
ESCUELA POLITÉCNICA DE INGENIERÍA DE GIJÓN

GRADO EN INGENIERÍA EN TECNOLOGÍAS Y

SERVICIOS DE TELECOMUNICACIÓN

Área de Ingenieŕıa Telemática

Analisis de protocolos de bootstrapping para IoT

D. Julian Niklas Schimmelpfennig

TUTOR: D. Dan Garćıa Carrillo

TUTOR: D. Rafael Maŕın López

FECHA: Mayo de 2022

Resumen

En las últimas décadas, los datos digitales se han convertido en un bien valioso. El

Internet de las Cosas (IoT según sus siglas en ingles) sigue esta tendencia con el

objetivo principal de aprovechar la información recogida por los sensores. Estos miden la

temperatura, detectan el humo o el movimiento y forman un dispositivo IoT junto con

el microcontrolador conectado. Para procesar estos datos, hay que transmitirlos en una

red informática a diferentes entidades. Pero, ¿cómo entran en la red estos dispositivos

IoT, algunos de ellos con capacidades muy limitadas? ¿Cómo pueden los dispositivos

autorizados comunicarse de forma segura en la red? Esto se hace en un proceso llamado

bootstrapping.

Los dispositivos IoT con capacidades limitadas de diferentes fabricantes con diversas

arquitecturas de microcontroladores se unen para medir datos del mundo f́ısico,

interactuar con el entorno o entre śı. Las diferencias en la potencia de cálculo disponible

no podŕıan ser mayores, pero todos ellos deben utilizar algoritmos criptográfico para lograr

la integridad, la autenticidad y la confidencialidad. Para generar el material criptográfica

necesario durante el bootstrapping, se puede utilizar el Extensible Authentication

Protocol (EAP) [RFC 3748] como framework de autenticación. Los métodos EAP,

son un mecanismo de autenticación espećıfico puede ser elegido para cada dispositivo

individualmente para seleccionar un algoritmo compatible.

Los dispositivos IoT alimentados por bateŕıa deben utilizar protocolos adaptados para

su uso en entornos restringidos para maximizar su tiempo de actividad. El Constrained

Application Protocol (CoAP) [RFC 7252] fue diseñado como un protocolo de transferencia

web especializado para redes con altas tasas de error de paquetes, velocidades de datos

en el rango de uno a dos d́ıgitos de kilobytes por segundo y nodos restringidos. Aunque

CoAP hace uso de la arquitectura REpresentational State Transfer (REST) como lo hace

HTTP, no es una versión comprimida o adaptada con menor sobrecarga, sino un protocolo

diferente. Además, CoAP utiliza UDP como capa de transporte en lugar de TCP y, por

III

tanto, requiere implementar estas caracteŕısticas para garantizar el orden en las capas

superiores.

Hypermedia as the Engine of Application State (HATEOAS) es una caracteŕıstica de

REST que puede utilizarse para lograr el objetivo de dirigir el proceso de autenticación.

Dado que no se requiere ningún conocimiento adicional a la interfaz solicitada para el

acceso y la navegación, la estructura hipermedia simplifica el acceso de los clientes a la

aplicación.

El Internet-Draft EAP-based Authentication Service for CoAP (CoAP-EAP) encapsula los

paquetes EAP en CoAP para permitir la generación de material criptográfico incluso con

redes y nodos con capacidades limitadas. Se trata de un protocolo que puede asociarese

a la fase bootstrapping en el ciclo de vida de dispositivos IoT. Entre otras cosas, el último

Internet-Draft de la versión 06 de CoAP-EAP hace uso de HATEOAS para garantizar el

ordenamiento de los paquetes deduciendo el estado actual del proceso de autenticación sólo

en base al estado del hipermedio. Esto se hace creando un nuevo recurso en el dispositivo

IoT para cada paso durante la autenticación EAP para indicar su estado actual.

Este trabajo proporcionará una implementación del Internet-Draft de CoAP-EAP en su

última versión. La prueba de concepto está escrita en el lenguaje de programación C

y utiliza el motor Erbium REST, que es una biblioteca oficial del sistema operativo de

código abierto Contiki. Los microcontroladores se han emulado utilizando el simulador

Cooja y se comunican con un controlador CoAP-EAP durante la autenticación.

Los recursos web en Erbium se definen estáticamente antes de iniciar un dispositivo IoT.

Analizando la estructura de datos subyacente para los recursos en Erbium, encontramos

una manera de lograr la creación dinámica de recursos web durante el tiempo de ejecución.

El sistema operativo completo, incluido el código adaptado del motor REST, sólo consume

unos pocos kilobytes de memoria en el dispositivo IoT y proporciona una de las primeras

implementaciones CoAP-EAP compatibles con HATEOAS.

IV

Abstract

Over the last decades, digital data has become a valuable commodity. The Internet of

Things (IoT) follows this trend with its main goal to benefit from the gathered information

by sensors. They can measure temperature, detect smoke or movement and form an IoT

device together with the connected microcontroller. In order to further process this data,

it has to be forwarded in a computer network to different entities. But how do these

constrained devices enter the network? How can approved devices communicate securely

in the network? This is done in a process called bootstrapping.

Constrained devices from different manufacturers with various microcontroller

architectures come together to measure data from the physical world, interact with the

environment or each other. Differences in the available computing power could not be

greater but all of them should use cryptographic algorithms to achieve integrity,

authenticity and confidentiality. In order to generate the needed cryptographic key

material during bootstrapping, the Extensible Authentication Protocol (EAP) [RFC

3748] can be used as an authentication framework. EAP methods, a specific

authentication mechanism can be chosen for each device individually to select a

supported algorithm.

The battery-powered IoT devices should use protocols tailored for use on constrained

environments to maximize their uptime. The Constrained Application Protocol (CoAP)

[RFC 7252] was designed as a specialized web transfer protocol for networks with high

packet error rates, data rates in the one- to two-digit kilobyte per second range and

constrained nodes. Even though CoAP makes use of the REpresentational State Transfer

(REST) architecture as HTTP does, it is not a compressed or adapted version with

lower overhead but a different protocol. Furthermore, CoAP uses UDP as transport layer

instead of TCP and therefore requires an implementation for ordering guarantee in the

higher layers.

V

Hypermedia as the Engine of Application State (HATEOAS) is a characteristic of REST

that can be used to accomplish the goal of steering the authentication process. The

hypermedia structure simplifies clients’ access to the application, because no additional

knowledge of the requested interface is required for access and navigation.

The Internet-Draft EAP-based Authentication Service for CoAP (CoAP-EAP)

encapsulates EAP packages in CoAP to allow the generation of key material even within

constrained networks and with limited nodes. CoAP-EAP can be assigned to the

bootstrapping phase in the IoT lifecycle. Among other things, the latest draft version 06

of CoAP-EAP makes use of HATEOAS to guarantee the ordering of packages by

deducing the current state of the authentication process only based on the state of the

hypermedia. This is done by creating a new resource on the IoT device for each step

during the EAP authentication to indicate its current state.

This work will provide an implementation of the CoAP-EAP draft in its latest version.

The proof-of-concept is written in the programming language C and uses the Erbium

REST engine, which is an official library of the open-source operating system Contiki.

Microcontrollers have been emulated using the Cooja Simulator and communicate with a

CoAP-EAP controller during the authentication.

Web resources in Erbium are statically defined before starting an IoT device. By analyzing

the underlying data structure for resources in Erbium, we found a way to achieve the

dynamic creation of web resources during runtime. The full operating system including

the tailored code of the REST engine only consumes a few kilobytes of memory on the IoT

device and provides one of the first HATEOAS-compliant CoAP-EAP implementations.

VI

Official Declaration

Hereby I declare, that I have not submitted this thesis in this or similar form at any other

institution or university.

I officially ensure that this work has been written solely on my own. I herewith officially

ensure that I have not used any other sources but those stated by me. Any and every parts

of the text which constitute quotes in original wording or its essence have been explicitly

referred by me by using official marking and proper quotation. This is also valid for used

drafts, pictures and similar formats.

I agree that the digital version will be used to subject the paper to plagiarism

examination.

Julian Niklas Schimmelpfennig Date

VII

1 8 . 5 . 2 0 2 2

Contents

1 Introduction and Motivation 1

2 Background 5

2.1 Security Services . 5

2.2 IoT Characteristic Features . 5

2.3 IoT Device Lifecycle . 6

2.3.1 The Bootstrapping Phase . 7

2.3.2 Post-Bootstrapping . 8

2.4 Protocols and Paradigms . 9

2.4.1 Representational State Transfer (REST) 9

2.4.2 Hypermedia as the Engine of Application State (HATEOAS) 10

2.4.3 Constrained Application Protocol (CoAP) 10

2.4.4 Extensible Authentication Protocol (EAP) 12

2.4.5 Object Security for Constrained RESTful Environments (OSCORE) 13

2.4.6 EAP-based Authentication Service for CoAP 14

3 Objectives and Methodology of this Work 19

3.1 Objectives . 19

3.2 Methodology . 20

4 Implementation 21

4.1 Contiki OS and the Cooja Simulator . 21

4.1.1 Erbium REST Engine . 23

4.1.2 Copper CoAP User-Agent . 23

IX

4.2 Deployment . 24

4.3 Erbium Example Scenario and the CoAP-EAP Flow of Operation 25

4.4 Understanding Resources in Erbium . 26

4.4.1 C Preprocessor Directives . 26

4.4.2 Erbium’s Resource Macro . 26

4.4.3 Data Structure for a Resource in REST 27

4.4.4 The Resource Handler Function . 28

4.4.5 Activating the Resource . 29

4.5 Creating Dynamic Resources . 29

4.5.1 Implementation Details on Updating an Initial Resource 30

4.5.2 Keeping the old resources . 33

4.6 Proof-of-Concept Implementation for Draft Version 06 of CoAP-EAP . . . 34

4.6.1 Sending the Initial POST Request 34

4.6.2 Communicating with the EAP State Machine 35

5 Results 37

5.1 Overview . 37

5.2 Wireshark Analysis without Package Loss 38

5.3 Wireshark Analysis with Package Loss . 40

5.4 RAM and ROM Usage . 42

5.5 Discussion . 43

6 Outlook and Conclusions 45

A Appendix 57

A.1 Time Schedule . 57

A.2 Source Code of the Proof-of-Concept HATEOAS Implementation on Draft
Version 06 . 58

X

List of Figures

2.1 Generic lifecycle for IoT service - Image taken from [6] 7

2.2 EAP conversation between the parties - Image taken from [39] 12

2.3 CoAP-EAP flow of operation with OSCORE - Image taken from [48] . . . 15

4.1 Running scenario in the Cooja Simulator 22

4.2 Mote type and loaded .c file . 23

4.3 Discovering the available resources on the mote 24

4.4 Usage of object-like macro in C . 26

4.5 Definition of a resource in the file erbium.h 26

4.6 Expanding the resource macro to create the helloworld resource 27

4.7 The expanded resource macro for the helloworld resource 27

4.8 Declaration of the struct resource t . 27

4.9 Initializing the struct variable helloworld for the helloworld resource 28

4.10 Activating the resource helloworld . 29

4.11 Schematic flow of packages in dynamic resource creation 30

4.12 Implementation for dynamic resources . 31

4.13 Calculations for character arithmetic in C 32

5.1 Wireshark capture filtered to CoAP messages without package loss in the
proof-of-concept implementation . 38

5.2 Wireshark analysis of frame 751 . 39

5.3 Wireshark analysis of frame 783 . 40

5.4 Console output of the CoAP-EAP controller 40

5.5 Sending a first POST request against /CJSBK returns 2.01 Created 41

XI

5.6 Sending another POST request against /CJSBK returns 4.04 Not Found . 41

5.7 Wireshark capture filtered to CoAP messages with package loss in the
proof-of-concept implementation . 41

5.8 Wireshark analysis of frame 1208 . 42

5.9 RAM and ROM usage of an EXP5438 mote running Contiki with different
loaded modules . 42

A.1 Scheduling the individual steps for this thesis 57

A.2 Source Code of the Proof-of-Concept HATEOAS Implementation on Draft
Version 06 . 58

XII

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 1 de 68

1. Introduction and Motivation

The Internet of Things (IoT) is a concept in computer science in which information from

the physical world are gathered and provided in a global computer network to make use

of that gained information [1].

In industry and building automation, a sensor e.g. for the current temperature can provide

its measured data to a connected microcontroller. In this example, the sensor connected

to the microcontroller form the so-called IoT device. In the most basic way, it will process

the data and forwards it over a computer network to entities, which then could cause a

change on a second IoT device if the measured temperature is above or below a given

threshold. This triggers a change in the percolation of an automated thermostatic valve

in order to higher or lower the room temperature. The benefit of the gathered information

temperature from the physical world would be a constant room temperature and savings

in heating costs [2].

The term IoT controller refers in this work to an entity inside the network that

authenticates IoT devices. It may process or forward delivered data from the IoT devices

as well if it combines multiple entities in one place.

Inside the computer network the IoT device communicates not only to the IoT controller,

but to other IoT devices for machine-to-machine communication and network services

(e.g. to a time server) as well [3]. IoT devices, IoT controllers and other devices in

the network should implement a basic set of security features. Especially the use of

encryption is important to keep the information secret from all but authorized parties.

Integrity and message authentication are needed to ensure, that exchanged data between

two communication partners are not altered accidentally or manipulated during the

transmission and its source is the actual sender that pretends to be it. Among other

things, common practice encryption algorithms and authentication methods from x86

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 2 de 68

architecture cannot be used on IoT devices due to their low computing power and battery

operation [4].

Furthermore, only trustworthy devices should be allowed to enter the network and

communicate with other devices and services inside the network. The decision, if whether

an IoT device is trustworthy or not and the authentication process itself are among

others part of a phase called bootstrapping [5]. Bootstrapping is one phase that an IoT

device passes during its lifecycle. Prior phases to bootstrapping are e.g. evaluating and

assembling the hardware of the IoT device itself, deploying the operating system and the

physical placement of a device. The process of bootstrapping can make use of different

protocols and technologies. One of the goals of bootstrapping is to receive cryptographic

key material which can be used to ensure the authenticity between the communication

partners and establish an encrypted communication channel within the network, after

joining the network. Post bootstrapping refers among others to the normal operation

phase in the IoT lifecycle, where additional key material could be generated [6].

