

AUTHOR

María Flórez Miranda

AUTOR

José Manuel Redondo López

DIRECTOR

José Manuel Redondo López

DIRECTOR

José Manuel Redondo López

DEVELOPMENT OF BASE

MACHINES FOR EXISTING

INFRASTRUCTURES WITH

ENHANCED SAFETY USING

INTERNATIONAL STANDARDS

July 2022

BACHELOR OF SOFTWARE ENGINEERING

BACHELOR OF SOFTWARE ENGINEERING

END OF DEGREE PROJECT

Este documento ha sido creado basándose en la plantilla elaborada por JOSÉ MANUEL REDONDO

LÓPEZ. [1] [2]

5

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Acknowledgements

Quiero agradecer a mi familia y a mis amigos por estar siempre ahí animándome por complicadas

que se vuelvan las cosas; a mis compañeros de clase, que hicieron que estos años de Universidad

fueran los mejores hasta la fecha; y a mi tutor, José Manuel Redondo, por depositar tantísima

confianza en mí y en mi trabajo y por su inestimable ayuda en todo momento del proyecto

6

Abstract

Although the need of applying good cybersecurity practices in daily life has become an extremely

important issue in the recent years, it is not uncommon to find that organizations focus their efforts

on securing certain areas of their infrastructure to the detriment of others, generating security holes

in the latter. A clear example are networks, which tend to be strongly protected, and rightly so,

against external and internal threats; however, the machines connected to these networks usually

receive few or no improvements at all to their security configuration at its most basic level, since it is

a tedious and mainly manual process, which requires expert knowledge and whose result depends

on the sources followed to carry out this securitization.

This project has sought to attack this issue and offer a solution that allows increasing the base security

of Linux and Windows machines while requiring the least possible manual intervention. To this end,

recommendations from national and international standards, validated and widely used in the

Cybersecurity field, have been followed. The ultimate goal is to deploy already secured base

machines in an automated way, with the possibility of integrating them in existing infrastructures, as

well as to provide organizations a way to increase the security of their machines by means of an

unattended process, all while ensuring a certain level of quality provided by the followed standards.

Despite having been born out of necessity and not being commissioned per se, the main stakeholders

of this project, the School of Computing Engineering and the University of Oviedo, have seriously

considered making use of what has been developed to increase the security of their computer

equipment in future academic years. Likewise, the project will be used as support material for the

“Administration of Web Servers” subject of the Master’s Degree in Web Engineering, starting next

year.

Resumen

Pese a que la necesidad de aplicar buenas prácticas de ciberseguridad en la vida diaria se ha

convertido en un asunto de extrema importancia en los últimos años, no es extraño encontrar que

las organizaciones centran sus esfuerzos en la securización de ciertas áreas de su infraestructura en

detrimento de otras, generando agujeros de seguridad en estas últimas. Un claro ejemplo son las

redes, que tienden a protegerse fuertemente, y con razón, ante amenazas externas e internas; sin

embargo, las propias máquinas conectadas a esas redes suelen recibir pocas o nulas mejoras de su

configuración de seguridad en su nivel más básico, ya que es un proceso tedioso y principalmente

manual, que requiere de conocimiento experto y cuyo resultado depende de las fuentes seguidas

para realizar dicha securización.

Este proyecto ha buscado atacar este problema y ofrecer una solución que permita incrementar la

seguridad base de máquinas Linux y Windows requiriendo para ello la menor intervención manual

7

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

posible. Para ello, se han seguido las recomendaciones de estándares nacionales e internacionales,

validados y de amplio recorrido en el campo de la ciberseguridad. El objetivo final es el de desplegar

de manera automatizada máquinas base ya securizadas, con la posibilidad de integrarlas en

infraestructuras existentes, así como otorgar a las organizaciones una forma de incrementar la

seguridad de sus máquinas en un proceso desatendido, todo ello asegurando el nivel de calidad

proporcionado por los estándares seguidos.

A pesar de haber nacido de una necesidad y no de un encargo per se, los principales interesados en

este proyecto, la Escuela de Ingeniería Informática de Oviedo y la Universidad de Oviedo, han

considerado seriamente hacer uso de lo desarrollado para incrementar la seguridad de sus equipos

informáticos en futuros cursos académicos. Asimismo, el proyecto será usado como material de

apoyo para la docencia de la asignatura Administración de Servidores Web del Máster en Ingeniería

Web a partir del próximo año.

8

Keywords

Cybersecurity, automation, hardening, unattended installation, Infrastructure as Code

Palabras clave

Ciberseguridad, automatización, securización, instalación desatendida, Infraestructura como Código

Table of Contents

Chapter 1: Information System Planning .. 15

1.1 PSI 1: Information System Planning Kick-Off .. 16

1.1.1 PSI 1.1: Analysis of the Necessity of the PSI .. 16

1.1.2 PSI 1.2: Identification of the objectives and scope of the PSI 17

1.1.3 PSI 1.3: Delegation of Responsibilities ... 18

1.2 PSI 2: Definition and Organization of the PSI .. 18

1.2.1 PSI 2.1: Specification of the Scope and Reach of the PSI... 18

1.2.2 PSI 2.2: PSI Organization .. 21

1.3 PSI 3: Study of relevant information ... 23

1.3.1 PSI 3.1: Study of the current situation ... 23

1.3.2 PSI 3.2: Theoretical Concepts .. 26

Chapter 2: Technological Architecture Definition .. 31

2.1 PSI 7.1: Identification of Technological Infrastructure Needs .. 32

2.1.1 Alternatives for automation technologies to provision machines 32

2.2 PSI 7.2: Technological Architecture Selection ... 36

2.2.1 Selection of provisioning technology ... 36

2.2.2 Machine provisioning using Ansible and SSH .. 36

Chapter 3: System Feasibility Study .. 39

3.1 EVS 4, 5 y 6: Study and Valuation of the Solution Alternatives and Selection of the Final

Alternative .. 40

3.1.1 Alternatives for security standards on which to base the hardening 40

3.1.2 Alternatives for Windows Operating System installed .. 42

3.1.3 Alternatives for automating infrastructure deployment ... 44

3.1.4 Alternatives for auditing tools ... 47

3.2 Study of Additional Tools .. 50

3.2.1 Tools for automated installation and generation of Vagrant boxes: Packer 50

Chapter 4: Planning and Management of the End of Degree Project ... 51

4.1 Project Planning .. 52

4.1.1 Identification of Stakeholders .. 52

10

4.1.2 Initial Planning. WBS .. 52

4.1.3 Risks ... 53

4.1.4 Initial Budget .. 56

4.2 Project Closure .. 57

4.2.1 Final Planning ... 57

4.2.2 Final Budget ... 58

4.2.3 Learnt Lessons .. 58

Chapter 5: Analysis of the Information System ... 59

5.1 ASI 1: System Definition .. 60

5.1.1 Determination of the System’s Scope ... 60

5.2 Study of Automated Machine Creation and Unattended Installations 61

5.3 Analysis of the Available Benchmarks and Security Good Practices 62

5.3.1 CIS Microsoft Windows 10 Enterprise Benchmark, v1.12.0 .. 62

5.3.2 CIS Ubuntu Linux 18.04 LTS Benchmark, v2.1.0 .. 67

5.3.3 General good security practices .. 69

5.4 Analysis of Hardening Script Sources .. 70

5.4.1 Cyber Ansible ... 70

5.5 Integration between Hardening Sources .. 71

5.6 ASI 2: Establishment of Requirements .. 71

5.6.1 Acquisition of the System’s Requirements .. 71

5.7 Specification of the Testing and Auditing Plan ... 74

5.7.1 Task monitoring ... 74

5.7.2 Auditing Plan .. 75

5.7.3 Tests to be manually performed .. 76

Chapter 6: Design of the Information System ... 79

6.1 Design of the Infrastructure Deployment Process .. 80

6.1.1 Steps ... 80

6.1.2 Hardening code to be deployed .. 82

6.2 DSI 5: Design of the Architecture of the System Modules .. 82

6.2.1 Deployment Diagrams ... 82

6.2.2 Package Diagrams .. 82

6.3 Technical Specification of the Testing and Auditing Plan ... 84

11

Chapter 7: Construction of the Information System .. 85

7.1 CSI 1: Preparation of the Generation and Construction Environment 86

7.1.1 Followed standards and regulations .. 86

7.1.2 Programming Languages.. 86

7.1.3 Tools and programs used for development and auditing ... 87

7.1.4 Operating Systems ... 88

7.1.5 Libraries used and consulted for analysis and development .. 89

7.1.6 Official tutorials and learning materials .. 90

7.2 Infrastructure Construction .. 91

7.3 Implemented Hardening Tasks ... 91

7.3.1 Detail of the hardening tasks ... 91

7.3.2 Results of the execution of the hardening tasks ... 92

7.4 Execution of System Audits ... 93

7.4.1 Windows 10 Education Virtual Machine audits ... 94

7.4.2 Ubuntu Linux Virtual Machine audits .. 103

7.4.3 Windows 10 real machines .. 105

7.4.4 Results’ summary ... 111

7.4.5 Analysis of the results .. 113

7.5 Execution of Additional Tests .. 113

7.6 CSI 6: Elaboración de los Manuales de Usuario .. 115

7.6.1 Installation and Execution Manual .. 115

7.6.2 Programmer’s Manual ... 121

Chapter 8: Conclusions and Extensions ... 125

8.1 Conclusions.. 126

8.2 Extensions ... 127

Annexes ... 129

Risk Management Planning .. 130

Methodology .. 130

Risk categories .. 130

Probability and Impact Matrix .. 130

Budget Planning ... 131

Personnel .. 131

12

Licenses ... 132

Material Resources ... 132

Indirect costs .. 132

Initial Budget Summary .. 133

Final Budget Summary .. 133

References and Bibliography ... 134

Delivered Contents ... 137

Contents.. 137

Index of Figures

FIGURE 1. SPECIFIC FEATURES OF THE SYSTEM WHERE THE DEVELOPMENT WILL TAKE PLACE 23

FIGURE 2. RESULTS OF THE CLARA ANALYSIS FOR THE W10 PRO 2021-2022 MACHINE ... 25

FIGURE 3. RESULTS OF THE CLARA ANALYSIS FOR THE W10 PRO 2022-2023 MACHINE ... 25

FIGURE 4. SUMMARY OF THE FINAL RESULTS OF THE CIS-CAT LITE ANALYSIS FOR L1 AND L2 ENVIRONMENTS FOR THE

W10 PRO MACHINES (2021-2022 AND 2022-2023) .. 25

FIGURE 5. ANSIBLE'S BASIC INFRASTRUCTURE ... 33

FIGURE 6. PUPPET'S BASIC INFRASTRUCTURE .. 34

FIGURE 7. CHEF'S BASIC INFRASTRUCTURE .. 35

FIGURE 8. SSH CONNECTION SETUP FLOW... 37

FIGURE 9. GANTT DIAGRAM FOR THE INITIAL PLANNING .. 52

TABLE 2. LIST OF IDENTIFIED RISKS ... 56

FIGURE 10. GANTT DIAGRAM FOR THE FINAL PLANNING .. 58

FIGURE 11. SIMPLIFIED ARCHITECTURE TO BE DEPLOYED ... 82

FIGURE 12. PACKAGE DIAGRAM OF THE WHOLE DIRECTORY STRUCTURE (SIMPLIFIED) ... 83

FIGURE 13. PACKAGE DIAGRAM FOR THE PROVISIONERS' PACKAGES ... 84

FIGURE 14. W10 EDUCATION PRE-HARDENING AUDIT RESULTS WITH CLARA FOR A LOW CATEGORY SYSTEM............... 94

FIGURE 15. W10 EDUCATION PRE-HARDENING AUDIT RESULTS WITH CLARA FOR A MEDIUM CATEGORY SYSTEM 95

FIGURE 16. W10 EDUCATION PRE-HARDENING AUDIT RESULTS WITH CLARA FOR A HIGH CATEGORY SYSTEM 95

FIGURE 17. W10 EDUCATION PRE-HARDENING AUDIT RESULTS WITH CIS-CAT LITE FOR L1 PROFILE 96

FIGURE 18. W10 EDUCATION PRE-HARDENING AUDIT RESULTS WITH CIS-CAT LITE FOR L2 PROFILE 96

FIGURE 19. W10 EDUCATION POST-HARDENING (L1) AUDIT RESULTS WITH CLARA FOR A LOW CATEGORY SYSTEM 97

FIGURE 20. W10 EDUCATION POST-HARDENING (L1) AUDIT RESULTS WITH CLARA FOR A MEDIUM CATEGORY SYSTEM

 ... 98

FIGURE 21. W10 EDUCATION POST-HARDENING (L1) AUDIT RESULTS WITH CLARA FOR A HIGH CATEGORY SYSTEM 99

FIGURE 22. W10 EDUCATION POST-HARDENING (L1) AUDIT RESULTS WITH CIS-CAT LITE FOR L1 PROFILE 99

FIGURE 23. W10 EDUCATION POST-HARDENING (L1) AUDIT RESULTS WITH CIS-CAT LITE FOR L2 PROFILE 100

FIGURE 24. W10 EDUCATION POST-HARDENING (L1 + EXTRA L2) AUDIT RESULTS WITH CLARA FOR A LOW CATEGORY

SYSTEM .. 100

FIGURE 25. W10 EDUCATION POST-HARDENING (L1 + EXTRA L2) AUDIT RESULTS WITH CLARA FOR A MEDIUM

CATEGORY SYSTEM ... 101

FIGURE 26. W10 EDUCATION POST-HARDENING (L1 + EXTRA L2) AUDIT RESULTS WITH CLARA FOR A HIGH CATEGORY

SYSTEM .. 102

FIGURE 27. W10 EDUCATION POST-HARDENING (L1 + EXTRA L2) AUDIT RESULTS WITH CIS-CAT LITE FOR L1 PROFILE 102

FIGURE 28. W10 EDUCATION POST-HARDENING (L1 + EXTRA L2) AUDIT RESULTS WITH CIS-CAT LITE FOR L2 PROFILE 103

FIGURE 29. UBUNTU PRE-HARDENING MACHINE AUDIT SUMMARY WITH LYNIS ... 103

FIGURE 30. UBUNTU POST-HARDENING MACHINE AUDIT SUMMARY WITH LYNIS ... 104

FIGURE 31. W10 PRO (2021-2022 ACADEMIC YEAR IMAGE) AUDIT RESULTS WITH CLARA FOR A LOW CATEGORY SYSTEM

 ... 105

FIGURE 32. W10 PRO (2021-2022 ACADEMIC YEAR IMAGE) AUDIT RESULTS WITH CLARA FOR A MEDIUM CATEGORY

SYSTEM .. 106

FIGURE 33. W10 PRO (2021-2022 ACADEMIC YEAR IMAGE) AUDIT RESULTS WITH CLARA FOR A HIGH CATEGORY

SYSTEM .. 107

FIGURE 34. W10 PRO (2021-2022 ACADEMIC YEAR IMAGE) AUDIT RESULTS WITH CIS-CAT LITE FOR L1 PROFILE 107

FIGURE 35. W10 PRO (2021-2022 ACADEMIC YEAR IMAGE) AUDIT RESULTS WITH CIS-CAT LITE FOR L2 PROFILE 108

FIGURE 36. W10 PRO (2022-2023 ACADEMIC YEAR IMAGE) AUDIT RESULTS WITH CLARA FOR A LOW CATEGORY SYSTEM

 ... 108

14

FIGURE 37. W10 PRO (2022-2023 ACADEMIC YEAR IMAGE) AUDIT RESULTS WITH CLARA FOR A MEDIUM CATEGORY

SYSTEM .. 109

FIGURE 38. W10 PRO (2022-2023 ACADEMIC YEAR IMAGE) AUDIT RESULTS WITH CLARA FOR A HIGH CATEGORY

SYSTEM .. 110

FIGURE 39. W10 PRO (2022-2023 ACADEMIC YEAR IMAGE) AUDIT RESULTS WITH CIS-CAT LITE FOR L1 PROFILE 110

FIGURE 40. W10 PRO (2022-2023 ACADEMIC YEAR IMAGE) AUDIT RESULTS WITH CIS-CAT LITE FOR L2 PROFILE 111

FIGURE 41. VAGRANT'S DOWNLOADS PAGE .. 115

FIGURE 42. VIRTUALBOX DOWNLOADS PAGE .. 116

FIGURE 43. DETAIL OF THE FOLDERS FOR EACH OF THE WINDOWS CUSTOM BOXES ... 117

FIGURE 44. EXAMPLE OF A RUN FOR ADDING A CUSTOM BOX TO THE LOCAL CACHE OF BOXES 117

FIGURE 45. EXAMPLE OF THE WINDOWS MACHINE AND THE CONTROLLER BOOTING UP ... 119

FIGURE 46. STARTING THE ANSIBLE PROVISIONING .. 120

FIGURE 47. A FINISHED ANSIBLE RUN ... 120

FIGURE 48. EXAMPLE OF A PLAYBOOK WITH SEVERAL ROLES ... 121

FIGURE 49. EXAMPLE OF VARIABLES FOR PASSWORD SETTINGS... 122

FIGURE 50. RISK CATEGORIES ACCORDING TO PMBOK .. 130

FIGURE 51. PROBABILITY AND RISK MATRIX .. 131

Index of Tables

TABLE 1. WORKTEAMS AND USERS ASSOCIATED TO EACH TEAM ... 22

TABLE 3. SUMMARY OF THE INITIAL INTERNAL BUDGET ... 57

TABLE 4. SUMMARY OF THE FINAL INTERNAL BUDGET ... 58

TABLE 5. CIS MICROSOFT WINDOWS 10 ENTERPRISE BENCHMARK'S SECTIONS' SUMMARY ... 64

TABLE 6. CIS UBUNTU LINUX 18.04 LTS BENCHMARK SECTIONS' SUMMARY .. 67

TABLE 7. WINDOWS 10 (EDUCATION AND PRO) COMPLIANCE SCORES WITH CLARA ... 112

TABLE 8. WINDOWS 10 (EDUCATION AND PRO) COMPLIANCE SCORES WITH CIS-CAT LITE ... 112

TABLE 9. UBUNTU LINUX COMPLIANCE SCORES WITH LYNIS... 113

TABLE 10. PARAMETERS THAT CAN BE CONFIGURED FOR THE WINDOWS 10 MACHINE.. 123

TABLE 11. STRUCTURE OF THE CONTENTS UPLOADED .. 137

TABLE 12. PROJECT DIRECTORY STRUCTURE .. 137

CHAPTER 1: INFORMATION

SYSTEM PLANNING

P
L

A
N

N
IN

G
 P

H
A

S
E

16

José Manuel Redondo López Chapter 1: Information System Planning

1.1 PSI 1: INFORMATION SYSTEM PLANNING KICK-OFF

1.1.1 PSI 1.1: Analysis of the Necessity of the PSI

1.1.1.1 PSI 1.1.1 Project Justification

Windows and Linux machines are often installed and then left as they come, with minimal or no

additional security configurations and little control over what gets installed on them. This is not

totally users’ and administrators’ fault: by default, both operating systems come with poor protection

mechanisms, and hardening them usually takes time and effort, which not everyone and not every

organization is willing to spend on this task. It becomes an especially tedious process for machines

that are installed manually, and thus, systems stay with as little security measures as they came with.

Another common scenario, which may be derived from having very permissive protection measures

in place, is that the machines get mistreated by installing software that will then stay regardless of

its frequency of use or actual usefulness, because it’s costly to clean the system. This situation is

highly inadequate as well, since organizations could be unaware of all the programs and services

installed on their machines, losing track of critical security updates for said software.

However, even if organizations decide to harden their machines, this is more often than not done

without taking into account current security standards, or by following knowledge sources that are

not verified or can not be fully trusted, leading to misconfigured systems that do not comply

The University of Oviedo is one of these organizations that aims at improving its overall security, and

even though it has taken significant steps towards doing so, the efforts have been mainly directed at

securing its networking infrastructure. For example, endpoint machines, the ones used by students

and teaching staff in labs and classrooms, are left with a very basic configuration, insufficient for

complying with current international security standards; additionally, the lack of automatization in

deployments only makes this problem harder to solve. Despite the challenge, this educational

institution is currently pursuing the ENS (Esquema Nacional de Seguridad) Certification from Spain, a

set of rules and other security measures based on the ISO/IEC 27000 family of standards.

The need of addressing these issues in an efficient manner motivated this project’s proposal by José

Manuel Redondo López, on behalf of the University’s Cybersecurity Committee. As such, the project

must offer a way of allowing for the automated creation and hardening of machines that could be

used in both physical and virtual labs of the various schools of the University of Oviedo, all following

official international security standards that ultimately could lead to easily obtaining recognized

security certifications, both nationally and internationally.

17

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

1.1.2 PSI 1.2: Identification of the objectives and scope of the PSI

The overall objective of this project, as it is briefly described in section PSI 1.1: Analysis of the

Necessity of the PSI, is to provide a means of automatically deploying machines that have been

hardened in an automated way following international security recommendations, guidelines and

standards, so that the University of Oviedo can improve its security and become closer to achieving

certifications. The key term is “automated”, as the main point of this project is to ease a tedious and

error prone set of processes so that it becomes as unattended as possible, benefiting from the

advantages Infrastructure as Code and automating tools provide for deploying new architecture.

As of now, the University uses Windows 10 as the main operating system for the computers of all its

networks, both for classrooms and physical labs. These Windows 10 machines have a very basic

security configuration, posing a huge security risk.

In addition to this, some schools belonging to this educational institution, particularly those that offer

Engineering degrees, use Linux machines in the labs of certain subjects. Even though the objective of

some of the labs is to learn how to install a Linux distribution from scratch, or how to make basic

machines more secure, others would certainly benefit from having already hardened machines. It is

also common that research teams from the University use for their work Linux machines that should

be hardened from the beginning. And not only that: this institution’s Computing Department deploys

Ubuntu machines as part of an infrastructure with virtual machines, which as in the last case, need

to be hardened manually. So, the problem with these systems affects not only students, but

professors and underlying technological architecture too.

Given what was commented in section PSI 1.1: Analysis of the Necessity of the PSI, three different

scenarios, that are present in the University and this project needs to address, have been identified:

1. Machines that are left as they come by default because organizations (in this case, in the field

of academics, though may apply to other areas) do not want to invest in securing them

2. Machines whose installation can not be automated

3. Machines that are hardened in an incorrect way, not following any kind of official standard

Thus, considering these three far from ideal situations, which can be tackled as separate problems

but are essential parts of the global aim of this project, a set of intermediate goals have been defined:

1. Automate the creation of secured machines following an Infrastructure as Code approach:

nowadays, the University sets up new machines by first configuring a “base” machine that

contains all the software and configuration considered necessary, and then cloning said

machine to replicate it in the rest of the computers. The process is not automated, needing

to be performed manually, and changes are not easy to be made. Thus, this project will

provide a way of creating, configuring and deploying new base machines, both for Windows

and for Linux systems.

2. Automate the installation of operating systems: installing an operating system from scratch

is often a long and tedious process in which a user must be in front of the computer to provide

18

José Manuel Redondo López Chapter 1: Information System Planning

the setup process with the information it needs, typically related to basic settings. It is rare

for an educational network to have many different types of systems; settings are generally

shared among computers with the same purpose, and don’t usually change from one year to

the next one. This project will analyze how to automate a Windows 10 installation from a

basic OS ISO, and following the study, run an unattended installation and provide the resulting

product to be used for setting up future University machines.

