫ ρ ρ=
(6)

where, for the sake of simplicity, the electrostatic potential in
this and the rest of the equations is expressed in atomic units.
Interestingly, the QTAIM real space partition derived from
ρe(r) allows us to decompose the electrostatic energy at the
atomic level,

E
r

r

E E

r r
r r

r r
r r

1
2

d d
( ) ( )

d d
( ) ( )

ele
I

I J

I
ele
I

I J
ele
IJ

1 2
1 2

12

1 2
1 2

12

I I

I J

∫ ∫
∫ ∫

∑
∑

∑ ∑

ρ ρ

ρ ρ

=

+

= +

Ω Ω

< Ω Ω

< (7)

Similarly, the fragment-based decomposition can be readily
accomplished in an analogous way, allowing thus the specific
assessment of the electrostatic component of the formation
energy ΔEele of a two-fragment system AB as

E E E Eele ele
A

ele
B

ele
ABΔ = Δ + Δ + (8)

where ΔEele is expressed in terms of two contributions, namely,
the intrafragment variations of electrostatic energy in the
formation process, Eele

AΔ and Eele
BΔ , and the interfragment

electrostatic interaction, Eele
AB. At this point, we note that

although ΔEele is commonly termed as a classical electrostatic
interaction energy, we will refer to it as the electrostatic

contribution to the formation energy of the A···B complex in
order to help avoid confusions with the IQA/IQF interaction
energy terms. When the charge density is constructed from the
unrelaxed fragment densities as r r r( ) ( ) ( )A B

0 0 0ρ ρ ρ= + , the
electrostatic contribution to the formation energy, which is
named here as the zeroth-order energy Eele

0Δ , equals the
Coulomb interaction between the unrelaxed densities:

E
r

r r
r r

( ) ( )
d dele

A B0
0

1
0

2

12
1 23 3 

∫ ∫ ρ ρΔ =
(9)

This energetic term corresponds to the so-called f irst-order
polarization energy (or simply electrostatic energy) defined in
SAPT,16 which has been adopted as a benchmark electrostatic
energy for the validation of recently developed short-range
electrostatic potentials.

2.3. Electrostatic Potentials in Molecular Mechanics.
To avoid the usage of continuous charge distributions, the MM
methods typically invoke the multipolar expansion as detailed
in the Supporting Information (SI), which approximates the
zeroth-order energy defined in eq 9. Formally, the multipolar
electrostatic energy Eele mp,

0Δ is affected by two different error
sources. On the one hand, the underlying expansion must be
truncated at some order (lmax = 0, 1, 2, ...), resulting thus in a
certain truncation error. On the other, when r( )A

0ρ and r( )B
0ρ

overlap to a significant extent, the rigorous application of the
multipole expansion is impeded so that its usage at short
distances implies some charge penetration error, which is
normally assumed to be dominant. Nevertheless, the multi-
pole-based potentials are still largely useful in many cases, and
they enhance convergence by distributing multipoles through-
out the molecule at the atomic sites and/or bond centers.9,35,36

The MM electrostatic potentials can be classified into two
groups. On one side, MM methods such as AMBER,37

CHARMM,38 GROMOS,39 and OPLS40 adopt simple electro-
static formulas with point charges (i.e., monopoles, with lmax =
0) that are ultimately the result of a fitting procedure against
the molecular electrostatic potential (ESP). On the other side,
more sophisticated methods, such as NEMO,41 AMOEBA,42

or the QTAIM-based FFLUX,43,44 include higher order
multipoles (frequently up to the quadrupoles, lmax = 2) in
order to capture the anisotropy of the distribution of electrons
in space. These potentials are generally built from the QM
density matrix of the molecule of interest by means of the
distributed multipole analysis (DMA)36 or similar procedures.
In addition, some methods (e.g., AMOEBA or NEMO) also
refine the DMA multipoles to better reproduce the ESP values.
In this way, the resulting charges/multipoles may include in an
effective way both high-order multipolar contributions and CP
effects. Actually, the performance of the MM potentials is
examined statistically as a whole (i.e., using the full MM
potential including all bonded and nonbonded terms) by
various energetic and structural validation tests. A quite
different approach is followed by the FFLUX force field. It
makes use of QTAIM multipoles in contrast to the more
widespread DMA methodologies and estimates them by means
of a machine learning technique depending on each atom’s
environment.
In comparison with the atomic/multipolar methods that are

massively employed in current simulation packages, the
electrostatic MM potentials that go beyond the multipolar
approximation are much less consolidated. In this category, we
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find different methodologies such as SIBFA,45 EFP,46 and
AMOEBA+24 that complement the multipolar formulas with
other (so-called damping) functions to capture very-short-
range electrostatics and to remove the CP error. In this way,
these potentials (whose general form is shown in the SI) seek
to reproduce Eele

0Δ as evaluated by SAPT or similar
methodologies.24

2.4. Charge Penetration Energy. The CP energy Epen
between two molecules has been defined47 as the difference
between the exact zeroth-order electrostatic energy Eele

0Δ and

its multipolar analogue Eele mp,
0Δ ,

E E Epen ele ele mp
0

,
0= Δ − Δ (10)

Conceptually, this straightforward definition of Epen is
satisfactory. It also shows that Epen is not only an interfragment
quantity but rather an energy that presents also intramolecular
contributions according to the real space partitioning of the
whole Eele

0Δ . In this respect, the energetic definition suggests
that the CP energy is not limited to the change in the
electrostatic interaction between two atoms due to their electron
cloud overlap and the associated loss of nuclear screening.48

The rigorous evaluation of Epen for different systems at
varying intermolecular separations would allow a deeper
analysis of electrostatics and, eventually, the development of
more accurate potentials. However, as noticed by Bojarowski
et al.,47 dif ferent methods of obtaining multipole moments lead to
dif ferent radii of (pseudo)convergence, dif ferent levels of multipole
expansions at which (pseudo)convergence is achieved, and dif ferent
values of penetration energy. Therefore, the value of the CP
energy as evaluated with eq 10 may depend on the particular
method used to derive the multipoles. Moreover, the usage of
truncated expansions introduces some additional truncation
error so that both truncation and penetration effects become
somewhat mixed in the resulting Epen values.

49

An alternative to evaluate Epen has been proposed by Kairys
and Jensen.50 Having noticed the relationship between the CP
energy and the magnitude of the orbital overlap, they attempt
to recover such an effect from scratch, with a derivation of Epen
independently from the multipolar model used to estimate
electrostatics at first stage. However, the authors find that the
inherent dependence on the set of molecular orbitals used may
lead to different CP values.
2.4.1. A Novel IQF Definition of the Charge Penetration

Energy. By combining both the Bader partitioning scheme
( A B

3 = Ω + Ω ) with a total zeroth-order density decom-

position ( r r r( ) ( ) ( )A B
0 0 0ρ ρ ρ= + ), the following energy terms

are obtained:

(i) the intramolecular interaction due to A
0ρ or B

0ρ inside a

given molecular basin ΩA or ΩB, leading to E ( , )ele
A

A A
0 0ρ ρ ,

E ( , )ele
B

A A
0 0ρ ρ , E ( , )ele

A
B B
0 0ρ ρ , and E ( , )ele

B
B B
0 0ρ ρ .

(ii) the intramolecular interaction between the two mono-
meric densities inside a given basin: E ( , )ele

A
A B
0 0ρ ρ and

E ( , )ele
B

A B
0 0ρ ρ .

(iii) the intermolecular electrostatic energy between the same
density pieces: E ( , )ele

AB
A A
0 0ρ ρ and E ( , )ele

AB
B B
0 0ρ ρ .

(iv) the intermolecular interaction between A
0ρ and B

0ρ in

opposite molecular basins: E ( , )ele
AB

A B
0 0ρ ρ and E ( , )ele

BA
A B
0 0ρ ρ

.

Hence, the total electrostatic energy of a complex AB can be
written as

E E E E

E E E

E E E E

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

ele ele
A

A A ele
A

B B ele
A

A B

ele
B

A A ele
B

B B ele
B

A B

ele
AB

A A ele
AB

B B ele
AB

A B ele
BA

A B

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ

= + +
+ + +
+ + + +

(11)

In the notation used above the two interacting densities are
encompassed by parentheses, while the basins they are
integrated in are identified by the corresponding superscripts
in the given order (only one if both are the same). Hence, for
i n s t a n c e , t h e t e r m E ( , )ele

BA
A B
0 0ρ ρ s t a n d s f o r

rr r r rd d ( ) ( )A B1 2
0

1
0

2 12
1

B A
∫ ∫ ρ ρΩ Ω

− and E ( , )ele
B

A A
0 0ρ ρ corresponds to

rr r r rd d ( ) ( )A A
1
2 1 2

0
1

0
2 12

1

B B
∫ ∫ ρ ρΩ Ω

− .

When the above double decomposition is applied to the
electrostatic energies of the separate fragments, such as A, in
the final complex, the electrostatic energy of the original
species becomes

E E E E( , ) ( , ) ( , ) ( , )ele A A ele
A

A A ele
B

A A ele
AB

A A
0 0 0 0 0 0 0 0ρ ρ ρ ρ ρ ρ ρ ρ= + +

(12)

Note that this partitioning is derived from the AB zeroth-
order (i.e., Hartree product) wave function and that geometry
relaxation effects are not considered. By subtracting from eq 11
the previous fragment energies, the corresponding electrostatic
contribution to the formation energy of the complex is
obtained,

E E E E

E

( , ) ( , ) ( , )

( , )

ele ele
A

A B ele
B

A B ele
AB

A B

ele
BA

A B

0 0 0 0 0 0 0

0 0

ρ ρ ρ ρ ρ ρ

ρ ρ

Δ = + +
+ (13)

Among the surviving terms in eq 13, E ( , )ele
AB

A B
0 0ρ ρ reveals

itself as the ordinary interaction term between the two
monomers A and B. It matches Eele

0Δ at long distances, while
the other three terms would present a similar behavior of
increasing in magnitude when shortening the intermolecular
distances RAB and canceling out in the opposite situation.
Thus, those three terms can be directly related with the
interpenetration of molecular densities and grouped in the
IQF-like electrostatic charge penetration energy

E E E E( , ) ( , ) ( , )ele pen
IQF

ele
A

A B ele
B

A B ele
BA

A B,
0 0 0 0 0 0ρ ρ ρ ρ ρ ρ= + + (14)

This term fulfills Elim 0R ele pen
IQF

,AB
=→∞ (and so its three

components), while E Elim ( , )R ele
AB

A B ele
0 0 0

AB
ρ ρ = Δ→∞ . Figure 1

represents the previous four terms between the partitioned A
0ρ

and B
0ρ adding up to Eele

0Δ and compares them to the Eele
AB0,

term between the total densities in each basin.

3. COMPUTATIONAL DETAILS
3.1. Molecular Geometries and Reference Interaction

Energies. All the QM and classical electrostatic calculations
were performed on the molecular geometries retrieved from
the S66 database,29 which contains a set of 66 complexes
featuring the most common noncovalent interactions in
biomolecules. These can be classified depending on the
atoms involved into polar, nonpolar, and mixed. Analogously,
the different complexes have been grouped into H-bond,
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dispersion, and mixed according to the main interactions they
experience (see Table S1). For representing both the atomic
interactions and the subsets of complexes, a color code has
been utilized: magenta for H-bond/polar, yellow for mixed,
and blue for dispersion/nonpolar. In addition to the S66 set, a
selection of 12 representative complexes from the S66x8
database,30 which is an extension of the former to eight
different fractions of the equilibrium intermolecular distances,
were also considered. The benchmark CCSD(T)/CBS
interaction energies collected in S66 were employed as the
reference values for comparative purposes.
3.2. HF-D3 Calculations. HF/cc-pVTZ calculations were

carried out on the S66 and the S66x8 geometries using the
GAMESS-US package.51 Grimme’s D3 dispersion potential as
implemented in the DFT-D3 code52 was employed to
incorporate the dispersion energy. Additionally, in order to
correctly reproduce the asymptotic behavior of the dispersion

energy at small distances, the Becke−Johnson damping
function was chosen.53

We selected HF because it lacks entirely dispersion energy
and thereby yields a straight physical partitioning of energy in
combination with the D3 potential. We also note in passing
that HF-D3 has been shown to describe correctly and
efficiently the structure and energetics of biomolecules54 and
that a variant of DFT-SAPT has been also developed in which
the costly ab initio dispersion calculations are replaced by a
reparametrized D3 potential.55 In addition, the HF-D3/cc-
pVTZ energies reproduce quite well the reference CCSD(T)/
CBS energies of the S66 structures (see Figure S1).

3.3. IQA Energy Decomposition Analysis. The decom-
position of the QM and the electrostatic energies derived from
continuous charge densities were performed with the
PROMOLDEN code.56 The integration settings comprised
β-spheres with radii of 60% of the distance between each
nucleus and its closest critical point. Within them, Lebedev
angular grids with 974 points were used, along with Euler−
McLaurin radial quadratures with 382 radial points. A bipolar
expansion of r12

1− was selected with an lmax of 6. On the other
hand, the outer part of the basins (i.e., outside the β-spheres)
employed the same angular and radial quadratures, albeit
increasing their respective points up to 5810 and 512, with a
maximum radius of 15 au. In this case, r12

1− was expanded by
means of a Laplace expansion with lmax = 10.

3.4. Point-Charge and Multipolar Calculations. Atomic
charges were computed for the separate monomers in the S66
structures by means of the restrained electrostatic potential
(RESP) method following the General Amber Force Field
(GAFF)57 prescriptions with a HF/6-31G* level of theory. In
the case of the atomic multipoles, two different sets were
employed. On the one hand, AMOEBA multipoles were
derived up to the quadrupoles (lmax = 2) following its
corresponding parametrization protocol.42,58 On the other,
QTAIM multipoles were obtained by means of the
PROMOLDEN program with an lmax = 2. Both the AMOEBA
and the QTAIM multipolar energies were obtained with the
MPOLINT code.59

Figure 1. Graphical scheme of the four contributions giving rise to
Eele

0Δ , where three of them (in dark blue) comprise the IQF
electrostatic penetration energy and the remaining one (dark green)
accounts for the interaction of A

0ρ and B
0ρ lying in the molecular basins

ΩA and ΩB, respectively. The zeroth-order IQF pairwise term Eele
AB0,

has been also included to highlight its difference with the previous
E ( , )ele

AB
A B
0 0ρ ρ , as it accounts for an interaction between total densities

inside each basin (the original A
0ρ or B

0ρ and the tail from the other
that has penetrated into another domain).

Figure 2. Left: correlation between the dispersion-augmented IQF intermolecular electrostatic energy E D3ele
AB + and the reference binding

energies Eform
refΔ . Right: anticorrelation featured by the intrafragment electrostatic contribution to formation E Eele

A
ele
BΔ + Δ and the total kinetic plus

exchange-correlation contributions ΔT + ΔExc. The statistical analysis comprises the coefficient of determination R2, Spearman’s rank correlation
coefficient ρ, and the root-mean-square error RMS. Data corresponding to the whole set of complexes is depicted in black and that ascribed to the
H-bond group is in magenta, while mixed and dispersion complexes are in yellow and blue, respectively. All the energies are in kcal mol−1.
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Additionally, a set of 12 S66x8 complexes was tested under
the AMOEBA+ CP-corrected potentials.24 For this, TINKER
was used to calculate the respective CP energies as the
difference between the CP-corrected multipoles and the
multipolar energies previously derived. The parameters of the
damping functions were directly taken from the literature.24

3.5. Graphs and Statistical Analyses. Octave60 and

GNUplot61 were, in turn, used to perform the statistical

analyses and the correlation plots, while Python’s Matplotlib62

was chosen for the rest of the representations.

Figure 3. Intermolecular electrostatic interactions for a subset of the S66x8 complexes as provided by IQF (either exactly Eele
AB or under the zeroth-

order approximation Eele
AB0, ), zeroth-order QTAIM multipoles Eele mp

AB
,

0, , AMOEBA multipolar energies Eele AMOEBA
AB

, , and RESP atomic charges Eele RESP
AB

, .

Additionally, the zeroth-order electrostatic contribution to formation Eele
0Δ is also included. The complexes are colored and displayed in columns

according to the group they belong to, namely, H-bond, mixed, or dispersion, respectively. The energies (Y-axis) are given in kcal mol−1, and the
abscissas represent the intermolecular distances relative to the equilibrium ones (RAB/Req).
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4. RESULTS AND DISCUSSION
4.1. IQF-D3 Partitioning and Pairwise Approximation.

