
mathematics

Article

One-Machine Scheduling with Time-Dependent Capacity via
Efficient Memetic Algorithms

Raúl Mencía * and Carlos Mencía

����������
�������

Citation: Mencía, R.; Mencía, C.

One-Machine Scheduling with

Time-Dependent Capacity via

Efficient Memetic Algorithms.

Mathematics 2021, 9, 3030. https://

doi.org/10.3390/math9233030

Academic Editors: Ana M. Madureira,

Joao Ferreira and André Santos

Received: 12 October 2021

Accepted: 22 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, University of Oviedo, 33204 Gijón, Spain; menciacarlos@uniovi.es
* Correspondence: menciaraul@uniovi.es

Abstract: This paper addresses the problem of scheduling a set of jobs on a machine with time-
varying capacity, with the goal of minimizing the total tardiness objective function. This problem
arose in the context scheduling the charging times of a fleet of electric vehicles and it is NP-hard.
Recent work proposed an efficient memetic algorithm for solving the problem, combining a genetic
algorithm and a local search method. The local search procedure is based on swapping consecutive
jobs on a C-path, defined as a sequence of consecutive jobs in a schedule. Building on it, this paper
develops new memetic algorithms that stem from new local search procedures also proposed in
this paper. The local search methods integrate several mechanisms to make them more effective,
including a new condition for swapping pairs of jobs, a hill climbing approach, a procedure that
operates on several C-paths and a method that interchanges jobs between different C-paths. As a
result, the new local search methods enable the memetic algorithms to reach higher-quality solutions.
Experimental results show significant improvements over existing approaches.

Keywords: one-machine scheduling; time-varying capacity; memetic algorithms; local search

1. Introduction

Over the last few decades, scheduling problems have become ubiquitous in a growing
number of domains, including manufacturing, transportation or cloud computing, among
others [1,2]. These problems often exhibit a high computational complexity [3–6], what
makes them an interesting subject of study to several scientific disciplines, as artificial
intelligence, operations research or applied mathematics. As a consequence, numerous
solving methods, both exact and approximate, have been proposed in the literature, capable
of solving increasingly challenging problems.

Exact methods include branch and bound algorithms [7,8], constraint programming [9]
or mathematical programming approaches [10], among others.

On the other hand, efficient metaheuristic algorithms have been proposed with the
aim of computing high-quality solutions in short time. In this respect, genetic algorithms
(GAs) stand out as very effective population-based metaheuristics. These algorithms
evolve a population of solutions by means of selection, recombination and replacement
genetic operators. GAs have been used to solve numerous scheduling problems, including
one-machine [11], parallel machines [12], job shop [13] or resource constrained project
scheduling problems [14]. In addition, local search approaches have been widely used in
this domain (e.g., to solve one-machine [15], job shop [16] or Earth observation satellite
scheduling problems [17], to name a few). In contrast to population-based metaheuristics,
these methods work on a single solution, iteratively introducing changes on it to improve its
quality. Local search methods have been successfully combined with other metaheuristics
as genetic algorithms, resulting in so-called memetic algorithms (MAs). These algorithms
have been shown to achieve a proper balance between the exploration and exploitation of
the search space, what makes them more effective at solving different scheduling problems,
as one-machine [18] or flow shop scheduling problems [19].

Mathematics 2021, 9, 3030. https://doi.org/10.3390/math9233030 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9233030
https://doi.org/10.3390/math9233030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9233030
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9233030?type=check_update&version=1

Mathematics 2021, 9, 3030 2 of 24

Other successful metaheuristics include, among others, differential evolution (DE) [20],
ant colony optimization (ACO) [21] or particle swarm optimization (PSO) [22]. In addition,
recent work explored hybrid methods combining metaheuristics and machine learning in
different domains [23,24].

One-machine scheduling problems have played an important role in scheduling. In
general, these problems require scheduling a set of jobs on a unique resource, satisfying
diverse constraints, with the goal of optimizing a given objective function. In addition to
their many practical applications (e.g., supply chain [25], packet-switched networks [26],
or manufacturing [27]), they stand out for acting as building blocks of other more complex
problems, usually providing useful approximations or lower bounds [7,28].

This paper studies a problem of this kind that arose in the context of scheduling the
charging times of a fleet of electric vehicles [29]. In its formal definition, a set of jobs has
to be scheduled on a single machine whose capacity varies over time, with the aim of
minimizing the total tardiness objective function. This problem is denoted (1, Cap(t)||∑ Ti)
in the conventional (α|β|γ) notation [30] and it is NP-hard [31,32].

The (1, Cap(t)||∑ Ti) problem has been considered both in online (with real-time
requirements) and offline settings. In [29], it was solved by means of the Apparent Tardi-
ness Cost (ATC) priority rule [33], which is of common use in scheduling problems with
tardiness objectives. Later, a genetic algorithm [31] was shown to compute much better
schedules than classical priority rules, including ATC, at the expense of longer running
times. More recently, this genetic algorithm was combined with an efficient local search
procedure, resulting in a memetic algorithm [32]. The local search method is based on swap-
ping pairs of consecutive jobs in a so-called C-path, defined as a sequence of consecutive
jobs in a feasible schedule. The memetic algorithm was shown to outperform the genetic
algorithm by a wide margin and, to our best knowledge, it is the current best-performing
offline approach for solving the (1, Cap(t)||∑ Ti) problem. The problem has also been
solved in the recent past by means of priority rules evolved by genetic programming [34],
as well as ensembles (or sets) of rules [35]. These approaches often produce better schedules
than classical rules, as ATC, and are well-suited for solving the problem online, given their
very short running times. However, the quality of the schedules they compute was shown
to be still significantly lower than that of the schedules calculated by offline methods, as
the aforementioned memetic algorithm.

Building on [32], this paper makes several contributions towards solving the
(1, Cap(t)||∑ Ti) problem:

• First, new efficient local search procedures for the problem are proposed and their
relevant properties, as correctness and worst-case complexity, are studied. As the
previous local search approach, the new methods rely on the notion of C-paths in
a feasible schedule. However, they incorporate mechanisms to make them more
effective. These include a new condition for swapping pairs of consecutive jobs, the
integration of a hill climbing approach, a procedure that operates on several C-paths at
the same time and a new way of improving the quality of schedules by interchanging
jobs between different C-paths.

• Then, the local search procedures are exploited in combination with a genetic algo-
rithm, giving rise to new memetic algorithms. These algorithms have been designed
with the aim of achieving a proper balance between the exploration of the search space
and the intensification in its most promising areas.

• An extensive experimental study demonstrates that the memetic algorithms proposed
in this work achieve conclusive improvements in practice. The results reveal that
the new local search procedures enable the memetic algorithms to reach far better
solutions than other methods, including the memetic algorithm proposed in [32] and
a constraint programming approach.

The remainder of the paper is structured as follows: Section 2 formally defines the
(1, Cap(t)||∑ Ti) problem. Section 3 summarizes the main components of the memetic
algorithm proposed in [32], providing the necessary background. The new local search

Mathematics 2021, 9, 3030 3 of 24

procedures and the new memetic algorithms are described in Sections 4 and 5, respectively.
Section 6 reports the results from the experimental study. Finally, the paper concludes in
Section 7.

2. Definition of the Problem

In the (1, Cap(t)||∑ Ti) problem n jobs J = {1, . . . , n} have to be scheduled on a
single machine. Each job i ∈ J is available at time t = 0 and has a given duration pi and
a due date di. Processing a job results in the consumption of one unit of the machine’s
capacity while it is being processed. The capacity of the machine varies over time: for a
time instant t ≥ 0, Cap(t) denotes its capacity in the interval [t, t + 1). It is assumed that
Cap(t) > 0 for all t ≥ 0.

A feasible schedule S is an assignment of a starting time si to each job i ∈ J satisfying
the following constraints:

• The capacity of the machine cannot be exceeded at any time, i.e., X(t) ≤ Cap(t) for
all t ≥ 0, where X(t) denotes the total consumption of the machine in the interval
[t, t + 1) due to the jobs scheduled. This corresponds to the number of jobs that are
processed in parallel in that interval.

• The processing of a job cannot be preempted, i.e., Ci = si + pi for all i ∈ J , where Ci
denotes the completion time of job i.

In a feasible schedule S, each job i ∈ J incurs in a tardiness Ti = max{0, Ci − di},
which measures its delay when the job is completed after its due date. The total tardiness
of S, denoted T(S), is defined as the sum of the tardiness values of all the jobs, that is:

T(S) = ∑
i∈J

Ti (1)

The goal is to find a feasible schedule with the minimum total tardiness possible.

