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Abstract

The aim of this research project is to analyze the real problem that the University of Oviedo
Computer Engineering School has with the generation of exam schedules and whether or not a
solution can be found. The actual way to solve the problem is studied and an analysis of the
state of the art is carried out in order to see how similar problems are solved in the literature.

As the core of the project, the problem is formalized and a solution is proposed by means of
Genetic Algorithms and Greedy Algorithms. A Greedy Algorithm is proposed to find good local
solutions, and it is complemented with a Genetic Algorithm which is in charge of leading the
search towards better areas of the search space.

A prototype application is developed to test the acceptability of the proposed solution. To do
so, a set of experiments are carried out considering simulated real scenarios. An additional tool
is implemented to generate similar problem instances to the real ones provided by the school.

Such instances are used both to tune the algorithm parameters as well as to showcase its ef-
fectiveness. In the end, the results show that the proposed algorithm is efficient at solving the
problem, and it simplifies considerably the complexity of the actual process.
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Chapter 1

Project Memory

1.1 Project Motivation

This project springs from the need to find a solution to a real problem that the University of
Oviedo School of Computer Science has. Every year many resources, specially time, are invested
in manually making the exam timetable for the three annual university calls.

If the problem was formalized and a solution was proposed, such solution could be implemented
into an application and so solve in a automated way the problem of the School of Computer
Science. This would result in the saving of many resources invested annually in manually solving
this problem, specially time.

1.2 Personal Motivation

When I first started my studies at the School of Computer Science I was expecting to work
on application development in a business oriented environment, because I did not really know
enough about other alternatives. However, as years passed by I discovered other topics that
interested me much more such as automating tasks, monitoring health values, etc. Thus, by
doing research on my own I found out about neural networks, machine learning, deep learning,
and some other technologies.

The Degree in Software Engineering is more oriented to a business software development career,
which is why I initially went into it, so that is why none of the commented technologies was
taught in the first three years. On the contrary, on the fourth year, there was a subject which
was centered on this field. I honestly like it, and I became fascinated by optimization problems.

Also on my fourth year I obtained a grant on artificial intelligence which allowed me to experience
the academic environment from a researcher point of view. I learnt how research is done, how to
read and write papers, and many other things. I was not honestly expecting to like it as much
a I did.

This Final Degree Project not only allows me to put into practice what I have learned on the
grant, but also it is also oriented to optimization which gives me a reason to do research on this
particular type of problems. Furthermore, the final prototype app that is going to be developed
is not just a simple delivery but something which is expected to be used in reality in the school.
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1.3 Objectives

This project is going to study and analyze the real life problem of making the exam calendar at
the University of Oviedo School of Computer Science. For doing so, it is necessary to formalize
the problem and identify its particular constraints before starting to think about an actual
solution. This will be done with the help of the director and the deputy director, both in charge
of performing this task manually every year.

Once the problem is fully understood and formalized, a method to solve it must be designed.
In this particular case this method will be based on evolutionary algorithms, concretely Genetic
Algorithms in combination with Greedy Algorithms. This design decision was chosen among
some alternatives as commented in Section 2.3.

In the end, the goal is to implement a prototype application to provide a solution for the
problem so that the actual users can see the complexity of their task reduced. It is desired for
such prototype to be easy to extend and modify since circumstances can change easily, as has
been seen during the Covid-19 pandemic.

1.4 Scope

As stated above, the purpose of the project is to study the problem and to develop a prototype
application that provides a solution to the problem. Even though this is a research project, and
so the prototype application was initially thought of as a visual key to showcase the proposed
solution, it was adapted to be utilized by the user. This mainly implies the inclusion of some
particular user constraints (see Section 4.3.3) as well as some format requests about the input
files.

Although the prototype is an important piece of the project because it must be easy to extend
and adapt to the particularities of the school environment, it is not the only contribution of the
project.

1.5 Project Summary

The aim of this project is to look for a solution that solves the School of Computer Science
Exam Scheduling problem. For doing so, the problem will be analyzed and formalized with the
help of the people currently in charge of manually solving it, being such the director and the
deputy director of the school.

Once the problem is understood, a literature review will be carried out in order to find how
similar problems have been solved recently. This review will also be considered while explaining
the theoretical concepts associated to the project, such as are Metaheuristics or timetabling
problems.

Afterwards, a solution for the problem will be proposed according to the reviewed literature.
One of the alternatives will be selected which will allow us to consider all the distinct features
of our problem in order to obtain high quality solutions. Whenever the solution is designed, a
prototype implementing it will be built to test the efficiency of the proposed solution.

Finally, to test the suitability of the prototype a series of experiments will be performed. Some
real instances of the problem were provided by the school, but since there are many new func-
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tionalities and constraints with respect to what has been done before there was no real precedent.
Because of that the real instances were studied, and another simple application was designed to
create instances similar to the real ones, which were the ones finally used in the experiments.

To run such experiments a cluster will be used in order to run in parallel many of them. The
results will be presented and discussed and a final conclusion will be reached.

1.6 Project Structure

In this section the structure of the document will be described.

1. Project memory. Exposes a general view of the project.

2. Introduction. Describes in detail the motivation of the project and which are its aims.

3. Theoretical aspects. An analysis of the state of the art is done, and theoretical expla-
nations are provided to understand both the problem and the proposed solution.

4. Problem definition. The problem is described and formalized.

5. Proposed solution. The proposed solution to the problem is described.

6. Project scheduling and budget. The project time schedule and the client budget are
provided.

7. Analysis. The requirements table is presented. Subsystems of the prototype application
are identified along with system actors and use cases.

8. System design. The design of the prototype application is explained by means of UML
diagrams. A detailed explanation of taken design decisions such as design patterns appli-
cation is also provided.

9. System implementation. The technologies used in the project are described.

10. System tests. The design of the tests is presented, as well as the combination techniques
applied to generate the test cases.

11. Experimental study. The algorithm parameters and the fitness function are tuned.
Furthermore the performance of the proposed algorithm is tested on different scenarios.

12. User manual. The input and output files are detailed as well as the procedure to run
the algorithm.

13. Budget. The project budget is detailed, and the client budget creation is described.

14. Conclusions and future work. The conclusions of the project are described, and some
extensions are proposed.
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Chapter 2

Introduction

2.1 Project Justification

Three times a year, one per call, the University of Oviedo School of Computer Science must
publish the exam calendar for the 43 subjects available at the Degree in Software Engineering.
Each subject coordinator can state one or more events that must be present in the schedule,
such as are theoretical or practical exams, or even some deadlines for deliveries.

Subject coordinators may make certain requests, or even state some constraints about when
their exams must take place. For instance, it may be interesting to state a time distance of X
days between two exams, which would prevent a theoretical and a practical exam of the same
subject of being on consecutive days. Another common example is that a professor is out for
some reason, such as attending a conference. That implies that there will be some days in which
he will not be able to be at the exam, and so the exam cannot be placed when he is out.

Moreover there are other desired conditions to be considered: as far as possible there must not
be two exams of the same year scheduled on the same day, there must be some free time for
lunch,...

A random assignment, which could be seen as the easy and straightforward approach, is not
viable because of those constraints. This is why this task has been performed in a fully manual
approach by the deputy director for many years. Even though it may seem not too complex, as
the number of constraints increases so does the dependencies among the exams, which causes
that even the slightest change can have a significant impact on the constraints fulfillment.

Not having the certainty of whether or not the constraints are fulfilled, and forcing the user
to check them manually one by one is a tedious experience. However, if every condition could
be understood by a machine that could compute good enough solutions satisfying the provided
constraints, user work would be just to pick among one of the solutions provided and adjusting
some exam hours, which is a noticeable simplification with respect to the previous task.

This project is aimed to find whether a solution for this real life problem can be found and if
so, to provide an automatic tool prototype that solves the problem. Recently a similar problem
was solved using AI algorithms (4) which suggests that this project may be successful.
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2.2 Project Goals

As mentioned before, the main aim of this project is to study if a solution for the University of
Oviedo School of Computer Science exam calendar problem can be found. To this aim, research
will be carried out to observe how similar problems were solved in the past.

To analyze the problem, it must be formalized first. Thus, we will need to establish the search
space, the state representation, and how to compare the possible solutions. This will be explained
in more detail later. To obtain all the necessary information collaboration with the school
director and deputy director will be required.

Once the problem is formalized, we will design an algorithm to solve it, and implement a
prototype application implementing such algorithm. For this prototype definition process, the
current files used at the University of Oviedo School of Computed Science will be considered,
as well as the actual exam calendar format. The main aim of this prototype is to provide
information about the quality of the solutions computed, not only to check if a solution can be
found, but also to improve the performance of the algorithm in case it is possible.

The algorithm will be tested using real data from previous exam calls as well as some randomly
generated instances similar to the real instances. This combination will allow us to see its
behavior in real life scenarios. Results will be evaluated manually in order to see the performance
of the algorithm.

At the end, the prototype and the research results will be provided to the University of Oviedo
School of Computer Science for its use or further extension.

2.3 Analysis of the Present Situation

This problem has been solved manually for many years in the school. As briefly commented
before, solving it is a tedious task prone to errors, which takes a lot of time and effort. Not
only the user must schedule all the exams but also do it according to the university rules and
fulfilling as much constraints as possible.

Furthermore, due to the Covid-19 pandemic, the current user was forced to consider some extra
circumstances, such as the need to establish a cleaning time for the rooms after exams have
finished. This increases even more the complexity of the task to be performed, because that
extra time can differ from exam to exam depending on the classrooms assigned to it.

This Final Degree Project came up due to a request from the school. It was specially interesting
for them the creation of an automatic tool for solving the problem, since that would allow the
consideration of new constraints whose satisfaction would be unfeasible in a manual way.
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Chapter 3

Theoretical Aspects

3.1 Introduction

This section is devoted to provide a theoretical context to understand the problem and the
possible solutions to solve it. To do so a study of the state of the art is done, by which we have
classified the problem as a Timetabling problem (Section 3.2), and enumerated some common
approaches to solve them.

Because this project solution uses Genetic Algorithms, the Metaheuristics are generally explained
(Section 3.3), and emphasis is done in Population-Based Metaheuristics (Section 3.4). Common
operator implementations are enumerated and an example algorithm is presented.

3.2 Timetabling Problems

Scheduling problems consist in the creation of a plan for a given number of temporal events or
tasks. There are many problems that fit in this category such as the optimization of the total
time spent by a group of machines to perform a series of task, or the creation of a timetable for
a high school.

The problem addressed in this project is similar to the second one mentioned above, and they
are both known as timetabling problems, which are a subset of the scheduling problems. In
this particular type of problems the aim is to build a timetable according to series of domain-
dependent constraints. It would not be the same to create the weekly timetable of a high school
than to create a exam calendar at the university. There are more concrete classifications among
which we could see our problem as an university exam timetabling one.

Many of these timetabling problems have been proven to be NP-hard, which implies that there
is no known approach that can solve them in polynomial type using a deterministic algorithm.
Metaheuristics have been widely used approach to solve them, and since they will in fact be
used in this project, they will be explained in Section 3.3.

Even though the proven complexity, many techniques have been proven effective with this type
of problems along the years (16), such as Integer Programming, SAT, Constraint Programming,
Metaheuristic-based approaches, Graph Colouring, among others.

SAT is a well-know approach to solve timetabling problems (2). It focuses essentially on if it
is possible to obtain an interpretation that satisfies a provided Boolean formula. It was the
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first problem to be proven NP-Complete, so there is not known algorithm that solves SAT in
polynomial time. There are two ways to solve SAT: using a exact method such as CDCL (Conflict
Driven Clause Learning) or by means of local search. From SAT can be derived MaxSAT, an
optimization version of SAT which focused on computing the maximum number of clauses that
can be made true with an assignment of truth values to the formula variables. Nowadays there
are solvers that work efficiently considering instances of the problems composed of tones of
propositional variables and clauses. Provided that a timetabling problem can be represented as
a Boolean formula, using this type of algorithms could be a solution to the problem (1).

CP (Constraint Programming) (13) is also a common approach for solving scheduling problems.
Users must describe which properties must the solution have, that is, they must state in a
declarative way the problem constraints. As a declarative approach, a solver will try to achieve
that solution by means methods such as constraint propagation and search.

Since our problem is mainly aimed at satisfying a given set of constraints it can be seen as a
CSP (Constraint Satisfaction Problem) (12). Provided that the problem can be represented as
an homogeneous collection of finite constraints over variables (7), the problem can be solved
with constraint satisfaction mechanisms. In fact, SAT can be seen as a particular case of CSP.

Another well-known alternative is IP (Integer Programming), where constraints are specified
over a set of integer variables. It has also been proven effective at solving timetabling problems
(6), although it can be used in other scheduling domains such as for the knapsack problem.

Our problem is a COP (Constraint Optimization Problem) which is a generalization of CSP but
including an objective function over some variables to optimize. Although all the mentioned
alternatives are potential approaches to solve the problem of the School of Computer Science,
in the end they could lead to unfeasible execution times.

Metaheuristics are the common alternative to obtain good enough solution in reasonable times.
Some viable approaches are: Genetic Algorithms, Particle Swarm Optimization and Local
Search. In (16) they are compared along with other approaches.

Recently, other Final Degree Project solved an optimization problem for the school using Genetic
Algorithms (GA) (4). Even though the problem was different to ours, because it consisted in
assigning students needed to class groups, GA worked really well considering an encoding based
on permutations.

For such a reason, Genetic Algorithms will be used in this project. They are studied at the
Degree in Software Engineering, which means that I am familiar with them, as is expected of
any fourth course student.

Genetic Algorithms can provide good enough solutions for the problem and can be easily config-
ured by any user, even if non-expert. By setting the available parameters, the deputy director
will be able to quickly obtain a set of solutions to choose from.

Because of that, coupled with the author’s lack of familiarity with the other exposed alternative,
GA were in the end the chosen alternative.

3.3 Metaheuristics

Optimization problems such as the one studied in this project can be found in plenty of real life
contexts, from the typical ones such as the assignment of tasks to machines to minimize time or
resources, to an Internet routing architecture. In the end, they all try to achieve some objectives
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like the minimization of the time to complete a group of tasks, or the minimum energy cost of
a routing system.

Since there may be multiple objectives, the optimization tends to be highly non-linear. Because
of that, a good enough approximation of such a solution can be acceptable, if computed at a
reasonable cost.

Metaheuristic algorithms are designed to achieve acceptable solutions in a reasonable amount of
time. These methods integrate several mechanisms to explore the solution space and intensify
the search in its most promising regions. Usually there is no way for these algorithms to state
whether a solution is optimal or not, neither to bound the error of the provided solutions.

Most metaheuristics are focused on solving combinatorial optimization problems which consist
in finding an optimal solution among a discrete set of possible solutions. A well-known example
of this kind of problems is the TSP (Travelling Salesman Problem) as well as many scheduling
and timetabling problems.

Metaheuristics can be classified according to different criteria. It is interesting to mention
single-solution 1 vs. population-based algorithms. The first kind of methods focus on iteratively
improving the quality of a single solution to the problem (e.g. local search methods), whereas
the second class of algorithms maintain a population of candidate solutions that are exploited
in the search for optimal solutions (e.g. evolutionary algorithms, particle swarm optimization
(11), etc.). For further information, we refer to (15).

3.3.1 Meta-heuristic design

To design a meta-heuristic two main elements are needed: the representation of the solution,
often called encoding, and an objective function that will guide the search, usually called fitness
function.

Representation of the solutions

It is crucial to take into account how the solutions are going to be represented, as this will be
strongly related to the efficiency of the algorithm. A good encoding must be:

• Complete: Every possible solution of the problem can be represented.

• Connected: Every solution of the search space can be achieved, and all of them are linked
by a search path.

• Efficient: The handling of the encoding by the search operators must not have a high
time or spatial complexity.

Fitness Function

This function has the responsibility of guiding the search by assigning a quality value to each of
the solutions, which will typically be a real value. Therefore we can define the fitness function
as: f : S −→ R, being f the fitness function, S the set of possible solutions and R the set of real
numbers.

1Even if not used in this project they have been used in the timetabling field as can be seen in (14) and (10).
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Since the fitness function states how good a solution is, it is a determinant factor on how the
algorithm will perform. Different fitness functions can totally change the output of solutions
in the same search space, thus it is important to define it right so that the provided solutions
match our desired criteria.

3.4 Population-Based Meta-heuristics

As briefly explained before, population-based meta-heuristics work simultaneously with a group
of candidate solutions, often called “population”. The idea behind this approach is to start from
an initial population that may have been generated randomly, or by means of a heuristic, in
case that we want to generate a tendency towards a particular area in the search space.

When generating the initial population it is important for it to provide a wide range of different
solutions to avoid premature convergence of the algorithm. Once that the initial set of encoded
candidate solutions is provided, the algorithms iterate over two phases until meeting a certain
criteria such as could be a maximum number of generations or surpassing a certain threshold
value for the fitness value. The two phases are:

1. New generation production: a new generation is produced considering the actual
generation. The behaviour of the algorithm in this phase will be the most differentiating
factor among the population-based meta-heuristic algorithms.

2. Replacement process: from the previous generation population, and the the one gener-
ated in the previous step, a new population must be built. There must be a replacement
policy to guide this process, a possible approach could be that all the individuals gener-
ated in the previous step replace completely the old generation. Over that approach some
slight changes can be implemented such as the concept of elitism, where the best fitness
individual from the old generations goes directly to the final population.

In Algorithm 1 we can see a generic pseudocode of these algorithms. In the example, the number
of generations (Ngen) is the stopping criteria.

Algorithm 1 Generic Population-based Meta-heuristic algorithm.

Input: P0, Ngen /* Initial population and number of generations that must be done. */
i = 0;
for i← 0, ..., Ngen do

P ′
i = newGeneration(Pi);

Pi+1 = Replacement(Pi ∪ P ′
i );

end for
Output: Best solution(s) found.

3.4.1 Evolutionary algorithms

Evolutionary algorithms are well-known population-based metaheuristic optimization algorithms.
The idea behind this family of algorithms came by observing the biological evolution of living
beings.

When talking about evolution, it is necessary to refer to Darwin’s book: The Origin of The
Species. Darwin observed that there was an observable principle in nature, which he called
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”Natural Selection”. It stated that the most adaptive individuals persist and reproduce, while
the non-adaptive ones are eventually discarded by the evolution process.

In addition, Darwin also mentioned that even if normally the evolution tends to the most adap-
tive individuals, some random mutations can also have a considerable impact on the evolution
process.

Evolutionary algorithms are inspired in what Darwin exposed. They consider a random pop-
ulation of individuals, which are candidate encoded solutions, and then try to simulate this
evolution process.

To this aim, a fitness function is defined, to measure how good an individual is. At this point
the algorithm will work as shown in Algorithm 1. The main difference is that here the process
of creating a new generation is a simulation of the biological evolution. Firstly, some individuals
will be selected, usually the higher the fitness the higher the probability to be chosen. Secondly,
the selected individuals will be used to create a new population, crossing them to generate new
ones and even performing some random mutations over the result.

Once that new generation is obtained, the replacement phase comes into place and sets the final
population for the new generation. The whole process is detailed in Algorithm 2. Note that
again we are considering as stopping criteria for the example the number of generations, it could
be to reach a certain fitness or any other.

Algorithm 2 Generic Evolutionary algorithm.

Input: Ngen /* Generations that must be done. */
P0 = generateInitialPopulation();
i = 0;
for i← 0, ..., Ngen do

P ′
i = SelectionProcess(Pi);

P ′
i = CrossoverProcess(P ′

i );
P ′
i = PerformRandomMutations(P ′

i );
Pi+1 = Replacement(Pi ∪ P ′

i );
end for

Output: Best individual(s) or best population found.