The IQF-D3 decomposition of the HF/cc-pVTZ binding
energies for the S66 complexes has been discussed at length in
previous work.32 Herein, we focus on the decomposition of the
electrostatic descriptors into intra- and interfragment compo-
nents. Interestingly, we found that the combination of the
interfragment electrostatic interaction energy Eele

AB with the D3
dispersion potential yields pairwise energies that are quite well
correlated with the S66 benchmark values, the coefficient of
determination being R2 = 0.990 with RMS errors of 5.7 kcal
mol−1 (see Figure 2 and Table S2). Thus, the IQF Eele

AB

descriptors in conjunction with the D3 potential capture the
essential electrostatic and dispersion interactions that
determine the relative stability of the noncovalent complexes.
When addressing both terms independently (Figure S2), we
find that the pure electrostatic Eele

AB term exhibits a satisfactory
overall correlation (R2 = 0.943) due to the fundamental role of
electrostatics in H-bond complexes. On the other hand, the D3
descriptor has a null global correlation with the S66 reference
energies, although it is reasonable (R2 = 0.820) for the
dispersion complexes as expected. However, the mixed
complexes are not well-described by either the electrostatic
or the dispersion energies separately, and their combination
becomes critical.
In contrast to the ability of the E D3ele

AB + descriptors to
capture the main features of noncovalent binding, the
combination of ΔEele, which includes both the intra- and the
intermolecular electrostatic effects, with the D3 potential
deteriorates the global correlation (R2 = 0.888) and results in
larger RMS errors (17.3 kcal mol−1). The full IQF
decomposition (eq 8) explains this unbalanced description
because the intrafragment electrostatic energies, which
contribute to the deformation energies, tend to cancel out
with the QM energy terms (electronic kinetic energy and
exchange-correlation) that are not required in the simple
electrostatic + dispersion picture (see Figure 2 right).
Therefore, the pairwise Eele

AB terms arise as the most relevant
IQF electrostatic descriptors of noncovalent binding.
4.2. Validating and Analyzing the Zeroth-Order

Approximation. The electrostatic IQF terms can be readily
evaluated under the zeroth-order approximation (i.e.,

r r r( ) ( ) ( )A B
0 0 0ρ ρ ρ= + ). Thus, it turns out that the

interaction energies Eele
AB can be replaced effectively by their

zeroth-order counterparts. Indeed, the pairwise E D3ele
AB0, +

energies have low RMS errors (3.1 kcal mol−1) and maintain a
good correlation (R2 = 0.971) with respect to the benchmark
data (Table S3). This behavior is also satisfactory within the
S66 subsets: R2 = 0.989 and 0.988 for the polar H-bonded
systems and the dispersion-dominated complexes, respectively,
albeit the correlation is somewhat reduced in the case of the
mixed complexes (R2 = 0.755). Further support for the use of
the zeroth-order energies comes from the atomic level, where a
high degree of coincidence between the diatomic zeroth-order
Eele

IJ0, and fully relaxed Eele
IJ energies is also found at the

equilibrium geometries (R2 = 0.995, see the SI).
When addressing the distance dependence of the previous

term (see Figure 3), both Eele
AB and Eele

AB0, follow the same trends
at varying intermolecular separations RAB (given as relative to
the equilibrium distances Req). As expected, they start diverging

at short distances due to the strengthening of charge
polarization, charge-penetration, and charge-transfer effects
that attenuate the pairwise electrostatic forces. The magnitude
of these effects is clearly system-dependent, as well as the shape
and slope of the Eele

AB and Eele
AB0, curves, revealing thus further

details about the role of electrostatics in these complexes.
Thus, the electrostatic stabilization of the four H-bond
complexes and others (e.g., the π-complex of the uracil
dimer) is continuously reinforced upon shortening the
monomer−monomer distance, reflecting the major electro-
static control of these systems. In contrast, the T-shaped
benzene complexes with methanol or N-methylacetamide
reach an electrostatic minimum at a distance longer than the
equilibrium one while the small electrostatic energies of the
dispersion dimers (i.e., +1, −1 kcal/mol) change very little
along the curves (some small leaps are due to residual errors
arising in the numerical integration over the atomic basins).
In Figure 3 the deviation between the global Eele

0Δ energies

and the interfragment Eele
AB0, anticipates the underlying CP

effects associated with the density overlap. For the H-bond and
some of the mixed complexes, the two curves decrease with
lowering separation, but they split gradually for RAB/Req < 1.6.
The global Eele

0Δ stabilization nearly doubles Eele
AB0, at Req,

showing thus the large impact of intramolecular electrostatics
as defined in the IQF framework. For the π-complexes
(benzene−dimer, benzene−methanol, ...) or the weakly
interacting neopentane dimer, the inter- vs intramolecular
balance is differently modulated because the deviation between
the global and the interfragment electrostatics becomes
significant only at very close distances (e.g., RAB/Req < 1.1),
which are indicative of mutual overlap. In these systems, Eele

0Δ
is thus reinforced by several kcal mol−1, which are ascribed to
the intrafragment electrostatic stabilization achieved by the
fragment-overlap (i.e., CP) effects. Such effects have a minor
influence on the small Eele

AB0, energies (<1−2 kcal mol−1),
which tend to remain nearly constant or become slightly
attenuated. As shown below (Section 4.5), the IQF analysis of
the CP energy gives further insight about the behavior of Eele

AB0,

and Eele
0Δ with RAB/Req.

4.3. Comparison between Eele
AB0, and Pairwise MM

Energies. The pairwise approximation that emerges from the
IQF-D3 decomposition and the validity of the zeroth-order
approximation for the electrostatic interactions provide an
insightful theoretical support for the construction of non-
covalent MM potentials. In this scenario, Eele

AB0, can be seen as
the most suitable IQF descriptor to assess the approximate
electrostatic potentials. Hence, we calculated the interfragment
electrostatic energies using the RESP atomic charges and the
AMOEBA multipoles, as well as the QTAIM multipoles up to
the quadrupoles.
According to the statistical data in Table 1, either the RESP

atomic charges or the QTAIM/AMOEBA multipoles give
interfragment electrostatic energies that correlate considerably
well with Eele

AB0, (R2 > 0.9 and RMS errors ∼ 1 kcal mol−1) for
the full S66 set and also for the H-bond/dispersion subsets.
These point-charge/multipolar electrostatic energies are less
satisfactory for the less abundant mixed complexes, although
the multipolar potentials yield a more accurate description (R2

≃ 0.6−0.8) than the RESP charges (R2 ≃ 0.5). In addition to
Eele

0Δ and the fully relaxed and zeroth-order IQF pairwise

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00263
J. Chem. Theory Comput. 2021, 17, 4981−4995

4987



terms, Figure 3 also displays the distance dependence of the
QTAIM/AMOEBA/RESP energies, that results quite close to
that of the interfragment Eele

AB0, energies. Nevertheless, a closer
inspection reveals that the QTAIM/AMOEBA/RESP energies
tend to overestimate the stabilizing/destabilizing character of
Eele

AB0, for the H-bond/dispersion dimers, respectively.
The good agreement between the multipolar and the RESP

energies in Table 1 and in Figure 3 suggests that the RESP
fitting procedure may incorporate in an effective way higher
order effects even at short distances. In addition, our results
point out that the pure QTAIM multipoles can be employed in
the construction of accurate electrostatic potentials, free from
the inclusion of other effects that may be present when the
DMA multipoles are fitted against the molecular ESP. In fact,
the QTAIM multipoles, which are already considered in the
FFLUX force field, readily reproduce the ESP without the need
of any constraint.63

4.4. Comparing Diatomic Electrostatic Interactions.
IQA permits an unambiguous decomposition of the con-
tinuous-density intermolecular interaction energy into a sum of
atomic and diatomic terms that enables a thorough analysis of
the global molecular properties based on their atomic origins,
and a close comparison with the various MM descriptions at
this atomic level.
As expected, the IQA diatomic terms correlate almost

perfectly with the QTAIM multipolar ones Eele mp
IJ
,

0, (see Figure
4). On the contrary, the AMOEBA and RESP energies are
significantly less correlated (R2 of 0.7 and 0.4, respectively) and
have large RMS errors. For example, the largest discrepancies
between Eele

IJ0, and the QTAIM-multipolar Eele mp
IJ
,

0, in the acetic
acid dimer (about 6 kcal mol−1) arise from the atoms involved
in the OH·O H-bonds, the rest of pair interactions having
much lower differences (<0.5 kcal mol−1; see Tables S7−S9).
When comparing Eele

IJ0, and Eele AMOEBA
IJ

, (or Eele RESP
IJ

, ), the largest
discrepancies amount to hundreds of kcal mol−1 and involve
not only short polar contacts but methyl C atoms too (see
Tables S10−S15).

The dissimilarity between the Eele mp
IJ
,

0, energies and the

Eele AMOEBA
IJ

, /Eele RESP
IJ

, values was not entirely unexpected given
that the RESP charges are derived from the molecular ESP and
the AMOEBA multipoles are obtained by the DMA protocol.
In fact, a difference of 1 order of magnitude between the
atom−atom electrostatic interactions from IQA and MM
potentials has also been noticed previously.64 The present
results show in further detail the actual discrepancies between
the various atomic representations and suggest that, although
the diverse atomic multipoles employed in classical potentials
yield similar molecular electrostatic energies, the atomic
decomposition is more questionable, which, in turn, can
negatively affect the interpretation of localized electrostatic
interactions and/or result in artifacts while dealing with QM
and MM short-range electrostatics in hybrid QM/MM
methodologies.

4.5. Charge Penetration under the QTAIM Scrutiny.
Following the prescriptions introduced in Theory and
Methods, the zeroth-order electrostatic formation energy

Eele
0Δ of each S66 complex was decomposed by combining its

real space partition into nonoverlapping atomic basins with the
zeroth-order density approximation ( r r r( ) ( ) ( )A B

0 0 0ρ ρ ρ= + ).
This strategy leads to the IQF-based charge penetration
energies, Eele pen

IQF
, , resulting from the sum of the intramolecular

terms E ( , )ele
A

A B
0 0ρ ρ and E ( , )ele

B
A B
0 0ρ ρ , as those accounting for the

interaction of both densities inside the same basin, and the
intermolecular energy E ( , )ele

BA
A B
0 0ρ ρ between the tails of each

molecular density that penetrate into the opposite basin, as
described in eq 14. This constitutes an ef fective penetration
energy in the sense that the molecular identity between two
overlapping fragments becomes necessarily blurred so that
fragment properties are dependent upon the scheme followed
to dissect the global charge density into its constituents.
Nevertheless, the topological analysis of ρ0 yields a consistent
identification of molecular fragments so that we believe that
the associated charge-penetration analysis can give useful
insight into the electrostatics of noncovalent complexes.
The application of eq 14 to Eele

0Δ results in the energy
contributions shown in Figure 5. On the one hand, the
interfragment energy E ( , )ele

AB
A B
0 0ρ ρ is formally not affected by

charge penetration and plays a stabilizing role in all the H-
bond complexes (slightly repulsive in the dispersion com-
plexes). On the other hand, the IQF penetration term Eele pen

IQF
,

turns out to be of equal importance in the H-bond complexes
or even more relevant in the dispersion subset for which
penetration energy describes the major part of Eele

0Δ .
The decomposition of the penetration energy shows that it

arises mainly from the stabilizing interactions between A
0ρ and

B
0ρ inside the same basin. This is an intramolecular effect as

reflected by the magnitude of the E ( , )ele
B

A B
0 0ρ ρ and E ( , )ele

A
A B
0 0ρ ρ

energies. As shown by the integration of A
0ρ or B

0ρ in the
corresponding basins, the mutual CP values range, for instance,
from 0.035 e in the neopentane dimer to 0.099 e in the case of
the acetic acid dimer. These fractional charges involve the e−e
repulsion between the fragment electron densities occupying
the same space, such as r r( ), ( )e A e B,

0
,
0ρ ρ such that r ∈ ΩA (or

equivalently in region ΩB), and the attraction experienced by

Table 1. Statistical Measurements Comprising the
Coefficient of Determination R2, Spearman’s Rank
Correlation Coefficient ρ, and the Root Mean Square Error
RMS for the Correlation between Eele

AB0, and either the
QTAIM or AMOEBA Multipoles (lmax = 2) or the RESP
Point Charges (lmax = 0)

multipolar approximation complex type R2 ρ RMS

QTAIM global 0.970 0.958 1.0
H-bond 0.956 0.904 1.4
mixed 0.644 0.768 0.9
dispersion 0.955 0.795 0.5

AOMEBA global 0.953 0.972 1.3
H-bond 0.904 0.841 2.0
mixed 0.800 0.845 0.7
dispersion 0.939 0.893 0.4

RESP global 0.974 0.962 0.8
H-bond 0.981 0.918 0.7
mixed 0.456 0.687 1.1
dispersion 0.948 0.831 0.3
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the nuclei of one fragment ZI I A{ } ∈ (or ZJ J B{ } ∈ ) and the

fraction of electrons from the other that has penetrated into

the former r( )e B A,
0ρ ∈ Ω (or similarly r( )e A B,

0ρ ∈ Ω ). In light of

these results, e−n attraction greatly overcomes e−e repulsion
between different zeroth-order densities inside the same basin
and gives rise to the significant stabilizing energies observed.
There is also a minor repulsive contribution owing to the

purely electronic repulsion between the penetrating A
0ρ into ΩB

and the B
0ρ tail in ΩA, which is measured by E ( , )ele

BA
A B
0 0ρ ρ .

Further insight can be gained by analyzing the distance
dependence of the various energy terms as shown in Figure 6.

The plots confirm that the three components of Epen
IQF tend to

zero when RAB/Req > 1.5 and further highlight the role of the

intrafragment terms. Interestingly, the E ( , )ele
AB

A B
0 0ρ ρ energy,

formally lacking penetration effects, is modulated by the degree
of the interfragment overlap so that the decreasing trend in

E ( , )ele
AB

A B
0 0ρ ρ is damped out or inverted at the shortest

distances. This is not entirely unexpected given that, as two

Figure 4. Comparison of the E E,ele mp
IJ

ele AMOEBA
IJ

,
0,

,
0, and Eele RESP

IJ
, energies with the Eele

IJ0, term (kcal mol−1). On the left are the correlation plots and, on
the right, each difference as a function of the interatomic distance (Å).
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initially separated atomic basins (e.g, ΩI∈A and ΩJ∈B) approach
one another, their volume, shape, and electron population
evolve along the RAB/Req curve in response to the density

overlap. We note, however, that the deviation of E ( , )ele
AB

A B
0 0ρ ρ

with respect to the interfragment electrostatic energy Eele
AB0,

may constitute a useful index about the specific impact of
penetration effects on the pairwise electrostatics. At this point,
an important caveat should be noted. Within the QTAIM

framework, the Eele
AB0, energy includes a fraction of stabilizing

penetration energy for RAB/Req < 1.2 given that the loss of

some electronic A
0ρ density from the basins of the monomer A

is partially compensated by the penetration of B
0ρ into the same

basin. The fixed multipoles/charges in the classical potentials
somehow mimic this behavior so that they remain closer to the

Eele
AB0, descriptors than to E ( , )ele

AB
A B
0 0ρ ρ around the equilibrium

distance.
Finally, Figure 7 compares the IQF penetration term and

other relevant energetic quantities with the analogue term
derived from the AMOEBA+ model as a function of the
intermolecular distance. Thus, the combination of the

multipolar Eele AMOEBA
AB

, energies with the CP correction24

Epen
AMOEBA+ results in the Eele

AMOEBAΔ + energies that approach

Figure 5. Decomposition of Eele
0Δ into E ( , )ele

AB
A B
0 0ρ ρ and the three IQF penetration terms E ( , )ele

A
A B
0 0ρ ρ , E ( , )ele

B
A B
0 0ρ ρ , and E ( , )ele

BA
A B
0 0ρ ρ . Energies are

given in kcal mol−1.
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to the reference Eele
0Δ , which is equivalent to the SAPT

electrostatic energy. In effect, Figure 7 shows that Eele
AMOEBAΔ +

nearly matches Eele
0Δ . Concerning the CP energies, it is

important to note again that the AMOEBA+ reference for
measuring the CP energy is different from that provided by the
IQF-QTAIM approach. Nevertheless, the two penetration
energies exhibit a similar behavior with RAB, particularly for the
more stable H-bond complexes, which resemble also the
variations experienced by the intramolecular CP terms,

E ( , )ele
A

A B
0 0ρ ρ and E ( , )ele

B
A B
0 0ρ ρ . Therefore, we conclude that the

AMOEBA+ CP and similar corrections account mainly for
intramolecular electrostatics.

5. CONCLUDING REMARKS
In this work we have analyzed the short-range electrostatic
interactions in the S66 and S66x8 data sets through a hierarchy
of approximations at both the molecular and the atomic levels.
We have shown first that the IQA/IQF decomposition
augmented with the D3 dispersion terms gives support to

Figure 6. Evolution of the energy terms from eq 13, along with the Eele
AB0, pair term as a function of the distance for the set of S66x8 systems chosen.

The complexes are grouped in three columns as belonging to the H-bond, mixed, or dispersion subsets, respectively.
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the pairwise approach adopted by many MM potentials. In this

respect, the interfragment energies Eele
AB derived from the IQF

partitioning suffice to capture the essential electrostatic effects

explaining the binding of the weakly interacting complexes.

Moreover, the same role can be played by the equivalent Eele
AB0,

values, which are obtained from the unrelaxed densities of the

isolated monomers (i.e., the zeroth-order approximation).

According to our results, the intermolecular Eele
AB0, energy

turns out to be the most appropriate IQF descriptor to analyze
and/or compare with electrostatic MM potentials. In
particular, we have considered two widely used potentials
relying on the RESP atomic charges or the AMOEBA
distributed atomic multipoles, respectively, as well as the
multipolar potential up to the quadrupoles derived directly
from the QTAIM basins. The three MM pairwise approx-
imations correlate satisfactorily with the zeroth-order IQF term

Figure 7. Comparison between the AMOEBA+ model and the zeroth-order IQF energies for our model S66x8 complexes. The complexes have
been displayed according to the group they belong to (either H-bond, mixed, or dispersion). Distances (X-axis) are relative to the equilibrium ones
(RAB/Req) and energies (Y-axis) are in kcal mol−1.
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at varying intermolecular distances and exhibit small RMS
errors. However, when the Eele

AB0, values are further
decomposed into diatomic contributions, large discrepancies
between the RESP or the AMOEBA atom−atom interactions
and their zeroth-order IQA counterparts are unveiled.
Although this is understandable in terms of the specific details
of the RESP/AMOEBA charge/multipole derivations, it
contrasts sharply with the nearly perfect match between the
QTAIM atomic multipolar energies and the IQA reference
values. Hence, MM potentials based on the QTAIM
multipolessuch as the QCT-based FFLUXmay provide a
more consistent description of electrostatic interactions at both
the molecular and the atomic levels.
Besides forging links between the IQF/IQA quantities and

the MM electrostatic potentials, we have studied the charge
penetration effects that arise from the mutual interpenetration
of the zeroth-order molecular densities in their opposite
QTAIM basins as built from the final ρ0 of the complex. This
QTAIM perspective allows us to dissect the CP energy into
different contributions that emphasize its intramolecular
character, which, in turn, is dominated by the attraction
between the nuclei of fragment A (B) and the penetrating tail
of density B (A). In this way we may clarify some practical
issues related with the CP corrections for MM potentials. For
example, adding CP corrections to MM potentials like RESP/
AMOEBA, which target the zeroth-order interfragment
electrostatic energy, results, necessarily, in an unbalanced
description. This aspect, which has been overlooked in
previous works,10,48,65 implies also that the electrostatic energy
employed in popular MM force fields (AMBER, CHARMM,
...) cannot be compared with the global Eele

0Δ energy derived
from continuous charge distributions, but with its interfrag-
ment component. On the other hand, CP corrections have
been derived to improve the description of the QM−MM
electrostatic interactions in hybrid QM/MM methodologies.12

In this case, such corrections should mitigate short-range
electrostatic artifacts, particularly those associated with the
QM−MM covalent linkages. However, considering the highly
dissimilar interatomic electrostatic energies produced by the
QM densities and the RESP/AMOEBA potentials, the usage of
electrostatic parameters more akin to the QM densities at the
atomic level may have a larger impact in improving the QM−
MM electrostatics.
Finally, concerning the novel MM potentials inspired by the

QM SAPT methodology, it is clear that the multipolar
electrostatics (interfragment) must be augmented by the CP
potentials (intrafragment) if one seeks to reproduce the global
electrostatics Eele

0Δ . Nevertheless, the IQF/IQA approach (and
other EDAs) points out that the intramolecular electrostatic
energy is closely related with other energy changes induced by
fragment overlap (e.g., deformation and interfragment
exchange-correlation energy), suggesting thus that the separate
treatment of these effects by means of independent potential
terms might be inefficient and hamper parameter development
and transferability.
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Abstract

We apply several modern quantum chemical topology (QCT) tools to explore the chemical

bonding in well established Beryllium bonds. By using the interacting quantum atoms (IQA)

approach together with electron distribution functions (EDF) and the natural adaptive orbitals

(NAdOs) picture we show that, in agreement with orbital-based analyses, the interaction in

simple σ and π complexes formed by BeX2 (X=H,F,Cl) with water, ammonia, ethylene and

acetylene is dominated by electrostatic terms, albeit covalent contributions cannot be ignored.

