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Abstract: Multiple definitions have been put forward in the literature to measure the differences
between two interval-valued fuzzy sets. However, in most cases, the outcome is just a real value,
although an interval could be more appropriate in this environment. This is the starting point of
this contribution. Thus, we revisit the axioms that a measure of the difference between two interval-
valued fuzzy sets should satisfy, paying special attention to the condition of monotonicity in the
sense that the closer the intervals are, the smaller the measure of difference between them is. Its
formalisation leads to very different concepts: distances, divergences and dissimilarities. We have
proven that distances and divergences lead to contradictory properties for this kind of sets. Therefore,
we conclude that dissimilarities are the only appropriate measures to measure the difference between
two interval-valued fuzzy sets when the outcome is an interval.

Keywords: interval-valued fuzzy set; interval order; difference; distance; divergence; dissimilarity

1. Introduction

It us usually understood that knowledge of comparisons of objects, opinions, etc. are
incomplete. A widely accepted theory (and methodology) to cope with imprecision is fuzzy
sets theory, where elements are not necessarily in a set or out of it, but rather intermediate
degrees of membership are allowed. In this context, the classical ways to contrast sets
do not apply, and several measures for comparing fuzzy sets have been introduced and
can be found in the literature. An in-depth study was carried out by Bouchon-Meunier
et al. in 1996 [1]. After this, many other measures have been proposed. Some of them are
constructive definitions, i.e., specific formulae (see, among many others, Refs. [2–5]) and
others are based on axiomatic definitions (see, for example, Refs. [6–8]).

The presence of imprecision in real-life situations has been a challenge even from
a theoretical point of view. In order to cope with this handicap, different extensions of
fuzzy sets have been proposed. Interval-valued fuzzy sets (IVFSs) are one of the most
successful and challenging extensions. This generalization was introduced independently
and almost simultaneously by Zadeh [9], Grattan-Guiness [10], Jahn [11], and Sambuc [12].
Interval-valued fuzzy sets are a useful tool. They are used to model situations where
the “classical” fuzzy sets are not appropriate. This occurs in the case when an objective
procedure to determine crisp membership degrees is not available. IVFSs show high
potential in practical applications. They were used in medical diagnosis in thyrodian
pathology (see Sambuc [12]), in approximate reasoning (see, for instance, the contributions
of Bustince [13] and Gozalczany [14]) and Cornelis et al. [15] and Turksen [16] applied this
theory in logic.

Due to its potential utility, different notions and tools connected to this extension must
be studied. In particular, our interest is focused on the measures of comparison of two
interval-valued fuzzy sets, which have been studied in the last years. Some of them are
based on comparing the degree of similarity between them (see, e.g., [17–20]). However,
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it is also possible to consider a dual approach, based on measuring the difference (see,
e.g., [21]). Another previous study related to this topic can be obtained from the related
concept of intuitionistic fuzzy sets. It was introduced by Atanassov [22].

Closely connected to IVFSs is the theory of intuitionistic fuzzy sets, introduced by
Atanassov [22] about a decade after IVFSs were defined. Despite they are semantically
different, it is widely known that intuitionistic and interval-valued fuzzy sets are equipol-
lent (see, for instance, [23,24]); that is, there is a bijective function that maps one onto the
other. Measures to compare intuitionistic fuzzy sets have already been introduced (see,
for example, [25,26]). These proposals could provide us with an initial idea on the way to
compare two interval-valued fuzzy sets. However, they cannot be directly used, as was
shown in [27–29].

The previously introduced measures provide a unique real value as the result of the
comparison. However, this is not a desirable result. If we are dealing with interval-valued
fuzzy sets from an epistemic point of view, even the absolute similarity between incomplete
descriptions does not guarantee the absolute similarity of the described elements. In order
to cope with this situation, it could be more appropriate to formalize the idea of similarity
using a range of values. However, this perspective is not the usual one. To the best of
our knowledge, the literature where we can find this approach is rather limited [30–33].
These papers can be considered as the starting point of our research [34]. Thus, our main
purpose is to study the different approaches considered in the literature that measure the
degree of difference between two interval-valued fuzzy sets by means of an interval, in
order to preserve the uncertainty that we have about the description of the involved sets.
In this paper, we will consider the different approaches, compare them and conclude which
ones are the best axioms in order to characterise a measure of the difference between two
interval-valued fuzzy sets.

More precisely, we will focus on distances, divergences, and dissimilarities and study
how sound these definitions are. We provide examples that show that distances lead to
counterintuitive situations and that the axioms involved in the definition of an interval-
valued divergence are conflicting. Therefore, we consider dissimilarities as the only rea-
sonable way to compare IVFSs among the three considered. As a consequence, we finally
compare the different proposals given in the literature for this concept.

The contribution is organised as follows. In Section 2, basic concepts and results are
introduced, and the notation used in the subsequent sections is fixed. Section 3 is devoted
to studying the possible definitions of a measure of how different two interval-valued
fuzzy sets can be. Section 4 closes the contribution with some conclusions. We also put
forward some questions that remain open in this section.

2. Basic Concepts

In this section, we recall some basic notions and properties that are important to
understand the following section of this contribution. We begin with the classical theory of
fuzzy sets.

Let X denote the universe of discourse. A fuzzy set in X is a mapping A : X → [0, 1]
where A(x) stands for the degree to which element x belongs to the subset A of X. We will
denote FS(X) the family of all the fuzzy sets defined on the universe X.

An interval-valued fuzzy subset (IVFS for short) of X is a mapping A : X → L([0, 1])
such that A(x) = [A(x), A(x)], where L([0, 1]) denotes the family of closed intervals
included in the unit interval [0, 1]. It is therefore easy to check that an interval-valued
fuzzy set A is characterized by two mappings, A and A, from X into [0, 1] such that
A(x) ≤ A(x), ∀x ∈ X. These functions provide the lower and upper bounds, respectively,
of the associated intervals. Observe that if A(x) = A(x), ∀x ∈ X, then A is a classical fuzzy
set. The abbreviation IVFS(X) stands for set of all the interval-valued fuzzy sets in X.

For IVFSs, we can consider the epistemic or the ontic interpretation. In our study, the
former is chosen. Thus, we assume that there is one actual, real-valued membership degree
of an element inside the membership interval of possible membership degrees.
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Example 1. Consider the IVFS drawn in Figure 1. The IVFS assigns to element x the interval
[0.45, 0.75].

X

Membership

0

0.2

0.4

0.6

0.8

1

x

Figure 1. Idea of IVFS.

This means that the real membership degree for x may be 0.65, but we are not sure about it
and we can only say that it is between 0.45 and 0.75.

As we explained in detail at the Introduction, we define a measure to compare two
IVFSs such that the value of this comparison is again an interval. In order to do this, some
operations and previous concepts have to be fixed.

2.1. Inclusion

The inclusion for IVFSs is directly connected to an order relation between intervals.
In [35], we can find a summary of the main interval orders.

Definition 1. ([35]) Let a = [a, a] and b = [b, b] be two intervals in L([0, 1]). Then a is smaller
than or equal to b for the following orders between intervals if:

• Interval dominance [36]: a �ID b if a ≤ b.
• Lattice order [37]: a �Lo b if a ≤ b and a ≤ b, which is induced by the usual partial order in R2.
• Lexicographical order of type 1 [38]: a �Lex1 b if a < b or (a = b and a ≤ b).
• Lexicographical order of type 2 [38]: a �Lex2 b if a < b or (a = b and a ≤ b).
• The Xu and Yager order [39]: a �XY b if a+ a < b+ b or (a+ a = b+ b and a− a ≤ b− b).
• Maximin order [40,41]: a �Mm b if a ≤ b.
• Maximax order [42]: a �MM b if a ≤ b.
• Hurwicz order [43]: a �H(α) b if α · a + (1− α) · a ≤ α · b + (1− α) · b with α ∈ [0, 1].
• Weak order [44]: a �wo b if a ≤ b.

Given an order �o, the equality between intervals can be defined as follows: a =o b if
and only if a �o b and b �o a.

Most of the previously recalled orders are connected. First of all, it is well known that
if one interval a is lower than or equal to another interval b w.r.t. interval dominance, a is
also lower than or equal to b w.r.t. the lattice order. Interval dominance is also a stronger
relation than the lexicographical order of type 1, which implies the maximax order which,
in turn, implies the weak order. Figure 2 summarizes these and other similar connections.
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a �ID b
⇓

a �Lo b
⇓︷ ︸︸ ︷

a �Lex1 b a �Lex2 b a �XY b a �H(α) b for any α ∈ [0, 1]

⇓ ⇓ ⇓
a �Mm b a �MM b a �H(1/2) b︸ ︷︷ ︸

⇓
a �wo b

Figure 2. Relationships among the different relations.

Observe that ID is the strongest relation in the sense that if two intervals are connected
by it, then they are connected by any of the other relations previously recalled.

Apart from that, it is important to notice that, although all of them are called orders,
they are not really orders, in the mathematical sense, in all the cases, as we can see in
Table 1. Thus, only the lattice order, the lexicographical orders and the Xu-Yager order are
really orders and the first one is not a total order.

Table 1. Some properties of the considered relations on L([0, 1]).

Reflexive Antisymmetric Transitive Total Preorder Order

ID 7 3 3 7 7 7

Lo 3 3 3 7 3 3

Lex1 3 3 3 3 3 3

Lex2 3 3 3 3 3 3

XY 3 3 3 3 3 3

Mm 3 7 3 3 3 7

MM 3 7 3 3 3 7

H(α) 3 7 3 3 3 7

wo 3 7 7 3 7 7

Regarding total orders in L([0, 1]), we consider the so-called admissible orders, whose
definition we now recall.