3. Harden machines correctly following international security standards, and perform audit

analysis on them: as it has been mentioned, machines are usually badly hardened or not

secured at all. The third objective of the project, which closely intertwines with the one

exposed in the first place, will be to thoroughly examine a set of internationally recognized

and validated security guidelines first, and then implement said guidelines on Windows and

Linux machines, in an automated way. These hardened machines, along with all the

implemented recommendations, will be provided as part of this project, so that users can not

only deploy the base, secured machines, but also reuse all the code used to harden them to

improve the security of already existing infrastructure. Additionally, using verified audit tools

based on official security benchmarks, this project will test the machines before and after

they are hardened, to assess the level of security a base machine has against the score it could

get after implementing the security measurements described in this objective. This will be

done along the phase, to check that the recommendations actually improve the machine’s

security.

1.1.3 PSI 1.3: Delegation of Responsibilities

• The project’s author, that is, the student developing this project, will be in charge of creating the

base machines, hardening them so that they are in line with recognized security standards, and

testing them using reliable audit tools. All these tasks will be developed autonomously, without

establishing contact with other colleagues that may be developing a similar project in parallel

• The project’s director will be responsible for validating how the general and intermediate

objectives of the project are being achieved while the project is being developed

1.2 PSI 2: DEFINITION AND ORGANIZATION OF THE PSI

1.2.1 PSI 2.1: Specification of the Scope and Reach of the PSI

Based on the objectives defined in section PSI 1.2: Identification of the objectives and scope of the

PSI, the project is divided into the following phases, aligned with the intermediate objectives:

19

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

1.2.1.1 Phase 1: Automate the creation of secured machines following an Infrastructure

as Code approach

Right now, the common client’s scenario is that machines are manually created, configuring by hand

all the necessary parameters and software; these base machines are then cloned onto whatever

computers that need this specific image. Moreover, virtual machines used for labs follow a similar

approach, so distributing them, making changes on their configuration, or ensuring they are

consistent among all the users that use them could not be an easy task. This first phase of the project

aims to address this issue, automating the creation and deployment of machines, following an

Infrastructure as Code approach that will also ease the distribution of the machines.

In this first phase, different tools that allow the automated management of machines will be

considered and discussed, as choosing the ideal one will be critical in other phases of the project. The

ultimate goal of the phase will be to provide the user with base machines using an Infrastructure as

Code approach, so they can then be used to integrate whatever security recommendations deemed

appropriate.

The scope of this phase will include the automated deploying of virtual machines, addressing one of

the problems discussed above. This could then, in the future, be extrapolated to physical machines,

though further investigations must be carried out.

Objectives of the phase:

• Provide a means of automating the creation of an Ubuntu Linux machine

• Provide a means of automating the creation of a Windows machine

• Study the provision of Vagrant-managed machines using Ansible

1.2.1.2 Phase 2: Automate the installation of operating systems

Windows 10 installations are normally done manually, needing constant user input for the various

prompts that appear along the setup process; this is what happens in the University of Oviedo for

configuring new base machines. The first thing in this second phase of the project will be to study

how to automate the installation of Windows 10, and how to export the resulting product into a

format that can be used with the tools mentioned in Phase 1. After this study, an unattended

installation will be run to set up base machines, after which they will be exported in the format

required by the tool chosen for managing the infrastructure (first phase). Resources so that anyone

interested can perform the same process or even export the resulting machine to other formats will

be provided as well.

This scope of this phase will be reduced to automating the installation process of Windows 10, more

specifically in its Education edition. This is mainly due to the student in charge of this project’s access

to official Windows 10 Education (ES and US) editions of this operating system, since they are made

available to all University’s students through an agreement with Microsoft. More detail into this

decision can be found in EVS 4, 5 y 6: Study and Valuation of the Solution Alternatives and Selection

20

José Manuel Redondo López Chapter 1: Information System Planning

of the Final Alternative. Regarding the Linux machines that will be used in other phases of the project,

fortunately official base machines, with minimal configuration but already with their installation

complete, are easy to download and use in projects such as this.

Objectives of the phase:

• Automate the installation of a Windows 10 Education machine, preferably the latest-available

version of the operating system

• Provide pre-configured configurable files and resources for creating custom Windows 10

unattended setups

• Provide custom base Windows 10 Education machines in the specific format required by the tool

chosen in Phase 1

1.2.1.3 Phase 3: Harden machines correctly following international security standards,

and perform audit analysis on them

Base Windows 10 and Ubuntu Linux machines will be hardened following security recommendations

from official and validated sources. The chosen guidelines will be thoroughly examined to understand

the impact they will have on the systems and the fitness for the client.

After checking the policies that will be implemented, that is, the recommendations that want to be

applied for each of the machines, a way to automate the application of said recommendations will

be devised. This automation will be aligned with the Infrastructure as Code approach followed in this

whole project.

Additionally, the set of hardening recommendations will be provided to the client in such a way that

they are not coupled to the specific provisioned machines; the code has been abstracted, so

administrators and other interested parties will be able to extract it, adapt it and reuse it to harden

existing infrastructures.

The machines will be audited pre and post hardening using verified and mature audit tools that are

based on many official security benchmarks and guidelines. These tools will help assessing the default

security levels the base machines have, against the intermediate and final scores the same machines

get after the hardening process. Auditing will take place along the whole phase, to check that the

recommendations actually improve the machine’s security.

In this phase, only policies that comply with CIS Benchmarks will be included. They not only are

detailed enough for the systems we want to focus on, but many of the policies they cover are also

part of several distinct security benchmarks, mapping directly to other compliance guidelines. Thus,

by covering CIS we are also covering many of the policies from other official benchmarks. More detail

into their description, benefits and application scope can be found in section PSI 3.2: Theoretical

Concepts.

21

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Regarding auditing, there will be used both tools that are based on or directly test against CIS

Benchmarks, as they are the policies that will be first implemented, and tools that allow checking the

level of compliance with the ENS.

It is important to note that the hardening process will be done in an almost iterative way. Policies will

be gradually implemented and configured in the machines, as this will allow tracking possible errors

faster and check what remediations increase the security scores or render the machine useless. Thus,

the audit and testing process will be performed almost at the same time as the implementation,

though only the final reports will be provided as part of the documentation.

Objectives of the phase:

• Study CIS Benchmarks’ policies for Windows 10 and Ubuntu Linux, analyzing what policies should

be considered to be applied

• Apply hardening policies recommended by CIS for the Windows 10 Education machine, following

their CIS Benchmarks

• Apply hardening policies recommended by CIS for the Ubuntu Linux machine, following their CIS

Benchmarks

• Provide the code for the automated hardening decoupled from the machines, so users can reuse

said code to harden already existing machines

• Export the hardened machines in a format fit for virtualization so that they can be used as new

base machines, though hardened

• Test the developed Linux and Windows machines before and after hardening, using ENS and CIS

based audit tools, and compare their results against each other for each machine and against the

ones obtained from the School of Computer Engineering’s computers

1.2.2 PSI 2.2: PSI Organization

After explaining the objectives of each phase of the project and the overall objective of the project,

the following work teams have been established:

USER PROFILE TASKS/RESPONSIBILITIES

REVIEWING TEAM

Project Director

Computer

Scientist,

Cybersecurity

Professor and

member of the

University’s

Cybersecurity

Committee

Review that the intermediate objectives of the

project have been/are being achieved

Review the progress made by the student in

charge of developing the project

ANALYSIS AND DEVELOPMENT TEAM

22

José Manuel Redondo López Chapter 1: Information System Planning

Student

Computer

Science

Student

(Software

Engineering)

Carry out all the phases of the project and its

intermediate objectives, including:

• Studying and analyzing security

benchmarks and recommendations to

harden the machines

• Automating the deployment of base

and hardened machines

• Provisioning base machines with

security recommendations, in an

iterative way to continuously improve

their security

• Automating the installation of a

Windows 10 operating system

TESTING AND AUDITING TEAM

Student

Computer

Science

Student

(Software

Engineering)

Ensure remediations are correctly applied and

no unexpected errors during the provisioning

process appear

Carry out audits over the default and the

hardened machines

Document findings and possible failures, and

analyze reports’ results

School of Computer

Engineering’s scholars

Computer

Scientists

Provide admin access to the School of

Computer Engineering’s computers to carry

out auditing tests

Table 1. Workteams and users associated to each team

Regarding the materials for carrying out the project, the student will use a laptop computer for

developing and testing the project, whose specific features will be detailed below. No other physical

infrastructure will be needed during the development, as a virtualization platform will be used for

deploying the machines.

23

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Figure 1. Specific features of the system where the development will take place

Additionally, for having more in-depth and first-hand knowledge of the current security status of the

machines used in the University, the student will request the School of Computing Engineering to let

her test the images of the machines they have been using during the past academic year. For that,

the school will need to provide a computer or computers with said image to be able to perform an

audit.

1.3 PSI 3: STUDY OF RELEVANT INFORMATION

1.3.1 PSI 3.1: Study of the current situation

The outline of the client’s current situation has already been established in section PSI 1.1: Analysis

of the necessity of the PSI, but to fully understand the situation, talks with those responsible for the

management and maintenance of computer systems in the University of Oviedo were held.

Additionally, several tests to assess the security level of the machines in the University, more

specifically in the School of Computer Engineering, were performed, to check first-hand the security

regular computers have.

1.3.1.1 University of Oviedo’s current infrastructure and security measures

After gathering information from networks and systems administrators, the following was disclosed:

• The University’s network is protected by two perimetral firewalls from two different

manufacturers, thus complying with what’s required by the ENS

24

José Manuel Redondo López Chapter 1: Information System Planning

• A VPN is used for connecting to internal services from outside the University’s network

• 2FA has been recently made compulsory for every single access to services

• Networks are segmented, so that the ones for regular classrooms and physical labs (first

group) are isolated from the management ones, which are also segmented

• Backups are done periodically for a large number of assets, including virtual machine copies

of essential services in the cloud

• Redundancy for everything

• There exists an authentication domain for allowing users belonging to said domain (mainly

students) to authenticate in any of the University’s schools

• Users registered in the classrooms’ and physical labs’ computers are not local administrators.

On the other hand, Teaching and Research staff manage their machines themselves and are

not part of the domain, so in that case each user is responsible for the security and usage of

their system

With this information, it can be concluded that the efforts aimed at improving the University’s

security are mainly directed towards networking, paying little attention to the individual machines.

1.3.1.2 On-premises machine tests using audit tools

Regarding the on-site tests, they allowed to have a better insight of the actual situation of some of

the machines used by the University, which is the focus of this project. They were carried out for both

the machines that were used during the 2021-2022 academic year, and the ones that will be

configured for the 2022-2023 academic year; details for the tools used in these analysis can be found

in Alternatives for auditing tools.

The machines’ operating system is Windows 10 Pro in both cases, in contrast with the one used in

this project’s development, which is Windows 10 Education. Nevertheless, though base scores after

running the auditing processes may differ from one Windows version to the other, the general

security guidelines still stand. A summary of the results is pictured below.

The analysis performed with the first of the tools, used to measure the percentage of compliance

with the ENS, evaluates three categories of machines, from those that are in environments were

security is not so crucial (BAJA or LOW) to those that operate in high security environments (ALTA or

HIGH). The results the machine used during the 2021-2022 academic year obtained scores of 29,71%,

31,24% and 36,44% for the LOW, MEDIUM and HIGH categories respectively. On the other hand, the

new, 2022-2023 academic year machine obtained better results: 50,02%, 50,64%, and 53,94% for the

same categories.

25

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Figure 2. Results of the CLARA analysis for the W10 Pro 2021-2022 machine

Figure 3. Results of the CLARA analysis for the W10 Pro 2022-2023 machine

The other tool, that checks compliance with CIS Benchmarks for general and high security

environments, also produced low results for both machines, which have been simplified in a single

figure as they obtained the same scores.

Figure 4. Summary of the final results of the CIS-CAT Lite analysis for L1 and L2 environments for

the W10 Pro machines (2021-2022 and 2022-2023)

The full reports have been provided as part of the additional documentation, and more detail on how

these audits were planned and carried out has been provided in sections Specification of the Testing

and Auditing Plan and Execution of System Audits. Results obtained will be explained more

thoroughly in the latter section.

26

José Manuel Redondo López Chapter 1: Information System Planning

1.3.2 PSI 3.2: Theoretical Concepts

This project deals with some novel technologies and programming techniques, as well as security

standards which may not be known to non-specialized users. The present section has tried explaining

some of the most relevant theoretical concepts so that any user can best understand the whole

document.

1.3.2.1 Infrastructure as Code (IaC)

Infrastructure as Code is a process which consists of creating, managing and provisioning computer

infrastructure using code in the form of machine-readable definition files, substituting with this

having to do the full process manually (through physical hardware, configuration tools…). This

approach has many clear and attractive benefits, and as businesses and organizations start choosing

virtualization, containers and cloud computing over physical hardware, IaC’s usage is becoming more

widespread.

As the infrastructure specifications are included in plain configuration files, distributing and editing

these configurations becomes easier than if performed in a manual way. This also ensures that the

given environment will be prepared the same each time, improving consistency and reducing the

number of possible errors.

Nowadays, it’s not uncommon that an organization’s infrastructure changes, needing to grow or even

to get some of its parts dismantled or modified. Infrastructure as Code offers a way in which keeping

track of the current infrastructure becomes easier to manage, and so modifications can be applied

faster, with less errors, and less costly. Additionally, documentation and version control for these

files is generally more straightforward, again due to their file nature.

Some examples of tools that help in the process of building Infrastructure as Code are Chef, Puppet,

Ansible or Terraform. Vagrant is also considered part of this group, though it is specifically aimed at

creating virtual machine environments and not whole infrastructures.

1.3.2.2 Unattended installation

An unattended installation refers to the process of setting up and deploying a software, such as an

operating system, without requiring any manual intervention from the user. This not only leverages

the installation process, which usually requires users to be present until the software has finished

getting set up, but also makes possible performing simultaneous installations on several machines,

saving deployment time. Nowadays, many Microsoft products, including their operating systems,

support this kind of installation.

In the case of performing an unattended Windows installation, the process will use a special XML

answer file (typically called Unattend.xml or Autounattend.xml) that contains all the necessary user

input for filling the dialog boxes that are presented to the user during a normal setup process, as well

27

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

as some additional configuration data. Though users can write these files manually, or reuse an

already existing one, Microsoft has made available to the public an application that makes it easier

to create such files.

This kind of installations have been heavily popularized in the last years, especially since the outbreak

of cloud-related operations and, though different to what this project intends to do, an interesting

approach is cloud-init, a technology that provides cloud images for Linux and FreeBSD operating

systems (Ubuntu, CentOS, RedHat…).

1.3.2.3 Center for Internet Security (CIS), CIS Benchmarks and CIS’s Critical Security

Controls

The Center for Internet Security (CIS) is an international organization whose main purpose is to

increase awareness of cybersecurity threats and promote good security practices among individuals,

businesses and governments. CIS is in charge of developing and validating sets of recommendations

based on best cybersecurity practices, in a joint effort between their vast number of security experts

and other well-known companies; and they even provide computing environments that are already

hardened, following their own security guidelines.

CIS makes available for anyone interested a set of hardening guides for a wide variety of products,

from OSs to network devices and other pieces of software; these are called CIS Benchmarks. These

documents, versioned and updated to adapt to new versions of the products they cover, recommend

configuration values and other technical security controls and good practices that can be applied to

said products. CIS Benchmarks are guaranteed to be reliable and high-quality, as they are created,

validated and used by hundreds of renowned companies, as well as the US Government. Each

benchmark is complete for the product it covers, specifying all the elements that should be

configured to achieve whatever level of security the organization requires; and the recommendations

they contain are described in full detail, including information on what should be fixed, how to do it

and why, and the impact it could have on the system to modify the current configuration.

Each security control present in the benchmarks will have a certain impact on the overall security

score the machine achieves once audited. Some of them do not affect this score, though its

application is still recommendable, but other controls increase it if present or configured adequately.

The ratio between the number of these two types of recommendations depends on the benchmark

being considered.

Apart from affecting the security score of the machines, the controls can be classified according to

usage profiles and levels. On the one hand, usage profiles refer to the functionality the product is

supposed to fulfil; on the other hand, security levels, which are normally two (Level 1, for general use

in corporate environments, and Level 2, for high security environments) but can be extended with

specific ones, pertain to the environment where the machine that implements the control is

supposed to operate.

28

José Manuel Redondo López Chapter 1: Information System Planning

The security controls in a CIS Benchmark can be grouped into CIS Critical Security Controls; both sets

of measures, though called similarly, should not be mistaken for one another. CIS Critical Security

Controls represent the best cybersecurity practices recognized worldwide (20 in v7 and 18 in v8, the

last version as of the time of this project’s development), and are subdivided into subcontrols. Each

of the 20 or 18 controls can be divided into three different categories (Basic, Foundational and

Organizational), and they model from basic cybersecurity operations to advanced ones, from Data

Protection to Malware Defenses or even Penetration Testing. Its ultimate goal is to be able to set up

all the security mechanisms that a company, no matter the size, could be benefitted from.

The main difference between the CIS Benchmarks and the CIS Critical Security Controls, apart from

the scope, is that the former are designed for specific products, whereas the latter contain the same

controls and subcontrols always, no matter the product the benchmark is targeted to.

1.3.2.4 Spanish Centro Criptológico Nacional (CCN, National Cryptologic Center)

The Centro Criptológico Nacional (CCN), or National Cryptologic Center, created in 2004, is the

Spanish institution tasked with coordinating the activities of any of the Public Administration entities

that use encryption procedures or resources, as well as providing training for any of their staff that

specializes in the cryptology field. It is also responsible for ensuring the security of Information

Technologies, or IT, in the scope of the Public Administration, remaining aware and informing of the

acquisition of any cryptology material. In summary, it is the national organization that dedicates to

cybersecurity, from risk and threat mitigation to promotion of good practices.

The CCN has developed a series of security solutions, such as audit tools or malware analyzers, among

many others. It also promotes cybersecurity training and good practices through their own learning

platform.

1.3.2.5 Spanish Esquema Nacional de Seguridad (ENS, National Security Schema) and

CCN-STIC Guides

The Spanish Esquema Nacional de Seguridad (ENS), or National Security Schema, is a set of

guidelines, requirements and principles that helps creating and maintaining all the necessary security

conditions for the correct usage of electronic means. These guidelines, if applied, ensure the security

of systems, data, communications and other electronic services. It also takes into consideration

different categories of information systems, from “Low” (sometimes referred to as “Basic” in the

documentation) to “High”, which reflect how serious the consequences of a security incident

affecting the given system could be over the organization’s activities, individuals or resources.

For public entities, the contents of the ENS allow satisfying the security requirements Public

Administrations in Spain should comply with; and for regular citizens, it means that the public entities

they relate with have all the necessary security conditions that ensure both their rights and their

information are adequately protected. Spanish public universities are among the organizations that

must apply the ENS, though only a few are certified.

29

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

The ENS is regulated by several Spanish Royal Decrees and rules, and though it does not have a direct

correlation to CIS Benchmarks, being specifically for national implementation, it can be mapped to

the well-known ISO 27001 security controls, establishing a bridge between the two sets of

recommendations if necessary.

The CCN-STIC Series, which are sets of rules, recommendations and other instructions from the

Spanish Centro Criptológico Nacional, publish free security guides aimed at helping entities configure

their software for achieving compliance with the ENS. They provide complete and detailed

explanations on what and how things need to be configured and why.

1.3.2.6 Domain-Specific Language (DSL)

A Domain-Specific Language or DSL is the opposite to a regular, general-purpose language such as

Java, as it is a computer language specifically designed for a particular purpose, problem or domain.

There is a great variety of DSLs, that can be generally divided into three categories: markup, modelling

or specification and programming languages; in addition to this, there exist both textual and graphical

DSLs, though the latter are more uncommon. Some examples include HTML, CSS or even regular

expressions.

According to Martin Fowler and other authors [3], DSLs can also be categorized into Internal and

External ones. Internal DSLs take advantage of a host language and use it in particular ways that give

the appearance of coding in another, specific language; in contrast, External DSLs are independent,

have a custom syntax, and specific parsers are written to be able to process them. Some of the

languages in this last category can be encoded in data structure representations, like YAML; Ansible,

one of the Infrastructure as Code tools mentioned previously, uses this approach.

1.3.2.7 Virtualization and Hypervisors

Virtualization is a technology that allows creating IT services (individual machines, servers, etc.) by

means of mimicking features and resources traditionally associated to physical hardware. This works

by using a physical host whose capabilities are then distributed among all the different services being

simulated.

Hypervisors are one of the technologies that enable virtualization. They are a special kind of software

that help separating the host’s physical resources from all the virtualized environments, as they are

responsible for dividing these resources and assigning them to each virtual guest. There exist two

main possibilities when installing a hypervisor: it can either be installed on top of the operating

system, or onto the hardware layer directly. The former is the preferred alternative when the host is

a regular desktop or a laptop.

Nowadays, virtualization is heavily used, being such a widespread technology among enterprises that

it is more and more common to make use of specialized management software for handling all the

virtualized infrastructure.

CHAPTER 2: TECHNOLOGICAL

ARCHITECTURE DEFINITION

P
L

A
N

N
IN

G
 P

H
A

S
E

32

José Manuel Redondo López Chapter 2: Technological Architecture Definition

2.1 PSI 7.1: IDENTIFICATION OF TECHNOLOGICAL INFRASTRUCTURE

NEEDS

Nowadays, as it has been mentioned before, the University performs the operations for installing and

configuring its machines manually; and with the current approach, if its systems needed hardening,

it would be done in the same way. This method takes time and could be error-prone, specially when

securing the machines, as many guidelines require modifying low-level settings.

Thus, one of the first things that should be discussed is how to connect to and provision the machines

in general, not only the ones specifically deployed in this project, but also those that are already

deployed but need hardening. Different technologies that may serve this purpose will be evaluated,

considering the infrastructure each of them needs; the ideal scenario is that the machines to be

provisioned stay as clean as possible, with no additional software to be installed on them, no matter

if they are virtualized environments or not. The infrastructure should remain simple in any of these

cases.

2.1.1 Alternatives for automation technologies to provision machines

2.1.1.1 Ansible

Ansible is an infrastructure managing tool, designed for the automated configuration and

provisioning of local and remote machines, all following an Infrastructure as Code approach. This

software is currently maintained by RedHat.

For configuring a machine using Ansible, code must be written in a special DSL language based on

Python and encoded in the form of YAML files. It uses modules for most of its tasks, which can

perform a wide variety of commands, from installing new software to managing system-specific

features. Tasks and all the information needed to run them are grouped into playbooks, though when

these files become too large, they can be reorganized into roles or collections, in a directory-like

structure. Ansible will then use SSH to connect to the servers or machines and execute all the

configured tasks.

2.1.1.1.1 Advantages

Though not a purely technical detail, Ansible is backed by RedHat, one of the most important open-

source enterprises in the world. Also, if choosing Vagrant as the tool to manage machines, it must be

noted that it has direct support with Ansible, and includes several provisioners to either execute

Ansible remotely or locally; configuration is also easy, requiring few parameters, though additional

information can be specified if needed.

33

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Compared to a similar product which will be seen below called Chef, Ansible is faster and easier to

set up; it’s also easier to manage because it uses a DSL disguised as YAML for its configurations and

playbooks. To finish, Ansible’s source of truth are the deployed playbooks, while Chef’s one is a server

that has uploaded cookbooks (the equivalent of playbooks): in this regard, the approach of the first

technology makes more sense.