Our detailed analysis proves that several σ back-donation channels are relevant in these dimers,

actually controlling the conformational preference in the π adducts. A number of one-electron

Beryllium bonds are also studied. Orbital invariant real space arguments clearly show that the

role of covalency and charge transfer cannot be ignored.

Introduction

The rise in the number of studies regarding non-covalent interactions in this first part of the twenty-

first century is out of discussion.1 Once chemists have mastered the art of building individual

molecules, it was only a matter of time that the focus turned toward understanding the rules gov-

erning supramolecular assemblies. In this soft-matter2 regime, it is weak interactions that are

responsible for structure and ultimately function in territories as different as biology and crystal

engineering.3 It comes as no surprise then that, as the number of systems investigated grew, so did

the number of specific weak bonds reported. The paradigmatic hydrogen bond (HB) category has

thus been enlarged with a large set of new bonding motifs: dihydrogen, halogen, pnicogen, tetrel

bonds have been defined and used to control supramolecular structures. And as it happened with

the hydrogen bond,4 several different, sometimes opposing views about the nature of these interac-

tions have flourished.5–9 On one end we find the electrostatic point of view, pioneered by Politzer

and Murray.10,11 According to this position, it is the electrostatic attraction between an electron

depleted region on one fragment, the so-called σ -hole, and an electron rich one on the other that

drives these non-covalent interactions. In this view, which can also be understood as a general-
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ized Lewis acid/base framework or as a weak interaction version of Weinhold’s donor-acceptor

paradigm,12 maps of the electrostatic potential (ESP) play a relevant role in the correct docking of

σ -holes and electron rich domains. On the other hand, many theoretical studies, summarized by

the IUPAC13 have shown that covalency or dispersion play also a relevant role.

In 2009, following the idea that σ -holes are indeed playing the role of electron acceptors, the

group of Manuel Yáñez and Otilia Mó proposed that Beryllium derivatives, known to be very

good Lewis acceptors, should form complexes with Lewis bases.14 Since then, these beryllium

bonds have been added to the toolkit of new non-covalent links, and have been shown to be con-

siderably strong and dominated by electrostatic interactions. Be-bonds have been found in both

σ -14 and π-complexes15, and their density polarizing abilities have been used to modify the bond-

ing abilities of other moieties, for instance inducing σ -holes in fluorine-containing systems.16 As

of today, the nature of the Be-bond has been established by a battery of methods that include

standard molecular orbital ideas,17 Fock-space energy decomposition analyses like the LMOEDA

method,18 Weinhold’s natural bond orbitals (NBO),12 quantum chemical topology (QCT) methods

like the quantum theory of atoms in molecules (QTAIM) of Bader and coworkers,19 or the electron

localization function (ELF),20 the natural orbitals for chemical valence of Ziegler, Michalak and

Mitoraj21,22, etc. Most of these methods have shown that electrostatics is an important player in

explaining Be-bonds, but that covalent contributions are not negligible. However, Politzer, Mur-

ray and Clark have recently argued strongly against these theoretical constructs.10 According to

these authors, exchange, Pauli repulsions or orbitals are simply mathematical constructs that are

used to obtain an approximate solution of the multi-electron Schrödinger equation. Only electro-

statics, via the Hellmann-Feynman theorem, does account for bonding, and other effects, such as

charge transfer lie only in the model: the illusion of charge transfer is in the model; the reality of

polarization is in the electronic density, the physical observable.

We show here that QCT methods, using quantities which are in principle amenable to experi-

mental determination, provide univocal answers to these questions. By employing reduced density

matrices (which are Dirac observables) and QTAIM partitions (which can be and are actually deter-
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mined in experiments) we: (i) gain access to energy components (through the interacting quantum

atoms approach, IQA) including electrostatic and covalent terms; (ii) provide effective one-electron

pictures that contain correlation effects via natural adaptive orbitals;23 and (iii) uncover the distri-

bution of the electron population, thus true charge transfers, with electron distribution functions

(EDFs).

As far as we know, this is the first time that Be-bonds are studied using such a combined

strategy. We have decided to focus on three sets of aggregates: σ -complexes, exemplified by the

BeX2-LB series, LB being a Lewis base like ammonia or water; π-complexes, like those formed

by BeX2 and ethylene or acetylene; and one-electron bonded complexes, with LiBe and BeLiBe as

examples. Additional motivations that justify addressing the study of these (and other) beryllium

compounds, trying to clarify the main characteristics of their chemical bonds, are purely practical.

It is well known, for instance, that beryllium fluoride associates to ADP inhibiting protein ac-

tion.24–30 Reactivity patterns of half-sandwich complexes formed by Be are also interesting.31,32

Finally, although it is not completely established, it seems that the interaction between Be2+ and

several water molecules plays an important role on beryliosis or CBD (chronic beryllium disease),

an very often fatal illness caused by this metal.33,34 Theoretical analyses of chemical bonds formed

by beryllium may help to clarify the possible causes associated to its toxicity. In this work, we fo-

cus on the nature of the stabilizing energy components, explaining how electrostatics, but not only

electrostatics, accounts for their binding energy. We also consider charge transfer, interpreting it in

a crystal clear way as a result of real space resonance of several electron configurations. We start

by summarizing the conceptual framework to be used, turning to the computational details and an

analysis of our results.

Methodology

Only Dirac observable densities are used in QCT, that starts with a physical partition of space into

chemically meaningful regions.19 We use the QTAIM partition, so that R3 =
⋃m

i Ai, where Ai is an
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attraction basin of the electron density field, ρ(r), usually corresponding to an atom-in-a-molecule.

We stress that the atoms of the QTAIM are nowadays obtained routinely both from computations

as well as from X-ray diffraction experiments.35 Much information can be obtained by examining

the local topology of ρ ,36 but since this QTAIM local operating mode is well known and several

works on Be-bonds have used it, we will not consider it in this work. The position space QTAIM

partitioning may be directly inherited by all the reduced density matrices (nRDMs)37. For instance,

the A1A2 . . .An component of the n-th order reduced density (nRD) is simply defined as

ρA1A2...An
n (r1,r2, . . . ,rn) = ρn(r1 ∈ΩA1,r2 ∈ΩA2, . . . ,rn ∈ΩAn).

Because the electronic energy for a Coulomb Hamiltonian depends only on the 1RDM and the

2RD, E = Tr ĥρ1(r1,r ′1)+(1/2)Tr r−1
12 ρ2(r1,r2), we can write E as a sum of one- and two-domain

components. This leads to the IQA decomposition,

E = ∑
A

EA
self + ∑

A>B
EAB

int . (1)

In this expression, EA
self is the self-energy of atom A, which adds all the energy terms that depend

only on nuclei (n) and electrons (e) contained in domain A, while the pairwise additive interatomic

energy, EAB
int , gathers all contributions containing particles in the A and B regions. In this way,

EA
self = T A +V AA

ne +V AA
ee and EAB

int =V AB
nn +V AB

ee +V AB
ne +V BA

ne , where we have used a clear nota-

tion that needs no more comments. If self-energies are measured with respect to given energetic

references for each atom or fragment, EA
0 , then deformation energies arise as EA

def = EA
self−EA

0 .

We obtain a fruitful decomposition of EAB
int if we further partition the 2RD into its Coulomb (J)

and exchange-correlation (xc) components, ρ2(r1,r2) = ρJ
2(r1,r2)+ρxc

2 (r1,r2). In this way, we

can separate all terms in Eint depending on the one-particle density (that would correspond to the

interaction among classical particles) from those calculated from the exchange-correlation density

(with no analogue in classical mechanics), so that EAB
int = EAB

cl +EAB
xc . The contribution EAB

cl is thus

immediately associated to the electrostatic (ionic) energy component of a chemical bond, tending
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asymptotically to QAQB/RAB for charged species, while EAB
xc i.e., the exchange-correlation en-

ergy, represents a measure of covalency38,39. Notice that, regarding Politzer et al. considerations,

Ecl is the purely classical electrostatic interaction of the modified, mutually polarized, molecular

densities.

If not the energy-weighted RDs but the RDs themselves are coarse-grained, we get a general

population analysis.37 With this, we can decompose general n-th order cumulant densities (CDs)

ρc
n(r1, . . . ,rn) that integrate to the total number of electrons N into one-, two- or n-center terms: a

partition of the ρ1
c = ρ provides the standard QTAIM atomic populations, that of ρc

2 = ρxc gives

rise to the well-known localization and delocalization indices which are real space covalent bond

orders, and, in general, a decomposition of ρc
n reveals n-center bond orders. Doing this with the

N-th order RD, Ψ∗Ψ, we can obtain the probability of finding a given number of electrons in each

of the n A regions,40–42 leading to EDFs. Finally, CDs can be partially coarse-grained, leaving

one electron coordinate free of this process that describes a real space natural density of n-center

bonding. Diagonalizing these densities we get sets of effective one electron functions, the natural

adaptive orbitals (NAdOs),23 together with their associated natural adaptive occupations. The latter

decompose the electron population, the two-center, three-center, etc. bond orders into one-electron

components as the order of the cumulant that is diagonalized increases. All these quantities can in

principle be obtained from experiments (for instance with X-ray constrained wave functions43,44).

Computational details

We have performed IQA decompositions and analyzed EDFs and NAdOs in a set of relevant Be-

bonded molecules that include the CO, H2O and NH3 complexes of BeX2 (X=H,F,Cl) together

with the BeLi, BeLiBe, BeNa, and C10H6Be2H2
– systems. All geometry optimizations were car-

ried out at the B3LYP//def2-tzVPD level using the GAMESS package.45 Further single points

calculations at the B3LYP/def2-qzVPD level using the PySCF suite46 were performed for all sub-

sequent analyses, using the scaling approach as described in Ref. 47 For BeLi, BeLiBe, and BeNa
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CASSCF calculations using a aug-cc-pVQZ basis were preferred and obtained also with PySCF.

The following notation is used: (electrons,orbitals). The orbital space for each system was selected

using the density matrix embedding theory (DMET).48 For the bath selection a cutoff of 0.01 was

chosen and the following impurities were selected: in the case of BeLi and BeLiBe, the 2s,2p

orbitals for each atom, resulting in a (3,10)/(5,15) space; for BeNa, the 2s,2p orbitals for Be, and

the 3s,3p for the Na atom, resulting in a (3,9) space.

IQA integrations were performed using β -spheres with radii between 0.1 and 0.3 bohr. Re-

stricted angular Lebedev quadratures with 5810 points and 451 points Gauss-Chebyshev mapped

radial grids were used inside the β -spheres, with L expansions cut at l = 10. Outside the β -spheres,

extended 5810-point Lebedev, 551- and 651- mapped radial point Gauss-Legendre quadratures,

and L expansions up to l = 12 were selected. Total energies reconstructed from these IQA de-

compositions differ in less than 1.0 kcal/mol from those of the parent electronic structure codes,

and since error cancelation does not occur in these numerical integrations, each of the computed

interactions is considerably more accurate than this figure. This accuracy is enough for the aims of

this paper. All IQA calculations were done with our in-house code PROMOLDEN, available upon

request49. Electron distribution functions (EDF) were obtained using our in house EDF code,50

and natural adaptive orbitals (NAdOs) with DENMAT.51 In both cases the atomic overlap matrices

(AOM) that are needed to feed these codes were obtained from PROMOLDEN.

Beryllium σ -complexes

The first Beryllium bonds analyzed14 were σ complexes between BeX2 (X=H,F,Cl) units and sev-

eral Lewis bases like water or ammonia. Besides recognizing the important geometrical distortions

suffered by the linear BeX2 moiety upon complexation as well as systematizing the considerable

strength of the interactions, their chemical bonding was interpreted in terms of local topological

descriptors coming from the electron density or the ELF and via the natural bond orbital (NBO)

analysis. This led to propose an important role of the LB lone pairs as donors to both the empty
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p orbital of Be and to the σ∗BeX antibond. Further analyses52 have even reported some IQA data,

but have failed, in our opinion, to provide much more than a description of the computed data.

As we expect to show, charge transfer between the units is an important player that helps ratio-

nalizing conformer preference, leading to both LB→ BeX2 donation as well as to LB← BeX2

back-donation channels which as far as we know have not been reported.

Table 1: Several IQA properties for BeX2-Lewis base (LB) complexes. A and B denote BeX2
and LB, respectively. EA

def and EB
def are given with respect to the total energies of the isolated

fragments at the geometry they have in the complex, EAB
bind = EAB

int +EA
def +EB

def, and EAB
dis =

EAB
bind+Erelax, where Erelax is the energy associated to the geometric relaxation of the fragments

to their own optimal geometries. Energies in kcal/mol, QA in electrons and δAB in electron
pairs.

System EAB
int EAB

cl EAB
xc EA

def EB
def EAB

bind EAB
dis QA δ AB

H2Be· · ·OH2 -111.03 -54.30 -56.73 35.27 50.45 -25.31 -18.29 0.014 0.467
H2Be· · ·NH3 -118.76 -60.89 -57.88 34.17 52.45 -32.15 -22.70 -0.010 0.481
H2Be· · ·CO -103.18 -38.16 -65.02 44.94 45.90 -12.34 -6.24 0.076 0.593
H2Be· · ·C2H4

a -119.53 -39.71 -79.82 52.67 51.48 -15.38 -5.67 0.080 0.755
H2Be· · ·C2H4

b -36.14 -7.42 -28.73 10.81 21.95 -3.39 -1.71 -0.030 0.311
H2Be· · ·C2H2

a -139.34 -49.00 -90.34 60.25 59.51 -19.57 -8.85 0.103 0.826
H2Be· · ·C2H2

b -15.41 -1.84 -13.57 5.32 9.48 -0.62 -0.51 -0.014 0.162
F2Be· · ·OH2 -102.09 -52.19 -49.90 27.35 44.99 -29.75 -20.41 -0.024 0.387
F2Be· · ·NH3 -113.46 -59.95 -53.51 26.83 48.83 -37.79 -26.32 -0.045 0.422
F2Be· · ·CO -66.34 -23.72 -42.62 20.90 34.61 -10.83 -5.37 -0.020 0.372
F2Be· · ·C2H4

a -57.40 -16.33 -41.07 16.84 30.94 -9.62 -3.91 -0.047 0.399
F2Be· · ·C2H4

b -60.32 -19.17 -41.15 16.21 32.67 -11.44 -5.10 -0.050 0.394
F2Be· · ·C2H2

a -65.59 -21.35 -44.24 19.55 34.17 -11.87 -5.90 -0.041 0.416
F2Be· · ·C2H2

b -50.13 -14.48 -35.64 13.54 28.48 -8.11 -2.91 -0.045 0.346
Cl2Be· · ·OH2 -127.37 -67.44 -59.93 39.26 55.75 -32.35 -21.12 -0.001 0.502
Cl2Be· · ·NH3 -137.32 -74.89 -62.43 37.21 59.54 -40.56 -27.77 -0.027 0.527
Cl2Be· · ·CO -100.40 -40.29 -60.11 39.47 47.78 -13.15 -5.11 0.029 0.563
Cl2Be· · ·C2H4

a -78.91 -24.96 -53.95 25.53 42.44 -10.94 -1.13 -0.028 0.557
Cl2Be· · ·C2H4

b -76.68 -25.83 -50.85 22.43 42.41 -11.84 -2.94 -0.037 0.521
Cl2Be· · ·C2H2

a -93.21 -33.89 -59.32 31.52 47.64 -14.05 -3.04 -0.017 0.590
Cl2Be· · ·C2H2

b -64.45 -20.29 -44.16 19.98 36.77 -7.70 -0.70 -0.035 0.457

In order to keep the discussion succinct, we have only considered the H2O, NH3, and CO

dimers with BeX2 (X=H,F,Cl). In all cases the X-Be-X angle differs considerably from 180◦, see

the supplementary information. Relevant IQA data are reported on Table 1. As it is well known, all

BeX2 systems are considerably ionic with QTAIM charges of about 1.7 and−0.85 electrons for the
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Be and X atoms respectively. In all the cases the L shell of Beryllium has been transferred to the

X companion, as seen by the laplacian. Complexation polarizes the BeX2 fragment, that gets bent

leaving a large positive laplacian region toward which the lone pair of the LB points. All Be···LB

bond critical points display positive laplacian. It is interesting to notice that the BeX2 · · ·H2O

systems are planar, with a σ +π distribution of the oxygen’s lone pairs adequate for π donation,

as suggested by NBO analyses.

Total charge transfer between the fragments is in general larger than in typical hydrogen bonded

(HB) complexes,53 getting as large as 0.08 electrons in BeH2···CO. Notice that the direction of

charge transfer oscillates. A negatively charged LB necessarily implies that there exist other delo-

calization channels beside the lp→ pBe or lp→ σ∗BeX. This back-donation dominates effectively

in the BeH2 complexes with water and in BeX2···CO with X=H,Cl. We will return to the origin of

this interesting observation.