Convergence

Along the generations, the population individuals will gradually increase their fitness. At some
point, this growth will be stopped or highly reduced, even if continuing computing new gen-
erations. That happens because all the individuals tend to have the best fitness, and that
means that the more those individuals are mixed along the generations the more similar those
individuals will be, until reaching a point in which all of them are identical. This is called
Convergence.

In the end Convergence is just the lack of diversity in the population, which is not by itself
something bad. However, an algorithm converging too fast is not something desirable, because
that usually implies that the provided solution is not as high of quality as it could be. This is
called Premature Convergence.

It is needed to introduce now two opposite concepts strongly related with Convergence.

• Exploitation. Once the algorithm have a reasonably good solution it tries to refine it
to a local optimum. Doing this implies that the algorithm will converge to that solution.
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Therefore, given two algorithms A and B, if A has a stronger exploitation policy it is more
likely to have premature convergence.

• Exploration. The algorithm does not focus on a local solution, but instead it tries to
search in the whole search space to find the best local optimum among the ones found. In
the best scenario, that local optimum is the global optimum.

Focusing too much in exploitation will lead to premature convergence, whereas doing it on
exploration will lead to an algorithm that does not converge to a solution. It is needed to keep
a balance between these two concepts.

Solutions encoding

The fitness function works over a candidate solution, whereas the evolutionary operators work
over an encoding of such solution. This means that this type of algorithms need to perform
a “translation” over the population of candidate solutions to perform the evolution process.
On the contrary, when it is needed to check by means of the objective function how good the
solutions are, those encoded solutions must be decoded.

There are many ways of encoding solutions, we can represent them as: a binary number, a
permutation of values, and many others. For instance, if we consider the TSP (Travel Salesman
Problem), in which it is needed to find a path thought a number of cities, those paths can be
represented as permutations of an ordered list containing all the cities.

3.4.2 Evolutionary operators

As explained before, and as can be seen in Algorithm 2, there are three processes involved in the
creation of a new generation of individuals, which are called operators. There are many ways
in which each of these operators can be defined and this mostly depends on how the individuals
were encoded. However, there are some well-known options that we describe in this section.

Selection

The selection operator has the responsibility of choosing which individuals will be considered
for crossover. Typically its definition involves choosing the fittest individuals. This behaviour is
called selective pressure, and although it intuitively leads to better solutions, also implies that
lower fit individuals tend to be discarded. This could be a problem since those “bad” individuals
could contain useful information which will be lost instead of mixed with the other individuals.
In order words the bigger the selective pressure, the more we are focusing on exploitation.

In the end the selection operators must reach a balance between exploitation, prioritizing the
fittest individuals, and exploration, considering also individuals with not too high fitness since
they can have some useful genetic data.

Among the approaches for the selection operators the following are well-known and widely used:

• Random selection: the individuals are randomly selected without following any criteria.

• Roulette Wheel selection: this strategy assigns a probability to be selected to all
individuals based on their fitness. The selective pressure will depend on how that mapping
is done.
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Figure 3.1: Example of 1-point crossover.

• Tournament selection: this strategy is a combination of the previous ones. It consists
in selecting randomly a given number individuals among which the one with the highest
fitness will be the finally selected one. This procedure must be repeated each time a new
individual must be selected.

Mutation

The mutation operator performs minor changes over a single individual. This operator is usually
yielded according to a mutation probability, given as a parameter. These mutations are per-
formed over new created individuals, typically after the crossover operator has been executed.
By performing a mutation, we potentially introduce new genetic data to the population, which
favors the exploration of the algorithm.

Mutation probability, let us call it pm, tends to have a low value, because having a higher
one may disrupt the process. In the end this operator is a way to prioritize exploration over
exploitation. For such a reason, typically pm ϵ [0.001, 0.15]. However, depending on the problem
and the proposed solution that values can be increased.

Crossover

The crossover operator, also called recombination operator is in charge of mixing the encoded
data of the selected individuals to generate their children. It is more often defined as a binary
operator, although it is possible for it to be n-ary.

As considered for the mutation operator, the crossover operator is also issued according to a
probability, let us call it pc. This probability tends to be high because in the very end we are
interested in the individuals to cross to generate new ones. Because of that pc ϵ [0.5, 1].

There are many crossover operators among which 1-point crossover was the first one. This
implementation selects randomly a point in the chromosome sequence and builds the child as
an addition of the mixture of the parents. It is represented in Figure 3.1. Extending this idea
there is also the k-point crossover, which basically chooses k division points and acts in the same
way as 1-point crossover. Finally the uniform crossover chooses randomly from each offset of
the parents.

Other well-known crossover operator is Order Crossover (OX) (3). Its behaviour can be seen
in Figure 3.2. This crossover operator is specialized in permutation-based encondings. Two
points are selected and the sequence of offsets between them is directly written in same order
and position to the child from the first parent. The other values will be written in the child’s
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Figure 3.2: Example of OX crossover.

free spaces following the appearance order in the second parent.

3.4.3 Genetic Algorithms

Genetic Algorithms are a typical instantiation for Algorithm 2. They were developed during
the 1960s and the 1970s by professor John Holland (8) and his students following the idea of
“breeding” encoded solutions to optimizations problems.

Typically a Genetic Algorithm applies a crossover operator over two previously selected solutions
by a selection operator. The result of the crossover operator could or not be randomly modified
by a mutation operator depending on the mutation probability. Then, considering “parents” and
“children”, the replacement operator selects the ones that will constitute the final population
for the generation.2

An encoded solution is called chromosome when talking about Genetic Algorithms, and the in-
formation units that compose them are called genes. Therefore we can consider the chromosome
[1, 4, 3, 2], which is composed of the set of genes {1, 2, 3, 4} in a particular order.

As exposed before, a Genetic Algorithm needs some parameters, such as the mutation probability
or the crossover probability. Some of them are given the initial population whereas others
implement a process to generate it randomly or by means of a heuristic. There are plenty of
variations in the initial population building process.

A generic pseudocode can be seen in Algorithm 3. Note that this is indeed an example, whose
behaviour can be redefined in several ways. For instance, in Algorithm 3 a pair of parents can
only generate one child, but they could generate two in other particular implementations. The
Genetic Algorithm shown is also using a number of generations as stopping criteria but this
could be any other.

Note that the GA works with chromosomes, that is encoded solutions, but to compute the fitness
value of the individuals it is needed to decode them. Because of that, in Algorithm 3 we can
see “evaluatePopulation”. It is at that point when all the chromosomes are decoded into actual
solutions, and their associated fitness value is computed, making those values available for the
replacement operation.

2A more technical explanation can be found at (9).
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Algorithm 3 Genetic Algorithm example.

Input: Ngen, Psize, pm, pc
Population = generateInitialPopulation(Psize);
evaluatePopulation(Population);
Idvbest = getBestIndividual(Population);
i = 0;
for i← 0, ..., Ngen do

ParentsPairSet = SelectionOperator(Population);
Children = ∅;
for Parent1, Parent2 ← ParentsPairSet do
Child = crossingOperator(Parent1, Parent2, pc);
mutationOperator(Child, pm);
Children = Children ∪ Child;

end for
evaluatePopulation(Children);
Population = Replacement(Population ∪ Children);
Idvbest = getBestIndividual(Population);

end for
Output: Idvbest

3.5 Greedy Algorithms

Greedy Algorithms are efficient approaches often used in optimization problems. They are
basically constructed over a simple idea such as “Classify the exams with larger duration first”,
which implies a straightforward implementation process and typically makes them deterministic.
Because of that they are largely used, even though they are not guaranteed to provide an optimal
solution to hard problems.

A formal explanation to the above-mentioned implementation would be to consider a finite set
of values V = {v1, v2, ..., vn}, that must be present on a candidate solution S.

A Greedy Algorithm will try to compute a solution considering initially an empty set, and usually
by means of a local heuristic iteratively adds elements from set V to it. It never backtracks or
makes any replacement to the already added values. This can be seen in Algorithm 4.

Two core points need to be considered when designing a Greedy Algorithm:

• The solution must be a set of elements. By having such stated, the partial solutions
that the algorithm will handle can be seen as a subset of elements.

• The local heuristic to guide the algorithm. This would lead the algorithm by pointing
which is the best value to be selected next. As stated before it points to the best locally,
which does not imply that we are getting a better solution globally.
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Algorithm 4 Generic Greedy Algorithm example.

S = {}; /* Initial empty solution */
Vunplaced = {v1, v2, ..., vn}; /* Initial values set */
i = 0;
while |Vunplaced| > 0 do

computeLocalHeuristic(Vunplaced);
vi = getBestV alue(Vunplaced);
S = S ∪ vi;
Vunplaced = Vunplaced − {vi};

end while
Output: S



Chapter 4

Problem Definition

4.1 Motivation

Every year the deputy director of the University of Oviedo School of Computer Science is in
charge of making the exam schedules for the three official university calls. For each of them a
series of exams and deliveries must be considered, some of which may be online while others are
in person.

For each call around seventy events must be scheduled in a time lapse of approximately 3 weeks.
This may be seen as a problem that can be even be solved in a random way, but there are many
constraints to be considered.

The first and most important is that according to the university rules, the school must ensure as
far as possible that two exams of the same academic year are not scheduled on the same day.1

Furthermore subject coordinators may ask the deputy director to place their exams on specific
dates, or establish relative dependencies with other tests. For instance, it would be desirable
that it was possible to state a minimum time distance between two exams. Thus, the problem
is not only placing the exams but also doing it in such a way that all or the maximum number
of constraints are satisfied, which can be really complex due to the ”dependency chains”2 that
are built among the exams.

This problem is now being solved in a fully manual approach by the deputy director. Even
though there is no exact documentation of how high the number of constraints could be, we
could make some estimations. Considering a case in which each exam has a constraint, we would
be talking about around 70 constraints to fulfil, many of which will be linked in a dependency
graph. This can get really complex even with a low amount of constraints, specially for a human
trying to solve it without any kind of help.

Because the current procedure is prone to errors and to a large time investment from the user,
this project is motivated to simplify the task. The aim is to create and implement an algorithm
that provides as a result a group of schedules for the user to choose from. Ideally the user’s task
will be transformed into specifying the constraints before the execution, and choosing from the
given options the one preferred.

1By default two exams of the same academic year must not be scheduled on the same day, however because
of time issues, the number of events (exams and deliveries) of an academic year may exceed the total number of
available days. In such case the constraint is relaxed a bit as commented in Section 4.3.1.

2Exam A must be the same day that exam B, which must be on the same day that exam C, which must be
before a given date X and cannot be scheduled on a day Y.
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4.2 Problem Description

The University of Oviedo School of Computer Science needs to schedule the exam calendar
for each university call. Each call is independent from the rest of calls and has its own exam
schedule. Thus, the problem can be reduced to solving it in just one call. Solving it for the
three calls will be a matter of solving three particular problem instances.

4.2.1 Formal description of the problem

In this problem three sets are received as input: the set of exams to be scheduled E =
{e1, e2, ..., en}, the set of days on which those exams can be placed D = {d1, d2, ..., dm}, and the
set of constraints that the final schedule must fulfill C = {c1, c2, ..., ck}.

Each day has a time interval, bounded by two hours, in which exams can be placed, and it
is mandatory that all exams scheduled that day begin and end within that time interval. We
would define it as Tidi = [hstart, hend], which stands as the Time Interval Ti for a day di in the
set of days D.

The aim of the problem is that every exam in set E has assigned a day, a starting hour and an
ending hour. This must be done in such a way that all the hard constraints on set C are fulfilled
and within the time availability marked by days in set D. Furthermore as many as possible soft
constraints must also be fulfilled.

4.2.2 Rounds

The School of Computer Science offers a bilingual option for the Degree in Software Engineering,
which means that a large number of the subjects in such a degree can be studied in Spanish or in
English. This means that the exams must also be in the selected language. Normally students
of both languages take the exams at the same time and the professors give them the test and
speak to them in the corresponding language. However this is not always possible, which leads
to having two different time events for the same exam. In our problem this will be considered
as two different exams even though they are indeed the “same”.

For this particular problem, which also arises when not having enough resources to test all the
students at the same time,3 rounds are considered. A round is a group of exams that must take
place the same day because they are linked. This is used to represent that two different exams
are the same but that cannot be carried out as a single time event.

4.2.3 Elective subjects

Nine elective subjects are offered in the Degree in Software Engineering. These subjects are the
only ones that can be taken for the first time both in third and fourth academic years, which
means that they do not belong to a single one.

The events related to this subjects are free of fulfilling the university rule previously commented
in Section 4.1 and that will be listed afterwards in Section 4.3.1.

3An example of this could be the lack of computers in the laboratory.
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4.2.4 Already placed exams

It is common for the user to have some events already scheduled, even before starting making
the actual exam calendar. This implies that the algorithm to be developed should be able to
start from partial solutions and do not modify what was given as input.

This ultimately implies that the user must be able to take a partial solution of one produced by
the algorithm and use it as an input for the algorithm.

4.2.5 Day time interval for the exams

Not every day in the exam calendar must have the same time interval devoted to the exams.
There can be some cases in which maybe only the morning is available, while in others only the
afternoon is. This can happen for many reasons such as it could be that the school is hosting
an event or that there is some construction that is scheduled that day. For such reason, while a
day di can have the exam time interval Tidi = [9 : 00, 21 : 00], other day dj could have the time
interval Tidi = [11 : 00, 18 : 00].

An exam can only be scheduled on a day if it fits within the time interval of that day.

4.2.6 Rest time

Along with the fulfilling of requests and rules, there are also some circumstances that would be
desirable. The time interval in which exams are placed along the day is usually from 9:00 to
21:00,4 but it is common to leave an interval of one or two hours between 13:00 and 15:005 so
that both examiners and students can have lunch and rest.

An exam cannot start during this time rest time interval, but it could happen that an exam
starts before the initial bound of the interval and ends in it or afterwards. In any case, it is
desirable to prioritize solutions in which this time interval is as exam free as possible.

4.2.7 Numerical complexity

It is desired by the school to spread as much as possible the exams that require the biggest study
loads. This now is done in a subjective way, and in the end it can be very complex to consider,
also taking into account the other constraints.

For such a reason, solutions in which exams with the same numerical complexity, which will be
a value provided by the user before the execution, are spread should be prioritized.

4.2.8 Extra time for the exams

It is not within the scope of this project to assign the exams to the physical resources that the
school has, but due to the Covid-19 pandemic, some special measurements needed to be taken.

After the on site exams a time lapse of around ten minutes was used to clean the classroom or
laboratory. For such a reason each exam can have a given extra time that will be necessary to

4This is the typical scenario, but it can be configured for each day individually as stated before.
5Note that this interval can also be configured by the user before the execution of the algorithm.
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consider as part of its duration.

4.2.9 Deliveries

The schedule is not only used to hold exam dates, but also to state deadlines to some deliveries,
like projects or applications. Because of the nature of this kind of event, it is not a problem
that a delivery deadline is placed at the same time as other events. In fact, these deliveries
are usually stated beforehand the actual exam calendar computing, even out of the day interval
time.

4.3 Problem Constraints

There is a well-known classification for constraints that marks them as hard or soft. The differ-
ence is unfulfilling a hard constraint makes the whole candidate solution invalid. This do not
happen with the soft ones, whose fulfilment is linked to the quality of the solution.

In our problem, constraints have been identified for both types of that classification, but there
was a group of them which was not so clear; these are the user constraints. This kind of
constraints can be soft or hard, depending on the context, that is, the user input.

Consider the following example: “The user receives a call from the Subject A lecturer in which
he says that he has a medical appointment on a day D”. In this case Subject A’s exam simply
cannot be put on day D, because there will be no examiner. This is a hard constraint.

Now consider this other example: “The user receives a call from the Subject A lecturer in which
he says that he would like not to have the Subject A’s exam on day D, but that he could attend
even if so.”. In this case even though there is a preference for the exam not to be on day D, the
exam can take place on day D. This is a soft constraint.

Even though this special kind of constraints could be considered twice, in a soft version and
in a hard version, that could be misleading because it is in fact the same constraint, the same
logic. Because of that it was decided to classify them in their own category, being such user
constraints.

4.3.1 Hard constraints

1. Two exams of the same year cannot take place on the same day unless there is no other
possibility. Under no circumstances can two exams of the same course and semester take
place on the same day.

2. Exams cannot start in the specified resting interval.

3. Exams must be scheduled within the available time interval of the day in which they will
take place.

4.3.2 Soft constraints

1. All the exams must be scheduled.

2. The resting interval should be as free as possible.
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3. Exams with a value assigned to their numerical complexity should be as separated as
possible of other exams with the same value assigned.

The first one could be seen as a hard one, thinking that the final solution is not valid since
not all the exams were scheduled. In this case, a solution with an unscheduled exam could be
highly penalized, but could indeed be used as an indicator that maybe there were too many
hard constraints given as input.

4.3.3 User constraints

This category groups constraints that can be considered hard or soft depending on the cir-
cumstances. They are “variable”. One way of modeling them could be listing them in both
categories: soft and hard, but it is clearer to group and address them all by a common name.

1. Day Banned (DB): An exam e cannot be on a day d.

2. Day Interval (DI): An exam e must be scheduled between day d1 and day d2.

3. Same Day (SD): The exams e1 and e2 must take place on the same day.

4. Different Day (DD): The exams e1 and e2 must take place on different days.

5. Order Exams (OE): The exam e1 must be scheduled before the exam e2.

6. Time Displacement (TD): The exam e2 must be scheduled a number of days ndays

after the exam e1.

This user constraints were identified in several meetings with the user responsible of making the
exams calendar at the School.

4.4 Problem Instance Example

In this section a simple problem instance and a possible solution will be commented. For the
sake of simplicity, it will consist in a small pool of exams, days and user constraints. Numerical
complexity, and extra times will not be applied, and the resting interval will be the default one,
from 13:00 to 15:00.

4.4.1 Calendar

First of all, the days in which the exams need to be scheduled are shown in Table 4.1.

Date Day Initial Hour Day Ending Hour

2022-07-01 9:00 16:00
2022-07-02 15:00 20:00
2022-07-02 11:00 17:00

Table 4.1: Problem instance example - calendar.
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4.4.2 Exams

In second place the exams that need to be scheduled are shown in Table 4.2. No deliveries are
included in this example, to simplify things. For the sake of clarity in the next section, assume
that (ID)ei = i, thus we can refer to the first exam which has ID = 1 as e1.

ID Subject Duration (h) Date Starting hour Ending hour

1 Subject1 1 - - -
2 Subject2 4 2022-07-01 9:00 13:00
3 Subject3 2 - - -
4 Subject4 3 2022-07-02 15:00 18:00
5 Subject5 1 - - -

Table 4.2: Problem instance example - exams.

4.4.3 User constraints

In addition to the hard and soft constraints stated in Sections 4.3.1 and 4.3.2, in this example
the following user constraints will be considered. Note that the ones in bold are marked as hard.

1. e2 must be scheduled on the same day as e5

2. e3 must be scheduled two days after than e5

3. e1 cannot be scheduled on 2022-07-02.

4.4.4 Proposed solution

In Table 4.3 a solution for this problem instance is proposed. This is one of the best solutions that
could be provided, since there is no occupation of the resting interval, no soft user constraints
unfulfilled, and no exams unscheduled.

As stated previously, a solution is valid when all the hard constraints are fulfilled. Therefore, a
solution such as the one in Table 4.4 is also acceptable, but it is not as good as the one in Table
4.3.