Definition 2. ([38]) An admissible order on L([0, 1]) is a total order �to that refines the lattice
order; that is, for every a, b ∈ L([0, 1]), if a �Lo b then a �to b.

An interesting feature of admissible orders is that they can be built using aggrega-
tion functions, as stated in the following result. Recall that an aggregation function is a
increasing function A : [0, 1]n → [0, 1] with A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1 (see [45]).

Observe that there is an easy bijection between the sets L([0, 1]) and K([0, 1]) =
{(u, v) ∈ [0, 1]2 | u ≤ v}. It assigns to each interval [a, a] the point in R2 whose coordinates
are the extreme values of the interval, i.e., (a, a) (see [38]). Therefore, aggregation functions
can be used to summarize the information provided by an interval. This idea is beneath
the following method provided by Bustince et al. to build admissible orders.

Proposition 1. ([38]) Let A and B : [0, 1]2 → [0, 1] be continuous aggregation functions,
verifying that for all (u, v), (w, z) ∈ K([0, 1]), the equalities A(u, v) = A(w, z) and B(u, v) =
B(w, z) can only hold if (u, v) = (w, z). Define the relation �A,B on L([0, 1]) by:

a �A,B b if A(a, a) < A(b, b) or (A(a, a) = A(b, b) and B(a, a) ≤ B(b, b)).

Then �A,B is an admissible order on L([0, 1]).
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The weighted mean provides a particular way to obtain admissible orders on L([0, 1]).
The definition is as follows (see [46]):

Kα(u, v) = (1− α) · u + α · vs. with α ∈ [0, 1].

This operator can be interpreted as the α-quantile of a probability distribution uniformly
distributed on the interval [u, v]. Applying Proposition 1 to the aggregation operators Kα

and Kβ with α 6= β, the admissible order �Kα ,Kβ
is obtained. For the sake of simplicity, it is

denoted �α,β.
Particular cases of admissible orders obtained by the weighted mean are the lexico-

graphical orders of type one and two and the Xu and Yager order. Note that �Lex1≡�0,1,
�Lex2≡�1,0 and �XY≡�1/2,β for β any value in (1/2, 1] (see [38]).

Any order�o defined over L([0, 1]) induces an order over IVFS(X) that is the content
relation derived from this order (⊆o). The following result formalized what said above and
is straightforward to prove it.

Proposition 2. Let �o be an interval order in L([0, 1]) and A and B in IVFS(X). Then ⊆o
defined as

A ⊆o B iff A(x) �o B(x), ∀x ∈ X.

is a partial order in IVFS(X).

Example 2. If we consider the IVFSs A, B, and C represented in Figure 3, it is clear that A, B ⊆ID
C and therefore they are included in C with respect to any of the orders recalled in Definition 1. We
also have that A ⊆Lo B but A 6⊆ID B. Thus, A is included in B for any considered order except for
the interval dominance. Finally, we can say that neither B nor C are included in A for any order.

X

Membership

0

0.2

0.4

0.6

0.8

1
C

B

A

x0

Figure 3. Membership degrees for A, B and C.

On the other hand, ⊆o is not a total order in general. Consider for instance the lattice order
⊆Lo and the IVFSs given in Figure 3, A and B are incomparable. In fact, we can obtain incomparable
IVFSs even in the case we are considering a total order.

2.2. Embedding

Another important partial order on IVFS(X) could be defined as follows.

Definition 3. Let ⊆ be the usual inclusion between intervals and A and B in IVFS(X). It is said
that A is embedded in B, and it is denoted as A v B if and only if A(x) ⊆ B(x), ∀x ∈ X.

The following example shows the idea behind this definition.

Example 3. If we consider the IVFSs A and B represented in Figure 4, we have that A is embedded
in B, since A(x) ⊆ B(x), ∀x ∈ X.
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X

Membership

0

0.2

0.4

0.6

0.8

1
B

A

Figure 4. A is embedded in B.

Nor is it a total order, as the following example shows.

Example 4. Consider the two IVFSs drawn in Figure 5.

X

Membership

0

0.2

0.4

0.6

0.8

1

A
B

Figure 5. Not embedded IVFSs.

It is clear that A is not embedded in B and B is not embedded in A.

2.3. Intersection

There are different proposals to formalize the notion of intersection in the literature.
We will base our definition on the idea that the intersection of two sets is the greatest set
contained in both departing sets. Since this definition is based on contents, we will obtain
a different definition of intersection for each order we consider in IVFS(X) as explained
in [35,47].

Definition 4. Let A, B be two interval-valued fuzzy sets in X and let �o be an order relation
between intervals in L([0, 1]). We define the o-intersection of A and B, and we denote it by A ∩o B
as the greatest interval-valued fuzzy set such that A ∩o B ⊆o A and A ∩o B ⊆o B.

For any two interval orders �o1 and �o2 in L([0, 1]) such that a �o1 b implies that
a �o2 b, ∀a, b ∈ L([0, 1]), we have that A ∩o1 B ⊆o2 A ∩o2 B for any A, B ∈ IVFS(X).

Considering the connection among the orders in Definition 1, we next discuss the
definition of intersection obtained for each of them. If possible, we describe general behaviours.

Proposition 3. ([35]) Let A, B be two sets in IVFS(X). Then, for any x ∈ X, we have that:

• Interval dominance: A ∩ID B(x) = [min{A(x), B(x)} , min{A(x), B(x)}].
• Lattice order: A ∩Lo B(x) = [min{A(x), B(x)}, min{A(x), B(x)}].

• Lexicographical order of type 1: A ∩Lex1 B(x) =
{

A(x) if A(x) �Lex1 B(x)
B(x) if B(x) �Lex1 A(x)

• Lexicographical order of type 2: A ∩Lex2 B(x) =
{

A(x) if A(x) �Lex2 B(x)
B(x) if B(x) �Lex2 A(x)

• Xu and Yager order: A ∩XY B(x) =
{

A(x) if A(x) �XY B(x)
B(x) if B(x) �XY A(x)
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• Maximim order: A ∩Mm B(x) = [min{A(x), B(x)}, v] for v any number in the interval
[min{A(x), B(x)}, 1].

• Maximax order: A ∩MM B(x) = [u, min{A(x), B(x)}] for u any number in the interval
[0, min{A(x), B(x)}].

• Hurwicz order: A ∩H(α) B(x) =
[
u, k−α·u

1−α

]
for k = min{α · A(x) + (1− α) · A(x), α ·

B(x) + (1− α) · B(x)} and u any value in the interval
[
max{0, k−(1−α)

α }, k
]
.

• Weak order: A ∩wo B(x) = [u, v] for u any value in the interval [0, min{A(x), B(x)}] and
v any value in the interval [min{A(x), B(x) 1].

Lexicographical orders and the Xu and Yager order are particular cases of admissible
orders, and the associated intersections are obtained as a consequence of the following
result.

Corollary 1. Let A and B ∈ FS(X) and denote A′ and B′ as the previous fuzzy sets written in
terms of IVFSs: A′(x) = [A(x), A(x)] and B′(x) = [B(x), B(x)] for every x ∈ X. Let �0 be the
interval dominance, the lattice order, the lexicographical order of types 1 and 2, or the Xu and Yager
order. Then A′ ∩0 B′ = (A ∩ B)′, where ∩ denotes the classical intersection of fuzzy sets based on
the minimum.

Proof. Fix x ∈ X. Denote A(x) = a and B(x) = b, then A′(x) = [a, a] and B′(x) = [b, b].
On the one hand it holds that (A ∩ B)(x) = min(A(x), B(x)). Therefore, (A ∩

B)′(x) = [min(a, b), min(a, b)].
On the other hand, A′(x) = A′(x) = a and B′(x) = B′(x) = b and it follows from

Proposition 3 that A′ ∩0 B′(x) = [min(a, b), min(a, b)].

Proposition 4. ([35]) Let A and B : [0, 1]2 → [0, 1] be two continuous aggregation functions
such that ∀(u, v), (u′, v′) ∈ K([0, 1]), A(u, v) = A(u′, v′) and B(u, v) = B(u′, v′) hold simul-
taneously if and only if (u, v) = (u′, v′). Let �A,B be the admissible order on L([0, 1]) induced
by these aggregation functions. For all A, B ∈ IVFS(X), the A,B-intersection of A and B is the
interval-valued fuzzy set defined by:

A ∩A,B B(x) =
{

A(x) if A(x) �A,B B(x)
B(x) if B(x) �A,B A(x)

Taking into account Proposition 3, we can see that in some cases the intersection is not
uniquely defined for the four last relations. Moreover, for the first one, we have that the
intersection of two IVFSs is just a fuzzy set. This is summarized in Table 2.

Table 2. Uniqueness of the intersection of IVFSs.

Interval Order Is the Intersection Unique? Is the Intersection an IVFS?

Interval dominance 3 7

Lattice order 3 3

Lex. order type 1 3 3

Lex. order type 2 3 3

Xu and Yager order 3 3

Maximim order 7

Maximax order 7

Hurwicz order 7

Weak order 7

The following examples can help to clarify the previous remarks.
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Example 5. Let us consider the case X = {x} and the interval-valued fuzzy sets A and B defined
by A(x) = [0.4, 0.8] and B(x) = [0.2, 0.9]. Then, the intersection for the four last orders is given
in Table 3 and shown in Figure 6.

Table 3. No uniqueness of the intersection of IVFSs for some orders.