Example 1. Consider a problem instance with a set of jobs J = {1, . . . , 12}, whose durations and
due dates are given in the following table:

i 1 2 3 4 5 6 7 8 9 10 11 12
pi 4 4 2 3 4 3 2 3 2 3 3 5
di 4 9 13 4 7 8 10 3 13 5 9 7

Figure 1 shows a feasible schedule. For each job, its processing time and its due date is
represented in parentheses. The capacity of the machine over time, Cap(t), is shown in the Gantt
chart as well. The total consumption X(t) is not explicitly represented, but it can be easily seen that
it always holds that X(t) ≤ Cap(t). In this schedule, the jobs that incur in a positive tardiness are
1 (T1 = 5), 2 (T2 = 5), 4 (T4 = 6), 5 (T5 = 9), 6 (T6 = 4) and 8 (T8 = 8). So, its total tardiness
is 37. Figure 2 shows another feasible schedule. As can be seen, the consumption never exceeds
the capacity of the machine, even though job 2 is represented above the capacity line in the Gantt
chart. In this case, the jobs that incur in a positive tardiness are 1 (T1 = 5), 2 (T2 = 6), 4 (T4 = 6),
5 (T5 = 10), 6 (T6 = 5) and 8 (T8 = 8). So, its total tardiness is 40.

3 (2, 13) 1 (4, 4)10 (3, 5) 6 (3, 8) 5 (4, 7)

2 (4, 9)4 (3, 4)12 (5, 7)

9 (2, 13)7 (2, 10) 8 (3, 3)

11 (3, 9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 𝑡

𝐶𝑎𝑝(𝑡)

Figure 1. Feasible schedule for the instance in Example 1.

Mathematics 2021, 9, 3030 4 of 24

3 (2, 13) 1 (4, 4)10 (3, 5)

6 (3, 8) 5 (4, 7)

2 (4, 9)

4 (3, 4)12 (5, 7)

9 (2, 13)7 (2, 10) 8 (3, 3)

11 (3, 9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 𝑡

𝐶𝑎𝑝(𝑡)

Figure 2. Another feasible schedule for the instance in Example 1.

This problem arose in the context of scheduling the charging times of a fleet of electric
vehicles in a community park [29]. In this scenario, it appears as a subproblem of the
Electric Vehicles Charging Scheduling Problem (EVCSP), which considers a station with
three charging lines and power and balance constraints on their load. The (1, Cap(t)||∑ Ti)
problem focuses on scheduling the charging times of the vehicles in one line at a given
point in time, subject to maximum load constraints, which result in the definition of Cap(t)
for a given problem instance. In [29], Cap(t) was expected to be a unimodal step function,
first growing until reaching a peak and then decreasing until getting stabilized at a value
greater than 0. Nevertheless, the formal definition of the problem does not impose Cap(t)
to be of any given form.

The (1, Cap(t)||∑ Ti) problem was proven NP-hard [32] by reducing the (1||∑ Ti)
and the (P||∑ Ti) problems to it. These problems are known to be NP-hard [36]. In the
(1||∑ Ti) problem the machine has a constant capacity of one unit, whereas in the (P||∑ Ti)
problem there are m identical parallel machines. Any instance of these problems can be
reduced to the (1, Cap(t)||∑ Ti) problem by simply defining the capacity of the machine as
Cap(t) = 1 or Cap(t) = m for all t ≥ 0, respectively.

3. Preliminaries

This section summarizes the main components of the memetic algorithm proposed
in [32], namely, the schedule builder used to define the search space, the genetic algorithm,
the local search procedure and their combination.

3.1. Schedule Builder

The definition of a suitable search space is an essential step in the development
of effective scheduling algorithms. To this aim, schedule builders, or schedule generation
schemes, have been commonly used (e.g., [37–42]). Schedule builders are non-deterministic
constructive methods that allow the computation and enumeration of a subset of the
feasible schedules, thus implicitly defining a search space.

Algorithm 1 shows the pseudocode of the schedule builder proposed in [31,32] for the
(1, Cap(t)||∑ Ti) problem. It maintains a set US containing the jobs to be scheduled, which
is initialized to the set of all jobs J . The algorithm proceeds iteratively: at each iteration a
job u ∈ US is selected (non-deterministically) and it is scheduled at the earliest possible
time su such that the capacity of the machine is not exceeded at any time. After scheduling
the job u, the consumption of the machine X(t) is updated accordingly and u is removed
from US. The algorithm terminates when all the jobs have been scheduled, returning a
feasible schedule.

Notice that the job to be scheduled at each iteration is selected non-deterministically.
This way, the schedule computed depends on the sequence of choices made. For ex-
ample, considering the problem instance in Example 1, the sequence of choices π1 =
(3, 12, 10, 7, 1, 9, 11, 4, 8, 6, 2, 5) would result in the schedule shown in Figure 1. The se-
quence π2 = (3, 10, 12, 7, 1, 11, 9, 4, 8, 6, 2, 5) would lead the schedule builder to compute
the same schedule, so this mapping is many-to-one.

Mathematics 2021, 9, 3030 5 of 24

Regardless of these choices, the schedule builder always returns a so-called left-shifted
schedule, in which no job can be scheduled earlier without delaying the starting time of
another job [43]. An example of such a schedule is the one shown in Figure 1. However,
the schedule shown in Figure 2 is not left-shifted since, for instance, jobs 2, 5 or 6 could be
moved to start earlier without delaying any other job.

Algorithm 1 Schedule Builder ([31,32])
Data: A (1, Cap(t)||∑ Ti) problem instance P .
Result: A feasible schedule S for P .
US← {1, 2, ..., n};
X(t)← 0, ∀t ≥ 0;
while US 6= ∅ do

Non-deterministically pick job u ∈ US;
Assign su = min{t′|∀t with t′ ≤ t < t′ + pu : X(t) < Cap(t)};
Update X(t)← X(t) + 1, ∀t with su ≤ t < su + pu;
US← US− {u};

end
return Feasible schedule S = (s1, s2, ..., sn);

In addition, the non-deterministic selection of jobs in Algorithm 1 enables the defi-
nition of a search space containing all left-shifted schedules, by considering all possible
sequences of choices (i.e., permutations of the set of jobs). This search space is guaranteed
to contain at least one optimal solution to any (1, Cap(t)||∑ Ti) problem instance. For
further details, the interested reader is referred to [32].

Among different possibilities, the schedule builder can be used in combination with a
priority rule or as the decoder of a genetic algorithm, as described below.

3.2. Genetic Algorithm

Genetic algorithms (GAs) are population-based metaheuristics inspired by the theory
of evolution [44]. GAs have been successful at solving combinatorial optimization problems,
including scheduling problems (e.g., [11,14,45,46]).

Algorithm 2 depicts the main structure of the genetic algorithm proposed in [31,32]
for solving the (1, Cap(t)||∑ Ti) problem. The GA has four parameters: crossover and
mutation probabilities (Pc and Pm), number of generations (#Gen) and population size
(PopSize). Initially, the first population is generated at random and evaluated. Then, at
each generation, the population is evolved by the application of selection, recombination,
evaluation and replacement operators. In the selection phase chromosomes are organized
into pairs at random. Each of these pairs undergoes crossover and mutation operators
with probabilities Pc and Pm, respectively, what results in two offspring. Then, the new
individuals are evaluated, obtaining the actual solutions they represent. Finally, the new
population is built in the replacement phase, by a process in which the parents and their
offpring compete in a tournament. The GA terminates when #Gen generations have been
completed, returning the best schedule found. However, other termination criteria could
be used instead, as establishing a time limit.

Chromosomes in the GA are permutations of the set of job indices, defining total
orderings among the jobs. The GA uses the well-known Order Crossover (OX) operator [47],
by which an offspring inherits the positions of a (random) subset of the jobs from the
first parent and the relative order of the remaining jobs from the second parent. As
mutation operator, the GA uses a simple procedure that swaps two random elements in the
chromosome. The evaluation of a chromosome is done by means of the schedule builder
shown in Algorithm 1, scheduling the jobs in the order they appear in the chromosome.
Specifically, given a chromosome c = (c1, . . . , cn), at the i-th iteration the schedule builder
selects and schedules the job ci. This results in a feasible left-shifted schedule. For example,
considering the problem instance in Example 1, the chromosome (3, 12, 10, 7, 1, 9, 11, 4, 8,
6, 2, 5) would lead to the schedule shown in Figure 1.

Mathematics 2021, 9, 3030 6 of 24

Algorithm 2 Genetic Algorithm ([31,32])
Data: A (1, Cap(t)||∑ Ti) problem instance P and a set of parameters: crossover probabil-

ity Pc, mutation probability Pm, number of generations #Gen and population size
PopSize.