ID Subject Duration (h) Date Starting hour Ending hour

1 Subject1 1 2022-07-03 15:00 16:00
2 Subject2 4 2022-07-01 9:00 13:00
3 Subject3 2 2022-07-03 11:00 13:00
4 Subject4 3 2022-07-02 15:00 18:00
5 Subject5 1 2022-07-01 15:00 16:00

Table 4.3: Problem instance example - best solution.
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ID Subject Duration (h) Date Starting hour Ending hour

1 Subject1 1 2022-07-03 11:00 12:00
2 Subject2 4 2022-07-01 9:00 13:00
3 Subject3 2 2022-07-02 18:00 20:00
4 Subject4 3 2022-07-02 15:00 18:00
5 Subject5 1 2022-07-01 15:00 16:00

Table 4.4: Problem instance example - acceptable solution.



Chapter 5

Proposed Solution

As commented previously there are many approaches that can be followed in order to find a
solution for the problem. Since most of the timetabling problems are NP-Hard and it is not
known an algorithm that always obtains optimal solutions in polynomial time. The goal of our
solution will be minimizing certain facts that decrease the quality of the solutions, such as the
number of unfulfilled user constraints.

To solve the problem both a Genetic Algorithm and a Greedy Algorithm will be used. The
Genetic Algorithm will be in charge of exploring the search space, while the Greedy Algorithm
will evaluate the solutions and guide the search towards valid ones.1

5.1 Search Space

5.1.1 Exam schedule

As stated before, the goal of the problem is to assign a date, a starting hour, and a ending hour
to every exam ei, within the time availability stated on the set of viable days D, and fulfilling
all hard constraints on C.

Considering that, we can represent an exam assignment as a 4-tuple composed by the scheduled
exam, the day in which the exam is placed, the starting time of the exam, and the ending time
of the exam.

(ei, dj , hstart, hend) (5.1)

We can define the exam time interval as Tiei = [hstart, hend], and Tiei ⊆ Tidj must hold.

A solution for the problem would be a set containing all the exam schedules made. The process
may start with an empty solution or with a partial solution. In a empty solution all the exam
assignments will be incomplete, which means that they do not have defined the three last
elements of the tuple. On a partial solution, there will be a mix of complete and incomplete
exam assignments.

Incomplete exam assignment = (ei,−,−,−) (5.2)

1A valid solution fulfils all the hard constraints.
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In a complete solution all the exam assignments will be completed, that is all the 4-tuples will
have all the values assigned.

5.1.2 State definition

A state is represented as a partial solution of the problem, in which not all the exam assignments
are made. The problem is likely to start with a partial solution although an empty solution can
also be a starting point.

Either way, there will be several middle steps in which partial solutions of the problem will be
evaluated until getting to the final state in which a complete solution is reached.

5.1.3 State expansion

A state is expanded when scheduling an exam in an incomplete exam schedule, that is from a
partial solution of the problem. That implies that for an exam schedule Es = (ei, dj , hstart, hend),
the number of new states that can be derived from it can be large.

The main reason of that is the hour bounds, because there are many combinations that can be
done in just a single day. For instance, it is not the same for an exam to start at 9:00 than at
9:01.

Consider a calendar D = {d1, d2, ..., dn}, a day dj such that dj ∈ D and that Tidj is usually 12
hours long. If we divide such hours in intervals of 5 minutes, that would result in 12 per hour.
This interval in division is considered because it is unlikely for an exam to start on a minute or
have a duration in minutes which is not a multiple of 5.

Taking that example into account we could approximate the number of possible new states as:

Number of new possible states = 12 ∗ 12 ∗ |D| (5.3)

Since typically |D| ∈ [15, 25], this implies a number of 3600 possible states. However, consid-
ering no such intervals, and the typical maximum value of size(D) = 25 that would lead us
to:

Number of new possible states = 12 ∗ 60 ∗ 25 = 16000 (5.4)

A Greedy Algorithm will be used to guide the search deterministically to valid and promising
areas of the search space.

As a seed for this process, the Greedy Algorithm will be using the chromosomes of the individuals
of a Genetic Algorithm, which would represent the order in which the Greedy Algorithm must
schedule the exams according to a heuristic. This way by means of the Genetic Algorithm, the
set of seeds will tend along the iterations to better solutions.

5.1.4 Instances complexity and solution existence

Complexity can vary drastically among instances of the problem. There are many factors that
affect it which are not as simple as the number of exams. Available time to place the exams
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can also be seen an important factor, the less time we have the more probabilities that an exam
is left unscheduled. However, what truly affects the complexity is not the amount of available
time by itself but the proportion of exams and available time that we have, the less time we
have to place the same number of exams then the harder it gets to schedule all the exams.

The number of user hard constraints can have a similar impact, making some exams impossible
to schedule. Dependencies among the constraints must also be considered, since an inconsistency
loop can be generated.

For example, suppose that it is stated that exams e1 and e2 must take place on the same day.
Later, when writing the constraints associated with another exam e3, it is stated that e2 and e3
must take on place on the same day, and that e1 and e3 must take place on different days. This
inconsistency will lead directly to an incomplete solution, because one of those three exams will
not be scheduled due to the stated hard constraints.

5.1.5 Exam collisions

Although the formulation of the problem does not state that exams collide, that is, that two
exams cannot be placed at the same time, in reality that is desired.

Taking into account previous exam calendars of the school, it is always possible with a relevant
margin for all the exams to be placed without superposing them.

There is one exception though, being such the deliveries. Deliveries are deadlines that typically
do not imply any student attendance. Such particular events can be placed at the same time as
other exams if wanted by the user. This will be a configurable option.

5.2 Greedy Algorithm

The Greedy Algorithm is an algorithm that schedules the incomplete exam assignments of a
partial or empty provided solution in a deterministic way.

The only assumption that the algorithm makes is that exams must not overlap, with the excep-
tion of the deliveries if such option is disabled for them.

The algorithm will receive two inputs: the Individual (chromosome) that is going to be used
as seed, and an object with the configuration and data of the execution. This second object
has the information about which days are available, as well as the constraints of the particular
problem instance.

The ordered list of exams to be scheduled will be obtained from the individual, while all calendar
days, as well as their time interval initial hour will be loaded to a data structure, a map with
the day as key and the available time interval associated to it as value is used. Once that
initialization is done, the algorithm will try to schedule the exams one by one. This whole
process can be seen in Algorithm 5. getOrderedExamList provides an ordered list of exams
getting them from examSchedule and sorting them as specified in the chromosome of individual.
Since there exist only one instance of each exam, and such instances are stored in examSchedule,
there is no need for a return value in Algorithm 5.

The Greedy Algorithm also uses a repairing process to improve its effectiveness which is detailed
in Section5.2.1. In Algorithm 5 the last zero in the call to scheduleExam means that in the basic
version, that process is disabled.
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Algorithm 5 Greedy Algorithm general view.

Input: individual, examSchedule
daysT imes = initializeDays(examsSchedule);
exams = getOrderedExamList(individual, examSchedule);
for exam ∈ exams do

/* The 0 is the current depth of the repairing process. */
scheduleExam(exam, daysT imes, 0);

end for

To schedule an exam the first thing that is needed to be computed is the set of days in which
such an exam can be placed, that is a subset of the available days in which placing this exam
will not lead to an unfulfilled hard constraint. To the hard constraints specified in Section 4.3.1,
we must add the user constraints that the user has marked as hard for the execution. Once that
set of days is computed, the algorithm tries to place the exam on the first valid date and the
first possible hour which are tracked at the variable “daysTimes”.

Once an hour is selected the algorithm checks that it is not in the resting interval, where exams
cannot start, and that the exam will not collide with another one in case it is placed there. In
Algorithm 6 these checks can be seen in the while condition. checkForCollision method returns
an exam that collides with the one that we are trying to place if there exists, which is the reason
for which a null appears in the condition, to check there was such an exam.

In case the exam cannot be placed at the considered hour, this hour will be updated with the
ending hour of the resting interval or the exam that was colliding with ours. The algorithm will
try to follow the same process until placing the exam or finding that the exam does not fit in
the current day. If the last thing occurs it will try with the following viable day for the exam.

This whole process can be seen in Algorithm 6. For the sake of clarity what is shown is the
general process of the algorithm, a number of specific checks such as if the exam is a delivery
and if delivery collisions are enabled, are not included in the pseudocode. It is returned true if
the exam was scheduled, and false if it was not.

5.2.1 Repairing process

The Greedy Algorithm explained until now in Algorithms 5 and 6 is fully functional and can
be used in the problem effectively. However, as the number of hard constraints is increased it
will tend to leave some exams unscheduled because the small pool of days in which they can
be placed is already occupied. In Algorithm 6, this means that viableDays is too small. In this
scenario in which an exam has a small set of viable days to be placed, the repairing algorithm
is crucial, since without it those exams would probably be left as unscheduled.

The repairing algorithm will be built based on a single principle:

If the set of viable days for an exam ei is already fully occupied, we could try to find if some of
the already placed exams in such days can be swapped with ei. That is, finding an exam ej in
those days that could be scheduled on a different available day and placing e1 in the position of
ej.

The previous algorithms used a variable called “repDepth” which stands for repairingDepth. To
implement the commented principle a recursive procedure is used. This approach leads to a
tree of temporal swaps whose maximum depth is limited by means of that variable “repDepth”.
Users will be able to specify in configuration files how deep can this tree be.
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Algorithm 6 Schedule exam method.

function scheduleExam(exam, daysT imes, repDepth)
viableDays = computeV iableDaysFor(exam);
for day ∈ viableDays do
tempHour = getF irstPossibleHour(daysT imes, day);
while isHourInRestingInterval(tempHour) or (collidingExam =
checkForCollision(exam, day, tempHour)) ̸= null do

if collidingExam ̸= null then
daysT imes = updateDayT ime(daysT imes, collidingExam.getF inishingHour());

tempHour = getF irstPossibleHour(daysT imes, day);
end if

/* Order matters, the colliding exam could end on the resting interval. */
if isHourInRestingInterval(tempHour) then

daysT imes = updateHourForDay(daysT imes, getRestingT imeFinishingHour());
end if

tempHour = getF irstPossibleHour(daysT imes, day);
end while

if endsOnTime(day, exam, tempHour) then
scheduleExam(exam, day, tempHour);
updateDayT ime(daysT imes, exam.getF inishingHour());
break;

end if
end for

/* Repairing process (Algorithm 7) would be placed here. */

return exam.wasScheduled();
end function
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The repairing process can be seen in Algorithm 7. Note that as stated in Algorithm 6, the
following code belongs there, it is not a method by itself.

Algorithm 7 Repairing process.

if ¬exam.wasScheduled and repDepth < getMaxRepDepth() then
exCandidates = getSwappableExamsOfOver(exam, viableDays);
for examCandidate ∈ examCandidates do

tDate = examCandidate.getDate();
tHour = examCandidate.getHour();
exam.scheduleFor(day, tempHour);
examCandidate.unSchedule();
daysT imesCopy = cloneMap(daysT imes)
if scheduleExam(examCandidate, daysT imesCopy, repDepth+ 1) then

updateDaysT imes(daysT imes, daysT imesCopy);
break;

else
exam.unSchedule();
examCandidate.scheduleFor(tDate, tHour);

end if
end for

end if

5.2.2 Full view of the algorithm

The whole pseudocode of the schedule exam method is provided in Algorithm 8. This pseudocode
those shown in Algorithms 6 and 7, and it is used in Algorithm 5.

5.3 Genetic Algorithm

5.3.1 Introduction

The Greedy Algorithm needs a “seed” to start and come up with a candidate solution. Those
seeds are the chromosomes of the individuals handled by a Genetic Algorithm whose purpose is
to conduct a population of individuals to a promising area of the search space.

The chromosomes, that is the seeds, are formed by a sequence of numbers which are unique
identifiers of exams. That way the meaning of such sequence is the order in which the exams
must be scheduled by the Greedy Algorithm.

This Genetic Algorithm receives the following parameters:

• pm, the mutation probability.

• pc, the crossover probability.

• Popsize, the size of the population of individuals.

• Ngen, the number of generations to be done.

Although the values are fully configurable by the user, some tuning experiments have been done
over several scenarios and problem instances to provide a recommended configuration.
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Algorithm 8 Schedule exam method (complete).

function scheduleExam(exam, daysT imes, repDepth)
viableDays = computeV iableDaysFor(exam);
for day ∈ viableDays do
tempHour = getF irstPossibleHour(daysT imes, day);
while isHourInRestingInterval(tempHour) or (collidingExam =
checkForCollision(exam, day, tempHour)) ̸= null do

if collidingExam ̸= null then
daysT imes = updateDayT ime(daysT imes, collidingExam.getF inishingHour());

tempHour = getF irstPossibleHour(daysT imes, day);
end if

/* Order matters, the colliding exam could end on the resting interval. */
if isHourInRestingInterval(tempHour) then

daysT imes = updateHourForDay(daysT imes, getRestingT imeFinishingHour());
end if

tempHour = getF irstPossibleHour(daysT imes, day);
end while

if endsOnTime(day, exam, tempHour) then
exam.scheduleFor(day, tempHour);
updateDayT ime(daysT imes, exam.getF inishingHour());
break;

end if
end for

/* Repairing algorithm code */
if ¬exam.wasScheduled and repDepth < getMaxRepDepth() then

exCandidates = getSwappableExamsOfOver(exam, viableDays);
for examCandidate ∈ examCandidates do

tDate = examCandidate.getDate();
tHour = examCandidate.getHour();
exam.scheduleFor(day, tempHour);
examCandidate.unSchedule();
daysT imesCopy = cloneMap(daysT imes)
if scheduleExam(examCandidate, daysT imesCopy, repDepth+ 1) then

updateDaysT imes(daysT imes, daysT imesCopy);
break;

else
exam.unSchedule();
examCandidate.scheduleFor(tDate, tHour);

end if
end for

end if

return exam.wasScheduled();
end function
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5.3.2 General behaviour

The Genetic Algorithm generates the initial population randomly considering permutations of
the set of exams to be scheduled.

The stopping criteria for the algorithm is the number of generations Ngen. Until reached, the
algorithm will repeat the following process.

In this solution children are generated until reaching Popsize. Only one child is generated from
each pair of parents, so at least Popsize pairs will be selected by the Selection Operator to do the
crossover by means of the Crossover Operator. When selecting a pair of parents pc represents
the probability of such selected pair to proceed to crossover.

When the Crossover Operator generates the child, the Mutation Operator may perform a mu-
tation to the child depending on pm.

The Replacement Operator consists in the children substituting the parents in the new genera-
tion. However, elitism is applied.

To evaluate how good each individual is, the Greedy Algorithm is executed to get the candidate
solution. Once we have such solution the fitness function is computed giving as a result the
fitness of the individual.

5.3.3 Enconding

As stated before, each individual is a chromosome with a particular order of exam identifiers,
which states in which order must the Greedy Algorithm attempt to schedule them.

Initially the provided exam assignments list is considered. As stated before this is normally a
partial solution although it could be an empty one. The encoding function must transform what
can be seen in Equation 5.5, to one of the options presented in Equation 5.6.

[(e1, d1, hstarte1 , hende1 ), (e2,−,−,−), (e3,−,−,−)] (5.5)

Note that the first exam, e1, is already scheduled. Since it is already scheduled by input we can
change nothing about it, and so we must not encode it to the chromosomes. This is because it
would be irrelevant data for the Genetic Algorithm. Since we have two exams to be scheduled
{e2, e3}, in this case we could have two different chromosomes.The two possibilities can be seen
in Equation 5.6, assuming (ID)ei = i.

[2, 3], [3, 2] (5.6)

5.3.4 Evolutionary operators

Selection operator

The proposed selection operator selects an individual of the population with a roulette selection
based on the individuals fitness.

Due to how the algorithm is built it will select at least 2∗Popsize individuals. That is guaranteed
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because only one individual is generated from each pair of individuals by the chosen crossover
operator.

Crossover operator

The crossover operator used is the Order Crossover operator (OX). This a well-known crossover
operator which has given good results when working with chromosomes that represent permu-
tations.

In the proposed implementation two random positions of the chromosome are selected to execute
the operator logic, which was shown in Figure 3.2.

Mutation operator

The mutation operator implementation performs a value swap between two positions of the
chromosome. Suppose that we have the chromosome shown in Equation 5.7.

[1, 4, 7, 6, 5, 3, 2] (5.7)

One of the possible results after executing the mutation operator over chromosome in Equation
5.7, can be seen in Equation 5.8.

[1,3, 7, 6, 5,4, 2] (5.8)

5.3.5 Replacement operator

The replacement policy was explained in Section 5.3.2. As commented there, children substitute
their parents, but considering elitism.

This implementation even if it was the chosen one, was not the only one considered. The full
replacement of children was tested but it led to random results, the algorithm was not able to
converge towards a good area of the search space.

Other option was considered, which was joining the previous generation with the children of such
generation, sorting that list by fitness and choosing the best fitness individuals. This alternative
was pretty decent, but it set a too high selective pressure in the algorithm. The results were not
bad, but were not as good as with the chosen alternative.

5.3.6 Fitness function

Some quality factors can be derived from Section 4.3. The key factors that need to be considered
to evaluate the quality of the solutions are:

• Number of unscheduled exams: The aim of the algorithm is to find complete solutions,
that is, solutions with all the exam schedules completed. Since this cannot be always
achievable, solutions with less unscheduled exams must be strongly prioritized.
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• Resting interval free time: It is given by the problem definition that no exam can start
in the specified resting interval, however they can end in that interval. Since it is desirable
for such interval to be as free as possible, the occupation of that time will be penalized in
the fitness function.

• Number of unfulfilled soft user constraints: The fitness function must evaluate
as better solutions the ones with fewer unfulfilled user constraints. Each type of user
constraint will be measured separately, since a different weight may be assigned to each
type.

• Numerical complexity distance: As a new functionality, it was desired to separate
exams with a given complexity value. The fitness function must penalize that those exam
are close to each other.

These factors can be evaluated in several different ways, which implies that there are many
fitness functions that could be considered here.

In this case it has been decided to use a weighted linear function with those criteria as variables
and being the user able to provide in a configuration file the weights to assign to each of them,
that is the coefficients of the function. The fitness function can be seen in Equation 5.9.

An experimental study has been performed to get a recommended value for each of those co-
efficients, which are used in the default configuration. This configuration can be seen in Table
5.1.

Fitness = ωue ∗ numberOfUnscheduledExams

+ ωuc ∗ numberOfUnfulfilledUserSoftConstraints

+ ωri ∗ numberOfOccupiedMinutesInRestingInterval

+ ωnc ∗ computedNumericalComplexityFunction

(5.9)

Coefficient Value

ωue 100000
ωuc 140
ωri 3.5
ωnc 2.5

Table 5.1: Default configuration of weights.

Normally Genetic Algorithms tend to maximize the fitness, but in this case it is going to be
minimized. This is because the presented function consists in the addition of penalization values
to the solution. Therefore, the less penalizations the individual has the better it is.

Single-objective-optimization

As can be seen in the presented function the project is considered a single-objective optimization.
It would be possible to approach the Pareto Front with a multi-objective algorithm (5), but this
would introduce complexity for user maintenance and extension.

Furthermore, as commented before, other Final Degree Projects (4) in the domain of the School
of Computer Science Engineering have successfully achieved good solution by using single-
objective optimization algorithms. Because of that, single-objective optimization was considered
the best approach for the problem.
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Numerical complexity function

Even though most of the factors commented in Section 5.3.6 are self-explanatory, numerical
complexity is not. What is wanted to be achieved is that the fitness function penalize exams
with the same complexity value for being close in the calendar.

The process followed to compute the value of this function is simple. First, all the exams are
grouped according to their numerical complexity. This grouping is done because only exams with
a complexity number A affect to exams with the same complexity number A. If the numerical
complexity value is not provided for an exam, it will be treated as 0, which means that this
functionality will be disabled for that exam.