As energy components are regarded, both electrostatic and covalent contributions are important

in the stabilization of the complexes. In all the σ dimers it is the deformation energy of the Lewis

base that dominates, as it is also the case in HB dimers. However, deformations in the present

Be-bonds are several times larger than the ones found in HBs. The deformation of the LB in the

water dimer, for instance, is only about 8 kcal/mol, to be compared with 50 kcal/mol in the BeH2

complex. The distortions induced by mutual polarization of the fragments in Beryllium bonds

seem to be rather intense.

Electron delocalization is extremely relevant. The A-B delocalization indices lie around 0.3−

0.6, being much larger than in HBs (one of the largest is found in the strongly bound FHF− system,

with a δ close to 0.2.53). This makes the stronger nature of distortions and interactions in Be-bonds

clear as compared to HBs. As in usual (relatively) weak complexes, the sum of the fragments’

deformation energies and EAB
xc , which we have related several times to the exchange-repulsion

terms in other approaches,53,54 is positive, again larger (by one order of magnitude) than the values

found in HBs. Delocalization thus does not compensate deformation. This behavior is typical of

traditional charge transfer complexes or very ionic bonds, being in favor of electrostatic bonding
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models. But, as we have also explained before,53 covalency cannot be disregarded, since EAB
cl is

not stabilizing enough as to overcome deformations.

Table 2: Electron Distribution Functions (EDF) for some BeX2-Lewis base (LB) complexes.
A and B denote BeX2 and LB, respectively. p(BeX2) denotes the probability of the nominal
RSRS and p(BeXq

2) the probability of the RSRS of the fragment BeX2 with a total charge q.

System p(BeX2) p(BeX−2 ) p(BeX+
2 ) p(BeX2−

2 ) p(BeX2+
2 )

H2Be···OH2 0.795 0.092 0.103 0.004 0.005
H2Be···NH3 0.788 0.106 0.096 0.004 0.004
H2Be···CO 0.741 0.093 0.153 0.003 0.011
H2Be···C2H4

a 0.684 0.115 0.177 0.007 0.015
H2Be···C2H4

b 0.855 0.084 0.057 0.003 0.001
H2Be···C2H2

a 0.662 0.116 0.195 0.007 0.019
H2Be···C2H2

b 0.922 0.045 0.032 0.001 0.000
F2Be···OH2 0.826 0.094 0.073 0.004 0.003
F2Be···NH3 0.811 0.111 0.070 0.005 0.003
F2Be···CO 0.830 0.092 0.072 0.003 0.003
F2Be···C2H4

a 0.820 0.108 0.065 0.005 0.002
F2Be···C2H4

b 0.822 0.108 0.063 0.005 0.002
F2Be···C2H2

a 0.815 0.107 0.071 0.005 0.003
F2Be···C2H2

b 0.842 0.097 0.056 0.004 0.002
Cl2Be···OH2 0.784 0.103 0.102 0.005 0.006
Cl2Be···NH3 0.772 0.121 0.095 0.006 0.005
Cl2Be···CO 0.758 0.125 0.104 0.004 0.009
Cl2Be···C2H4

a 0.763 0.125 0.100 0.008 0.013
Cl2Be···C2H4

b 0.775 0.123 0.090 0.015 0.025
Cl2Be···C2H2

a 0.752 0.124 0.109 0.007 0.007
Cl2Be···C2H2

b 0.800 0.111 0.080 0.005 0.003

The nature of charge transfer deserves specific consideration. Table 2 contains the most repre-

sentative real space resonance structures (RSRSs) contributing to our Beryllium complexes. No-

tice that the overall inter-fragment charge transfer sign comes from the relative weight of the BeX−2

versus the BeX+
2 structures, given the small values of more highly charged structures BeX2−

2 and

BeX2+
2 . The non-negligible probabilities of both the BeX−2 and BeX+

2 RSRSs point towards po-

larized symmetric (thus covalent-like) delocalizations or to several independent charge transfer

channels. We can distinguish between both possibilities by exploring the two-fragment natural
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adaptive orbitals that decompose the overall delocalization index into effective one-electron com-

ponents. Table 3 reports the most relevant contributions for each of the complexes, while Fig. 1

provides pictorial images in the BeH2···H2O and BeF2···H2O cases. There are several interesting

points that deserve being discussed.

Table 3: Contributions to δ AB greater than 0.01 of the two-fragment NAdOs of BeX2-Lewis
base (LB) systems. Each number represents the occupation of a natural adaptive orbital
(NAdO). See Figure 1 for the cases of BeH2· · ·H2O and BeF2· · ·H2O.

BeX2→ BeH2 BeF2 BeCl2
LB→ H2O NH3 CO H2O NH3 CO H2O NH3 CO

0.154 0.213 0.287 0.155 0.214 0.194 0.169 0.234 0.233
0.121 0.126 0.217 0.066 0.056 0.066 0.103 0.084 0.151
0.119 0.100 0.075 0.054 0.056 0.053 0.080 0.081 0.074
0.048 0.018 0.038 0.035 0.036 0.051 0.043 0.065
0.017 0.016 0.030 0.023 0.035 0.030

0.020 0.014 0.027 0.019
0.010 0.011
0.010

Firstly, the dominant channel is always that involving the base σ lone pair. Its intensity is

largest in the ammonia complexes, as expected, if we exclude the BeH2···CO system. In the second

place, the LB to pBe donation, the fourth component in both rows of Fig. 1, is never second in

relevance, as NBO arguments suggest. Contrarily, its donating capacity is relatively low. This type

of discrepancies between NBO and real space considerations is rather usual, stemming from the

NBO’s use of localized basis functions in a second order perturbation expansion. More interesting

are the BeX2 to LB back-donation channels. They delocalize charge directly onto the base, and

are formed by the symmetric and antisymmetric combination of σ -like functions mainly localized

on the X2 moieties. Turning to a localized NAdOs scheme, if we would like to, they are simply

the two σ Be-X bonds. We have found that the σ back-donation capacity of these channels is

largest in BeH2, with easily polarizable hydride-like entities. It decreases considerably in BeF2,

where the NAdOs are combinations of highly localized non-bonding p orbitals of the F atoms, and

it increases again as the fluorines are substituted by more diffuse and polarizable Cl substituents.

The relevance of the σ back-donation we are describing in the chemistry of these compounds
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remains to be examined. To check the generality of the arguments here presented, we have also

computed conformations of the σ H2O complexes where the BeX2 molecular plane is orthogonal

to that of the H2O molecule. The importance of the back-donation decreases considerably, as

expected. In the BeH2 case, for instance, the effect is so large that the BeH2 fragment changes

polarity, with a net charge of −0.005 a.u.

δ AB = 0.154 δ AB = 0.121 δ AB = 0.119 δ AB = 0.048 δ AB = 0.017

δ AB = 0.155 δ AB = 0.066 δ AB = 0.054 δ AB = 0.038 δ AB = 0.020 δ AB = 0.030

Figure 1: The most highly occupied NAdOs of the BeH2 · · · H2O (top) and BeF2 · · · H2O (bottom)
systems. The isosurface shown corresponds to |φ | = 0.05 a.u. Their contribution to the δ AB

delocalization index are shown below.

It is easy to check that a reasonable estimate of the total charge transfer can be obtained by:

(i) classifying the NAdO channels into those basically localized in the BeX2 or LB fragments; (ii)

adding the occupation numbers of both classes and, finally; (iii) subtracting them to get a grand

total. This allows to rationalize easily the oscillating net charge pattern of the complexes found in

Table 1 and to construct a donating and back-donating scale of the LB and BeX2 moieties. For the

former CO≈ NH3 > H2O, for the latter, BeH2 > BeCl2 > BeF2.

π-bonded complexes

Soon after the BeX2 σ complexes were examined it was found that the BeX2 species would also

embark on π bonding with molecules such as ethylene or acetylene. Although weaker in gen-

eral than the previously analyzed σ dimers, these π complexes have binding energies typical of

hydrogen bonded systems, displaying QTAIM critical points characteristic of π interactions and
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being described from the NBO perspective through equivalent π → pBe and π → σ∗BeX donor-

acceptor contributions. An interesting point that has not been thoroughly investigated is the origin

of the preference between parallel/perpendicular conformations: BeF2 and BeCl2 prefer to locate

their molecular planes coinciding with the plane that contains the C-C internuclear axis [parallel

conformation, (a)] in acetylene complexes, but orthogonal to it [orthogonal conformation, (b)] in

ethylene ones, while BeH2 prefers the parallel conformation in both cases, the difference in energy

between the two conformers being rather large in this last case. We have thus investigated both

conformations and shown our IQA results also in Table 1.

A first insight is related to the net charge transfer in the dimers. In the BeH2 case the most

stable conformers are those in which this moiety is positively charged. In fact, the perpendicular

conformers display much smaller charges (and of opposite signs). All IQA energetic indicators

point toward a much stronger interaction (both electrostatic and covalent) as well as larger defor-

mation energies in the (a) conformations. It is also interesting to notice that in these (a) isomers

it is the BeH2 moiety which is mostly deformed. This tells about the role of the hydrogens in the

stabilization of the complex, leading again to backdonation issues.

Table 4: Contributions to δ AB greater than 0.01 of the two-fragment NAdOs of
BeX2· · ·C2Ha,b

4 and BeX2-C2Ha,b
2 (X=H,F) systems. Each number represents the occupa-

tion of a natural adaptive orbital (NAdO). See Figure 2 for the cases BeH2· · ·C2Ha,b
4 and

BeH2· · ·C2Ha,b
2 .

BeH2 BeF2 BeCl2
C2Ha

4 C2Hb
4 C2Ha

2 C2Hb
2 C2Ha

4 C2Hb
4 C2Ha

2 C2Hb
2 C2Ha

4 C2Hb
4 C2Ha

2 C2Hb
2

0.348 0.158 0.393 0.079 0.197 0.199 0.186 0.170 0.234 0.229 0.222 0.198
0.248 0.080 0.236 0.048 0.060 0.057 0.066 0.057 0.116 0.082 0.129 0.083
0.093 0.047 0.099 0.019 0.057 0.040 0.060 0.033 0.080 0.063 0.082 0.049

0.064 0.021 0.036 0.028 0.032 0.030 0.058 0.041 0.045
0.021 0.029 0.010 0.024 0.031 0.045

When X=F,Cl, the situation changes. Now the hydrocarbon donation channels dominate, and

in every case the net charge of the BeX2 species is negative. The ability of the p-like lone pairs

of X to participate in bonding interactions in both conformations makes the balance subtle with

ethylene, while the conformer discrimination is more neat with acetylene. In all the conformers
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Edef of the BeX2 fragment is considerably smaller than that of the hydrocarbon. For the BeCl2

ethylenic complex an interesting situation arises. The (b) conformer has a smaller total interaction

energy than the (a) one, although it is the most stable of the two. Actually, the final energetic

difference is close to that in electrostatic interactions, so that deformation energies and covalent

contributions cancel their difference for both conformers.

Fig. 2 shows the most relevant NAdOs and their contribution to the inter-fragment delocaliza-

tion indices for the parallel and orthogonal conformers of BeH2 with ethylene and acetylene. The

NAdOs occupation numbers for the three complexes BeX2 (X=H,F,Cl) are found in Table 4. It is

obvious that the (b) conformations quench the σ back-donation channels from the hydrides to the

carbon atoms, which are dominant in the parallel ones and explain the charge transfer observed.

Without these channels, the H-Be-H angle is considerably closer to 180◦, and the Be-C distance

increases. As a result, also the π →BeH2 donation decreases in strength.

BeX2 with X=F,Cl behave differently thanks to the p-symmetry orbitals of the halogen. We

only analyze in detail the F complexes, since the conclusions are similar for X=Cl. Fig. 3 collects

the relevant NAdOs. The ethylene compounds display four basic delocalization channels. The

most intense one (i) is the πC2H4
→BeF2 that accounts for the angularization of BeF2. The rest

are BeF2→C2H4 back-donation terms that involve the symmetric and antisymmetric combination

of F p non-bonding orbitals, i.e. two localized p non-bonding orbitals (iia, iib), plus the sym-

metric π-symmetry bonding orbital formed by the in-phase combination of the three pz functions

corresponding to the F-Be-F atoms (iii). The balance determining the stability of the (a) and (b)

conformers is subtle. In the orthogonal one (b, the most stable) and in agreement with intuition,

channel (iii) becomes reinforced, while channels (iia, iib) weaken.

Finally, five channels become relevant in the acetylenic compounds. Fig. 3 shows that now a

second C2H2→ BeF2 component in π conformation becomes relevant, but that all the rest contri-

butions are reinforced by symmetry constraints in the parallel conformer.

We thus come to the conclusion that the combination of IQA with the NAdOs decomposition

offers a consistent image of σ and π BeX2 Beryllium bonds, in which electrostatic interactions
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δ AB = 0.348 δ AB = 0.093 δ AB = 0.248

δ AB = 0.393 δ AB = 0.099 δ AB = 0.236

δ AB = 0.047 δ AB = 0.080 δ AB = 0.158

δ AB = 0.019 δ AB = 0.048 δ AB = 0.079

Figure 2: The three most highly occupied NAdOs of the BeH2· · · LB systems, with LB = C2H4
a

(1st row), C2H2
a (2nd row), C2H4

b (3rd row), and C2H2
b (4th row). The isosurface shown cor-

responds to |φ | = 0.05 a.u. Their contribution to the δ AB delocalization index are shown below.

15



δ AB = 0.197 δ AB = 0.057 δ AB = 0.060 δ AB = 0.021

δ AB = 0.186 δ AB = 0.060 δ AB = 0.066 δ AB = 0.021 δ AB = 0.028

δ AB = 0.199 δ AB = 0.057 δ AB = 0.036 δ AB = 0.040

δ AB = 0.170 δ AB = 0.057 δ AB = 0.029 δ AB = 0.032 δ AB = 0.033

Figure 3: The most highly occupied NAdOs of the BeF2· · · LB systems, with LB = C2H4
a (1strow),

C2H2
a (2nd row), C2H4

b (3rd row), and C2H2
b (4th row). The isosurface shown corresponds to

|φ |= 0.05 a.u. Their contribution to the δ AB delocalization index are shown below.
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together with covalent contributions account for the bonding properties displayed by these inter-

esting systems. We stress that the use of NBOs may skip important delocalization channels that

are essential to understand the observed electron fluxes.

One-electron Beryllium bonds

Beryllium compounds may also become linked via one-electron bonds, which have been redis-

covered and analyzed in recent times. We have computed the BeLi and BeNa diatomics, as well

as the BeLiBe triatomic system and the 1,8-BeH-disubstituted naphtalene anion that was recently

proposed as an example of intramolecular Be-Be one-electron bond,55 all in their lowest doublet

electronic states. Table 5 gathers several IQA properties.

Table 5: Some IQA data for the one-electron bonded LiBe, NaBe, and BeLiBea linear
molecules and the C10H6Be2H2

– anionb. T A, T B, EA
self, and EB

self in atomic units; EAB
int , EAB

xc ,
and EAB

cl in kcal/mol; Q’s in electrons and δAB in electron pairs.

T A T B EA
self EB

self EAB
int EAB

xc EAB
cl QA QB δ AB

BeLi 14.723 7.418 -14.557 -7.285 -133.36 -37.47 -95.89 -0.707 0.708 0.466
BeNa 14.642 161.861 -14.594 -161.796 -54.92 -35.40 -19.52 -0.330 0.330 0.550
LiBea 7.401 14.653 -7.286 -14.584 -68.74 -19.27 -49.46 0.738 -0.369 0.223
Be···Bea 14.653 14.653 -14.584 -14.584 0.42 -13.74 14.17 -0.369 -0.369 0.323
Be···Beb 14.316 14.316 -14.114 -14.114 138.43 -38.75 177.18 1.258 1.258 0.293

We first point out that, in agreement with electronegativity arguments, the Be atom gets a

negative net charge that accommodates the positively charged alkali atom. This is immediately

translated into the Be self-energy, which is progressively destabilized as its negative charge in-

creases. This implies that negatively charging Be has an energy cost, as expected. This conclusion

is contrary to that obtained if atomic energies as measured by minus the atomic kinetic energies are

used. We warn against using the latter to get chemical insights. Interaction energies are revealing.

The total LiBe interaction is not negligible, about −130 kcal/mol, and is dominated by a rather

large electrostatic component (−95 kcal/mol), although covalency cannot be ignored. On mov-

ing to BeNa, the covalent component stays almost exactly the same within a couple of kcal/mol,
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although the electrostatic term is greatly decreased. This is telling us about a rather common elec-

tron sharing mechanism, also revealed by the almost 1/2 delocalization index which points toward

a single one-electron delocalization channel.

Fig. 4, where ∇2ρ(r) is shown for the BeLi molecule, reveals an easy to recognize pattern

in highly ionic molecules. The Li atom has lost its valence shell, and the ∇2ρ < 0 region of the

Be atom is now heavily polarized toward the Li moiety. We have superimposed the electrostatic

potential mapped onto the ρ = 0.03 isosurface to show how the standard concepts used in inter-

molecular interactions can be directly translated to the present examples, although we use a much

larger value of ρ in this case. The Be atom has a core-like positive ESP region that corresponds

well to a laplacian depletion zone, with electron rich regions to its sides. This agrees with a s− pz-

like hybridization of the one-electron bond that will come out clear in the following. Notice that

the polarization of the Be ∇2ρ < 0 domain coincides with that of the ESP. On the contrary the Li

core corresponds to a slightly polarized positive ESP region which faces the electron rich Be. This

picture qualitatively points toward an important role of electrostatics in BeLi bonding. IQA easily

quantifies it. Similar images are found for the BeNa case.

Even more interesting is the consideration of the BeLiBe triatomic. In this case, the sum of

both ELiBe
xc energies adds to almost exactly the same value as in the LiBe diatomic. The same can

be said about the total interaction energy. Each of the two LiBe interactions is halved with respect

to LiBe. In chemical terms, we are sharing the electron between three regions, as we will see,

and the delocalization index between each LiBe pair is again halved. This consistency is one of

the important properties of IQA. In BeLiBe, the one-electron bond is tricentric: the three-center

delocalization index (δ BeLiBe = 0.186)41 is one of the largest ever reported.