A really positive thing about Ansible is that it does not require any additional software on the

controlled machines; it can be installed only in a control node, which is the machine from which all

the other nodes will be managed, and where all the code will be placed. The only technology it needs

to connect to the controlled nodes is SSH.

In general, Ansible is simpler to use and understand than other similar technologies, while remaining

a powerful provisioning tool.

2.1.1.1.2 Disadvantages

Compared to other technologies, Ansible’s playbooks can be considered lists of commands to be run

sequentially. This can make reusing tasks difficult, as well as running them in certain order, and

though it can be more or less worked around with the usage of roles and specific groups of commands

called handlers, it is not as flexible as with other tools.

Additionally, a huge drawback is that Ansible can not run on Windows hosts natively, though it can

still provision Windows remote machines.

2.1.1.1.3 Integration with the rest of the infrastructure

Figure 5. Ansible's basic infrastructure

• Ansible’s official site: https://www.ansible.com/

https://www.ansible.com/

34

José Manuel Redondo López Chapter 2: Technological Architecture Definition

2.1.1.2 Puppet

Puppet is an infrastructure automation tool similar to the others described in this section, maintained

by a private company called Puppet, Inc. Puppet uses its own Ruby-based DSL, called PuppetDSL,

which is also used to write manifests and modules through which the configuration of provisioned

machines can be managed.

2.1.1.2.1 Advantages

Puppet is a bit more flexible than other solutions, like Ansible, as Puppet’s modules and manifests

are reusable and can be run in any order.

2.1.1.2.2 Disadvantages

The main disadvantage Puppet has is that it needs to have a special client in the machines that need

to be controlled, which can be a huge problem if the organizations do not want or want to install

additional software in said machines. The language in which the configuration files must be written

is based on Ruby, so users might need to have at least some programming background in that

language. Additionally, Puppet seems to have substantial differences between versions, which makes

it harder for users to use it consistently.

2.1.1.2.3 Integration with the rest of the infrastructure

Figure 6. Puppet's basic infrastructure

• Puppet’s official site: https://puppet.com/

https://puppet.com/

35

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

2.1.1.3 Chef

Chef is an open-source technology similar to Ansible, as it is also an automation software for

configuring environments using an Infrastructure as Code approach. Chef groups administration tasks

into their own sets of files, called cookbooks and recipes, in contrast to Ansible’s playbooks and tasks.

2.1.1.3.1 Advantages

It runs on a wide variety of platforms, including Windows, and other Unix-based distributions, as well

as many Cloud platforms. The tool is complex to manage and creating the configuration files

(cookbooks) requires programming knowledge, but in turn allows handling complex tasks, which can

be a great advantage over other similar tools that offer more limited functionality.

2.1.1.3.2 Disadvantages

Chef runs in a master-client architecture similar to Puppet, thus needing a client to be installed in the

controlled machines. It has also been mentioned that it makes use of a dedicated server where the

cookbooks must be uploaded, so its architecture is more complex and the configuration files could

get outdated more easily.

2.1.1.3.3 Integration with the rest of the infrastructure

Figure 7. Chef's basic infrastructure

• Chef’s official site: https://www.chef.io/

https://www.chef.io/

36

José Manuel Redondo López Chapter 2: Technological Architecture Definition

2.2 PSI 7.2: TECHNOLOGICAL ARCHITECTURE SELECTION

2.2.1 Selection of provisioning technology

After considering each of the three alternatives and how they would need to be included in the

current architecture, Ansible was the tool chosen for automating the machine provisioning process.

Though more limited than other alternatives, it offers all the needed functionality for carrying out

the project, being its learning process shorter than for other tools. The lack of additional software

has also been a determining factor when choosing Ansible, though its incompatibility to run on

Windows hosts makes it compulsory to include an additional node in the infrastructure to act as a

controller. This could be considered an advantage, as the node itself can be created following an

Infrastructure as Code approach and distributed and reused easily where it is needed.

Ansible is also really simple to deploy, as it only requires SSH to connect to the target machines.

Thanks to this, any machine that fulfils this condition can be intervened, so it is easy to adapt to

different scenarios. However, in the case of Windows provisioning specifically, it must be noted that

access to the controlled machine’s PowerShell is typically required for running tasks, as well as full

administrative privileges in many cases.

2.2.2 Machine provisioning using Ansible and SSH

2.2.2.1 Infrastructure considerations for running Ansible

As it has already been mentioned, Ansible does not run on Windows hosts such as the machine used

for development. Thus, an intermediate machine with all the necessary settings and code for

executing Ansible, that is compatible with the tool, must be set up as part of the infrastructure. This

machine will be considered a controller node, as it will be the one which will connect to all the other

machines in the network that need to be provisioned and “control” them by means of Ansible.

Though it could be considered a drawback that Ansible does not operate on the Windows host, the

approach proposed above can actually fit better into the overall architecture of the system and the

purpose of the project, for a number of reasons.

First and foremost, the controller node can be created and managed as a piece of Infrastructure as

Code. This means that it will be easier to reuse and adapt to different environments, serving for

multiple scenarios no matter the host, apart from having all the benefits discussed in PSI 3.2:

Theoretical Concepts.

Design-wise, having a separate machine for managing and running Ansible makes more sense than

executing it from the given host. It will encapsulate everything Ansible-related, from roles and

playbooks to the tool itself or any configuration files needed to manage the controlled nodes. In

37

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

conjunction with an IaC approach, the controller could be packaged and introduced in any

environment that requires Ansible, with minimal changes.

Finally, it adapts well to system restrictions, as no additional software must be installed in the

controlling user’s machine (the host) nor in the remote machines.

2.2.2.2 SSH

The Secure SHell protocol, commonly referred to as SSH, is a method for accessing remotely to

servers or machines via a secure channel. SSH protects integrity and security of communications with

robust encryption and offers various strong authentication mechanisms, so it can be used to establish

secure connections over insecure networks. SSH was designed to provide a secure alternative to

traditional, unprotected remote communications protocols like Telnet or FTP.

SSH uses a client-server architecture model, meaning that an SSH client is the first to establish the

connection to an SSH server, which will make use of the protocol to accept the remote connection

initiated by the client. One of the most common authentication methods, and the one typically used

for automation, is public-key authentication, based on public-key cryptography. This mechanism uses

a cryptographic pair of keys, a public and a private one; the public key will be placed on the server,

to authorize and allow the owner of the corresponding private key to access this server.

Once the SSH client and the SSH server have established a connection, a negotiation between the

two takes place, to agree on a series of communication parameters. Any transmitted data between

the two will, from then on, be encrypted and protected using the encryption algorithm agreed on

during the negotiation phase, like AES (Advanced Encryption Standard) or SHA-2 (Standard Hashing

Algorithm), among others.

Figure 8. SSH connection setup flow

2.2.2.2.1 How SSH Works for Ansible

Ansible only requires SSH to connect to the remote machines from the control node; in fact, it uses

by default OpenSSH, a suite of utilities for secure networking based on SSH. Ansible will use this

protocol to try to connect to the controlled nodes with the same username used for the controller;

in case the user does not exist on any of them, another username can be specified. Another possibility

Ansible offers, which might be the desired option if some tasks to be executed require root privileges

38

José Manuel Redondo López Chapter 2: Technological Architecture Definition

or other user’s permissions, is privilege escalation; in fact, many Windows tasks require such user

rights to be able to run and complete successfully.

Additionally, usage of SSH keys to connect to the remote systems is encouraged, as it eliminates the

need for using password authentication; in fact, Ansible assumes by default that this is the

authentication mechanism.

CHAPTER 3: SYSTEM

FEASIBILITY STUDY

 D
E

V
E

L
O

P
M

E
N

T
 P

H
A

S
E

40

José Manuel Redondo López Chapter 3: System Feasibility Study

The current approach in the University of Oviedo, as it has been mentioned before in section PSI 1.1:

Analysis of the necessity of the PSI, is that machines are deployed as clones, so would be perfectly

viable to install and harden the base machine in an automated way, and then clone it in every system

where it needs to be replicated. Automated hardening of Cloud-based deployments of Linux and

Windows machines is also common nowadays, and so in this section, technologies that serve both

purposes will be discussed, closing the gap between the Cloud and a traditional on-premises

infrastructure, while constructing a feasible and adequate system for the current needs, all through

software.

3.1 EVS 4, 5 Y 6: STUDY AND VALUATION OF THE SOLUTION

ALTERNATIVES AND SELECTION OF THE FINAL ALTERNATIVE

3.1.1 Alternatives for security standards on which to base the hardening

3.1.1.1 CIS and CIS Benchmarks

3.1.1.1.1 Description

CIS Benchmarks have already been described in the PSI 3.2: Theoretical Concepts section, but its

advantages and disadvantages will be further explored below to make a more informed decision on

why choosing these recommendations.

3.1.1.1.2 Advantages

CIS Benchmarks are validated by experts and backed and used by well-known companies and the US

Government. They are complete, meaning they cover all the important security aspects for the

product they describe. Also, one of its most attractive characteristics is that they are fully explained,

describing to the user what is wrong or should be remediated, how to fix it and why. They also explain

possible consequences of applying said changes, so organizations can study whether the

recommendation applies to their case or should be skipped.

Benchmarks are updated, maintaining a detailed list of changes from version to version. Errata are

corrected quickly, and guides get adapted to new versions of the products they deal with.

They are international, meaning that if a machine complies with a certain security level according to

the benchmarks, it could be introduced in environments that require certain official security

certifications. In Spain’s case, complying with some of the recommendations mean to also comply

with the ENS. Related to this, CIS Benchmarks can be mapped to ISO 27001 controls, which are some

of the most important internationally.

41

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

3.1.1.1.3 Disadvantages

CIS Benchmarks only cover part of the market’s most used products. In the case of Windows 10

desktop, only benchmarks for the Enterprise versions are available. If the intention was to provision

other kinds of Windows 10 workstations, security experts should consider that remediations shown

might need to be adapted to fit the needs of the system, apart from the organization’s.

Another thing that is important to be considered in Spain specifically is that they do not have direct

correlation to the ENS, and some of the recommended values and configurations might clash with

the ones demanded by the ENS. So, for achieving compliance with the ENS, certain compromises with

which the organization will have to agree might need to be made.

One more drawback is that, depending on the product, they can be really extensive, so adapting them

to specific functionalities or features can be tedious or require help from expert administrators.

Finally, official, complete tools for testing and automating the compliance with CIS Benchmarks are

not free; the only free tool offers very limited functionality, and is only available for few OSs.

• CIS official site: https://www.cisecurity.org/

• CIS Benchmarks section: https://www.cisecurity.org/cis-benchmarks/

3.1.1.2 ENS and CCN-STIC Guides

3.1.1.2.1 Description

As it was mentioned in the PSI 3.2: Theoretical Concepts section, the Spanish Centro Criptológico

Nacional publishes free security guides, the CCN-STIC ones, that organizations can follow to

implement controls for complying with the ENS. Organizations from the Spanish Public

Administration field must comply with the ENS by law, and in those cases, it might be a priority to

focus on studying these guides and applying its controls.

3.1.1.2.2 Advantages

As it has been briefly mentioned, complying with the ENS is compulsory for many Spanish Public

Administration entities, and Public Universities are within the application scope of the ENS. One of

the long-term goals of the University of Oviedo is to be ENS-compliant and get certified, so using the

CCN-STIC Guides could shorten the path towards directly achieving that goal.

3.1.1.2.3 Disadvantages

The ENS is only of national application. Even though it may map to a security standard such as the

ISO/IEC 27001, it is regulated by Spanish rules and decrees that adapt European legislation, so it is

not valid for international scenarios a priori.

• ENS official site (in Spanish): https://ens.ccn.cni.es/es/

https://www.cisecurity.org/
https://www.cisecurity.org/cis-benchmarks/
https://ens.ccn.cni.es/es/

42

José Manuel Redondo López Chapter 3: System Feasibility Study

• CCN-STIC Guides: https://www.ccn-cert.cni.es/guias/guias-series-ccn-stic/800-guia-esquema-

nacional-de-seguridad.html

3.1.1.3 Decision

For this project, CIS Benchmarks have been chosen as the best option, as it was already mentioned

in section PSI 2.1: Specification of the Scope and Reach of the PSI. They have many attractive

advantages, and though they can not be directly mapped to the ENS, they can be first related to the

ISO/IEC 27001 controls. Another important remark is that, because they are international

recommendations, hardened machines could better adapt to other environments apart from the

national scenario.

3.1.2 Alternatives for Windows Operating System installed

3.1.2.1 Windows 10 Education

3.1.2.1.1 Description

Windows 10 Education is a variant of Windows 10 Enterprise specially aimed at the educational

sector, offering specific, pre-determined features that increase security while targeting basic

necessities for schools, universities and other academic institutions. Certain services are disabled by

default, like Cortana or Microsoft Store recommendations; and it comes with pre-installed software

such as Microsoft Word or Microsoft Excel among others.

3.1.2.1.2 Advantages

Some institutions like the University of Oviedo have special agreements with Microsoft that make

licenses available for their software to their students, including several versions of their operating

systems. Education versions are the ones available, both for Windows 10 and Windows 11, for free.

Also, as it has been seen in Alternatives for security standards on which to base the hardening, CIS

Benchmarks specifically, are available, in the case of Windows 10 desktop, only for its Enterprise

versions. As Windows 10 Education is based on Enterprise, many of the recommendations of the

Benchmarks can still be applied directly to this system.

3.1.2.1.3 Disadvantages

Windows 10 Education, though intended for students and educational institutions, is not the

operating system that the University of Oviedo uses, so any security or compliance scores obtained

by auditing the machines this project will deploy will not be completely accurate to the real scenario.

https://www.ccn-cert.cni.es/guias/guias-series-ccn-stic/800-guia-esquema-nacional-de-seguridad.html
https://www.ccn-cert.cni.es/guias/guias-series-ccn-stic/800-guia-esquema-nacional-de-seguridad.html

43

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

3.1.2.2 Windows 10 Pro

3.1.2.2.1 Description

Windows 10 Pro has special features that are specifically suited for businesses and enterprises while

retaining or expanding all the characteristics of the basic Windows 10 Home version, the most

common distribution for casual users. One thing to consider is that a Pro license can be upgraded to

an Enterprise one, as Windows Enterprise is intended to be a variant or improvement and not a

proper, standalone version of the operating system.

3.1.2.2.2 Advantages

Windows 10 Pro is the version of the operating system that University of Oviedo’s computers have

installed, at least the ones used by the regular machines. Using this OS would replicate the real

scenario and allow getting more accurate data on how the hardening would translate to the

University’s systems.

3.1.2.2.3 Disadvantages

No license is provided by the University of Oviedo, so a special license should be purchased if it is the

version intended to be used. Official Windows 10 Pro licenses can cost up to 260€ for a single-use

code, which will be wasted in simulating a system. Also, no specific CIS Benchmarks are published for

the Windows 10 Pro versions, so policies should need careful study from expert administrators

before implementation.

• Windows 10 Pro official section within the Microsoft Site: https://www.microsoft.com/es-

es/d/windows-10-pro/df77x4d43rkt?activetab=pivot:informaci%C3%B3ngeneraltab

3.1.2.3 Decision

For this project, it has been decided that a Windows 10 Education ISO will be used for the Windows

machines that will be deployed; to be more precise, the version used will be the latest one when the

development of this project started, Windows 10 Education Release 21H2. The student carrying out

the project can access the license for free, and given that it is specifically meant to be used in

educational environments, it should contain all the programs needed to cover basic school-related

needs, while allowing for installing whatever additional software each specific organization might

need for its students. Also, as Windows 10 Education is based on Enterprise, even if there are no

specific CIS Benchmarks for this variant, the policies described by said guidelines should still be valid

for it; explicit mentions to Windows 10 Education systems are presents throughout the documents.

https://www.microsoft.com/es-es/d/windows-10-pro/df77x4d43rkt?activetab=pivot:informaci%C3%B3ngeneraltab
https://www.microsoft.com/es-es/d/windows-10-pro/df77x4d43rkt?activetab=pivot:informaci%C3%B3ngeneraltab

44

José Manuel Redondo López Chapter 3: System Feasibility Study

3.1.3 Alternatives for automating infrastructure deployment

3.1.3.1 Vagrant

3.1.3.1.1 Description

Vagrant is a tool designed by HashiCorp for automating the management of virtual machines,

specially those that serve as development environments, following an Infrastructure as Code

approach. It is directed towards locally deploying small infrastructures with few machines, which can

be easily created in special files called Vagrantfiles and configured (or provisioned) using

provisioners.

Vagrant supports all the most used virtualization platforms, such as VirtualBox, VMWare, Hyper-V,

Docker or even AWS. Regarding proper machine tuning, it can make use of a wide variety of

provisioning tools like Ansible, Chef, Puppet or the standard shell scripts to install software and

configure other settings.

The tool is written in Ruby and its files use this syntax, though it is not necessary to know the language

to prepare configurations given its simplicity.

3.1.3.1.2 Advantages

Vagrant is specifically designed and optimized for the automated deployment of few local machines,

making it ideal for the objectives of this project. Its Infrastructure as Code approach and high-level

properties allow adding new features and changing existing ones easily, all in an automated way. It

also has straightforward integration with Ansible and other similar provisioning mechanisms.

As it has already been mentioned, Vagrant has an extensive catalogue of boxes, though it also

supports custom-created boxes if no available machine adapts to your needs, which in this project is

indispensable for the Windows machines.

Finally, even though it offers many advanced features for machine management, the basics are easy

to grasp, so even non-advanced users can start deploying their machines quickly, and those who want

to expand their knowledge can focus on what they really need.

3.1.3.1.3 Disadvantages

Communication between machines that get deployed is not always straightforward. The easiest way

to deploy machines in the same network capable of seeing each other is to place them in the same

Vagrantfile, which can increase dependency.

• Vagrant’s official site: https://www.vagrantup.com/

https://www.vagrantup.com/

45

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

3.1.3.2 Terraform

3.1.3.2.1 Description

Terraform is an Infrastructure as Code tool developed by HashiCorp, used for creating, managing,

and deploying both basic and complex infrastructures of machines and services (servers, databases,

firewall policies or even Kubernetes clusters), all automated. Its flexibility allows describing local or

remote architectures, as big and complex as they might be, and it is intended for handling the initial

deployment and any subsequent modifications done to the infrastructure along its lifetime.

Terraform is extensively used in businesses to manage the cloud computing resources they may have

with different providers, as it integrates seamlessly with AWS, Microsoft Azure or Google Cloud.

3.1.3.2.2 Advantages

Terraform is a very powerful tool with which users can easily manage complex and extensive

infrastructures describing them as code, which makes it easier to document and track changes and

new features. It has a very detailed documentation, so new users can easily start using it for their

infrastructures.

3.1.3.2.3 Disadvantages

Even though it is possible to manage virtual machines with Terraform, it is very basic and offers a

reduced set of features for VMs in comparison to other alternatives such as Vagrant. Additionally, it

is not focused on deploying development environments, which in the case of this project is a major

drawback.

• Terraform’s official site: https://www.terraform.io/

3.1.3.3 Docker

3.1.3.3.1 Description

Docker is a technology developed by Docker, Inc. mainly for creating applications’ containers. Each

container provides a low resource-consumption virtual environment, and includes a filesystem with

everything the application needs to run, so each time it will be executed in the same way, no matter

where. This mechanism is widely used nowadays for distributing applications.

3.1.3.3.2 Advantages

Docker can mimic typical virtual machines while consuming significantly less resources and being

much smaller, which is a significant benefit if the host does not have many resources to spend. Docker

containers are also faster to get started than a regular machine to get booted.

https://www.terraform.io/

46

José Manuel Redondo López Chapter 3: System Feasibility Study

3.1.3.3.3 Disadvantages

Docker has some limitations when it tries to act as a virtual machine. Because containers use the

host’s kernel, some operating systems can not be installed on top of another. The tool itself also has

compatibility problems with some versions of OSs like Windows.

• Docker’s official site: https://www.docker.com/

3.1.3.4 Virtualization software’s CLI Tools

3.1.3.4.1 Description

Many virtualization software products such as VirtualBox include command line tools with which the

lifecycle of their machines can be managed. Though not platform-agnostic, many people still use

these tools to develop their own automation mechanisms; even Vagrant makes use of these utilities

for some of its internal operations.

3.1.3.4.2 Advantages

In principle, no additional software is needed apart from the virtualization platform.

3.1.3.4.3 Disadvantages

Using the virtualization software’s specific tools means the code that is being written will be tied to

a specific product entirely. Also, the version of the virtualization platform affects the command-line

utilities, as they often change with new versions, so distributing workflows with other users might be

impossible depending on the version each user has, or need manual tweaking in order to work.

Finally, other IaC tools seen previously can achieve more functionality while keeping the automation

consistent for every user.

3.1.3.5 Decision

Vagrant has been chosen as the software to automate the infrastructure deployment, mainly

because of its advanced features, the support for different providers and its easy use and distribution

of the necessary code for creating machines. In comparison to CLI tools, it clearly offers many more

features while also integrating some of said tools in the core of its technology. It is also better suited

for deploying local machines, offering many more capabilities in that regard compared to Terraform;

in this project, only a few local machines will be deployed at once, so Vagrant is the best choice

between the two. Regarding Docker, it has already been established that it presents some problems

when trying to operate with some operating systems, so it was discarded almost from the start.

https://www.docker.com/

47

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

3.1.4 Alternatives for auditing tools

3.1.4.1 CLARA

3.1.4.1.1 Description

CLARA is a tool developed by the CCN that allows performing analysis on the security features a

system has. The compliance analysis CLARA performs is based on the security rules provided by

several CCN’s Guides’s security templates. These security templates are applicable in a vast number

of varied scenarios with different application scopes, so they, alongside with the security rules

themselves, have been designed to define general security guidelines that ensure systems to be

compliant with the minimum security requirements established by the ENS. However, each

organization must consider that the predefined templates might need to get adapted to their

operational needs.

3.1.4.1.2 Advantages

First and foremost, CLARA is a free and very lightweight tool, and it does not need to be installed in

the machine to be audited (though it needs administrator rights to be run). The reports it outputs

state the ENS compliance score and all the values it checks with the actual and the expected results,

so knowing what is not configured correctly according to these national regulations is generally fast

to look up. The audit can also be adapted to the category of the system to be audited, so it will be

better fitted to the environment where the system will operate.

Another advantage is that it is mainly focused on auditing Microsoft Windows systems, both desktop

and server versions, so it supports almost all the latest Windows operating systems.

3.1.4.1.3 Disadvantages

Some information present in the reports CLARA outputs might not be clear enough to know what to

fix, specially because these reports are fully in Spanish and some values can be hard to find in the

official documentation. Also, some of the results that, according to CLARA, are not correct, comply

with the recommended configuration from other guidelines, such as the CIS Benchmarks. CLARA also

does not seem to be totally updated for the latest Windows 10 releases, as the way to apply some of

the remediations has been updated with these upgrades and this tool doesn’t reflect the changes,

while CIS Benchmarks do reflect them.

A huge drawback is that only few Linux systems are supported, being CentOS and RedHat the only

distributions for which the tool is available.

• CLARA’s official site: https://www.ccn-cert.cni.es/soluciones-seguridad/clara.html

https://www.ccn-cert.cni.es/soluciones-seguridad/clara.html

48

José Manuel Redondo López Chapter 3: System Feasibility Study

3.1.4.2 Lynis

3.1.4.2.1 Description

Currently maintained by independent software company CISOfy, Lynis is a well-known and mature

security tool for systems that run Unix-based operating systems, including, but not limited to, Linux,

macOS and Solaris. The tool performs extensive scans of the given system, and so it can support

compliance testing and system hardening.