One protocol for bootstrapping IoT devices is the Extensible Authentication Protocol

(EAP). It supports various authentication methods and mechanisms that can be used

without having to commit to a specific method in advance. The IoT controller can

use different procedures with each IoT device individually to generate cryptographic key

material. This flexibility of EAP is a great advantage, especially in large institutions,

where many devices from different manufacturers have to be authenticated in a short

time. With the Constrained Application Protocol (CoAP), there is also a web transmission

protocol that has a lower overhead compared to the Hypertext Transfer Protocol (HTTP)

[7] and was specifically developed for the use on constrained devices [8]. The Internet-

Draft EAP-based Authentication Service for CoAP (CoAP-EAP) uses CoAP as an EAP

lower layer to authenticate constrained devices by encapsulating EAP packages in CoAP

messages and benefits from CoAP’s advantages over other application-layer protocols.

CoAP-EAP can be used for bootstrapping IoT devices and makes use of the HATEOAS

principle. Therefore, web resources need to be created and deleted dynamically on the

side of the IoT device to indicate the current state of the process. As a result of this

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 3 de 68

bootstrapping technology, a Master Session Key (MSK) is generated which builds the

foundation for the upcoming secure communication in the network.

In this work, the first implementation of the latest version 06 of CoAP-EAP based on

the Erbium (Er) REST Engine [9] will be published. Erbium is an official library for

the IoT operating system Contiki [10] written in the programming language C and

does not support HATEOAS by default. Therefore, Erbium had been analyzed in

detail to understand the mechanism of creating web resources. The result of this work

represents source code written in C which can be executed after its compilation on IoT

devices to authenticate them by using CoAP-EAP. The source code contains the whole

operating system Contiki including Erbium, extended with the HATEOAS functionality

and adapted for the usage with CoAP-EAP.

Structure of this Work

In the background chapter 2, the fundamental protocols and paradigms are introduced

which are necessary to understand the objective in detail. It will outline the need for

IoT-specific protocols and what the term bootstrapping means. It also introduces the

HATEOAS principle and illustrates the steps for establishing a secure connection between

the IoT device and IoT controller using CoAP-EAP.

Time management refers to finishing this scientific project as efficiently as possible in

terms of chronological order and energy within a certain time limit. Therefore, a time

schedule has been created to verify that the goals set for this project fit within the time

frame and what sequence will allow for an optimal workflow. The schedule can be found

in appendix A.1.

Chapter 3 will make a transition between the state of the art as described in chapter 2

and clarifies the objectives of this work. The implementation chapter 4 will target the

technical details of the Erbium REST engine and its management of web resources, to

implement the HATEOAS principle in a proof-of-concept using CoAP-EAP.

Finally, the results will be presented and discussed.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 5 de 68

2. Background

This chapter introduces terminology and the technical background so that the following

chapters become understandable. It starts with an introduction to basic security services

and characteristic features of IoT devices when comparing them to the x86 architecture.

After that, the IoT device lifecycle is introduced, followed by a structured explanation of

the involved protocols and standards.

2.1. Security Services

Cryptographer Christoph Paar (Ruhr-University Bochum, Germany) defines the most

relevant security services in Understanding Cryptography [11] as follows:

1. Confidentiality: Information is kept secret from all but authorized parties.

2. Integrity: Messages have not been modified in transit.

3. Message Authentication: The sender of a message is authentic.

Exchanged messages between the IoT device and the IoT controller and generally in

the network should not be able to be changed undetected during its transmission in the

computer network (violation of integrity and authenticity) or read by an unauthorized

party (violation of confidentiality) [12]. The encryption and decryption of messages are

therefore ideally performed directly in the sender and receiver themselves. For the use of

such end-to-end encryption, a prior key agreement is necessary, with which the messages

are encrypted by the sender and decrypted by the recipient [13].

2.2. IoT Characteristic Features

Methods for negotiating a secret key for the use of encryption between sender and receiver

by using an insecure communication channel exist since 1978 with the Diffie-Hellman key

exchange (DHKE) [14]. Strong symmetric encryption algorithms such as the Advanced

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 6 de 68

Encryption Standard (AES) have also been around since 2004 [15]. Today’s x86 desktop

computers and even smartphones nowadays can compute cryptographic operations [16].

They are accelerated by outsourcing certain operations into hardware [17] and one may

ask: Why are new algorithms and protocols needed?

Computers require a constant power supply during operation. This is provided in

smartphones and notebooks via rechargeable batteries. In desktop computers, it is

provided by the power supply unit. IoT devices are battery-powered and do not use x86

processor architecture but microcontrollers with a fraction of its memory and computing

power [4]. In particular, cryptographic operations cause additional computing time on the

processors, which immensely reduces the lifetime of a device. The goal is to maximize the

uptime of an IoT device without reducing security objectives. Thus, new resource-saving

protocols are being developed specifically for microcontrollers [18].

2.3. IoT Device Lifecycle

Figure 2.1 shows the Generic lifecycle for IoT service. In order to achieve the mentioned

security goals in section 2.1, we have to make sure, that both the IoT device and the

IoT controller are authentic and those they pretend to be. Especially the verification, if

whether an IoT device is allowed to join a security domain or not, is a challenge due to the

big amount of devices that should be used and deployed at the same time. The security

domain is a network where only authorized and therefore bootstrapped IoT devices can

communicate.

When deploying IoT devices such as light sensors or smoke detectors in new buildings,

their physical installation at the right location needs to be scheduled early during the

planning phase. Structured cabling for IT infrastructure in the building e.g. for industrial

wireless access points with IoT connectivity depends on the IoT device’s location used in

the future to ensure that signal strength is sufficient. In this process, a lot of different

companies are involved and the commissioning of the IT infrastructure may start years

later but has to be taken into account at an early stage [19].

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 7 de 68

Figure 2.1 - Generic lifecycle for IoT service - Image taken from [6]

2.3.1. The Bootstrapping Phase

The bootstrapping process itself is one part of the installation and commissioning phase

in the lifecycle of an IoT device. In the previous phases, the microcontrollers layout

has to be designed and manufactured and the needed software components (operating

system and third-party applications) need to be developed and tested. After those phases

of construction and production, the device will be placed in its operating location: the

bootstrapping process begins [6].

The process of getting a device fully operational, including the establishment of secure

communication channels inside the network by using generated cryptographic key

material, is called bootstrapping. Bootstrapping includes multiple sub-processes such

as authentication, authorization and key distribution to enroll trustworthy IoT devices

members of the security domain. In the generic lifecycle, it can be assigned to the

commissioning stage [5].

Because IoT devices are developed and designed for particular tasks and use cases,

IoT devices in larger domains are likely manufactured by different vendors. This

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 8 de 68

requires interoperability between the different manufacturer ecosystems and a uniform

bootstrapping process by using standardized protocols [12].

The bootstrapping process finishes with generating the necessary key material, which can

be used to establish post-bootstrapping security associations. The IoT controller also

allows the IoT device to communicate with other entities inside the network such as time

or key distribution servers or even Internet access [20].

2.3.2. Post-Bootstrapping

The IoT controller might not be the entity granting access to the Internet. Inside the

network can exist multiple entities for various services. There can be one entity to

distribute the actual time to clients and a separate entity that grants internet access.

The communication with these entities inside the network needs to be secured. These

new capabilities can be used because bootstrapping was performed. The IoT device is a

member of the security domain and gets access rights from the IoT controller.

From this point on, the generated key material for the security association protocols such

as DTLS [21] and OSCORE [22] is derived from the negotiated Master Secret Key (MSK)

at the beginning of this phase.

Post-bootstrapping affects more than only enabling a secure channel. Also, in cases

of replacements of outdated IoT devices or disabling devices that are vulnerable to

unresolved zero-day exploits, decommissioning is an important part of the IoT device

lifecycle [23]. Decommissioning requires an unrecoverable removal of any cryptographic

key material stored on the device and a factory reset to not leak information about the

insides of the IT infrastructure before its disposal [6].

Among challenges in bootstrapping, the costs of the post-bootstrapping phase in the IoT

device lifecycle (operating, monitoring, updating and decommissioning) should not be

underestimated [12].

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 9 de 68

2.4. Protocols and Paradigms

After introducing IoT characteristics, the related protocols and paradigms are explained.

It should provide the reader with an understanding, of why the development of IoT-specific

application layer protocols was necessary and which components from the pre-IoT era can

be further used.

2.4.1. Representational State Transfer (REST)

Since the beginning of the 2000s, Representational State Transfer (REST) has been an

important principle for standardizing interfaces for web services. Roy Thomas Fielding

introduced this architectural style in his dissertation [24].

A stateless client-server protocol is used to implement the REST paradigm. This can be

HTTP or in the context of IoT devices CoAP (see 2.4.3) as an application layer protocol.

HTTP specifies request methods. The HTTP GET method requests information from a

specified resource on a webserver. GET requests must be idempotent and safe. Idempotent

means that sending the same request multiple times has no different effect than sending

it once. Safe implies that this method only retrieves information and does not cause

any other effects [25]. If a GET request causes e.g. the creation of a new resource

(POST requests are used for that) or is neither idempotent nor safe, the server-side

implementation is not REST compliant, because the server’s behavior is different from

what is expected.

All information that is needed to recover the page’s state needs to be included in the

request. The Unique Resource Identifier (URI) identifies only the resource, while the

HTTP header may contain information such as access type (GET, PUT, POST, ...),

return format or authentication.

URIs must be unambiguous, permanently identifiable and accessible via standard methods

of the application protocol (HTTP or CoAP requests). They only specify the location, but

not the content that the web service provides. Due to the statelessness and assuming prior

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 10 de 68

authentication, all necessary data to answer a request is delivered only depending on the

information received in the request. This simplifies machine-to-machine communication

(e.g. HTML and XML parser) and makes communication less error-prone [24].

2.4.2. Hypermedia as the Engine of Application State (HATEOAS)

HATEOAS is a limitation of previously explained REST application architecture. With

HATEOAS, a client interacts with a server application that dynamically provides

information via hypermedia. A client requires no or minimal existing knowledge of how

to interact with a REST-conform application [26]. He only needs to know the URI.

An intuitive example from the “The RESTful cookbook” [27] demonstrates the wanted

behavior:

A customer is logged in to his online banking account. He does not have any money in

his account because his last transfer or payment put it in the red. In that case, he should

not be allowed to get his balance even more negative. The only option he should have

from now on is to deposit more money until it is again in the black.

This behavior can be achieved even though the customer uses the same resource

GET /account/12345 HTTP/1.1 in online banking. The response to this GET request

would normally return more options by providing links where he can do the specified

action like transferring money. But the available options, delivered from the server in the

corresponding response, change. The hypertext is the engine that controls the available

options depending on the application’s state.

2.4.3. Constrained Application Protocol (CoAP)

CoAP is a web transfer protocol that is defined in RFC 7252 [8]. It provides the REST

paradigm even in constrained environments by being a lightweight protocol. The web

transfer protocol HTTP exists since the 1990s [25] and uses as an underlying transport

layer the Transmission Control Protocol (TCP) [28]. HTTP/1.1 messages are sent as a

stream of characters and cannot be divided into smaller messages. That changed with

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 11 de 68

HTTP/2 and the usage of frames and streams to reduce overhead and increase the overall

performance [29]. Nevertheless, even in more recent HTTP versions, the protocol lacks

IoT features for machine-to-machine and asynchronous message exchanges. CoAP is a

different protocol, and neither a compressed nor an optimized version of HTTP [30]. The

basic header of CoAP has a size of four bytes.

CoAP uses the User Datagram Protocol (UDP) as the underlying layer which is

a connectionless protocol. UDP does not retransmit lost packages or guarantee

that packages will be delivered in the same order in which they were sent [31].

Therefore, CoAP has implemented a basic reliability mechanism that offers simple

stop-and-wait retransmission for confirmable messages and duplicate detection. Due to

improvements not only in the physical layer for wireless transmission but also in specialized

communication protocols for Low-Power Wide Area Network (LPWAN) [32], wireless and

connectionless communication has become more reliable [33]. That offered the possibility

to replace TCP by using new protocols which implement only the needed features from

TCP in a more efficient way (e.g. QUIC in HTTP/3) while using UDP as transport layer

[34].

CoAP makes use of the client/server interaction model such as HTTP does: there are

CoAP request and response messages. Requests can be either confirmable or non-

confirmable. Supported client request methods are GET, POST, PUT and DELETE

similar to HTTP request methods. Response codes are used to give the client feedback

to his request. The response code classes are as well similar to HTTP but with a dot

after the hundred delimiter. HTTP response code 404 Not Found is equal to CoAP

4.04 Not Found [35].

In order to discover information about a host e.g. which resources are available, a GET

request can be sent to the path prefix /.well-known [36]. Technically speaking, the

resource /.well-known/core is used in CoAP to discover resources that are hosted. By

supporting this mechanism, machine-to-machine communication is again improved, due

to the delivery of all hosted resources on the queried CoAP server to the client [37].

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 12 de 68

2.4.4. Extensible Authentication Protocol (EAP)

EAP is an authentication protocol that supports various authentication methods to

authenticate a device or a user [38]. EAP can be used over data link layer protocols such

as IEEE 802 or Point-to-Point Protocol (PPP) and does not require the Internet Protocol

(IP). EAP brings built-in support for retransmission of lost packages and duplicate

elimination but does not guarantee the order of the packages.