More insight about the electronic structure of these compounds is obtained by examining their

EDFs. Table 6 summarizes de probability of the different real space resonance structures. In BeLi

and BeNa it is rather clear that, except residual contributions, the distribution is dominated by

two structures. This is a obviuos sign of a one-electron delocalization. In BeLi, the delocalized

electron is heavily polarized toward the Be atom, p(nBe =5, nLi = 2) = 0.7. This polarization
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Figure 4: ∇2ρ(r) for the BeLi molecule in a plane containing the nuclei. An isosurface of ρ = 0.03
a.u. with the electrostatic potential mapped onto it has been superimposed. The Be atom is on the
left side of the figure, and the BeLi bond critical point of the electron density is marked as a small
green sphere.

Table 6: Electron distribution functions for the one-electron bonded LiBe, NaBe, and BeLiBe
linear molecules. The atoms are labelled in the order in which they are written. In this sense,
nA,nB refer to the populations in Be and Li in the BeLi moiety. All data in atomic units.

BeLi BeNa BeLiBe
nA nB p(nA,nB) nA nB p(nA,nB) nA nB nC p(nA,nB,nC)

5 2 0.710 4 11 0.619 4 2 5 0.370
4 3 0.275 5 10 0.354 5 2 4 0.370
3 4 0.009 3 12 0.025 4 3 4 0.219
6 1 0.004 6 9 0.001 5 3 3 0.013

3 3 5 0.013
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decreases in BeNa. The BeLiBe data show again that the bonding electron is delocalized among

the three atoms, slightly more polarized toward the Be ends and providing a very neat image of a

three-center one-electron bond.

δ BeLi = 0.393 δ BeNa = 0.464 δ BeLiBe = 0.180

Figure 5: One-electron NAdOs for the BeLi (left), BeNa (middle), and BeLiBe (right) systems.
The isosurface shown corresponds to |φ | = 0.05 a.u. Their contribution to the two-center (BeLi
and BeNa) or three-center delocalization indices (BeLiBe) are shown below.

A pictorial glimple of the one-electron bonds is shown in Fig. 5 where the main NAdO com-

ponent is shown. Only one exchange channel (NAdO) accounts for almost all of the final electron

delocalization. The only exception is BeLi, where a second smaller contribution, basically a po-

larized Be 2s orbital is also found. The one-electron bond is a combination of Be spz-like hybrids

and polarized Li 2s or Na 3s functions, as expected.

We have also computed the 1,8-BeH disubstituted naphtalene anion, in which a relatively

strong one-electron intramolecular Be-Be bond was recently reported.55 In agreement with pre-

vious knowledge, a bond critical point between the Be atoms appears, with ρ = 0.033 a.u. and

∇2ρ =−0.041 a.u. As seen in Table 5 both Beryllium atoms are considerably positively charged,

this leading to a large electrostatic destabilization. We thus have in this case a homonuclear-like

interaction, which is only partially stabilized by a covalent term of about −39 kcal/mol, with

a delocalization index close to that shown in BeLiBe. To understand the nature of the Be···Be

stabilization it is necessary to consider the interaction of the two −CnaphBeH fragments, where

negatively charged groups (like the H atoms) compensate the Be···Be electrostatic destabilization.

This can be done easily in IQA, resulting in a total interaction energy between the fragments of
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about −62 kcal/mol, with only −8 kcal/mol coming from electrostatic interaction. Actually, the

two−CnaphBeH moieties display, as a whole, a net charge of only−0.469 extra electrons, meaning

that half the anionic charge is delocalized between the two −CnaphBeH fragments. All this tells

about a rather important energy stabilization coming from the formation of the Be-Be bond.

Figure 6: One-electron Be-Be NAdO for the C10H6Be2H2
– anion. The isosurface shown corre-

sponds to |φ |= 0.05 a.u.

Fig. 6 shows the Be-Be one-electron NAdO obtained from our DFT calculation. It shows a

very clear in-phase combination of sp2-like hybrids, in agreement with previous knowledge. It

accounts for most of the Be-Be delocalization index.

Altogether, these examples show that the same tools that can be used in the case of intermolec-

ular or weaker interactions apply equally well to more strongly bound systems. Taking BeLi, for

instance, charge transfer is not in the model, but a very real phenomenon. The probability that

taking a snapshot of the system we find a Be− moiety is 0.7. At the same time, the ESP, the den-

sity, or the laplacian of the density, all point in this direction. Evaluation of the exact electrostatics

coming from the in-the-molecule electron density provides an important part of the BeLi interac-
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tion energy, but falls short of its total value. The lacking ingredient is delocalization or covalency,

which corrects the electrostatic interaction because some electrons that contribute to the density

(and to Ecl) are counted several times due to their wandering nature, in other words, because the

pair density is not contained in the density. Analyzing in detail how delocalization takes place

we can go back to standard molecular orbital arguments, all from observable quantities. If this is

accepted, smaller intermolecular charge transfers do also have to, without models.

Conclusions

We have used in this contribution several recent quantum chemical topology tools, including the

interacting quantum atoms (IQA) approach and the effective one-electron pictures provided by

two-fragment natural adaptive orbitals or electron distribution functions, to shed new light on the

nature of the interactions in some typical Beryllium-bonded systems. These tools add to the tradi-

tional local topological approaches, complementing them. The real space energetic partitioning of

IQA shows that, in agreement with previous works, it is the electrostatic interaction between the

bonded fragments that accounts for the basis energetics as well as conformational preferences in

the compounds examined. However, in the absence of delocalization (covalent) contributions, the

deformation energy of the fragments is not overcome by electrostatics. In this sense, and similarly

to what was found in simple hydrogen-bonded systems,53 covalency is essential for the stability

of the aggregates. An overlooked aspect related to the total charge transfer has been analyzed in

detail. This real space charge transfer is free from the criticisms posed by Politzer et al.10. Our re-

sults clearly show that there exist important delocalization channels that are not properly accounted

for by the natural bond orbital (NBO) formalism, involving σ back-donation from BeX2 moieties

to the Lewis base which can even be dominant, leading to negative net LB charges. The strength

of the different forward and back-bonding channels is predictable from the characteristics of the

fragments involved, leading to a chemically appealing rationalization of conformational prefer-

ence. An analysis of some toy Beryllium containing molecules displaying one-electron bonds has
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also been undertaken. EDFs and NAdOs show that the one-electron bonding model accurately

describes their bonding.

Supporting Information

Optimized geometries, Electron Distribution Functions (EDFs), and Natural Adaptive Orbitals

(NAdOs) of the molecules studied in this work.
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Abstract

Among the different non-covalent interactions, halogen bonds have captured wide attention

in the last years. Their stability has been rationalised in electrostatic terms by appealing to the

σ-hole concept, a charge-depleted region that is able to interact favourably with electron rich

moieties. This interpretation has been questioned, and in this work a set of anionic halogen

model systems are used to shed some light on this issue. We use the Interacting Quantum Atoms

(IQA) method, which provides an orbital invariant energy decomposition in which pure electro-

static terms are well isolated, and we complement our insights with the analysis of electrostatic

potentials as well as with traditional descriptors of charge accumulation like the Laplacian of

the electron density. The total electrostatic interaction between the interacting species is sur-

prisingly destabilising in many of the systems examined, demonstrating that although σ-holes

might be qualitatively helpful, much care has to be taken in ascribing the stability of these sys-

tems to electrostatics. It is clearly shown that electron delocalisation is essential to understand

the stability of the complexes. The evolution of atomic charges as the aggregates form reveals

a charge transfer picture in which the central, σ-hole bearing halogen acts as a mere spectator.

These systems may then be not far from engaging in a classical 3c-4e interaction. Since the

presence of a σ-hole as characterised by the electrostatic potential mapped on a suitable molec-

ular envelope isosurface does not guarantee attractive electrostatic interactions, we encourage

to employ a wider perspective that takes into account the full charge distribution.
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1. Introduction

The consideration of non-covalent interactions (NCIs) is one of the priority development

directions in modern chemistry and related areas of natural science. The attention of the

scientific community to this field has grown explosively in the past decade, as these weak contacts

play key roles in most chemical1–3 and biochemical4,5 processes. Non-covalent interactions

determine the existence of molecular solids and the properties of molecular systems in the gas

and liquid phases, and their control has found wide application in nanoscience,6,7 material

science,8,9 medicine10,11 or catalysis,12–16 to name just a few fields. As progress accumulates,

the number of purportedly new NCIs beyond the ubiquitous van der Waals attractions has

increased considerably, and the NCI zoo now includes beryllium, tetrel, pnictogen, chalcogen,

etc. bonds.17–20 In many of these, electrostatic interactions have been targeted as fundamental,

and the concept of σ-holes has become instrumental,21–23 particularly in halogen bonds.24,25

It has thus become generally accepted that the charge density anisotropy of bonded halogen

atoms leading to σ-holes is the driving force behind halogen bonding. This has lead to emphasise

the role of the molecular electrostatic potential (ESP) in understanding these interactions,26 and

to assume that their energetics should be well described by classical contributions.27 Nonethe-

less, such a traditional view has been challenged in the last few years with the use of other

complementary techniques.

In this respect, numerous computational studies have appeared trying to shed light on the

nature of halogen-bond (XB) interactions. Most are based on orbital-based energetic decompo-

sitions that use natural bond orbitals (NBO), Kohn-Sham based energy decomposition analyses

(EDA), block-localised wave functions (BLWs), in the realm of valence bond (VB) theory, or even

symmetry adapted perturbation theory (SAPT).22,25,28–33 Less effort has been put in rationalis-

ing halogen bonding with orbital invariant real space-based alternatives, such as the interacting

quantum atoms (IQA) scheme.34,35 Fock-space analyses already warned about the importance

of non-purely electrostatic contributions, such as charge transfer, polarisation, or dispersion in

different complexes.22,25,28–33 On the other hand, the IQA picture has also revealed how in some

instances covalent effects, as revealed by non-negligible exchange-correlation energies, may have

been skipped.32,36–44

In this work, we have decided to adhere to Occam’s razor arguments [Johannes Poncius’

commentary on John Duns Scotus’ Opus Oxoniense, book III, dist. 34, q. 1. in John Duns
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Scotus Opera Omnia, vol. 15, Ed. Luke Wadding, Louvain (1639), reprinted Paris: Vives,

(1894) p.483a] and thus to choose the simplest possible model systems of halogen bonding in

order to isolate as well as possible the driving forces behind their stability through the IQA

partitioning. Since XBs comprise a σ-hole bearing halogen atom acting as a Lewis acid that

interacts with a Lewis base counterpart, we opted to explore the σ-hole halogen interactions

within negatively charged X1 –Y2 –X3 species, using different combinations of chlorine, bromine

and iodine as the X and Y moieties.

According to the early work of Sakurai45 and Desijaru,46 and the seminal paper by Espinosa

and coworkers on halogen-halogen interactions,47 there would be two distinct geometrical ar-

rangements for two interacting halogens in crystals. The first one, called type I, refers to a

symmetric, often linear arrangement that occurs mainly around a crystallographic inversion

centre and is generally regarded to be dispersion driven. In the second, or type II, the interac-

tion occurs at angles close to 90◦, and the positively-charged σ-hole from one atom approaches

the negative lone pair belt of the other, so that electrostatic terms are expected to dominate.

Type II XBs are often found on crystallographic screw axes and glide planes. In order to capture

the mutual effect of maximised van der Waals forces in type I and electrostatic interactions in

type II geometries, we selected linear geometries between a halogen diatomic molecule and an

approaching halide ion.

To decrease the number of degrees of freedom as much as possible, we have inspected both

the potential energy surface minima, corresponding to the symmetric [X1 –Y2 –X3]– trihalide

configurations as found in the gas phase (Figure 1b), and constrained X1 –Y2 · · ·X3
– asym-

metric geometries that mimic the halogen arrangements found in crystals (Figure 1a). These

systems are close to those studied by Wolters and Bickelhaupt with Kohn-Sham EDAs,48 that

were also chosen thanks to their capturing of the essence of σ-holes and XBs.

Thus, and with all the previous simplifications, we seek to compare the role of σ-holes in XBs

from different perspectives: the qualitative picture provided by the ESP and other scalar fields

like the Laplacian of the electron density, and the quantitative image given by the IQA energetic

decomposition. IQA has now been used to shed light on a wide variety of phenomena, including

some recent controversies such the nature of bonding in anion-π interactions or the character of

the Na-B bond in NaBH3
– to cite a couple of them.49,50 This together with its orbital-invariant

nature makes it an appropriate choice for our study. In doing so, we expect to gain deeper

insight into the nature of halogen bonding as well as to check whether the electrostatic view
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survives quantitative analyses.

d12 d23

(a) X1 –Y2 · · ·X3
–

d12 d23

(b) [X1 –Y2 –X3]
–

Figure 1: Geometries considered in this work: constrained asymmetric complex (left), with d12 < d23, and

symmetric trihalide (right) structure, with d12 = d23.

2. Methodology

Quantum Chemical Topology (QCT) refers to a set of wave function analysis techniques that

take advantage of the topology induced by the gradient field of orbital invariant descriptors.51

By construction, QCT is independent on the electronic structure method selected to build the

system’s wave function. Amongst the most well-known QCT procedures we find the Quantum

Theory of Atoms in Molecules (QTAIM) of Bader et al.,52 which provides an atomic-like exhaus-

tive partition of real space and of the expectation values of any quantum mechanical operator.

In the QTAIM, atoms are defined as the attractor basins of the electron density field, ρ(r). A

general energy partition scheme in QCT that leads to an atomic and interatomic decomposition

of the molecular energy when applied to the QTAIM is the interacting quantum atoms (IQA)

approach.34,35 IQA/QTAIM provides physically rigorous domain kinetic energies, in contrast

to those offered by other spatial decompositions, and it needs only the first- and second-order

reduced density matrices to compute its different energy terms. According to this scheme, and

making use of its usual language, the total energy E is split into a sum of atomic (net) energies

EA
net and pairwise additive interaction terms EAB

int as

E =
∑

A

EA
net +

∑

A<B

EAB
int . (1)

The atomic net-energy comprises, on the one hand, the kinetic energy of the electrons

contained in a particular basin, their mutual interaction, and the attraction with the particular
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nucleus they are associated with. On the contrary, EAB
int gathers the interactions of all the

electrons and nuclei located in a basin A with those located in basin B.

There are two sources for the interaction energy, namely the classical electrostatic interaction

between the total (nuclear and electronic) charge densities lying in the A and B regions, and

a correction to that term which is purely quantum mechanical in nature. Accordingly, the

interaction energy can be separated into a Coulomb, or classical contribution EAB
cl —that has

been shown to correspond to the ionic component of a chemical interaction— and an exchange-

correlation one EAB
xc —that measures covalency:

EAB
int = EAB

cl + EAB
xc . (2)

Related with the exchange-correlation energy is the delocalisation index, DI. It corresponds

to the integration of the exchange-correlation density over two basins and is the real space

equivalent of bond order, whose value can be interpreted as the number of electron pairs that

two particular basins share.53

Since the union of QTAIM regions is again a proper QTAIM domain, we can gather sets of

QTAIM atoms to form groups G and rewrite the IQA partitioning in terms of them:

E =
∑

G
EGnet +

∑

G<H
EGHint , (3)

with

EGnet =
∑

A∈G
EA

net +
∑

A<B
A,B∈G

EAB
int (4)

EGHint =
∑

A<B
A∈G,B∈H

EAB
int . (5)

Here, G and H stand for the different groups in which the molecule has been divided. The

same grouping can be performed for each of the different IQA energy components, such as the

classical or exchange-correlation contributions.

The unavailability of a second-order reduced density matrix in DFT prevents the exact

decomposition of the exchange-correlation energy in an IQA-like manner, hence DFT would not

be in principle compatible with IQA. Nevertheless, several working approximations have been

introduce to by-pass this limitation. Here we will consider a scaling technique that modifies

both intra- and interatomic contributions.54
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Given a particular exchange-correlation functional with a non-hybrid part ε(r), the total

DFT exchange-correlation (xc) energy can be easily computed as

EDFT
xc =

∫

R3

ρ(r)ε(r)dr + a0E
KS
x , (6)

where a0 denotes the fraction of the pure Hartree-Fock (HF) exchange EKS
x , which is directly

computed from the Kohn-Sham (KS) orbitals when a hybrid functional is used.

By delimiting the previous integral to a particular spacial basin (e.g., Bader’s atomic regions,

with R3 = ∪AΩA), a splitting of the total xc energy is achieved, but such terms involve both

IQA intra- and inter-basin contributions. To overcome this problem a scaling technique based

on the EDFT
xc /EKS

x ratio over each basin was successfully proposed.54 First, the parameters λA

must be computed for each atomic basin as

λA =
EDFT,A

xc,add

EKS,A
x,add

= a0 +
1

EKS,A
x,add

∫

ΩA

ρ(r)ε(r)dr, (7)

where add stands for the additivity of the terms, as they sum up to the molecular EDFT
xc and

involve inter- and intra-atomic components. The Hartree-Fock exchange is calculated with the

sum

EKS,A
x,add = EKS,A

x +
1

2

∑

B 6=A

EKS,AB
x , (8)

where

EKS,AB
x =

∫

ΩA

dr1

∫

ΩB

dr2r
−1
12 ρ

KS
x (r1, r2), (9)

that corresponds to the intra-atomic EKS,A
x for ΩB ≡ ΩA and only requires the set of KS

molecular orbitals to construct the exchange density ρKS
x (r1, r2).

Once the set of λA parameters is available, these are utilised to approximate the intra-

(B = A) or inter-atomic (B 6= A) DFT xc energies as follows:

ẼAB
xc =

1

2
[λA + λB]EKS,A

x,add . (10)

Consequently, the xc energy is split into

EDFT
xc =

∑

A

ẼA
xc +

∑

B 6=A

ẼAB
xc . (11)

Traditionally, σ-hole driven halogen bonding has been characterised in terms of the positive

ESP region that develops along the bonding axis in heavy halogens that usually points toward

the lone pair torus of their bonding partners.55,56 Any real space measure of electron localisation
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like the electron localisation function (ELF),57 or of local charge concentration and depletion,

like the Laplacian of the electron density ∇2ρ, can be used to explore and detect σ-holes trust-

fully.58–60 As the Laplacian is regarded, its ability to uncover the shell structure of low Z atoms

makes it a very appealing descriptor. Even for (Z ≥ 20) atoms, for which the Laplacian does not

resolve their valence shells appropriately, the visualisation of ∇2ρ still provides clear pictures of

σ-hole behaviour.