Lynis can serve multiple different purposes, given its flexibility: from simple security auditing to

compliance testing and system hardening, but also penetration testing or vulnerability detection,

among others.

When scanning, Lynis uses and tests only those components that it is able to find in the system, thus

meaning that installing other tools is not necessary, and that Lynis can run with almost zero

dependencies. This means that this tool will always perform analysis that are fitted to the system it

is running on, while keeping it clean from other unnecessary tools. Additionally, the tests that get

performed can be tuned, disabling them if they’re too strict or even adding self-created ones.

An important thing that differences Lynis from other similar tools is that it will not automatically

harden the machine, but rather perform in-depth security scans, without polluting the system and

without risking breaking it. It will help users understand the level of security of their environment

and discover any possible vulnerabilities, and will allow them to decide later what kind of security

level is deemed appropriate for their system.

Lynis is currently free to use; the project is open source with GPL license and was made available in

2007. It has gathered a big community of users over the years, and it is now being used by different

profiles, from individuals to multinationals, businesses and even government departments.

3.1.4.2.2 Advantages

Lynis is one of the most renowned auditing tools in the market, at least for Unix-based OSs, as it uses

a wide range of sources to perform tests, such as CIS Benchmarks, NIST, NSA, OpenSCAP or other

guides and recommendations from various vendors. Scans are easy and fast to run and output a

detailed report on every security configuration that is checked, informing on whether their value is

correct according to the sources or not, as well as any security recommendations for further

hardening the system.

The tool is available for many Unix-based distributions, covering, among others, Linux Ubuntu, which

makes it an ideal tool for auditing at least some of the machines of this project.

3.1.4.2.3 Disadvantages

The tool needs to be installed in the machine, which despite not needing additional software to be

run, could be forbidden by the organization. It is also terminal-based, so users not accustomed to

working without GUI could find Lynis’s usage troublesome.

49

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

• Lynis’s official site: https://cisofy.com/lynis/

3.1.4.3 CIS-CAT Lite

3.1.4.3.1 Description

CIS-CAT Lite is an assessment tool developed by CIS, and the free version of the more advanced

solution CIS-CAT Pro. It tests against their benchmarks and controls, scoring the system being audited

with a compliance score that ranks from 0 to 100. This free version is very limited, with very few

benchmarks available, though it allows testing different environment levels for each one. Otherwise,

the results each audit produces have the same level of detail as with the CIS-CAT Pro version of the

tool.

3.1.4.3.2 Advantages

CIS-CAT Lite is specifically targeted to systems that are implementing CIS Benchmarks’

recommendations and other CIS controls, so for the scope of this project is one of the tools that are

better suited for the audit part. The reports each audit outputs are highly detailed, with all the

different controls broken down and scored both globally and separately, and linked to their

corresponding entry in the benchmark, which gets replicated in the report. Thus, locating which

control passes and which fails and finding the recommended value is straightforward and quicker

than resorting to the benchmark document itself.

3.1.4.3.3 Disadvantages

As it has already been mentioned, the Lite version is very limited; it can only test compliance using

the benchmarks for the last versions of Microsoft Windows 10, Ubuntu Linux and Google Chrome.

For the scope of the project, the options it offers are only fit for testing the Windows machine.

Another disadvantage is that it needs Java to be installed and configured to run, which will require

to add that specific dependency to the Linux machine.

• CIS-CAT Lite official site: https://learn.cisecurity.org/cis-cat-lite

3.1.4.4 Decision

It was decided that all the three tools will be used, but each in the machine that suits them best.

Lynis will be used for auditing the Ubuntu Linux machine, since it is specifically targeted to these

systems, whereas Windows 10 Education will be audited with both the CLARA tool and the CIS-CAT

Lite one.

https://cisofy.com/lynis/
https://learn.cisecurity.org/cis-cat-lite

50

José Manuel Redondo López Chapter 3: System Feasibility Study

3.2 STUDY OF ADDITIONAL TOOLS

3.2.1 Tools for automated installation and generation of Vagrant boxes:

Packer

Once Vagrant was chosen as the final candidate for managing the infrastructure to be deployed in

the project, a way to generate Vagrant boxes from freshly installed machines was investigated. Given

the constraint that the result should be compatible with Vagrant, the decision to use Packer, a tool

developed by HashiCorp as well, was almost immediate.

Packer allows creating custom boxes for Vagrant, in an automated way; it also integrates well with

unattended installations. This tool uses a template in either Hashicorp Configuration Language (new

versions) or plain JSON (old versions) to specify all the needed configuration for the image or images

that will be built, including the ISO to use, any files that must be executed or used when the machine

creation completes (such as unattended installation files), or the specific provider for which the box

will be generated (VirtualBox, VMware, etc.).

CHAPTER 4: PLANNING AND

MANAGEMENT OF THE END

OF DEGREE PROJECT

 D
E

V
E

L
O

P
M

E
N

T
 P

H
A

S
E

52

José Manuel Redondo López Chapter 4: Planning and Management of the End of

Degree Project

4.1 PROJECT PLANNING

4.1.1 Identification of Stakeholders

The stakeholders of this project have been already identified in previous sections (see PSI 1.3:

Delegation of Responsibilities and PSI 2.2: PSI Organization), with their corresponding responsibilities

during the lifecycle of said project, so they will not be shown in this section.

4.1.2 Initial Planning. WBS

One thing worth noting is that this project underwent some radical changes right before starting it

that affected not only its scope but also its objectives. Thus, the project’s starting date was a bit later

than desired.

Also, the student was working full-time when the planning phase took place; as such, the planning

was made with this information in mind. It was calculated that, on average, she would be able to

dedicate to the project around 4 hours a day, seven days a week.

It must be noted that some tasks overlap, like the ones belonging to the development and the

auditing phases. This has a reason: the student has tried to organize the audits and other testing-

related activities constant along the project, so that continuous improvements to the hardening code

specifically can be made.

In total, the project was thought to be starting mid-February and last 93 days, so it could end before

the start of July. This meant that, if the average hours spent on the project a day were 4, it would last

a total of 372 hours.

Figure 9. Gantt diagram for the Initial Planning

53

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

4.1.3 Risks

4.1.3.1 Risk Management Planning

The Risk Management Planning has been detailed in the Annexes, so it will not be shown here.

4.1.3.2 Identification of Risks

Despite the nature of the project, which makes it difficult to identify risks in a normal way, the

following possible risks have been identified, as well as the corresponding category and response in

accordance to the Risk Management Planning:

ID Short description Description Category Response Probability

1 Failure when

running the

hardening scripts

for old Windows

releases

Some remediations

may change or

become invalid from

one version of the

operating system to

another, as

Windows specifically

has made some

changes to the

naming of internal

registry keys and

other settings. This

may make the

remediations unable

to run or fail

External,

Technical

MITIGATE, by

trying to keep the

systems updated,

which is actually a

recommended

security

mechanism

Low

2 No possibility of

automating the

installation of a

given OS

There may exist the

possibility of being

unable to automate

the installation of a

given OS, because it

does not provide the

mechanism to do so

Technical ASSUME the risk,

there may be no

possibility other

than to install the

OS by hand

Low

3 Lack of specialized

knowledge of the

user trying to

execute the code

If the user does not

have enough

technical knowledge

on the system, he or

she may apply some

recommendations

External,

Technical

TRANSFER the risk

by finding

someone who has

the necessary

technical

knowledge to be

Medium

54

José Manuel Redondo López Chapter 4: Planning and Management of the End of

Degree Project

that restrict access

to critical services

able to discern

what

recommendations

can be applied

and what can not.

Or MITIGATE it by

instructing the

user on what

recommendations

could potentially

break the system

4 Lack of consensus

between the

organization and

the user applying

the remediations

It is extremely

important, specially

for some high

security

recommendations,

that both the users

that apply said

recommendations

and the

organizations are

totally aligned. If

not, critical services

may become unable

to operate

External,

Organizational

MITIGATE the risk

by specifically

indicating what

recommendations

need approval

from different

departments

Medium

5 Changes in CIS

standards’

recommendations

Because CIS is

constantly trying to

adapt to new

features and fixing

any obsolete value

or errata on their

benchmarks, some

recommendations

that have already

been adapted into

code might have to

be changed to

reflect those

modifications

External,

Technical

MITIGATE the risk

by staying ahead

of possible new

releases of both

the products and

the CIS

Benchmarks, and

checking the

latter’s registry of

changes

Low in the

case of

products

that have

reached

their end

of life,

Medium in

the case of

products

that are

still getting

releases

55

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

6 Collision between

CIS and ENS

standards

Some

recommendations

from CIS directly

clash or may directly

clash with what

other standards such

as the ENS establish

External MITIGATE the risk

by reaching

consensus with

the organization

on what security

standard has

more priority to

follow

Medium

7 Provider-specific

code changes

from version to

version of the

virtualization

provider

Some virtualization

providers, like

VirtualBox, change

their internal

functions from

version to version,

so settings

configured in a

determined way

using their internal

tools may fail in the

future if another

version of the

provider is used,

such as when

creating new boxes.

External,

Technical

MITIGATE the risk

by staying alert of

possible new

releases of the

software, as well

as all the changes

introduced in new

versions of the

product

Low

8 No possibility of

deploying the

Ansible controller

on the same

network as the

machine to be

hardened

Some networks may

be very restricted

and deploying a new

machine on the

network could not

be possible

External,

organizational,

technical

ASSUME the risk

by contacting the

organization

beforehand,

explaining the

conditions under

which the

provisioner must

run and reaching

a solution

Low

9 No administrative

privileges on the

machine to be

provisioned

The user trying to

connect to the

machine to be

provisioned does

not have

administrative

privileges, so tasks

External,

Technical

MITIGATE the risk

by contacting the

organization or

the system’s

administrator and

reaching an

agreement on

Medium

56

José Manuel Redondo López Chapter 4: Planning and Management of the End of

Degree Project

may fail or running

them could directly

be impossible

what user to use

or whether to

grant them

special privileges

for the amount of

time the

provisioning

process lasts

10 Services that

allow remote

access to the

machine are

restricted

It could be possible

that the machine

intended to be

hardened restricts

some type of

communication

service, such as

Windows with

WinRM. In this case,

it would be

impossible to

connect to the

machine remotely

to provision it

External,

Technical

MITIGATE the risk

by contacting the

organization or

the system’s

administrator and

reaching an

agreement to

temporarily

enable services

that allow remote

management of

the

corresponding

machine

Medium

Table 2. List of identified risks

It must be noted that, though these risks are related to the project and could originate from it, some

of them fail under the user and the organization’s responsibility, so it should be their task to consider

how to respond to these risks happening.

4.1.4 Initial Budget

First things first, this project has been planned with the intention of having almost zero cost regarding

materials and licenses. This budget intends to show how much the project would cost in a real

scenario, if all assets were quantified in regard to pricing, from personnel to licenses.

Because of the nature of this project, only the internal budget has been considered; there is no actual

real client, and because of that, there is a lot of information lacking to make a representative budget.

57

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

4.1.4.1 Internal Budget

In this section, only a summary of the internal budget will be shown; the full budget will be present

in the Annexes.

Budget Summary

Item Description Total cost

1 Personnel 13.000,00 €

2 Licenses 260,00 €

3 Material Resources 7,81 €

4 Indirect Costs 2.625,00 €

TOTAL 15.892,81 €

Table 3. Summary of the initial internal budget

4.2 PROJECT CLOSURE

4.2.1 Final Planning

The final planning significantly diverted from the original one. First and foremost, the project uses

many new technologies that required investigation and a constant process of trial and error. Because

of that, some phases ended up taking much more time than expected, such as the unattended

installation. On the other hand, some phases of the project were started in parallel, in contrast with

what had been planned: it was the case of the implementation of hardening tasks, since at the same

time the Cyber Ansible code was being checked and adapted into the project’s scripts, new

recommendations were being added simultaneously, to complement them.

However, in the end the project managed to last until the same day planned beforehand, effectively

amounting to the same number of hours, though some tasks had their planned starting or ending

date shifted.

58

José Manuel Redondo López Chapter 4: Planning and Management of the End of

Degree Project

Figure 10. Gantt Diagram for the Final Planning

4.2.2 Final Budget

4.2.2.1 Final Internal Budget

The final, real budget of the project turned out to be less than expected, as no license for the

Windows machine had to be purchased. Otherwise, the rest of the items were the same as the initial

in the initial budget:

Initial Budget Summary

Item Description Total cost

1 Personnel 13.000,00 €

2 Licenses 0,00 €

3 Material Resources 7,81 €

4 Indirect Costs 2.625,00 €

TOTAL 15.632,81 €

Table 4. Summary of the final internal budget

4.2.3 Learnt Lessons

It was found that organizing a project as big as this, with so many new technologies, can be very

challenging. It is difficult to estimate some tasks which make use of knowledge the student does not

even have prior to them starting. In this project’s case, the unattended installation of a Windows 10

machine, one of the core parts, turned out to be one of the most difficult to fulfil, and as such the

whole planning had to be moved to adapt.

59

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

CHAPTER 5: ANALYSIS OF THE

INFORMATION SYSTEM

D
E

V
E

L
O

P
M

E
N

T
 P

H
A

S
E

60

José Manuel Redondo López Chapter 5: Analysis of the Information System

The first thing that needs to be addressed beforehand is that this is not a typical software

development project. Not only because it does not intend to develop a proper application or software

module, but infrastructure; but also, because some of the phases have required carefully examining

security guidelines that have already been tested and validated. For all these reasons, some of the

sections a usual memory would include have been left out, reformulated, or merged to better adapt

to the project it documents.

This analysis of the information system thus includes specific sections for discussing the security

guidelines studied for making sure the machines this project deploys are hardened following the

standards, as well explaining the different sources from where hardening scripts are taken from and

how all these sources intend to be integrated.

5.1 ASI 1: SYSTEM DEFINITION

5.1.1 Determination of the System’s Scope

As it has already been explained in previous sections, this project will study and provide a way to

solve three main problems: automating the installation of operating systems, automating the

creation of (preferably secured) machines, and improving the security of existing infrastructure using

validated sources. Though addressing all three issues can translate into deploying real-life

architecture, this project must be considered as a first iteration, with a reduced scope that has

allowed testing all these intermediate objectives but that could be extended and implemented in a

real infrastructure in the future.

First and foremost, the main intention of the project is to be run on the local machine of the user.

The machines that will be developed, and afterwards, hardened, will be deployed as virtual machines

with the user’s computer acting as their host, so in principle anyone interested must have the full

code in their machines. However, apart from the project as a whole being Infrastructure as Code, and

therefore, of easy distribution, even in parts, both base machines and their secured counterparts will

be provided, as well as the original scripts used to export them, so anyone can replicate the process

and obtain their own hardened machines.

Another important thing to mention is that hardening real machines is out of the scope of the project:

it will be limited to the virtualized environments. Existing infrastructure, that is, the University’s

computers, will be relegated to auditing, to test their current security status so that they can later be

compared to the secured machines. This decision has also been influenced by the need of the

organization to check first what configurations and services are being changed. Nevertheless, future

plans on applying the results of this project on real machines have already been considered (see

Extensions).

It is also worth noting that:

61

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

• Regarding machine creation and deployment automation, Vagrant supports a number of

virtualization technologies, but only machines for VirtualBox will be generated and tested.

This virtualization software is freely available, offers rich functionality and runs on many

different operating systems, which is why it has become one of the most popular and used

products of this kind; the other alternatives (Docker, Hyper-V, etc.) all present drawbacks and

are even incompatible with certain machines.

• In the case of the unattended installation, it will be limited to Windows 10 Education, as it

has been mentioned in section 1.2.1PSI 2.1: Specification of the Scope and Reach of the PSI,

and further discussed in Alternatives for Windows Operating System installed.

• For the hardening process, the scope will be limited to applying as many controls of the CIS

Benchmarks’ guidelines as possible, and as long as they make sense, particularly for Level 1.

However, there exists the intention of further exploring both the CIS Benchmarks themselves

and other sets of national and international standards. More information on this can be seen

in Extensions.

5.2 STUDY OF AUTOMATED MACHINE CREATION AND UNATTENDED

INSTALLATIONS

Infrastructure creation with Vagrant is done by making use of Vagrantfiles, special files in which

developers include all the needed configurations for deploying said infrastructure. Probably the most

important elements that must be specified in these files are boxes: they represent packaged Vagrant

environments and, as such, will indicate what machine or machines should be brought up. The most

common way of working with Vagrant is by choosing from a catalogue an already existing box,

particularly base ones, as they include only the bare minimum to function; however, it could be

possible that none of them adapt to the infrastructure’s needs. In those cases, the best approach is

to create a custom box.

As it was found when investigating how Vagrant works and the possibilities for deploying Windows

machines, their public box catalogue does not contain any Windows 10 official box, in contrast with

other operating systems such as Unix-based ones. Using a third-party, user-developed Windows

environment was considered as a possibility for this project, but it was soon discarded in favour of

creating a custom box for the following reasons:

1. Installing and creating a custom box allows the student to configure a base machine tailored

to the needs of this particular project, including what version of the operating system to use

2. Using a third-party box implies trusting how the author has configured the machine and what

software has he or she installed on it. For a project focused on education needs, it can be

dangerous security-wise

62

José Manuel Redondo López Chapter 5: Analysis of the Information System

3. Most boxes are old and have outdated Windows 10 versions installed, as opposed to creating

a custom box with the latest available version of the operating system. This helps reduce

security issues

4. The Windows machine is intended to replicate as much as possible the real environment, or

at least model an educational scenario. In this regard, no Windows 10 Education boxes were

found in the catalogue

Further investigation also showed that, using a special, Vagrant-related tool called Packer (see Tools

for automated installation and generation of Vagrant boxes: Packer), it was possible to combine the

steps of performing an automated, unattended installation of Windows, and creating a custom base

box by exporting the machine resulted from the installation. This not only allows addressing some of

the issues at once, but will also ensure that the environment used for hardening really represents the

common scenario where the machine is left with as little security mechanisms as it came with when

installed.

5.3 ANALYSIS OF THE AVAILABLE BENCHMARKS AND SECURITY GOOD

PRACTICES

For understanding what security measures should be implemented, a study on the guidelines that

will be used as a reference needs to be carried out. This section is dedicated to analyzing how the

benchmarks are organized and what they contain to be able to make an informed decision on the

recommendations that can or should be applied.

5.3.1 CIS Microsoft Windows 10 Enterprise Benchmark, v1.12.0

The CIS Microsoft Windows 10 Enterprise Benchmark, version 1.12.0, was the most updated version

of this specific guide at the beginning of this project’s development. The benchmark is based on the

latest Windows 10 Enterprise release, 21H2, and though the configurations were tested against this

specific version of the operating system, it is intended to work for all Windows 10 versions, both

current and older.

5.3.1.1 Profiles

The Benchmark was found to include, apart from the default configuration profiles for security levels

Level 1 and Level 2, two additional profiles that extend the original ones. Thus, the four main,

distinguishable security profiles, that can then be combined, are as follow:

• Level 1 (L1) - Corporate/Enterprise Environment (general use): the most basic profile,

intended to act as the starting point for the majority of organizations. In principle, the

63

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

recommendations included as part of this first level provide clear security benefits while

maintaining the functionality of the system or systems as much as possible.

• Level 2 (L2) - High Security/Sensitive Data Environment (limited functionality): this second

profile is intended to extend Level 1, since the recommendations included are designed to be

applied in environments where a high level of security must be accomplished, even at the

expense of sacrificing services’ functionality; this means that, for complying with L2, L1

settings need to be applied as well. Implementation of any of the recommendations should

first be considered carefully and in conjunction with the organization, as performance and

utility of resources can be negatively affected, and access to them, restricted.

• BitLocker (BL): BitLocker is a volume encryption tool that Microsoft offers for both the

Professional and Enterprise versions of the Windows operating system; this software allows

encrypting and thus protecting hard drives from data theft. Thus, the BitLocker-related

controls pertaining to this profile are intended to be applied if the organization has this tool

deployed.

• Next Generation Windows Security (NG): this profile, as hinted by its name, contains

recommendations for environments where the newest configuration and hardware are

available, and so includes advanced security features that could be incompatible with some

systems. Because of this, implementation requires careful testing beforehand. Nevertheless,

these controls are strongly advised to be applied if possible, because of its impact on the

overall security of the systems.

5.3.1.2 Sections

This guide is divided into 19 main sections grouping recommendations that refer to the same set of

policies; the schema is directly based on how Windows arranges the equivalent security policies.

Because of this, some sections do not include any content, appearing just to keep the CIS document’s

structure consistent with Windows’s policy organization.

For the reader’s ease, the following table roughly summarizes all the different sections of the

document, with a brief description of their overall purpose.

Section

number

Name Description

1 Account Policies Recommendations for account policies related to passwords

and account lockouts

2 Local Policies Recommendations for local policies, related to assignment

of user rights and configuration of local security options for

accounts and various services

3 Event Log Blank; included to keep consistency

4 Restricted Groups Blank; included to keep consistency

64

José Manuel Redondo López Chapter 5: Analysis of the Information System

5 System Services Recommendations for configuring different system services,

(Xbox-related, Bluetooth-related, Remote Management-

related, etc.)

6 Registry Blank; included to keep consistency

7 File System Blank; included to keep consistency

8 Wired Network (IEEE

802.3) Policies

Blank; included to keep consistency

9 Windows Defender

Firewall with Advanced

Security

Recommendations for configuring the default Windows

Firewall for the three offered profiles (Domain, Private,

Public)

10 Network List Manager

Policies

Blank; included to keep consistency

11 Wireless Network (IEEE

802.11 Policies)

Blank; included to keep consistency

12 Public Key Policies Blank; included to keep consistency

13 Software Restriction

Policies

Blank; included to keep consistency

14 Network Access

Protection NAP Client

Configuration

Blank; included to keep consistency

15 Application Control

Policies

Blank; included to keep consistency

16 IP Security Policies Blank; included to keep consistency

17 Advanced Audit Policy

Configurations

Recommendations for configuring audit-related policies that

allow monitoring different types of events (Logon/Logoff,

account management, changes to policies, system events…)

18 Administrative

Templates (Computer)

Recommendations for Group Policy Administrative

Templates, system-based

19 Administrative

Templates (User)

Recommendations for Group Policy Administrative

Templates, user-based

Table 5. CIS Microsoft Windows 10 Enterprise Benchmark's sections' summary

5.3.1.2.1 Section 1: Account Policies

This first section includes some basic security recommendations for password and account lockout

policies; in fact, all controls are Level 1, so their implementation is encouraged, preferably at domain

level.

Password Policy recommendations deal with essential settings such as the minimum password length

or its maximum age, and though most of them are already set up for domain members, standalone

workstations lack almost all recommended values for their local accounts. On the other hand,

65

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Account Lockout Policy recommendations deal with settings that affect what happens to user

accounts if they get blocked; neither domain members nor standalone workstations have these

values configured by default, leaving systems vulnerable to Denial of Service and brute-force attacks.

5.3.1.2.2 Section 2: Local Policies

The second section of the document includes recommendations related to Local Policies; these Local

Policies include three main sections, being the most critical the User Rights Assignment and the

Security Options. The third one relates to a general Audit Policy that, even from official Microsoft

documentation, is advised to be left unused in favour of other audit policies (see Section 17:

Advanced Audit Policy Configurations).

User Rights Assignment’s recommendations deal with features that control what users or groups

have certain privileges and/or rights on a device, whereas the Security Options ones help configure

varied specific security settings. Some of the recommendations for both subsections may need to be

considered or parameterized to adjust to the organization’s security policies, or even discussed with

its legal/human resources representatives.