After that each group is processed, meaning that every pair of exams within a group is evaluated
to add its penalization value depending on the dates of that exam pair. The process until now
can be seen in Algorithm 9.

Algorithm 9 Numerical Complexity Function. General iteration process.

function numericalComplexity(exams)
accumulator = 0;
examsGroupedByComplexity = groupExamsByNumericalComplexity(exams);
for (numCompi, examsnumCompi) ∈ examsGroupedByComplexity do
pairs = getPairs(examsnumCompi);
for pair ∈ pairs do

accumulator = accumulatePenalization(numCompi, pair);
end for

end for
return accumulator;

end function

Finally, accumulatePenalization checks if both exams of the pair are scheduled. If so, it counts
the distance in days between both exams and uses the numerical complexity to compute some-
thing similar to the function shown in Equation 5.10. This function establishes more weight the
higher the complexity and the lower the distance. However, this function is not defined when
both exams are scheduled for the same day, which is the worst scenario possible and the one
that should be highly penalized. Because of this, the piecewise function shown in Equation 5.11
will be considered to cover that particular scenario.

f(numCompi, distanceInDays) = numCompi/distanceInDays (5.10)

f(a, b) =

{
a/b if b > 0

a2 if b = 0
(5.11)

With that, accumulatePenalization can be seen in Algorithm 10.
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Algorithm 10 Numerical Complexity Function. accumulatePenalization method.

function accumulatePenalization(c, examPair)
penalization = 0;
if isScheduledPair(examPair) then

distanceInDays = computeDistanceInDays(examPair);
if distanceInDays == 0 then

penalization = nc2;
else

penalization = nc/distanceInDays;
end if

end if
return penalization;



Chapter 6

Project scheduling and budget

6.1 Temporal schedule

This section shows the followed schedule. The project was started on September and it ended
on April. In total, it took 720 hours of work.

The project was divided in ten phases, which are listed below. In addition to that, Figures 6.1,
6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8 show the project schedule by means of Gantt Diagrams.

1 Project planification (2021-08-21 / 2021-09-02): In this phase the schedule of the
project, the identification of the phases and estimation of times is done.

1.1 First meeting with the Tutor (2021-08-21 / 2021-09-02)

1.2 Definition of the project phases (2021-08-30 / 2021-08-31)

1.3 Design of the documentation (2021-09-01 / 2021-08-02)

2 Initial research (2021-09-03 / 2021-09-17): Initially some knowledge about the topics
linked to the project was necessary. This phase was aimed to obtain necessary knowledge
before talking to the client.

2.1 Gonzalo De La Cruz project review (2021-09-03 / 2021-09-06)

2.2 Intelligent Systems Subject Metaheuristic materials review (2021-09-07 / 2021-09-08)

2.3 Literature review (2021-09-09 / 2021-09-17)

2.3.1 Metaheuristics (2021-09-09 / 2021-09-09)

2.3.2 Evolutionary algorithms and Genetic Algorithms (2021-09-10 / 2021-09-13)

2.3.3 Scheduling and Timetabling problems (2021-09-14 / 2021-09-15)

2.3.4 University Exam Timetabling problems (2021-09-16 / 2021-09-17)

3 Problem analysis (2021-09-21 / 2021-10-08): A meeting with the client and the
tutor is held. The problem is analysed, and the scope of the project is fixed.

3.1 Requirements getting (2021-09-20 / 2021-09-22)

3.1.1 Meeting with the Tutor and the client (2021-09-20 / 2021-09-20)

3.1.2 Analysis and clarification of the taken notes during the meeting (2021-09-21 /
2021-09-22)

3.2 Scope definition (2021-09-23 / 2021-09-23)
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3.2.1 Meeting with the Tutor to talk about the scope of the system (2021-09-23 /
2021-09-23)

3.2.2 Analysis of the meeting conclusions (2021-09-23 / 2021-09-23)

3.3 System Requirements identification (2021-09-24 / 2021-09-28)

4 Proposed Solution (2021-09-29 / 2021-10-12): In this phase the problem is formal-
ized and a theoretical resolution is proposed.

4.1 Problem formalization (2021-09-29 / 2021-09-30)

4.2 Genetic Algorithm design (2021-10-01 / 2021-10-01)

4.3 Greedy Algorithm design (2021-10-04 / 2021-10-06)

4.4 Repairing algorithm design (2021-10-07 / 2021-10-08)

4.5 Fitness function design (2021-10-11 / 2021-10-11)

4.6 Numerical Complexity function design (2021-10-12 / 2021-10-12)

5 Solution implementation (2021-10-13 / 2021-11-11): The theoretical problem so-
lution designed in the previous phase is now put into a prototype application.

5.1 General system architecture definition (2021-10-13 / 2021-11-14)

5.2 Domain subsystem (2021-10-14 / 2021-11-10): All the domain logic is done in
the phase.

5.2.1 Class design (2021-10-15 / 2021-11-11)

5.2.1.1 General structure (2021-10-15 / 2021-10-15)

5.2.1.2 Constraints hierarchy (2021-10-18 / 2021-10-19)

5.2.1.3 Parser structure (2021-10-20 / 2021-10-22)

5.2.2 Implementation (2021-10-25 / 2021-11-08)

5.2.2.1 Exam Parser (2021-10-28 / 2021-11-02)

5.2.2.2 Constraint Parser (2021-11-03 / 2021-11-08)

5.2.3 Code documentation (2021-11-09 / 2021-11-11)

5.3 Configuration subsystem (2021-11-12 / 2021-11-24): All the configuration op-
tions that the algorithm will have are identified, distributed among the configuration
files, and the system to parse them is implemented.

5.3.1 Identification of all configuration options (2021-10-12 / 2021-11-24)

5.3.2 Class design (2021-11-12 / 2021-11-18)

5.3.3 Implementation (2021-11-18 / 2021-11-22)

5.3.4 Code documentation (2021-11-22 / 2021-11-24)

5.4 Genetic subsystem (2021-11-24 / 2021-12-08): During this phase the genetic
algorithm structure previously defined theoretically is transformed into an actual
implementation.

5.4.1 Class design (2021-11-24 / 2021-13-01)

5.4.1.1 Operators (2021-11-24 / 2021-11-26)

5.4.1.2 Unfulfilled constraints counter (2021-11-26 / 2021-11-30)

5.4.1.3 Fitness function (2021-11-30 / 2021-12-01)

5.4.2 Implementation (2021-12-01 / 2021-12-06)

5.4.3 Code documentation (2021-12-07 / 2021-12-08)

5.5 Greedy subsystem (2021-12-08 / 2021-12-14): During this phase the greedy
algorithm structure previously defined theoretically is transformed into an actual
implementation.
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5.5.1 Implementation (2021-12-08 / 2021-12-13)

5.5.2 Code documentation (2021-12-14 / 2021-12-14)

5.6 Logger subsystem (2021-12-15 / 2021-12-16): In this phase the files to be used
to log, their structure and contents were designed.

5.6.1 General design (2021-12-15 / 2021-12-15)

5.6.2 Implementation (2021-12-08 / 2021-12-16)

5.6.3 Code documentation (2021-12-16 / 2021-12-16)

5.7 Console subsystem (2021-12-27 / 2021-12-28): During this phase the simple
CLI (Console Line Interface) of the prototype is designed and implemented. Initially
this phase was linked to the previous one, but due to the need to meet with the client,
it was postponed after that.

5.7.1 User prompts implementation (2021-12-27 / 2021-12-27)

5.7.2 Error message implementation (2021-12-28 / 2021-12-28)

6 Client Alfa review (2021-12-17 / 2021-12-24): A meeting is held with the client to
show the actual state of the prototype and ask for feedback. This phase also includes the
necessary changes that needed to be performed.

6.1 Meeting with the client to review the prototype (2021-12-17 / 2021-12-17)

6.2 Identification of new changes to be done due to the meeting (2021-12-17 / 2021-12-17)

6.3 Rounds input change (2021-12-20 / 2021-12-22): This task was added due to the
meeting with the client.

6.4 New input options in data file (2021-12-23 / 2021-12-24): This task was added due
to the meeting with the client.

7 Real-shape instances generator (2021-12-28 / 2022-01-05): A tool to generate
instances to test the prototype is designed and implemented.

7.1 Analysis of previous real-life instances (2021-12-29 / 2021-12-30)

7.2 Design of the tool (2021-12-21 / 2022-01-04)

7.3 Implementation of the tool (2022-01-05 / 2022-01-06)

7.4 Manual testing (2022-01-07 / 2022-01-07)

8 System tests (2022-01-06 / 2022-01-12): The tests that can be found in chapter 10
are designed and executed.

8.1 Test conditions study (2022-01-10 / 2022-01-10)

8.2 Identification of interface paths (2022-01-10 / 2022-01-10)

8.3 Tests design, and test cases generation (2022-01-11 / 2022-01-12)

8.4 Tests cases execution and bug fixes (2022-01-13 / 2022-01-14)

9 Experimental study (2022-01-17 / 2022-02-08): The prototype configurations are
tuned, and experiments are performed over different expected scenarios to prove the ef-
fectiveness of the tool. This phase is composed of four different sub-phases which are the
following:

9.1 Instances Scenarios (2022-01-17 / 2022-01-19): The scenarios to be used in
the study are designed, and then generated by means of the implemented tool.

9.2 Genetic Algorithm parameter tuning Scenarios (2022-01-20 / 2022-01-28):
Several combinations of the genetic parameters are tested. The best configuration is
set as the default one in the algorithm.
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9.3 Fitness Function coefficients (2022-01-28 / 2022-02-04): Several combinations
of coefficients are tested for the fitness function. The best configuration is set as the
default one in the algorithm.

9.4 Comparative study (2022-02-04 / 2022-02-08): The effectiveness of the tool
is tested over the generated scenarios. The results are kept to be shown in the final
documentation.

10 Final documentation (2022-02-08 / 2022-04-21): This phase groups all the tasks
that needed to produce the final documentation of the project. A LaTeX template was
provided and adapted to this project.

10.1 LaTeX Project Structure (2022-02-08 / 2022-02-15)

10.1.1 Base template Study (2022-02-08 / 2022-02-09)

10.1.2 Title page design (2022-02-09 / 2022-02-11)

10.1.3 Adapt template structure (2022-02-11 / 2022-02-15)

10.2 Chapters writing (2022-02-15 / 2022-04-21)

10.2.1 Project memory justification (2022-02-15 / 2022-02-16)

10.2.2 Introduction (2022-02-16 / 2022-02-18)

10.2.3 Theoretical explanation (2022-02-18 / 2022-02-28)

10.2.3.1 General alternatives to solve University Exam Scheduling problems (2022-
02-18 / 2022-02-21)

10.2.3.2 Metaheuristics (2022-02-21 / 2022-02-23)

10.2.3.3 Evolutionary algorithms (2022-02-23 / 2022-02-24)

10.2.3.4 Genetic Algorithms (2022-02-24 / 2022-02-28)

10.2.4 Problem definition (2022-02-28 / 2022-03-04)

10.2.4.1 General motivation (2022-02-28 / 2022-02-28)

10.2.4.2 Verbose description (2022-02-28 / 2022-02-03)

10.2.4.3 Constraints identification and example (2022-03-03 / 2022-03-04)

10.2.5 Problem proposed solution (2022-03-07 / 2022-03-17)

10.2.5.1 Formalization of the search space (2022-03-07 / 2022-03-07)

10.2.5.2 Formalization of the state expansion (2022-03-07 / 2022-03-07)

10.2.5.3 Greedy algorithm (2022-03-08 / 2022-03-14)

10.2.5.4 Genetic algorithm (2022-03-15 / 2022-03-17)

10.2.6 Scheduling and Budget (2022-03-18 / 2022-03-22)

10.2.6.1 Scheduling (2022-03-18 / 2022-03-18)

10.2.6.2 Budget (2022-03-21 / 2022-03-22)

10.2.7 System analysis (2022-03-23 / 2022-03-29)

10.2.7.1 Scope of the system (2022-03-23 / 2022-03-23)

10.2.7.2 System actors (2022-03-23 / 2022-03-23)

10.2.7.3 Requirements table (2022-03-24 / 2022-03-25)

10.2.7.4 Subsystems identification (2022-03-28 / 2022-03-28)

10.2.7.5 Preliminary class diagram (2022-03-28 / 2022-03-29)

10.2.7.6 Subsystems description (2022-03-29 / 2022-03-29)

10.2.8 System design (2022-03-30 / 2022-04-07)

10.2.8.1 Package diagram (2022-03-30 / 2022-03-30)

10.2.8.2 Components diagram (2022-03-31 / 2022-03-31)

10.2.8.3 General Class diagram (2022-04-01 / 2022-04-01)

10.2.8.4 Genetic Algorithm Class diagram (2022-04-04 / 2022-04-04)

10.2.8.5 Domain Class diagram (2022-04-04 / 2022-04-04)
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10.2.8.6 Constraints Class diagram (2022-04-05 / 2022-04-05)

10.2.8.7 Fitness Function and Constraints Counter Class diagram (2022-04-06 / 2022-
04-06)

10.2.8.8 Logger Class diagram (2022-04-07 / 2022-04-07)

10.2.8.9 User Interface design description (2022-04-07 / 2022-04-07)

10.2.9 System implementation (2022-04-08 / 2022-04-08)

10.2.9.1 Used tools description (2022-04-08 / 2022-04-08)

10.2.9.2 Difficulties found in the project (2022-04-08 / 2022-04-08)

10.2.10 System tests (2022-04-11 / 2022-04-13)

10.2.10.1 Genetic design and explanation (2022-04-11 / 2022-04-11)

10.2.10.2 Test cases details (2022-04-12 / 2022-04-12)

10.2.10.3 Auxiliary figures (2022-04-13 / 2022-04-13)

10.2.11 Experimental study (2022-04-14 / 2022-04-18)

10.2.11.1 Genetic tuning (2022-04-14 / 2022-04-14)

10.2.11.2 Fitness coefficients tuning (2022-04-14 / 2022-04-15)

10.2.11.3 Comparative study (2022-04-15 / 2022-04-18)

10.2.12 User manual (2022-04-18 / 2022-04-21)

10.2.12.1 Installation manual (2022-04-18 / 2022-04-28)

10.2.12.2 Configuration files (2022-04-19 / 2022-04-20)

10.2.12.3 Input data file (2022-04-20 / 2022-04-20)

10.2.12.4 Output files (2022-04-21 / 2022-04-21)

10.2.13 Conclusions (2022-04-21 / 2022-04-21)

11 Project Closure (2022-04-21 / 2022-04-21)

11.1 Final Documentation Review (2022-04-22 / 2022-04-26)

11.2 Final delivery (2022-04-27 / 2022-04-27)

The phases tasks breakdown are the following:
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BUDGET PROJECT SCHEDULING AND BUDGET

6.2 Budget

In this section the client budget is presented based on the planning previously exposed. As can
be seen in Figure 6.9 the project has been divided in eight items.

For further reference on how this client budget was done check Chapter 13.

Figure 6.9: Client Budget
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Chapter 7

Analysis

In this chapter the prototype to be built will be analyzed and modelled. The scope of the
system will be initially provided, followed by a detailed view of the subsystems by means of the
requirements table, as well as use cases and scenarios.

7.1 System Specification

7.1.1 Scope of the system

The functional goal of the project is to create a prototype implementing the algorithm detailed
in Chapter 5, which is our proposed solution for solving the exam scheduling problem of the
School of Computer Science.

The prototype must be a command line application which receives the inputs by means of files,
being such the necessary input data of the problem along with some other configurations for the
algorithm.

Once that information is provided, the system will start computing the best solution until
completing a certain number of iterations specified by the user. For the sake of feedback, during
that computing process the algorithm must be informing the user about the actual best and
average fitness, the expected time to end, and the completion percentage.

After finishing the computation, the system must report an specified number of different solu-
tions, being them the best ones. That output will be done in the same format as it is in the
input, so that it is possible for the user to always work with the same file format.

7.2 System Requirements

7.2.1 Requirements analysis

In this section the requirements of the system will be detailed. There will be a differentiation
between functional and non-functional requirements. Each of those categories will have groups
of requisites for the different functionalities of the prototype. For the sake of clarity, the sub-
requisites will be tabbed with respect to their parents.
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Now the functional requirements will be listed. Their identifiers meet the following legend:

• IDR: Input Data Requirements.

• ICR: Input Configuration Requirements.

• IEVR: Input Error Validation Requirements.

• ER: Execution Requirements.

• OFR: Output Files Requirements.

IDR1 The user must provide the exams to be handled by the algorithm.

IDR1.1 The user must specify the exams to be scheduled providing:

IDR1.1.1 Course.

IDR1.1.2 Semester.

IDR1.1.3 Code.

IDR1.1.4 Acronym.

IDR1.1.5 Subject.

IDR1.1.6 Order.

IDR1.1.7 Content type.

IDR1.1.8 Modality.

IDR1.1.9 Number of students.

IDR1.1.10 Duration.

IDR1.1.11 Unique numeric identifier.

IDR1.2 The user can specify already scheduled exams providing everything stated in
IDR1.1 and also:

IDR1.2.1 Date of the exam.

IDR1.2.2 Day of the week of the exam.

IDR1.2.3 Hour to start the exam.

IDR1.2.4 Hour to end the exam.

IDR2 The user may provide to any exam stated on IDR1 any of the following extra data:

IDR2.1 Extra time.

IDR2.2 Numerical complexity.

IDR2.3 Round identifier.

IDR3 The user must be able to input the constraints to the system.

IDR3.1 The user must be able to specify user constraints.

IDR3.1.1 The user must be able to specify Day Banned Constraints (DB) providing:

IDR3.1.1.1 The exam id affected by the constraint.

IDR3.1.1.2 The day in which the exam cannot be placed.

IDR3.1.2 The user must be able to specify Time Displacement Constraints (TD) pro-
viding:

IDR3.1.2.1 The exam id of the first exam.

IDR3.1.2.2 The exam id of the second exam.

IDR3.1.2.3 The distance in calendar day positions that the second exam must
have with respect to the first one.

IDR3.1.3 The user must be able to specify Order Exam Constraints (OE) providing:
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IDR3.1.3.1 The exam id of the first exam.

IDR3.1.3.2 The exam id of the second exam.

IDR3.1.4 The user must be able to specify Same Day Constraints (SD) providing two
exam ids.

IDR3.1.5 The user must be able to specify Different Day Constraints (DD) providing
two exam ids.

IDR3.1.6 The user must be able to specify Day Interval Constraints (DI) providing:

IDR3.1.6.1 The exam id of the exam affected by the constraint.

IDR3.1.6.2 The time interval, bounded by two dates, in which the exam can be
placed

IDR3.2 All user constraints can be marked as “hard”.

IDR4 The user must be able to specify the calendar of days in which exams can be placed.

IDR4.1 Each day must have assigned an interval in which exams can be placed.

IDR5 All the input data of IDR1.1, IDR1.2, IDR2, 4.3.3 and IDR4 must be specified in
a single Excel file.

ICR1 The system must allow the user to configure the genetic algorithm parameters.

ICR1.1 Size of the population.

ICR1.2 Number of generations to be performed.

ICR1.3 Mutation probability.

ICR1.4 Crossover probability.

ICR1.5 Repairing algorithm recursive tree of changes depth.

ICR1.6 Number of schedules to be reported.

ICR1.7 Number of times that the algorithm must be run.

ICR2 The system must allow the user to set scheduling time configurations.

ICR2.1 The user must be able to set the default extra time for the exams.

ICR2.2 The user must be able to enable or disable the default extra time functionality.

ICR2.2.1 If enabled, then ICR2.1 must be set as extra time to all exams declared on
IDR1 which do not have specified an extra time by means of IDR2.