The EAP conversation can be split up into three phases. The following example will

explain the terms EAP peer, EAP authenticator and EAP authentication server in the

context of the EAP phases [39]:

Phase 0: Discovery

Phase 1: Authentication - EAP authentication and AAA Key Transport (optional)

Phase 2: Secure Association Protocol - Unicast Secure Association and Multicast Secure

Association (optional)

EAP peer Authenticator Auth. Server
-------- ------------- ------------
<----------------------------->	
Discovery (phase 0)	
<----------------------------->	<----------------------------->
EAP auth (phase 1a)	AAA pass-through (optional)
	<----------------------------->
	AAA Key transport
	(optional; phase 1b)
<----------------------------->	
Unicast Secure association	
(phase 2a)	
<----------------------------->	
Multicast Secure association	
(optional; phase 2b)	

Figure 2.2 - EAP conversation between the parties - Image taken from [39]

EAP is often used for access control in enterprise Wi-Fi networks in combination with

a RADIUS server as EAP authentication server [38]. In this context, the EAP peer

is the device of the user which asks for network access. The main goal of each EAP

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 13 de 68

conversation is to establish a secure communication channel between the EAP peer and

the EAP authenticator by using fresh key material that is only known to both entities.

When a user tries to connect to a WPA2 Enterprise secured wireless network (Phase

0 completed, the user discovered the emitted Wi-Fi network and the authenticator’s

capabilities), he is asked to enter his user credentials e.g. username and password when

using PEAP as EAP method to authenticate [40].

The term EAP method describes, which actual authentication mechanism is used. Popular

EAP methods are Protected EAP (PEAP) [41], EAP Transport Layer Security (EAP-

TLS) [42], EAP Pre-Shared Key (EAP-PSK) [43] and Nimble out-of-band authentication

for EAP (EAP-NOOB) [44].

After discovering the EAP authenticator, the EAP authenticator sends an initial EAP

identity request back to the EAP peer who responds with an EAP identity Response

message. This message is forwarded by the EAP authenticator to the EAP authentication

server which selects the EAP method (in this example PEAP), based on the provided

Network Access Identifier (NAI) in the EAP identity request message. The EAP

authentication server knows which algorithms and protocols the EAP peer supports by

identifying it based on his NAI [45].

The entered credentials by the EAP peer will then be forwarded from the EAP

authenticator to the EAP authentication server which will process the request. If the

login credentials are correct and the user is allowed to access the network, the peer has

been successfully authenticated. Secure Association Protocols e.g. in IEEE-802.11 will

only take part between the EAP peer and the EAP authenticator to derive keys and to

create a security association (completion of Phases 1 and 2) [46].

2.4.5. Object Security for Constrained RESTful Environments (OSCORE)

OSCORE is a new Internet-Standard, published in the summer of 2019 [22]. Its main

purpose is the establishment of a secure communication between two endpoints by

providing end-to-end protection using CoAP.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 14 de 68

The goal of EAP conversation phase 2 is the creation of a bidirectional security association

between the EAP authenticator and the EAP peer. CoAP specifies the use of proxies for

efficiency and scalability. The usage of Transport Layer Security (TLS) or Datagram

Transport Layer Security (DTLS) in combination with proxies requires its termination

at the proxy itself. Despite the advantages in speed and reducing network traffic, (web)

proxies have downsides not only in IoT context. They represent a target of choice due to

the high impact of a successful attack on that server, because the proxy processes data

from many clients in plaintext and messages can be eavesdropped, forged or discarded

and impact all connected devices [47].

To mitigate the security concerns when using proxies in the context of IoT, OSCORE

protects CoAP requests and responses end-to-end even through different types of CoAP

proxies. Among others, the protected message fields are the message payload itself, the

request method and the requested resource.

2.4.6. EAP-based Authentication Service for CoAP

In December 2021 version 06 of the IETF-Draft EAP-based Authentication Service for

CoAP, also known as CoAP-EAP, has been published [48]. It specifies how EAP

messages can be exchanged between the IoT device (EAP peer) and IoT controller (EAP

authenticator) using CoAP as an EAP lower layer to authenticate an IoT device and grant

access to a security domain. The IoT controller can combine the EAP authenticator and

the EAP authentication server, but for better understanding, we assume that the IoT

controller only has the functionality of the EAP authenticator (see section 2.4.4). Using

CoAP as an EAP lower layer does not mean that CoAP is below EAP in the OSI reference

model [49]. EAP packages are encapsulated as payload in CoAP messages (application

layer) which are then again encapsulated in UDP messages (transport layer).

EAP benefits from the usage of the HATEOAS principle in CoAP, as mentioned in section

2.4.2. CoAP guarantees the order of sent messages which would normally not be possible

due to the usage of UDP as transport layer in CoAP. This is done by creating a new

resource and making the previous one unavailable in EAP phases 1 and 2 (see figure 2.2).

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 15 de 68

During EAP phase 1 (authentication) the dynamic resource creation is used to settle on a

method. In phase 2 the secure association protocol OSCORE will be established in which

the hypermedia indicates the current state of the protocol.

The flow of operation between the IoT device and the IoT controller is specified in the

draft:

IoT device Controller
------------ ------------

| POST /.well-known/coap-eap |
0) | No-Response |

| Payload("/a/x") |
|-->|
| POST /a/x |
| Payload(EAP Req/Id||CS||RID-C) |

1) |<--|
| 2.01 Created Location-Path [/a/y] |
| Payload(EAP Resp/Id||CS||RID-I) |

2) |-->|
| POST /a/y |
| Payload(EAP-X Req) |

3) |<--|
| 2.01 Created Location-Path [/a/z] |
| Payload(EAP-X Resp) |

4) |-->|
....

| POST /a/q |
| Payload(EAP-X Req) |

5) |<--|
| 2.01 Created Location-Path [/a/w] |
| Payload (EAP-X Resp) |

6) |-->|
| | MSK
| POST /a/w | |
| OSCORE | V
| Payload (EAP Success||*Session-Lifetime)| OSCORE

MSK 7) |<--| CONTEXT
| | |
V | 2.04 Changed |

OSCORE | OSCORE |
CONTEXT 8)|-->|

Figure 2.3 - CoAP-EAP flow of operation with OSCORE - Image taken from [48]

The IoT device initializes the authentication process by sending a POST request to the

resource /.well-known/coap-eap of the IoT controller (step 0). That is the only time, it

acts as CoAP client by sending a request. The IoT device tells the IoT controller, which

is its initial resource to start the authentication process. In this case, it is the resource

/a/x. After that initial POST request from the IoT device, it acts as CoAP server by

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 16 de 68

responding to CoAP requests from the IoT controller (CoAP client) as shown in steps 1

- 7.

The IoT controller then sends a CoAP POST request to /a/x (step 1) which contains

as payload an EAP request identity message for EAP phase 1. For EAP phase 2, the

recipient ID of the Controller (RID-C) and optionally a list with the cipher suites (CS)

for OSCORE is sent.

After the IoT device has received this POST request, it passes the received EAP

request identity to the EAP peer state machine which returns an EAP response. The

resource /a/x will be deleted and no longer available. The IoT device will create a

new resource /a/y and responds to the POST request against /a/x with response code

2.01 Created Location-Path /a/y. The payload of this message is the EAP response

identity given by the EAP peer state machine, the recipient ID of the IoT device (RID-I)

and /a/y is the new resource on which the IoT device can receive a request (step 2).

The IoT controller (EAP authenticator) then forwards the EAP response identity to the

connected EAP authentication server, where he can choose an EAP method. The EAP

authenticator in this case operates as pass-through authenticator and supports EAP in

pass-through mode. He is capable of forwarding EAP packets from the EAP peer to the

EAP authentication server.

EAP peers with different hardware specifications, operating systems and use cases will

support a wide variety of EAP methods. In order to indicate that the EAP authentication

server chooses one of them, the term EAP method X is used. CS and RID-I are

not forwarded to the EAP authentication server, because that information belongs to

OSCORE and is only used for phase 2, referring to the secure association protocol in

figure 2.2.

Steps 3-6 are message exchanges related to the chosen EAP method. As mentioned

before, the IoT device (CoAP server) deletes the resource to which a POST request has

been received and creates a new one which will be sent in the location header of the CoAP

response to the IoT controller (CoAP client). EAP method responses from the EAP peer

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 17 de 68

are forwarded by the pass-through authenticator to the EAP authentication server. In

the opposite case, the EAP authenticator forwards EAP method requests from the EAP

authentication server destined to the EAP peer as well.

After finishing this process, both the IoT device and IoT controller have negotiated

a shared secret, the Master Session Key (MSK). For security reasons, the actual

cryptographic operations do not use the MSK itself, but a derivative of it [50]. Here,

this derivative is called Master Secret and is used to generate an Object Security

Context for Constrained RESTful Environments (OSCORE) (steps 7 - 8). The

security services confidentiality, integrity and authentication (see section 2.1) in this

constrained environment are therefore achieved even when using proxies through end-

to-end protection.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 19 de 68

3. Objectives and Methodology
of this Work

This chapter provides a transition between the explanations in the previous background

and the REST implementation in Contiki OS using Erbium. It will describe which parts

are in the scope of this document and what methods can be used to achieve these goals.

3.1. Objectives

The main objective of this work is to create web resources dynamically using the Erbium

REST engine to implement the HATEOAS principle on the IoT device. The IoT device

acts as CoAP server and never sends CoAP requests, except in the first message to

initialize the authentication process. Creating dynamic resources is one part needed to

create a proof-of-concept implementation compliant with the Internet-Draft EAP-based

Authentication Service for CoAP.

The concrete goal of this work is to achieve the following objectives:

1. Creating web resources on the IoT device dynamically without assigning memory for

the new resources in advance. Sending a CoAP POST request against an existing

resource should make the current resource unavailable and create a new random

resource during runtime. The response should return the appropriate response code

and the URI of the new resource.

2. Sending an initial CoAP POST request from the IoT device to act as CoAP client.

3. Developing a proof-of-concept implementation to demonstrate a CoAP-EAP-based

authentication by applying the HATEOAS principle.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 20 de 68

3.2. Methodology

All three objectives require a test setup consisting of an IoT device that is executing the

Contiki Operating System and its official library for REST: Erbium. This setup and its

deployment will be explained in chapter 4.

To accomplish Objective 1, Erbium will be analyzed in detail. This will answer questions

about what resources are and how they can be created or deleted. This fundamental

understanding is necessary to see if a dynamic creation of resources during runtime is

possible and how it could be done. In order to return CoAP status codes and fill other

header fields with the appropriate values, Erbium’s REST functions will be inspected as

well.

Objective 2 changes the focus from responding to CoAP requests to its functionalities as

CoAP client to send requests. This contains creating a CoAP message with a payload

and sending it to a destination IP address.

To achieve Objective 3 not only both previous objectives have to be merged. The test

setup will be extended with an IoT controller (CoAP-EAP controller) and an EAP

authentication server to simulate the authentication of the IoT device. Therefore, an

implementation of the EAP state machine (EAP-SM) is used to process incoming EAP

messages and generate EAP responses. This will result in the authentication of the IoT

device without user interaction after starting the simulation and covers steps 1 - 7 of the

CoAP-EAP flow of operation as shown in figure 2.3.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 21 de 68

4. Implementation

In this chapter, the underlying mechanism in the Erbium REST engine will be

explained. The deployment of motes using the Cooja Simulator is introduced as well

as implementation details about how to use the HATEOAS principle in Erbium. The last

part of this chapter will explain the ideas and the source code behind the proof-of-concept

implementation compliant with CoAP-EAP draft Version 06.

4.1. Contiki OS and the Cooja Simulator

The Contiki Operating System has been specifically designed for the use on low-power

microcontrollers. It has been ported to different hardware platforms (such as Freescale

MC13224V, Intel 8051-based platforms, ZOLERTIA Z1 and more), supports IPv4 and

IPv6 networking protocols and wireless standards for Internet and computer network

communication on constrained devices like 6LoWPAN and CoAP [10]. With at least

10 kB RAM and 30 kB ROM hardware requirements it has been designed to operate on

very limited devices [51].

Applications for Contiki are written in the programming language C and can make use

of dynamic memory allocation, but Contiki does not have a Memory Protection Unit

(MPU), because the supported hardware platforms do not offer this functionality [52].

Therefore, the operating system does not separate processes’ memory and areas worthy

of protection are not safeguarded [53].

In the process of developing applications for IoT devices, the use of network and IoT

device simulators offer several advantages, such as low-cost testbed setups on x86 hardware

with an almost unlimited amount of IoT devices, quick reboots and advanced debugging

interfaces [54]. Cooja is a network simulator for Contiki and developed in Java. The

Java Runtime Environment (JRE) allows virtualizing Contiki by using Cooja on different

hardware platforms [55]. Simulated microcontrollers inside Cooja are called motes. Each

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 22 de 68

mote compiles and executes the full Contiki Operating System and has access to the

supported protocols and standards in Contiki [56], even though Cooja may not be the first

choice for testing highly precise time-related performance measurements [57]. Projects in

Cooja contain all information about motes with its compiled C code, border routers, IP

configuration and distances for wireless networks. They can be exported to a .csc file

which represents a Cooja scenario. The following image shows a scenario with two motes:

Figure 4.1 - Running scenario in the Cooja Simulator

Mote 1 has the IP address aaaa::c30c:0:0:1 assigned and represents the border

router which is used to route packages between the hypervisor network and the

network inside the Cooja simulation [58]. Mote 2 represents an emulated Texas

Instruments MSP-EXP430F5438 microcontroller [59] with 256 kB of RAM which loads

the Contiki Operating System including all device-specific configurations (see figure

4.2). The device-specific configuration enables Erbium (see section 4.1.1) with

self developed web resources as explained in section 4.6, all merged into the file

Erbium-CoAP-EAP-HATEOAS-IoT-Device.c.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 23 de 68

Figure 4.2 - Mote type and loaded .c file

4.1.1. Erbium REST Engine

In order to interact with an IoT device through its offered web resources, a REST engine

is needed. One of the provided examples of Erbium includes the following scenario: The

IoT device (a mote in the Cooja Simulator) waits for CoAP POST requests against its

resource /actuators/toggle. If a request is received an event is triggered. In this case,

the red LED of the simulated microcontroller will be toggled.