5.3.1.2.3 Section 5: System services

This section includes recommendations for various system services, such as Internet Connection

Sharing (which allows turning a computer into an Internet router), OpenSSH SSH Server, or Windows

Remote Management (WinRM). Many of the recommendations included in this section are Level 2,

as they involve restricting or disabling services that could be crucial to the system’s or the

organization’s normal operation. A perfect example is WinRM, which is needed for remotely

managing the machine via Ansible, among other uses.

5.3.1.2.4 Section 9: Windows Defender Firewall with Advanced Security

This ninth section contains recommendations to configure Windows’s default firewall, for three

different profiles: Domain, Private and Public. Each of these profiles corresponds to a specific

network scenario: Domain is for networks where the host authenticates to domain controllers,

whereas Private and Public profiles are applied to private and public networks respectively. This last

profile is the default one. All recommendations for the three profiles are Level 1.

Basic firewall configuration, such as whether it is enabled or not, are already set by default with the

recommended values by CIS; however, some more advanced settings, which could be considered as

good practices, would need to be specifically set to comply with the recommendation.

5.3.1.2.5 Section 17: Advanced Audit Policy Configurations

This section of the document comprises recommendations for configuring audit-related policies that

allow and manage the logging of events. The settings discussed in this section provide better and

more specific control over the audit process, in comparison to other Audit policies (such as the ones

under Local Policies).

66

José Manuel Redondo López Chapter 5: Analysis of the Information System

The recommendations present here could be subject to the organization’s requirements, security

policies or legal obligations.

5.3.1.2.6 Section 18: Administrative Templates (Computer)

This section of the guide includes recommendations based on the Group Policy Administrative

Templates (ADMX), specifically for the computer side. This part of the document contains a large

number of items with different security configuration profiles and a wide variety of application

scopes; as such, special attention has been put into choosing the settings that will be considered for

implementation based on the recommendations.

5.3.1.2.7 Section 19: Administrative Templates (User)

The final section of the document includes, too, recommendations based on the Group Policy

Administrative Templates (ADMX), but for users; however, it includes significantly less items than

Section 18: Administrative Templates (Computer).

5.3.1.3 Recommendations that will not be implemented

While this could be considered as part of the definition of the project’s scope because it limits its

reach, choosing the recommendations that will and will not be implemented could only be possible

after carefully examining the Benchmark in this analysis phase. From this study, the following

decisions were taken.

First, only those recommendations marked as “Automated” will be implemented, as they can be set

via Ansible, and so “Manual” controls will be omitted. It does not make sense in a project whose

intention is to automate the hardening process as much as possible to consider configuration settings

that can only be set manually, as there is no reproducible code to be provided to future users of the

system.

Additionally, only some of the security policies from Level 2 will be implemented, as long as they

contain security measures that could be useful to the organization while not impeding remote

management (due to Vagrant and Ansible) or heavily affect the system’s functionalities. However,

applying the remediations for this specific high security environment will be left to the user, with

some control mechanism to let them enable these features or not.

Regarding the additional configuration profiles, policies specific to them will be omitted as well. On

the one hand, BitLocker-related recommendations are intended for organizations that choose to use

this volume encryption software, so consensus with the business side should be reached first. On the

other hand, the Next Generation Windows Security profile is intended to be used in environments

with advanced features and so its implementation should also be thoroughly tested and discussed

with the organization. In any case, the guide clearly specifies that these two profiles are to be

considered optional add-ons to the default levels, and therefore should have less priority.

67

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Finally, some of the policies that do not fail under any of the categories mentioned in this section

(meaning that they should be considered for implementation) will not be fully applied or not applied

at all; some of them require expert administrative knowledge, while others depend on the

organization where they will be implemented, for legal, technical, or business reasons.

5.3.2 CIS Ubuntu Linux 18.04 LTS Benchmark, v2.1.0

The CIS Ubuntu Linux 18.04 LTS Benchmark, version 2.1.0, was the latest available version of this

guide when this project started.

5.3.2.1 Profiles

The guide incorporates profiles for 2 different types of machines (servers and workstations) and the

2 common security levels (Level 1 and Level 2). As what happened with the Windows Benchmark’s

profiles, items considered of Level 1 are of basic application, providing substantial security benefits

while keeping services and general activity of machines (either servers or workstations) as unaffected

as possible. On the other hand, Level 2 recommendations should be applied carefully and are only

really recommended for high-security environments, as they could seriously alter normal operation

of the machine whose type is affected by this security level.

5.3.2.2 Sections

The benchmark document is divided into 6 main sections, each for a main configuration area that

should be covered. They can be seen in the following table:

Section

number

Name Description

1 Initial Setup Initial configurations applicable to all systems

2 Services Recommendations for disabling or restricting services

3 Network Configuration Recommendations related to the network configuration and

how to set it up securely

4 Logging and auditing Recommendations for enabling logging and auditing on the

system

5 Access, Authentication

and Authorization

Recommendations related to configuring access,

authentication and authorization features (SSH,

passwords…)

6 System Maintenance Maintenance recommendations

Table 6. CIS Ubuntu Linux 18.04 LTS Benchmark sections' summary

68

José Manuel Redondo López Chapter 5: Analysis of the Information System

5.3.2.2.1 Section 1: Initial Setup

In the first section, recommendations for first configuring the system are listed, as they are easier

being performed during the initial setup and become harder to implement once the system has been

in use. In general, CIS advises that all systems should apply these security items.

The section guides users to safely perform basic system configuration, such as configuring the

filesystem, setting up software updates or enabling secure boot settings.

5.3.2.2.2 Section 2: Services

In this second section, CIS provides a list of services that can be disabled or deleted safely without

disrupting normal operation of the system in most of the cases, as well as some services that should

have special security configuration. The recommendations should be carefully examined individually

to really ensure that modifying the settings of these services or removing them from the system does

not affect it in any way.

5.3.2.2.3 Section 3: Network Configuration

The third section includes recommendations for securely setting up the network configuration of

the system. The section serves as a guide for disabling uncommon or unused network protocols and

devices, enabling network parameters with recommended values, and correctly configuring the

system’s firewall (UncomplicatedFirewall, nftables or iptables).

5.3.2.2.4 Section 4: Logging and auditing

This section contains recommendations for configuring logging services, both rsyslog and journald,

which are intended to be used together. Obviously, these recommendations only apply if the

mentioned services are installed or meant to be installed, otherwise they can be omitted. However,

it is recommended to have some sort of advanced, properly configured logging service.

5.3.2.2.5 Section 5: Access, Authentication and Authorization

This fifth section includes recommendations for everything related to access, authentication and

authorization processes, including SSH Server and password-related configurations, as well as setting

up sudo and time-based job schedulers.

5.3.2.2.6 Section 6: System Maintenance

This section contains special maintenance recommendations that are expected to be checked

regularly. However, though many of them include automated ways to perform the audits, the

remediations are not quick, being in some cases partially manual, partially automated, and

sometimes requiring the system administrators or maintainers to analyze the output of the audit

processes to take the appropriate measures to fix any discrepancies in each situation.

69

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

5.3.2.3 Recommendations that will not be implemented

First, as this benchmark is significantly simpler than the Windows one, as many recommendations as

possible will be applied, if they make sense for the kind of machine being hardened.

However, as with Windows security items, only recommendations that can be audited and

remediated in an automated way, from beginning to end, will be implemented. Also, any Level 2

recommendation will be studied, to check whether they affect any critical system functionality or, on

the contrary, could suppose a clear security benefit; if the case is the latter, then they will be applied,

as long as their full automation is possible.

Finally, System Maintenance recommendations will not be considered. From careful examination of

the remediation process for each task, it can be deduced that they are to be performed by regular

maintainers of the system, such as system administrators, as they are the ones which will have a

better insight of the infrastructure; the tasks are also intended to be performed over time, and not

only during the first setup of the machine. Additionally, some of them may require special knowledge

of the environment or even require adapting remediations to site policies.

5.3.3 General good security practices

Apart from all the recommendations contained in the benchmarks, there are a series of good security

practices that system administrators and other security experts can consider important or even

critical for certain organizations. They have been discussed beforehand with some security advisors

and will be implemented and tested on the Windows machine.

5.3.3.1 Windows PowerShell

Standard, non-administrator users should not be able to access PowerShell to its full capability for

command or script execution, or at least be denied elevation requests. As such, an approach for fully

disabling PowerShell automatically for the Users group will be implemented.

It is important to note that only two PowerShell-specific recommendations appear in the Windows

10 Education Benchmark, one for logging commands, functions or scripts invoked through this shell,

and another for transcribing their input and output. No recommendation referencing to directly

blocking non-administrator users from performing certain operations was found in the guides.

5.3.3.2 Change the Vagrant user password

The default, well-known default Vagrant user’s password should be changed by a more robust one,

that should also comply with the password policy in place. This change should not affect the SSH

connection between the Ansible controller or the host and the machine, as for these communications

a public-key authentication mechanism will be in place.

70

José Manuel Redondo López Chapter 5: Analysis of the Information System

5.3.3.3 Manage local administrators

In some organizations’ machines, it could be interesting to manage what users should be included or

kept out of the local administrators’ group, to avoid having additional users with administrative

privileges. A way to manage the list of local administrators of the system being hardened will be

provided.

5.4 ANALYSIS OF HARDENING SCRIPT SOURCES

5.4.1 Cyber Ansible

The project being developed is not the first dealing with automated system hardening based on

international security guidelines; in fact, Carlos Lacasa’s Cyber Ansible partially tackles this issue,

providing Ansible playbooks for Windows and Linux systems that implement many cybersecurity-

related tasks. Among them, there can be found roles that group together security recommendations

based on different international standards and sources.

Careful examination of these scripts is vital in this phase of the project, as it is third-party code.

5.4.1.1 Compliance scripts for Windows systems

For Windows systems, security configurations based on recommendations from CIS, GSA (the US

General Services Administration), ACSC (the Australian Cyber Security Center) and STIG (Security

Technical Implementation Guide) can be found.

Cyber Ansible’s Windows compliance scripts make use of some Ansible modules specifically designed

for manipulating security policies and system registry values. In addition to that, configuration values

for some of the implemented recommendations have been externalized to a variables’ file, so that

they can be easily modified if needed without having to touch the proper Ansible code.

Finally, Cyber Ansible can be used to provision either English or Spanish-based machines, as it loads

the appropriate configuration files depending on the system locale.

5.4.1.2 Compliance scripts for Linux systems

In the case of Linux, Cyber Ansible explicitly provides hardening scripts only for OpenSCAP, SOX and

STIG-based recommendations. However, as it happens with Windows, many of the

recommendations can be reused with minor configuration changes to be CIS-compatible, as they

modify the same settings.

71

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

5.5 INTEGRATION BETWEEN HARDENING SOURCES

After analyzing the Cyber Ansible scripts, it could be concluded that some of them could be reused,

though determined configuration values would need to be changed and parameterized to adapt to

the ones recommended by CIS Benchmarks. So, this project’s hardening phase will have several

additional chores for integrating the different sources of knowledge:

• Examine all Cyber Ansible compliance scripts, for all sources, and identify the tasks and/or

files that can be adapted to comply with CIS (or that directly comply with CIS)

• Reorganize said tasks and/or files into a CIS Benchmarks-based directory structure, for easier

access to them when following the guides. Identify them with their CIS identifiers

• Modify any non-CIS-compliant setting inherited from Cyber Ansible to adjust to the version

of the benchmarks being used

• Add support for missing recommendations, adapting the remediations that were agreed to

be implemented into Ansible tasks

• Include in-code explanations for those tasks that could be particularly critical or that need to

be configured differently than recommended by CIS Benchmarks for continued Vagrant or

Ansible management

• Provide explicit support for Windows 10 Education machines, as they are not considered in

Cyber Ansible

• Parameterize all variables that do not have a fixed, recommended value, but rather a range

of possible values or even values that should be discussed with the organization beforehand

(e.g. warning messages, log file sizes or password-related configurations). Keep support for

different languages

• Make all Level 2 implemented tasks (at least for Windows) conditional, so that their execution

can be activated or deactivated depending on the environment where the hardening will take

place

Additionally, some basic security configurations (PowerShell access control, local administrators’

configuration or system updates) will be implemented. Separate code for these settings will be

created, to clearly distinguish between them and CIS-specific tasks.

5.6 ASI 2: ESTABLISHMENT OF REQUIREMENTS

5.6.1 Acquisition of the System’s Requirements

As this project’s main goal is to automate as much as possible the whole machine’s installation-

creation-hardening process, little to no manual intervention of the user is required. As such, the

72

José Manuel Redondo López Chapter 5: Analysis of the Information System

requirements that have been acquired are mainly non-functional ones, with some exceptions for

each of the specific phases.

5.6.1.1 Functional requirements

Automated Machine Creation (AMC-FR)

• AMC-FR-1. The system must deploy machines for the following operating systems:

o AMC-FR-1.1. Ubuntu Linux

o AMC-FR-1.2. Windows 10

• AMC-FR-2. The machines must be deployed using VirtualBox as the virtualization platform

Automated Machine Hardening (AMH-FR)

• AMH-FR-1. The system must be able to deploy a controller machine that connects via Ansible

to the following base machines:

o AMH-FR-1.1. Ubuntu Linux

o AMH-FR-1.2. Windows 10

5.6.1.2 Non-functional requirements

The following groups of non-functional requirements were identified:

Compliance (COMP-NFR)

• COMP-NFR-1. The new code developed for hardening based on the CIS Benchmarks must

comply with CIS recommendations

o COMP-NFR-1.1. If a recommended setting impedes communication between the

machine being provisioned and the machine executing Ansible:

▪ COMP-NFR-1.1.1. The provided value will be such that it does not interfere

with the machines’ communication, even if it does not comply with CIS

benchmarks

▪ COMP-NFR-1.1.2. The following information must be provided to the user:

• COMP-NFR-1.1.2.1. An explanation about why the CIS

recommendation has not been followed

• COMP-NFR-1.1. 2.2. An indication of what the CIS-recommended value

is

• COMP-NFR-2. The third-party code used for hardening must comply with CIS

recommendations

o COMP-NFR-2.1. The code must be verified to check the settings comply with the ones

specified in the CIS Benchmarks

o COMP-NFR-2.2. If a setting is not CIS-compliant, it must be modified to comply with

the corresponding recommendation, unless COMP-NFR-2.3 happens

73

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

o COMP-NFR-2.3. If a recommended setting impedes communication between the

machine being provisioned and the machine executing Ansible, the following

information must be provided to the user:

▪ COMP-NFR-2.3.1. An explanation about why the CIS recommendation has not

been followed

▪ COMP-NFR-2.3.2. An indication of what the CIS-recommended value is

Open Source (OPSRC-NFR)

• OPSRC-NFR-1. The hardening policies’ third-party code used in the project must be Open

Source

Reusability (REU-NFR)

• REU-NFR-1. The code used for hardening must be independent from the machine that will

execute said code, allowing it to be reused in different applications

Extensibility (EXT-NFR)

• EXT-NFR.1. The code used for hardening must be developed in such a way that allows adding

new tasks without having to modify existing ones

Flexibility (FLEX-NFR)

• FLEX-NFR-1. The code used for hardening must be developed in such a way that supports

adapting to new requirements

• FLEX-NFR-2. CIS recommendations’ values that are not fixed in the guides must be

parameterized by means of variables with descriptive names

o FLEX-NFR-2.1. The variable must be put in an external configuration file

o FLEX-NFR-2.2. The variable must be set with a default value that complies with the

specific CIS recommendation

Security (SEC-NFR)

• SEC-NFR-1. Communications between machines must be secured

o SEC-NFR-1.1. The information shared between the Ansible controller and the

controlled machines must travel through an SSH encrypted channel

▪ SEC-NFR-1.1.1. The SSH authentication method must use public-key

encryption

Internationalization and Localization (INT-NFR)

• INT-NFR-1. The hardening code developed for Windows must support the following Operating

System Locales:

o INT-NFR-1.1. Spanish

o INT-NFR-1.2. English

74

José Manuel Redondo López Chapter 5: Analysis of the Information System

• INT-NFR-2. The hardening code developed for Windows must allow supporting new

Operating System Locales

5.7 SPECIFICATION OF THE TESTING AND AUDITING PLAN

As it has already been established at the beginning of this chapter, this project is not a regular

development one. Because of this, the testing plan is also different from what could be expected

from such projects.

First of all, the initial phases of the project that involve the automated machine creation and

unattended installation can not really be tested, apart from checking the machines are set up

following the indicated configuration. The tools used for this part of the project have not been

developed by the student and already incorporate mechanisms to protect from incorrect settings;

configuring either invalid values or values not expected by the tools or the system being configured

will prevent the machines from getting set up or even booting.

The hardening phase also has some constraints. CIS Benchmarks have been carefully crafted and are

constructed following an audit-remediate approach: this means that for each security control they

consider, they include the way to check the current control’s value (how to audit it), and how to

configure it to comply with what CIS recommends (the remediation). Because of this, tests are

embedded in the deployment itself. It is also important to remember that these guides and all their

controls have been devised, tested and validated by internationally-recognized organizations; if the

values this project configured for the security settings of the machines didn’t adjust to the

recommendations, then they wouldn’t be complying with the benchmarks. As such, it does not make

sense planning and creating tests that attempt to set non-complying configurations, because their

correct or recommended values have already been established.

However, this does not mean there is no way of checking that the recommendations are in place and

affect the overall security of the machines. For this purpose, audits using the tools specified in section

EVS 4, 5 y 6: Study and Valuation of the Solution Alternatives and Selection of the Final Alternative

will be carried out. Additionally, careful monitoring of the results of the executed Ansible tasks will

take place, to ensure that any failure gets detected and corrected.

5.7.1 Task monitoring

All runs of Ansible tasks will be monitored and the logs, exported to text files to detect any possible

failure. Failed tasks will be examined and remediated if possible; those that fail will be recorded and

an alternative solution, if possible, will be proposed.

75

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

5.7.2 Auditing Plan

Auditing will take place throughout most of the duration of the project, and will be specially focused

on the virtualized environments being deployed by the student. However, some audits over real

infrastructure will be carried out as well, as was previously mentioned in PSI 3.1: Study of the current

situation. The plan followed in both cases will be detailed below.

5.7.2.1 Virtualized environments’ auditing

5.7.2.1.1 Windows 10 Education machines

The Windows virtual machines will be audited pre-hardening for checking the default security score

against CIS Benchmarks and ENS. From this point on, as security controls get applied, new

intermediate audits will be carried out, though only the final reports for the completely hardened

machines will be taken into consideration for contrasting their scores against the initial ones.

The tools that will be used for auditing will be CLARA and CIS-CAT Lite, already explained in

Alternatives for auditing tools:

• CLARA, which checks compliance with the ENS, allows selecting the category to which the

system being audited belongs. After checking the list of public entities that have already been

certified as ENS-compliant, it was found that the universities which appear on the list have

information systems that either belong to the BASIC or MEDIUM categories; however, this

project’s Windows machines will also be tested for the HIGH category. This will ensure having

the full picture in case the machine was to be introduced in a high security environment, or if

the developed Ansible code needs to provision systems in such environments.

• CIS-CAT Lite, specific for checking compliance against CIS-related controls, allows running

audits based on the CIS Microsoft Windows 10 Enterprise Benchmark v1.12.0, the same

version taken as reference for applying the recommendations, for both Levels 1 and 2. The

main focus of the audits will be placed on compliance for Level 1, but they will take place for

the two security levels, as some L2 recommendations will be implemented.

Thus, the full list of scenarios that will be audited for the Windows machine is as follows:

1. Pre-hardened Windows 10 Education machine:

a. CLARA tool

i. System category “Low”

ii. System category “Medium”

iii. System category “High”

b. CIS-CAT tool

i. Level 1 (L1) - Corporate/Enterprise Environment (general use)

ii. Level 2 (L2) - High Security/Sensitive Data Environment (limited functionality)

2. Hardened Windows 10 Education machine:

a. CLARA tool

76

José Manuel Redondo López Chapter 5: Analysis of the Information System

i. System category “Low”

ii. System category “Medium”

iii. System category “High”

b. CIS-CAT tool

i. Level 1 (L1) - Corporate/Enterprise Environment (general use)

ii. Level 2 (L2) - High Security/Sensitive Data Environment (limited functionality)

5.7.2.1.2 Ubuntu Linux machines

As with the Windows machines, the Ubuntu ones will be audited pre- and post-hardening. In this

case, the tool for auditing will be Lynis (described on Alternatives for auditing tools), whose score is

partially based on CIS controls. No specific security levels or environment needs to be set for the

audit, so only the following scenarios will be considered:

1. Pre-hardened Ubuntu Linux machine, using the Lynis tool

2. Hardened Ubuntu Linux machine, using the Lynis tool

5.7.2.2 On-premises auditing

With the permission of the School of Computer Engineering’s scholars, the ones responsible for

managing some of the computer equipment and software, it was agreed that some audits will take

place to test the security of the machines used in the 2021-2022 academic year. Additionally, the

base image that will be cloned onto the machines for the next academic year, 2022-2023, will also

be audited. The scenarios planned for each system’s audits are the same described for the virtual

Windows machine (see Virtualized environments’ auditing), though for obvious reasons these

machines will not be hardened.

5.7.3 Tests to be manually performed

Finally, there do exist some parts of the hardening process for the Windows 10 Education machine

that can be tested following a more conventional approach, though the process will need to remain

manual, that is, by modifying configuration values and/or testing the behaviour by hand. However,

this should be the way to check the result of applying these security settings, since they intend to be

implemented adapting good security practices and, by themselves, do not appear in the CIS

Benchmarks.

All tests pertaining to the default machine user refer to the user set up as default during the

installation process, which will be the same with which Ansible will try to connect to said Windows

10 machine.

77

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

5.7.3.1 PowerShell access restriction

This test will check the restriction mechanism devised for controlling access of non-administrators to

the Windows PowerShell.

PowerShell Access Restriction (Windows 10)

Test Expected Result

Indicate PowerShell needs

to be disabled (restricted

access)

Non-admin users will not be able to access PowerShell through any

of the executables

5.7.3.2 Configure local administrators

This test will check the results of executing the task for keeping only indicated users as administrators

of the local system, with emphasis on the default machine user.

Configure local administrators (Windows 10)

Test Expected Result

Take out default machine

user from being Local

Administrator

The default machine user will be taken out of the ‘Administrators’

group and will lose administrative privileges

5.7.3.3 Local administrators’ password change

This test will check the results of executing the task for changing the passwords for the local

administrators of the system, with emphasis on the default machine user.

Local administrators’ password change (Windows 10)

Test Expected Result

Change password for the

default machine user

The password of the default machine user will be changed to the

new one

CHAPTER 6: DESIGN OF THE

INFORMATION SYSTEM

D
E

V
E

L
O

P
M

E
N

T
 P

H
A

S
E

80

José Manuel Redondo López Chapter 6: Design of the Information System

An important remark that must be made beforehand is that this project mainly deploys scripts that

have been validated and verified against international standards in an organized and controlled way;

as such, some diagrams that would apply to a regular Object-Oriented Programming project, such as

Classes Diagrams, will not be shown in this chapter. Additionally, certain sections have been omitted

and/or reformulated to better explain the design process of this project.