Result: A feasible schedule for P .
Generate and evaluate the initial population P(0);
for t=1 to #Gen-1 do

Selection: organize the chromosomes in P(t− 1) into pairs at random;
Recombination: mate each pair of chromosomes and mutate the two offspring in
accordance with Pc and Pm;
Evaluation: evaluate the resulting chromosomes;
Replacement: make a tournament selection among every two parents and their off-
spring to complete P(t);

end
return The best schedule built so far;

3.3. Local Search Procedure

Local search algorithms have been widely used for solving a variety of hard scheduling
problems (e.g., [15–17]). These methods aim at iteratively improving the quality of a given
solution by performing changes on it, moving to neighbouring solutions.

The local search procedure our contributions build on is based on swapping pairs
of consecutive jobs in a feasible left-shifted schedule. Two jobs i and j are consecutive in a
schedule S if si = sj + pj or sj = si + pi, i.e., if one of the jobs starts its processing just after
the other one is completed.

As proven in [32], swapping a pair of consecutive jobs (i, j) in a schedule S results in
a new feasible schedule S′ where all the other jobs keep their starting time (and so their
tardiness). As a consequence, if the total tardiness of S is known in advance, the total
tardiness of S′ can be computed in constant time as T(S′) = T(S)− (Ti + Tj) + (T′i + T′j),
where T′i = max{0, (si + pi + pj)− di} and T′j = max{0, (si + pj)− dj}. This allows for
establishing an efficient improvement condition of S′ over S from swapping the pair of
consecutive jobs (i, j): S′ improves S if and only if (T′i + T′j) < (Ti + Tj).

The results above serve to define a neighbourhood structure, consisting of all the pairs
of consecutive jobs in a given schedule. This structure could be exploited by any standard
local search approach (e.g., simulated annealing [48], tabu search [49], etc.). However,
as pointed out in [32], jobs with earlier starting times in a schedule could be expected
to contribute less to the total tardiness than those that start their processing later. This
observation led to the definition of an efficient local search procedure, aiming at delaying
jobs with low tardiness values in favor of jobs with higher values.

The procedure exploits the notion of C-path, defined as a maximal sequence of pair-
wise consecutive jobs in a feasible schedule. As an example, in the schedule shown in
Figure 1, the sequence of jobs (3, 10, 1, 6, 5) constitutes a C-path. Other examples are
(3, 12, 4, 2), (7, 9, 8) and (7, 11). This concept is similar to the notion of critical block com-
monly used in the context of shop scheduling problems [16,50]. Throughout, for a C-path P,
T(P) will denote its tardiness, i.e., the sum of the tardiness values of all the jobs contained
in it. In addition, P[k] will denote the k-th job in P, with k an integer index in the interval
[1, . . . , |P|].

Algorithm 3 shows the local search approach (the pseudocode of the local search
procedure proposed in [32] has been split in Algorithms 3 and 4 to improve the presentation
of the new local search algorithms described in Section 4), referred to as Single C-path local
search (SCP) herein. It is based on the observation that rearranging the jobs in a C-path
P does not alter the tardiness of any job outside P. As can be observed, given a feasible
left-shifted schedule S, SCP consists of two phases: it first computes a random C-path P
in S, which is then processed in order to improve its tardiness. As a result a (potentially)
improved feasible left-shifted schedule S′ is returned, i.e., T(S′) ≤ T(S).

Mathematics 2021, 9, 3030 7 of 24

Computing an optimal order of the jobs in a C-path can be seen as an instance
of the (1||∑ Ti) problem. This problem is known to be NP-hard [51], so solving it to
optimality may be too time-consuming. As an alternative, SCP uses the efficient procedure
ProcessPath, shown in Algorithm 4. This procedure operates on a feasible schedule S′

and on a C-path P′, initialized as copies of the input schedule S and input C-path P. The
algorithm traverses P′ from left to right. At each iteration, it considers the job P′[i], and
swaps it with the next job in the C-path while the aforementioned improvement condition
is fulfilled. Upon termination, the algorithm returns S′ and P′.

Notice that, although ProcessPath is deterministic, it operates on a random C-path,
what introduces a source of randomness to the SCP procedure.

The procedure ProcessPath performs at most O(|P2|) swap operations, what gives an
upper bound on its runtime complexity, since both testing the improvement condition and
swapping jobs can be done in constant time. As a result, the SCP local search procedure
runs in O(n2), with n the number of jobs, as in the worst case |P| = n.

Algorithm 3 Single C-path local search (SCP)
Data: A feasible schedule S.
Result: A feasible schedule S′ with T(S′) ≤ T(S).
P← ComputeCPath(S);
〈S′, P′〉 ← ProcessPath(S, P);
return S′;

Algorithm 4 ProcessPath
Data: A feasible schedule S, a C-path P in S.
Result: A feasible schedule S′ with T(S′) ≤ T(S), the improved C-path P′.
〈S′, P′, i〉 ← 〈S, P, 1〉;
while i < |P′| do

j← i;
while j < |P′| ∧ Improves(P′[j], P′[j + 1], S′) do

Swap(P′[j], P′[j + 1], S′);
j← j + 1;

end
if i = j then i← i + 1;

end
return 〈S′, P′〉;

3.4. Memetic Algorithm

Memetic algorithms (MAs) are hybrid metaheuristics that result from combining
genetic algorithms and local search methods [52]. These algorithms are often able to keep
a proper balance between the exploration and exploitation of the search space. The GA
searches for solutions globally, guiding the process towards promising areas, whereas local
search intensifies the search locally, what leads to finding better solutions. As a result, MAs
have been very effective at solving scheduling problems (e.g., [18,19,53–55]).

The memetic algorithm proposed in [32] for the (1, Cap(t)||∑ Ti) problem has the
same structure as the GA shown in Algorithm 2. However, after a feasible schedule is
computed by the schedule builder (Algorithm 1) in the evaluation phase, the MA uses the
SCP local search procedure (Algorithm 3) in an attempt to improve it.

In order to incorporate the characteristics of the improved schedules into the popula-
tion, the MA implements a Lamarackian evolution model by which the improved schedule
is coded back into the chromosome it came from. This is done by replacing the chromosome
by a new one where the jobs in the C-path P processed by the SCP procedure appear in
same order as in the resulting C-path P′, and all the other jobs keep the same positions.
This way, the new chromosome would lead the schedule builder to build the improved
schedule P′.

Throughout, this memetic algorithm will be referred to as MASCP.

Mathematics 2021, 9, 3030 8 of 24

4. New Local Search Procedures

This section describes the proposed new local search procedures for the
(1, Cap(t)||∑ Ti) problem. The new methods build on the SCP local search algorithm
described in Section 3.3. These are aimed at making the local search more effective and, at
the same time, keeping their complexity low.

4.1. Enhancements to Single C-Path Local Search

First, two enhancements to the SCP procedure are proposed, both operating on a
single C-path. The first one extends the condition for swapping two consecutive jobs,
whereas the second one integrates a hill climbing approach for improving a C-path to a
greater extent.

4.1.1. Slack-Aware Improvement Condition

The SCP procedure swaps two consecutive jobs (i, j) in a C-path if the improvement
condition (T′i + T′j) < (Ti + Tj) holds. This way, performing a swap operation always
results in a feasible schedule with less total tardiness. However, there may be situations
where the condition is not fulfilled, but swapping the jobs may still be beneficial.

Consider the case that (T′i + T′j) = (Ti + Tj), i.e., swapping the jobs would not have
any (immediate) effect in the total tardiness of the resulting schedule. Since the C-path
is processed from left to right, further improvements would be more likely to occur in
subsequent iterations if the job that is left in the second place had a greater slack, defined
as the difference between its due date and its completion time. Notice that a positive
slack means that the job would be completed before its deadline, whereas a negative slack
indicates that the job would incur in some (positive) tardiness.

This way, if the jobs i and j are not swapped, the job left in the second position would
be j, and its slack would be dj − Cj. On the other hand, if the jobs are swapped, the second
job would be i, with a slack of di − C′i , where C′i = si + pi + pj. Since C′i = Cj it suffices to
compare the due dates of the jobs to determine whether di − C′i > dj − Cj. This results in
the extended improvement condition shown in the following equation:

[(T′i + T′j) < (Ti + Tj)] ∨ [(T′i + T′j) = (Ti + Tj) ∧ dj < di] (2)

Example 2. Consider the schedule depicted in Figure 1, and the C-path (3, 10, 1, 6, 5). If the
procedure ProcessPath is run with the original improvement condition, no swap operation would
be performed. However, the use of the slack-aware condition results in several swaps, leading to
reductions in the total tardiness along the process. The resulting C-path is shown in Figure 3, with
a total tardiness of 13, given by the jobs 10 (T10 = 2), 6 (T6 = 2) and 5 (T5 = 9). The resulting
schedule has a total tardiness of 32, five units less than the original one.