A ∩MM B(x) A ∩Mm B(x) A ∩H(1/2) B(x) A ∩wo B(x)

[u, 0.8] [0.2, v] [u, 1.1− u] [u, v]

u ∈ [0, 0.8] v ∈ [0.2, 1] u ∈ [0.1, 0.55] u ∈ [0, 0.8]
v ∈ [0.8, 1]

0.2

0.4

0.6

0.8

0.9

1

A B

A ∩MM B

A ∩Mm B

A ∩H(1/2) B

A ∩wo B

Figure 6. Intersection for different orders.

If we consider the orders that lead to a unique set as intersection, we obtain an interval uniquely
defined, as we can see in Table 4. A graphical representation is shown in Figure 7.

Table 4. Uniqueness of the intersection of IVFSs for some orders.

A ∩ID B A ∩Lo B A ∩Lex1 B A ∩Lex2 B A ∩XY B

0.2 [0.2, 0.8] [0.2, 0.9] [0.4, 0.8] [0.2, 0.9]

0.2

0.4

0.6

0.8

0.9

1

A B A ∩ID B

A ∩Lo B

A ∩Lex1 B

A ∩Lex2 B

A ∩XY B

Figure 7. Intersection w.r.t. ID, Lo, Lex1, Lex2 and XY.

It is clear that the intersection is just a fuzzy set for the case of the interval dominance.
In this case the lexicographical order of type 1 and the Xu and Yager order provide the

same intersection, but, of course, this does not hold in general. For example, if we consider C
an IVFS such that C(x) = [0.4, 0.5], we have that B �Lex1 C and C �XY B and therefore
B ∩Lex1 C = B 6= B ∩XY C = C.

This example also emphasises that the intersection depends on the considered order, which is
logical from the considered definition.
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2.4. Union

In this subsection, we reproduce for the union the discussion included in the previous
one concerning intersection.

We assume that the union of two sets is the smallest set that contains both sets. Then
we have a different definition of union for every order we consider in L([0, 1]).

Definition 5. Let A, B ∈ IVFS(X) and let �o be an order in L([0, 1]). The o-union of A and B,
denoted A∪o B, is the smallest interval-valued fuzzy set such that A ⊆o A∪o B and B ⊆o A∪o B.

Thus, for the orders where the intersection is unique, we have that:

Proposition 5. ([35]) Let A, B be two sets in IVFS(X). Then, for any x ∈ X, we have that:

• Interval dominance: A ∪ID B(x) = [max{A(x), B(x)} , max{A(x), B(x)}].
• Lattice order: A ∪Lo B(x) = [max{A(x), B(x)}, max{A(x), B(x)}].

• Lexicographical order of type 1: A ∪Lex1 B(x) =
{

B(x) if A(x) �Lex1 B(x)
A(x) if B(x) �Lex1 A(x)

• Lexicographical order of type 2: A ∪Lex2 B(x) =
{

B(x) if A(x) �Lex2 B(x)
A(x) if B(x) �Lex2 A(x)

• Xu and Yager order: A ∪XY B(x) =
{

B(x) if A(x) �XY B(x)
A(x) if B(x) �XY A(x)

We can prove again that the considered definition preserves the classical definition of
union for the particular case of fuzzy sets.

Corollary 2. Let A, B ∈ FS(X) and denote A′ and B′ the previous fuzzy sets written in terms
of IVFSs: A′(x) = [A(x), A(x)] and B′(x) = [B(x), B(x)] for every x ∈ X. Let �0 be the
interval dominance, the lattice order, the lexicographical order of types 1 and 2 or the Xu and Yager
order. Then A′ ∪0 B′ = (A ∪ B)′, where ∪ denotes the classical union of fuzzy sets based on
the maximum.

Proof. Fix x ∈ X. Denote A(x) = a and B(x) = b, then A′(x) = [a, a] and B′(x) = [b, b].
On the one hand, it holds that (A ∪ B)(x) = max(A(x), B(x)). Therefore, (A ∪

B)′(x) = [max(a, b), max(a, b)].
On the other hand, A′(x) = A′(x) = a and B′(x) = B′(x) = b, and it follows from

Proposition 5 that A′ ∪0 B′(x) = [max(a, b), max(a, b)].

The lexicographical orders and the Xu and Yager order are particular cases of ad-
missible order, and the union can also be obtained as a consequence of the following
general result.

Proposition 6. ([35]) Let A,B : [0, 1]2 → [0, 1] be two continuous aggregation functions, such
that ∀(u, v), (u′, v′) ∈ K([0, 1]), A(u, v) = A(u′, v′) and B(u, v) = B(u′, v′) hold simultane-
ously if and only if (u, v) = (u′, v′). Let �A,B be the admissible order on L([0, 1]) induced by
them. For any A, B ∈ IVFS(X), the A,B-union of A and B is the IVFS defined by:

A ∪A,B B(x) =
{

B(x) if A(x) �A,B B(x)
A(x) if B(x) �A,B A(x)

Example 6. Let the universe X = {x} and let A, B, C ∈ IVFS(X) such that A(x) = [0.4, 0.8],
B(x) = [0.2, 0.6] and C(x) = [0.3, 0.9].

• The ID-union of A and B is the IVFS A ∪ID B(x) = [0.8, 0.8] and the ID-union of A and C
is the IVFS A ∪ID C(x) = [0.9, 0.9]. Figure 8 provides a graphical representation.
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0.2

0.4

0.6

0.8

1

A(x) B(x) A ∪ID B(x)

0.2

0.4

0.6

0.8

1

A(x) C(x) A ∪ID C(x)

Figure 8. ID-union.

It is clear that A ∩ID B 6= A and A ∩ID B 6= B.
• The Lo-union of A and B is the IVFS A ∪Lo B(x) = [0.2, 0.6] and the Lo-union of A and C

is the IVFS A ∪Lo C(x) = [0.3, 0.8].
As we can see in Figure 9, A ∪Lo B = B, but A ∪Lo C 6= A and A ∪ID C 6= C.

0.2

0.4

0.6

0.8

1

A(x) B(x) A ∪Lo B(x)

0.2

0.4

0.6

0.8

1

A(x) C(x) A ∪Lo C(x)

Figure 9. Lo-union.

• The Lex1-union of A and B is the IVFS A ∪Lex1 B(x) = [0.4, 0.8] and the Lex1-union of A
and C is the IVFS A∪Lex1 C(x) = [0.4, 0.8]. Thus, in this case, A∪Lex1 B = A∪Lex1 C = A.

• The Lex2-union of A and B is the IVFS A ∪Lex2 B(x) = [0.4, 0.8]. and the Lex2-union of
A and C is the IVFS A ∪Lex2 C(x) = [0.3, 0.9]. Thus, in this case, A ∪Lex2 B = A and
A ∪Lex2 C = C.

• The XY-union of A and B is the IVFS A ∪XY B(x) = [0.4, 0.8], and the XY-union of A and
C is the IVFS A ∪XY C(x) = [0.3, 0.9]. Thus, again A ∪XY B = A and A ∪XY C = C and
the union obtained for Lex2 and for XY are the same.
However, this is not true in general, since Lex2 compares the right endpoint of intervals
and XY the sum of both endpoints. For instance, if we consider D(x) = [0.2, 0.9], the
XY-union of A and D is the IVFS A ∪XY D(x) = [0.4, 0.8], but their Lex2-union is
A ∪Lex2 D(x) = [0.2, 0.9], as we can see in Figure 10.

0.2

0.4

0.6

0.8

1

A(x) D(x) A ∪XY D(x) A ∪Lex2 D(x)

Figure 10. Lex2-union is different from XY-union.
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Once we have introduced the basic concepts about different operations between IVFSs,
we can start to think about the necessary requirements of a measure to be an appropriate
way to quantify the difference between two IVFSs.

3. How to Compare Two Interval-Valued Fuzzy Sets?

As we described in detail at the Introduction, most of the measures of comparison
between IVFSs found in the literature provide a unique number as final outcome. Such a
simplification necessarily means a loss of information. In order to keep the idea underlying
IVFSs, the result of the comparison should not be an isolated value. This section contains a
discussion on the definition of measure of comparison between IVFSs. We consider the
axioms that should be included in the definition.

There are some natural requirements that underlie the idea of difference between two
interval-valued fuzzy sets:

REQ1 Non-negativity;
REQ2 Symmetry;
REQ3 It becomes zero when the two sets are “equal”;
REQ4 It takes into account the uncertainty associated to the width of the intervals;
REQ5 It decreases when the sets are closer.

Requirements REQ1, REQ2, and REQ3 are the usual ones for comparing any set, in
particular fuzzy sets. Requirement REQ4 gives expression to the idea that the width of the
interval is important. Requirement REQ5 describes the idea of proximity, and, as will later
be shown, it will be the characteristic axiom.

Let us study them in detail one by one.

3.1. Non-Negativity

Initially, the degree of difference between two IVFSs A and B is a closed interval in R,
that is, D(A, B) ∈ L(R).