ICR2.3 The user must be able to set the resting interval.

ICR2.4 The user must be able to specify a modality value, by which the application will
identify if the exam is a delivery..

ICR2.5 The user must be able to disable exam collisions for exams which are identified as
deliveries by means of ICR2.4.

ICR2.5.1 If disabled exam collisions for an exam, that exam can be placed at the same
time as other exams.

ICR3 The user must be able to change the weights of the fitness function.

ICR3.1 The user must be able to change the weight of The user constraints individually.

ICR3.2 The user must be able to change the weight of the resting time penalization con-
straint.

ICR3.3 The user must be able to change the weight of the numerical complexity penaliza-
tion.

ICR3.4 The user must be able to change the weight of the number of unclassified exams.
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ICR4 Any error detected during parsing must be notified to the user.

ICR5 An error report will be generated when the parsing is complete.

ICR5.1 The report must inform of input parsing troubleshooting.

ICR5.1.1 Exams skipped due to bad parsing.

ICR5.1.2 Constraints skipped due to bad parsing.

ICR5.1.3 Calendar days skipped due to bad parsing.

ICR5.1.4 Configurations options

ICR5.2 If not empty, the user will be notified.

ICR5.2.1 The execution of the application will be stopped.

ICR5.2.2 The user will be asked if execution must proceed.

ICR5.2.2.1 On a yes, the application will proceed.

ICR5.2.2.2 On a no, the application will end.

IEVR1 Any error parsing any piece of data on IDRx will imply to skip that piece data.

IEVR2 Any error parsing any piece of data on ICRx will imply to assign it to a default value
of CONF DEFAULT VALUE.

IEVR3 An error report will be generated when the input parsing is complete.

IEVR3.1 The report must inform of input parsing troubleshooting.

IEVR3.1.1 Exams skipped due to bad parsing.

IEVR3.1.2 Constraints skipped due to bad parsing.

IEVR3.1.3 Calendar days skipped due to bad parsing.

IEVR3.1.4 Configurations options set to default value.

IEVR3.2 If not empty, the user will be notified.

IEVR3.2.1 The application execution will be stopped.

IEVR3.2.2 The user will be asked if execution must proceed.

IEVR3.2.2.1 On a yes, the application will proceed.

IEVR3.2.2.2 On a no, the application will end.

IEVR3.3 If the input file formats are not the ones specified in Chapter 12, the application
execution will be aborted.

IEVR3.3.1 User will be notified in the console of the error.

ER1 During the execution the system must inform about the current status in each generation.

ER1.1 The best fitness must be shown.

ER1.2 The average fitness must be shown.

ER1.3 The current generation.

ER1.4 The maximum number of generations.

ER1.5 The percentage of completion.

ER1.6 The time that the algorithm has been being executed.

ER1.7 The expected time in which the algorithm will end.

OFR1 When the algorithm ends its execution, a maximum number of different schedules (spec-
ified on ICR1.6) will be generated.
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OFR2 The output schedule files must be in the same format as the input file IDR5.

OFR2.1 It must be possible to use an output file directly as an input file.

OFR3 The exams which were initially unscheduled and were successfully scheduled by the
algorithm must have specified data on IDR1.2.

OFR4 The output schedule files must detail which constraints have been fulfilled.

Now non-functional requirements will be listed. Their identifiers meet the following legend:

• TR: Technological Requirements.

• PR: Performance Requirements.

TR1 The system must be a command-line application.

TR2 The system must be configured by means of files.

TR3 The system must not require more than PARAM NUMBER LIMIT arguments on
the running script.

PR1 The algorithm must compute a solution in less than EXEC TIME LIMIT.

Since there was a need to use variables on the requirements, here are the assigned values for
them:

Variable name Value

CONF DEFAULT VALUE 0

PARAM NUMBER LIMIT 6

EXEC TIME LIMIT 6 hours

Table 7.1: Requirements variables

7.2.2 System actors

Due to the simplicity of the system, it is not connected to any other system. Therefore, there
is only one user, which is the person currently in charge of making the exam schedule in the
School of Computer Science.

After the system report a group of solutions as a result, it will be that user the one that will
select the final schedule to be used.

7.3 Subsystems Identification and Description

In this section the subsystems that compose the prototype will be described.
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• Domain: This subsystem holds all the domain logic. It will be in charge of handling the
exam instances, of providing logic to check for collisions, etc. One of the main functional-
ities will be parsing the input files to domain instances that can be handled by the other
subsystems.

• Genetic Algorithm: This subsystem covers all the Genetic Algorithm functionality,
including the operators, previously commented in Chapter 5. It is composed of other
subsystems:

– Encoder Subsystem: This subsystem is the one that encodes the candidate so-
lutions to chromosomes, and so creates the individuals to be used by the Genetic
Algorithm.

– Selection Operators: This subsystem contains all the selection operators that were
evaluated in the algorithm.

– Crossover Operators: This subsystem contains all the crossover operators that
were evaluated in the algorithm.

– Mutation Operators: This subsystem contains all the mutation operators that
were evaluated in the algorithm.

– Replacement Operators: This subsystem contains all the replacement operators
that were evaluated in the algorithm.

– Fitness Subsystem: This subsystem contains all the fitness functions that are used
or were tested in the Genetic Algorithm.

• Greedy Algorithm: This subsystem contains the logic of the Greedy Algorithm.

• Logger: This subsystem generates the logging files both at the beginning and end of the
algorithm’s execution.

There is also a special subsystem which was used to build the testing environment for the
algorithm:

• Test Samples Generator: This is an extra subsystem which was used to generate test
instances for the problem. It depends on the domain subsystem to do so.

7.4 Preliminary Classes Identification

This section is devoted to expose and explain the identified classes during the analysis phase.
They intend to model an approximate idea of how the final system will look like.

In this section a diagram will be shown and the entities appearing in such a diagram will be
described.

7.4.1 Preliminary class diagram

A diagram modelling the relations amongst the preliminary classes can be seen in Figure 7.1.

In such diagram, the classes are grouped in the briefly described subsystems in Section 7.3.
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7.4.2 Classes description

In this section the core classes of each subsystem are described in more detail. This is an initial
analysis, and so, what is detailed here, even if similar to the final design, it is not exactly equal.

Domain Subsystem

ExamSchedule

Description

This is the core class of the Domain subsystem. It is the one that holds the exam
instances, the constraints, and logic to check for collisions.

Responsibilities

This class will act as a façade for all the domain subsystem. It will be in charge of
holding the current list of exams, as well as the constraints. It will provide logic to
schedule and unschedule exams, and check for collisions.

Proposed attributes

• Exams: The list of exams that were parsed from the input files, and over
which the scheduled will be made.

• Constraints: The list of soft constraints that need to be considered.

Proposed methods

• ScheduleExam: Schedules a given exam on a given date and time.

• UnscheduleExam: Unschedules a given exam.

• GetSwappableExamsOver: Takes an exam and a list of days in which it
can be placed and returns all the exams that have a time gap assigned in
which the provided exam can fit. This method will be mainly used by the
repair algorithm of the Genetic Algorithm.

• VerifyConstraints: Checks the fulfillment of the constraints.
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Parser

Description

This will not be a concrete class itself. Particular parsers will be used for each input
(exams, constraints, days). This “class” is a representation of the functionalities of
all of them.

Responsibilities

Parsers will be in charge of both translating the input into domain objects that
can be handled by the algorithm and to translate these objects to the output files
maintaining the format of the input files.

Proposed attributes

-

Proposed methods

There will be many specific methods since we will be parsing an Excel file, however
the core functionalities are the following:

• ParseExams: Parses the list of exams from the Excel file.

• ParseConstraints: Parses the list of user constraints from the Excel file.

• ParseDates: Parses the list of dates from the Excel file.

• ParseIndividualToExcel: Takes an individual of the Genetic Algorithm
population, transforms it into a solution by means of the Greedy Algorithm,
and the writes the whole schedule (exams, constraints and calendar) into Excel
format.

Greedy Algorithm Subsystem

Greedy Algorithm

Description

This is in charge of guiding the search process towards valid solutions according to
the chromosome sequence in the individuals handled by the Genetic Algorithm.

Responsibilities

This class must schedule the exams taking as seed the chromosome sequence of the
individuals handled by the Genetic Algorithm. It must also compute some quality
factors, such as the number of unscheduled exams, for the fitness function to evaluate
them.

Proposed attributes

• LimitDepth: The Greedy Algorithm will have implemented a repair algo-
rithm to increase its efficiency. This algorithm will come into place when an
exam cannot be placed due to hard constraints or time issues. What it will
try to achieve is to swap this exam with another placed one that would still be
able to be placed again in other place. This attribute would limit the depth
of the tree of swaps of such algorithm.

Proposed methods

• Decode: This method will take as seed the chromosome of the individuals of
the Genetic Algorithm and reach deterministically a candidate solution of the
problem.
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Genetic Algorithm Subsystem

Genetic Algorithm

Description

This class is in charge of guiding the search to a promising area of the search space
using a Genetic Algorithm. In this case, of getting fitter individuals along the
generations to be used as seeds by the Greedy Algorithm.

Responsibilities

This class will hold the current population and make it evolve by means of evolu-
tionary algorithm techniques. It will call all the evolutionary operators and also
inform the logger about how the fitness is changing along the iterations.

Proposed attributes

• Population: List of individuals that the Genetic Algorithm is trying to evolve.

• SelectionOperator: Selection operator to be used by the algorithm.

• MutationOperator: Mutation operator to be used by the algorithm.

• CrossoverOperator: Crossover operator to be used by the algorithm.

• ReplacementOperator: Replacement operator to be used by the algorithm.

• Logger: Link to the logger subsystem which needs to be informed about the
status evolution of the population.

• Encoder: Encoder to be used during the execution of the algorithm.

• GreedyAlgorithm: Genetic Algorithm that will process the individuals to
reach deterministically candidate solutions of the problem. It can be consid-
ered in this context the decoder of the Genetic Algorithm.

• SelectionOperator: Selection operator to be used by the algorithm.

• FitnessFunction: Fitness function selected, that will be used to compute the
fitness value of the individuals.

Proposed methods

• GeneticAlgorithm: This methods hold the whole evolution process and will
be parameterized with the input configurations.
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Selection Operator Subsystem

Selection Operator

Description

This operator is in charge of selecting an individual among the ones in the population
received as parameter. To do so, the fitness function is taken into account.

Responsibilities

Perform the selection of individuals from the population.

Proposed attributes

-

Proposed methods

• Selection(population, fitnessFunction): This method selects an individ-
ual from the population.

Mutation Operator Subsystem

Mutation Operator

Description

This operator is in charge of performing mutations over new generated individuals.

Responsibilities

Perform the mutation of new created individuals.

Proposed attributes

-

Proposed methods

• Mutation(Individual): Creates a mutated version of the provided individ-
ual.
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Crossover Operator Subsystem

Crossover Operator

Description

This operator is in charge of generating a new individual giving two that will act as
its parents.

Responsibilities

Perform the crossover over two given individuals.

Proposed attributes

-

Proposed methods

• Crossover(Individual1, Individual2): Creates a new individual by com-
bining the chromosomes of the individuals provided as parents.

Replacement Operator Subsystem

Replacement Operator

Description

This operator is in charge of selecting the final set of individuals that will be part of
the population of a new generation. It will do so taking into account the previous
generations as well as the generated children by the crossover operator.

Responsibilities

Select the final set of individuals that will be part of the population of a new
generation.

Proposed attributes

-

Proposed methods

• Replacement(PrevGeneration, Childs, FitnessFunction): Selects the
final population of individuals for a new generation.
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Encoder Subsystem

Encoder

Description

Encodes a given list of exams into an individual that the Genetic Algorithm can
use.

Responsibilities

Generate an individual from a provided candidate solution.

Proposed attributes

-

Proposed methods

• EncodeListOfExams(ExamSchedule): This method takes the list of ex-
ams in the ExamSchedule class and generates an individual. It is needed to
use the ExamSchedule as an intermediary because there are already placed
exams that must not be rescheduled by the algorithm and so, that must not
appear encoded in the individuals of the Genetic Algorithm.

Fitness function Subsystem

Fitness Function

Description

The Fitness function will compute the fitness value for each individual in the Genetic
Algorithm population.

Responsibilities

Compute the fitness function for each individual in the Genetic Algorithm popula-
tion.

Proposed attributes

• GreedyAlgorithm: Genetic Algorithm instance that will translate a given
individual from the Genetic Algorithm population into a candidate solution
that can be evaluated by the fitness function.

Proposed methods

• Apply(Individual): Computes the fitness value associated to a given indi-
vidual.
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Logger Subsystem

Logger

Description

This will log all fitness evolution related data. It will also compute some statistics
at the end of the execution of the algorithm. It is mainly used for testing, tuning
and statistic purposes. Furthermore it will also log the errors that could happen
during the input files parsing.

Responsibilities

Track the fitness evolution and compute statistics about the provided solution at
the end of the algorithm’s execution. Generate the error logs to inform the user
about strange inputs.

Proposed attributes

-

Proposed methods

• AddError(String error): Adds an error to be displayed to the user in the
application stopping points. (See Sections 8.3 and 10.1.2)

• writeFitnessGraphData: Writes a file with the necessary data to plot a
fitness graph using iterations or lapsed time.

• writeStatisticsToFile: Writes a file with some quality factors about the
provided solution such as the number of unscheduled exams, the number of
unfulfilled constraints, etc.

7.5 Use Cases and Scenarios Analysis

The prototype is a straightforward application so there is only one use case to be commented.
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Prototype execution

Preconditions To execute the algorithms, the following preconditions must be met:

• An Excel file must be provided in the specified format. It will have at
least three tabs in the right format.

• A set of configuration files with no missing files or properties inside
them must be provided.

Postconditions Upon the termination of the execution the system will have not modifierd
any of the input files. Instead it will have generated the following files:

• An number of Excel schedule files in the same format as the one pro-
vided, but with the assignments done by the algorithm. They will
contain different schedules.

• A file containing the errors detected during the parsing of the input
files.

• A log of file parsing process.

Additionally, depending on the configuration, some extra files can be gener-
ated, being such: A fitness graph file, with the necessary data to plot a
graph with the fitness evolution during the execution; and a statistics file,
that will contain some quality values such as the number of unplaced exams,
among others.

Actors As previously stated in Section 7.2.2, there is only one user, and so one
actor. This is expected to be the person currently in charge of making the
exam schedule in the School of Computer Science. This actor will execute
the algorithm and evaluate the results to state the final schedule.

Description The user launches the prototype by providing a “master file” in which the
filepath to all the necessary files for the execution is specified. This is file
is referred as filesFile in the project. Those files are well-parsed and the
algorithm ends its execution providing the set of output schedules.

Secondary Sce-
narios

The following scenarios are considered by the algorithm, and in each of them
it will provide an error message and specify the origin of the error, and, if
possible what that error may be:

• An exam has a mandatory field omitted.

• A constraint has a mandatory field omitted.

• A configuration has an invalid value.

Exceptions Execution will be aborted if: the input Excel file does not exist, a configu-
ration file is missing, a configuration value is missing or there are no exams
to schedule.

7.6 User Interface Analysis

The system provides a simple CLI (Command Line Interface) to be used. As the user interaction
is very limited, the main interaction of the user with the system will be at the moment of its
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initialization.

It will be at that moment when the user must provide a path to the configuration files to run
the algorithm.

During the parsing of the configuration and input files, the user will be notified in case errors
are detected during the parsing. User prompt will be required to proceed with the execution or
end it prematurely. This will happen twice: at the end of the exam parsing, and at the end of
the constraint parsing.

Once the algorithm starts computing the solution, the user system will be constantly updating
the status of the population as well as the progress until completion of the execution.

Some output files with data of the execution will be generated at the end in the output directory.
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Chapter 8

System Design

In this chapter the prototype will be described. Its architecture, classes hierarchies, user inter-
faces and some design factors will be detailed along the chapter.

8.1 System Architecture

8.1.1 Package diagram

Due to the large size of the system, the package diagram that can be seen in Figure 8.1 is
provided with a description of each packages functionalities.

ExamScheduler

This package contains the main applications that coordinate the components to obtain the
desired functionality.

It contains the main class of the prototype, as well as other main classes used during the
experimental study.

Domain

This package contains all the entities of the problem: Exams, Constraints, TimeIntervals, etc.
It provides the tools to model the problem properly.

Additionally, it provides the input/output mechanisms to obtain such entities from the input
files, and write them to the output files.

Logger

The Logger package has two main functionalities. The first one is to provide as output status
data of the algorithm such as quality factors of the solutions or the data to build the fitness
graph of the execution.
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Additionally it also handles the errors that happened during the execution. This is mainly used
at the beginning of the execution when parsing the input files to inform the user of possible
errors.

GreedyAlgorithm

This package contains the functionality to transform the individuals handled by the Greedy
Algorithm into actual solutions of the problem that can be evaluated by a fitness function.

GeneticAlgorithm

The GeneticAlgorithm package contains the implementation of the Genetic Algorithm. Opera-
tors have been designed with a Strategy design pattern, so each of the resulting hierarchies will
be in its own package.

FitnessFunction

This package contains all the implementations of the fitness function used by the Genetic Algo-
rithm.

Encoder

This package contains the logic to do the encoding of the partial solutions to individuals that
can be handled by the Genetic Algorithm.

SelectionOperator

This package is in charge of containing the hierarchy and all the implementations of the selection
operators.

MutationOperator

This package is in charge of containing the hierarchy and all the implementations of the mutation
operators.

CrossoverOperator

This package is in charge of containing the hierarchy and all the implementations of the crossover
operators.

ReplacementOperator

This package is in charge of containing the hierarchy and all the implementations of the replace-
ment operators.
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8.1.2 Component diagram

In Figure 8.2 the basic interaction between components in the system is shown. An explanation
of each component shown is detailed in this section.

Genetic algorithm

The Genetic Algorithm, previously detailed in Section 5.3 is in charge of guiding the exploration
of the search spaces to promising areas, that is, to find fitter individuals to be used as seeds by
the Greedy Algorithm.

In Figure 8.2, the Genetic Algorithm interacts mainly with the Fitness Function to evaluate the
individuals and provides periodically data to the Logger.

Logger

This component is in charge of generating the output log files, as well as the error files. It is
called by the Genetic Algorithm to log status data and by the parser to log errors.

Fitness function

The fitness function works as previously detailed in Section 5.3.6. To do so, as can be seen in
Figure 8.2, it calls the Greedy Algorithm to decode the individuals, and the Exam Schedule to
check for the fulfilled constraints.

Greedy algorithm

The Greedy Algorithm works as detailed in Section 5.2. The decoding process is done over an
Exam Schedule instance, which is why they are related in Figure 8.2.

Exam schedule

The Exam Schedule component is in charge on storing the actual exam schedule, as well of
handling the constraints of the execution. The Greedy Algorithm decodes the individuals of the
Genetic Algorithm into a single ExamSchedule instance, which is the one that will provide the
data to the fitness function to compute the fitness.

On its creation, this component will call the parser in order to load the exams, constraints of
the problem instance and configurations of the particular execution in progress.

Parser

The Parser component that can be seen in Figure 8.2, cannot be directly related to a physical
component. In reality, this component is divided into: Configurer, ExamParser, and Constraint-
Parser; each of which is in charge of one of the calls done by the Exam Schedule component.
All of them can find errors during the parsing, so all of them are related to the Logger.
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Figure 8.2: Exam Scheduler - Component Diagram
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8.2 Class Design

In this section several UML diagrams which describe the architecture and design of the system
will be presented. Some of them, the ones that refer to specific design decisions such the one in
Figure 8.8, will be also explained in the text.