6.1 DESIGN OF THE INFRASTRUCTURE DEPLOYMENT PROCESS

This section will explain all the steps needed for deploying the final infrastructure. Though they

individually fulfil the planned intermediate objectives, and the resulting product or products of each

of the steps could be valuable on its/their own, the final goal of the project can only be achieved

following them in the order presented below. One thing worth noting is that this order doesn’t adjust

exactly to the phases explained in section PSI 2.1: Specification of the Scope and Reach of the PSI; this

is due to the relative independence of the intermediate goals.

6.1.1 Steps

6.1.1.1 Step 1: Automated Unattended Installation

One thing that needs to be clarified is that, though the project is indeed automating the installation

of a Windows machine, it is doing it through Packer, whose final purpose is creating virtual machine

images. It could be argued that this does not equate automating a real installation; however, the

process would be very similar, if not easier, on a real machine, as Packer adds some specific extra

steps for building the final images. For this part, several items must be prepared beforehand.

As a basic step, Packer is an executable, not a software that has to be installed in the machine. As

such, the executable will be placed in the root directory where all the rest of the files referenced

below will also be present.

Additionally, an ISO of the operating system to be installed is needed, preferably one belonging to

the user as the retail key needs to be known, as well as its checksum. In the case of this project, an

officially licensed Windows 10 Education, release 21H2 ISO will be the one used.

Packer templates are also required, as they are the ones containing the configuration for building the

boxes for different providers; as it was decided in an earlier analysis phase, only data for creating

VirtualBox-specific Vagrant boxes will be considered. These templates can be in either HCL or JSON

format, but the latter will be the chosen one as it is easier to read and manipulate: in the end, it will

be a collection of key-value pairs identifying the specific setting and its value.

Finally, as the intention is to perform a totally unattended installation, special XML files

(Autounattend.xml) for filling the installation form will be mandatory. These files must then be

81

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

referenced in the corresponding template to be made available right when the machine first boots;

the Windows install will automatically look for and load them if they exist. Special attention needs

be put into the Autounattend.xml, as it will be where the machine locale, the locale of the user input,

the product key or the default user will be specified.

After everything mentioned above is correctly configured, Packer will be executed and the machine

will start being built automatically, requiring no manual intervention; the process will be monitored

to check if any problem arises. If it succeeds, a box artifact will be outputted, with the machine

installed and set up as requested. This artifact will then be imported into Vagrant’s local cache of

boxes, so it becomes available to be used with that tool in the next steps.

6.1.1.2 Step 2: Automated machines’ deployment

Machines will be created and deployed with a basic first configuration via code, using Vagrantfiles

for the main infrastructure. Additionally, the needed auditing tools will be copied to or installed into

the corresponding machine, so that they become available without requiring the user to set them up

manually.

The infrastructure, detailed in DSI 5: Design of the Architecture of the System Modules, will deploy in

the student’s computer using VirtualBox and Vagrant to manage the machines, and will vary

depending on whether the specific machine is intended to be hardened or not, since in this last case

an extra node acting as an Ansible controller needs to be set up as well.

6.1.1.3 Step 3: Machine hardening

Machine hardening, though it could be contemplated as an independent process, is in this project

closely tied to the previous step, as the infrastructure will be fully virtual and managed via Vagrant

and Vagrantfiles. Two machines will be deployed in each case: the base machine to be hardened,

which will be either the Windows 10 Education or the Ubuntu Linux 18.04 one, and an Ansible

controller, in charge of provisioning the base machine with the hardening Ansible scripts. Both

machines will be connected to the same network, so that the controller can access via SSH to the

controlled node. As Vagrant presents some problems when trying to make two machines deployed

using two different Vagrantfiles communicate, machines to be hardened will be created in the same

file as the Ansible controller, and both will be placed in the same internal network to be able to see

each other. The deployed infrastructure is detailed in DSI 5: Design of the Architecture of the System

Modules.

The Ansible controller, which will be built as a plain Ubuntu machine, will have all the needed code

(playbooks and/or roles) copied to it, as well as a static inventory in which the machines to be

provisioned will be specified. Ansible will then be installed onto the controller node automatically

using dedicated Vagrant provisioners, and the hardening code will be run to provision whatever

machines have been specified in the inventory. Once the tasks finish running, the resulting hardened

environments can be packaged so that they can be deployed wherever they are needed.

82

José Manuel Redondo López Chapter 6: Design of the Information System

6.1.2 Hardening code to be deployed

The hardening code will be designed and then implemented following the guidelines specified in

Integration between Hardening Sources and the limitations found in section Analysis of the Available

Benchmarks and Security Good Practices. It will include Cyber Ansible, CIS-compliant tasks, as well as

code specifically developed for adapting CIS recommendations; all this code will have its “audit”

section from the benchmarks checked to ensure they can be detected in automated audits.

Additionally, some non-CIS related, hardening tasks will be implemented.

A diagram showing the exact way in which the hardening scripts will be organized can be seen in

Provisioners; CIS-related tasks belonging to the same section according to the benchmarks will be

grouped in the same file, while being clearly separated from other hardening tasks.

6.2 DSI 5: DESIGN OF THE ARCHITECTURE OF THE SYSTEM MODULES

6.2.1 Deployment Diagrams

The deployment of the full structure, considering Vagrant as the manager for the Virtual Machines

and VirtualBox as the virtualization provider, would be like this:

Figure 11. Simplified architecture to be deployed

6.2.2 Package Diagrams

The following diagrams illustrate how the project is structured physically in the different directories,

to help understand how the scripts and other additional files have been distributed. The most

important directories have been included as independent diagrams as well to better show its internal

structure.

83

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

6.2.2.1 Full directory structure

This diagram illustrates the whole physical package architecture of the project and how the different

packages are related. It must be noted that the directory packer is designed to be included in the

architecture because it will contain all the necessary code (minus the packer executable itself) for

building the custom Windows 10 box, so that any user will be able to replicate the process.

Figure 12. Package diagram of the whole directory structure (simplified)

6.2.2.2 Provisioners

This diagram shows how all the shared provisioning code has been arranged. The structure has been

deliberately designed to allow extension, making it possible to add different provisioners without

having to touch any existing code, or implement new Ansible roles for either supported or new types

of machines.

84

José Manuel Redondo López Chapter 6: Design of the Information System

Figure 13. Package diagram for the Provisioners' packages

6.3 TECHNICAL SPECIFICATION OF THE TESTING AND AUDITING PLAN

The testing and auditing will be carried out as described in section Specification of the Testing and

Auditing Plan. As it was already commented, monitoring and auditing will take place during the whole

hardening phase, using all three auditing tools (CLARA, CIS-CAT Lite, Lynis), and scores will be

recorded and compared from one execution to another to ensure that tasks improve the machines’

security according to the standards.

CHAPTER 7: CONSTRUCTION

OF THE INFORMATION

SYSTEM
 D

E
V

E
L

O
P

M
E

N
T

 P
H

A
S

E

86

José Manuel Redondo López Chapter 7: Construction of the Information System

Because of the nature of this project, the construction phase had to be adapted as well, to fit the

objectives of the project. Some sections have been adapted or fused, so they can better reflect the

work done.

7.1 CSI 1: PREPARATION OF THE GENERATION AND CONSTRUCTION

ENVIRONMENT

7.1.1 Followed standards and regulations

The purpose of this project made it compulsory to follow CIS recommendations from CIS Benchmarks,

which are in themselves internationally recognized security standards. Additionally, the ENS has been

taken into consideration for performing audits and adding some additional hardening policies.

7.1.2 Programming Languages

In the case of Ansible, even though it is written in Python and its code will be transformed to this

language on the remote machines to execute the tasks, it uses its own DSL encoded in YAML files.

So, all the code developed specifically for Ansible has been written in this DSL.

Regarding Vagrant, it is written in Ruby, an interpreted, general-purpose, multi-paradigm language;

because of this, it has been possible to include some slightly more advanced Ruby code in certain

Vagrantfiles to externalize basic configuration settings to a YAML file whose data can then be loaded,

instead of having the values directly hardcoded in the specific Vagrantfile. The rest of the code for

managing Vagrant keeps its Ruby syntax, but is fairly simple and mainly uses variable assignment.

Additionally, shell scripts for Linux and batch files for Windows have been written. These files,

containing system-specific commands, were used to add some additional configuration to the base

machines, as well as for making it easier for administrators and others interested in the project to

execute the necessary commands to deploy the infrastructure, since neither Vagrant nor Packer have

a graphical user interface.

Finally, though less important, Autounattend files for the Windows machine’s unattended

installation have been modified and extended using XML.

87

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

7.1.3 Tools and programs used for development and auditing

7.1.3.1 Visual Studio Code v.1.68.1

Visual Studio Code is a flexible and lightweight code editor, compatible with a large number of

programming languages. It includes syntax highlighting for many of them, as well as debugging, code

refactoring and intelligent code completion, though these features are not available for the full

catalogue of supported languages. However, its base capabilities can be extended through both

official and user-developed plugins.

Visual Studio Code, in its latest available version to the date of this document, has been the chosen

IDE for developing the code of this project. Thanks to its versatility and custom extensions for

Vagrant, YAML and Ansible, it has allowed for easily editing Ansible playbooks, Vagrantfiles, shell

scripts and other configuration files.

Website: https://code.visualstudio.com/

7.1.3.2 Vagrant 2.2.19

Vagrant was used throughout the entire project for managing all the virtual machines that were

deployed. A more detailed explanation on this tool has can be found in section Alternatives for

automating infrastructure deployment.

Website: https://www.vagrantup.com/

7.1.3.3 Packer 1.8.2

Packer was used to generate the Windows custom boxes that could later be used with Vagrant. More

information on this tool can be found in Study of Additional Tools.

Website: https://www.packer.io/

7.1.3.4 Ansible

Ansible, as it was explained in [previous sections], was used for machine provisioning, more

specifically, for the hardening process. It was not manually set up in the controller nodes, as Vagrant

supports straightforward integration with this technology and its Ansible provisioners detect if the

tool is present in the machine, automatically trying to install it otherwise. Thus, the version used in

this project is the one Vagrant considers appropriate (typically the latest one) each time the

controller boots up.

Website: https://www.ansible.com/

https://code.visualstudio.com/
https://www.vagrantup.com/
https://www.packer.io/
https://www.ansible.com/

88

José Manuel Redondo López Chapter 7: Construction of the Information System

7.1.3.5 Lynis

Lynis was the tool chosen for auditing the security level of the Ubuntu Linux machines. More

information on this utility can be found in Alternatives for auditing tools.

Website: https://cisofy.com/lynis/

7.1.3.6 CLARA, v2.0

CLARA was one of the auditing tools used for testing the security level of the Windows machines

throughout the project, both the virtualized environments and the real University’s machines. A more

detailed explanation on it can be found in Alternatives for auditing tools.

Website: https://www.ccn-cert.cni.es/soluciones-seguridad/clara.html

7.1.3.7 CIS-CAT Lite, v4.18.0

CIS-CAT Lite was the second tool for auditing the security level of the Windows machines; for a more

detailed explanation on the utility and what it can audit against, see Alternatives for auditing tools.

For downloading this tool, users must first register in the CIS site. Thus, no direct link to the

downloads page has been provided.

Website: https://learn.cisecurity.org/cis-cat-lite

7.1.4 Operating Systems

7.1.4.1 Windows 10 Education, Release 21H2

As discussed in section Alternatives for Windows Operating System installed, this was the specific

version of the Windows 10 operating system used for creating the Windows 10 base Vagrant boxes

and subsequently deploying the machines.

7.1.4.2 Ubuntu Linux 18.04 LTS (64-bit)

Ubuntu Linux 18.04 LTS was the chosen version of this specific Linux distribution. Though not the

latest Ubuntu version (it was released in 2018), it is a stable release that still gets support. Not only

that, but HashiCorp, the organization behind Vagrant, has published a special Ubuntu 18.04 64-bit

base box, very basic but that can be extended if needed; because of its small size and high

optimization, it is ideal for quick deployments.

Website: https://releases.ubuntu.com/18.04/

Link to the specific Vagrant box: https://app.vagrantup.com/hashicorp/boxes/bionic64

https://cisofy.com/lynis/
https://www.ccn-cert.cni.es/soluciones-seguridad/clara.html
https://learn.cisecurity.org/cis-cat-lite
https://releases.ubuntu.com/18.04/
https://app.vagrantup.com/hashicorp/boxes/bionic64

89

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

7.1.5 Libraries used and consulted for analysis and development

7.1.5.1 Cyber Ansible

Cyber Ansible is a project maintained by Carlos Lacasa that compiles Ansible playbooks related to

Cybersecurity, for both Windows and Linux machines. It includes tasks for configuring general

protective measures, as well as hardening rules based on recommendations by reliable international

sources like GSA, ACSC, OpenSCAP or CIS.

Cyber Ansible has been extremely useful for having a basic understanding of how to implement CIS

policies for the two kinds of machines that were dealt with. Compliance tasks have been carefully

examined; those that could be reused have been included in this project, adapting them to be CIS-

compliant. Nevertheless, it has been a good starting point for writing new tasks that security

recommendations for both Windows and Linux.

It is currently available in GitHub.

Author: Carlos Lacasa (GitHub: https://github.com/carloslacasa)

Link to repository: https://github.com/carloslacasa/cyber-ansible

7.1.5.2 SSI Infrastructure Automation Materials

This repository, crafted by José Manuel Redondo López, teacher in the Information Systems Security

course from the Software Engineering degree of the University of Oviedo, and director of this project,

contains several different scripts and materials for the automated deployment of varied

infrastructure. It includes materials for several distributions, that can be deployed using Docker or

Vagrant. One of the machines present in this repository, “Magic the Hardening”, which is an already

hardened Ubuntu instance, has been reused in this project for testing to which extent its security

could be further increased. This project has been extremely useful material for learning how to write

more complex Vagrantfiles.

It is currently available in GitHub, and the project still gets regular updates.

Author: José Manuel Redondo López (GitHub: https://github.com/jose-r-lopez)

Link to repository: https://github.com/jose-r-lopez/SSI_Infraestructure_Automation_Materials

7.1.5.3 Packer Windows

Packer Windows is a project that compiles several Windows templates fit for creating Vagrant boxes

via Packer. It includes templates for Windows Desktop and Server boxes, and for several virtualization

platforms, including VirtualBox.

https://github.com/carloslacasa
https://github.com/carloslacasa/cyber-ansible
https://github.com/jose-r-lopez
https://github.com/jose-r-lopez/SSI_Infraestructure_Automation_Materials

90

José Manuel Redondo López Chapter 7: Construction of the Information System

This project is currently available in GitHub, though it has been archived by its owner and is read-

only. However, the templates can still be used, tuning them to adapt to the user’s or developers’

needs.

Author: Joe Fitzgerald (GitHub: https://github.com/joefitzgerald)

Link to repository: https://github.com/joefitzgerald/packer-windows

7.1.5.4 Windows 10 Vagrant Box

Similarly to the Packer Windows project mentioned above, it is a repository that includes Windows

templates for generating custom Windows boxes that can then be used with Vagrant. However,

unlike Packer Windows, only templates and resources for Windows 10 are available, though its

detailed documentation and scripts were useful to generate the custom box that ended up being

used in this project.

It is currently available in GitHub, though the project does not seem to be updated. However, as in

the case of Packer Windows, the templates and files can still be used, provided they are tuned to the

user’s needs.

Author: Jeff Skinner Box (GitHub: https://github.com/jeffskinnerbox)

Link to repository: https://github.com/jeffskinnerbox/Windows-10-Vagrant-Box

7.1.6 Official tutorials and learning materials

As this project mainly uses technology that is not taught in the Software Engineering degree or is just

briefly mentioned, several official tutorials for these technologies, as well as documentation from the

Master’s degree on Web Engineering, were used to better understand the different concepts to

handle.

7.1.6.1 Vagrant tutorials for getting started

The official Vagrant site offers tutorials for helping users grasp the first, basic concepts of Vagrant.

They provide a step-by-step tutorial for creating a user’s first development environment, including

networking and provisioning, as well as additional tutorials for creating custom boxes with Packer

and working with different virtualization providers.

Vagrant’s First Steps: A tutorial: https://learn.hashicorp.com/vagrant

https://github.com/joefitzgerald
https://github.com/joefitzgerald/packer-windows
https://github.com/jeffskinnerbox
https://github.com/jeffskinnerbox/Windows-10-Vagrant-Box
https://learn.hashicorp.com/vagrant

91

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

7.1.6.2 Introducción a Ansible (Introduction to Ansible) presentation, from the

Administration of Web Servers course, Master’s Degree in Web Engineering

(University of Oviedo)

This presentation has been provided by the author himself, who has allowed it to be consulted and

referenced as support material.

Author: José Manuel Redondo López

7.1.6.3 Topic 4: Security Policies and Automated Hardening presentation, from the

Information Systems Security course, Software Engineering Degree (University

of Oviedo)

This presentation has been provided by the author himself, who has allowed it to be consulted and

referenced as support material.

Author: José Manuel Redondo López

7.2 INFRASTRUCTURE CONSTRUCTION

All the machines used in this project have been developed via code following the structure and

specifications designed in Chapter 6: Design of the Information System.

7.3 IMPLEMENTED HARDENING TASKS

7.3.1 Detail of the hardening tasks

All the implemented tasks have a descriptive name indicating its purpose; in the case of CIS-based

hardening tasks, the name includes the corresponding CIS recommendation identifier, as well as its

full title according to the benchmarks, when possible. Tasks that need to clarify any additional

information (e.g., included recommendations, possible values, important remarks, etc.) include code

comments.

The tasks have been organized following the structure defined in DSI 5: Design of the Architecture of

the System Modules, in the same order in which they appear in the followed guidelines, so they are

easier to locate.

92

José Manuel Redondo López Chapter 7: Construction of the Information System

7.3.2 Results of the execution of the hardening tasks

Though the full construction process of the information system includes automating the installation

and deployment of machines from code, the most vital part comprises the implementation and

execution of Ansible scripts with specific tasks to harden said machines. As many of these hardening

tasks directly translate CIS Benchmarks’ recommendations into code, ensuring the remediations are

correctly applied in those cases can be checked by means of specific audits. However, examining first

the Ansible execution logs to find any failing task can prove useful for determining the reason of its

failure and how it can be fixed, in case a solution exists.

An important thing to note is that, unless specified otherwise, if an Ansible task fails, the whole

workflow stops. This can be useful in some cases, as it allows quick detection of the failing task, but

can be a problem if the failure is acceptable. For cases like these, Ansible can be configured to ignore

errors, so it will continue running tasks against the host; however, this scenario comes at a cost, as

the recap of the run will not register any failed tasks. As such, logs will have to be carefully examined

from the beginning of the execution to check if there have been unexpected results at any point of

the run.

This “ignore errors” scenario is the one chosen for the project; the reasoning behind this is that as

many security recommendations as possible should be run and applied to the machine being

hardened. However, for each system the logs were checked and failures, recorded and solved unless

an acceptable reason for it to fail could be given.

7.3.2.1 Windows 10 Education hardening tasks’ execution summary

When running the hardening tasks for the Windows machine, it was found that none of them failed,

unless restrictions to the communication between Ansible and the machine being provisioned were

made (restriction to PowerShell access, reduced privileges, etc.; more information on Execution of

Additional Tests). Logs were examined when provisioning both an English and a Spanish-based

machine, so it could be guaranteed that in the end the tasks were correctly parameterized for the

two locales.

7.3.2.2 Ubuntu Linux 18.04 hardening tasks’ execution summary

Contrary to what happened to the Windows machine, some of the executed tasks for the Linux

machine failed; the failures were recorded in the following table, as well as the explanation for

solving them or not.

Task Description Reason of failure ¿Acceptable?

Ensure systemd-

timesyncd is

installed

No package

matching 'systemd-

It depends; systemd-timesyncd is a daemon for

system clock synchronization, and the CIS benchmark

explicitly establishes that if either chrony or ntp are

93

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

timesyncd' is

available

used instead, this daemon should be stopped and the

section, skipped. Thus, failing to find the package

could have no special impact.

However, it was found that the daemon became

inactive and eventually dead in the Ubuntu machine;

the reason for this could not be found as it requires

having more specialized administrative knowledge

Make sure

services not

required by CIS

standard are

stopped

(item=ntp)

Could not find the

requested service

ntp: host

It depends on whether this service is meant to

substitute systemd-timesyncd or chrony for time

synchronization.

Make sure

services not

required by CIS

standard are

stopped

(item=cups)

Could not find the

requested service

cups: host

Yes, as this task is supposed to look for this service

and deactivate or stop it, so in the end the result will

be more or less the same. In fact, the CIS Benchmark

recommends removing completely CUPS from the

system, specially for Servers (for Workstations it is an

L2 recommendation). Not having it installed in the

system means complying with the recommended

value from the start

7.4 EXECUTION OF SYSTEM AUDITS

Once the hardening tasks started being implemented and executed over the Windows and Ubuntu

machines, audits began taking place. Though the continuous auditing process helped to iteratively

improve the machines’ security levels, the most important audit reports were the ones performed

before and after the Ansible provisioning, and are the ones provided as part of the documentation.

In this section of the document, only the most relevant parts of the reports will be shown and

analyzed, as they are lengthy and can be better examined separately. For that regard, all the

referenced reports have been made available for consulting.

To make it easier for the reader, tables summarizing the results will also be presented (see Results’

summary).

94

José Manuel Redondo López Chapter 7: Construction of the Information System

7.4.1 Windows 10 Education Virtual Machine audits

7.4.1.1 Pre-hardening (base machine)

7.4.1.1.1 Audit results with CLARA

Figure 14. W10 Education pre-hardening audit results with CLARA for a LOW category system

95

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Figure 15. W10 Education pre-hardening audit results with CLARA for a MEDIUM category system

Figure 16. W10 Education pre-hardening audit results with CLARA for a HIGH category system

96

José Manuel Redondo López Chapter 7: Construction of the Information System

7.4.1.1.2 Audit results with CIS-CAT Lite

Figure 17. W10 Education pre-hardening audit results with CIS-CAT Lite for L1 profile

Figure 18. W10 Education pre-hardening audit results with CIS-CAT Lite for L2 profile

97

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

7.4.1.2 Post-hardening (only L1 tasks)

7.4.1.2.1 Audit results with CLARA

Figure 19. W10 Education post-hardening (L1) audit results with CLARA for a LOW category

system

98

José Manuel Redondo López Chapter 7: Construction of the Information System

Figure 20. W10 Education post-hardening (L1) audit results with CLARA for a MEDIUM category

system

99

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Figure 21. W10 Education post-hardening (L1) audit results with CLARA for a HIGH category

system

7.4.1.2.2 Audit results with CIS-CAT Lite

Figure 22. W10 Education post-hardening (L1) audit results with CIS-CAT Lite for L1 profile

100

José Manuel Redondo López Chapter 7: Construction of the Information System

Figure 23. W10 Education post-hardening (L1) audit results with CIS-CAT Lite for L2 profile

7.4.1.3 Post-hardening (L1 tasks + extra L2 tasks)

7.4.1.3.1 Audit results with CLARA

Figure 24. W10 Education post-hardening (L1 + extra L2) audit results with CLARA for a LOW

category system

101

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Figure 25. W10 Education post-hardening (L1 + extra L2) audit results with CLARA for a MEDIUM

category system

102

José Manuel Redondo López Chapter 7: Construction of the Information System

Figure 26. W10 Education post-hardening (L1 + extra L2) audit results with CLARA for a HIGH

category system

7.4.1.3.2 Audit results with CIS-CAT Lite

Figure 27. W10 Education post-hardening (L1 + extra L2) audit results with CIS-CAT Lite for L1

profile

103

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Figure 28. W10 Education post-hardening (L1 + extra L2) audit results with CIS-CAT Lite for L2

profile

7.4.2 Ubuntu Linux Virtual Machine audits

7.4.2.1 Pre-hardening

Figure 29. Ubuntu pre-hardening machine audit summary with Lynis

104

José Manuel Redondo López Chapter 7: Construction of the Information System

7.4.2.2 Post-hardening

Figure 30. Ubuntu post-hardening machine audit summary with Lynis

105

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

7.4.3 Windows 10 real machines

7.4.3.1 2021-2022 academic year machine

7.4.3.1.1 Audit results with CLARA

Figure 31. W10 Pro (2021-2022 academic year image) audit results with CLARA for a LOW

category system

106

José Manuel Redondo López Chapter 7: Construction of the Information System

Figure 32. W10 Pro (2021-2022 academic year image) audit results with CLARA for a MEDIUM

category system

107

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Figure 33. W10 Pro (2021-2022 academic year image) audit results with CLARA for a HIGH

category system

7.4.3.1.2 Audit results with CIS-CAT Lite

Figure 34. W10 Pro (2021-2022 academic year image) audit results with CIS-CAT Lite for L1 profile

108

José Manuel Redondo López Chapter 7: Construction of the Information System

Figure 35. W10 Pro (2021-2022 academic year image) audit results with CIS-CAT Lite for L2 profile

7.4.3.2 2022-2023 academic year machine

7.4.3.2.1 Audit results with CLARA

Figure 36. W10 Pro (2022-2023 academic year image) audit results with CLARA for a LOW

category system

109

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Figure 37. W10 Pro (2022-2023 academic year image) audit results with CLARA for a MEDIUM

category system

110

José Manuel Redondo López Chapter 7: Construction of the Information System

Figure 38. W10 Pro (2022-2023 academic year image) audit results with CLARA for a HIGH

category system

7.4.3.2.2 Audit results with CIS-CAT Lite

Figure 39. W10 Pro (2022-2023 academic year image) audit results with CIS-CAT Lite for L1 profile

111

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Figure 40. W10 Pro (2022-2023 academic year image) audit results with CIS-CAT Lite for L2 profile

7.4.4 Results’ summary

Since comparing the results can be difficult just by looking at the reports individually, some summary

tables were produced. It has been explicitly indicated whether the machines have been provisioned

or not; the ones that have are those that result from the implementation of the work developed in

this project.