3. Computational details

Geometry optimisations and single point calculations were carried out with the Gaussian09

(G09) package61 at the M06-2X/x2c-TZVPPall level of theory, with Grimme’s D3 dispersion

correction62 and an ultrafine grid. The M06-2X density functional was specifically developed

and parameterised for a correct description of non-covalent interactions (especially in the case

of main group chemical elements)63 and was also validated for these purposes in several bench-

mark studies.64–66 We have chosen this functional according to our previous experience and its

successful performance in a number of halogen bond studies in various similar supramolecular

systems.67–71

In order to avoid problems with relativistic effects, we used the specially developed seg-

mented contracted all-electron relativistic basis sets x2c-TZVPPall and the Ahlrich’s family

basis sets def2-TZVPP with all-electron spin-free X2C correction for iodine.72 We have also

previous experience on the successful application of such basis sets in studies of non-covalent

interactions73,74 and, in particular, in chemical systems containing heavy atoms (noble metals,

iodine).75,76 Additionally, the RESC scalar relativistic approach,77 as implemented in G09, was

employed for all compounds that include iodine.

All the optimisations converged towards the trihalides [X1 –Y2 –X3]– , that were properly

characterised through harmonic frequency analysis. To obtain asymmetric geometries X1 –Y2 · · ·X3
–

resembling the arrangements found in crystals, a scan over the Y2 –X3 distance was performed

with a frozen X1 –Y2 separation equal to the experimental diatomic equilibrium one, retrieved

from the NIST database.78 This has proven to be a reliably procedure to examine pure halogen

bonding effects without the influence of further species.

Analogously, and in order to test the reliability of the DFT results, a comparison between

the energy components of M06-2X and a more reliable CCSD reference was also performed.

For these correlation-consistent calculations, PySCF79 was used to obtain the density matrices
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required by the subsequent IQA analyses. The x2c-TZVPPall and def2-TZVPP were used in

these calculations for a selected set of X1 –Y2 · · ·X3
– systems. Also, relativistic effects were

accounted for iodine compounds, in this case with the all-electron spin-free X2C correction.

This precludes a complete IQA reconstruction of the energy, but does not affect the interatomic

interaction components, which constitute our focus.

The wave functions obtained from the previous G09 or PySCF calculations were input to

the PROMOLDEN code80 to carry out the IQA energetic analyses. For these, β-spheres with radii

between 0.30 and 0.35 a.u. were employed along with 5810-point Lebedev angular grids and

Gauss-Chebychev of 2nd kind radial quadratures with 451 radial points. The expansion of r−1
12

was performed up to a Lmax of 10. Non β-sphere grids were performed using the same angular

quadratures but 551 points Clenshaw-Curtis radial quadrature was chosen in this case and the

Lmax was raised to 12. PROMOLDEN does not actually recover relativistic effects, that would

affect mainly some intra-basin energy contributions like the atomic kinetic energy. Since we are

mainly interested in interatomic interaction energies, which remain basically unperturbed after

our relativistic calculations, we think that the reported interactions involving iodine atoms are

not seriously affected by this approximation.

Finally, the molecular and atomic representations have been obtained with the AIMAll81

and Jmol82 codes. The rest of the figures were done with the help of Python’s Matplotlib.83

4. Results and Discussion

4.1. Systems

As mentioned in the Introduction, we have focused our efforts on pure negatively-charged

halogen species that are intended to capture the essence of σ-hole interactions. These sys-

tems bind linearly through the extra σ-like lone pair of the halide anion. A total of eighteen

of these systems have been considered in this work. These comprise the trihalides as well

as the constrained X1 –Y2 dimers attacked by a X3 halogen anion in a linear arrangement,47

where X,Y=Cl, Br, I: Cl–Cl · · ·Cl– , [Cl–Cl–Cl]– , Cl–Br · · ·Cl– , [Cl–Br–Cl]– , Cl– I · · ·Cl– ,

[Cl– I–Cl]– , Br–Br · · ·Br– , [Br–Br–Br]– , Br–Cl · · ·Br– , [Br–Cl–Br]– , Br– I · · ·Br– , [Br– I–Br]– ,

I –Cl · · · I– , [I –Cl– I]– , I –Br · · · I– , [I –Br– I]– , I – I · · · I– , [I – I– I]– . We leave aside fluorine,

since this element is normally not considered to get involved in halogen bonds as a result from

its low polarisability. All optimised and constrained geometries and energies can be found in

the Supporting Information (SI), Table S1.
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4.2. Atomic charges and interatomic interaction energies

Sigma holes are expected to enhance halogen interactions by means of favourable electro-

statics between the halogen that develops the σ-hole and the attacking, electron-rich moiety.

However useful any argument based on the docking of ESP isosurfaces may be, it is always

the total electrostatic interaction between the approaching entities that has to be taken into

account. This is something that IQA provides directly. As we are going to show, a lock-and-key

ESP isosurface match may actually hide a globally destabilising electrostatic contribution. The

IQA interaction energy EAB
int , and its classical (Coulomb, Eclass) and non-classical (exchange-

correlation, Exc) components give directly the grand total interactions, which can be perceived

as what one would obtain if we brought together all the ESP pictures at all possible different

isovalues, reconstructing an onion from its peels. Another way to state this idea comes from

recognising that a region characterised by a positive ESP value on the van der Waals envelope

surface may well display a negative ESP value on another surface, so that the global electrostatic

is by no means obvious from the exam of the first surface.

Table 1 contains the total interaction energies, along with the classical and exchange-

correlation contributions, for every pair of atoms present in the complexes. The QTAIM atomic

charges are also depicted. Although the data present in Table 1 correspond to the M06-2X den-

sity functional, we have validated the reliability of our results by performing reference CCSD

calculations on a selected number of systems: Cl–Cl · · ·Cl– , Cl–Br · · ·Cl– , Cl– I · · ·Cl– and

Br–Br · · ·Br– , with both the x2c-TZVPPall and the def2-TZVPP basis sets. The data can

be found in the S2 and S3 Tables of the SI. Small differences in charges and larger energetic

discrepancies can be found on comparing the DFT and CCSD data but, overall, the M06-

2X/x2c-TZVPPall level of theory so far used is found to be accurate enough. All trends found

in Table 1 are maintained. For comparison purposes also, M06-2X results in the optimised in

vacuo X1 –Y2 diatomics can also be found in Table 2.
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Table 1: Atomic charges (a.u.) as well as delocalisation indices (DI) and interaction energies (in kcal mol−1)

for each atomic pair in the complexes X1 –Y2 –X3 at the M06-2X/x2c-TZVPPall level. Negative charges are

coloured in red, positive in blue and those close to zero in green.

Complex Pair DI Eint Exc Eclass

1-2 1.278 -161.439 -182.490 21.051

Cl1
-0.30 –Cl2

+0.04 · · ·Cl3
-0.74 2-3 0.542 -66.779 -60.613 -6.166

1-3 0.149 6.863 -5.443 12.306

1-2 0.872 -104.724 -107.164 2.440

[Cl1
-0.50 –Cl2

+0.01 –Cl3
-0.50] 2-3 0.872 -104.502 -107.169 2.667

1-3 0.211 7.861 -7.646 15.507

1-2 1.169 -159.842 -156.455 -3.387

Cl1
-0.46 –Br2

+0.16 · · ·Cl3
-0.70 2-3 0.674 -94.116 -76.965 -17.151

1-3 0.152 15.019 -5.443 20.462

1-2 0.877 -113.753 -104.485 -9.268

[Cl1
-0.56 –Br2

+0.12 –Cl3
-0.56] 2-3 0.877 -113.916 -104.551 -9.366

1-3 0.179 13.500 -6.234 19.734

1-2 1.061 -174.495 -130.451 -44.044

Cl1
-0.61 – I2

+0.34 · · ·Cl3
-0.73 2-3 0.696 -115.651 -75.887 -39.764

1-3 0.118 25.321 -4.003 29.324

1-2 0.836 -128.549 -93.217 -35.332

[Cl1
-0.65 – I2

+0.30 –Cl3
-0.65] 2-3 0.835 -128.068 -93.114 -34.955

1-3 0.129 22.938 -4.229 27.167

1-2 1.243 -142.250 -165.847 23.597

Br1
-0.22 –Cl2

-0.10 · · ·Br3
-0.69 2-3 0.590 -58.304 -64.176 5.872

1-3 0.192 -0.491 -6.571 6.080

1-2 0.883 -93.221 -103.455 10.234

[Br1
-0.45 –Cl2

-0.10 –Br3
-0.45] 2-3 0.881 -93.034 -103.235 10.201

1-3 0.251 2.311 -8.476 10.787

1-2 1.164 -132.598 -147.432 14.835

Br1
-0.39 –Br2

+0.03 · · ·Br3
-0.64 2-3 0.729 -83.199 -81.060 -2.139

1-3 0.191 7.152 -6.407 13.559
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1-2 0.883 -98.024 -102.562 4.538

[Br1
-0.50 –Br2

+0.01 –Br3
-0.50] 2-3 0.881 -98.239 -102.832 4.593

1-3 0.251 7.136 -7.004 14.141

1-2 1.099 -139.381 -127.528 -11.854

Br1
-0.52 – I2

+0.21 · · ·Br3
-0.69 2-3 0.698 -92.092 -71.456 -20.636

1-3 0.147 16.688 -4.536 21.224

1-2 0.857 -104.986 -90.242 -14.744

[Br1
-0.59 – I2

+0.18 –Br3
-0.59] 2-3 0.857 -105.079 -90.311 -14.768

1-3 0.161 15.456 -4.857 20.312

1-2 1.208 -141.696 -147.381 5.685

I1
-0.06 –Cl2

-0.28 · · · I3
-0.66 2-3 0.542 -37.715 -53.691 15.975

1-3 0.24 -9.262 -7.409 -1.853

1-2 0.853 -80.019 -92.052 12.033

[I1
-0.37 –Cl2

-0.26 – I3
-0.37] 2-3 0.851 -79.783 -91.862 12.080

1-3 0.317 -3.618 -9.734 6.116

1-2 1.168 -117.898 -135.958 18.060

I1
-0.24 –Br2

-0.15 · · · I3
-0.61 2-3 0.661 -58.258 -66.461 8.204

1-3 0.237 -1.622 -7.156 5.533

1-2 0.872 -79.271 -91.298 12.027

[I1
-0.42 –Br2

-0.16 – I3
-0.42] 2-3 0.873 -79.488 -91.397 11.909

1-3 0.274 0.301 -8.108 8.409

1-2 1.129 -112.387 -123.099 10.712

I1
-0.41 – I2

+0.04 · · · I3
-0.63 2-3 0.719 -73.745 -69.966 -3.779

1-3 0.192 7.315 -5.485 12.801

1-2 0.879 -84.009 -87.520 3.512

[I1
-0.51 – I2

+0.02 – I3
-0.51] 2-3 0.879 -84.689 -87.474 2.785

1-3 0.209 7.356 -5.846 13.202
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Table 2: Atomic charges (a.u.), delocalisation indices (DI), exchange-correlation, classical and total interaction

energies (kcal mol−1) for the in vacuo diatomic molecules X1 –Y2. Negative charges are coloured in red, positive

in blue and those close to zero in green.

Diatomic molecule DI Eint Exc Eclass

Cl0.00 –Cl0.00 1.440 -170.066 -199.990 29.923

Cl-0.14 –Br+0.14 1.407 -164.855 -181.860 17.006

Cl-0.33 – I+0.33 1.323 -178.780 -155.429 -23.351

Br0.00 –Br0.00 1.415 -148.233 -172.478 24.245

Br-0.20 – I+0.20 1.367 -146.100 -151.289 5.188

I0.00 – I0.00 1.395 -125.317 -144.553 19.236
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A most remarkable feature found in both the trihalides and the halogen-bonded moieties

is the considerable value of the charge difference in the edge atoms ∆Q(X3) ∼ −∆Q(X1),

measured from the isolated X1 –Y2 reference. This can be näıvely interpreted as a direct charge

transfer from the attacking halide X3 to the farthermost halogen atom X1. In the symmetric

trihalide systems, the central Y2 atom is almost neutral if X=Y, and carries a positive or

negative charge, consistent with the difference of electronegativity between X and Y, otherwise.

In any case, the anionic character of all the molecules is heavily carried by the external X atoms.

Interestingly, this large density polarisations are also found in the asymmetric X1 –Y2 · · ·X3
–

systems that we use to model halogen bonds, albeit the attacking X3
– now retains a larger

part of the anionic negative charge. Despite the distance between Y2 and X3, that we will call

d23, is longer than d12 in the X1 –Y2 · · ·X3
– systems mimicking halogen bonding (see Table

S1), the central charge is pretty similar for Y2 in both [X1 –Y2 –X3]– and X1 –Y2 · · ·X3
– . More

interestingly, this central charge resembles to a large extent that found in the corresponding

isolated diatomic molecule. This shows very neatly that this edge to edge polarisation is rather

general and that the central atom plays an spectator role as far as electrostatics is concerned.

We will consider more deeply this issue in the next section.

Contrary to the common assumption that the covalent or exchange-correlation contribution

is not very relevant in comparison with its electrostatic counterpart in σ-hole interactions,

IQA shows that such an energy component is of great importance in all the cases studied.

This is in line with previous assessment of the role of both type of interactions in other σ-hole

instances.32,36–44 A close inspection of the pair interaction energies and their components reveals

that the 2-3 pairs are many times destabilised by the electrostatic term and that, even when

those energies are stabilising, the non-classical ones always dominate. The closer the third

X3 atom is to Y2, the more attractive the X3 –Y2 interactions become, but at the expense of

increasing the repulsive character of the Coulomb interactions while the xc term becomes even

more dominant. It shall be seen in following sections that the grouped attractive interaction

of fragment 1-2 with atom 3 is explained only by the Exc component in almost all the cases

studied, whilst the group Eclass terms are destabilising.

Paying attention to the relation between the electrostatic interaction and the monopole

QAQB/RAB contribution, our results show that, in general, oppositely charged basins lead to

stabilising electrostatics, although multipolar terms often modify this initial assumption. For

example, the first two chlorine atoms of Cl–Cl · · ·Cl– present an Eclass of ∼+21 kcal mol−1
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although the involved atoms carry opposite-sign net charges. Multipolar contributions are only

dominant when one of the two species displays small net charges.

It is also relevant to consider how the X1 –Y2 pair becomes modified when passing from the

isolated diatomic to the X1 –Y2 · · ·X3
– systems, since the distance between the first two atoms

remains fixed in this process. It is clear that, in general, Eint(X1,Y2) becomes less favourable

as the X3 atom approaches. The smallest destabilisations in Eint are found for systems with

X=Cl and Y=I, ranging from 4.3 (Cl– I · · ·Cl– ) to 12.9 kcal mol−1 (I – I · · · I– ); the largest

ones in the opposite X=I and Y=Cl situations, the I-Cl interaction in I–Cl · · · I– being that

which is mostly destabilised (by 31.1 kcal mol−1). Concerning its components, |Exc(X1Y2)|
decreases upon interaction, an easy to interpret result since the central Y2 atom now shares its

valence electrons among two, and not one species. In most cases, the xc destabilisation is larger

than that found in the total Eint. On the other hand, Eclass(X1,Y2) shows a richer behaviour.

In some cases the electrostatic interaction weakens, but in others it strengthens substantially.

This is in accordance with the charge transfer that the diatomic molecule undergoes upon

complex formation. For instance, in Cl-Br, Q(Cl) = −0.14e. When moving to the complexes,

in Cl–Br · · ·Cl– bromine maintains roughly the same charge, while chlorine gains about 0.46

e and, accordingly, their mutual classical energy stabilises by about 20 kcal mol−1. Contrarily,

in Br–Cl · · ·Br– , bromine bears a charge of -0.45 e, but, at the same time, chlorine gains 0.10

extra electrons, giving rise to a electrostatic destabilisation of 6.6 kcal mol−1. Similar trends

are found for the rest of the X1 –Y2 · · ·X3
– systems.

As d23 is considerably smaller in the trihalides, their associated Exc (and so Eint) values

are rather larger than those present in the asymmetric complexes. The most stabilising Eclass

is found in Cl– I · · ·Cl– , where the more compact and polarisant Cl– ion interacts with the

diffuse, polarisable I atom. The same behaviour is found in Br, although in a less pronounced

fashion. Since the interaction of Y with both X is symmetric, and so are distances d12 and

d23, the X1 –Y2 bond is highly weakened, with an Eint destabilisation ranging from 41.1 to 98.8

kcal mol−1. The major source of destabilisation is again Exc, in accordance with the loss in

electron sharing (57.0-92.8 kcal mol−1), while Eclass turns out again to be the most interesting

contribution to the 1-2 pair interaction energy. For all systems but [I –Cl– I]– and [I–Br– I]–

the electrostatic interaction energy of pairs 1-2 stabilises from 6.7 (in [Br–Cl–Br]– ) to 27.5 kcal

mol−1 (in [Cl–Cl–Cl]– ). [I –Cl– I]– and [I–Br– I]– , by contrast, show an Eclass destabilisation

of 6.8 and 35.4 kcal mol−1 respectively. This is as a result of the large multipolar distortions
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suffered by the iodine atoms.

All the previous findings concerning the charge distribution and the high relative importance

of the xc energy in the systems here studied are in line with the Pimentel-Rundle model,84,85. In

real space, the effects of the 3c-4e bond translates into anomalously high delocalisation indices

between the edge atoms,86 and it also predicts net charges equal to −0.5 e for the external atoms.

All this is in very good agreement with what we have obtained in the [X1 –Y2 –X3]– species

as shown in Fig. 1. More interestingly, these insights remain valid with slight modifications in

the X1 –Y2 · · ·X3
– complexes. The incipient formation of a 3c-4e-like interactions in halogen

bonds is thus a possibility that should be further studied with standard orbital techniques. For

instance, Oliveira et al. used relative stretching force constants in this regard.87 The presence

of such a bond type justifies the real space image and strengthens the importance of quantum

mechanical contributions on top of the dominant electrostatic point of view.