Erbium became the official REST implementation for Contiki in 2011 [9]. The developers

provide multiple Erbium example scenarios to interact with resources by using the CoAP

[60]. Because of better memory management and efficiency reasons those resources are

statically defined. Their URI is hard-coded before starting the mote.

4.1.2. Copper CoAP User-Agent

Sending CoAP requests to a Contiki mote can be realized by using the Copper CoAP

User-Agent shown in figure 4.3. It is an extension for Mozilla Firefox and implements

CoAP functionalities in JavaScript [61]. Cooja does not offer an integrated web browser.

Therefore, the one from the host operating system has to be used. In order to enable

communication between the host machine and the mote inside Cooja, a tunslip tunnel is

used [62]. Requests to a resource can then be sent by using the following syntax in the

address bar of the web browser coap://[aaaa::200:0:0:2]:5683/resource, assuming

that the destination IP address aaaa::200:0:0:2 and the default CoAP UDP port 5683

is used.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 24 de 68

In order to discover all available resources, a GET request can be sent to the resource

/.well-known/core as explained in section 2.4.3, which is done by using the button

Discover in Copper:

Figure 4.3 - Discovering the available resources on the mote

4.2. Deployment

During the process of work with the Erbium REST engine, Cooja was executed on a

Ubuntu 12.04 32-bit virtual machine. This outdated Ubuntu release includes all required

dependencies for the use of Cooja and offered native compatibility with the Copper (Cu)

CoAP user-agent due to its old Mozilla Firefox version. Since Firefox 57 protocol handler

extensions are not supported anymore [63]. The Cooja installation is explained in the

corresponding wiki [64]. In this work, Contiki release 2.7 was used. After installing all

dependencies, the scenario server-client.csc can be run as described by the developers

[60].

In order to achieve Objective 1 of this work, first only the er-example-server.c file

has been modified to analyze the behavior of the REST engine and to create resources

dynamically.

Objective 2 and Objective 3 did not rely anymore on the server-client.csc example

scenario. A new Cooja scenario had been created and the mote type had been changed to a

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 25 de 68

Texas Instruments MSP-EXP430F5438 as shown in figure 4.2, due to memory limitations

on the mote in the example scenario. A CoAP-EAP controller was used as an IoT

controller as shown in figure 2.3 to perform the authentication of the IoT device. The IoT

controller acted as a RADIUS client to interact with the running RADIUS server. The

RADIUS server takes the role of the EAP authentication server in EAP terminology (see

figure 2.2). Both the CoAP-EAP controller and the RADIUS server were running on the

same Ubuntu VM to support EAP in pass-through mode as explained in section 2.4.6.

Due to security concerns, this Ubuntu version should not be used in a productive and

Internet-connected environment [65].

4.3. Erbium Example Scenario and the CoAP-EAP Flow of
Operation

In the example scenario server-client.csc two Motes are generated: The Erbium

example server and the example client. Both motes load the Contiki Operating System

by using the corresponding C files er-example-client.c [66] and er-example-server.c

[67]. The client mote is used to generate and send CoAP requests to the server mote which

will process those CoAP requests and confirms to the client that the message has been

received, if it was from type confirmable.

In the given scenario, the client toggles the red LED on the server mote every 10 seconds

by sending CoAP POST requests. As seen in the CoAP-EAP flow of operation in figure

2.3, the IoT device acts only in step 0 as CoAP client by sending a POST request to the

resource /.well-known/coap-eap. In all further steps, the IoT device acts as a CoAP

server. It receives CoAP requests from the IoT controller, deletes the old resource, creates

a new one and responds with code 2.01 Created. The path of the new resource is sent as

well with the response code in the location-path CoAP option. In order to implement this

wanted behavior, it is important to understand how resources are handled in Erbium.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 26 de 68

4.4. Understanding Resources in Erbium

Only the CoAP server implementation deals with the generation of resources. Therefore,

the implementation is inside er-example-server.c. In this section, the predefined

resource /hello is used to explain what is needed to create a resource.

4.4.1. C Preprocessor Directives

An object-like macro is used to enable a resource that is activated by using the define

directive: #define REST_RES_HELLO 1.

In this case, the C preprocessor will recognize each occurrence of REST_RES_HELLO and

replaces it with 1 [68]. Because of that, the code in between #if REST_RES_HELLO and

#endif will be executed [69].

1 #if REST RES HELLO
2 // code in here will be executed
3 // only when REST RES HELLO had been replaced by 1.
4 // it is used to expand the resource macro,
5 // defines the resource handler function
6 // and set REST parameters.
7 #endif

Figure 4.4 - Usage of object-like macro in C

4.4.2. Erbium’s Resource Macro

Creating a resource in Erbium requires the expansion of the RESOURCE macro in

Erbium. The definition can be found in the file erbium.h [70]:

1 #define RESOURCE(name, flags, url, attributes) \
2 void name## handler(void ∗, void ∗, uint8 t ∗, uint16 t, int32 t ∗); \
3 resource t resource ##name = {NULL, flags, url, attributes, name## handler, NULL, NULL,

NULL}

Figure 4.5 - Definition of a resource in the file erbium.h

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 27 de 68

In order to create the resource /hello, the resource macro will be expanded with the

arguments shown in figure 4.6. It is placed inside define directive REST_RES_HELLO. The

leading forward slash in the third parameter hello can be omitted:

1 RESOURCE(helloworld, METHOD GET, ”hello”, ”title=\”Hello world: ?len=0..\”;rt=\”Text\””);

Figure 4.6 - Expanding the resource macro to create the helloworld resource

Expanding the RESOURCE macro first declares a function helloworld_handler from

return type void. Its actual implementation has to be placed inside define directive

REST_RES_HELLO as well. After that, a structure variable resource_helloworld from

the datatype resource_t is initialized with its passed parameters by using the token

pasting operator [71]. The C preprocessor will generate the following code [72]:

1 void helloworld handler(void ∗, void ∗, uint8 t ∗, uint16 t , int32 t ∗); \
2 resource t resource helloworld = {NULL, METHOD GET, ”hello”, ”title=\”Hello world: ?len

=0..\”;rt=\”Text\””, helloworld handler, NULL, NULL, NULL}

Figure 4.7 - The expanded resource macro for the helloworld resource

4.4.3. Data Structure for a Resource in REST

The corresponding declaration for a data structure from datatype resource_t can be

found as well in erbium.h [70]:

1 struct resource s {
2 struct resource s ∗next; /∗ for LIST, points to next resource defined ∗/
3 rest resource flags t flags ; /∗ handled RESTful methods ∗/
4 const char∗ url ; /∗handled URL∗/
5 const char∗ attributes ; /∗ link -format attributes ∗/
6 restful handler handler; /∗ handler function ∗/
7 restful pre handler pre handler; /∗ to be called before handler, may perform initializations ∗/
8 restful post handler post handler; /∗ to be called after handler, may perform finalizations (

cleanup, etc) ∗/
9 void∗ user data; /∗ pointer to user specific data ∗/

10 unsigned int benchmark; /∗ to benchmark resource handler, used for separate response ∗/
11 };
12 typedef struct resource s resource t ;

Figure 4.8 - Declaration of the struct resource t

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 28 de 68

Expanding the resource macro also causes the initialization of the declared structure

variable resource_helloworld with the passed arguments. A structure variable with

the name helloworld from the datatype resource_t will then have multiple elements.

The concrete code will look as follows:

1 resource t helloworld = {
2 NULL,
3 METHOD GET,
4 ”hello”,
5 ” title =\”Hello world: ?len=0..\”;rt=\”Text\””,
6 helloworld handler,
7 NULL,
8 NULL,
9 NULL

10 };

Figure 4.9 - Initializing the struct variable helloworld for the helloworld resource

The third element in this struct with the name url is a pointer to a constant char:

const char* url. After the initialization, this pointer will reference to a char-array

which will contain in each array element the letters of the string “hello”, followed by the

null character \0 to mark the end of a multibyte character string [73].

4.4.4. The Resource Handler Function

For each resource name (the first parameter when expanding the resource macro

from erbium.h) a handler function with the name [resourcename]_handler must be

implemented inside the define directive REST_RES_HELLO. The code inside the handler

function will be executed when the resource is accessed by the defined CoAP request

method. The second element in the struct from type resource_t determines the CoAP

request method.

The functionality inside the handler function can be for example only one line with a

function call to toggle the red led on the server mote leds_toggle(LEDS_RED); or defining

the content types and response payloads for the used method. For returning the newly

created location path especially those REST functions become important.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 29 de 68

4.4.5. Activating the Resource

Even though all previous steps have been done (expanding the macro by using the define

directive and implementing a handler function), the resource will not be accessible. Only

resources which had been activated will be accessible.

In order to enable the resource /hello from the helloworld example, a call by reference

to the memory address of the structure variable resource_helloworld is used, which

had been initialized during macro expansion. This activation can be linked to the define

directive REST_RES_HELLO (see figure 4.5) to active the resource after initializing the REST

engine.

1 ...
2 rest init engine () ;
3 #if REST RES HELLO
4 rest activate resource (&resource helloworld);
5 #endif
6 ...

Figure 4.10 - Activating the resource helloworld

4.5. Creating Dynamic Resources

Resources in Erbium are statically defined and Erbium does not offer a pre-built method

to create a new resource and delete the previous one during runtime. They are defined

before starting the mote. In order to implement the HATEOAS principle as required for

the latest version 06 of the EAP-based Authentication Service for CoAP (see figure 2.3),

Erbium’s resource and resource handler function have to be adapted.

Figure 4.11 shows the flow of packages when sending POST requests to the IoT device

in a schematic way. The mote is running the Contiki Operating System with an adapted

version of the er-example-server.c file. The source code is explained in section 4.5.1.

The POST requests are sent by using the Copper Plugin to see if the behavior is as

expected to achieve Objective 1 from section 3.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 30 de 68

Figure 4.11 - Schematic flow of packages in dynamic resource creation

The first message from the IoT controller to the IoT device is a CoAP POST request

against the initial and static resource /initHateoasRsc.

The initial request will be responded by the IoT device with response status code 2.01

Created and the location path /DKHUL (five random uppercase characters) of the newly

created and available resource. A POST request to /initHateoasRsc will now return

4.04 Not Found.

The second POST request from the IoT controller to the IoT device is now sent against

the new resource /DKHUL of the IoT device. Again, the IoT device responds with status

code 2.01 Created and a new location path /DCXGF. Neither /initHateoasRsc nor /DKHUL

are longer available.

4.5.1. Implementation Details on Updating an Initial Resource

The source code in figure 4.12 has been developed as part of this thesis and uses the

Erbium REST engine to achieve Objective 1. The implementation shows the wanted

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 31 de 68

behavior as seen in the schematic flow of packages (see figure 4.11) in the process of

dynamic resource creation when sending POST requests against a resource. In order to

enable this resource, the object-like macro has to be expanded by using a new define

directive for this resource: #define REST_RES_HATEOAS 1. Then the resource macro will

be expanded and the REST resource will be activated, analog to the example resource

helloworld in section 4.10.

The resource name hateoas is used in section 4.6 as well to merge the dynamic resource

creation with sending an initial POST request and the communication with the EAP

State machine. This achieves Objective 3 by providing a proof-of-concept that showcases

steps 0 - 7 on the IoT devices side in the CoAP-EAP flow of operations (see figure 2.3).

1 #if REST RES HATEOAS
2 char urlString [] = ”initHateoasRsc”;
3 int urlStringCounter;
4

5 RESOURCE(hateoas, METHOD POST, urlString, ”title=\”HATEOAS dynamic resource\”;rt=\”
Debug\””);

6

7 void hateoas handler(void ∗request, void ∗response, uint8 t ∗buffer , uint16 t preferred size ,
int32 t ∗ offset) {

8 for(urlStringCounter = 0; urlStringCounter < 5; urlStringCounter++) {
9 urlString [urlStringCounter] = 'A' + (random rand() % 26);

10 }
11 urlString [5] = '\0' ;
12

13 REST.set response status(response, REST.status.CREATED);
14 REST.set header content type(response, REST.type.TEXT PLAIN); /∗ text/plain is the default,

hence this option could be omitted. ∗/
15 REST.set header location(response, resource hateoas.url) ;
16 }
17 #endif

Figure 4.12 - Implementation for dynamic resources

First, an initial static resource is created by expanding the resource macro (line 5). Unlike

the default resources, the macro arguments are used differently. The url argument is not

directly used by entering a string (compare with figure 4.6, but by using a char-array

called urlString (line 2) which will later be modified. Its initialization was done by

specifying an initial string literal enclosed in double quotation marks to ensure, that the

null character \0 is included at the end of the string to indicate its termination.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 32 de 68

Assigning a new string literal to this already initialized char-array with the assignment

operator will not work, due to restrictions in C [74]. Therefore, a for loop was used

to change the first five characters by altering each array element individually from

urlString[0] to urlString[4] (line 9) with a new random uppercase character and

terminating the string after that (line 11).

A loop variable urlStringCounter was defined outside of the for loop due to the

restriction that initial loop declarations inside the for loop initialization are only allowed

in C99 mode [74]. The generation of the new random uppercase character inside this for

loop makes use of character arithmetic in C. The implementation of random_rand() in

Contiki returns a pseudo-random number between 0 and 65535 [75]. The character A is

stored by its decimal representation 65 according to the ASCII implementation on Linux

[76]. To generate a new random uppercase character for the elements urlString[0],

urlString[1], ... urlString[4] the following calculation is done:

65 + (x mod 26) = y with { x | x ∈ N, x ∈ [0, 65535] } and { y | y ∈ N, y ∈ [65, 90] }

Figure 4.13 - Calculations for character arithmetic in C

Therefore the saved decimal character between 65 and 90 will be interpreted as uppercase

characters from A to Z.

The size of the char-array cannot be modified after its initialization even though it contains

less characters. For urlString[] will be always (14+1)∗sizeof(char) = 15 byte of memory

reserved, assuming that sizeof(char) = 1 byte. The string initHateoasRsc has a length

of 14 characters and the additional character is caused by the null terminator character

at the end of the string.