7.4.4.1 Windows 10 (Education and Pro machines)

The following tables summarize the results obtained with CLARA and CIS-CAT Lite, respectively. As it

can be seen, the tables include the “intended operational environment level” for the machines; this

is meant to refer to the environment category in which each of them, given their current provisioning

level, are intended to be operated. This information has been deliberately left blank for the University

machines, as the student did not want to make any uninformed guesses.

CLARA AUDIT RESULTS

Operating System Version

CIS compliance information

System category
COMPLIANCE

SCORE (%) Provisioned? Provisioning level
Intended

operational
environment level

Windows 10 Education 21H2 No - L1 LOW (Baja) 56,12

Windows 10 Education 21H2 No - L1 MEDIUM (Media) 53,42

Windows 10 Education 21H2 No - L1 HIGH (Alta) 56,40

Windows 10 Education 21H2 Yes L1 tasks only L1 LOW (Baja) 84,43

Windows 10 Education 21H2 Yes L1 tasks only L1 MEDIUM (Media) 77,56

Windows 10 Education 21H2 Yes L1 tasks only L1 HIGH (Alta) 77,11

Windows 10 Education 21H2 Yes L1 tasks + L2 tasks L2 LOW (Baja) 84,56

Windows 10 Education 21H2 Yes L1 tasks + L2 tasks L2 MEDIUM (Media) 78,48

Windows 10 Education 21H2 Yes L1 tasks + L2 tasks L2 HIGH (Alta) 77,79

112

José Manuel Redondo López Chapter 7: Construction of the Information System

Windows 10 Pro ('21-'22) 20H2 No - - LOW (Baja) 29,71

Windows 10 Pro ('21-'22) 20H2 No - - MEDIUM (Media) 31,24

Windows 10 Pro ('21-'22) 20H2 No - - HIGH (Alta) 36,44

Windows 10 Pro ('22-'23) 21H2 No - - LOW (Baja) 50,02

Windows 10 Pro ('22-'23) 21H2 No - - MEDIUM (Media) 50,64

Windows 10 Pro ('22-'23) 21H2 No - - HIGH (Alta) 53,94

Table 7. Windows 10 (Education and Pro) compliance scores with CLARA

CIS-CAT Lite AUDIT RESULTS

Operating System Version

CIS compliance information

Assessment
SCORE

(%) Provisioned?
Provisioning

level

Intended
operational

environment
level

Windows 10 Education 21H2 No - L1
Windows 10 Enterprise Benchmark v1.12.0,

Level 1 (L1) Corporate/Enterprise Environment
(general use)

23,00

Windows 10 Education 21H2 No - L1
Windows 10 Enterprise Benchmark v1.12.0,

Level 2 (L2) High Security/Sensitive Data
Environment (limited functionality)

19,00

Windows 10 Education 21H2 Yes L1 L1
Windows 10 Enterprise Benchmark v1.12.0,

Level 1 (L1) Corporate/Enterprise Environment
(general use)

56,00

Windows 10 Education 21H2 Yes L1 L1
Windows 10 Enterprise Benchmark v1.12.0,

Level 2 (L2) High Security/Sensitive Data
Environment (limited functionality)

45,00

Windows 10 Education 21H2 Yes L2 L2
Windows 10 Enterprise Benchmark v1.12.0,

Level 1 (L1) Corporate/Enterprise Environment
(general use)

56,00

Windows 10 Education 21H2 Yes L2 L2
Windows 10 Enterprise Benchmark v1.12.0,

Level 2 (L2) High Security/Sensitive Data
Environment (limited functionality)

46,00

Windows 10 Pro ('21-'22) 20H2 No - -
Windows 10 Enterprise Benchmark v1.12.0,

Level 1 (L1) Corporate/Enterprise Environment
(general use)

25,00

Windows 10 Pro ('21-'22) 20H2 No - -
Windows 10 Enterprise Benchmark v1.12.0,

Level 2 (L2) High Security/Sensitive Data
Environment (limited functionality)

20,00

Windows 10 Pro ('22-'23) 21H2 No - -
Windows 10 Enterprise Benchmark v1.12.0,

Level 1 (L1) Corporate/Enterprise Environment
(general use)

25,00

Windows 10 Pro ('22-'23) 21H2 No - -
Windows 10 Enterprise Benchmark v1.12.0,

Level 2 (L2) High Security/Sensitive Data
Environment (limited functionality)

20,00

Table 8. Windows 10 (Education and Pro) compliance scores with CIS-CAT Lite

113

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

7.4.4.2 Ubuntu Linux

LYNIS AUDIT RESULTS

Operating
System

Version

CIS compliance
information COMPLIANCE SCORE

(%)
Provisioned?

Ubuntu
Linux

18.04 No 56,00

Ubuntu
Linux

18.04 Yes 82,00

Table 9. Ubuntu Linux compliance scores with Lynis

7.4.5 Analysis of the results

As it can be concluded from the obtained results, the scores have improved dramatically from the

ones obtained by the base machines to the hardened ones, even if they have their security improved

just by applying Level 1 recommendations; for example, the Linux machine increments its security

score in 30 points (from an average 56 to the much greater 82), whilst the Windows machine is able

to more than duplicate its CIS compliance score (from 23% to 56%) and jump to over 75% consistently

against the ENS, even in high security environments.

 Also, it must be noted that some of the implemented tasks had to have their recommended values

modified or their application restricted because they posed an issue for the communication between

the controller and the controlled node; this means that results can potentially be better, though with

the planned infrastructure it was not possible to check it.

However, there is still room for improvement, particularly for achieving CIS compliance; even though

the scores with CIS-CAT Lite were more than doubled, there are still a high number of basic security

recommendations that can be applied in the future, and that can boost those results. Nevertheless,

this would require a detailed study for checking no vital feature or service gets deactivated or

removed.

7.5 EXECUTION OF ADDITIONAL TESTS

PowerShell Access Restriction (Windows 10)

Test Actual Result ¿Expected ==

Actual?

Actions taken/Comments

Indicate

PowerShell

needs to

PowerShell gets

disabled for all

users, instead of

No As PowerShell access is needed for Windows

provisioning via Ansible, tasks that try to run

after this will fail, because the user for

114

José Manuel Redondo López Chapter 7: Construction of the Information System

be

disabled

(restricted

access)

for standard, non-

administrator

users only.

connecting to the machine loses access to this

resource.

This may be happening because by default local

administrators belong to both the

Administrators and the Users group, and by

extent get blocked from being able to access

PowerShell. Tests for removing the default

local administrator user from the Users group

to bypass this issue were carried out, though

this didn’t prove to be a solution to the

problem.

A conditional variable for running or not the

specific Ansible playbook was placed in the

Vagrantfile, to control whether the controller

should execute this code or not. This is just a

workaround, though. The best way to restrict

access to the PowerShell executables is via GUI

Configure local administrators (Windows 10)

Test Actual Result ¿Expected==Actual? Actions

taken/Comments

Take out default

machine user

from being Local

Administrator

The default machine user gets

taken out of the

‘Administrators’ group and

loses administrative privileges

Yes As administrative

privileges are

needed for

Windows

provisioning via

Ansible, tasks

running after this

will fail

Local administrators’ password change (Windows 10)

Test Actual Result ¿Expected==Actual? Actions

taken/Comments

Change

password for

the default

machine user

The password of the default

machine user is changed to

the new one

Yes SSH communications

are still possible

because no password

authentication is used

115

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

7.6 CSI 6: ELABORACIÓN DE LOS MANUALES DE USUARIO

7.6.1 Installation and Execution Manual

This project is comprised of several different parts, and not everything could be included in the

project repository for size reasons. This manual intends to explain in detail how to get the project up

and running, from the initial hardware and software requirements to the actual process of hardening

the provided machines.

7.6.1.1 Initial requirements

7.6.1.1.1 Software requirements

For executing this project, the user will need to have installed in his or her computer, at least, Vagrant

and VirtualBox. Both are available for several different platforms, so users will simply need to

navigate to the official downloads site (https://www.vagrantup.com/downloads and

https://www.virtualbox.org/wiki/Downloads respectively) and choose the version that fits their

operating system. For some systems, it is possible to install the tools using a package manager, in

which case both sites have detailed explanations on how to do so; for the rest, it is as simple as

following the steps of the corresponding setup wizard.

Figure 41. Vagrant's downloads page

https://www.vagrantup.com/downloads
https://www.virtualbox.org/wiki/Downloads

116

José Manuel Redondo López Chapter 7: Construction of the Information System

Figure 42. VirtualBox downloads page

7.6.1.1.2 Hardware requirements

Some of the machines deployed as part of this project have a considerable size, particularly the

Windows 10 ones. It is crucial to check that the computer where the project will be deployed has

enough available memory.

For reference, the Windows machines require at least, when booting, 30 GB of memory. Additionally,

the custom base box they are brought up against can take up to 15 GB. It is recommended that, if

not enough memory is available on the host, an external drive is used to store the machines.

Regarding other settings, such as the video memory or the maximum RAM the machine will use, they

can be configured by modifying the parameters in the Vagrantfiles or the external configuration files

(see Modifying the machines’ configuration) to fit the host’s specific needs or limitations.

7.6.1.2 Get the boxes for the machines

The Ubuntu Linux machines use a box from Vagrant’s public catalogue; as such, once one of these

machines is booted up, Vagrant will automatically try to find the box in the user’s local cache of boxes

and, if it isn’t found, it will download it from the catalogue.

However, the custom Windows boxes this project uses have not been uploaded to any catalogue, so

they will need to be generated and added to the local cache manually. All the necessary files for

creating the boxes from scratch, minus the packer.exe executable, can be found in the /packer

folder of the project; however, it can be a tedious process, so the machines have been generated and

can be found in the following link: VAGRANT BOXES. Each of the directories present in the shared

folder contain custom Vagrant boxes for Spanish and English machines; the desired box can be

downloaded to the host.

https://unioviedo-my.sharepoint.com/:f:/g/personal/uo264446_uniovi_es/EnZXNhLV33FPg-8v0BbJyA0BesezuFTVoLyf9cjMElTKKg?e=ATQmY4

117

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Figure 43. Detail of the folders for each of the Windows custom boxes

Once the box has been downloaded, it needs to be added to the local cache of boxes. For doing this,

the terminal application needs to be opened in the same directory where the box is; then, run the

following command:

vagrant box add <name we want to give to the box> <path of the box>

The process can take some time to complete; also, the memory of the host will be seen decreasing

rapidly. It is not something to worry about, as when the box finishes being added to the cache, the

memory will stabilize again.

An example of the command being run can be seen below:

Figure 44. Example of a run for adding a custom box to the local cache of boxes

Once the process completes, the box will be available in the local cache and available for Vagrant.

118

José Manuel Redondo López Chapter 7: Construction of the Information System

7.6.1.3 Executing the project

This project contains several Vagrantfiles, all within their respective folder inside the

/vagrantfiles directory:

• linux/debian/ubuntu contains the following machines:

o base_ubuntu: a basic Ubuntu Linux 18.04 machine without hardening

o base_ubuntu_hardened: a basic Ubuntu Linux 18.04 machine and an Ansible

controller for running the hardening code against the Ubuntu machine

o magic_the_hardening: an already hardened machine (Ubuntu Linux 18.04) and an

Ansible controller for further hardening the machine. This machine is a modification

of the original “Magic The Hardening” machine that can be found in the following

repository: https://github.com/jose-r-

lopez/SSI_Infraestructure_Automation_Materials. Its author has granted permission

to use it.

• windows/windows10-education contains the following machines:

o base_windows: a base Windows 10 Education machine without hardening

o windows_hardened: a base Windows 10 Education machine and an Ansible

controller for running the hardening code against it

For booting up a specific machine or set of machines, simply navigate to its directory, open the

terminal there and execute the following command:

vagrant up

This will bring up all machines declared in the Vagrantfile, in a sequential order. If a specific machine

is wanted to boot, its name must be specified as follows when calling the command: vagrant up

<machine name or id>.

https://github.com/jose-r-lopez/SSI_Infraestructure_Automation_Materials
https://github.com/jose-r-lopez/SSI_Infraestructure_Automation_Materials

119

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Figure 45. Example of the Windows machine and the controller booting up

In the case of the machines that get hardened, once the controller boots, the Ansible provisioner will

start running, and logs will start appearing in the terminal, detailing the tasks that are running and

their results. Do not touch this terminal nor interrupt the process; once it finishes, control of the

command line will be regained. An example of how an Ansible run is started and then completed can

be seen below:

120

José Manuel Redondo López Chapter 7: Construction of the Information System

Figure 46. Starting the Ansible provisioning

Figure 47. A finished Ansible run

7.6.1.4 Packaging the machines

Once the machines are completely set up, there exists the possibility of exporting them so they can

be used as “base” boxes for creating new machines. This can be done via the following command:

vagrant package --output <new name for the box>.box <name of the machine to export>

As the result of this is a box, it can then be added to the local cache as before (check Get the boxes

for the machines) or uploaded to a box catalogue.

7.6.1.5 Stopping and destroying machines

To stop and shut down a specific machine, run the following command:

vagrant halt [name or id of the machine]

This will make Vagrant attempt to first gracefully shut down the machine; however, if it fails, then

the machine will be powered-off.

Finally, to remove the machine or machines from the host, run the following command:

vagrant destroy

121

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

This will stop all running machines and destroy every resource created along the machine’s set up

process. To destroy only a specific machine, its name must be specified when calling the command:

vagrant destroy <machine name or id>.

7.6.2 Programmer’s Manual

This manual is thought for programmers who want to extend or modify some items of this system.

7.6.2.1 Adding or modifying new provisioning Ansible tasks

For extending the Ansible code or modifying it, the programmer must have at least some basic

knowledge of Ansible.

There are two different folders within the /provisioners/ansible/roles directory of the

project, which is the one containing all Ansible code. Each of the folders is expected to include all the

scripts for the roles of each type of machine. For adding new tasks or modifying the ones that already

exist, locate the .yml file where they will or are placed; if a new .yml file needs to be created, it must

be referenced in main.yml (tasks/main.yml or simply main.yml) as this will be the file Ansible

will look for when provisioning. Additionally, if a new whole role is created, you will need to include

it in the playbook to be called, such as in this example from windows_provisioning.yml, which

references all the roles that are executed by default:

Figure 48. Example of a playbook with several roles

It is recommended that all variables that are subject to change are placed in external files inside the

vars folder of each role; this also makes it easier to modify any current value, as well as to reuse the

same value in several places. An example showing how some of the variables in one of these files

appear can be seen below:

122

José Manuel Redondo López Chapter 7: Construction of the Information System

Figure 49. Example of variables for password settings

Finally, it is worth noting that it is not mandatory to follow the structure this project uses for placing

the files, just the recommended one. However, in those cases the programmer must make sure he

or she is configuring the path of the files correctly when invoking the playbook.

7.6.2.2 Modifying the machines’ configuration

Vagrant allows including variables in the Vagrantfiles as a means of storing values that can then be

used elsewhere by referencing their name; they are particularly useful for parameterizing the

configuration of a box. A step further is to externalize all the variables, which keeps the Vagrantfile

clean of data that is subject to change depending on the environment needs.

In the project, some machines have been created following the external .yml file approach. The

Windows 10 machine that gets hardened has some basic configuration for booting up placed in a

windows_machine.yml file in the root of the /vagrantfiles/windows/windows10-

education/windows_hardened folder; adding or modifying values is straightforward. A summary

can be seen below:

Name Description Example

name The name identifying the machine windows10

ubuntu

box The specific box against which the machine will be

brought up, which can either be from the local cache

or from a public catalogue

win-10

hashicorp/bionic64

ram The amount of RAM (in MB) for the machine 4096

cores The number of cores for the machine 2

ip The IP of the machine; in the case of the hardened

Windows 10, it is for the internal network

172.17.177.21

disable_powershell Conditional flag for running or not the playbooks for

restricting access to PowerShell

False

True

123

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

vram The amount of Video Memory for the machine (in

MB). Configure it considering if the machine will

have a GUI or not

128

Table 10. Parameters that can be configured for the Windows 10 machine

CHAPTER 8: CONCLUSIONS

AND EXTENSIONS

126

José Manuel Redondo López Chapter 8: Conclusions and Extensions

8.1 CONCLUSIONS

The execution and completion of this project allowed arriving at some important conclusions.

First, the objectives of the project, both the intermediate and the final ones, were achieved. It was

possible to completely automate the installation of a Windows machine, which in itself can be a

challenge, both when creating the necessary files and when setting up the machine. Being able to

export the result of this installation process so that it could then be used as the base for any Windows

machine was also a huge milestone; in fact, at the beginning it was not clear if this whole objective

could be really achieved or not.

Another core part of this project, the hardening phase, can also be considered quite successful. First

of all, it was proven that both Windows and Linux machines can have their security dramatically

improved and their compliance level against official, international standards increased; and this can

be done in a fully automated way. Not only that, but all the recommendations that have been

adapted into code can be easily extended, modified, and distributed so that they can be used for

different, varied environments. It is not difficult to arrive to the conclusion that, from this, the next

steps would be to try and replicate what has been done over virtual machines on real, physical ones.

On a personal level, I feel very glad that the project took such a turn to become what it is today.

Despite all the issues that emerged along the way, the end result was worth the effort, and what is

most important, I feel motivated to keep improving and evolving the current project, and continue

learning about all the new technologies and standards I was able to start working with. I can

undoubtedly say that the whole journey this project has entailed has made me grow in experience,

in curiosity and in self-discipline.

I’ve also been really interested in Cybersecurity in the past years, and having the possibility to

contribute with my work to this field, even if only a little, has been extremely rewarding. This has

further reinforced my determination to keep expanding my knowledge in this area, and eventually

become a professional dedicated to this specific sector. Finally, the encouragement from the director

of this project and the potential this work has have made me proud of the produced output, even if

it only represents a small step towards something that could be much bigger in the future.

127

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

8.2 EXTENSIONS

One of the possible extensions of this project is to implement more CIS controls, by first studying the

benchmark guides more thoroughly. This project implements a fairly vast set of the controls, that

have proven to greatly improve the compliance level with respect to ENS and CIS; however, some of

the benchmark’s remediations have been left out for the moment, particularly those pertaining to

Windows. The reason for this is that it requires expert knowledge on administration, as well as the

consensus of those organizations where the policies are intended to be applied, as some of these

policies may not align to the organizations’ needs.

Apart from implementing more CIS controls, it could be interesting to study and include policies from

other benchmarks or sources that could complement the CIS ones. However, this should be done

carefully, ensuring they do not clash with one another. If the University seeks to be compliant with

the ENS, a good starting point could be considering what ENS-specific controls could be implemented

to achieve higher compliance scores and ultimately obtain the certification.

In addition to making more policies available, one of the key points this project aims to tackle in the

future is the operating system support. For the moment, Windows-wise the only version that is

directly supported is Windows 10 Education, since it was the ISO available for testing. As the

University’s computers use Windows 10 Pro, it could be interesting to extend the support for Pro,

though this would need some careful study as well to check if any of the controls needs to be adapted

for this OS version.

Finally, one future goal of the project is to be able to implement hardened machines in physical labs,

either by generating the images beforehand with all security recommendations in place, or by

provisioning the already installed machines with all the recommended settings. Though some talks

on this matter have already taken place, doing this will require some more time and expert

administrator knowledge, to make sure no vital service or feature is affected and all other changes

comply with the organization’s policies.

ANNEXES

130

José Manuel Redondo López Chapter 8: Conclusions and Extensions

RISK MANAGEMENT PLANNING

During the project planning, it was considered that some risks could appear during the whole lifecycle

of the project; as such, the following Risk Management Planning was devised, to ensure the risks are

mitigated as much as possible.

Methodology

The proposed methodology for this project is the BOEHM model, in which risk management gets

divided into two main phases:

1. Risk valuation: identification, analysis and prioritization of the system’s risks

2. Risk control: the strategies that will be applied to the risks, along with monitorization

Risk categories

The risk categories used are the ones belonging to PMBOK. This structure, which decomposes the

risks in a hierarchical way, is known as Risk Breakdown Structure, and could be adapted to the

structure of this project if needed.

Figure 50. Risk categories according to PMBOK

Probability and Impact Matrix

The Probability and Impact Matrix used for prioritizing the risks of the project is the following:

131

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Figure 51. Probability and Risk Matrix

BUDGET PLANNING

As it has already been said, this project was successfully planned and completed without having any

direct cost, as all licenses and technologies used were sought to be free of charge or open source.

However, this section shows the full budget breakdown if all assets were to be quantified, as what

would happen if this project would need to be put into production and/or developed by dedicated

teams.

Personnel

The roles identified for carrying out this project are the ones shown in the table below:

Personnel

Role Months Salary/month Total cost

Analyst 1 2.000,00 € 2.000,00 €

Programmer 4 1.500,00 € 6.000,00 €

Auditor 2 2.500,00 € 5.000,00 €

TOTAL 13.000,00 €

These will be the roles the student identifies with during the different phases of the project, which

in some cases will be more than one at the same time, such as during the Machine Hardening phase.

In this point in time, the student will be performing both roles simultaneously, as that specific part

of the project requires the developer to receive constant feedback from the audits.

For the final execution of the project, though the planning suffered modifications, the roles

undertaken by the student remained the same, for the same duration of time.