It seems natural to require that D(A, B) is “non-negative”. This is required as follows:

D(A, B) ≥ 0

and therefore the codomain of D is not L(R) in general, but L([0, ∞)).
We can relate this requirement to the different orders among intervals as follows:

Proposition 7. Let D be a map from IVFS(X)× IVFS(X) into L(R) and consider the orders
recalled in subsection. For the statements

i) D(A, B) ≥ 0
ii) [0, 0] �ID D(A, B)
iii) [0, 0] �Lo D(A, B)
iv) [0, 0] �Lex1 D(A, B)
v) [0, 0] �Lex2 D(A, B)
vi) [0, 0] �XY D(A, B)
vii) [0, 0] �Mm D(A, B)
viii) [0, 0] �MM D(A, B)
ix) [0, 0] �H(α) D(A, B)
x) [0, 0] �wo D(A, B)
xi) [0, 0] �AB D(A, B)
xii) [0, 0] �to D(A, B)

we have that
i)⇔ ii)⇔ iii)⇔ iv)⇔ vii)

and i) implies v), vi), viii), ix), x), xi), and xii), but the converse is not true in general.
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Proof. Since 0 ≤ D(A, B) implies that [0, 0] �ID D(A, B), by the relationship among the
orders, we have the implication from i) to any other statement. For the last two cases we
have used that [0, 0] �Lo D(A, B) implies [0, 0] �to D(A, B) and therefore, in particular,
[0, 0] �AB D(A, B).

On the other hand, if [0, 0] �Mm D(A, B), then 0 ≤ D(A, B). Again taking into account
the relationship among the orders, we have vii) ⇒ i) and therefore also ii), iii) and iv)
implies i).

However, we have that [0, 0] �Lex2 [−0.1, 0.2], [0, 0] �XY [−0.1, 0.2], [0, 0] �MM
[−0.1, 0.2], [0, 0] �H(α) [−0.1, b] for any b ≥ 0.1α

1−α and [0, 0] �wo [−0.1, 0.2], but 0 6≤ −0.1, so
the converse implication is not fulfilled for these orders.

Since the lexicographical order of type 2 is an example of an AB-admissible order,
the converse implication is not fulfilled for this particular case of admissible order and, in
general, for admissible orders.

This proposition is represented in Figure 11.

D(A, B) ≥ 0 [0, 0] �ID D(A, B)

[0, 0] �Lo D(A, B)

[0, 0] �Lex1 D(A, B) [0, 0] �Mm D(A, B)

[0, 0] �to D(A, B)

[0, 0] �AB D(A, B)

[0, 0] �Lex2 D(A, B) [0, 0] �XY D(A, B)

[0, 0] �MM D(A, B) [0, 0] �wo D(A, B)

[0, 0] �H(α) D(A, B)

Figure 11. Non-negativity for different orders.

Thus, the first axiom for a measure of difference could be described as follows, de-
pending on the order considered:

A1 [0, 0] �o D(A, B)

On the other hand, if we suppose that the measure is upper bounded, then we can
normalize it and work in the same spaces where the IVFSs are defined, that is,

D(A, B) ∈ L(R) Axiom 1⇒ D(A, B) ∈ L([0, ∞))
Upper bound
⇒ D(A, B) ∈ L([0, 1]))

We will therefore assume that every measure of the difference, D, will have L([0, 1])
as codomain:

D : IVFS(X)× IVFS(X) −→ L([0, 1])
(A, B)  [D(A, B), D(A, B)]

3.2. Symmetry

Taking into account the previous comments, the logical way to formalize symmetry is:

A2 D(A, B) =o D(B, A)
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Thus, this axiom depends on the considered order and so the measure of difference.
If the relation is antisymmetric, it is clear that this requirement means that both intervals
are exactly the same. Thus, this happens for any real order (reflexive, antisymmetri,c and
transitive), but this is not true for any relation considered in Definition 1.

Proposition 8. Let D be a map from IVFS(X)× IVFS(X) into L([0, 1]). For the statements

i) D(A, B) = D(B, A) and D(A, B) = D(B, A)

ii) D(A, B) =ID D(B, A)
iii) D(A, B) =Lo D(B, A)
iv) D(A, B) =Lex1 D(B, A)
v) D(A, B) =Lex2 D(B, A)
vi) D(A, B) =XY D(B, A)
vii) D(A, B) =Mm D(B, A)
viii) D(A, B) =MM D(B, A)
ix) D(A, B) =H(α) D(B, A)

x) D(A, B) =wo D(B, A)
xi) D(A, B) =AB D(B, A)

we have that
i)⇔ iii)⇔ iv)⇔ v)⇔ vi)⇔ xi)

and they imply vii), viii), ix), and x), but the converse is not true in general. Moreover, ii) implies
i), but the converse is not true.

Proof. The equivalences are clear by antisymmetry and reflexivity of the involved orders
(see Table 1).

For the maximax order, we have that [0.2, 0.6] =MM [0.3, 0.6]. Thus, viii) 6⇒ i). Since
viii)⇒ x), we also have proven that x) 6⇒ i).

We also have that [0.2, 0.5] =Mm [0.2, 0.6] and so vii) 6⇒ i).
Furthermore, [0.2, 0.6] =H(1/2) [0.3, 0.5] and then ix) 6⇒ i).
Finally, ii)⇒ i) follows from the antisymmetry of interval dominance. Furthermore,

i) 6⇒ ii) follows from the fact that interval dominance is not reflexive.

This proposition is represented in Figure 12.

D(A, B) =ID D(B, A)

D(A, B) =Lo D(B, A)

D(A, B) =Lex1 D(B, A) D(A, B) =Lex2 D(B, A)
D(A, B) = D(B, A)
D(A, B) = D(B, A)

D(A, B) =XY D(B, A) D(A, B) =AB D(B, A)

D(A, B) =MM D(B, A) D(A, B) =Mm D(B, A)D(A, B) =H(α) D(B, A)

D(A, B) =wo D(B, A)

Figure 12. Symmetry for different orders.
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The fact that the equality given by the interval dominance is stronger that Condition i)
in the previous proposition should not be undervalued. If we study in depth Condition ii),
we find the following lemma.

Lemma 1. Let D be a map from IVFS(X)× IVFS(X) into L([0, 1]). Then D is symmetric with
respect to the interval dominance if and only if its image is a number in [0, 1]; that is, if and only if
D(A, B) is a unique value (not an interval) for any A, B ∈ IVFS(X).

Proof. Take A, B any two IVFS(X) and call D(A, B) = [d, d] and D(B, A) = [d′, d′]. In or-
der for D(A, B) =ID D(B, A), it should hold both D(A, B) ≤ID D(B, A) and D(B, A) ≤ID
D(A, B).

Now D(A, B) ≤ID D(B, A) holds if and only if d ≤ d′ and D(B, A) ≤ID D(A, B)
holds if and only if d′ ≤ d.

So d ≤ d′ ≤ d′ ≤ d. Then, necessarily, d = d′ = d′ = d and D(A, B) becomes a
number for any pair of IVFSs, A and B, considered.

Thus, if interval dominance is the interval order chosen the measure of difference
between any two IVFSs has to be a unique value. However, this is counterintuitive as we
have explained above: the measure that quantifies how different two IVFSs are should be
an interval. This is again an argument to consider orders in L([0, 1]) and not any relation in
Definition 1.

3.3. Zero Difference

Another condition that is assumed to be logical when measuring differences is that
the difference should be zero only when the two sets compared are the same. The original
idea would be that

D(A, B) =0 [0, 0] if and only if A = B , for A, B ∈ IVFS(X) ,

where the equality between IVFSs is the classical equality between sets: A(x) = B(x) for
all x ∈ X. However, according to the epistemic interpretation, two elements with the same
interval membership need not necessarily have the same (unknown) actual real-valued
membership degree, as we can see with the following example.

Example 7. If we consider the IVFSs A and B represented in Figure 13, where the known member-
ship degree is represented as well as the (unknown) real membership function, we have that

A(x) = B(x), ∀x ∈ X but A 6= B

X

Membership

0

0.2

0.4

0.6

0.8

1 A

X

Membership

0

0.2

0.4

0.6

0.8

1 B

Figure 13. Comparing the real value of the sets.

Thus, under the epistemic viewpoint, two IVFSs are only considered to be truly equal
if they necessarily take the same value, i.e., if they are the same fuzzy set. So the difference
between two IVFSs has to be zero if and only if both are fuzzy sets and they are equal. The
axiom can be written as follows:

A3 D(A, B) =o [0, 0] iff A, B ∈ FS(X) and A = B.
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The equality above depends on the order considered between IVFSs. Next, we study
for which of the orders considered in Definition 1 the previous equality actually means
D(A, B) = [0, 0].

Proposition 9. Let D be a map from IVFS(X)× IVFS(X) into L([0, 1]), and consider the orders
recalled in Section 2.1. For the statements

i) D(A, B) = D(A, B) = 0
ii) D(A, B) =ID [0, 0]
iii) D(A, B) =Lo [0, 0]
iv) D(A, B) =Lex1 [0, 0]
v) D(A, B) =Lex2 [0, 0]
vi) D(A, B) =XY [0, 0]
vii) D(A, B) =Mm [0, 0]
viii) D(A, B) =MM [0, 0]
ix) D(A, B) =H(α) [0, 0]
x) D(A, B) =wo [0, 0]
xi) D(A, B) =AB [0, 0]

we have that
i)⇔ ii)⇔ iii)⇔ iv)⇔ v)⇔ vi)⇔ viii)⇔ ix)⇔ xi)

and they imply vii) , and x) but the converse is not true in general.

Proof. By simplicity, we denote D(A, B) by a = [a, a].
By antisymmetry, it is clear that

i)⇔ ii)⇔ iii)⇔ iv)⇔ v)⇔ vi)⇔ xi)

From Proposition 8 we know that a = a = 0 implies that [a, a] =Mm [0, 0], [a, a] =MM
[0, 0], [a, a] =H(α) [0, 0], and [a, a] =wo [0, 0]. Conversely, it is trivial to prove that [a, a] =MM
[0, 0] is only fulfilled if both numbers are zero. Moreover, if [a, a] =H(α) [0, 0], we obtain
that αa + (1− α)a = 0, and this is equivalent to saying that a = a = 0. So the equivalence
is also obtained for the maximax and the Hurwicz orders.