After all character operations, the resource has a new name because of the changes in

the underlying data structure representing a REST resource as seen in 4.8. The struct

element const char* url inside the variable resource_hateoas from type resource_t

has not changed its position in memory, but only some characters of the char-array have

changed.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 33 de 68

It is required that the IoT controller will be informed about the newly created location

path. This behavior is compliant with the CoAP specification as explained in section

2.4.3. Thus, the response in the correct format needs to be generated. This is done

by responding with response status code 2.01 Created for a created resource (line 13),

defining the rest implementation type to text / plain (line 14) and setting the location

option of the response to the updated char-array urlString[] (line 15).

4.5.2. Keeping the old resources

During the process of developing the implementation of new dynamic resources, an

attempt was made to keep the old resources. For the creation of n resources and keeping

all those n resources, either memory for n resources needs to be assigned before executing

the program or dynamically when the request of creation is done. Due to the low amount

of memory (256 kB on the TI MSP430F5438), it is not reasonable to assign memory in

advance for even a few resources that might be created.

Therefore, the usage of dynamic memory allocation would be needed. Contiki supports

multiple ways to allocate and deallocate memory on the heap: the standard C library

memory allocator function malloc [77], the mmem managed memory allocator and the

memb memory block allocator [78]. The usage of malloc is not recommended on IoT

devices due to memory fragmentation.

The most often used memory block allocator is memb which stores objects of constant size

in static memory.

Having said that, keeping (an unlimited amount of) old resources in memory will consume

more and more memory over the time of the EAP exchange. This reduces the uptime

of the device due to the high costs of dynamic storage allocation and could cause device

crashes when running out of memory [79]. Keeping the old resources is neither compliant

with the CoAP-EAP draft, nor in this case useful.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 34 de 68

4.6. Proof-of-Concept Implementation for Draft Version 06 of
CoAP-EAP

In section 4.5.1, the dynamic creation of resources had been implemented by using

the Erbium REST engine. To provide a proof-of-concept compliant with CoAP-EAP

draft version 06 (see figure 2.3), the IoT device has to send an initial POST request

against the IoT controllers resource /.well-known/coap-eap in step 0. The payload

of this message contains the IoT devices resource, under which it will respond to an

incoming CoAP POST request. In this implementation, it will be the initial and static

resource /initHateoasRsc. From that point on the IoT device will create a new resource

(and delete the old one as explained in section 2.4.6) after receiving a POST request

against this resource. This behavior will be maintained until the IoT device receives an

EAP Success message in the CoAP payload. Then the MSK is available and OSCORE

will be established.

The full source code which is executed on the IoT device is attached in appendix A.2

of this document. The explanation in the following sections will refer to the lines in the

appended source code.

4.6.1. Sending the Initial POST Request

After initializing the REST engine (line 292), a timer is set to wait 15 seconds (line 303)

until the application-specific events are executed. For this implementation, only one event

is needed which is sending a CoAP request to the IoT controller’s IPv6 address (line 85).

To ensure, that this request is only sent once, an if statement is used not only to check if

the timer is expired but also if the initial request was only sent once (line 313).

A CoAP message is created in different steps. First, a general struct element of type

coap_packet_t is created: static coap_packet_t initialRequest[1]; (line 315). It

builds the base of a CoAP packet. The declaration can be found in the Contiki repository

under apps\rest-coap\coap-common.h. The function coap_init_message will take this

packet as first argument, sets the coap_message_type_t to non-confirmable and sets the

the message type to a CoAP POST request (line 319). The destination URI of this request

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 35 de 68

will be the IoT controllers resource /.well-known/coap-eap (line 321). The payload of

this message contains the resource under which the IoT device will wait for a request (line

142) and is passed as an argument to the function coap_set_payload (line 323). The size

of this resource is calculated here to allow a change in the length of the initial resource

without the need of changing multiple parts in the source code.

The message will be sent to the destination’s pre-defined IPv6 address and UDP port

(lines 85 and 86) by using them, just as the CoAP packet itself, as arguments to expand

the COAP_BLOCKING_REQUEST macro (line 325). This achieves Objective 2 of this work.

Erbium does not offer a built-in macro for sending CoAP requests without expecting a

response. Therefore, a blocking request will be sent.

After sending the initial CoAP POST request, the IoT device acts only as a CoAP server.

It responds to received requests. When a POST request against the currently alive web

resource is received, the hateoas_handler function is called (line 150). The resources

name is defined by the char-array urlString (line 142).

4.6.2. Communicating with the EAP State Machine

To authenticate the device by using an EAP method, the EAP state machine (EAP-SM)

has to be initialized (line 278). The used implementation of the EAP-SM [80] in Contiki

came from the EAP-related project called PANATIKI [81]. Details of the EAP-SM are

not part of this work. Only needed details are covered. The communication with the

EAP-SM takes place by passing the CoAP payload of an incoming POST request as an

argument to the function eap_peer_sm_step (line 187). The processed output of the

EAP-SM is accessible through the variable eapRespData. When the EAP authentication

ends successfully, the IoT device receives EAP Success in the payload of a CoAP POST

request. This will set eapKeyAvailable to true. Due to an error in the used EAP-

SM library, the IoT controller retransmits the first CoAP POST request, because the

corresponding response does not contain the motes NAI as payload. Therefore, the initial

resource has to be maintained for the first two received POST requests. This is done by

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 36 de 68

using the variable skipFirstHandlerCall (line 146) as well as condition to change the

resources name (line 163). The used EAP method in this proof-of-concept is EAP-PSK.

In step 1 of the CoAP-EAP flow of operation shown in figure (2.3) the Controller sends

an EAP request identity message (see section 2.4.6). As a response to this message, the

IoT device will once send its supported ciphersuites to the controller. This functionality

is managed by the variable cipherSuitesSent. It is initialized with the value 0, because

the ciphersuites are not sent yet (line 66). Therefore, the ciphersuites are sent in the else

block (starting in line 210) only one time, because after sending them cipherSuitesSent

is set to 1 (line 229) and the if block starting in line 191 is executed. The mentioned

if block starting in line 191 is executed for each incoming POST request, until the

IoT device received the EAP Success message. In this case the EAP-SM returned

eapKeyAvailable = 1 and the OSCORE dummy payload is set (line 210).

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 37 de 68

5. Results

This chapter presents the results of a proof-of-concept CoAP-EAP implementation with

the usage of the Erbium REST engine. Two Wireshark captures will be introduced.

The first scenario presents a lossless communication between the IoT device and the IoT

controller. The second scenario shows how Erbium handles retransmission due to packet

loss. After that, the RAM and ROM usage will be analyzed and the results will be

discussed.

5.1. Overview

The testbed for this proof-of-concept implementation consists of multiple parts. The

compiled binary from the source file Erbium-CoAP-EAP-HATEOAS-IoT-Device.c (see

appendix A.2) has the filename Erbium-CoAP-EAP-HATEOAS-IoT-Device.exp5438. It

contains the Contiki Operating System and the Erbium REST Engine. For the latter, a

customized resource and resource handler function is used to support dynamic resource

creation needed for the HATEOAS principle (see 4.5.1) and interaction with the EAP state

machine. The file is executed on a Texas Instruments MSP-EXP430F5438 microcontroller

(see section 4.2).

In order to perform the EAP-based authentication service for CoAP, a Linux

implementation of a CoAP-EAP controller was used to take part of the EAP authenticator

(see section 2.4.6). This device is the so-called IoT controller as shown in figure 2.3 and

has the IP address aaaa::ff:fe00:1 in this scenario. A Linux RADIUS server acted as

EAP authentication server in EAP pass-through mode (see figure 2.2 and section 2.4.6)

[82].

The Cooja simulation contains a border router (see 4.1) with the IP address

aaaa::200:0:0:1 and the IoT device with the IP address aaaa::200:0:0:2. The border

router is used to route packages between the IoT device inside the Cooja network and the

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 38 de 68

CoAP-EAP controller outside of the Cooja network. In order to establish the network

communication, a tunslip tunnel was used [62]. The traffic has been captured with

Wireshark to show the message exchanges.

5.2. Wireshark Analysis without Package Loss

The first message from the IoT device to the IoT controller is a CoAP POST

request against the resource /.well-known/coap-eap (frame number 538) to start the

authentication process. This initial request will not be responded but causes the IoT

controller to send his first CoAP POST request to the IoT device against its initial and

static resource /initHateoasRsc (frame number 539).

Figure 5.1 - Wireshark capture filtered to CoAP messages without package loss in the
proof-of-concept implementation

The Info column contains a summary of a captured package. In Wireshark version 3.6.5,

it shows the URI path at the end of each captured CoAP message. Wireshark indicates

the same URI path /initHateoasRsc in all responses to previous CoAP POST requests

from the IoT controller (frames 751, 770, 780, 797), because the token 3ec66e35 did

not change. The token is a field in the header of a CoAP message [8] and is used as

an identifier during the whole authentication process. Therefore, Wireshark displays the

initial resource instead of the location path at the end of the mentioned messages. The

URI path is not sent in those messages but shown in Wireshark as an interpretation of

this communication.

The IoT device acknowledges the request (frame number 539) by sending a response

with response status code 2.01 Created and the new location path /DKHUL (five random

uppercase characters) of the newly created and available resource (frame number 751).

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 39 de 68

Figure 5.2 shows this frame in detail. A POST request to /initHateoasRsc would now

return status code 4.04 Not Found.

Figure 5.2 - Wireshark analysis of frame 751

Due to the mentioned error (see section 4.6.2) in the EAP-SM on the IoT device,

the response to the request against /initHateoasRsc contains an incorrect payload.

Therefore, frame 578 is a retransmission of frame 539 but handled by creating dynamic

resources only from the second incoming message (see section 4.6.2). The controller chose

EAP-PSK as EAP method and from now on EAP packets related to this method are

exchanged between the IoT device and the IoT controller in the CoAP message payload.

Frame number 756 is the first EAP-PSK-related request against /DKHUL. The IoT device

responds in frame number 770 with the processed information by the EAP-SM in its

payload. The location path changed to /CXGFE. Then, another exchange regarding this

EAP method is done (frames 773 and 780) and the location path is finally changed to

/SXCLC.

After finishing the EAP authentication with success, the controller changes the CoAP

option to OSCORE. The payload of this request against /SXCLC contains EAP Success.

Figure 5.3 shows details about this frame. This behavior is as required in step 7 in figure

2.3.

Figure 5.4 shows the console output of the CoAP-EAP controller.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 40 de 68

Figure 5.3 - Wireshark analysis of frame 783

decapsulated EAP packet (code=3 id=90 len=4) from RADIUS server: EAP Success
EAP: EAP entering state SUCCESS2
EAP SUCCESS::::::::::::::::::::::

Figure 5.4 - Console output of the CoAP-EAP controller

From this point on, the communication is secured with OSCORE. OSCORE already

protects frame number 797 and all ongoing packages between the IoT device and the IoT

controller (see chapter 2.4.5). The last used resource /SXCLC will be maintained and not

changed.

5.3. Wireshark Analysis with Package Loss

The dynamic creation of resources on the IoT device results in status code 4.04 Not

Found if two different requests are sent against the same resource. The first request

against /CJSBK in figure 5.5 returns the location path of the new resource /VWPUD. All

future requests against /CJSBK will result in status code 4.04 Not Found (figure 5.6). The

POST requests have been sent with Copper as explained in section 4.1.2.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 41 de 68

Figure 5.5 - Sending a first POST request against /CJSBK returns 2.01 Created

Figure 5.6 - Sending another POST request against /CJSBK returns 4.04 Not Found

Package loss can be simulated with Cooja as well. The Cooja scenario for the second

Wireshark capture was configured with a success probability of 50% for inbound and

outbound data for motes that use the Cooja radio medium. Figure 5.7 shows the capture

of the same communication between the IoT device and the IoT controller as in section

5.2, but with the configured package loss. Therefore, the location paths are different

compared with figure 5.1 due to their random creation.

Figure 5.7 - Wireshark capture filtered to CoAP messages with package loss in the proof-
of-concept implementation

Figure 5.8 shows frame number 1208 in detail. It is a POST request from the IoT controller

to the IoT device. It was resent two times because the corresponding response to neither

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 42 de 68

frame 1179, nor frame 1189 could not be delivered to the IoT controller. Those messages

got lost due to transmission errors but do not interfere with the authentication process.

Figure 5.8 - Wireshark analysis of frame 1208

Erbium internally recognizes that the request from the Controller was resent due to its

handling of CoAP transaction IDs. Therefore, the request will be processed correctly and

does not return a resource not found error.

5.4. RAM and ROM Usage

In order to measure the RAM and ROM usage on a Texas Instruments MSP-

EXP430F5438 microcontroller, the binary file can be inspected with the command

msp430size Erbium-CoAP-EAP-HATEOAS-IoT-Device.exp5438 [83]. The following table

shows a comparison between three executable files containing the full Contiki Operating

System:

Module ROM (bytes) RAM (bytes)
1 Contiki Hello World 19.059 5.072
2 Erbium Hello World 46.067 5.706
3 Erbium CoAP-EAP 51.197 6.498

Figure 5.9 - RAM and ROM usage of an EXP5438 mote running Contiki with different
loaded modules

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 43 de 68

Contiki Hello World represents the compiled binary of the Contiki hello-world example

(hello-world.c) without networking capabilities [84]. The Erbium Hello World

executable is a minimized version of the er-example-server.c file [60]. All pre-existing

resources and their corresponding lines in the source code had been removed except the

resource /hello as explained in section 4.4.2. Finally, Erbium CoAP-EAP in this table

represents the binary of the compiled source code shown in appendix A.2. It is the CoAP-

EAP implementation compliant with the latest draft version 06. Both Erbium binaries

include networking capabilities and the Erbium REST engine itself. On top of that,

the CoAP-EAP binary includes the libraries eap-sm and eap-psk from an EAP-related

project called PANATIKI [81].