3 (2, 13)1 (4, 4) 10 (3, 5) 6 (3, 8) 5 (4, 7)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3. Resulting C-path in Example 2.

By using the slack-aware improvement condition, there is the guarantee that the final
schedule S′ will be such that T(S′) ≤ T(S), since no swap operation that increases the total
tardiness is ever performed. In addition, the new condition does not affect the worst-case
complexity of the method, as it can be checked in constant time and the maximum possible
number of swap operations remains the same.

Throughout, the predicate Improves(i, j) will indicate whether the improvement con-
dition holds for a pair of consecutive jobs (i, j). Besides, the SCP procedure using the new
improvement condition will be referred to as iSCP.

Mathematics 2021, 9, 3030 9 of 24

4.1.2. Hill Climbing on a Single C-Path

An analysis of the procedure ProcessPath (Algorithm 4) reveals that the resulting
C-path may be further improved by swapping some pair of consecutive jobs.

Suppose that in a given iteration there are three consecutive jobs (i, j, k) in the C-
path P, i.e., P = (P[1], P[2], . . . , i, j, k, . . . , P[|P|]), and that the improvement condition
Improves(i, j) does not hold. This way, the jobs i and j are not swapped and, by construction
of the algorithm, i will not be swapped with any other job that appears after it. If in the
next iteration the algorithm swaps j and k, the final C-path will be of the form P′ =
(P′[1], . . . , i, . . . , k, . . . , j, . . . , P′[|P|]), since j and k could be swapped with other jobs in
subsequent iterations. In this situation, swapping i with the next job in the C-path might
result in an improvement.

Example 3. Consider the schedule depicted in Figure 1, and the C-path (7, 9, 8). In the first
iteration, the procedure ProcessPath (using the slack-aware improvement condition) does not swap
the jobs 7 and 9. In the second iteration, it swaps the jobs 9 and 8, what results in the C-path (7, 8,
9). Now, if this procedure is issued again, the jobs 7 and 8 would be swapped and the final C-path
would be (8, 7, 9), shown in Figure 4. The new C-path has a total tardiness of 4, given by job 8
(T8 = 4), four units less than the original one.

9 (2, 13)7 (2, 10)8 (3, 3)

4 5 6 7 8 9 10 11

Figure 4. Resulting C-path in Example 3.

The observation above serves to develop an improved version of ProcessPath, by
performing a hill-climbing approach. The new version of the method, termed ProcessPath+,
is shown in Algorithm 5. As can be observed, the method repeatedly invokes ProcessPath
until there are no reductions in the total tardiness objective function. Upon termination,
the method reaches a fixpoint where swapping any pair of consecutive jobs in the C-path
P′ does not result in an improvement. As can be observed, the structure of ProcessPath+ is
similar to the Bubble Sort algorithm: each invocation to the procedure ProcessPath could
be related to one pass of the sorting algorithm, and it terminates when no swaps are made
in a given iteration.

Noticeably, given a schedule S and a C-path P in S as input, the procedure
ProcessPath+ performs at most |P| iterations.

To show this, it is first proven that after the i-th iteration, the last i jobs in the C-path
become fixed, i.e., they will not be rearranged in any future iterations of the method. This
follows from the next result:

Lemma 1. Let P be the initial C-path, L = |P| and P(i), with i ≥ 1, the C-path computed after the
i-th iteration of ProcessPath+. Then, P(i)[k] = P(i+1)[k] for all k ∈ [L− i + 1, L].

Proof. The lemma is proven by induction on the number of iterations.
(Base case: i = 1) P(1) 6= P(2) only if at some step in the computation of P(1) there

are two consecutive jobs (j1, j2) such that the condition Improves(j1, j2) does not hold and
P(1) = (P(1)[1], . . . , j1, k, . . . , j2, . . . , P(1)[L]) with k 6= j2. Suppose, w.l.o.g., that there is
only one such pair of consecutive jobs. Since Improves(j1, j2) does not hold, j1 will not be
swapped with j2 in the computation of P(2). So, P(1)[L] = P(2)[L].

(Inductive step: i > 1) Assume as inductive hypothesis that P(i−1)[k] = P(i)[k] for
all k ∈ [L− (i − 1) + 1, L]. P(i) 6= P(i+1) only if at some step in the computation of P(i)

there are two consecutive jobs (j1, j2) such that the condition Improves(j1, j2) does not hold
and P(i) = (P(i)[1], . . . , j1, k, . . . , j2, . . . , P(i)[L]), with k 6= j2. Suppose, w.l.o.g., that there
is only one such pair of consecutive jobs. As the inductive hypothesis holds, it must be
that Improves(P(i−1)[k], P(i−1)[k + 1]) does not hold for any k ∈ [L − (i − 1) + 1, L − 1].
So, P(i) = (P(i)[1], . . . , j1, k, . . . , j2, . . . , P(i)[L− i + 1], P(i−1)[L− (i− 1) + 1], . . . , P(i−1)[L]).

Mathematics 2021, 9, 3030 10 of 24

Since Improves(j1, j2) does not hold, j1 will not be swapped with j2 in the computation
of P(i+1). Hence, P(i)[L− i + 1] = P(i+1)[L− i + 1] and hence P(i)[k] = P(i+1)[k] for all
k ∈ [L− i + 1, L].

Now, the bound on the maximum number of iterations performed by ProcessPath+
can be easily shown.

Proposition 1. ProcessPath+ performs at most |P| iterations.

Proof. By Lemma 1, after the (|P| − 1)-th iteration, it holds that P(|P|−1)[k] = P(|P|)[k]
for all k ∈ [2, |P|]. Since there is only one job left (the first one), it must also hold that
P(|P|−1)[1] = P(|P|)[1] . So, in the |P|-th iteration no swaps are made, what results in the
termination of ProcessPath+.

Interestingly, the procedure ProcessPath+ exhibits the same worst-case complexity
than ProcessPath, as shown next:

Proposition 2. ProcessPath+ runs in O(|P|2).

Proof. Note that if two consecutive jobs i and j are swapped, they will not be swapped in
subsequent iterations, since the improvement condition would not hold in the opposite

direction. In P there are (|P|2) = |P|2−|P|
2 possible unordered pairs of jobs, what gives

an upper bound of the total number of swap operations that the algorithm can possibly
perform along its execution. Now, let swi denote the number of swap operations performed
at the i-th iteration. Since the whole C-path is traversed, this results in (|P| + swi − 1)
checks of the improvement condition. By Proposition 1, there can be at most |P| iterations.
Hence, the total number of checks will be (|P|+ sw1− 1) + · · ·+ (|P|+ sw|P| − 1) = |P|2 +
∑
|P|
i=1 swi − |P| ≤ |P|2 + (|P|2)− |P| ∈ O(|P|

2). Since both performing a swap operation
and testing the improvement condition are done in constant time, the complexity of
ProcessPath+ is O(|P|2).

The use of ProcessPath+ gives rise to a new local search method, termed SCP+, that is
shown in Algorithm 6. As SCP, the new method computes a random C-path P and tries to
improve it. However, in the second phase it invokes ProcessPath+ instead of the simpler
ProcessPath. In the worst case |P| = n, with n = |J |, so SCP+ runs in O(n2).

Algorithm 5 ProcessPath+
Data: A feasible schedule S, a C-path P in S.
Result: A feasible schedule S′ with T(S′) ≤ T(S), the improved C-path P′.
〈S′, P′〉 ← ProcessPath(S, P);
while T(P′) < T(P) do

P← P′;
〈S′, P′〉 ← ProcessPath(S′, P′);

end
return 〈S′, P′〉;

Algorithm 6 SCP with Hill Climbing (SCP+)
Data: A feasible schedule S.
Result: A feasible schedule S′ with T(S′) ≤ T(S).
P← ComputeCPath(S);
〈S′, P′〉 ← ProcessPath+(P, S);
return S′;

Mathematics 2021, 9, 3030 11 of 24

4.2. Cover-Based Local Search

The previous methods aim at improving a single C-path P in a schedule, leav-
ing all the jobs outside P unaltered. Clearly, processing these jobs could bring
additional improvements.