4.3. Charge transfer along Y2 –X3
– stretching

One of the most striking features highlighted in the previous section is the large charge trans-

fer following the approach of the X3
– anion. It leads to the farthermost X1 atom concentrating

the charge excess while the central atom Y2 maintaining a quite similar charge to that it car-

ries in the isolated diatomic molecule. In order to assess whether this observation is the result

of a concerted charge transfer mechanism in which the central atom is not directly affected,

or one with several steps in which CT and polarisation are decoupled, several scans over the

Y2 –X3 distance were performed for the systems Cl–Cl · · ·Cl– , Cl–Br · · ·Cl– , Cl– I · · ·Cl–

and Br–Br · · ·Br– . Figure 2 depicts the evolution of the atomic charge for each atom in the

Cl–Br · · ·Cl– complex (the rest of the selected systems and the CCSD reference calculations

can be found in Table S4).

In the distance range sampled, it is rather clear that the charge of the central atom does

not change appreciably while, on the contrary, the external atoms display mirror evolutions.

Similar results are found for the rest of the systems considered. This experiment demonstrates

that the X3
– to X1 –Y2 charge transfer is in this region a one-step process, which cannot be

easily explained without the assistance of orbital interactions. Whether this is a particular

feature of halide attacks or a general property of halogen bonds remains a very important point

to be investigated. If these results are found to be general, the full halogen bonding electrostatic

model will have to be reconsidered. It is interesting to note that the evolution of Q(X3) with
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Figure 2: Atomic charges (in a.u.) as a function of the Br · · ·Cl distance.

distance is convex in the case of Y=Cl but that it changes to concave when more bulky atoms

become involved. Thus, for Y=Br the trend is quasi-linear (such as the case depicted in Fig. 2),

and clearly concave between external Cl and central I (also more charged terminal Cl). Such

a behaviour reveals the rate at which the charge transfer takes place, that results more rapid

when more accessible (i.e., compact) atoms occupy the central position.

4.4. IQA formation energies

The formation energies (Eform) that provide the stabilisation energy of the trihalide or

asymmetric complexes from the isolated diatomics and halide ions can also be partitioned within

the IQA approach. Eform thus becomes a sum of the deformation energy of the fragments

Edef —the energetic cost needed to prepare the fragment from its in vacuum energy to the

geometric and electronic state found within the complex— and the interaction energy between

the two fragments. Additionally, an IQA equivalent of Pauli repulsion in weakly interacting

systems can be built by adding the fragments total deformation to their mutual exchange-

correlation energy. This is usually known as the exchange-correlation repulsion term, XCR =

Edef (X1 − Y2) + Edef (X3) + Exc(X1 − Y2,X3). This IQA fragment partition can be found in

Table 3.

The set of formation energies provided by IQA (EIQA
form) are very close to the ones calculated

from the G09 package (Eform in Table S1), although subject to a certain numerical error. Notice
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Table 3: IQA formation energies obtained from the balance between the deformation of fragments X1 –Y2 and

X3, and their mutual interaction, together with their exchange-correlation repulsion terms XCR. All data in kcal

mol−1.

Complex EIQA
form Edef (X1 –Y2/X3) Eint Exc Eclass XCR

Cl–Cl · · ·Cl– -21.608 14.178 / 24.131 -59.917 -66.057 6.140 -27.748

[Cl–Cl–Cl]– -28.764 14.287 / 53.591 -96.641 -114.815 18.174 -46.937

Cl–Br · · ·Cl– -32.643 14.100 / 32.354 -79.097 -82.408 3.311 -35.954

[Cl–Br–Cl]– -39.277 11.384 / 49.755 -100.416 -110.785 10.369 -49.646

Cl–I · · ·Cl– -35.470 21.592 / 33.268 -90.330 -79.889 -10.440 -25.030

[Cl–I–Cl]– -40.276 21.018 / 43.837 -105.130 -97.342 -7.788 -32.488

Br–Cl · · ·Br– -22.142 10.669 / 25.985 -58.795 -70.747 11.952 -34.094

[Br–Cl–Br]– -29.010 6.754 / 54.959 -90.723 -111.711 20.988 -46.998

Br–Br · · ·Br– -32.530 9.778 / 33.739 -76.047 -87.467 11.421 -43.951

[Br–Br–Br]– -36.768 4.658 / 49.676 -91.102 -109.836 18.734 -55.502

Br–I · · ·Br– -29.772 14.066 / 31.566 -75.405 -75.992 0.588 -30.360

[Br–I–Br]– -35.384 10.219 / 44.020 -89.623 -95.168 5.545 -40.929

I–Cl · · · I– -16.528 3.934 / 26.530 -46.993 -61.051 14.058 -30.587

[I–Cl–I]– -21.562 -0.093 / 61.931 -83.401 -101.596 18.195 -39.758

I–Br · · · I– -23.592 4.283 / 32.005 -59.880 -73.617 13.737 -37.329

[I–Br–I]– -26.751 -2.072 / 54.507 -79.187 -99.505 20.318 -47.069

I–I · · · I– -27.159 7.186 / 32.084 -66.430 -75.452 9.022 -36.181

[I– I–I]– -29.709 1.892 / 45.732 -77.333 -93.320 15.988 -45.696

that our IQA deformations do not include properly relativistic effects, although this does not

affect the Eint values reported.

The Edef values of the attacking anions are considerably bigger than those of the diatomic

fragment. This can be explained by the larger number of relaxation channels (or degrees of

freedom) of the latter. Interestingly, the Edef ’s of [I –Cl– I]– and [I–Br– I]– systems are negative,

a fact related with the energy stabilisation of any fragment that gains electrons. After all,

halogens have high electron affinities. Notice how the deformation of the X1 –Y2 group decreases

as we go down the table. Iodine containing systems display very small Edef ’s. As the halide
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approaches to the halogen diatomic, two energetically opposed factors balance the deformation

in the X1 –Y2 system: an increasing electronic cost and an also increasing electron affinity-driven

charge transfer stabilisation. This two factors operate in unison in the halide deformation, since

it gets depopulated as well as electronically deformed.

Turning to the electrostatic part of the interaction between the two fragments, Eclass is seen

to correlate with Eform. Indeed, the asymmetric complexes X1 –Y2 · · ·X3
– , that experience

smaller deformations and lower classical interaction energies, present slightly destabilising or

even stabilising Eclass values depending on the polarisant-polarisable character of the central

and σ-hole featuring atom and the attacking halide. Such behaviour is generally consistent

with lower formation energies, and points out the relevance of electrostatics in describing these

XB systems. In fact, as pointed out by Clark et al.,88,89 the ESP calculated at specific points

is shown to correlate well with Eform. Nevertheless, as can be appreciated from Table 3, the

complex formation cannot be explained in terms of electrostatics only; by contrast, it is the

non-classical Exc the component that accounts for most of the total Eint as it is in all cases

negative and represents a stronger interaction between fragments X1 –Y2 and X3
– .

These findings contrast with those obtained with EDA by Wolters and Bickelhaupt,48 who

reported stabilising electrostatic energies for all the trihalides here considered. This is what is

normally expected from the use of interpenetrating electron densities. In EDA or SAPT, when

the density of a fragment spreads over a region close to the nuclei of the other fragment, a

large stabilising contribution appears which is absent in exhaustive spatial partitionings. In our

opinion, large EDA electrostatic stabilisations simply signal the inadequacy of the interpene-

trating model, for an electron close to the nucleus of another fragment should be associated to

the latter and not to the former. Otherwise, the trends in the evolution of the different EDA

contributions run roughly parallel to our IQA results.

The last energy descriptor reported here accounts for the Pauli repulsion at long range

regime.90 The fact that XCR is negative in all the cases explored is a very strong indicator

of the non-perturbative regime of these interactions and of the fundamental role played by or-

bital interactions, in standard molecular orbital parlance, or covalency or exchange-correlation

effects in real space language. Negative XCRs imply that exchange-correlation overcomes de-

formation, signalling the importance of electron delocalisation overcoming Pauli repulsion. We

observe, once and again, that these simple XB models cannot be understood fully in terms of

electrostatics.
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4.5. Other topological descriptors: The Laplacian of ρ and the electrostatic potential

Table 4: Electrostatic potential on the 0.05 a.u. isosurface of ρ (left) and Laplacian of the electron density on a

molecular plane (right) for Cl–Br · · ·Cl, [Cl–Br–Cl]– , [Br– I · · ·Br– ] and [Br– I–Br]– . A red to blue palette

has been used ranging from -0.22 to +0.22 a.u. for the ESP and from 1.00 to +1.00 a.u. in the case of the

Laplacian.

System ESP on ρ = 0.05 ∇2ρ on a plane

Cl–Br · · ·Cl–

[Cl–Br–Cl]–

Br–I · · ·Br–

[Br–I–Br]–

In order to complete the above quantitative energetic analysis, we now turn to the usual

qualitative insights that can be obtained from inspecting both the electrostatic potential (ESP)

and the Laplacian of the electron density, ∇2ρ(r). The complete set of representations can

be found inn the SI (Tables S5-S9). Here, we show two representative X1 –Y2 –X3
– systems:

Cl–Br–Cl– and Br– I–Br– . Table 4 presents the ESP mapped onto a ρ(r) = 0.05 a.u. iso-

surface, along with 2D Laplacian maps using solid lines for positive values and dashed lines for

negative ones.

σ-holes are clearly present as blueish ESP regions along the bonding direction. A very clear

evolution from the more polarising Cl atom to the more polarisable I moiety is clearly seen.

The Laplacian counts the correct number of shells only for chlorine, but can be clearly used

to unveil the σ-holes in all cases: unprotected, depletion regions, together with torus-like lone

pair accumulation regions, are notorious along the molecular axis in the central atoms. Tables
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S5-S9 show that the iodine lone pairs can even be discerned as the red, less positive regions

of ∇2ρ when of the anions and the diatomic species are depicted, disclose the characteristic

clear directionality in the σ-holes. For instance, in the case of the compact chlorine atoms, a

flattening of the external negative Laplacian regions is visible when close to another polarising

entity. Conversely, when chlorine occupies the external positions (i.e., X=Cl) the outermost

concentration distorts towards the central atom (e.g., Cl–Br · · ·Cl– ).

We will not proceed further. Using the ESP and ∇2ρ(r) (or the ELF) has become main-

stream and needs no more consideration. Both can be used to sense and detect σ-holes. However

we should not forget that the information they provide is qualitative in nature. For example, (i)

the most positive ESP is found for I atoms, independently of whether they occupy the central

position or not, and (ii) the Laplacian detects different shells for different atoms, so that quan-

tification becomes very difficult with it. Moreover, we insist that standard ESP representations

do not account for the whole charge distribution and that their bare use might be misleading.

As an example, the most intense σ-holes as sensed from the ESP are actually those of iodine

that give rise to the lowest interatomic Eclass values (see Table 1). However, when I occupies the

edge position (Table S7) and thus it becomes the attacking halide for complexes X1 –Y2 · · ·X3,

its electrostatic energies with central and more electronegative Cl and Br atoms are highly

destabilising. This is another example of the incomplete picture that the ESP provides.
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5. Conclusions

We examine in this work a minimal model of halogen bond (XB) interactions in an attempt

to understand their nature beyond the σ-holes electrostatic picture under an orbital-invariant

perspective. To that end, we have investigated a set of negatively charged halogen triatomic

species built with different combinations of Cl, Br and I. Given the controversial character of

halogen bonding with F containing species, fluorine has not been considered. For all possible

Cl, Br, I combinations, two linear geometries have been selected: the trihalide optimised one

together with another that mimics an XB. The latter is obtained by constraining the interatomic

distance of two of the atoms at their experimental gas-phase value while a halide anion attacks

the constrained diatomic. We have used the interacting quantum atoms (IQA) approach to

dissect the energetics of the systems, complementing it with other traditional descriptors like

electrostatic potential (ESP) or electron density Laplacian maps.

Both the ESP and the Laplacian analyses reveal the traditional signature of σ-holes: positive

regions of the ESP when mapped onto an isodensity or van der Waals surface, and charge

depletion areas of the Laplacian field. A neat distinction between different atoms also emerges.

Chlorine preserves its atomic shell structure to a large extent, while bromine and iodine are

largely deformed according to their more polarisable nature. Similarly, the more polarisant-

polarisable difference in the atomic pair that interacts, the clearer the σ-hole develops.

The QTAIM’s charges assigned to each atom within the anionic species unveil a profound

density polarisation and concomitant charge transfer, that in light of a Y2 –X3 distance scan

takes place gradually with participation of just the charge donor and its farthermost partner,

while the central atom remains a spectator. These findings support the assumption that these

systems present 3c-4e bonds, which spread the anionic charge over the X1X2 terminal atoms,

that present anomalously large delocalisation indexes.

The electrostatic σ-hole model is shown to be useful as a qualitative tool but far from

the real energetics of the complexes. Indeed, the presence of such a positive region in the

ESP does not necessarily imply global favourable electrostatics between the interacting species,

that account for the whole charge distribution, and such a simple interpretation may become

misleading. Thus, we have shown that in all but those cases where the XB involves a very

polarisant-polarisable interacting pair the full electrostatic interaction between the halide and

the remaining diatomic is destabilising. This contrasts other energy decomposition analyses
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characterised by interpenetrating densities, which tend to provide stabilising electrostatic con-

tributions due to the non-physical overlap of the densities of the two fragments.

Taking into account the non-negligible deformation energies suffered by both entities, it is

the covalent (exchange-correlation) interaction that justifies the overall stability of the com-

plexes. This is in line with what prior studies had suggested in other systems of interest. By

reducing the complexity of the systems here studied to an absolute minimum, we believe to

have shown convincingly that electrostatics alone is not enough to understand the stability of

halogen bonded systems. Together with the evolution of charge transfer, the essential role of

electron delocalisation, i.e., of orbital interactions, is thus highlighted.
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[17] M. Yáñez, P. Sanz, O. Mó, I. Alkorta, J. Elguero, Journal of Chemical Theory and Com-

putation 2009, 5, 2763–2771.

[18] J. S. Murray, P. Lane, P. Politzer, Journal of Molecular Modeling 2008, 15, 723–729.

[19] J. S. Murray, P. Lane, P. Politzer, International Journal of Quantum Chemistry 2007, 107,

2286–2292.

[20] J. S. Murray, P. Lane, T. Clark, P. Politzer, Journal of Molecular Modeling 2007, 13,

1033–1038.

[21] J. Y. Lim, P. D. Beer, Chem 2018, 4, 731–783.
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Electron-pair bonding in real space. Is the charge-shift
family supported?

J. Luis Casals-Sainz, F. Jiménez-Grávalos, E. Francisco, A. Martín Pendás∗†

Charge-shift bonding (CSB) has been introduced as a distinct third family of electron-pair links that
adds to the covalent and ionic tradition. However, the full battery of orbital invariant tools provided
by modern real space artillery shows that it is difficult to find CSB signatures outside the original
valence-bond framework in which CSB was developed. The CSB concept should therefore be
further investigated.

More than a hundred years after Lewis seminal paper,1 the
electron-pair bond may still be considered the most central con-
cept in Chemistry. After its inception, its initial theoretical devel-
opment by Heitler-London2 and its incorporation to mainstream
computational chemistry,3 the Lewis pair lies at the core of chem-
ical thinking. Through Pauling’s4 tour de force, the shared elec-
tron pair gave rise to the two major covalent (or polar-covalent)
and ionic bonding families. These emerge as the degree of atomic
sharing of the pair deviates from equality, and have carved the
chemists’ way of thinking. Subjected to reasonable generaliza-
tions, the covalent-ionic dichotomy has resisted exceedingly well
the test of time.

Fundamental as they are, neither the Lewis pair nor the
electron-pair bonding families are linked to quantum mechanical
observables, and their significance rests on how a provided quan-
tum mechanical wavefunction Ψ is interpreted. Usually, this relies
on what theoretical framework has been used to generate Ψ, and
although as the level of theory is improved all frameworks con-
verge, interpretations do not necessarily do so, vanishing into thin
air.5 To understand how an electron pair is shared between two
atoms, we have to deal with at least (i) the indistinguishability
of electrons and electron pairs and (ii) the absence of isolatable
atoms in the quantum mechanical description of two interacting
systems. How this is done depends on the theoretical paradigm
used, e.g. the valence bond (VB) or the molecular orbital (MO)
viewpoints.

The existence of two main pair-electron bonding families has
been challenged by the addition of a new charge-shift bonding
(CSB) category. This is introduced in non-orthogonal VB (NOVB)

Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo. Spain.
E-mail: ampendas@uniovi.es
† Electronic Supplementary Information (ESI) available: basic real space chemical
bonding, the two-state model, high level resuls, computational details and raw data.
See DOI: 10.1039/b000000x/

as a distinct bonding class in which the bonding energy does come
neither from the so-called spin-pairing of covalent bonds nor from
the electrostatic stabilization of ionic links, but from the large res-
onance energy (RE) between the VB covalent and ionic structures.
Although the paradigm of a CSB system is the F2 molecule, whose
VB covalent structure is unbound in marked contrast to a normal
covalent bond like the one in H2, many other cases have been
found over the years, and a number of informative presentations
can be found in the literature.6

Since according to Carl Sagan’s standard, extraordinary claims
require extraordinary evidence, the proposers of the CSB category
have tried to offer that evidence by linking CSB to MO theory;
to real space descriptors of chemical bonding like density differ-
ences, the laplacian of the electron density or the electron local-
ization function (ELF); and to experimental behavior. Charge-
shift bonds were soon associated to systems affected by the lone
pair bond weakening effect (LPBWE) described by Sanderson,7

so efforts have also been put on rationalizing their physical ori-
gin.8 This was found to lie in very large kinetic energies coming
from two-center three-electron Pauli repulsions between bonding
electrons and compact lone pairs.

A decisive test of any new concept should be its independency
from the theory used to discover or define it. In chemical bond-
ing a framework invariant paradigm is available. It is based on
(i) partitioning the space into 3D regions associated to atoms and
(ii) on computing quantum mechanical observables within these
regions. Although several partitioning strategies exist, the one
provided by the quantum theory of atoms in molecules (QTAIM)
is widely used.9 These techniques need only a proper wavefunc-
tion, are orbital invariant by construction, and provide indices
and energetic quantities which are directly related to Lewis’ con-
cepts.