However, [0, 0] =Mm [0, 0.2] and [0, 0] =wo [0, 0.2], and therefore the reciprocal is not
fulfilled for these orders.

The above proposition is summarized in Figure 14.

D(A, B) =ID [0, 0]D(A, B) =Lo [0, 0]

D(A, B) =Lex1 [0, 0] D(A, B) =Lex2 [0, 0]D(A, B) = 0
D(A, B) = 0

D(A, B) =XY [0, 0] D(A, B) =AB [0, 0]

D(A, B) =MM [0, 0]

D(A, B) =Mm [0, 0]

D(A, B) =H(α) [0, 0]

D(A, B) =wo [0, 0]

Figure 14. Zero difference for different orders.
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3.4. The Importance of the Widths of the Intervals

The previous axioms are just direct translations from the ones considered in the context
of fuzzy sets, and they will be the same even in the case the measure of difference is just a
number. However, now we have to take into account the widths of the intervals. The next
requirement is considered in order to deal properly with this uncertainty.

First of all, we will consider the following example for understanding the idea we are
trying to formalise.

Example 8. Let A, B, and C be the IVFSs represented in Figure 15.

X

Membership

0

0.2

0.4

0.6

0.8

1
C

B
A

Figure 15. Related IVFSs with different widths.

It is clear that B is embedded in C, which is denoted by B v C, since

B(x) ⊆ C(x), ∀x ∈ X

As a consequence, for any third IVFS, A, the uncertainty when comparing A and C must be greater
than the uncertainty when comparing A and B. Thus, for instance, in Figure 15 we are almost sure
that A and B are very similar and the difference should be something similar to D(A, B) ≈ [0, 0.1],
but when we compare A to C, we find that they could be equal but they could also be very different.
A reasonable value could be D(A, C) ≈ [0, 0.7].

Thus, bigger uncertainty of the IVFS C with respect to B should mean bigger uncer-
tainty in the measure of difference between C and a third IVFS A than between B and A.
This implies that D(A, C) is a more imprecise interval than D(A, B), which is equivalent to
saying that

D(A, B) ⊆ D(A, C)

In general, this requirement can be formalized as follows:

A4 If B v C, then D(A, B) ⊆ D(A, C)

Here no order between intervals is involved, just the classical content between in-
tervals, and therefore, no study about the behaviour of the different interval orders is
required.

Corollary 3. Let D : IVFS(X)× IVFS(X)→ L([0, 1]) satisfying Axioms A2, A3, and A4. If
A and B are two IVFSs satisfying that A(x) ∩ B(x) 6= ∅ for every x ∈ X, then it holds that
D(A, B) = 0.

Proof. Assume that αx ∈ A(x) ∩ B(x). Now take C the IVFS C(x) = [αx, αx] for every
x ∈ X; that is, C is a fuzzy set. According to Axiom A3, D(C, C) = [0, 0]. On the other hand,
C v A and C v B; therefore, applying Axiom A4 twice and the symmetry (Axiom A2), we
have that 0 = D(C, C) ≥ D(A, C) ≥ D(A, B).



Mathematics 2021, 9, 3157 17 of 30

Moreover, this axiom ensures that the imprecision about the difference between any
two interval-valued fuzzy sets is greater than or equal to the one between the two furthest
apart (fuzzy) sets in A and B, as we can see from the following corollary.

Corollary 4. Let D : IVFS(X)× IVFS(X) → L([0, 1]) satisfying Axioms A2 and A4. Let A
and B be any two IVFSs defined as A(x) = [A(x), A(x)] and B(x) = [B(x), B(x)] for any x ∈ X.
If we consider the fuzzy set A and B defined as A(x) = A(x) and B(x) = B(x) for any x ∈ X,
we have that D(A, B) ⊆ D(A, B).

Proof. It is clear that A v A and B v B. Then, D(A, B) ⊆ D(A, B) = D(B, A) ⊆
D(B, A) = D(A, B), by applying twice Axioms A2 and A4.

3.5. Proximity

It is clear that every definition of the measure of the comparison between two IVFSs
should satisfy the four properties REQ1–REQ4 and, from the previous subsection, they
could be immediately rewritten as:

A1. [0, 0] �o D(A, B).
A2. D(A, B) =o D(B, A).
A3. D(A, B) =o [0, 0] iff A, B ∈ FS(X) and A = B.
A4. If B v C, then D(A, B) ⊆ D(A, C).

However, they should also fulfil the fifth natural requirement:

REQ5 For closer IVFs, the difference measure has to be smaller.

The four previous conditions are commonly accepted in the literature in the sense that
most authors formalise them in the same way. However, for this fifth condition, multiple
(quite different) alternatives have been proposed, leading to different definitions such us
the notion of distance, divergence, or dissimilarity. We next revisit the three definitions and
discuss about their convenience to model differences among IVFSs quantified by means of
intervals.

3.5.1. Distances

In the definition of distance, Requirement REQ5 is formalized by means of the well-
known triangular inequality:

DIST.A5 Triangular inequality: D(A, B) �o D(A, C) + D(C, B).

which is here adapted to the case of IVFSs and orders in L([0, 1]).
However, this could be a little difficult to justify if we consider that the interval which

represents the membership function is just an imprecise information, as we can see with
the following example.

Example 9. Let us consider a referential X and A(x) = [0, 0.2], B(x) = [0.8, 1] and C = [0.1, 0.9]
for any x ∈ X.

These sets are graphically represented in Figure 16.
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A B

C

Membership

0
0.2
0.4
0.6
0.8

1

A
X
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0
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0.6
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1

A
X
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Figure 16. Distance between different IVFSs.

Then D(A, B) seems to be greater than 0, since they have never the same membership func-
tion. However, A(x) and C(x) could have the same value, and, from Corollary 3, we have that
D(A, C) = [0, α]. The same happens for B and C, since B(x) ∩ C(x) 6= ∅, ∀x ∈ X. Thus,
D(C, B) = [0, β] and D(A, C) + D(C, B) = [0, γ], and it is not greater than or equal to D(A, B)
for the lattice order or the lexicographical order type 1.

Remark 1. About distances we have yet another problem apart from the previous counterintuitive
example we considered for the triangular inequality. This is that if we deal with fuzzy sets, the
distance is a number. If we deal with IVFSs, the distance should be an interval. In both cases, we
can define the sum. However, what happens if we consider lattice-valued fuzzy sets, for instance, if
the membership function assumes values that are colours? In that case, the definition of the sum is
not so immediate. However, if we just consider an order, as we do for dissimilarities and divergences,
we can deal with this concept in a more general environment.

3.5.2. Divergences

Trying to avoid the previous problems, the fifth axiom should not be based on a
triangular inequality, since we are not trying to measure a distance, but the difference
between two sets, which is not exactly the same in general. Now we are not studying if
they are “close” or “far”, but if they are similar in the sense of the description of the set.

In this sense, the fifth requirement expresses the idea that the more similar the sets
are, the lower the measure of difference between them. For fuzzy sets this condition can be
formalised as follows:

D(A ∩ C, B ∩ C) ≤ D(A, B) and D(A ∪ C, B ∪ C) ≤ D(A, B)

and the result is the notion of divergence between fuzzy sets. Montes et al. [8] showed
that this is a good option to compare fuzzy sets. Then, it is natural to think of translating
this property into the context of IVFSs and that it could perform well in this context too.
Consider that the value of the divergence is now an interval and taking into account any
order in L([0, 1]), Axiom 5 could be as follows:

DIV.A5 D(A ∩o C, B ∩o C) �o D(A, B) and D(A ∪o C, B ∪o C) �o D(A, B) .

It is again based on the interval order chosen, but if we consider a total order, we are
requiring these conditions for any A, B, C ∈ IVFS(X). For the particular case of the lattice
order, we can obtain some nice properties that follow from this condition.

Proposition 10. Let D : IVFS(X) × IVFS(X) → L([0, 1]) satisfy Axiom DIV.A5. Then,
∀A, B ∈ IVFS(X)

1. D(A ∩Lo B, B) �Lo D(A, A ∪Lo B).
2. D(A ∩Lo B, B) �Lo D(A, B).
3. D(A ∩Lo B, B) �Lo D(A ∩Lo B, A ∪Lo B).
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4. D(B, A ∪Lo B) �Lo D(A ∩Lo B, A ∪Lo B).

Proof. 1. Call E = A, F = A ∪Lo B and G = B and apply the first part of Axiom DIV.A5:

D(E ∩Lo G, F ∩Lo G) �Lo D(E, F) ,

since F ∩Lo G = (A ∪Lo B) ∩Lo B = B, the inequality follows.
2. It Follows from the first part of Axiom DIV.A5 taking C = B.
3. Call E = A ∩Lo B, F = A ∪Lo B and G = B. Applying the first condition in Axiom

DIV.A5:
D(E ∩Lo G, F ∩Lo G) �Lo D(E, F) ,

since F ∩Lo G = (A ∪Lo B) ∩Lo B = B, the inequality follows.
4. It follows from applying the second condition in Axiom DIV.A5 to the sets E = A∩Lo B

and F = A ∪Lo B and G = B.

In general, for any order �o, we obtain the following definition of divergence in
IVFS(X).

Definition 6. A mapping D : IVFS(X)× IVFS(X)→ L([0, 1]) satisfying

A1. [0, 0] �o D(A, B)
A2. D(A, B) =o D(B, A)
A3. D(A, B) =o [0, 0] iff A, B ∈ FS(X) and A = B
A4. If B v C, then D(A, B) ⊆ D(A, C)
DIV.A5 D(A ∩o C, B ∩o C) �o D(A, B) and D(A ∪o C, B ∪o C) �o D(A, B) .

is a divergence between IVFSs.