132

José Manuel Redondo López Chapter 8: Conclusions and Extensions

Licenses

These are the licenses that have been used in this project; as it can be seen, only the Windows 10

license has been considered, as the rest of the software used is free of charge, including the IDEs and

other tools.

Licenses

Software Quantity Price
Usage time /

months
Total
cost

Windows 10
Enterprise/Education

1 260,00 € 260,00 €

TOTAL 260,00 €

Material Resources

These are the material resources that have been used for developing this project, from the initial

planning phases to the auditing ones. The amortization factor has been calculated taking this into

account, as the total hours considered are the total hours of the duration of this project.

Material Resources

Description Units Lifespan Type
Amortization factor

(%) (hours
project/lifespan hours)

Price Total price
Total after

amortization

Lenovo Laptop 1 5 years amortization 0,85% 799,00 € 799,00 € 6,79 €

External SSD Drive 1 5 years amortization 0,85% 70,00 € 70,00 € 0,59 €

USB Drives 2 7 years amortization 0,61% 10,00 € 20,00 € 0,12 €

External HDD Drive 1 7 years amortization 0,61% 50,00 € 50,00 € 0,30 €

TOTAL 7,81 €

Indirect costs

These are the indirect costs of the project, which shows all the indirect expenses a project like this

generates. All the prices have been calculated taking into account real values during the time period

this project was in development.

Indirect costs

Description Unit (months) Price/month Total cost

Electricity 5 80,00 € 400,00 €

Internet 5 30,00 € 150,00 €

Office space 5 400,00 € 2.000,00 €

Office supplies 5 15,00 € 75,00 €

TOTAL 2.625,00 €

133

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

Initial Budget Summary

After considering the cost of each of the individual items, the initial budget can be summarized as

follows:

Initial Budget Summary

Item Description Total cost

1 Personnel 13.000,00 €

2 Licenses 260,00 €

3 Material Resources 7,81 €

4 Indirect Costs 2.625,00 €

TOTAL 15.892,81 €

Final Budget Summary

Regarding the final budget, it changed from what was considered at the beginning of the project,

since no licenses had to be purchased. As such, the corresponding item was taken out of the

summary, whose table can be seen below:

Initial Budget Summary

Item Description Total cost

1 Personnel 13.000,00 €

2 Licenses 0,00 €

3 Material Resources 7,81 €

4 Indirect Costs 2.625,00 €

TOTAL 15.632,81 €

134

José Manuel Redondo López Chapter 8: Conclusions and Extensions

REFERENCES AND BIBLIOGRAPHY

[1] J. M. Redondo, «Documentos-modelo para Trabajos de Fin de Grado/Master de la Escuela de

Informática de Oviedo,» 17 6 2019. [En línea]. Available:

https://www.researchgate.net/publication/327882831_Plantilla_de_Proyectos_de_Fin_de_Carrera_

de_la_Escuela_de_Informatica_de_Oviedo.

[2] J. Redondo, «Creación y evaluación de plantillas para trabajos de fin de grado como buena práctica

docente.,» Revista de Innovación y Buenas Prácticas Docentes, p. pp, 2020.

[3] M. Fowler, «Domain-Specific Languages Guide,» 28 August 2019. [En línea]. Available:

https://martinfowler.com/dsl.html#:~:text=A%20Domain%2DSpecific%20Language%20(DSL,as%20co

mputing%20has%20been%20done. [Último acceso: 30 June 2022].

[4] Red Hat, «What is Infrastructure as Code?,» 11 May 2022. [En línea]. Available:

https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac. [Último acceso:

26 June 2022].

[5] Red Hat, «What is Virtualization?,» 2 March 2018. [En línea]. Available:

https://www.redhat.com/en/topics/virtualization/what-is-virtualization. [Último acceso: 30 June

2022].

[6] Centro Criptológico Nacional, «ENS - FAQ,» 2022. [En línea]. Available:

https://ens.ccn.cni.es/es/esquema-nacional-de-seguridad-ens/faq-ens. [Último acceso: 2 July 2022].

[7] O. Ramírez, «Provisioning Virtual Machines with Vagrant and Ansible,» 6 December 2020. [En línea].

Available: https://orlando-ramirez.com/2020/12/06/provisioning-virtual-machines-with-ansible-and-

vagrant/. [Último acceso: 23 March 2022].

[8] Centro Criptológico Nacional, «CLARA,» [En línea]. Available: https://www.ccn-cert.cni.es/soluciones-

seguridad/clara.html. [Último acceso: 7 July 2022].

[9] Microsoft Corporation, «Unattended Windows Setup Reference (full),» 24 June 2021. [En línea].

Available: https://docs.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/.

[Último acceso: 4 April 2022].

[10] Centro Criptológico Nacional, «Guías CCN-STIC,» [En línea]. Available:

https://www.ccn.cni.es/index.php/es/menu-guias-ccn-stic-es. [Último acceso: 28 June 2022].

[11] HashiCorp, «Vagrant Documentation,» [En línea]. Available: https://www.vagrantup.com/docs.

[Último acceso: 9 July 2022].

[12] Microsoft Corporation, «Windows Security documentation,» [En línea]. Available:

https://docs.microsoft.com/en-us/windows/security/. [Último acceso: 1 July 2022].

135

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

[13] Microsoft Corporation, «System Access Policies,» 14 February 2019. [En línea]. Available:

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/d9bcb85c-67be-49cc-

90ea-d2bd50873417. [Último acceso: 10 July 2022].

[14] HashiCorp, «Unattended Installation for Windows,» [En línea]. Available:

https://www.packer.io/guides/automatic-operating-system-installs/autounattend_windows. [Último

acceso: 30 April 2022].

[15] HashiCorp, «Packer Documentation,» [En línea]. Available: https://www.packer.io/docs. [Último

acceso: 9 July 2022].

[16] RedHat, community, «Ansible Documentation (full),» [En línea]. Available:

https://docs.ansible.com/ansible/latest/index.html. [Último acceso: 8 July 2022].

[17] «Group Policy Administrative Templates Catalog (Microsoft),» [En línea]. Available:

https://admx.help/. [Último acceso: 10 July 2022].

[18] J. Terra, «Ansible vs Chef: What’s the Difference?,» 2022 June 13. [En línea]. Available:

https://www.simplilearn.com/ansible-vs-chef-differences-article. [Último acceso: 1 July 2022].

[19] Oracle Corporation, «Chapter 8. VBoxManage (from Oracle VM VirtualBox User Manual),» 2022. [En

línea]. Available: https://www.virtualbox.org/manual/ch08.html. [Último acceso: 5 July 2022].

[20] Oracle Corporation, «Oracle VM VirtualBox User Manual,» 2022. [En línea]. Available:

https://www.virtualbox.org/manual/. [Último acceso: 9 July 2022].

[21] CISOfy, «Lynis,» [En línea]. Available: https://cisofy.com/lynis/. [Último acceso: 10 June 2022].

[22] R. Velasco, «Diferentes ediciones de Windows 10: Home vs Pro vs Enterprise vs Education,» 22

November 2021. [En línea]. Available: https://www.softzone.es/windows/como-se-hace/windows-10-

home-vs-pro-vs-enterprise-vs-education/. [Último acceso: 1 July 2022].

[23] K. Sudhakar, «How to Create a Vagrant Box from an Existing Box,» 2 June 2021. [En línea]. Available:

https://www.linuxshelltips.com/create-vagrant-box-using-existing-box/. [Último acceso: 30 June

2022].

[24] J. Redondo, Introducción a Ansible (PPT).

[25] J. Redondo, Topic 4: Security Policies and Automated Hardening (PPT).

[26] Microsoft Corporation, «Windows Firewall Profiles,» 31 May 2018. [En línea]. Available:

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ics/windows-firewall-

profiles. [Último acceso: 7 July 2022].

[27] Centro Criptológico Nacional, «Esquema Nacional de Seguridad - Preguntas Frecuentes,» 2022. [En

línea]. Available: https://www.ccn-cert.cni.es/publico/dmpublidocuments/ENS-FAQ.pdf. [Último

acceso: 2 July 2022].

136

José Manuel Redondo López Chapter 8: Conclusions and Extensions

[28] Center for Internet Security, «CIS Microsoft Windows 10 Enterprise Benchmark v1.12.0,» 2022.

[29] Center for Internet Security, «CIS Ubuntu Linux 18.04 LTS Benchmark v2.1.0,» 2021.

[30] T. Ylonen y C. Lonvick, «The Secure Shell (SSH) Protocol Architecture,» January 2006. [En línea].

Available: https://datatracker.ietf.org/doc/html/rfc4251. [Último acceso: 2 July 2022].

[31] Centro Criptológico Nacional, «Sector Público Certificado (ENS),» [En línea]. Available:

https://ens.ccn.cni.es/es/certificacion/sector-publico. [Último acceso: 5 July 2022].

[32] E. Krout, «Ansible vs Puppet: Which is right for you?,» 7 May 2021. [En línea]. Available:

https://acloudguru.com/blog/engineering/ansible-vs-puppet-which-is-right-for-you. [Último acceso: 2

July 2022].

137

DEVELOPMENT OF BASE MACHINES FOR EXISTING INFRASTRUCTURES WITH

ENHANCED SAFETY USING INTERNATIONAL STANDARDS

DELIVERED CONTENTS

Contents

The following table shows the structure of the contents that have been uploaded, so it is easier to

locate each of the different parts.

The present document will be uploaded on its own, but there will be some additional files uploaded

in separate ZIP files.

Directory Contents
vagrant-ansible-
hardening-main

This folder contains the structure of all the developed project

documentation It contains all the documentation associated to the project, in more

detail than what could be included in this document, as well as

README.txt files indicating additional resource links

Table 11. Structure of the contents uploaded

Directory structure for the developed project

In this section, the structure of the developed project will be detailed. It has already been shown in

the form of a diagram (see Package Diagrams), but here, a more detailed explanation on the contents

of each of the folders will be given. The project can also be found in the following GitHub repository:

https://github.com/Yori1999/vagrant-ansible-hardening.git.

Directory Contents

./ Root directory Contains all the following folders and a README explaining the

general purpose of the project

./files Contains the CLARA files. This should not be removed, as

Vagrant’s provisioners will try to locate this folder and copy its

contents to the Windows machines

./packer Contains all the files used for creating the Windows boxes

using Packer, minus the packer.exe itself

./provisioning This is one of the most important directories, as it contains all

the Ansible code for provisioning the machines

./vagrantfiles Contains all the different Vagrantfiles for creating each

machine or set of machines, as well as some specific

configurations for each of them

Table 12. Project directory structure

https://github.com/Yori1999/vagrant-ansible-hardening.git

	Chapter 1: Information System Planning
	1.1 PSI 1: Information System Planning Kick-Off
	1.1.1 PSI 1.1: Analysis of the Necessity of the PSI
	1.1.1.1 PSI 1.1.1 Project Justification

	1.1.2 PSI 1.2: Identification of the objectives and scope of the PSI
	1.1.3 PSI 1.3: Delegation of Responsibilities

	1.2 PSI 2: Definition and Organization of the PSI
	1.2.1 PSI 2.1: Specification of the Scope and Reach of the PSI
	1.2.1.1 Phase 1: Automate the creation of secured machines following an Infrastructure as Code approach
	1.2.1.2 Phase 2: Automate the installation of operating systems
	1.2.1.3 Phase 3: Harden machines correctly following international security standards, and perform audit analysis on them

	1.2.2 PSI 2.2: PSI Organization

	1.3 PSI 3: Study of relevant information
	1.3.1 PSI 3.1: Study of the current situation
	1.3.1.1 University of Oviedo’s current infrastructure and security measures
	1.3.1.2 On-premises machine tests using audit tools

	1.3.2 PSI 3.2: Theoretical Concepts
	1.3.2.1 Infrastructure as Code (IaC)
	1.3.2.2 Unattended installation
	1.3.2.3 Center for Internet Security (CIS), CIS Benchmarks and CIS’s Critical Security Controls
	1.3.2.4 Spanish Centro Criptológico Nacional (CCN, National Cryptologic Center)
	1.3.2.5 Spanish Esquema Nacional de Seguridad (ENS, National Security Schema) and CCN-STIC Guides
	1.3.2.6 Domain-Specific Language (DSL)
	1.3.2.7 Virtualization and Hypervisors

	Chapter 2: Technological Architecture Definition
	Capítulo 2
	2.1 PSI 7.1: Identification of Technological Infrastructure Needs
	2.1.1 Alternatives for automation technologies to provision machines
	2.1.1.1 Ansible
	2.1.1.1.1 Advantages
	2.1.1.1.2 Disadvantages
	2.1.1.1.3 Integration with the rest of the infrastructure

	2.1.1.2 Puppet
	2.1.1.2.1 Advantages
	2.1.1.2.2 Disadvantages
	2.1.1.2.3 Integration with the rest of the infrastructure

	2.1.1.3 Chef
	2.1.1.3.1 Advantages
	2.1.1.3.2 Disadvantages
	2.1.1.3.3 Integration with the rest of the infrastructure

	2.2 PSI 7.2: Technological Architecture Selection
	2.2.1 Selection of provisioning technology
	2.2.2 Machine provisioning using Ansible and SSH
	2.2.2.1 Infrastructure considerations for running Ansible
	2.2.2.2 SSH
	2.2.2.2.1 How SSH Works for Ansible

	Chapter 3: System Feasibility Study
	Capítulo 3
	3.1 EVS 4, 5 y 6: Study and Valuation of the Solution Alternatives and Selection of the Final Alternative
	3.1.1 Alternatives for security standards on which to base the hardening
	3.1.1.1 CIS and CIS Benchmarks
	3.1.1.1.1 Description
	3.1.1.1.2 Advantages
	3.1.1.1.3 Disadvantages

	3.1.1.2 ENS and CCN-STIC Guides
	3.1.1.2.1 Description
	3.1.1.2.2 Advantages
	3.1.1.2.3 Disadvantages

	3.1.1.3 Decision

	3.1.2 Alternatives for Windows Operating System installed
	3.1.2.1 Windows 10 Education
	3.1.2.1.1 Description
	3.1.2.1.2 Advantages
	3.1.2.1.3 Disadvantages

	3.1.2.2 Windows 10 Pro
	3.1.2.2.1 Description
	3.1.2.2.2 Advantages
	3.1.2.2.3 Disadvantages

	3.1.2.3 Decision

	3.1.3 Alternatives for automating infrastructure deployment
	3.1.3.1 Vagrant
	3.1.3.1.1 Description
	3.1.3.1.2 Advantages
	3.1.3.1.3 Disadvantages

	3.1.3.2 Terraform
	3.1.3.2.1 Description
	3.1.3.2.2 Advantages
	3.1.3.2.3 Disadvantages

	3.1.3.3 Docker
	3.1.3.3.1 Description
	3.1.3.3.2 Advantages
	3.1.3.3.3 Disadvantages

	3.1.3.4 Virtualization software’s CLI Tools
	3.1.3.4.1 Description
	3.1.3.4.2 Advantages
	3.1.3.4.3 Disadvantages

	3.1.3.5 Decision

	3.1.4 Alternatives for auditing tools
	3.1.4.1 CLARA
	3.1.4.1.1 Description
	3.1.4.1.2 Advantages
	3.1.4.1.3 Disadvantages

	3.1.4.2 Lynis
	3.1.4.2.1 Description
	3.1.4.2.2 Advantages
	3.1.4.2.3 Disadvantages

	3.1.4.3 CIS-CAT Lite
	3.1.4.3.1 Description
	3.1.4.3.2 Advantages
	3.1.4.3.3 Disadvantages

	3.1.4.4 Decision

	3.2 Study of Additional Tools
	3.2.1 Tools for automated installation and generation of Vagrant boxes: Packer

	Chapter 4: Planning and Management of the End of Degree Project
	Capítulo 4
	4.1 Project Planning
	4.1.1 Identification of Stakeholders
	4.1.2 Initial Planning. WBS
	4.1.3 Risks
	4.1.3.1 Risk Management Planning
	4.1.3.2 Identification of Risks

	4.1.4 Initial Budget
	4.1.4.1 Internal Budget

	4.2 Project Closure
	4.2.1 Final Planning
	4.2.2 Final Budget
	4.2.2.1 Final Internal Budget

	4.2.3 Learnt Lessons

	Chapter 5: Analysis of the Information System
	Capítulo 5
	5.1 ASI 1: System Definition
	5.1.1 Determination of the System’s Scope

	5.2 Study of Automated Machine Creation and Unattended Installations
	5.3 Analysis of the Available Benchmarks and Security Good Practices
	5.3.1 CIS Microsoft Windows 10 Enterprise Benchmark, v1.12.0
	5.3.1.1 Profiles
	5.3.1.2 Sections
	5.3.1.2.1 Section 1: Account Policies
	5.3.1.2.2 Section 2: Local Policies
	5.3.1.2.3 Section 5: System services
	5.3.1.2.4 Section 9: Windows Defender Firewall with Advanced Security
	5.3.1.2.5 Section 17: Advanced Audit Policy Configurations
	5.3.1.2.6 Section 18: Administrative Templates (Computer)
	5.3.1.2.7 Section 19: Administrative Templates (User)

	5.3.1.3 Recommendations that will not be implemented

	5.3.2 CIS Ubuntu Linux 18.04 LTS Benchmark, v2.1.0
	5.3.2.1 Profiles
	5.3.2.2 Sections
	5.3.2.2.1 Section 1: Initial Setup
	5.3.2.2.2 Section 2: Services
	5.3.2.2.3 Section 3: Network Configuration
	5.3.2.2.4 Section 4: Logging and auditing
	5.3.2.2.5 Section 5: Access, Authentication and Authorization
	5.3.2.2.6 Section 6: System Maintenance

	5.3.2.3 Recommendations that will not be implemented

	5.3.3 General good security practices
	5.3.3.1 Windows PowerShell
	5.3.3.2 Change the Vagrant user password
	5.3.3.3 Manage local administrators

	5.4 Analysis of Hardening Script Sources
	5.4.1 Cyber Ansible
	5.4.1.1 Compliance scripts for Windows systems
	5.4.1.2 Compliance scripts for Linux systems

	5.5 Integration between Hardening Sources
	5.6 ASI 2: Establishment of Requirements
	5.6.1 Acquisition of the System’s Requirements
	5.6.1.1 Functional requirements
	5.6.1.2 Non-functional requirements

	5.7 Specification of the Testing and Auditing Plan
	5.7.1 Task monitoring
	5.7.2 Auditing Plan
	5.7.2.1 Virtualized environments’ auditing
	5.7.2.1.1 Windows 10 Education machines
	5.7.2.1.2 Ubuntu Linux machines

	5.7.2.2 On-premises auditing

	5.7.3 Tests to be manually performed
	5.7.3.1 PowerShell access restriction
	5.7.3.2 Configure local administrators
	5.7.3.3 Local administrators’ password change

	Chapter 6: Design of the Information System
	Capítulo 6
	6.1 Design of the Infrastructure Deployment Process
	6.1.1 Steps
	6.1.1.1 Step 1: Automated Unattended Installation
	6.1.1.2 Step 2: Automated machines’ deployment
	6.1.1.3 Step 3: Machine hardening

	6.1.2 Hardening code to be deployed

	6.2 DSI 5: Design of the Architecture of the System Modules
	6.2.1 Deployment Diagrams
	6.2.2 Package Diagrams
	6.2.2.1 Full directory structure
	6.2.2.2 Provisioners

	6.3 Technical Specification of the Testing and Auditing Plan

	Chapter 7: Construction of the Information System
	Capítulo 7
	7.1 CSI 1: Preparation of the Generation and Construction Environment
	7.1.1 Followed standards and regulations
	7.1.2 Programming Languages
	7.1.3 Tools and programs used for development and auditing
	7.1.3.1 Visual Studio Code v.1.68.1
	7.1.3.2 Vagrant 2.2.19
	7.1.3.3 Packer 1.8.2
	7.1.3.4 Ansible
	7.1.3.5 Lynis
	7.1.3.6 CLARA, v2.0
	7.1.3.7 CIS-CAT Lite, v4.18.0

	7.1.4 Operating Systems
	7.1.4.1 Windows 10 Education, Release 21H2
	7.1.4.2 Ubuntu Linux 18.04 LTS (64-bit)

	7.1.5 Libraries used and consulted for analysis and development
	7.1.5.1 Cyber Ansible
	7.1.5.2 SSI Infrastructure Automation Materials
	7.1.5.3 Packer Windows
	7.1.5.4 Windows 10 Vagrant Box

	7.1.6 Official tutorials and learning materials
	7.1.6.1 Vagrant tutorials for getting started
	7.1.6.2 Introducción a Ansible (Introduction to Ansible) presentation, from the Administration of Web Servers course, Master’s Degree in Web Engineering (University of Oviedo)
	7.1.6.3 Topic 4: Security Policies and Automated Hardening presentation, from the Information Systems Security course, Software Engineering Degree (University of Oviedo)

	7.2 Infrastructure Construction
	7.3 Implemented Hardening Tasks
	7.3.1 Detail of the hardening tasks
	7.3.2 Results of the execution of the hardening tasks
	7.3.2.1 Windows 10 Education hardening tasks’ execution summary
	7.3.2.2 Ubuntu Linux 18.04 hardening tasks’ execution summary

	7.4 Execution of System Audits
	7.4.1 Windows 10 Education Virtual Machine audits
	7.4.1.1 Pre-hardening (base machine)
	7.4.1.1.1 Audit results with CLARA
	7.4.1.1.2 Audit results with CIS-CAT Lite

	7.4.1.2 Post-hardening (only L1 tasks)
	7.4.1.2.1 Audit results with CLARA
	7.4.1.2.2 Audit results with CIS-CAT Lite

	7.4.1.3 Post-hardening (L1 tasks + extra L2 tasks)
	7.4.1.3.1 Audit results with CLARA
	7.4.1.3.2 Audit results with CIS-CAT Lite

	7.4.2 Ubuntu Linux Virtual Machine audits
	7.4.2.1 Pre-hardening
	7.4.2.2 Post-hardening

	7.4.3 Windows 10 real machines
	7.4.3.1 2021-2022 academic year machine
	7.4.3.1.1 Audit results with CLARA
	7.4.3.1.2 Audit results with CIS-CAT Lite

	7.4.3.2 2022-2023 academic year machine
	7.4.3.2.1 Audit results with CLARA
	7.4.3.2.2 Audit results with CIS-CAT Lite

	7.4.4 Results’ summary
	7.4.4.1 Windows 10 (Education and Pro machines)
	7.4.4.2 Ubuntu Linux

	7.4.5 Analysis of the results

	7.5 Execution of Additional Tests
	7.6 CSI 6: Elaboración de los Manuales de Usuario
	7.6.1 Installation and Execution Manual
	7.6.1.1 Initial requirements
	7.6.1.1.1 Software requirements
	7.6.1.1.2 Hardware requirements

	7.6.1.2 Get the boxes for the machines
	7.6.1.3 Executing the project
	7.6.1.4 Packaging the machines
	7.6.1.5 Stopping and destroying machines

	7.6.2 Programmer’s Manual
	7.6.2.1 Adding or modifying new provisioning Ansible tasks
	7.6.2.2 Modifying the machines’ configuration

	Chapter 8: Conclusions and Extensions
	Capítulo 8
	8.1 Conclusions
	8.2 Extensions

	Annexes
	Risk Management Planning
	Methodology
	Risk categories
	Probability and Impact Matrix

	Budget Planning
	Personnel
	Licenses
	Material Resources
	Indirect costs
	Initial Budget Summary
	Final Budget Summary

	References and Bibliography
	Delivered Contents
	Contents
	Directory structure for the developed project