In this Communication we show that charge-shift bonds display
all the characteristics of a standard covalent interaction at larger
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than expected distances. The latter are forced by the LPBWE, but
the nature of the interaction has no specific peculiarity. This is
found by critically examining the CSB family in the light of real
space reasoning.

Electron-pair bonding in real space
Real space theories of the chemical bond have acquired a con-
siderable level of maturity and notoriety.10 Once an atomic par-
tition of space is defined appropriately (through the QTAIM, for
instance), one has access to both electron counting (through elec-
tron distribution functions, EDFs11) and energetic (through the
interacting quantum atoms scheme, IQA12) descriptors. EDFs,
that provide the probability of finding a given distribution of the
N electrons of a system into atoms, behave as Pauling’s resonance
structures. Their knowledge gives also the average atomic elec-
tron population (thus the atomic net charge, QA and the ionic
bond order,13 ιAB = −QAQB) and all their further statistical mo-
ments. The interatomic covariance, or an equivalent form known
as the delocalization index δ AB, measures the number of shared
electron pairs between atoms and provides the covalent bond or-
der.14 Similarly, the binding energy of a molecule becomes a sum
of atomic deformation energies, EA

de f , and interatomic interac-
tions, EAB

int . The former basically correspond to traditional pro-
motion costs, and the latter determine in situ bond energies, sep-
arated into covalent (cov) and electrostatic (ion) terms. For each
atomic pair, the covalent energy is proportional to the number
of shared pairs, while the electrostatic one is dominated by the
product of the atomic charges. Ionicity and covalency are thus
uniquely and invariantly defined. A brief introduction to this for-
malism is found in the supplementay information (ESI).

For two-center (A,B) electron-pair bonds, only three electron
distributions are possible. Two zwitterionic, with the two elec-
trons residing on either of the atoms —(2,0) and (0,2)—, and one
similar to the VB-covalent structure, (1,1). Denoting the proba-
bility that one electron lies in A as p and using a −1 ≤ f ≤ 1
correlation factor between the two electrons, all 2c,2e links can
be mapped. It is easy to show (see the ESI) that ι + δ = 1
when f = 0, so that ionicity excludes covalency and vice versa
for electron-pair links (not in more complex situations15), and
that δ = 4p(1− p)(1− f ), this meaning also that covalency comes
from electron delocalization and that it implies a non-vanishing
population of the real space ionic resonance structures. A full
classification for correlated situations is also known.16

Charge-shift bonding
CSB in NOVB appears when much (or all) of the binding energy
of a system comes from the resonance energy between the VB-
covalent, Ψcov, and the VB-ionic, Ψion, structures, i.e. when nei-
ther 〈Ψcov|Ĥ|Ψcov〉 nor 〈Ψion|Ĥ|Ψion〉 is appropriately bound and
it is 〈Ψcov|Ĥ|Ψion〉 that determines the bond energetics. Being
consubstantial to Quantum Mechanics via the superposition prin-
ciple, resonance is representation dependent: a change of basis
changes its value. Even more, two non-orthogonal states cou-
pled by a large resonance integral may become uncoupled after
orthogonalization, and vice versa. The resonance energy condition
is therefore not invariant, and cannot serve our purpose to uncover

invariant features of CSB. Arguments based on two-configuration
self-consistent field calculations,17 that have been offered as a
proof that CSB also appears under MO theory, simply mimic the
NOVB wavefunction, and do not change the above conclusion.
In the form of a two-electron two-orbital configuration mixing
(CI(2,2)), this oversimplified description captures the essential el-
ements of CSB, allowing us to examine it also under a real space
perspective. To that end, we construct a model homoatomic two-
electron wavefunction with strictly localized functions a and b
with overlap 〈a|b〉 = S, so that the g and u orthogonal MOs are
written as g,u = Ng,u(a± b). The spatial parts of the Heitler-
London VB singlet covalent and ionic functions are the textbook
Ψcov ≡ (ab+ba) and Ψion ≡ (aa+bb), so that the NOVB function
is Ψ = cΨcov + iΨion, while its complete active space (CAS) ana-
logue becomes Ψ = λ |gḡ|+µ|uū|, with λ 2 +µ2 = 1. A one-to-one
map (c, i)↔ (λ ,µ) exists. Full details are found in the ESI. The
Hartree-Fock mean-field solution corresponds to λ = 1. In H2,
Ψcov provides a rather accurate binding curve, and mixing it with
Ψion introduces a slight resonance stabilization with a final small
i contribution. In F2 none of Ψcov,Ψion or ΨHF are bound, but the
CAS(2,2) Ψ is. Such a calculation within the 2pz manifold with a
6-31G* basis provides Re = 1.48 Å and De ≈ 16 kcal mol−1, to be
compared with the experimental 1.40 Å and 39 kcal mol−1 values,
respectively. The essential features of CSB are thus captured by
this naïve model. If orbitals are not allowed to relax, then the Ψcov

and Ψion functions correspond to a (λc,−µc), (λc,µc) pair, with
λc,µc > 0, respectively. ΨHF lies at µ = 0, so examining the −λc ≤
µ ≤ λc window provides a continuous map that visits all the four
Ψcov,ΨCI,ΨHF, and Ψion states. We use CAS orbitals in the follow-
ing. It is relevant (ESI) that the first and second order densities of
the 2e subsystem have very simple expressions in the λ ,µ space:
ρ(rrr;rrr′) = 2λ 2g(rrr)g(rrr′)+ 2µ2u(rrr)u(rrr′), so any one-electron opera-
tor property varies linearly with λ 2; ρ2(rrr1,rrr2)= 2λ 2g2(rrr1)g2(rrr2)+

2µ2u2(rrr1)u2(rrr2)+2λ µ g(rrr1)u(rrr1)g(rrr2)u(rrr2). The latter expression
shows that the gg− uu resonance lies only in the two-electron
2λ µ g(rrr1)u(rrr1)g(rrr2)u(rrr2) term if orbitals are not relaxed. This
points to electron-electron repulsion, and not to the large kinetic
energy of the covalent term (as usually admitted in the CSB liter-
ature) as the driving force for CSB.

Plenty of real space signatures of CSB have been reported so
far.18 For instance, negative deformation electron densities be-
tween the nuclei, indicative of density retraction in the bonding
region. However, as recognized,18 ∆ρ is reference dependent,
and a change from spherically-averaged to valence-prepared
atomic references may change the sign of ∆ρ, which is not invari-
ant. The sign of the laplacian of the density at the QTAIM bond
critical point (bcp) has also been advocated as a CSB feature. A
homonuclear covalent system usually displays ∇2ρ(rrrbcp) < 0 val-
ues, but these become positive in F2 and many other CSB cases.
Recall, however, that for a simple ρ(r) = Ne−ζ r exponential de-
cay ∇2ρ(r) = Ne−ζ r(ζ 2−2ζ/r), that turns positive after a critical
distance. For instance, when stretching a normal H2 molecule, its
laplacian becomes positive at the bcp at about RHH = 3.2 au, so
that a positive laplacian just indicates a too long distance. More-
over, since in a homodiatomic u(rrrbcp) = 0, it can be shown (ESI)
that ∇2ρ(rrrbcp) is positive if µ = 1, so a large g,u mixing makes
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Table 1 6-31G* data for F2 with CAS(2,2) orbitals at Re = 1.49 Å. gg
and uu refer to MO determinants built from fixed CAS orbitals. The CAS
contributions have been separated into those of the 2e active system and
those of the remaining 16e electrons. The latter are also classified into π
and σ symmetries. All data in au obtained at the bcp.

Ψ ρbcp ∇2ρ ELF
gg 0.22 0.46 0.57

CAS 0.21 0.66 0.43
uu 0.06 2.68 0.02

CAS ρbcp ∇2ρ
18e 0.21 0.66
16e 0.06 0.90
2e 0.15 -0.23
π 0.00 0.42
σ 0.06 0.48

the laplacian tend to a positive value necessarily, whatever the
distance. Similarly, g,u mixing decreases ρ(rrrbcp) from g2(rrrbcp) to
0 as λ goes from one to zero (ESI). Since all these properties de-
pend on the one-matrix, and we have just shown that resonance is
a two-electron phenomenon in an orthogonal framework, neither
the behavior of the density nor of the laplacian can be related to
covalent-ionic resonance in CSB.

The results of this model can be tested on real calculations.
Table 1 shows how scalar fields at the bcp behave in F2. Interest-
ingly, ρ is dominated by the 2e active subsystem, but ∇2ρ is not.
Surprinsingly, ∇2ρ of the 2e subsystem is negative, like in H2, and
it is the effect of the non-bonding electrons that makes it overall
positive. A similar criticism can be cast on arguments based on
the ELF function, which is commonly obtained from the 1-matrix.
CSB has been related to small ELF bonding domains with low
electron count and large population variances (or fluctuations).
However, the standard ELF function is difficult to generalize out-
side the single-determinant (SD) framework19 (needed to deal
with CSB), shedding doubts on its meaning. Moreover, variances
obtained from SD expressions are in gross error when applied to
correlated (or DFT) descriptions. Sometimes, even the ELF disy-
naptic bonding domain is absent in high accuracy wavefunctions
(like in coupled-cluster calculations of F2

18) and the variance ar-
gument can simply not be applied. All this is compatible with
an old proposition that would consider F2 and other systems in
a proto-bonding situation,20 but is hardly related with covalent-
ionic resonance.

Turning to cohesion, CSB has been linked to the kinetic en-
ergy (T ), in line with Kutzelnigg and Ruedenberg classical argu-
ments,21 although the latter have been criticized for they ignore
other equally important energy components in favor of T .22 Ac-
cording to this view, in standard covalent bonding the virial theo-
rem is restored as a bond is being formed through an increase in
T driven by orbital contraction. When lone pairs give rise to large
T ’s due to 2c-3e repulsions, a new restoration mechanism sets in
and heavy mixing with the ionic configurations, which largely de-
crease T , serve this purpose. As a result, large fluctuations of the
pair density are thought to appear.18 However, in a fixed orbital
framework which allows comparison across VB or MO paradigms,
T , a one-electron property, changes linearly (with λ 2) between its
gg (lower) and uu (higher) limits. Were it not for the Vee electron
repulsion, there would be no gg,uu mixing at all. Moreover, T
in the covalent and ionic mixtures (ESI) are identical with fixed
orbitals. Table 2 shows actual data. For fixed orbitals, the HF
determinant always displays the smallest T , but its density is not

Table 2 Total energy components for several 6-31G* wavefunction of F2
with fixed CAS(2,2) orbitals at Re = 1.49 Å. All data in au (198 and 533
au have been added to E and Vne respectively, and 198, 108, and 20 au
subtracted from T , Vee, and V ca

ee , respectively). Energy at the dissociation
limit E = −198.724 au. λcov ≈ 0.83 estimated from orbital overlaps (ESI).
V a

ee and V ca
ee are the interelectron repulsion among the active electrons

and among the frozen core and the active electrons, respectively.

Ψ E T Vne Vee V ca
ee V a

ee
gg -0.656 -0.034 -0.373 0.025 0.264 0.660

CAS -0.751 0.290 -0.811 0.044 0.444 0.499
cov -0.641 1.229 -2.078 0.482 0.967 0.414
ion -0.075 1.229 -2.078 1.048 2.001 0.980
uu 0.173 3.475 -5.110 2.083 2.220 0.762

Table 3 Relevant IQA data in 6-31G* for different two-state wavefunc-
tions of H2 and F2. λcov ≈ 0.982 in dihydrogen. All data in au and all
orbitals and distances fixed to those in the CAS.

H2 EA
de f T A V AA

ee EAB
int EAB

cov V AB
ee δ AB

cov 0.005 0.601 0.136 -0.153 -0.194 0.321 0.715
CAS 0.013 0.578 0.165 -0.189 -0.222 0.296 0.833
HF 0.043 0.567 0.198 -0.230 -0.262 0.269 1.000
ion 0.132 0.601 0.263 -0.280 -0.321 0.195 1.284
F2 EA

de f T A V AA
ee EAB

int EAB
cov V AB

ee δ AB

cov 0.092 99.614 40.435 -0.084 -0.122 27.611 0.397
CAS 0.077 99.145 40.237 -0.164 -0.199 27.569 0.713
HF 0.173 98.983 40.270 -0.263 -0.297 27.484 1.206
ion 0.526 99.614 40.870 -0.387 -0.425 27.381 2.040

compact enough and the total one-electron energy (T +Vne) is
more stabilizing for the uu state than for the gg one (contrarily to
what happens in H2, see the ESI). From the VB point of view, the
covalent structure has too large T , and the system responds by c, i
mixing so that both T and the electron repulsion decrease.

A clue about the effect of c, i or λ ,µ mixing is found on sep-
arating Vee into core-core (c), core-active (ca) and active-active
(a) pieces. The former is constant, the latter is smallest in the
Ψcov calculation (as in H2 with no lone-pairs). It is thus the ca
repulsion that dominates the global Vee behavior, being too large
in the VB covalent structure. The absence of lone pairs leads to no
V ca

ee , to a one-electron energy decreasing form uu to gg, and to small
c, i mixing that decreases Vee of the active orbitals. The presence of
many lone pairs leads to the contrary behavior: one-electron energy
decreasing towards uu, dominating ca repulsion, and large c, i mix-
ing that tries to decrease its impact. As shown in the ESI, the first
behavior is found from H2 up to N2, the second in O2 and F2.

Is then CSB a distinct family of pair-electron bonding? Real
space analysis clarifies this by answering the following questions:
Is covalency changed in any substantial way in CSB? Is CSB char-
acterized by a larger than usual fluctuation of the electron pair?
IQA data for the model 6-31G* H2 and F2 systems are found in
Table 3. Notice than in homodiatomics, all real space partitions
coincide with that of the QTAIM. As seen, the covalent interac-
tion in both CAS models as well as their delocalization indices
are quite similar. In H2, as expected, atomic deformations grow
from the covalent to the CAS to the ionic solutions as we increase
the contribution of the deformed hydride-like terms. The optimal
CAS mixing is achieved close to Ψcov: the slight increase in the
CAS Ede f is compensated through Eint via Ecov. In F2, Ede f (Ψcov)

is almost 20 times larger than in H2, with a rather smaller Eint
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(due to a larger distance and a more compact electron distribu-
tion). Mixing increases the interaction, as in H2, but decreases the
deformation. Going further, this is clearly due to a considerable
decrease in the intra-atomic electron repulsion, which is minimum
in the CAS function. As shown in the ESI, the larger than expected
distance is a direct effect of this intra-atomic effect, which grows
very quickly on approaching the two atoms. Aside from this, cova-
lency displays the standard behavior overall. Invariant real space
arguments uncover intra-atomic electron repulsion as the driving
force behind CSB anomalies. These are carried over with the atom,
in agreement with Sanderson’s LPBWE insights. As fluctuations are
regarded, the EDF shows only one delocalized electron pair in
F2, so only the (9,9) and (10,8) ≡ (8,10) structures have non-
negligible probabilities. In the CAS solution of H2, p(1,1) = 0.583,
p(2,0) = 0.208. At the CAS solution of F2, no anomalous fluctua-
tion is found, with p(9,9) = 0.684 and p(10,8) = 0.151, the latter
being even smaller than p(2,0) in H2, in line with the similar
structure VB weights for H2 and F2 (ESI). This is compatible with
a proto-bond with hindered delocalization. At complete variance
with CSB arguments, the electron-pair fluctuation is smaller in F2
than in a purportedly normal covalent bond.

All these model results, which we think provide useful insights,
are fully supported by heat-bath multiconfigurational correlated
calculations that match well the experimental bond distances and
dissociation energies, both in F2 and in a number of representa-
tive CSB systems. Details are found in the ESI. In F2, for instance,
a (23,14) AVAS CASSCF provides a much compacted Re = 1.41
Å, but a fluorine deformation energy of 0.078 au very close to
that in the model, a stronger covalent energy of −0.259 au, and
a considerably smaller electrostatic repulsion that justifies the in-
creased binding. In these higher levels of theory the intra-atomic
repulsion is lower and permits a decrease in Re together with a
more extensive delocalization. δ increases to 0.886, although its
main σ eigen-component is still low (0.613), and p(9,9) = 0.609,
p(10,8)= 0.188 approach the values of a correlated 2c-2e covalent
bond with f = 0.21. Equivalent insights are obtained after exam-
ining the Z = 6,7,8 second period diatomics, N2H4, H2O2, heavier
representative diatomics like S2, Cl2, Br2, and some CSB transi-
tion metal systems like Cu2, Ag2, Au2 or Hg 2+

2 (ESI). Finally,
polar CSBs, like those in H-F, C-F, or Si-F bonds have also been
analyzed. In CH3F, for instance, the CH3−F −0.393 au ionic bond
energy is considerably larger than the −0.261 au covalent one,
with δ = 0.896. Analysis of the CH3−F EDF gives p(nCH3

= 8,nF =

10) = 0.586, p(9,9) = 0.300, p(10,8) = 0.076 which describes a po-
lar interaction with small f = 0.22, a value very close to that in
F2. In SiH3F, the ionic energy escalates to −0.715 au, covalency
decreases with δ Si,F = 0.591, and f ≈ 0.60. No sign of larger than
normal ( f < 0) fluctuations is found. Much on the contrary, in
this case the link has clear proto-bonding ( f � 0) signatures. In
propellane, the deformation energy of the bridging carbons (b),
Eb

de f , is even smaller than that for non-bridge C’s, Enb
de f , and a

bridge proto-bond is found with Eb
cov =−0.109 au, δ b = 0.410.

Summarizing, although CSB stands out clearly in NOVB theory,
it is difficult to find specific invariant signatures of this purported
third electron-pair bond family, which in our opinion is still better

described in terms of a classical Sanderson’s intra-atomic LPBWE
leading to proto-bonding.
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Tiné, M. R. J Chem Inf Model 2006, 46, 2030–2042.

(88) Kang, H.; Choi, H.; Park, H. J Chem Inf Model 2007, 47, 509–514.
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