This section proposes a new procedure based on computing and processing a cover
of C-paths, that is, a set of C-paths such that the union of their elements hits all the jobs
in J . In order to be able to efficiently process the C-paths independently from each other,
the cover is restricted to be a partition of the set J . This way, given a schedule S a cover
C = {P1, . . . , Pk} is a set of maximal sequences of pair-wise consecutive jobs in S, such that
each job in J belongs to exactly one Pi. Notice that such sequences may not be maximal
w.r.t. all the jobs in S. Anyway, each Pi in the cover will be maximal w.r.t. the jobs that do
not belong to any other Pj, with i 6= j. So, slightly abusing notation, it is referred to as a
C-path.

Once a cover is computed, the new cover-based local search procedure, termed CB,
processes each of the C-paths, aiming at reducing their total tardiness.

Example 4. Consider the schedule shown in Figure 1. The first step taken by CB is computing
a cover of C-paths, for instance C = {P1, . . . , P4}, with P1 = (3, 10, 1, 6, 5), P2 = (12, 4, 2),
P3 = (9, 7, 8) and P4 = (11). Then, the procedure ProcessPath+ is invoked on each C-path in the
cover, what results in the improved C-paths P′1 = (1, 10, 6, 3, 5), P′2 = (4, 2, 12), P′3 = (8, 7, 9)
and P′4 = (11). Note that since there is only one job in P4 no improvements are possible. After all
the C-paths have bee processed, the resulting schedule, shown in Figure 5 has a total tardiness of 25,
twelve units less than the original one.

11 (3, 9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 𝑡

𝐶𝑎𝑝(𝑡)

3 (2, 13)1 (4, 4) 10 (3, 5) 6 (3, 8) 5 (4, 7)

7 (2, 10) 9 (2, 13)8 (3, 3)

2 (4, 9)4 (3, 4) 12 (5, 7)

Figure 5. Resulting schedule in Example 4.

The computation of a cover of C-paths is depicted in Algorithm 7. The algorithm
operates on a list R of jobs and maintains a set C of sequences of pair-wise consecutive jobs.
C is initialized as the empty set and will eventually contain the cover of C-paths returned
by the method. The list R contains the jobs sorted non-decreasingly by their starting times
in the schedule S given as input. Then, R is traversed from left to right. At the i-th iteration,
the method looks for a sequence Pc to append the job R[i], i.e., such that its last job is
completed exactly at the starting time of R[i]. To this aim, it uses the function LookForPath,
that returns the index c > 0 of Pc in C if such sequence exists and the value 0 otherwise.
If a sequence Pc is found, the job R[i] is appended at its end. Otherwise a new sequence
(R[i]) is created and added to C.

It is easy to see that computing a cover of C-paths is done in O(n2). First, the
complexity of sorting the jobs is O(n× log(n)), e.g., by using the Heapsort algorithm [56].
Second, the loop iterates over all the n jobs, and for each job it may have to traverse the
whole set C, what gives the complexity O(n2).

Mathematics 2021, 9, 3030 12 of 24

Algorithm 7 ComputeCoverCPaths
Data: A feasible schedule S.
Result: A cover of C-paths C = {P1, . . . , Pk} of S.
R← Sort(J , S);
C ← ∅;
for i ∈ (1, . . . , |R|) do

c← LookForPath(C, R[i]);
if c > 0 then

Pc ← AppendJob(Pc, R[i]);
else
C ← C ∪ {(R[i])};

end
end
return C;

Algorithm 8 shows the pseudocode of the cover-based local search procedure. As
can be observed, it first computes a cover of C-paths {P1, P2, . . . , Pk} by using Algorithm 7.
Then, the method attempts to improve each C-path Pi in the cover by means of the proce-
dure ProcessPath+. Notice that processing Pi does not interfere with any other C-paths,
since in every job belongs to only one C-path. Finally, the improved schedule S′ is returned.

Algorithm 8 Cover-based Local Search Procedure (CB)
Data: A feasible schedule S.
Result: A feasible schedule S′ with T(S′) ≤ T(S).
{P1, P2, . . . , Pk} ← ComputeCoverCPaths(S);
S′ ← S;
for Pi ∈ {P1, . . . , Pk} do
〈S′, P′i 〉 ← ProcessPath+(S′, Pi);

end
return S’;

As invoking ProcessPath+ never increases the total tardiness, it follows that T(S′) ≤
T(S). Besides, as the previous methods, the new local search procedure has a worst-case
quadratic complexity, as shown next:

Proposition 3. CB runs in O(n2).

Proof. Computing the cover of C-paths in the first phase is done in O(n2). Then, in the
second phase the method performs k iterations. At the i-th iteration, by Proposition 2,
invoking ProcessPath+ on Pi has a complexity ofO(|Pi|2). Notice that |P1|2 + · · ·+ |Pk|2 ≤
(|P1|+ · · ·+ |Pk|)2. Since ∑k

i=1 |Pi| = n, the runtime complexity of the loop is bounded by
O(n2). So, CB runs in O(n2).

4.3. Interchanging Jobs between C-Paths

The CB procedure processes the C-paths in a cover independently from each other,
aiming at reducing their total tardiness. As an alternative, the global quality of the schedule
could be improved by swapping jobs that belong to different C-paths.

Let S be a feasible schedule, P1 and P2 two C-paths in a cover, and consider the
jobs i ∈ P1 and j ∈ P2 such that pi ≤ pj. The jobs i and j can be interchanged without
interfering with any other C-paths if the following capacity condition holds in S: just
after the completion of the last job in P1 there are at least pj − pi time instants t where
X(t) < Cap(t). In this situation, interchanging the jobs results in a new schedule S′ where
T′i = max{0, (sj + pi)− di} and T′j = max{0, (si + pj)− dj}. In addition, all the jobs in
P1 after i are delayed pj − pi time units (thus potentially increasing their tardiness), and
the jobs in P2 after j are scheduled pj − pi time units earlier (potentially reducing their
tardiness), guaranteeing that S′ is a left-shifted schedule.

Mathematics 2021, 9, 3030 13 of 24

If the new C-paths P′1 and P′2 are such that T(P′1) + T(P′2) < T(P1) + T(P2), S′ would
have a higher quality than S in terms of total tardiness.

Example 5. Consider the schedule from Example 4 depicted in Figure 5, and the cover of C-paths
C = {P1, . . . , P4}, with P1 = (1, 10, 6, 3, 5), P2 = (4, 2, 12), P3 = (8, 7, 9) and P4 = (11). The
jobs 1 (in P1) and 8 (in P3) can be interchanged, as the capacity condition is fulfilled, and this
operation results in a feasible schedule with less total tardiness. The same applies to the jobs 5 (in P1)
and 11 (in P4). As a consequence, the resulting schedule, depicted in Figure 6, has a total tardiness
of 22, three units less than the original one.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 𝑡

𝐶𝑎𝑝(𝑡)

2 (4, 9)4 (3, 4) 12 (5, 7)

5 (4, 7)

1 (4, 4) 7 (2, 10) 9 (2, 13)

3 (2, 13)10 (3, 5) 6 (3, 8) 11 (3, 9)8 (3, 3)

Figure 6. Resulting schedule in Example 5.

Building on the previous idea, Algorithm 9 shows a new local search procedure,
termed ICP, that attempts to reduce the total tardiness of a schedule S by means of inter-
changing jobs between C-paths. First, a cover of C-paths C = {P1, . . . , Pk} is computed
using Algorithm 7. At this point, the algorithm proceeds iteratively. It operates over a
feasible schedule S′, initialized as a copy of S. At each iteration, the C-path Pm ∈ C with
the greatest tardiness is selected. Then, the algorithm traverses all the C-paths Pp different
from Pm, and for each job Pm[i] in Pm and each job Pp[j] in Pp, it tests whether interchanging
them is possible (i.e., if the aforementioned capacity condition holds). If so, the jobs are
interchanged resulting in the new left-shifted schedule S′′. This operation is performed by
the procedure Interchange, which delays and moves earlier the jobs in the C-paths after
Pm[i] and Pp[j] if necessary. If T(S′′) < T(S′), S′ is replaced by S′′. Finally, Pm is removed
from C and a new iteration is performed. The method terminates when |C| = 1, returning
the (possibly) improved schedule S′.