8.2.1 Class diagram

Due to the size of the class diagram, it was necessary to divide it into small diagrams. However
it was possible to fit in one diagram the general architecture of the system without methods
signatures. It can be seen in Figure 8.3.

The design of the Genetic Algorithm can be seen in Figure 8.4. Both the operators and the
fitness function were designed in a modular way, to make testing with different combinations
easier.

The structure of the Domain package can be seen in Figure 8.5. It was not possible to represent
all the entities that are in such package, but the diagram provides a clear view of the general
structure. This diagram is completed with diagrams in Figures: 8.6, 8.8 and 8.9.

The structure of the Logger package can be seen in Figure 8.7.

8.2.2 Design decisions

This section is devoted to explain parts of the system which required a proper design to achieve
the desired extensibility of the system.

Constraints hierarchy

Designing the constraints hierarchy was one of the most complicated design decisions. As pre-
viously commented in Section 4.3, we have three types of constraints: hard, soft, and user
constraints (being the last ones constraints that can be either soft or hard.)

As can be seen in Figure 8.3 hard and soft constraints are handled in a different way. The
problem was how to parse from the Excel file the user constraints in such a way that we do not
have duplicated code.

The chosen approach to model this situation can be seen in Figure 8.8. User constraints were
modeled as soft constraints, which if marked as hard in the Excel file would imply the creation
of a hardifiedUserConstraint object, which would encapsulate all the logic of the user constraint
and will be used as a hard constraint.

This process is done by the constraint parser which was implemented using the State design
pattern. This was needed to create each particular type of user constraint when finding the lists
in the Excel1.

1This constraints list format are detailed in Section 12.2.2.
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Hard constraints

In Figure 8.5 can be seen that the exams store a list of hard constraints. This list contains the
hard constraints that affect the exam. Storing hard constraints that way allows to obtain the
set of days in which an exam can be scheduled on easily.

The premise is to iterate that list providing the whole set of days in which exams can be placed.
From that set of days the first constraint will return a subset of days which lead to its fulfillment,
meaning, that any day in which this constraint would be unfulfilled is eliminated. The following
constraints take the output subset of their predecessors. This way, the initial calendar will be
reduced to the subset of available days of the exam in a straightforward way.

Viable days iteration

Considering an scenario in which there are no constraints, all exams would have the same set of
available days. A linear iteration from beginning to end of such sets for all exams would lead to
a timetable in which all exams are packaged in the first days.

To prevent this scenario, the set of viable days in which an exam can be scheduled is randomly
shuffled before starting to iterate it. This results in the exams spread along the whole calendar.

Constraint counter for fitness function

From the beginning a linear fitness function was the chosen option, because it was proven
acceptably effective in this kind of problems. However, to ensure the extensibility of the system
and to make it easier to test different fitness functions, a Visitor design pattern has been used.

A fitness function, is a sequence of variables with their coefficients. The coefficients will be
provided by the user as it is detailed in Section 12.2.1, so if any entity holds the value of such
variables, any fitness function could be easily built just asking that entity.

The problem was that each type of unfulfilled user constraint needed to be counted separately,
while other soft constraint such as the NumericalComplexityPenalization was the result of a
function to be computed. All soft constraints are in a list in ExamSchedule, and so the concrete
type of the constraint is unknown. This is the typical Visitor design pattern scenario which is
what is presented as solution in Figure 8.9.

8.2.3 Diagrams

This section shows the diagrams that are linked in the previous sections.
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8.3 User Interface Design

The developed prototype is a simple command line application, therefore it does not have a
complex user interface. This section is devoted to explain the console interface of the application.

The unique interaction that the user has with the system is to launch it, which is the process
commented in this section. Further information about input file formats is given in Chapter 12.

The command to launch the application is the following:

$ java − j a r examScheduler . j a r <pathToFi l e sF i l e> <nameOfOutputFile>
<nameOfTheStat ict i c sFi l e>

The arguments will be explained in detail in Chapter 12. The first one is a path to a file
containing the paths of other configuration files. The second parameter is optional and it
generates a file with some quality measures of each generated solution.

The execution of the command could lead to one of the following scenarios:

1. One whole configuration file is missing, one configuration within that file is missing, or the
input data Excel has an invalid format.

2. A configuration option content is invalid. For instance, writing an alphanumeric string in
a numeric configuration.

3. Everything has the right format.

In the first scenario the application will end abruptly showing an error message. Extra informa-
tion about the error will be provided afterwards, some examples are:

Cause : Miss ing p r op e r t i e s in weights c on f i g u r a t i on f i l e .
The f o l l ow i ng p r op e r t i e s are mandatory : [DB, TD, SD, DD, OE,
DI , RIP , NCP, UE, SCDD]

Cause : Could not f i nd dates and t imes c on f i gu r a t i on f i l e .

Cause : Could not parse input Excel f i l e :
f i l e s / pruebas /v6 sF numericalComplexityBad . x l sx

In the second scenario, the application will not end, but it will inform the user. In case the
conflicting value is in a configuration file the application will assign ”0” as default value, and
in case it is within an exam or constraint it will skip such exam or constraint. Note that since
exams are parsed before constraints an error in an exam will make that every constraint linked
to that exam will raise an error stating that the provided exam id does not exist.

The user will be asked if the execution must continue a maximum of two times, when finishing
parsing the exam and when finishing parsing the constraints (in case there were any errors).
When doing so, both in a file and in the console, an output such as the the one shown in Figure
8.10 will be displayed.

Finally in the third scenario (or in case the errors of the second scenario were accepted by the
user) the application will inform of the parameters of the algorithm and begin the computation.
While doing so a progress bar will be updated in each iteration. Such progress bar, which can
be seen in Figure 8.11, contains the following information:
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Figure 8.10: Exam Scheduler - Errors after constraint parsing

Figure 8.11: Exam Scheduler - Progress Bar

• Percentage of completion.

• Computed generations.

• Generations to be computed.

• Time of execution.

• Expected ending time of execution.

• Best fitness of the population.

• Average fitness of the population.
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Chapter 9

System implementation

In this chapter tools and methods used in the project will be described, also enumerating other
considered possibilities.

9.1 Programming Languages

9.1.1 Prototype

Three programming languages were considered for implementing the application:

1. Java: Java is the core programming language taught at the Degree in Software Engi-
neering. It is a multi-platform programming language due to the middle compilation to
a Java Virtual Machine (JVM) Byte-code. Even though the inclusion of the JVM as an
intermediary implies a performance loss, it also brings some advantages as the garbage
collector, which automatically frees not in use allocated memory.

2. C#: C# provides a higher performance that Java. It is also one of the most used pro-
gramming languages and provides ”linq”, a library that facilitates the management of
collections.

3. Python: It is a widely used programming language by researchers, and so it has plenty of
libraries to cover many functionalities related with optimization problems. However, for
this specific problem where design and performance were crucial, Python was not suitable.

In the end, the selected language was Java. The determinant factors for such decision where the
following:

• Users can run the same executable on different operating systems.

• Java is not only taught at the Degree in Software Engineering, but also one of the most
used programming languages.

• Java allows an acceptable performance for the solution.
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9.1.2 Data analysis

Python was the straightforward decision in this aspect. As stated before it has plenty of libraries
among which we can point out: graph generation and large data structures management. Those
two aspects are provided by: matplotlib and pandas.

9.1.3 Documentation

• LATEX: It is a document preparation language which is widely used by researchers. The
other considered option was Microsoft Word, but it did not provide as many facilities as
LATEX did. Cites and cross-refereces were a must in this project and they are easier to
handle in LATEX than in Word.

• PFCEutio(V1.4): This is the base template provided by the tutors for the final docu-
mentation. Despite many changes were applied to it, it was the base of this document.

9.2 Development Tools

9.2.1 IntelliJ IDEA

This is an IDE (Integrated Development Enviroment) developed by JetBrains. JetBrains’ IDEs
provide programming conventions analysis, support for packaging tools such as Maven, inte-
grated VCS (Version Control Systems) like Git, and many others.

Is requires a license to be used, but in this case being a student in the University of Oviedo
allowed for getting it free.

9.2.2 Spyder

This is a simple Python IDE included in Conda. It provides a simple file view and tools to write
and debug code.

Any Python IDE would be fine for the analysis part, Spyder was the chosen one because I have
being using it for some years. Other options such as Visual Studio Code or PyCharm would
have not made a difference in this aspect.

9.2.3 PlantUML

This is an easy way to create UML diagrams by means of text. It was used to model the system
and to create all the diagrams in Chapter 8.

9.3 System Development

9.3.1 Difficulties

In this section the main difficulties of the prototype implementation will be described.
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Performance

Initially, executions of the prototype took really long times even for problem instances with
small size. There were many reasons for this: large data structures, complex computations, etc.

The decisive improvement to performance came when using memoization. What was happening
was that the computation of some values that took low execution times individually was taking
a large amount when considering all together. This particularly happened when computing the
fitness of the individuals in each generation.

Taking into account that individuals from the previous generation can go to the new generation
implies that some fitness of a generation were already computed before. By storing into the
individual its fitness the first time it is computed and just checking that value afterwards,1

performance increased considerably.

Extensibility

One of the main desired qualities of the prototype was to be easily extensible. This means that it
must not tedious to extend it when wanting to implement new functionalities, operators, fitness
functions, etcetera.

Every subsystem needed to be studied and understood in order to model them properly as a
whole. Several design decisions were made to reach the objective. For that, some design patters
were used as they are well-tested solutions to common programming design problems.

9.3.2 Code classes description

In Section A.1 of Appendix A additional documentation delivered with this document is refer-
enced to detail this topic.

1Note that since mutations are only performed over new generated children, there is no way in which a
previously created individual can change its chromosome. Thus an individual’s fitness can be computed just once.
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Chapter 10

System tests

To test the provided solution two main aspects need to be considered separately:

• Input/Output. It is necessary to test that the systems behaviour over good and bad
input files, and to check that the generated output files are the expected in each case.

• Algorithm efficacy. Some comparative tests are needed to showcase the quality of the
results provided by the algorithm.

The Algorithm efficacy will be tested in Section 11.5.

The input and output tests will be done considering the single use case detailed in section 7.5.
First a list of test coverage items will be provided, and from them a list of test cases will be
built.

10.1 Test Design

Since the main user interaction are the input it is necessary to ensure that the algorithm works
as expected when receiving incorrect input files. What follows is the process of creation of the
test cases. The list of test coverage items is the following:

1 Configuration (Input)

1.1 Configuration files.

1.1.1 Date and time.

1.1.2 Excel configuration.

1.1.3 Files file.

1.1.4 Genetic parameters.

1.1.5 Weights.

1.2 Valid format.

1.3 Invalid format (Invalid).

1.3.1 Wrong path.

1.3.2 At least one missing configuration option.

1.3.3 Al least one empty configuration option.
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1.3.4 At least one invalid format for a configuration option.

2 Exams tab (Excel data file) (Input).

2.1 Valid format.

2.1.1 Exam type.

2.1.1.1 Scheduled exam.

2.1.1.2 Unscheduled exam.

2.1.2 Missing exam mandatory field.

2.1.2.1 Course.

2.1.2.2 Semester.

2.1.2.3 ID.

2.1.2.4 Modality.

2.1.2.5 Duration.

2.1.3 Invalid datatype for mandatory field.

2.1.3.1 Course.

2.1.3.2 Semester.

2.1.3.3 ID.

2.1.3.4 Modality.

2.1.3.5 Duration.

2.1.4 Not unique IDs for exams.

2.2 Invalid tab format.

2.3 Exams generated.

2.3.1 0 exams (Invalid).

2.3.2 1+ exams.

3 Constraints tab (Excel data file) (Input).

3.1 Valid format.

3.1.1 Constraint type.

3.1.1.1 Soft.

3.1.1.2 Hard.

3.1.2 User Constraint type.

3.1.2.1 Time Displacement.

3.1.2.2 Day Banned.

3.1.2.3 Same Day.

3.1.2.4 Different Day.

3.1.2.5 Order Exams.

3.1.2.6 Day Interval.

3.1.3 Invalid field for constraint.

3.1.3.1 Incorrect format type.

3.1.3.2 Missing value.

3.1.4 Implicit contradiction between constraints.

3.2 Invalid tab format (The program directly ends).

4 Calendar tab (Excel data file) (Input).

4.1 Valid format.

4.2 Invalid tab format.
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5 Output

5.1 Number of unscheduled exams.

5.1.1 0.

5.1.2 1+.

10.1.1 Input tests design

There are two groups of inputs: the configuration files, and the Excel data file. First of all let
us describe which possible inputs could happen. There are five different configuration files and
each of them have a valid or invalid format.

Testing all possible combinations, in addition to the necessary tests for the Excel data file is not
viable, so a combination technique will be used. In this, each choice is considered. Initially a
base scenario will have all files in a valid format. From that a variation will be done over a file
to invalidate it, following each choice, that is, using the minimum number of test cases.1

Even though all files work exactly the same, there is an exception, which forces to consider an
additional test case. The Weights file works in a different way from its peers. When an invalid
value is assigned, it assigns a default value and warns the user.

The Excel data file has three tabs: exam, user constraints and calendar; which require different
tests. This part of the test design will follow a similar approach to the previous part. An initial
base case in which all files have a valid format will be considered. From that, test cases for each
test coverage item that would result in the application ending abruptly will be tested satisfying
the one-to-one approach to avoid error masking. Since the input is a file, many possible errors
for exams and constraints can be tested in different rows. That way all of them will be tested
with a single test case.

10.1.2 Output test design

As a result of the execution several files are generated. They are detailed in Chapter 12, but in
this chapter it will be specified the conditions under which each file is generated.

To fully understand the explanation, it is necessary to comment the simple CLI design of the
application which can be seen in Figure 10.1. The application will pause twice before starting
the computations of the algorithm. The user will be able to cancel or proceed the execution
while seeing the detected errors. If no errors were detected the application will skip that stopping
point.

The stopping points are the following:

• The end of the exam parsing. This includes both the exams and the configuration
parsing.

• The end of the constraint parsing.

1Even if this could be seen as a pseudo base-choice combination technique, truly applying it would imply many
more test cases.
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Figure 10.1: Stopping points CLI - Exam Scheduler.
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At those points the following output files need to be updated:

• errorLog.txt: This will have the errors detected at the stopping moment.

• inputUncoloredLog.txt: This will track the parsing log at the stopping moment.

The other output files will all be generated when completing the computation of the algorithm.
Therefore, their right generation can be checked in any valid input test case.

The output exam schedule file of the algorithm have also some test conditions, such as the
number of unscheduled exams, or the number of unfulfilled user constraints. Furthermore the
contents of other files could also be considered test conditions.

It is necessary to focus which test conditions are going to be tested because it is not feasible to
test everything. This project is focused to schedule exams, and because of that the only output
test condition to be tested is the number of unscheduled exams.

10.1.3 Interface tests

As stated in the previous section, even if simple, there is an interface which has some transitions
to be considered as shown in Figure 10.1. In the mentioned figure an identifier is also assigned
to each possible transition in the application state.

In parallel with the rest of the valid scenarios design, the simple path technique will also be
followed to test that this transitions work as expected.

The paths to be considered are the following; each of them will have an identifier so that it can
be linked in the trazability matrix:

• Path01: Start - (1) - (2) End

• Path02: Start - (1) - (4) - (7) - End

• Path03: Start - (1) - (3) - (5) - End

• Path04: Start - (1) - (4) - (9) - (11) - End

• Path05: Start - (1) - (3) - (6) - (9) - (10) - (12) - End

• Path06: Start - (1) - (4) - (8) - End

10.2 Test Cases

From the previous design two groups of test cases will be built. The ones referring to the invalid
test coverage items, in which it is globally tested that the right error handling is done; and
the ones referring to valid test coverage items, in which the application is tested under normal
circumstances.

School of Computer Engineering - University of Oviedo. Luis Presa Collada. 105



TEST CASES 106

ID Description Expected Result Status

TC1
An invalid path is provided for the
“Date and time” configuration file.

The application ends its execution
showing an error specifying that such
file was not found.

Passed

TC2
“constraintsFirstRow” option erased
on the Excel configuration file.

The application ends its execution
showing an error specifying that an op-
tion is missing in the Excel configura-
tion file and stating the options that
must be present.

Passed

TC3
Number of generations left as empty
property in GeneticParameters file.

The application ends its execution
showing an error specifying that there
was a format problem in the file

Passed

TC4
“13:00asa” configured as the initial
hour of the resting interval in the
“Date and time” configuration file.

The application ends its execution
showing an error that there was a for-
mat problem in the file.

Passed

TC5
An invalid path is provided by console
for the “filesFile” configuration file.

The application ends its execution
showing an error specifying that such
file was not found.

Passed

TC6
An invalid format is provided in the
data Excel exam tab. Headers row is
erased.

The application ends its execution
showing an error indicating that no
exam headers row was found.

Passed

TC7
An invalid format is provided for the
constraints tab. A description row is
erased.

The application ends execution show-
ing an error indicating that it could
not proceed parsing the constraints
tab.

Passed

TC8
An invalid format is provided for the
calendar tab. All data was moved one
column to the right.

The application ends its execution
showing an error indicating that it
could not proceed parsing the calen-
dar tab.

Passed

TC9
No exams were provided in a valid for-
mat exams tab.

The application ends its execution
showing an error indicating that there
were no exams.

Passed

Table 10.1: Test cases over invalid test coverage items
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10.2.1 Test cases for invalid executions

In Table 10.1 every test case checks that the output files that show the log and the errors
are updated at the right moment, that is, when reaching an stop point of the application.
Furthermore the contents of such files are also checked.

10.2.2 Test cases for valid situation

Because these tests imply a detailed explanation of the input provided, this section will be
structured differently and each test case will be described in a subsection. Each of the following
test cases will contain the following details:

• Description: General explanation of the aim of the test case.

• Input details: Concrete inputs that relate to the input test coverage items that this test
covers.

• Procedure: The steps to be followed in the test case.

• Expected output: The expected output in each of the steps of the test case.

• First execution: (Optional) In case the test detected an error in its first execution, such
error detection will be described here.

• Status: The result obtained.

TC10

Description In this test case it is wanted to test all the possible wrong inputs that would
lead to skip an exam in the exams tab of the Excel data file. Since we provide a list of exams
as input we can cover all these test coverage items in a single test case.

Input details The following incorrect formed exams will be considered:

• Exam with no course.

• Exam with no course or seminar.

• Exam with no course, seminar or modality.

• Exam with no course, seminar, modality or duration.

• Exam with no course, seminar, modality, duration or id.

• Exam with a string as course.

• Exam with a string as seminar and duration.

• Exam with a repeated id of a previously well formed exam.

The input file also includes 38 valid format exams.
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Procedure The application is executed with valid inputs but the specified ones. Once it
reaches the first stopping point, a “0” is introduced to terminate the execution.

In conclusion, we follow Path03.

Expected output When reaching the first stopping point the application must show detailed
errors both in “errorLog.txt” and in the console.

“inputUncoloredLog.txt” must show that 38 exams were generated.

First execution The log file showed a higher amount of generated exams even if such was
impossible. Repeated id exams even if the error was shown were still parsed and used in the
application.

Status Solved and passing.

TC11

Description In this test case it is wanted to test all the possible wrong inputs that would
lead to skip a constraint in the constraints tab of the Excel data file. Since we provide a list of
exams as input we can cover all these test coverage items in a single test case.

Input details This input includes:

• A single valid exam.

• A TD (Time Displacement) constraint with the first exam id missing.

• A DB (Day Banned) constraint with the date missing.

• A DB (Day Banned) constraint not specifying whether it is hard or not.

The input contains also nine constraints but all of them will be invalid since they will reference
non-existent exam ids.