The available memory of 256 kB on the used microcontroller (see figure 4.1) is sufficient

for loading the Contiki Operating System and the libraries needed for the CoAP-EAP

implementation. Therefore, the mote does not only secure the communication, but has

approximately 249 kB of memory left for further application-specific functionalities.

5.5. Discussion

The Cooja mote for executing the proof-of-concept used version 2.7 of the Contiki

Operating System. This release received the last changes in the codebase in 2013 [67].

Contiki-NG started in 2017 as a fork of Contiki OS and is still being further maintained

today [85]. To run the proof-of-concept with Contiki-NG, the codebase in appendix A.2

has to be adapted due to naming scheme differences. The underlying data structure of

resources and how Erbium handles incoming requests did not change. An updated version

of the mentioned Erbium example server (see section 4.3) is available in Contiki-NG as

well [86] and can be taken as a reference for an adaption.

Among others, the destinations server address and the CoAP message itself were passed

as arguments to expand the macro COAP_BLOCKING_REQUEST to send a CoAP request

with Erbium. Step 0 in the CoAP-EAP flow of operation (see figure 2.2) specifies the

usage of the CoAP option No-Response for this first message. RFC 7967 introduced the

No-Response option for CoAP messages to send requests without waiting for a response

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 44 de 68

[87]. However, the deployed version of Erbium lacks the possibility to set this option.

In order to bypass this limitation, the first message was sent from type Non-confirmable

without the option field set.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 45 de 68

6. Outlook and Conclusions

All three objectives mentioned in chapter 3 have been successfully achieved. The source

code for achieving Objective 3 is attached in appendix A.2. Web resources have been

created dynamically even though Erbium does not offer this functionality by default. An

initial CoAP POST request has been sent to the IoT controller to start the authentication

process. The two were then merged and extended to interact with the EAP state machine

to provide a proof-of-concept implementation. Analyzing the traffic during the CoAP-

EAP authentication process proved the desired behavior of the IoT device. Beyond that,

a second analysis has been done to break down Erbium’s behavior with package loss,

which is to be expected in real-life examples. Erbium handled retransmitted CoAP POST

requests against a no longer existing resource in a way, that they still are allocated with

the appropriate resource. The authentication is not impeded by retransmissions.

In step 7 of the CoAP-EAP flow of operation (see figure 2.2) the IoT controller creates

OSCORE security context by using a derivative of the exported MSK according to the

used EAP method. The IoT device already has all information in step 6 to generate its

MSK but waits until it received EAP Success. The payload of the message in step 7

contains EAP Success to indicate the IoT device, that the MSK has been exported. But

this message payload is already encrypted by OSCORE and can not be accessed without

having derived the corresponding MSK. Therefore, the implementation of OSCORE in

the context of CoAP-EAP needs to be improved in future work.

This work provided a proof-of-concept implementation compliant with IETF draft version

06 of the EAP-based Authentication Service for CoAP. This included a deep dive into the

way how Erbium handles web resources and an adaption of Erbium’s resource handler

functions to create resources dynamically. The test setup consisted of the Cooja Simulator

to emulate an IoT device executing the Contiki Operating System with the Erbium REST

engine.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 46 de 68

Contiki is only one of many operating systems for microcontrollers. Therefore,

this implementation is limited to supported hardware by Contiki. However, CoAP

implementations [88] also exist for other operating systems like RIOT [89] or Mbed [90].

They might be considered as a base for future work as a foundation to implement the

HATEOAS principle not only to Contiki by using Erbium, but to other operating systems

as well.

Julian Niklas Schimmelpfennig

Bibliography

[1] Telecommunication Standardization Sector of ITU, “Overview of the internet of

things,” Recommendation ITU-T Y.2060, 2012. [Online]. Available:

https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=11559&lang=en

[2] A. Khan, A. Al-Zahrani, S. Al-Harbi, S. Al-Nashri, and I. A. Khan, “Design of an

iot smart home system,” in 2018 15th Learning and Technology Conference (L&T).

IEEE, 2018.

[3] V. Gazis, “A survey of standards for machine-to-machine and the internet of

things,” IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 482–511,

2016.

[4] F. Hüning, Embedded Systems für IoT. Springer Berlin Heidelberg, 2019. [Online].

Available: https://doi.org/10.1007/978-3-662-57901-5

[5] M. Sethi, B. Sarikaya, and D. Garcia-Carrillo, “Terminology and processes for

initial security setup of iot devices,” Working Draft, IETF Secretariat,

Internet-Draft draft-irtf-t2trg-secure-bootstrapping-01, October 2021. [Online].

Available:

https://www.ietf.org/archive/id/draft-irtf-t2trg-secure-bootstrapping-01.txt

[6] L. F. Rahman, T. Ozcelebi, and J. Lukkien, “Understanding iot systems: a life

cycle approach,” Procedia computer science, vol. 130, pp. 1057–1062, 2018.

[7] N. Naik, “Choice of effective messaging protocols for iot systems: Mqtt, coap, amqp

and http,” in 2017 IEEE international systems engineering symposium (ISSE).

IEEE, 2017, pp. 1–7.

[8] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application protocol

(coap),” Internet Requests for Comments, RFC Editor, RFC 7252, 2014. [Online].

Available: http://www.rfc-editor.org/rfc/rfc7252.txt

47

https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=11559&lang=en
https://doi.org/10.1007/978-3-662-57901-5
https://www.ietf.org/archive/id/draft-irtf-t2trg-secure-bootstrapping-01.txt
http://www.rfc-editor.org/rfc/rfc7252.txt

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 48 de 68

[9] “Erbium (Er) REST Engine - C CoAP Implementation,” Mar. 2018. [Online].

Available: https://web.archive.org/web/20180316172739/http://people.inf.ethz.ch:

80/mkovatsc/erbium.php (visited on 2022-04-09).

[10] “contiki-os/contiki Wiki.” [Online]. Available:

https://github.com/contiki-os/contiki/wiki#Platforms (visited on 2022-04-09).

[11] C. Paar and J. Pelzl, Understanding cryptography, 2010th ed. Berlin, Germany:

Springer, Nov. 2014.

[12] O. Garcia-Morchon, S. Kumar, and M. Sethi, “Internet of things (iot) security:

State of the art and challenges,” Internet Requests for Comments, RFC Editor,

RFC 8576, 2019.

[13] S. Kumar, Y. Hu, M. P. Andersen, R. A. Popa, and D. E. Culler, “{JEDI}:

Many-to-many end-to-end encryption and key delegation for iot,” in 28th

{USENIX} Security Symposium ({USENIX} Security 19), 2019, pp. 1519–1536.

[14] R. C. Merkle, “Secure communications over insecure channels,” Communications of

the ACM, vol. 21, no. 4, pp. 294–299, 1978. [Online]. Available:

https://doi.org/10.1145/359460.359473

[15] U. Blumenthal, F. Maino, and K. McCloghrie, “The advanced encryption standard

(aes) cipher algorithm in the snmp user-based security model,” Internet Requests

for Comments, RFC Editor, RFC 3826, 2004.

[16] L. Shurui, L. Jie, Z. Ru, and W. Cong, “A modified aes algorithm for the platform

of smartphone,” in 2010 International Conference on Computational Aspects of

Social Networks. IEEE, 2010, pp. 749–752.

[17] “Intel® Data Protection Technology with AES-NI and Secure Key.” [Online].

Available: https://www.intel.com/content/www/us/en/architecture-and-technolog

y/advanced-encryption-standard-aes/data-protection-aes-general-technology.html

(visited on 2022-05-08).

Julian Niklas Schimmelpfennig

https://web.archive.org/web/20180316172739/http://people.inf.ethz.ch:80/mkovatsc/erbium.php
https://web.archive.org/web/20180316172739/http://people.inf.ethz.ch:80/mkovatsc/erbium.php
https://github.com/contiki-os/contiki/wiki#Platforms
https://doi.org/10.1145/359460.359473
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 49 de 68

[18] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz, “Energy analysis of

public-key cryptography for wireless sensor networks,” in Third IEEE international

conference on pervasive computing and communications. IEEE, 2005, pp. 324–328.

[19] L. Seitz, S. Gerdes, G. Selander, M. Mani, and S. Kumar, “Use cases for

authentication and authorization in constrained environments,” Internet Requests

for Comments, RFC Editor, RFC 7744, January 2016.

[20] D. Garcia-Carrillo and R. Marin-Lopez, “Lightweight coap-based bootstrapping

service for the internet of things,” Sensors, vol. 16, no. 3, p. 358, 2016.

[21] E. Rescorla and N. Modadugu, “Datagram transport layer security version 1.2,”

Internet Requests for Comments, RFC Editor, RFC 6347, January 2012. [Online].

Available: http://www.rfc-editor.org/rfc/rfc6347.txt

[22] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object security for

constrained restful environments (oscore),” Internet Requests for Comments, RFC

Editor, RFC 8613, July 2019.

[23] I. Stellios, P. Kotzanikolaou, and M. Psarakis, “Advanced persistent threats and

zero-day exploits in industrial internet of things,” in Security and Privacy Trends in

the Industrial Internet of Things. Springer, 2019, pp. 47–68.

[24] R. T. Fielding, Architectural styles and the design of network-based software

architectures. University of California, Irvine, 2000.

[25] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. J. Leach, and

T. Berners-Lee, “Hypertext transfer protocol – http/1.1,” Internet Requests for

Comments, RFC Editor, RFC 2616, June 1999. [Online]. Available:

http://www.rfc-editor.org/rfc/rfc2616.txt

[26] B. Varanasi and M. Bartkov, “Restful spring,” in Spring REST. Springer, 2022,

pp. 45–66.

[27] “What is HATEOAS and why is it important? - The RESTful cookbook.” [Online].

Available: https://restcookbook.com/Basics/hateoas/ (visited on 2022-04-14).

Julian Niklas Schimmelpfennig

http://www.rfc-editor.org/rfc/rfc6347.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
https://restcookbook.com/Basics/hateoas/

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 50 de 68

[28] J. Postel, “Transmission control protocol,” Internet Requests for Comments, RFC

Editor, STD 7, September 1981. [Online]. Available:

http://www.rfc-editor.org/rfc/rfc793.txt

[29] B. Pollard, HTTP/2 in Action. Simon and Schuster, 2019.

[30] S. R. Jan, F. Khan, F. Ullah, N. Azim, and M. Tahir, “Using coap protocol for

resource observation in iot,” International Journal of Emerging Technology in

Computer Science & Electronics, ISSN: 0976, vol. 1353, 2016.

[31] J. Postel, “User datagram protocol,” Internet Requests for Comments, RFC Editor,

STD 6, August 1980. [Online]. Available: http://www.rfc-editor.org/rfc/rfc768.txt

[32] S. Farrell, “Low-power wide area network (lpwan) overview,” Internet Requests for

Comments, RFC Editor, RFC 8376, May 2018.

[33] S. K. Sharma, T. E. Bogale, S. Chatzinotas, X. Wang, and L. B. Le, “Physical layer

aspects of wireless iot,” in 2016 international symposium on wireless

communication systems (ISWCS). IEEE, 2016, pp. 304–308.

[34] K. Nepomuceno, I. N. de Oliveira, R. R. Aschoff, D. Bezerra, M. S. Ito, W. Melo,

D. Sadok, and G. Szabó, “Quic and tcp: a performance evaluation,” in 2018 IEEE

Symposium on Computers and Communications (ISCC). IEEE, 2018, pp.

00 045–00 051.

[35] C. Bormann, A. P. Castellani, and Z. Shelby, “Coap: An application protocol for

billions of tiny internet nodes,” IEEE Internet Computing, vol. 16, no. 2, pp. 62–67,

2012.

[36] M. Nottingham and E. Hammer-Lahav, “Defining well-known uniform resource

identifiers (uris),” Internet Requests for Comments, RFC Editor, RFC 5785, April

2010. [Online]. Available: http://www.rfc-editor.org/rfc/rfc5785.txt

[37] C. Amsuess, Z. Shelby, M. Koster, C. Bormann, and P. V. der Stok, “Core resource

directory,” Working Draft, IETF Secretariat, Internet-Draft

draft-ietf-core-resource-directory-28, March 2021. [Online]. Available:

https://www.ietf.org/archive/id/draft-ietf-core-resource-directory-28.txt

Julian Niklas Schimmelpfennig

http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc5785.txt
https://www.ietf.org/archive/id/draft-ietf-core-resource-directory-28.txt

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 51 de 68

[38] B. Aboba, J. Malinen, P. Congdon, J. Salowey, and M. Jones, “Radius attributes

for ieee 802 networks,” Internet Requests for Comments, RFC Editor, RFC 7268,

July 2014.

[39] B. Aboba, D. Simon, and P. Eronen, “Extensible authentication protocol (eap) key

management framework,” Internet Requests for Comments, RFC Editor, RFC

5247, August 2008. [Online]. Available: http://www.rfc-editor.org/rfc/rfc5247.txt

[40] L. Chyrun, L. Chyrun, Y. Kis, and L. Rybak, “Information system for connection

to the access point with encryption wpa2 enterprise,” in International Scientific

Conference “Intellectual Systems of Decision Making and Problem of

Computational Intelligence”. Springer, 2019, pp. 389–404.

[41] A. DeKok, “Extensible authentication protocol (eap) session-id derivation for eap

subscriber identity module (eap-sim), eap authentication and key agreement

(eap-aka), and protected eap (peap),” Internet Requests for Comments, RFC

Editor, RFC 8940, October 2020.

[42] D. Simon, B. Aboba, and R. Hurst, “The eap-tls authentication protocol,” Internet

Requests for Comments, RFC Editor, RFC 5216, March 2008. [Online]. Available:

http://www.rfc-editor.org/rfc/rfc5216.txt

[43] F. Bersani and H. Tschofenig, “The eap-psk protocol: A pre-shared key extensible

authentication protocol (eap) method,” Internet Requests for Comments, RFC

Editor, RFC 4764, January 2007.