For the particular case of the lattice order or the interval dominance, we can obtain
divergences between fuzzy sets from divergences between IVFSs as follows.

Proposition 11. Let �0 be the lattice order or the interval dominance and let A be an aggregation
function.
Let D be a divergence measure in IVFS(X). Then the map D|FS(X) : FS(X)× FS(X)→ FS(X),
defined as

D|FS(X)(A, B) = A(D(A′, B′), D(A′, B′))

with A′(x) = [A(x), A(x)] and B′(x) = [B(x), B(x)] for any x ∈ X is a divergence measure
in FS(X).

Proof. We have to check that D|FS(X) satisfies the three conditions of the definition of
divergence between fuzzy sets.

1. Symmetry of D|FS(X) follows from symmetry of D.
2. Since D(A′, A′) = [0, 0] for every A ∈ FS(X), also A(D(A′, A′), D(A′, A′)) =

A(0, 0) = 0.
3. Let us first prove that D|FS(X)(A ∩ C, B ∩ C) ≤ D|FS(X)(A, B) for any C ∈ FS(X).

By definition, D|FS(X)(A, B) = A(D(A′, B′), D(A′, B′)) and

D|FS(X)(A ∩ C, B ∩ C) = A(D((A ∩ C)′, (B ∩ C)′), D((A ∩ C)′, (B ∩ C)′)) .

According to Corollary 1, A′ ∩0 C′ = (A ∩ C)′ = [min(a, c), min(a, c)] and B′ ∩0 C′ =
(B ∩ C)′ = [min(b, c), min(b, c)]. Then D((A ∩ C)′, (B ∩ C)′) = D(A′ ∩0 C′, B′ ∩0
C′) �0 D(A′, B′), where the inequality follows from Axiom DIV.A5. For the in-
terval dominance order this implies that D(A′ ∩0 C′, B′ ∩0 C′) ≤ D(A′, B′) and

D(A′ ∩0 C′, B′ ∩0 C′) ≤ D(A′, B′) and the proof follows from the monotonicity of A.
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The proof for the union is totally analogous.

Therefore, D|FS(X) is a divergence between fuzzy sets.

The previous results seems to strengthen the idea of divergence. However, for most
of the interval orders recalled in Section 2.1, Axiom DIV.A5 is incompatible with the
other axioms.

For Axiom A3, we obtain the following lemma, which could be considered as a
stronger version of this axiom.

Lemma 2. For every mapping D : IVFS(X)× IVFS(X)→ L([0, 1]) satisfying Axioms A3 and
DIV.A5 for one of the following interval orders: lattice order, lexicographic order of type 1 or type 2
or Xu and Yager, it holds that

D(A, A) = [0, 0]

for every A ∈ IVFS(X).

Proof. Let A be any element in IVFS(X) and let B be the element in IVFS(X) defined as:

B(x) =

[
sup
x∈X

A(x), sup
x∈X

A(x)

]

for any x ∈ X.
According to Proposition 3, using the lattice order, any of the lexicographic orders or

Xu and Yager order, we get that A ∩o B = A.
Then, for a measure of difference that satisfies Axiom DIV.A5, it holds that

D(A, A) = D(A ∩o B, A ∩o B) �0 D(B, B) .

According to Axiom A3, D(B, B) = [0, 0] for any B being a fuzzy set. So we get D(A, A) �o
[0, 0]. However, for the interval orders considered above (lattice order, lexicographic orders
and Xu and Yager order), the only possibility then is D(A, A) = [0, 0].

Even if we consider IVFSs from an ontic point of view and we relax Axiom A3, that is,
even if we admit D(A, A) =o [0, 0] for any A as a reasonable property, Axiom A4 forces
the difference between any set and its subsets to be zero:

Corollary 5. For any D : IVFS(X)× IVFS(X) → L([0, 1]) satisfying Axioms A2, A3, A4,
and DIV.A5 for one of the following interval orders: lattice order, lexicographic order of type 1 or
type 2 or Xu and Yager, it holds that:

D(A, B) = [0, 0] for any IVFSs such that A v B .

Proof. To prove this, it suffices to apply Axioms A2 and A4: D(A, B) ⊆ D(B, B). However,
as proven in Lemma 2, D(B, B) = [0, 0] and therefore D(A, B) = [0, 0].

Furthermore, this implies that the difference between any two IVFSs is zero, as we
will see now.

Corollary 6. For any D : IVFS(X)× IVFS(X) → L([0, 1]) satisfying Axioms A2, A3, A4,
and DIV.A5 for one of the interval orders lattice order, lexicographic order of type 1 or type 2, or Xu
and Yager, it holds that:

D(A, B) = [0, 0] for any A, B ∈ IVFS(X).

Proof. Take A, B, and any IVFSs. Since A v O1, where O1(x) = [0, 1], ∀x ∈ X, by
Axioms A2 and A4, it holds that D(A, B) ⊆ D(O1, B). However, also B v O1, then
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D(O1, B) = [0, 0] as proven above. Therefore, D(A, B) ⊆ [0, 0]. Equivalently, D(A, B) =
[0, 0].

Thus, if Axiom DIV.A5 is kept and we consider the most common interval orders,
including lattice order, a contradiction between Axiom DIV.A5 and the other axioms in
the definition of divergence arrives. Even if we admit a weaker version of Axiom 3, the
combination of this relaxed version of Axiom 3, Axiom 2, Axiom 4, and Axiom DIV.A5
makes the constant function that assigns to every pair of IVFSs the value [0, 0], the only
possible measure of difference between IVFSs.

Therefore, the combination of Axioms 2, 3, 4, and DIV.A5 forces the use of interval
dominance to compare the intervals. However, interval dominance is not an order, and
due to the lack of reflexivity, it also leads to the constant function if we combine it with
Axiom 2, as proven in Lemma 1.

By all theses studies, we can conclude that the use of divergences is not appropriate
for the case of IVFSs.

3.5.3. Dissimilarities

We have seen that the notion of distance, in particular the triangular inequality, is
not appropriate to capture the idea of difference between two IVFSs. However, we find
intuitive a property of the type “the closer the sets, the smaller the difference”. We have
seen that the attempt to formalize “closer” by intersections and unions of IVFSs, that is,
by generalizing divergencies to IVFSs leads to incompatibilities among axioms. Then, an
alternative way to express the closeness of IVFSs must be considered. Dissimilarities use
interval orders to capture the proximity notion: given an interval order and three IVFSs
A, B, and C, A is supposed to be closer to B than to C if A ⊆o B ⊆o C, and since A is
closer to B than to C and, on the contrary, C is closer to B than to A, the corresponding
dissimilarities should be ordered in accordance with this idea of proximity.

A5 If A ⊆o B ⊆o C, then D(A, B) �o D(A, C) and D(B, C) �o D(A, C).

With this condition, the definition of dissimilarity between IVFSs would look as follows:

Definition 7. Let �o be any of the orders recalled in Section 2.1. A mapping D : IVFS(X)×
IVFS(X)→ L([0, 1]) satisfying

A1. [0, 0] �o D(A, B)
A2. D(A, B) =o D(B, A)
A3. D(A, B) =o [0, 0] iff A, B ∈ FS(X) and A = B
A4. If B v C, then D(A, B) ⊆ D(A, C)
A5. If A ⊆o B ⊆o C, then D(A, B) �o D(A, C) and D(B, C) �o D(A, C)

is a dissimilarity between IVFSs.

Example 10. • The map

D0(A, B) =
{

[0, 0] if A, B ∈ FS(X), A = B,
[0, 1] otherwise.

is a dissimilarity w.r.t. the lattice order since for any A, B, C ∈ IVFS(X) we have that:

A1. [0, 0] �Lo D0(A, B).
By definition 0 ≤ D0(A, B) and 0 ≤ D0(A, B) for every A, B ∈ IVFS(x).

A2. D0(A, B) =Lo D0(B, A).
Symmetry also follows immediately from the definition.

A3. D0(A, B) =Lo [0, 0] iff A, B ∈ FS(X) and A = B.
As proven in Proposition 8, D0(A, B) =Lo [0, 0] if and only if D0(A, B) = [0, 0].
(Remember that this is not always the case. For instance, if we set the Mm-order, the
equality D0(A, B) =Mm [0, 0] holds for any A, B ∈ IVFS(X)).
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A4. If B v C, then D0(A, B) ⊆ D0(A, C).
If D0(A, B) takes the value [0, 0], it is trivial.
If D0(A, B) takes the value [0, 1], this means that either A is not a fuzzy set, or B is not a
fuzzy set or both of them are fuzzy sets but they are not equal. In the first case, D0(A, C)
is also [0, 1]. In the second case, since B v C, C is not a fuzzy set and therefore D0(A, C)
also coincides with [0, 1]. In the third case, since B is a fuzzy set different from A and
B v C, we have that either

– C is the same fuzzy set as B and then A and C are two different fuzzy sets and
D0(A, C) is [0, 1].

– Or C is a proper IVFS containing B. Since C is not a fuzzy set, then D0(A, C) is
[0, 1].

A5. If A ⊆Lo B ⊆Lo C, then D0(A, B) �Lo D0(A, C) and D0(B, C) �Lo D0(A, C).
If D0(A, C) is [0, 1] the proof is trivial.
If D0(A, C) is [0, 0], then A and C are the same fuzzy set. From A ⊆Lo B ⊆Lo C we
have that then B is the same fuzzy set and the proof is concluded.