Procedure The application is executed with valid inputs but the specified ones. It directly
proceeds to the second stopping point at the end of the constraint parsing. At that point, the
execution will be canceled.

In conclusion, we follow Path04.

Expected output When reaching the second stopping point the application must show de-
tailed errors both in “errorLog.txt” and in the console.

“inputUncoloredLog.txt” must show that one exams was generated, and that there were no
constraints generated.
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Status Passing.

TC12

Description In this test case we provided a well formed set of exams and we considered well
formed constraints to test their right parsing. Additionally this test will cover the particular
case of the weights configuration file.

Input details The input for this test case is the same as the one in TC11 in Section 10.2.2.
However more well-formed exams, a total of 62 exams will be considered so that the constraints
that were invalid due to non-existent exams ids are now valid.

Procedure The previous input will be provided to the application. The execution will proceed
in every stop point until reaching the computing phase. When reaching it, we will wait until
the application ends.

In conclusion, we follow Path05.

Expected output When reaching the first stopping point an error will be shown stating that
a default value was considered for constraint weight “dd”. On the second stopping point there
will be the same errors as in TC11 in Section 10.2.2.

Therefore “inputUncoloredLog.txt” must show that 62 exams were generated, and that nine
constraints were generated. This nine constraints were the ones that could not be created in
TC11 due to link to non-existent exam ids.

In the final computation, all the output files must have a right format. Furthermore, no exam
is expected to be unscheduled.

Status Passing.

TC13

Description This case will present a normal scenario with no detected errors, but with an
implicit error in the specified constraint. That is, two contradictory hard constraints will be
considered.

Input details This input considers a set of exams containing just two exams A and B. Knowing
that, the following input constraints are considered:

• A Same Day constraint over exams A and B. (Hard)

• A Different Day constraint over exams A and B. (Hard)

All other configuration options are set to a valid value.
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Procedure The application will be executed with the provided input, which results in path
Path06. At the end of the computation we must check that one of both exams must be unsched-
uled, whereas the other is scheduled.

Expected output The application will not pause at any of the stopping point, it will compute
the scheduling and end the execution.

Therefore “inputUncoloredLog.txt” must show that 2 exams were generated, and that 2 con-
straints were generated.

It the output is expected that either A or B is unscheduled, just one of them. The other must
be scheduled.

Status Passing.

10.3 Traceability of the Test Cases

The traceability can be seen in Table 10.2. In such table the identifiers used along the design
are used used. For the sake of clarity some special syntax will be used. It is the following:

• Identifiers with “.X”. This represents all the items below in the hierarchy. For example:
2.3.X, is equivalent to: 2.3.1, 2.3.2

Even if not the test aim, some items of the test design can appear in a test. For instance, while
testing that constraints work properly, the calendar must be on a valid format, so must be the
exams tab, etc. Enumerating everything in every test would be messy, so instead some variables
will be considered:

• conf default. 1.1.X, 1.2

• exam default. 2.3.2, 2.1.1.X

• constraints default 3.1.1.X, 3.1.2.X

• calendar default. 4

Furthermore, the key points of every test case will be in bold.
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ID Test case Traceability

TC1
Path01 - 1.1.1, 1.3.1 - conf default, exam default, constraints default, cal-
endar default

TC2
Path01 - 1.1.2, 1.3.2 - conf default, exam default, constraints default, cal-
endar default

TC3
Path01 - 1.1.4, 1.3.3 - conf default, exam default, constraints default, cal-
endar default

TC4
Path01 - 1.1.1, 1.3.4 - conf default, exam default, constraints default, cal-
endar default

TC5
Path01 - 1.1.3, 1.3.1 - conf default, exam default, constraints default, cal-
endar default

TC6 Path01 - 2.2 - conf default, constraints default, calendar default

TC7 Path02 - 3.2 - conf default, exam default, calendar default

TC8 Path01 - 4.2 - conf default, exam default, constraints default

TC9
Path01 - 2.3.1 - conf default, exam default, constraints default, calen-
dar default

TC10
Path03 - 2.1.2.X, 2.1.3.X, 2.1.4 - conf default, exam default, con-
straints default, calendar default

TC11
Path04 - 3.1.3.X - conf default, exam default, constraints default, cal-
endar default

TC12
Path05 - 5.1.1, 3.1.3.X - conf default, exam default, constraints default,
calendar default

TC13
Path06 - 5.1.2, 3.1.4 - conf default, exam default, constraints default, cal-
endar default

Table 10.2: Traceability of the invalid test cases.



Chapter 11

Experimental Study

In order to test the provided solution prototype, as well as to find out an optimal configuration
for such prototype several experiments were performed.

Only two real life exam schedules were provided by the client, and these did not contain any data
about user constraints. It was needed to define some scenarios simulating expected instances
based on the provided ones.

All the experiments were run on a Linux cluster (Intel Xeon 2.26 GHz. 128 GB RAM). The
Java version installed in such machine is “java 17.0.2 2022-01-18 LTS Java(TM) SE Runtime
Environment (build 17.0.2+8-LTS-86) Java HotSpot(TM) 64-Bit Server VM (build 17.0.2+8-
LTS-86, mixed mode, sharing)”

11.1 Test Instances

As commented above, the School of Computer Science provided two real exam schedules used
for the May and June 2021 calls. Just two instances were considered not enough to test the
proposed solution, therefore it was necessary to create real-life shape instances for testing pur-
poses. Probabilities are used to randomly generate instances, but also to ensure that they look
similar to the real-life instances initially provided.

The two real-life instances were studied to compute the following data:

1. Average number of exams in total.

2. Average number of exams per course.

3. Number of elective subjects.

4. Average number of rounds.

5. Round sizes relative frequency.

6. Exam duration relative frequency.

7. Average number of days for the calendar of exams.

8. Deliveries relative frequency.
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There are many functionalities included in the proposed solution that were not considered before,
or if so, were not written down on the exam schedule file. For example, constraints involving an
exam not being able to take place on a specific date.

The following functionalities had no predencent and their impact in the test instances was based
on conversations with the client:

• Number of constraints.

• Extra times.

• Numerical complexity.

On top of that, it was also necessary to consider the fact that the user can specify both soft and
hard constraints. Because the proportion of hard user constraints against soft user constraints
is unknown, it was assumed that a user constraint has a probability of 0.3 of being hard. This
value cannot greatly increase because it would likely lead to unsolvable instances.

Even though the tool generates good instances, and it was built to prevent straightforward
incompatibilities such as: ”Exams A and B must be scheduled on the same day” and ”Exams A
and B must be scheduled on different days”, there were also other circumstances that prevented
the generated problem instance from having a solution. This required manually checking over a
generated batch of instances in each scenario.

11.1.1 Test instances scenarios

Generated instances are grouped in three different scenarios, each of them containing ten in-
stances.

All scenarios consider a total number of 74 exams and can have rounds. User constraints have
a 0.3 of being hard constraints, and all the exam durations observed in the real instances have
configured a probability based on their relative frequency. It was assigned a probability of 0.15
of an exam being a delivery based on the previously observed relative frequency in the real
instances. The scenarios differ in the number of constraints and the enabled functionalities.

The considered scenarios are the following:

1. Expected Scenario: Around 60 constraints were considered. Numerical complexity and
extra time features were disabled.

2. Hard Scenario: Around 90 constraints were considered. Numerical complexity and extra
time features were disabled.

3. Complex Scenario: Around 100 constraints. Numerical complexity and extra time were
enabled.

11.2 Algorithm Tuning

This section details the experiments done to tune the parameters of the algorithm. Two phases
were carried out since testing all the combinations that would result as the mix of all the
parameters to tune would not be viable.
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Some experiments were done to obtain the pool of testing values to be considered in the following
sections. In such experiments it was concluded that the elitism of the algorithm should be the
4% of the population, meaning that the 4% percent best individuals should go directly to the
new generation. A lower value leaded to the algorithm not converging properly, while a greater
one leaded to premature convergence.

11.3 Genetic Algorithm Tuning

This section is devoted to the experiments to tune the parameters of the genetic algorithm being
such and their respective values the following:

• Population size: [100, 300, 500]

• Mutation Probability: [0.05, 0.1, 0.15, 0.2]

• Crossover Probability: [0.8, 0.9, 1.0]

• Repairing Algorithm Maximum Depth: [2, 3]

All possible combinations of the above values were executed over the expected scenario previously
commented. This results in a total of 72 combinations to be run over the expected scenario.
As this is formed by ten instances, the 72 combinations will be tested ten times per instance,
resulting in a total of 7200 executions. It is executed ten times per instance because Genetic
Algorithms are stochastic, and the common procedure to lead with this type of algorithms is
to run them multiple times and find the average values. Therefore, during each of the ten
iterations of each instance the fitness value will be recorded, so that at the end the average of
all those values can be computed. The configured number of generations is 1500, this value is
sufficient to make the algorithm converge in the majority of the cases, it was also obtained in
some preliminary experiments.

As it will be messy to show all the results in a single plot, executions were grouped by population
sizes. This also implies that there should be 24 configurations in a single plot, for the sake of
clarity, even if within same picture, they are represented in two different graphs.

The results of this tuning experiments can be seen in Figure 11.1 which represents the results
with a population size of 100, Figure 11.2 which represents the results with a population size of
300, and finally Figure 11.3 which represents the results with a population size of 500. All three
plots have been plotted with the same axis scale. This was done because of two reasons. Firstly
to represent visually the time difference between the different population size, and secondly to
see clearly the convergence plots.

The algorithm was configured to run 1500 generations in each execution. This value was chosen
by examining in some preliminary examples the convergence of the algorithm. In such examples
it was observed that the algorithm tends to stabilize both its best and average fitness at that
number of generations.

As can be seen in the plots, configurations with a population size of 500 are the ones with a
smoother curve. Furthermore we can see that the higher the population size the better fitness we
achieve. A fitness of less than 600 is obtained with population size of 500, while values around
700 are obtained with a population size of 100. Even though the results may imply that a bigger
population size would turn out to be positive for the algorithm, this was discarded because of
time issues. As can be seen in the plots, the higher the population size the longer it takes for
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the algorithm to end the execution. It was observed that running the algorithm twice or more
times tends to be more efficient than increasing the population size.

The same results are also shown in Figures 11.4, 11.5 and 11.6 where they are compared against
the number of generations. These plots were included to show in the same scale how smoother
are the configurations with population size of 500 compared with the others, and that these
configurations tend to converge better towards a same fitness, while the others provide a wider
variety of results.

Having said that, by observing the results we can conclude that the best configuration is:

• Population size: 500

• Mutation Probability: 0.2

• Crossover Probability: 0.9

• Repairing Algorithm Maximum Depth: 3

11.4 Fitness Function Tuning

The provided implementation allows users to configure the coefficients of the fitness function.
Deciding which should be the default configuration was done by running a set of experiments
considering the following combinations:

• User constraints: [80.0, 110.0, 140.0]1

• Resting Interval Penalization: [2.5, 3.0, 3.5]

• Numerical Complexity Penalization: [2.0, 2.5, 3.0]

Because we are changing these coefficients, the fitness is not a reliable metric to compare the
output of this configurations. Thus, in this set of experiments quality metrics that are used to
compute the fitness function will be the references, but not the fitness function itself.

The metrics were commented is Section 5.3.6, but for the purpose of this phase, numerical
complexity will not be considered. The user made it clear that the number of user constraints
and the amount of free time in the resting interval were far more relevant.

Having said that, all possible combinations of the above list were considered and each of them
were run ten times, so that it was then possible to compute the average values. In total 27
configurations were tested ten times, which adds up to a total of 270 executions over the complex
scenario. The following values were computed and were used to select the configuration:

• Number of unscheduled exams.

• Number of unfulfilled user constraints.

• Number of minutes occupied in the resting interval.

1Note that this value will be individually assigned to all types of user constraints.
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Figure 11.1: Genetic Parameters tuning - 100 population configurations - Against time.
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Figure 11.2: Genetic Parameters tuning - 300 population configurations - Against time.
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Figure 11.3: Genetic Parameters tuning - 500 population configurations - Against time.
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Figure 11.4: Genetic Parameters tuning - 100 population configurations - Against generations.
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Figure 11.5: Genetic Parameters tuning - 300 population configurations - Against generations.
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Figure 11.6: Genetic Parameters tuning - 500 population configurations - Against generations.



FITNESS FUNCTION TUNING EXPERIMENTAL STUDY

Figure 11.7: Fitness coefficients experiments.

In addition to the above, relative metrics of unfulfilled user constraints against the total number
number of user constraints, and the total number of constraints were computed. In this context,
they do not add additional information, since all configurations are run over the same set of
instances and thus, over the same set of user constraints. They were computed as they could
make the analysis clearer.

To run this set of experiments the chosen configuration of genetic parameters was the one
obtained in the previous Section 11.3. The results can be found in Table 11.1, at the end of the
section. Values are sorted by columns prioritizing the order previously commented.

As can be seen, the algorithm nearly always finds a solution to the problem, but there are
some configurations with which in some of the executions, a solution was not found.2 These
configurations were instantly discarded.

On the rest of the results we can see that there is a soft inverse dependency among the Number
of unfulfilled user constraints and Number of minutes occupied in the resting interval. The non-
discarded configurations can be seen in Figure 11.7, where they are represented with the average
number of unfulfilled constraints in the x axis, and the average number of minutes occupied in
the resting interval in the y axis.

Since we want to provide a default and average value a Pareto Front was computed as can be
seen in Figure 11.8, in which the configurations marked in green in Table 11.1 are represented.
Finally a configuration in the middle of the frontier was chosen. It is indicated in yellow in Table
11.1, and it which was:

• User constraints: 140.0

• Resting Interval Penalization: 3.5

• Numerical Complexity Penalization: 2.5

2This implies that not all the exams were scheduled.
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Figure 11.8: Fitness coefficients experiments - Pareto Front.
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11.5 Comparative Experimental Study

The aim of this section is to assess the effectiveness of the proposed solution with respect to
other simpler alternatives:

• Greedy Algorithm. This implies that a set of solutions is randomly generated and the
best one is chosen.

• Greedy Algorithm with repairing procedure. In addition to the above the greedy
algorithm is now able to use the repairing procedure which should prevent it from leaving
as many unscheduled exams.

• Genetic Algorithm: The whole implementation provided, which has an evolution pro-
cess.

All the stated possibilities will be run in the three scenarios: expected, hard and complex. As
done in previous sections, each instance within a scenario will be run ten times, which imply
that 100 executions will be done over each scenario.

11.5.1 Greedy algorithm

Initially, in Section 4.1 it was mentioned that this problem could be solved randomly, but that
this was complicated due to the constraints that users can state.

To prove such intuition, a random population of individuals will be generated and without any
evolution process it will be directly evaluated by the Greedy Algorithm. This population will
have a size of 500 individuals, which was designed as the default value for the genetic algorithm
in Section 11.3.

In this set of experiments, there will not be any repairing process. Because of that it is expected
that this approach struggles to schedule all the exams despite that typically they can all easily
fit in the calendar leaving a reasonable amount of free time.

Because the problem size is not that big, a decent solution can be found provided a good initial
population size. In this particular context this is expected to prevent from seeing a lot of
unscheduled exams in the statistics.

The results can be seen in Table 11.2. Some exams were not scheduled, but as commented
before, the number is not that high. As we can see in the statistics around a 35% of the soft user
constraints were not fulfilled for all the scenarios. Note that the number of constraints in the
three scenarios is different but still the algorithm tends to leave unfulfilled the same percentage
of constraints. This leads us to conclude that a random approach could be expected to not fulfill
at least 30% of the user constraints.

On the other hand, because of its simplicity, this algorithm takes negligible time to execute.

11.5.2 Greedy algorithm with repairing procedure

One of the problems of the previous approach was that once an exam is placed there is no way
to backtrack that decision. This can easily lead to dead ends in which exams cannot be placed
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complex hard expected

Unscheduled Exams 1.79 1.69 0.49

Unfulfilled Constraints 23.08 25.17 12.91

UC / SUsC 0.34 0.36 0.36

UC / UsC 0.24 0.26 0.25

Minutes Resting Interval 1033.5 921.3 708.6

Table 11.2: Average statistic values of the Greedy Algorithm with no repairing in the scenarios.

complex hard expected

Unscheduled Exams 1.65 1.46 0.39

Unfulfilled Constraints 23.54 25.02 12.88

UC / SUC 0.34 0.36 0.36

UC / UC 0.25 0.26 0.25

Minutes Resting Interval 1028.95 907.5 700.8

Table 11.3: Average statistic values of the Greedy Algorithm with repairing in the scenarios.

because the set of viable days in which they can be placed according to the hard constraints
linked to them is fully occupied.

Introducing the repairing algorithm with the maximum repair depth of 3, which was the default
value determined in Section 11.3, is expected to decrease the amount of unscheduled exams.
There are no more expected changes with respect to the previous approach since the repairing
algorithm only comes into place when an exam cannot be scheduled.

The results can be seen in Table 11.3. As expected, the number of unscheduled exams decreased
and there was not a relevant difference in the other metrics. A better result could have been
obtained increasing the maximum depth of the repairing algorithm, but the aim of this com-
parative study was to see how each part of the algorithm helps reaching better solutions, and
because of that parameters values are left as default.

As the one in the previous section, this algorithm takes negligible time to execute.

11.5.3 Genetic algorithm

Finally, the full implementation of the proposed solution will be tested. It is expected to have no
unscheduled exams and to decrease considerably the number of unfulfilled constraints. Moreover,
by having the evolution process an individual with a permutation which minimizes the number
of minutes occupied in the resting interval is easier to find.

Results of this set of experiments can be seen in Table 11.4. As expected, there was no unsched-
uled exam in any of the iterations over the instances. Furthermore the number of unfulfilled
constraints was halved in the complex and hard scenarios, while reduced to one fourth in the
expected one. Because of the evolution process, the best individual slightly has more and more
constraints fulfilled along the generations of the Genetic Algorithm.

The minutes on the resting interval were reduced to a 10% of the values provided in the previous
experiments. This soft constraint is hard to fulfil by generating random individuals, it is clear
that an evolution process in which different combinations are tested slightly leads in a similar
way as it does with user constraints to a better solution.
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complex hard expected

Unscheduled Exams 0.0 0.0 0.0

Unfulfilled Constraints 10.61 11.28 3.71

UC / SUC 0.15 0.16 0.10

UC / UC 0.11 0.11 0.07

Minutes Resting Interval 177.3 141.6 54.3

Table 11.4: Average statistic values of the Full Algorithm in the scenarios.

However, such evolution process takes time to be computed. Around three or four minutes are
needed to provide a solution. Therefore, this is the slowest algorithm but, according to the
results, this is also the one that reaches the best solutions.

11.5.4 Greedy algorithm vs genetic algorithm

Previous sections have shown the plain results obtained by the algorithms considered, and these
results point out the Genetic Algorithm as the best approach. This section further compares
the Genetic Algorithm and the Greedy Algorithm, to show the performance gains it brings over
the simplest approach.

Three metrics of the five considered previously are used.

• Number of Unfulfilled Exams.

• Number of Unfulfilled user Constraints.

• Number of Minutes occupied in the Resting Interval.

Both algorithms will be compared by means of scatter plots considering all instances in all
scenarios. A plot will be shown for each of the stated metrics, with the exception of the number
of unfulfilled exams. Because the Genetic Algorithm obtains a value of 0 for all instances in the
metric, the scatter plot would result in all points being on one axis.

Both in Figure 11.9 and 11.10 we can observe clearly how the Genetic Algorithm achieved
better results than the Greedy Algorithm, as all the values are far below the main diagonal.
The represented values are the mean values considering ten execution for each instance.
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Figure 11.9: Number of Unfulfilled Constraints - Scatter Plot Comparison.