[44] T. Aura, M. Sethi, and A. Peltonen, “Nimble out-of-band authentication for eap

(eap-noob),” Internet Requests for Comments, RFC Editor, RFC 9140, December

2021.

[45] B. Aboba and M. Beadles, “The network access identifier,” Internet Requests for

Comments, RFC Editor, RFC 2486, January 1999.

[46] S. Banerji and R. S. Chowdhury, “On ieee 802.11: wireless lan technology,” arXiv

preprint arXiv:1307.2661, 2013.

Julian Niklas Schimmelpfennig

http://www.rfc-editor.org/rfc/rfc5247.txt
http://www.rfc-editor.org/rfc/rfc5216.txt

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 52 de 68

[47] G.-V. Jourdan, “Centralized web proxy services: Security and privacy

considerations,” IEEE Internet Computing, vol. 11, no. 6, pp. 46–52, 2007.

[48] R. Marin-Lopez and D. Garcia-Carrillo, “Eap-based authentication service for

coap,” Working Draft, IETF Secretariat, Internet-Draft

draft-ietf-ace-wg-coap-eap-06, December 2021. [Online]. Available:

https://www.ietf.org/archive/id/draft-ietf-ace-wg-coap-eap-06.txt

[49] Y. Li, D. Li, W. Cui, and R. Zhang, “Research based on osi model,” in 2011 IEEE

3rd International Conference on Communication Software and Networks. IEEE,

2011, pp. 554–557.

[50] F. F. Yao and Y. L. Yin, “Design and analysis of password-based key derivation

functions,” in Cryptographers’ Track at the RSA Conference. Springer, 2005, pp.

245–261.

[51] N. Nikolov, O. Nakov, and D. Gotseva, “Operating systems for iot devices,” in 2021

56th International Scientific Conference on Information, Communication and

Energy Systems and Technologies (ICEST). IEEE, 2021, pp. 41–44.

[52] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and flexible operating

system for tiny networked sensors,” in 29th annual IEEE international conference

on local computer networks. IEEE, 2004, pp. 455–462.

[53] L. Lopriore, “Memory protection in embedded systems,” Journal of Systems

Architecture, vol. 63, pp. 61–69, 2016.

[54] G. Z. Papadopoulos, A. Gallais, G. Schreiner, E. Jou, and T. Noel, “Thorough iot

testbed characterization: From proof-of-concept to repeatable experimentations,”

Computer Networks, vol. 119, pp. 86–101, 2017.

[55] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, and A. Sivasubramaniam,

“Architectural issues in java runtime systems,” in Proceedings Sixth International

Symposium on High-Performance Computer Architecture. HPCA-6 (Cat. No.

PR00550). IEEE, 2000, pp. 387–398.

Julian Niklas Schimmelpfennig

https://www.ietf.org/archive/id/draft-ietf-ace-wg-coap-eap-06.txt

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 53 de 68

[56] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of things (iot):

Research, simulators, and testbeds,” IEEE Internet of Things Journal, vol. 5, no. 3,

pp. 1637–1647, 2017.

[57] K. Roussel, Y.-Q. Song, and O. Zendra, “Using cooja for wsn simulations: some

new uses and limits,” in EWSN 2016—NextMote workshop. Junction Publishing,

2016, pp. 319–324.

[58] “RPL Border Router - Contiki.” [Online]. Available:

https://anrg.usc.edu/contiki/index.php/RPL Border Router (visited on

2022-05-09).

[59] “MSP430F5438 data sheet, product information and support | TI.com.” [Online].

Available: https://www.ti.com/product/MSP430F5438 (visited on 2022-04-26).

[60] “contiki/examples/er-rest-example at release-2-7 · contiki-os/contiki.” [Online].

Available:

https://github.com/contiki-os/contiki/tree/release-2-7/examples/er-rest-example

(visited on 2022-04-09).

[61] “Copper (cu) coap user-agent.” [Online]. Available:

https://github.com/mkovatsc/Copper (visited on 2022-04-09).

[62] “Tunslip utility - Contiki.” [Online]. Available:

https://anrg.usc.edu/contiki/index.php/RPL Border Router#Tunslip utility

(visited on 2022-04-09).

[63] “Browser Extensions - Mozilla | MDN.” [Online]. Available:

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions

(visited on 2022-04-09).

[64] “An Introduction to Cooja · contiki-os/contiki Wiki.” [Online]. Available:

https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja (visited on

2022-04-09).

[65] “Ubuntu release cycle.” [Online]. Available:

https://ubuntu.com/about/release-cycle (visited on 2022-04-09).

Julian Niklas Schimmelpfennig

https://anrg.usc.edu/contiki/index.php/RPL_Border_Router
https://www.ti.com/product/MSP430F5438
https://github.com/contiki-os/contiki/tree/release-2-7/examples/er-rest-example
https://github.com/mkovatsc/Copper
https://anrg.usc.edu/contiki/index.php/RPL_Border_Router#Tunslip_utility
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://ubuntu.com/about/release-cycle

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 54 de 68

[66] “examples/er-rest-example/er-example-client.c at release-2-7 · contiki-os/contiki.”

[Online]. Available: https://github.com/contiki-os/contiki/blob/release-2-7/examp

les/er-rest-example/er-example-client.c (visited on 2022-04-09).

[67] “examples/er-rest-example/er-example-server.c at release-2-7 · contiki-os/contiki.”

[Online]. Available: https://github.com/contiki-os/contiki/blob/release-2-7/examp

les/er-rest-example/er-example-server.c (visited on 2022-04-09).

[68] “Object-like Macros (The C Preprocessor).” [Online]. Available:

https://gcc.gnu.org/onlinedocs/cpp/Object-like-Macros.html#Object-like-Macros

(visited on 2022-04-11).

[69] “If (The C Preprocessor).” [Online]. Available:

https://gcc.gnu.org/onlinedocs/cpp/If.html (visited on 2022-04-11).

[70] “apps/erbium/erbium.h at release-2-7 · contiki-os/contiki.” [Online]. Available:

https://github.com/contiki-os/contiki/blob/release-2-7/apps/erbium/erbium.h

(visited on 2022-04-09).

[71] “Concatenation (The C Preprocessor).” [Online]. Available:

https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html#Concatenation (visited

on 2022-04-11).

[72] “Macro Expansion (The GNU C Preprocessor Internals).” [Online]. Available:

https://gcc.gnu.org/onlinedocs/cppinternals/Macro-Expansion.html (visited on

2022-04-11).

[73] “The GNU C Library - String and Array Utilities.” [Online]. Available:

https://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html chapter/libc 5.html (visited

on 2022-04-11).

[74] T. Rothwell and J. Youngman, “The gnu c reference manual,” Free Software

Foundation, Inc, p. 86, 2007.

[75] “contiki/random.h at release-2-7 · contiki-os/contiki.” [Online]. Available:

https://github.com/contiki-os/contiki/blob/release-2-7/core/lib/random.h (visited

on 2022-04-13).

Julian Niklas Schimmelpfennig

https://github.com/contiki-os/contiki/blob/release-2-7/examples/er-rest-example/er-example-client.c
https://github.com/contiki-os/contiki/blob/release-2-7/examples/er-rest-example/er-example-client.c
https://github.com/contiki-os/contiki/blob/release-2-7/examples/er-rest-example/er-example-server.c
https://github.com/contiki-os/contiki/blob/release-2-7/examples/er-rest-example/er-example-server.c
https://gcc.gnu.org/onlinedocs/cpp/Object-like-Macros.html#Object-like-Macros
https://gcc.gnu.org/onlinedocs/cpp/If.html
https://github.com/contiki-os/contiki/blob/release-2-7/apps/erbium/erbium.h
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html#Concatenation
https://gcc.gnu.org/onlinedocs/cppinternals/Macro-Expansion.html
https://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_5.html
https://github.com/contiki-os/contiki/blob/release-2-7/core/lib/random.h

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 55 de 68

[76] “ascii(7) - Linux manual page.” [Online]. Available:

https://man7.org/linux/man-pages/man7/ascii.7.html (visited on 2022-04-13).

[77] “malloc,” publisher: The Open Group Base Specifications Issue 6 IEEE Std 1003.1,

2004 Edition Copyright © 2001-2004 The IEEE and The Open Group. [Online].

Available:

https://pubs.opengroup.org/onlinepubs/9699919799/functions/malloc.html (visited

on 2022-04-14).

[78] “Memory allocation · contiki-os/contiki Wiki.” [Online]. Available:

https://github.com/contiki-os/contiki/wiki/Memory-allocation (visited on

2022-04-14).

[79] D. A. Alonso, S. Mamagkakis, C. Poucet, M. Peón-Quirós, A. Bartzas, F. Catthoor,

and D. Soudris, Dynamic memory management for embedded systems. Springer,

2015.

[80] “coap-eap-controller/src/panatiki at master · eduingles/coap-eap-controller.”

[Online]. Available: https://github.com/eduingles/coap-eap-controller (visited on

2022-05-17).

[81] P. M. Sanchez, R. M. Lopez, and A. F. G. Skarmeta, “Panatiki: a network access

control implementation based on pana for iot devices,” Sensors, vol. 13, no. 11, pp.

14 888–14 917, 2013.

[82] D. G. Carrillo, “Un servicio de bootstrapping basado en coap para redes a gran

escala de internet de las cosas,” 2019-01-09. [Online]. Available:

http://hdl.handle.net/10201/65880

[83] “Tutorial: RAM and ROM usage · simonduq/contiki-ng Wiki.” [Online]. Available:

https://github.com/simonduq/contiki-ng (visited on 2022-05-10).

[84] “contiki/examples/hello-world at release-2-7 · contiki-os/contiki.” [Online].

Available:

https://github.com/contiki-os/contiki/tree/release-2-7/examples/hello-world

(visited on 2022-05-10).

Julian Niklas Schimmelpfennig

https://man7.org/linux/man-pages/man7/ascii.7.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/malloc.html
https://github.com/contiki-os/contiki/wiki/Memory-allocation
https://github.com/eduingles/coap-eap-controller
http://hdl.handle.net/10201/65880
https://github.com/simonduq/contiki-ng
https://github.com/contiki-os/contiki/tree/release-2-7/examples/hello-world

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 56 de 68

[85] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and N. Tsiftes,

“The contiki-ng open source operating system for next generation IoT devices,”

SoftwareX, vol. 18, p. 101089, 2022.

[86] “contiki-ng/examples/coap/coap-example-server at master ·

contiki-ng/contiki-ng.” [Online]. Available:

https://github.com/contiki-ng/contiki-ng (visited on 2022-05-13).

[87] A. Bhattacharyya, S. Bandyopadhyay, A. Pal, and T. Bose, “Constrained

application protocol (coap) option for no server response,” Internet Requests for

Comments, RFC Editor, RFC 7967, August 2016.

[88] “Constrained application protocol (coap) implementations.” [Online]. Available:

https://coap.technology/impls.html (visited on 2022-05-13).

[89] “RIOT - The friendly Operating System for the Internet of Things.” [Online].

Available: https://www.riot-os.org/ (visited on 2022-05-13).

[90] “Free open source IoT OS and development tools from Arm | Mbed.” [Online].

Available: https://os.mbed.com/ (visited on 2022-05-13).

Julian Niklas Schimmelpfennig

https://github.com/contiki-ng/contiki-ng
https://coap.technology/impls.html
https://www.riot-os.org/
https://os.mbed.com/

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 57 de 68

A. Appendix
A.1. Time Schedule

Figure A.1 - Scheduling the individual steps for this thesis

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 58 de 68

A.2. Source Code of the Proof-of-Concept HATEOAS
Implementation on Draft Version 06

Figure A.2 - Source Code of the Proof-of-Concept HATEOAS Implementation on Draft
Version 06

The following code shows the content of the file

Erbium-CoAP-EAP-HATEOAS-IoT-Device.c.

1 /∗

2 ∗ Copyright (c) 2013, Matthias Kovatsch

3 ∗ All rights reserved.

4 ∗

5 ∗ Redistribution and use in source and binary forms, with or without

6 ∗ modification, are permitted provided that the following conditions

7 ∗ are met:

8 ∗ 1. Redistributions of source code must retain the above copyright

9 ∗ notice , this list of conditions and the following disclaimer .

10 ∗ 2. Redistributions in binary form must reproduce the above copyright

11 ∗ notice , this list of conditions and the following disclaimer in the

12 ∗ documentation and/or other materials provided with the distribution.

13 ∗ 3. Neither the name of the Institute nor the names of its contributors

14 ∗ may be used to endorse or promote products derived from this software

15 ∗ without specific prior written permission.

16 ∗

17 ∗ THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS''

AND

18 ∗ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

19 ∗ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE

20 ∗ ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE

LIABLE

21 ∗ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL

22 ∗ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS

23 ∗ OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 59 de 68

24 ∗ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT

25 ∗ LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY

26 ∗ OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

27 ∗ SUCH DAMAGE.

28 ∗

29 ∗ This file is part of the Contiki operating system.

30 ∗/

31

32 /∗∗

33 ∗ \ file

34 ∗ Erbium (Er) REST Engine example (with CoAP-specific code)

35 ∗ \author

36 ∗ Matthias Kovatsch <kovatsch@inf.ethz.ch>

37 ∗/

38

39 #include <stdio.h>

40 #include <stdlib.h>

41 #include <string.h>

42

43 #include ”contiki.h”

44 #include ”contiki-net.h”

45

46 // needs # APPS += eap-sm in the Makefile!

47 #include ”eap-peer.h”

48

49 /∗ Initial resource / hateoas initial resource . When called, it will be ”overwritten” and a new

random Resource will be created. ∗/

50 #define REST RES HATEOAS 1

51

52 // Usage of ntohs for the EAP response.