As a direct consequence of Propositions 7, 8 and 9 D0 also fulfils Axioms A1, A2, A3 and A4
for any AB-order (recall that Axiom A4 does not depend on the order considered). Moreover,
Axiom A5 is also fulfilled for any AB-order, by taking into account that [0, 0] �AB [0, 1] by
the monotonicity of the aggregation functions, and then we could provide a proof similar to the
previous one.
Thus, D0 is an Lo-dissimilarity and an AB-dissimilarity, and it is called the trivial dissimilar-
ity.

• For X a finite set, the dissimilarity induced by a numerical distance:

D1(A, B) =
1
|X| ∑

x∈X

[
inf

a∈A(x),b∈B(x)
|a− b|, sup

a∈A(x),b∈B(x)
|a− b|

]
is a dissimilarity with respect to the lattice order.
Axiom A1: Follows from the fact that |a− b| ≥ 0 for any two values a and b ∈ R.
Axiom A2: Follows from the symmetry of the absolute value of the difference: |a− b| = |b− a|
for any two values a and b ∈ R.
Axiom A3: D1(A, B) = [0, 0] if and only if[

inf
a∈A(x),b∈B(x)

|a− b|, sup
a∈A(x),b∈B(x)

|a− b|
]
= [0, 0]

for all x ∈ X. For each x ∈ X, this happens if and only if |a− b| = 0 for all a ∈ A(x), b ∈
B(x); therefore, if and only if A(x) = B(x) and equal to just one value. If this happens for all
x ∈ X, then it is equivalent to A and B being the same fuzzy set.
Axiom A4: Assume B v C. We have to prove that D1(A, B) ⊆ D1(A, C). It is sufficient to
prove that for every x ∈ X it holds that[

inf
a∈A(x),b∈B(x)

|a− b|, sup
a∈A(x),b∈B(x)

|a− b|
]
≤
[

inf
a∈A(x),c∈C(x)

|a− c|, sup
a∈A(x),c∈C(x)

|a− c|
]

.

Equivalently, we will prove that

(I) inf
a∈A(x),c∈C(x)

|a− c| ≤ inf
a∈A(x),b∈B(x)

|a− b| .

(II) sup
a∈A(x),b∈B(x)

|a− b| ≤ sup
a∈A(x),c∈C(x)

|a− c| .

Call A(x) = [a, a], B(x) = [b, b] and C(x) = [c, c]. Since B v C, it holds that [b, b] ⊆ [c, c].
Equivalently, c ≤ b ≤ b ≤ c.

(I) To prove that inf
a∈A(x),c∈C(x)

|a− c| ≤ inf
a∈A(x),b∈B(x)

|a− b|, we distinguish three cases:
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* a < c (then [a, a] ∩ [c, c] = ∅).
In this case

inf
a∈A(x),c∈C(x)

|a− c| = |a− c| ≤ |a− b| = inf
a∈A(x),b∈B(x)

|a− b| .

* [a, a] ∩ [c, c] 6= ∅
In this case

inf
a∈A(x),c∈C(x)

|a− c| = 0 ≤ inf
a∈A(x),b∈B(x)

|a− b| .

* c < a (then [a, a] ∩ [c, c] = ∅).
In this case,

inf
a∈A(x),c∈C(x)

|a− c| = |c− a| ≤ |b− a| = inf
a∈A(x),b∈B(x)

|a− b| .

In any case, (I) follows.

In order to prove (II), let us note the following: for any closed intervals D = [d, d] and
E = [e, e] in R it holds that

sup
d∈D,e∈E

|d− e| = max{|d− e| , |d− e|} .

The equality |d− e| = |d− e| can only hold if D = E. If this is not the case, max{|d−
e| , |e− d|} = |d− e| > |d− e| implies d < e (otherwise d ≥ d ≥ e ≥ e and |d− e| ≤
|d− e|. A contradiction).

(II) The proof of sup
a∈A(x),b∈B(x)

|a − b| ≤ sup
a∈A(x),c∈C(x)

|a − c| follows from the previous

remark.

* If [a, a] = [b, b], then [a, a] ⊆ [c, c] and

sup
a∈A(x),b∈B(x)

|a− b| = |b− b| ≤ max{|b− c| , |c− b|} ≤ max{|a− c| , |c− a|} = sup
a∈A(x),c∈C(x)

|a− c| .

Otherwise,

* If sup
a∈A(x),b∈B(x)

|a− b| = |a− b| then a < b ≤ c so that

sup
a∈A(x),b∈B(x)

|a− b| = |a− b| ≤ |a− c| ≤ sup
a∈A(x),c∈C(x)

|a− c| .

* Analogously, if sup
a∈A(x),b∈B(x)

|a− b| = |a− b| then c ≤ b < a so that

sup
a∈A(x),b∈B(x)

|a− b| = |a− b| ≤ |a− underlinec| ≤ sup
a∈A(x),c∈C(x)

|a− c| .

Axiom A5: Assume A ⊆Lo B ⊆Lo C. Observe that

D1(A, B) =

[
1
|X| ∑

x∈X
inf

a∈A(x),b∈B(x)
|a− b|, 1

|X| ∑
x∈X

sup
a∈A(x),b∈B(x)

|a− b|
]

.

Then, in order to prove that D1(A, B) �Lo D1(A, C), it suffices to prove that for every x ∈ X,

inf
a∈A(x),b∈B(x)

|a− b| ≤ inf
a∈A(x),c∈C(x)

|a− c| and sup
a∈A(x),b∈B(x)

|a− b| ≤ sup
a∈A(x),c∈C(x)

|a− c| .
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Fix an element x ∈ X and call A(x) = [a, a], B(x) = [b, b] and C(x) = [c, c]. Since
A ⊆Lo B ⊆Lo C, a ≤ b ≤ c, so that

sup
a∈A(x),b∈B(x)

|a− b| = b− a ≤ c− a = sup
a∈A(x),c∈C(x)

|a− c|.

We now prove inf
a∈A(x),b∈B(x)

|a− b| ≤ inf
a∈A(x),c∈C(x)

|a− c|.

– if a ≤ b, then inf
a∈A(x),b∈B(x)

|a− b| = b− a ≤ c− a = inf
a∈A(x),c∈C(x)

|a− c|.

– If a > b, then inf
a∈A(x),b∈B(x)

|a− b| = 0 ≤ inf
a∈A(x),c∈C(x)

|a− c|.

Therefore, in any case,

D1(A, B) =
1
|X| ∑

x∈X

[
inf

a∈A(x),b∈B(x)
|a− b|, sup

a∈A(x),b∈B(x)
|a− b|

]
�Lo

1
|X| ∑

x∈X

[
inf

a∈A(x),c∈C(x)
|a− c|, sup

a∈A(x),c∈C(x)
|a− c|

]
= D1(A, C) .

• For X, a non-finite set, the previous function may not be a dissimilarity.
Take X = [0, 1] and

D1(A, B) = 1
|X|

∫
x∈X

[
inf

a∈A(x),b∈B(x)
|a− b|, sup

a∈A(x),b∈B(x)
|a− b|

]

=
∫ 1

0

[
inf

a∈A(x),b∈B(x)
|a− b|, sup

a∈A(x),b∈B(x)
|a− b|

]

Take A(x) = [0, 0] for x ∈ X and B(x) = [0, 1] for x = 1
n and B(x) = 0 elsewhere. Then,

sup
a∈A(x),b∈B(x)

|a − b| = 1 for x ∈ { 1
n |n ∈ N} and sup

a∈A(x),b∈B(x)
|a − b| = 0, elsewhere.

Since sup
a∈A(x),b∈B(x)

|a − b| = 0 almost everywhere,
∫

x∈X
sup

a∈A(x),b∈B(x)
|a − b| = 0 and

D1(A, B) = [0, 0] despite they are not the same fuzzy set. We have then proven that D1 does
not satisfy Axiom A3.

• Let A and B be two continuous aggregation functions. The dissimilarity induced by a
numerical distance:

D1(A, B) =
1
|X| ∑

x∈X

[
inf

a∈A(x),b∈B(x)
|a− b|, sup

a∈A(x),b∈B(x)
|a− b|

]
is NOT necessarily a dissimilarity with respect to the admissible order �A,B .
Take as an example the aggregation functions A = min and B = max. Consider the universe
X = {x} and the IVFSs A(x) = [0.2, 0.8], B(x) = [0.3, 0.6] and C(x) = [0.45, 0.55]. Then
clearly A ⊆A,B B ⊆A,B C but

D1(A, B) =

[
inf

a∈A(x),b∈B(x)
|a− b|, sup

a∈A(x),b∈B(x)
|a− b|

]
= [0, 0.5] 6�A,B

[0, 0.35] =

[
inf

a∈A(x),c∈C(x)
|a− c|, sup

a∈A(x),c∈C(x)
|a− c|

]
= D1(A, C) .

Axiom A5 is a generalization of the condition found in Torres-Manzanera et al. [32]:

TOR.A5 If A ⊆Lo B ⊆Lo C, then D(A, B) �Lo D(A, C) and D(B, C) �Lo D(A, C).
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This is Axiom A5 for the particular case of the lattice order.
Takáč et al. [31] provided a similar condition but only for intervals with the same width.