Algorithm 9 Local search by interchanging jobs between C-paths (ICP)
Data: A feasible schedule S.
Result: A feasible schedule S′ with T(S′) ≤ T(S).
C ← ComputeCoverCPaths(S);
S′ ← S;
while |C| > 1 do

Pm ← argmax{Pi ∈ C|T(Pi)};
for Pp ∈ C \ {Pm} do

for i ∈ (1, . . . , |Pm|) do
for j ∈ (1, . . . , |Pp|) do

if CapacityCondition(Pm, Pp, Pm[i], Pp[j], S′) then
S′′ ← Interchange(Pm, Pp, Pm[i], Pp[j], S′);
if T(S′′) < T(S′) then S′ ← S′′;

end
end

end
end
C ← C \ {Pm};

end
return S’;

Mathematics 2021, 9, 3030 14 of 24

By construction, in the worst case, the ICP procedure will interchange O(n2) pairs of
jobs. On the other hand, the necessary operations for interchanging two jobs result in a
linear overhead. Hence, the complexity of ICP is bounded by O(n3).

4.4. Hybrid Approach

In order to benefit from all the methods described above, this section proposes a
hybrid approach, termed HYB, that combines the CB and the ICP procedures.

Given a feasible schedule S as input, the new method works as follows: first a cover
of C-paths C = {P1, . . . , Pk} is computed and, as CB does, each Pi ∈ C is processed by
means of the ProcessPath+ procedure, resulting in the improved C-path P′i . This produces
a (potentially) better schedule S′, and the cover C ′ = {P′1, . . . , P′k}. Then, the schedule
undergoes the loop of ICP, by which jobs are interchanged between different C-paths in the
cover C ′.

By the properties of CB and ICP, the final schedule will never have a greater total
tardiness than that of the original one. Furthermore, the complexity of HYB is bounded by
O(n3), given by the ICP component of the method.

5. New Memetic Algorithms

The efficiency of the local search methods proposed in the previous section makes
them well-suited for working in combination with the genetic algorithm described in
Section 3.2, each of them giving rise to a different memetic algorithm.

The new algorithms have the same structure as the MA proposed in [32] (described in
Section 3.4), only differing in the local search procedure used. After a schedule is computed
by the schedule builder (Algorithm 1) in the evaluation phase of the GA, a local search
procedure is issued with the aim of improving it.

As a consequence, five new memetic algorithms for the (1, Cap(t)||∑ Ti) problem are
proposed: MAiSCP, MASCP+, MACB, MAICP and MAHYB. MAiSCP uses the SCP procedure
(Algorithm 3) with the slack-aware improvement condition proposed in Section 4.1.1.
MASCP+ combines the GA with the hill-climbing approach SCP+ (Algorithm 6) described
in Section 4.1.2. MACB integrates the cover-based local search method CB (Algorithm 8)
introduced in Section 4.2. MAICP uses the local search procedure ICP (Algorithm 9), based
on interchanging jobs between C-paths as described in Section 4.3. Finally, MAHYB exploits
the hybrid local search procedure presented in Section 4.4.

As the MA proposed in [32], the new memetic algorithms instrument a Lamarckian
evolution model, by which the characteristics of the improved schedules are transmitted
to the population. This is done by a simple procedure that swaps two job indices in the
chromosomes whenever the local search methods swap or interchange a pair of jobs. This
way, the improved schedules are coded back into the chromosomes, what facilitates that
the MAs converge to high-quality solutions. Notice that running the schedule builder on
the resulting chromosomes would result in the improved schedules computed by the local
search methods.

The complexity of the memetic algorithms depends on the population size (PopSize),
the number of generations (#Gen) and the complexity of the local search method used.
Since the complexity of the genetic operators is not greater than that of the local search
procedures, the complexity of MAiSCP, MASCP+ and MACB is given byO(PopSize× #Gen×
n2), whereas MAICP and MAHYB have a complexity of O(PopSize× #Gen× n3).

6. Results

This section reports the results from an experimental study carried out to assess the
performance of the algorithms proposed in this paper.

The experiments were carried out over a set of instances built for this purpose, using
the random generation procedure proposed in [35]. Given a number of jobs (n) and the
maximum capacity of the machine (MC), the generator produces instances where Cap(t) is

Mathematics 2021, 9, 3030 15 of 24

an unimodal step function, making them similar in structure to those expected to arise in
the context of electric vehicles charging [29].

The generation procedure works as follows (U(a, b) denotes a random integer from
a uniform distribution in [a, b], and N(µ, σ) denotes a random integer from a normal
distribution with mean µ and standard deviation σ): First, each job i is assigned a processing
time pi = U(20, 100), and min_pi = min{pi|i = 1, . . . , n} and sum_pi = ∑n

i=1 pi are defined.
The initial capacity of the machine is IC = U(1, MC), and its final capacity is FC = 2. Then,
Cap(t) is defined by means of different capacity intervals, first increasing the capacity
in one unit from IC to MC, and then reducing it one by one until reaching FC. Each
interval has a duration of max{min_pi/4, N(R, 0.2× R)}, with R = sum_pi/S, and S =

∑MC−1
j=IC j + ∑MC

j=FC j. This seeks that the jobs are distributed over all the capacity intervals.
Finally, each job i is assigned a due date di = U(pi, B), where B = R× (2×MC− IC− 1)
is an approximation of completion time of all the jobs.

Using the approach above, 10 instances with each of the following configurations of n
and MC were generated: n = 120 and MC ∈ {3, 5, 7, 10}; n = 250 and MC ∈ {10, 20, 30};
n = 500 and MC ∈ {10, 20, 30}; n = 750 and MC ∈ {10, 20, 30, 50} and n = 1000 and
MC ∈ {10, 20, 30, 50, 100}. In all, the benchmark set consists of 190 instances. Note that
earlier work [32] considered instances with up to 120 jobs in the experimental study. Herein,
most of the instances are (much) larger, and so (much) more challenging what serves to
evaluate how the different methods scale in practice.

A prototype was coded in C++ and all the experiments were run on a Linux cluster
(Intel Xeon 2.26 GHz. 128 GB RAM).

To assess the performance of the proposed methods six memetic algorithms are
compared, termed MASCP, MAiSCP, MASCP+, MACB, MAICP and MAHYB. Recall that
MASCP is the memetic algorithm proposed in [32], whereas the other MAs are the new
ones proposed in this work, described in Section 5.

For each instance, 30 independent runs of each method were performed, recording
the best and average total tardiness of the solutions found. Following [32], the considered
MAs were run with a population size of 250 individuals, and crossover and mutation
probabilities of 0.9 and 0.1, respectively. In addition, to make the comparison fair, the
termination condition is a given time limit, which was set depending on the size of the
instances. Specifically, for an instance with n jobs, the time limit is set to n/2 s, which
in most cases is sufficient for the algorithms to converge and, arguably, it constitutes a
reasonable time in practice given the complexity of the problem.

In order to evaluate the quality of the solutions, the error in percentage w.r.t. the
best solution found across all the experiments is calculated for the solutions reached by
each method on each instance. Specifically, if for a given instance the best known solution
has a total tardiness Tbest and an algorithm finds a solution with a total tardiness T (with
Tbest ≤ T), the error in percentage is computed as 100× (T − Tbest)/Tbest. This way, the
error in percentage of a solution represents its deviation from the best solution known for a
given problem instance.

The experimental study is organized as follows: First, the slack-aware improvement
condition is analyzed by comparing MASCP and MAiSCP. Then, the performance of the
memetic algorithms MASCP+, MACB, MAICP and MAHYB is assessed. Finally, the study
provides a detailed comparison of the best memetic algorithm with both the state-of-the-art
approach [32] and a constraint programming model.

6.1. Analyzing the Slack-Aware Improvement Condition

The objective of the first series of experiments is to measure the effectiveness of the
slack-aware improvement condition described in Section 4.1.1, and assess the gains it brings
in terms of the quality of the schedules computed. To this end, MASCP and MAiSCP were
run on all the instances. Recall that MASCP exploits the SCP local search procedure using
the original improvement condition for swapping a pair of consecutive jobs in a C-path,
whereas MAiSCP integrates the iSCP procedure, which uses the new slack-aware condition.

Mathematics 2021, 9, 3030 16 of 24

Table 1 shows a summary of the results. For each method, it reports the error in
percentage of the best and average solutions, averaged for groups of instances with the
same size n and maximum capacity of the machine MC. As can be observed, MAiSCP
yields (much) better results than MASCP on all the groups of instances, in both the best and
average solutions found. The improvements in the quality of the solutions are significant.
On average, the error of the best and average solutions computed by MAiSCP is about
48.67% and 40.34% of that of the solutions found by MASCP. The greatest improvements
are observed for the instances with n = 500, where the ratios are 35.76% and 26.62%. On
the other hand, the results show that the errors tend to increase with MC. This is always
the case for MAiSCP, whereas MASCP follows this trend for most values, with the exception
of MC = 10 for n ≥ 250.