Figure 11.10: Number of Minutes occupied in the Resting Interval - Scatter Plot Comparison.



Chapter 12

User Manual

12.1 System Requirements

The prototype requires Java JDK 13.0.1 or a newer version to be executed. Previous Java
versions may show incompatibilities, because they may not have all the necessary features. An
example of such features are the classes used for dates and times: LocalTime and LocalDate.

12.1.1 Java installation advice

Some years ago Java published its software in two different ways: Java Runtime Enviroments
(JREs) and Java Development Kits (JDKs). Basically, JREs provided just the execution envi-
roment, whereas JDKs also provided tools to develop software, such as a compiler.

Nowadays, JREs are not used anymore, in fact the last available Java version for them was 8.
To install newer versions of Java, it is necessary to install the corresponding JDK.

12.2 Execution Instructions

The developed prototype is encapsulated in an executable .jar file called examScheduler.jar. This
executable receives two arguments: the first one is the path to the properties file which contains
the filepath to all other necessary files. Additionally, the user can specify as a second argument a
name for the statistics file, which will create a file with quality factors of each provided solution
as explained in Section 12.3.1.

To launch the program, the system must have configured Java 13, at least SDK 13.0.1. Once
that is provided, launching the program consists in executing the following command:

$ java − j a r examScheduler . j a r <pathToFi l e sF i l e> <nameOfOutputFile>
<nameOfTheStat ict i c sFi l e>

Although any name or path can be used for the configuration files they must exist and be
accessible by the program. The first refers to the filesFile which is detailed in Section 12.2.1.
The second parameter is optional and it generates a file with some quality metrics of each
generated solution.
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12.2.1 Configuration files

There are many configurations that can be applied to the algorithm, so for the sake of simplicity
similar configurations are grouped in the same file.

Filepaths file

This file has the references to all the other files, so that the users can place them wherever they
want and with the name they prefer. It is referred as filesFile in this manual. The configurations
inside it are the paths to all the other files:

• inputFile: Path to the input Excel data file.

• outputBaseDirectory: Path to the output directory in which the output must be placed.
(It must end with “/”. Ex: folder1/folder2/).

• statisticsBaseDirectory: Path to the output statistics directory in which the statistics
file must be placed. (It must end with “/”. Ex: folder1/folder2/).

• excelConfiguration: Path to the Excel configuration file detailed in Section 12.2.1.

• dateTimes: Path to the date and time configuration file detailed in Section 12.2.1.

• weigthts: Path to the weights configuration file detailed in Section 12.2.1.

• geneticParameters: Path to the genetic configuration file detailed in Section 12.2.1.

Date and time configuration

This file is referred to as dateTime in this manual. It contains configurations related to the time
scheduling. The first one is the default extra time. An extra time at the end of each exam can
be applied from the input file. For those exams that do not have configured an extra time it is
possible to specify a default one.

• defaultExtraTimeEnabled: True implies that the default extra time functionality is
enabled, False that it is not.

• defaultExtraTimeMinutes: This is the default extra time expressed in minutes.

The second feature to be managed in this file is the resting interval. That is, an interval in
which exams cannot start and in which is desirable not to have exams.

• beginningRestingIntervalHour: This is the starting hour at which the resting interval
starts. Must be in 24h format.

• endRestingIntervalHour: This is the ending hour at which the resting interval starts.
Must be in 24h format.

The final configuration is related to the “deliveries”. As previously stated in Section 4.2, there
is a particular type of exams that can be scheduled at the same time as the other exams.
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• deliveryCollisionEnabled: True implies that this particular type of exams work as the
other ones, False that they can be overlapped with other exams.

• deliveryIdentifier: This is the identifier that it is expected to appear in the “modality”
field of the exams in the input data file to mark the exams that are considered deliveries.

Genetic parameters

This file contains the configurations of the genetic algorithm. It is referred to as geneticParam-
eters.

In this file there are two groups of configuration options, being the first one the ones over which
the experimental study has been done, and being the second one the ones that the user is
expected to change.

The first group includes the following options:

• populationSize: This states the size of the population that the algorithm must handle.

• mutationProb: This states the probability of mutating a new generated individual.

• crossingProb: This states the probability to keep a randomly selected pair of parents for
crossover.

• generations: This states the number of generations that the algorithm must perform.

• repairingDepth: This states the maximum depth of the tree of changes of the repairing
algorithm, which was explained in Section 5.2.1.

Although configurations provided in the first group will be assigned default values whose efficacy
have been checked in the experimental study, the user is free to change them.

The second group are configurations which are likely to be changed by the user. These are:

• algorithmRepetitions: Number of times that the algorithm will be executed. The spec-
ified number in maxSchedulesToTake best fit individuals will be included in the population
of following algorithm repetitions.

• maxSchedulesToTake: Number of different output schedules to be provided by the
algorithm.

• inputWarningsStop: If set to true the application will pause when detecting parsing
errors and warn the user. If set to false the execution will proceed if possible.

• loggingFreq: Amount of generations until writing into the log file the actual status of
the population.

Weights

This file contains the the coefficients to be used in the fitness function, as detailed in Section
5.3.6. User constraints types are listed individually by their ID:

• DB: Day Banned. A day in which an specific exam cannot be placed.
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• SD: Same Day. Two exams must take place on the same day.

• DD: Different Day. Two exams must take place on different days.

• OE: Ordered Exams. Two exams must be in an specific order, one after the other. This
applies to days. The exams cannot be the same day.

• TD: Time Displacement. Two exams must be in an specific order, and with a specified
minimum time distance between them. This applies to calendar days. The exams cannot
be the same day.

• DI: Day Interval. An exam must be placed between two specified dates.

Additionally the weights of the soft constraints used to measure the quality of the solutions as
stated in Section 5.3.6:

• RIP: Resting Interval Penalization. This is applied over the occupied minutes of the
resting interval.

• NCP: Numerical Complexity Penalization. This is applied over the numerical complexity
function detailed in Section 5.3.6.

Finally a high weight is assigned to unscheduled exams.

• UE: Unscheduled Exams. This should have a high value so that the algorithm can obtain
high quality solutions.

• SCDD: Same Course Different Day. If a day have multiple exams of the same course it
is penalized.

Excel configuration

This file encloses simple data about Excel parsing and it is referred as ExcelConfiguration. The
configurations are the following:

• examFirstHeader: This is a string that must match the first header of the first column
of the input Excel exam tab. It is used to know when to start parsing the exams.

• constraintsFirstRow: This specifies in which row can the algorithm start writing the
constraints output in the user constraints tab.

• constraintsFirstCol: This specifies which is the base column in the constraints tab. This
is equivalent to say how many columns are empty to the left of the constraints tables.

12.2.2 Excel data file

This file is the one that stores the information about the problem instance. The same format is
kept for input and output so that an output file can be inputted again.

This Excel file requires three tabs: exams, constraints, and calendar days; which are commented
in the following sections.
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Exams tab

This must be the first tab and must contain the list of exams to be considered by the algorithm.
The parsing will start in the headers row according to what was indicated in Section 12.2.1.

Exams will have a number of fields to be declared. For the sake of clarity they will be listed in
the order they must be in the Excel columns. Since this input file is managed in Spanish, the
headers will be listed in such language.

1. Curso: Subject course. It must be an integer between 0 and 4, standing 0 as the value for
the elective subjects.

2. Sem: Subject semester. It must be an integer between 1 and 2.

3. Cod: Subject code. It is a sequence of characters.

4. Acron.: Subject acronym. Short sequence of characters to identify the subject.

5. Asignatura: Name of the subject.

6. Orden: It must be an integer value.

7. Contenido: Type of content for the exam.

8. Modalidad: Type of exam: online, delivery, etc.

9. Alumnos: number of students that may attend the exam.

10. Tiempo: Duration of the exam.

11. Fecha: Date on which the exam takes place.

12. Day: Week day on which the exam takes place.

13. Ini: Starting hour of the exam. It must be in Excel time format.

14. Fin: Ending hour of the exam. It must be in Excel time format.

15. Extra time: Extra time configured for the exam.

16. CN: Numerical Complexity value associated to the exam.

17. ID: Id assigned to the exam.

18. Tanda: Round to which the exam belongs.

As previously commented in Section 7.2, it is expected that the provided input list of exams
contains both scheduled and unscheduled exams. Once the file is outputted, the exams that the
algorithm was able to schedule will appear with the fields: “Fecha”, “Day”, “Ini” and “Fin”
written.

Constraints tab

This must be the second tab and must contain list of constraint types, which will be aligned to
the column specified in Section 12.2.1. Furthermore the lists must have at least one blank row
between them.

There is a common structure in such lists. The first three rows must have the following pieces
of data, one per row.
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DD

Two exams should/must not be placed on the same day.

exam id 1 exam id 2 Hard? Fulfilled?

1 42 True

4 29 False

5 38 False

45 22 False

Table 12.1: Constraint type list input example.

1. Constraint identifier: DD, SD, ...

2. Constraint description: A general text description.

3. Constraint headers: The headers needed for this constraint. (Names are not fixed, the
parsing depends on the selected identifier.)

Having said that, each list headers depends on the constraint type, but they all have a similar
format. Before explaining it, let us comment the data types that are handled:

• exam ids: These are numbers which link to the ID of an exam in the exams tab. If no
exam is found with that ID an error will rise.

• dates: Some constraints require one or more dates to work. It is important for that cells
to be in Excel date format1.

• booleans: Some booleans are used, for instance to state whether a constraint is hard or
not.

All the constraints to be specified will have two common columns at the end, being such:

• Hard?: It is a boolean column which states if the constraint is hard.

• Fulfilled?: It is a boolean column. Its value is not read as input, it is used to specify in
the output if that constraint was fulfilled in the provided schedule.

In the output, as an extra to the information that a constraint is not fulfilled, some extra fields
are written for the constraint to easily know to which exam the ids where referring to. This
information consists in the subject acronym and the content type of the exam.

An example of an input can be seen in Table 12.1. After processing this and more lists of
different constraint types a possible result could be the one showed in Table 12.2.

Calendar tab

This must be the third tab in the Excel file. The available days for the algorithm to use as well
as their associated time intervals must be written, starting on top left.

Even though there are no headers in the file, the format to do so is the following:

1This is done automatically by Excel when writing text similar to a date. Excel stores the dates with decimal
numbers, thus in case the date format is not right the program will get incorrect data.
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DD

Two exams should/must not be placed on the same day.

exam id 1 exam id 2 Hard? Fulfilled?

1 42 True True

4 29 False False Sub1-Theory Sub2-Lab

5 38 False True

45 22 False False Sub5-Theory Sub4-Theory

Table 12.2: Constraint type list output example.

Calendar day Day initial hour Day ending hour

14/06/2021 9:00 18:00

15/06/2021 9:00 19:00

16/06/2021 11:00 21:00

17/06/2021 9:00 21:00

Table 12.3: Calendar format in data Excel calendar tab.

12.3 Output Files

The execution of the algorithm will generate an output folder with the date and the time of the
execution as name. Inside it the output files will be placed.

The directory contents are the following:

• Exam Schedules Solutions: There will be a number of folders that contain the solutions
found by the algorithm.

• fitnessGraph.csv: This is a file containing the best fitness, average fitness and time
records at each generation of the genetic algorithm. It can be used to plot a convergence
graph. The order of the data is: generation, best fitness, average fitness, time (s).

• errorLog.txt: This file contains the last set of errors showed to the user in the console.
It is generated at the same time as they are printed so that in case they are too many the
user can read the file instead.

• inputUncoloredLog: This file shows the process of parsing the input files. It contains
the number of exams, calendar days and constraints parsed and the errors.

• gLog.txt: This file shows in a verbose format the same data that can be seen in the fitness-
Graph.csv file. The frequency of the written entries is configured at the geneticParameters
file.

12.3.1 Exam schedules solutions

Inside a solution folder two files can be found. The first one is the Excel file that contains the
exam schedule, that is, the output version of the file exposed in Section 12.2.2.

With that file, in case the user asks for its generation another .csv file will be created. This file
contains a single row of data with quality factors of the solution within the same folder. It has
no headers, but column order means:
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1. Number of unscheduled exams.

2. Number of unfulfilled user constraints.

3. Number of unfulfilled user constraints divided by the number of soft user
constraints.

4. Number of unfulfilled user constraints divided by the total number of user
constraints.

5. Number of minutes occupied in the resting interval in the whole schedule.
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Chapter 13

Budget

In this chapter an estimated budget will be provided based on the project planning shown in
Chapter 6. To do so an imaginary company will be created, being the only workers of such
company the student and its tutor.

13.1 Company Description

In the proposed scenario, the described company has hired both workers for the project duration.
The income generated by this project must be sufficient to pay both workers for the nine months
that the project lasts. Furthermore, a 25% benefit is considered.

Because the work is done at the author’s house there are no indirect costs such as cleaning,
water, among others that are typically considered in big companies.

13.1.1 Workers

As commented in the introduction only two workers are considered. The average annual gross
salary has been consulted on glassdoor1. That gross salary was reduced since we are considering
a day having just 4 hours in the project.

In this case a 30% increase has been considered as the cost to be paid by the company for the
worker, in addition to the actual salary. The total staff cost can be seen in Figure 13.1. Note
that column Project Salary Cost considers the project lasting for nine months.

1The check has been checked on 16/May/2022 for the last time.

Figure 13.1: Budget - Company Description - Staff
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Figure 13.2: Budget - Company Description - Staff Productivity

Figure 13.3: Budget - Company Description - Productive Hours Company

13.1.2 Staff productivity

The productivity of the staff has an significant importance on the direct and indirect costs,
specially when the company has just two workers and only one project. The junior researcher
has much more workload than the senior researcher which is just a supervisor. This can be seen
in Figure 13.2.

13.1.3 Productive hours

Taking into account the exposed values in Figure 13.5, and combining that information with the
total time invested in the project we obtain Figure 13.3.

13.1.4 Prices per hour

Considering the amount of time that each staff person is productive and assigning a value at
which we are selling such individual work, we obtain how much money is earned by means of
their work. This can be seen in Figure 13.4.

Figure 13.4: Budget - Company Description - Prices per Hour
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Figure 13.5: Budget - Company Description - Production Resources

Figure 13.6: Budget - Company Description - Summary

13.1.5 Production resources

In this section some equipment and licenses that are necessary for the project will be detailed.
They can be seen in Figure 13.5.

13.1.6 Summary

Adding the exposed direct and indirect costs, as well as the benefits that the company wishes
to earn, the total amount of income that the company must generate is obtained. In Figure
13.6, such value is compared with the total amount of money that the company earns which was
previously obtained in Figure 13.4.

Finally the margin between these two amounts is computed. The fact that it is positive means
that the company can pay the specified costs and earn the desired benefit. Since the margin
is close to zero, the company cannot lower the prices in Figure 13.4 without starting to lose
benefits.
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13.2 Project Costs

In this section the development costs of the project will be detailed. As done in Chapter 6, the
project is divided in eleven items:

1. Project planning. (Figure 13.10)

2. Initial research. (Figure 13.11)

3. Problem analysis. (Figure 13.12)

4. Proposed solution. (Figure 13.13)

5. Solution implementation. (Figure 13.14)

6. Alfa user validation. (Figure 13.15)

7. Real-shape instances generator. (Figure 13.16)

8. System tests. (Figure 13.17)

9. Experimental study. (Figure 13.18)

10. Final documentation. (Figure 13.19)

11. Project closure. (Figure 13.20)

The cost of each project item and the total cost of the project can be seen in Figure 13.7.

Figure 13.7: Budget - Project costs - Summary

13.2.1 Client budget computation

As commented previously, it is intended to obtain 25% benefit from this project, therefore we
must perform some weighting on the costs shown in Figure 13.6. Furthermore, there are some
items that are inappropriate to be sent to the client. The cost of these project items will be also
weighted over the rest of project items that are going to be listed in the client budget. For such
reason we must consider the following quantities for the weighting.

School of Computer Engineering - University of Oviedo. Luis Presa Collada. 140



PROJECT COSTS BUDGET

• 25% of the total project cost.

• Project planning.

• Initial research.

• Final documentation.

The weighting process can be seen in Figure 13.8. The meaning of each field is the following:

• Budget Cost. The total amount of money that the project costs.

• Benefits. The 25% of Budget Cost.

• Project items to weight. The addition of the costs of the project items that are not
going to be sent to the client.

• Amount to weight. The sum of Benefits and Project items to weight.

• Total budget - Project items to weight. The amount of money to which the weighting
is going to be applied, that is, the subtraction of Project items to weight from Budget Cost.

• Weight Percentage. This is the amount by which the cost of the project items that are
going to be sent must increase. For instance, if WeightPercentage = 1, then all the costs
of the project items should be doubled.

Figure 13.8: Budget - Client budget - Weighting percentage computation

As a final result we obtain the client budget that can be seen in Figure 13.9.

13.2.2 Project items detailed costs

In this section each project item will be detailed.
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Figure 13.9: Budget - Client budget
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Chapter 14

Conclusions and Future Work

14.1 Conclusions

Taking into consideration the results obtained we can state that the project has fulfilled the
goals set at its beginning.

After performing an analysis of the particular problem that the University of Oviedo School of
Computer Engineering had, we concluded that there were no exact match solved in the literature
due to the domain specific peculiarities of the problem.

The problem was formalized and the shape of real problem instances was studied. A random
generator of real-shape problem instances was done to test and tune the proposed solution
algorithm. For doing the latter, an experimental study was carried out. In such study, multiple
algorithms were compared to show the performance gain of the proposed solution.

Even though the application was initially thought as a prototype to showcase the proposed
solution, Software Engineering methodologies were applied to build a high-quality application
to be regularly used by the client. Good design principles were applied to make the application
easy to extend and modify. Furthermore a test plan was designed to ensure the quality of the
application.

A solution was proposed and tested, trying to optimize the current real life process in the
school. Such solution was proven effective and far more efficient than the actual process during
the experimental study done in Chapter 11.

The prototype application will be provided to the School of Computer Science, so that it can
be used as it is or as a component for a larger system. Source code and documentation will also
be provided.
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14.2 Future Work

Some extra research and work can be done over the results of this project. A list of possible
extensions will be provided briefly detailing each of them. Furthermore, an explanation of why
some extensions were not considered in the actual project is also provided.

• Implementing new constraints: It is expected that the need of new user constraints
arise. The application was built to ensure that this extension process is straightforward.
No other constraints were considered in the project because the client did not need more
at the present time.

• Consider spatial resources (classrooms, laboratories, etc.): This project provides
a schedule for the exams, but the students must fit into spatial resources. It would be
interesting to use the obtained results to build a larger system to fully automate every
resource assignment of the school, both temporal and spatial.

• User interface: A graphical user interface could be interesting, specially to change easily
all the configuration options. No GUI was built because the client asked for a CLI.

• Server application: A server application built from the provided code would allow the
functionality to be used in other faculties, since the context is similar.

• Implementing the algorithm in a higher performance programming language:
Some performance issues could arise if considering higher problem sizes. Now that the
design was proved useful, building the same system in C++ could be a interesting, but
only if such performance is truly required.
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Appendix A

Additional content to the main
document

A.1 Javadoc.zip

This file contains the full Javadoc documentation of the project compiled to HTML.

Because of the amount of classes it is recommended to check this documentation before checking
the source code.

A.2 SourceCode.zip

This files contains the whole code of the prototype application, as well as the single class used
to generate the test instances.

A.3 ProblemInstances.zip

All instances used in Chapter 11 are grouped here.

A.4 Application.zip

This contains the executable file, the configuration files, a sample instance and a sample output.
Moreover, a “readme” file with the command to run on the console is provided.

This .zip is intended to allow the user to easily test the application. Check Chapter 12 to get a
full explanation of how to use the application.
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