TAK.A4 If A ⊆Lo B ⊆Lo C and w(A(x)) = w(B(x)) = w(C(x)) for all x ∈ X, then
D(A, B) �Lo D(A, C) and D(B, C) �Lo D(A, C) ,

where for any [a, b] ⊆ [0, 1], w([a, b]) is the width of the interval, that is, w([a, b]) = b− a.
Despite its similarity to our Axiom A5, we have called it here TAK.A4, since it is

the forth axiom in the definition of dissimilarity considered in [31]. These authors do not
include any condition similar to Axiom A4 in their definition. For the sake of completeness,
we next recall the definition given by Takáč et al.:

Definition 8. [31] Let �Lo be the lattice order. A mapping D : IVFS(X) × IVFS(X) →
L([0, 1]) is a dissimilarity measure in IVFS(X) if it satisfies:

TAK.A1 D(A, B) = D(B, A);
TAK.A2 D(A, B) =Lo [0, 0] if and only if A = B and A, B ∈ FS(X);
TAK.A3 D(A, B) =Lo [1, 1] if and only if A(x), B(x) = 0, 0], [1, 1] for all x ∈ X;
TAK.A4 If A ⊆Lo A′ ⊆Lo B′ ⊆Lo B and w(A(x)) = w(A′(x)) = w(B′(x)) = w(B(x)) for

all x ∈ X, then D(A, B) �Lo D(A′, B′).

This definition is clearly less restrictive than Definition 7. Condition TAK.A4 is less
restrictive than A5. It neither implies Axiom A4 as we prove next.

Proposition 12. Consider the lattice order.

• Axiom A5 implies Condition TAK.A4.
• Condition TAK.A4 does not imply Axiom A4, even in the case Conditions TAK.A1, TAK.A2,

and TAK.A3 are fulfilled.
• Condition TAK.A4 does not imply Axiom A5, even in the case Conditions TAK.A1, TAK.A2,

and TAK.A3 are fulfilled.

Proof. • Condition TAK.A4 is a particular case of Axiom A5, so the implication is
immediate.

• Let us now see that Axiom TAK.A4 does not imply Axiom A4. Take X = {x}. Then
the function

D(A, B) =


[1, 1] if {A(x), B(x)} = {[1, 1], [0, 0]}

[0, w(A)] if A(x) = B(x)
[0.2, 1] otherwise.

is a dissimilarity measure in the sense of Takáč et al. In fact, conditions TAK.A1,
TAK.A2 and TAK.A3 are satisfied by the definition of D. Condition TAK.A4 also holds
for the lattice order: we will prove that if A ⊆Lo B ⊆Lo C and w(A(x)) = w(B(x)) =
w(C(x)), then D(A, B) �Lo D(A, C) (the case D(B, C) �Lo D(A, C) being analogous).
If D(A, C) = [1, 1], then the condition holds trivially. Now assume D(A, C) 6= [1, 1];
then A 6= [0, 0] or C 6= [1, 1]. If A = C, then also A = B = C, and the inequality also
holds trivially.
If A 6= C, then D(A, C) = [0.2, 1]. If A = B, then D(A, B) = [0, w(A)] �Lo [0.2, 1]
whatever w(A) is. Furthermore, if A 6= B, then D(A, B) = [0.2, 1] = D(A, C) and the
inequality also holds.
However, this function does not satisfy A4. Consider B(x) = [0.3, 0.4] and C(x) =
[0.2, 0.5]; we have that B v C and

D(B, B) = [0, 0.1] 6⊆ D(B, C) = [0.2, 1] .
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• Take X = {x} and the function D : IVFS(X)× IVFS(X)→ L([0, 1]) defined as:

D(A, B) =


[0, 0] if A = B ∈ FS(X)
[1, 1] if {A(x), B(x)} = {[0, 0], [1, 1]}

[0.2, 0.2] if w(A(x)) = w(B(x)), A 6= B
[0.4, 0.4] if w(A(x)) 6= w(B(x))

It is straightforward to check that D satisfies Definition 8 for a dissimilarity. However,
it does not satisfy Axiom A5: consider A = [0.2, 0.3], B = [0.4, 0.6] and C = [0.7, 0.8].
Then D(A, B) = [0.4, 0.4] 6�Lo [0.2, 0.2] = D(A, C).

Condition TAK.A4 is weaker than Condition TOR.A5, even if we also impose the
other four axioms we have discussed above, i.e.,

A1 + A2 + A3 + A4 + TAK.A4 6⇒ A5

If we take the lattice order as the interval order, even if we combine the previous axioms
with Condition TAK.A3, Axiom TOR.A5 is not guaranteed:

A1
A2
A3
A4
TAK.A3
TAK.A4


6⇒ A5

as the following example shows.

Example 11. Take X = {x} and D : IVFS(X)× IVFS(X)→ L([0, 1]) defined as

D(A, B) =



[0, 0] if A = B ∈ FS(X) ,
[1, 1] if {A, B} = {[0, 0], [1, 1]} ,
[0, 1] if A = [0, α] and B = [β, 1] or B = [0, α] and A = [β, 1]

but {A, B} 6= {[0, 0], [1, 1]} ,
[0, 0.3] if 0 /∈ A or 1 /∈ B (and the opposite: 0 /∈ B or 1 /∈ A)

and max(w(A(x)), w(B(x))) ≤ 0.1 and if
{A, B} ∈ FS(x), then A 6= B

[0, 0.4] if 0 /∈ A or 1 /∈ B (and the opposite: 0 /∈ B or 1 /∈ A)
and max(w(A(x)), w(B(x))) > 0.1

It is easy to check that D satisfies conditions A1, A2, A3, A4, and TAK.A3 and TAK.A4. However,
it does not satisfy Axiom A5 for the lattice order. It suffices to take A = [0.1, 0.2], B = [0.3, 0.6]
and C = [0.7, 0.8]. It holds that A ⊆Lo B ⊆Lo C but D(A, B) = [0, 0.4] 6�Lo [0, 0.3] = D(A, C).

Dissimilarities are a frequent tool to compare two sets. However, they are based on
a partial order. Thus, in our case, one of the main properties only applies for some of the
elements in IVFS(X). This is an important drawback. This also happens for fuzzy sets,
where the same problem arises. For IVFSs, we have considered that

A ⊆o B⇔ A(x) �o B(x), ∀x ∈ X

It is clearly not unique since it depends on the interval order �o considered to compare
IVFSs. However, in all the cases, even for total orders between intervals, we cannot obtain
a total order for the family of IVFSs even if the order does not hold just for one point as the
following example shows:
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Example 12. Let us take A(x) �o B(x), ∀x ∈ X − {x0} and B(x0) ≺o A(x0); that is, A
contained in B for all the elements of the universe except for one. An example of A and B in this
situation is represented in Figure 17.

X

Membership

0

0.2

0.4

0.6

0.8

1

B

A

x0

Figure 17. A and B are not comparable due to a single element x0.

Even if the cardinality of X is infinite, one point is enough to state that A and B are incompa-
rable and then Axiom A5 is not applicable.

We have that A(x) �Lo B(x), ∀x ∈ X− {x0} but A(xo) and B(xo) are incomparable w.r.t.
�Lo for instance.

The previous example shows that although Axiom A5 is without any doubt a desirable
property, it is may be too weak in the sense that it only applies to a few number of IVFSs.
The departing condition, A ⊆o B ⊆o C (partial order) is maybe too restrictive and should
be relaxed in order to apply conditions D(A, B) �o D(A, C) and D(B, C) �o D(A, C) to
more triplets A, B, C.

Yet, although Axiom A5 has its own drawbacks, it does not lead to counterintuitive
situations. We have provided examples that show that this is the case for the fifth axioms
associated with distances and divergences, but we have not found any example that leads to
a contradiction with the notion of dissimilarity given in Definition 7. Since the characteristic
axiom, Axiom A5, is based on a partial order, it is probably not a “definitive Axiom 5”,
but to the best of our knowledge, it is the best way to formalize the idea of “the closer, the
less different” and therefore, the best way to compare two IVFSs would be a measure that
satisfies Axioms A1 to A5; that is, the measure provided in Definition 7.

4. Concluding Remarks

In this contribution, we have recalled the basic conditions that a function should satisfy
in order to formalise the differences between IVFSs. We have seen that interval orders
appear naturally in the formalisation of these axioms. Furthermore, since the definitions
depend on the interval order, they do not have an associated definitive expression but a
different one for each interval order considered.

We have also seen that the fifth logical requirement is the most problematic one to be
formalised, and we have discussed the suitability of the most popular proposals: distances,
divergences, and dissimilarities. We have shown that distances and divergences lead to
unnatural situations, and therefore, they are not appropriate to formalise the differences
between IVFSs. However, Axiom A5, the one considered in the definition of dissimilarity,
does not lead to counterintuitive situations and therefore is the most appropriate among
the three definitions studied in detail. Thus, our main conclusion is that dissimilarities are
the only appropriate way to compare two IVFSs by means of an interval. Graphically, this
is represented in Figure 18.
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Comparing the difference between two IVFSs

Distances Dissimilarities Divergences

Figure 18. Suitable way to compare IVFSs.

Thus, our final recommendation after this study on different possible approaches to
compare IVFSs is to consider dissimilarity measures assuming values in L([0, 1]) where a
partial order (lattice order) or a total order (lexicographical orders, Xu-Yager order or, in
general, admissible orders) should be considered.

Apart from that, we have compared our proposal for the definition of dissimilarity for
IVFS(X) assuming values in L([0, 1]) with the two other approaches that we have found
in the literature.

The drawback of Axiom A5 is the departing point for a future work: it is necessary to
find an axiom by collecting the ideas discussed in Example 12, that is, not only for the very
restricted content relation in IVFS(X). In a more applied future work, we would like to
study the behaviour of this definition in the comparison of two colour images.
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