Figure 7 shows two scatter plots with the average total tardiness of the solutions
computed by the methods. Notice that the plots show total tardiness values, instead of
errors in percentage as reported in Table 1. Figure 7a shows these values for all the instances
(notice that the axes are limited to 100,000) and, to get a closer view, Figure 7b shows the
values below 20,000, which contains most of the instances (with the exception of a few
outliers). In these plots, the points below (resp. above) the diagonal line represent instances
for which MAiSCP returned better (resp. worse) solutions on average than MASCP. As can
be observed, there is a clear superiority of MAiSCP over MASCP.

The results confirm that the slack-aware improvement condition is beneficial. As a
consequence, this condition will be used in all the memetic algorithms evaluated in the
next subsection.

Table 1. Summary of results from MASCP and MAiSCP after evolving a population of 250 individuals
for n/2 s. Errors in percentage of the best and average solutions over 30 runs are reported.

MASCP MAiSCP

n MC Best Avg. Best Avg.

120

3 0.01 0.49 0.01 0.18
5 0.08 0.98 0.07 0.29
7 0.35 1.50 0.08 0.48

10 0.65 1.97 0.30 1.13

Avg. 0.27 1.23 0.11 0.52

250

10 1.46 4.09 0.27 0.99
20 1.64 3.81 0.59 1.95
30 1.98 4.71 1.51 3.39

Avg. 1.70 4.20 0.79 2.11

500

10 8.54 20.00 0.53 1.40
20 4.35 11.55 2.01 3.46
30 6.92 13.41 4.55 7.11

Avg. 6.60 14.99 2.36 3.99

750

10 7.88 16.21 0.36 1.79
20 6.08 14.81 0.97 2.17
30 12.97 21.98 6.59 9.70
50 18.58 25.21 11.62 14.65

Avg. 11.38 19.55 4.88 7.08

1000

10 15.72 41.02 0.80 2.88
20 5.86 11.63 1.61 3.03
30 21.08 31.39 9.42 13.50
50 27.97 41.59 12.55 17.17

100 43.66 50.27 36.71 42.45

Avg. 22.86 35.18 12.22 15.81

All 9.78 16.66 4.76 6.72

Mathematics 2021, 9, 3030 17 of 24

0 20,000 40,000 60,000 80,000 100,000
MASCP

0

20,000

40,000

60,000

80,000

100,000

M
A i

SC
P

(a)

0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000
MASCP

0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

20,000

M
A i

SC
P

(b)
Figure 7. Comparison of MASCP and MAiSCP. (a) Total tardiness limit: 100,000. (b) Total tardiness
limit: 20,000.

6.2. Analyzing MASCP+, MACB, MAICP and MAHYB

The second part of the experimental study is devoted to the evaluation of the memetic
algorithms MASCP+, MACB, MAICP and MAHYB, which use the local search procedures
SCP+, CB, ICP and HYB respectively.

As in the previous experiments, 30 independent runs of the methods were performed
on each instance in the benchmark set. The results are summarized in Table 2. As can
be observed, on average all the algorithms improve the results obtained by MASCP and
MAiSCP (shown in Table 1), some of them very substantially. For most groups of instances
the hill-climbing approach used by SCP+ leads to solutions of similar quality than those
computed by MAiSCP, with the notable exception of the largest (and hardest) instances with
n = 1000, where the errors are much smaller. MACB reaches significantly better solutions
than MASCP+ in all cases, indicating a remarkable effectiveness of the cover-based local
search method. On the other hand, MAICP lays behind all the other memetic algorithms
in the table, what suggests that the ICP procedure is not as effective as the other local
search methods. However, the combination of CB and ICP is beneficial in practice, as it
allows MAHYB to achieve the best results by a wide margin. In most cases, both the best
and average solutions computed by MAHYB have an error between 0% and 1%, and the
average error of the solutions computed by MAHYB is smaller than that of the best solutions
computed by any other method.

Figure 8 shows the evolution over time of the average error of the solutions computed
the memetic algorithms on the sets of instances with 250, 500, 750 and 1000 jobs. Although
the errors in the plots are different, there are similarities shared by all of them. First of all,
it is clear that MAHYB and MACB are in the first and second positions from the beginning
for all the considered sizes, and these methods keep their lead for the whole duration of
the experiments. In addition, MAICP exhibits a faster convergence pattern than MASCP+,
allowing it to compute better solutions during a large fraction of the given time. However
MASCP+ is eventually able to compute solutions of similar quality and even outperform
MAICP on the largest instances. Noticeably, the differences in favor of MAHYB and MACB
over the other algorithms grow with n. In the case of n = 250, all the MAs are close,
even though the mentioned ranking among them is already observable; with n = 500 and
n = 750, the superiority of MAHYB and MACB becomes clearer and finally, with n = 1000,
it is evident. In addition, these two algorithms (especially MAHYB) are able to compute
high-quality solutions in short time (using just a small portion of the given time limit),
what represents an important advantage over the other methods.

Mathematics 2021, 9, 3030 18 of 24

Table 2. Summary of results from MASCP+, MACB, MAICP and MAHYB after evolving a population
of 250 individuals for n/2 s. Errors in percentage of the best and average solutions over 30 runs are
reported.

MASCP+ MACB MAICP MAHYB

n MC Best Avg. Best Avg. Best Avg. Best Avg.

120

3 0.00 0.16 0.00 0.11 0.12 2.20 0.00 0.01
5 0.07 0.27 0.05 0.20 0.00 1.10 0.00 0.03
7 0.09 0.42 0.07 0.32 0.06 0.75 0.00 0.07

10 0.33 1.19 0.15 0.68 0.16 1.06 0.00 0.17

Avg. 0.12 0.51 0.07 0.33 0.08 1.28 0.00 0.07

250

10 0.39 1.18 0.15 0.56 1.05 2.12 0.00 0.12
20 0.81 2.10 0.25 0.80 0.51 1.17 0.00 0.14
30 1.61 3.53 0.34 1.45 1.10 1.85 0.07 0.37

Avg. 0.94 2.27 0.25 0.94 0.89 1.71 0.02 0.21

500

10 0.49 1.26 0.21 0.58 3.28 5.31 0.00 0.12
20 2.08 3.63 0.65 1.21 2.71 3.92 0.12 0.37
30 4.83 7.48 0.98 2.38 3.28 5.08 0.16 0.38

Avg. 2.47 4.12 0.61 1.39 3.09 4.77 0.09 0.29

750

10 0.39 1.48 0.06 0.67 7.82 10.16 0.14 0.62
20 1.13 2.27 0.16 0.70 2.71 3.84 0.17 0.28
30 6.64 10.28 1.53 2.87 4.09 5.93 0.00 0.27
50 11.23 14.00 1.79 3.23 7.13 8.78 0.00 0.29

Avg. 4.85 7.01 0.89 1.87 5.44 7.18 0.08 0.36

1000

10 0.42 2.15 0.00 0.78 21.25 27.28 0.64 1.07
20 1.48 2.40 0.12 0.90 6.21 7.56 0.23 0.39
30 7.45 10.05 0.20 1.40 19.00 22.91 0.34 0.83
50 11.45 14.98 2.72 4.21 4.07 5.89 0.08 0.14

100 21.18 25.20 2.86 4.03 5.53 6.44 0.00 0.20

Avg. 8.40 10.95 1.18 2.26 11.21 14.02 0.26 0.53

All 3.79 5.47 0.65 1.42 4.74 6.49 0.10 0.31

20 40 60 80 100 120
time (s)

0

20

40

60

80

100

er
ro

r (
%

)

MASCP +
MACB
MAICP
MAHYB

(a)

50 100 150 200 250
time (s)

0

20

40

60

80

100

er
ro

r (
%

)

MASCP +
MACB
MAICP
MAHYB

(b)

50 100 150 200 250 300 350
time (s)

0

20

40

60

80

100

er
ro

r (
%

)

MASCP +
MACB
MAICP
MAHYB

(c)

100 200 300 400 500
time (s)

0

20

40

60

80

100

er
ro

r (
%

)

MASCP +
MACB
MAICP
MAHYB

(d)

Figure 8. Evolution of the average error over time. (a) n = 250; (b) n = 500; (c) n = 750; (d) n = 1000.

Mathematics 2021, 9, 3030 19 of 24

Figure 9 shows a boxplot with the average errors of MASCP+, MACB, MAICP and
MAHYB over the whole set of instances. It confirms the previously made points: MAHYB is
ahead in terms of results, followed by MACB, MASCP+ and MAICP.

MASCP + MACB MAICP MAHYB

0

20

40

60

80
er

ro
r (

%
)

Figure 9. Boxplot comparing the average results yielded by MASCP+, MACB, MAICP and MAHYB.