53 #define ntohs(n) (((((unsigned short)(n) & 0xFF)) << 8) | (((unsigned short)(n) & 0xFF00) >> 8)

)

54

55 // function for debugging the output of the EAP state machine

56 void printf hex(unsigned char∗, int) ;

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 60 de 68

57 void printf hex(unsigned char∗ text, int length) {

58 printf (”\n”);

59 int i ;

60 for(i=0; i<length; i++)

61 printf (”%02x”,text[i]) ;

62 printf (”\n”);

63 return;

64 }

65

66 int cipherSuitesSent;

67 uint8 t eapKeyAvailable;

68

69 int counterCryptoSuite = 1;

70 int counterEapResponse = 1;

71 int hateoas handler counter = 1;

72

73 /∗

74 IP addresses for sending the initial POST request

75 ∗/

76

77 // Examples:

78 // #define SERVER NODE(ipaddr) uip ip6addr(ipaddr, 0xfe80, 0, 0, 0, 0x0212, 0x7402, 0x0002, 0

x0202) /∗ cooja2 ∗/

79 // #define SERVER NODE(ipaddr) uip ip6addr(ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0x0001) /∗ cooja2

∗/

80

81 // IP address of the er-example-server mote (the request is sent to the same mote)

82 // #define SERVER NODE(ipaddr) uip ip6addr(ipaddr, 0xaaaa, 0, 0, 0, 0x0212, 0x7402, 0x0002, 0

x0202) /∗ cooja2 ∗/

83

84 // IP address for the coap- controller outside of Cooja (see tunslip tunnel)

85 #define SERVER NODE(ipaddr) uip ip6addr(ipaddr, 0xaaaa, 0, 0, 0, 0, 0x00ff, 0xfe00, 0x0001) /∗

cooja2 ∗/

86 #define REMOTE PORT UIP HTONS(COAP DEFAULT PORT)

87

88 uip ipaddr t server ipaddr ;

89 static struct etimer et ;

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 61 de 68

90

91 #include ”er-coap-13.h”

92 #include ”er-coap-13-engine.h”

93

94 /∗∗/

95

96 #include ”erbium.h”

97

98 /∗ For CoAP-specific example: not required for normal RESTful Web service. ∗/

99 #if WITH COAP == 3

100 #include ”er-coap-03.h”

101 #elif WITH COAP == 7

102 #include ”er-coap-07.h”

103 #elif WITH COAP == 12

104 #include ”er-coap-12.h”

105 #elif WITH COAP == 13

106 #include ”er-coap-13.h”

107 #else

108 #warning ”Erbium example without CoAP-specifc functionality”

109 #endif /∗ CoAP-specific example ∗/

110

111 #define DEBUG 1

112 #if DEBUG

113 #define PRINTF(...) printf(VA ARGS)

114 #define PRINT6ADDR(addr) PRINTF(”[%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x

:%02x%02x:%02x%02x:%02x%02x]”, ((uint8 t ∗)addr)[0], ((uint8 t ∗)addr)[1], ((uint8 t ∗)addr)

[2], ((uint8 t ∗)addr)[3], ((uint8 t ∗)addr)[4], ((uint8 t ∗)addr)[5], ((uint8 t ∗)addr)[6], ((uint8 t

∗)addr)[7], ((uint8 t ∗)addr)[8], ((uint8 t ∗)addr)[9], ((uint8 t ∗)addr)[10], ((uint8 t ∗)addr)[11],

((uint8 t ∗)addr)[12], ((uint8 t ∗)addr) [13], ((uint8 t ∗)addr) [14], ((uint8 t ∗)addr)[15])

115 #define PRINTLLADDR(lladdr) PRINTF(”[%02x:%02x:%02x:%02x:%02x:%02x]”, (lladdr)->addr

[0], (lladdr)->addr[1], (lladdr)->addr[2], (lladdr)->addr[3], (lladdr)->addr[4], (lladdr)->addr[5])

116 #else

117 #define PRINTF(...)

118 #define PRINT6ADDR(addr)

119 #define PRINTLLADDR(addr)

120 #endif

121

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 62 de 68

122 /∗∗/

123

124 #if REST RES HATEOAS

125 /∗

126 The size of the char array can't be modified later .

127 urlString [] will be always (24+1)∗sizeof(char) bytes large , if

128 char urlString [] = ” hateoas initial resource ”;

129 sizeof (urlString)) ;

130

131 The following line will result in 404 not found!

132 char urlString [] = ”/.well-known/a”;

133 It has to be

134 char urlString [] = ”.well -known/a”;

135 ∗/

136 // The following values for the char array urlString [] cause problems with the implementation of

the CoAP EAP controller.

137 // char urlString [] = ” hateoas initial resource ”;

138

139 // Sub-URI work as well

140 // char urlString [] = ”.well -known/a”;

141

142 char urlString [] = ”initHateoasRsc”;

143 int urlStringCounter;

144

145 // Skipping first handler call due to retransmission error on coapeapcontroller

146 int skipFirstHandlerCall = 0;

147

148 RESOURCE(hateoas, METHOD POST, urlString, ”title=\”HATEOAS dynamic resource\”;rt=\”

Debug\””);

149

150 void hateoas handler(void ∗request, void ∗response, uint8 t ∗buffer , uint16 t preferred size ,

int32 t ∗ offset) {

151 printf (”\n”);

152 printf (”hateoas handler counter = %d\n”, hateoas handler counter);

153 hateoas handler counter++;

154 /∗

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 63 de 68

155 The following will not compile because of the following error : ”for loop initial declarations

are only allowed in C99 mode. Use option -std=c99 or -std=gnu99 to compile your code”

156 for(int i = 0; i < 5; i++) {

157 urlString [i] = 'A' + (random rand() % 26);

158 }

159 ∗/

160

161 // Skipping first handler call due to retransmission error on coapeapcontroller

162 // Only creating dynamic resources if the eapKey is not available .

163 if (skipFirstHandlerCall == 1 && !eapKeyAvailable) {

164 for(urlStringCounter = 0; urlStringCounter < 5; urlStringCounter++) {

165 // rand typically returns a 16-bit number

166 urlString [urlStringCounter] = 'A' + (random rand() % 26);

167 }

168 // terminating the string after 5 random uppercase characters

169 urlString [5] = '\0' ;

170 }

171

172 skipFirstHandlerCall = 1;

173

174 // Following line not needed, because the chars are already altered !

175 // resource hateoas. url = urlString;

176

177 const uint8 t ∗payloadData = NULL;

178 int payloadLength = REST.get request payload(request, &payloadData);

179 printf (”Payload received from the POST request: ”);

180 printf hex(payloadData, payloadLength);

181

182 // variable eapKeyAvailable can not be renamed due to by RFC 4137

183 if (! eapKeyAvailable) {

184 // passing the payload received in the request to the eap peer sm step, see apps\eap-sm\

eap-peer.c

185 // eapReq from eap-peer.c as well! NECESSARY!!!

186 eapReq = TRUE;

187 eap peer sm step(payloadData);

188 uint16 t len = ntohs(((struct eap msg∗) eapRespData)->length);

189 // eap state machines reponse is accessible in eapRespData variable.

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 64 de 68

190

191 if (cipherSuitesSent == 1) {

192 // return early , because cipherSuites will only sent once

193 // preventing a lot of jumps.

194

195 // see erbium.h in struct rest implementation status for the codes

196 REST.set response status(response, REST.status.CREATED);

197 REST.set header content type(response, REST.type.TEXT PLAIN); /∗ text/plain is

the default, hence this option could be omitted. ∗/

198 REST.set header location(response, resource hateoas.url) ;

199

200 // 3rd parameter in set reponse payload is size t length. Is the datatype size t is

unsigned integral type. It represents the size of any object in bytes and returned by sizeof

operator. It is used for array indexing and counting. It can never be negative. The return

type of strcspn, strlen functions is size t .

201 REST.set response payload(response, eapRespData, len);

202

203 printf (”counterEapResponse = %d\n”, counterEapResponse);

204 counterEapResponse++;

205

206 printf (”eapResponse Data: ”);

207 printf hex(eapRespData, len);

208 }

209

210 else {

211 // sending the ciphersuites to the coap controller , only done once!

212

213 char tempPayload[100] = {0};

214 static char cborcryptosuite [2] = {0x81,0x00};

215

216 memcpy(tempPayload, eapRespData, len);

217 tempPayload[len]=cborcryptosuite[0];

218 tempPayload[len+1]=cborcryptosuite[1];

219

220 // 3rd parameter in set reponse payload is size t length. Is the datatype size t is

unsigned integral type. It represents the size of any object in bytes and returned by sizeof

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 65 de 68

operator. It is used for array indexing and counting. It can never be negative. The return

type of strcspn, strlen functions is size t .

221 REST.set response payload(response, tempPayload, len+2);

222

223 // see erbium.h in struct rest implementation status for the codes

224 REST.set response status(response, REST.status.CREATED);

225 REST.set header content type(response, REST.type.TEXT PLAIN); /∗ text/plain is

the default, hence this option could be omitted. ∗/

226 REST.set header location(response, resource hateoas.url) ;

227

228

229 cipherSuitesSent = 1;

230

231 printf (”counterCryptoSuite = %d\n”, counterCryptoSuite);

232 counterCryptoSuite++;

233

234 printf (”eapResponse Data + Ciphersuites: ”);

235 printf hex(tempPayload, len+2);

236 }

237 }

238

239 // executing this until the EAP key is available

240 // Setting OSCORE payload after the eapKey is available

241 else {

242 // Here we would verify the OSCORE Option

243

244 unsigned char oscore payload[10] = {0x19, 0xf7, 0xcc, 0x6a, 0x15, 0x20, 0x8b, 0x2d, 0xab};

245 unsigned char testzero [1] = {0x00};

246

247 // to do: add a option to the payload which needs to be sent to the controller .

248 // addOption(response,COAP OPTION OSCORE, 0, testzero);

249 // setPayload(response, oscore payload, 9);

250

251 printf (”EAP Key is available!\n”);

252 }

253 }

254 #endif

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 66 de 68

255

256 /∗∗/

257

258 // Defines for the EAP state machine

259 #define SEQ LEN 22

260 #define KEY LEN 16

261 #define AUTH LEN 16

262

263 PROCESS(rest server example, ”Erbium Server with HATEOAS”);

264 // PROCESS(coap client example, ”COAP Client Example”);

265 // AUTOSTART PROCESSES(&rest server example, &coap client example);

266 AUTOSTART PROCESSES(&rest server example);

267

268 PROCESS THREAD(rest server example, ev, data)

269 {

270 PROCESS BEGIN();

271

272 // Code for calling the EAP state machine

273 unsigned char auth key[KEY LEN] = {0};

274 unsigned char sequence[SEQ LEN] = {0};

275

276 memset(&msk key,0, MSK LENGTH);

277 eapRestart=TRUE;

278 eap peer sm step(NULL);

279

280 cipherSuitesSent = 0;

281

282 memset(&auth key, 0, AUTH LEN);

283 memset(&sequence, 0, SEQ LEN);

284

285 eapKeyAvailable = 0;

286

287 // End of Code for the EAP state machine

288

289 PRINTF(”Starting Erbium on the Mote with HATEOAS implementation\n”);

290

291 /∗ Initialize the REST engine. ∗/

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 67 de 68

292 rest init engine () ;

293

294 /∗ Activate the application- specific resources . ∗/

295

296 #if REST RES HATEOAS

297 rest activate resource (&resource hateoas);

298 #endif

299

300 /∗∗/

301

302 // waiting 15 seconds so that the tunslip tunnel is established and the rest engine loaded

303 etimer set(&et, 15 ∗ CLOCK SECOND);

304 int initial request sent = 0;

305

306 /∗ Define application- specific events here. ∗/

307

308 while (1)

309 {

310 PROCESS WAIT EVENT();

311

312 // Sending the request only once

313 if (etimer expired(&et) && (initial request sent == 0)) {

314 initial request sent = 1;

315 static coap packet t initialRequest [1];

316

317 SERVER NODE(&server ipaddr);

318

319 coap init message(initialRequest , COAP TYPE NON, COAP POST, 0);

320 // sending the first and only request of the IoT device to the CoAP-EAP controllers

resource /.well-known/coap-eap/

321 coap set header uri path(initialRequest , ”/.well -known/coap-eap”);

322 // setting the payload to the resources initial name

323 coap set payload(initialRequest , &urlString, sizeof (urlString)) ;

324 // acutally sending the CoAP request

325 COAP BLOCKING REQUEST(&server ipaddr, REMOTE PORT, initialRequest, NULL);

326 }

327

Julian Niklas Schimmelpfennig

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingenieŕıa de Gijón Hoja 68 de 68

328 } /∗ while (1) ∗/

329

330 PROCESS END();

331 }

Julian Niklas Schimmelpfennig

	Introduction and Motivation
	Background
	Security Services
	IoT Characteristic Features
	IoT Device Lifecycle
	The Bootstrapping Phase
	Post-Bootstrapping

	Protocols and Paradigms
	Representational State Transfer (REST)
	Hypermedia as the Engine of Application State (HATEOAS)
	Constrained Application Protocol (CoAP)
	Extensible Authentication Protocol (EAP)
	Object Security for Constrained RESTful Environments (OSCORE)
	EAP-based Authentication Service for CoAP

	Objectives and Methodology of this Work
	Objectives
	Methodology

	Implementation
	Contiki OS and the Cooja Simulator
	Erbium REST Engine
	Copper CoAP User-Agent

	Deployment
	Erbium Example Scenario and the CoAP-EAP Flow of Operation
	Understanding Resources in Erbium
	C Preprocessor Directives
	Erbium's Resource Macro
	Data Structure for a Resource in REST
	The Resource Handler Function
	Activating the Resource

	Creating Dynamic Resources
	Implementation Details on Updating an Initial Resource
	Keeping the old resources

	Proof-of-Concept Implementation for Draft Version 06 of CoAP-EAP
	Sending the Initial POST Request
	Communicating with the EAP State Machine

	Results
	Overview
	Wireshark Analysis without Package Loss
	Wireshark Analysis with Package Loss
	RAM and ROM Usage
	Discussion

	Outlook and Conclusions
	Appendix
	Time Schedule
	Source Code of the Proof-of-Concept HATEOAS Implementation on Draft Version 06