Some conclusions can be drawn from the experiments. First of all, the cover-based
methods get the best results, since MAHYB and MACB are ahead of the other approaches in
terms of the quality of solutions they reach. In addition, as already mentioned, ICP does not
seem to be a good stand-alone local search for a memetic algorithm considering that MAICP
is outperformed by every other method in this comparison; however, its combination
with CB in MAHYB leads to the best overall results, so, all things considered, it is a useful
technique.

6.3. Final Comparison

The experimental study concludes comparing the best memetic algorithm among
the ones proposed in this paper (MAHYB) and two other methods, namely, the memetic
algorithm MASCP proposed in [32] and a constraint programming approach.

To our best knowledge, MASCP is the current best-performing approach in the lit-
erature. As pointed out, this method was shown to outperform the genetic algorithm
previously proposed in [31], as well as priority rules, both classical ones and others
built by means of genetic programming approaches [34,35] in terms of the quality of
the solutions computed.

In order to make the comparison more comprehensive, MAHYB is also compared to a
constraint programming approach that was built using the commercial solver IBM ILOG
CP Optimizer (version 12.9). This solver is specialized in scheduling and has been shown to
be very effective in different problems [9,57]. The (1, Cap(t)||∑ Ti) problem was modeled
in a conventional way, using interval variables (IloIntervalVar) to represent the jobs. The
machine was modeled as a non-renewable resource using a cumulative function defined as
a sum of pulse functions (IloPulse), enforcing that its capacity is never exceeded by an
IloAlwaysIn constraint for each capacity interval. Finally, the objective function was set to
minimize the total tardiness, defined as a numerical expression (IloNumExpr) that sums
the positive differences between the completion time of the jobs and their due dates.

The constraint programming approach, referred to as CPO, was implemented in
C++. Besides, 30 independent runs were performed on each instance (since it has some
stochasticity), setting a time limit of n/2 s, as for the other methods. In all these experiments,
CPO was run using one worker and the default values for CP Optimizer’s parameters.

Table 3 shows the results obtained by MASCP, CPO and MAHYB in terms of the error
of the solutions reached by each algorithm. As can be observed, MAHYB conclusively

Mathematics 2021, 9, 3030 20 of 24

outperforms MASCP and CPO. For all groups of instances, the errors yielded by MAHYB
are at least one order of magnitude smaller than the errors of the solutions computed by
the two other methods. MASCP performs (much) better than CPO on the smaller instances
with n ∈ {120, 250}, whereas for the largest instances CPO gets better results. This suggests
that MASCP suffers from some scalability issues, what indicates that the SCP local search
method becomes less effective as the size of the instances grows. However, the new local
search methods proposed in this paper lead MAHYB to scale to much larger instances,
always finding solutions very close to the best known ones.

Figure 10 depicts a boxplot with the best and average errors of the three methods over
the whole set of instances. It confirms that MAHYB is clearly outperforms both MASCP
and CPO, with no overlapping between its boxes and those of the other two methods. In
addition, the plot shows that even the few outliers from MAHYB correspond to solutions
with small errors.

Table 3. Summary of results from MASCP, MAHYB and CPO after being run with a time limit of n/2
s. Errors in percentage of the best and average solutions over 30 runs are reported.

MASCP CPO MAHYB

n MC Best Avg. Best Avg. Best Avg.

120

3 0.01 0.49 3.82 3.85 0.00 0.01
5 0.08 0.98 4.54 4.54 0.00 0.03
7 0.35 1.50 5.47 5.47 0.00 0.07

10 0.65 1.97 6.43 6.63 0.00 0.17

Avg. 0.27 1.23 5.06 5.12 0.00 0.07

250

10 1.46 4.09 6.29 6.36 0.00 0.12
20 1.64 3.81 9.45 9.46 0.00 0.14
30 1.98 4.71 12.74 12.74 0.07 0.37

Avg. 1.70 4.20 9.49 9.52 0.02 0.21

500

10 8.54 20.00 8.97 8.97 0.00 0.12
20 4.35 11.55 9.89 9.94 0.12 0.37
30 6.92 13.41 16.90 17.24 0.16 0.38

Avg. 6.60 14.99 11.92 12.05 0.09 0.29

750

10 7.88 16.21 6.93 6.95 0.14 0.62
20 6.08 14.81 10.62 10.63 0.17 0.28
30 12.97 21.98 15.70 16.14 0.00 0.27
50 18.58 25.21 13.46 13.46 0.00 0.29

Avg. 11.38 19.55 11.68 11.79 0.08 0.36

1000

10 15.72 41.02 9.23 9.39 0.64 1.07
20 5.86 11.63 5.64 5.67 0.23 0.39
30 21.08 31.39 14.79 14.85 0.34 0.83
50 27.97 41.59 14.46 14.46 0.08 0.14
100 43.66 50.27 8.77 8.77 0.00 0.20

Avg. 22.86 35.18 10.58 10.63 0.26 0.53

All 9.78 16.66 9.69 9.76 0.10 0.31

A series of statistical inference tests was performed to the results shown in Table 3
with the objective of making the experimental study more robust. The tests are aimed
at the detection of statistically significant differences among the average errors of the
solutions yielded by the methods, and they were conducted over all the instances in the
benchmark set.

In order to know if there are significant differences between the results achieved
by the algorithms and rank them, an Aligned Friedman Rank Test was performed,
following [46,58,59]. This is a multiple-comparison non-parametric test, whose null hy-
pothesis considers that there are no differences in the rankings of the algorithms. If the
null hypothesis is rejected, the method at the top of the ranking will be compared against
the rest of them by means of a collection of post-hoc procedures. The considered post-hoc

Mathematics 2021, 9, 3030 21 of 24

procedures (Bonferroni–Dunn, Holm, Hochberg, Hommel, Holland, Rom, Finn, Finner and
Li) are described in [58].

MASCP Best MASCP Avg CPO Best CPO Avg MAHYB Best MAHYB Avg

0

20

40

60

80

100

120

er
ro

r (
%

)

Figure 10. Boxplot comparing best and average results yielded by MASCP, CPO and MAHYB.

The average ranking calculated by the Aligned Friedman Rank Test (distributed
according to χ2 with 2 degrees of freedom: 135.68) is shown in Table 4. As can be observed,
MAHYB appears in first place, followed by CPO and MASCP in second and third place,
respectively. The test returned a p-value of 9.59× 10−11, meaning that the differences
among the results yielded by the algorithms are statistically significant.

Table 4. Average rankings of MAHYB, CPO and MASCP obtained with the Aligned Friedman Rank Test.

Position Algorithm Ranking

1 MAHYB 121.12
2 CPO 335.75
3 MASCP 399.62

In order to compare MAHYB with the other methods (MASCP and CPO), a series of
post-hoc procedures were carried out. These procedures share the same null hypothesis,
which states that the distributions of the results obtained by MAHYB and the comparing
methods are equal. Table 5 shows the adjusted p-values obtained by each procedure, pBon f
(Bonferroni–Dunn), pHolm (Holm), pHoch (Hochberg), pHomm (Hommel), pHoll (Holland),
pRom (Rom), pFinn (Finner) and pLi (Li). The results lead to the conclusion that the differ-
ences in favor of MAHYB are statistically significant, since all the p-values are very close to
0, rejecting the null hypothesis in all cases.

Table 5. Adjusted p-values given by each post-hoc procedure, comparing MAHYB against CPO and MASCP.

Algorithm pBon f pHolm pHoch pHomm pHoll pRom pFinn pLi

MASCP 1.34× 10−48 1.34× 10−48 1.34× 10−48 1.34× 10−48 0.0 1.34× 10−48 0.0 6.72× 10−49

CPO 3.31× 10−45 1.65× 10−45 1.65× 10−45 1.65× 10−45 0.0 1.65× 10−45 0.0 1.65× 10−45

7. Conclusions

The new local search methods developed in this paper have been shown to give
rise to very effective memetic algorithms for solving the (1, Cap(t)||∑ Ti) problem. The
results from the experimental study confirm that each of the local search techniques brings
improvements to the memetic algorithms in practice. MAHYB, which exploits the hybrid
local search procedure, stands out as the best method overall, computing high-quality
solutions in short time and showing a remarkable ability to scale to large and challenging

Mathematics 2021, 9, 3030 22 of 24

problem instances. As a result, this algorithm clearly outperforms existing approaches,
including the memetic algorithm proposed in [32] and a constraint programming approach.

Although the memetic algorithms proposed in this paper are able to converge in short
time, they may not be fast enough if real-time requirements are considered. However,
the low worst-case complexities of the new local search procedures encourages further
research in this direction, as deploying these methods in online settings. Future work will
investigate their application in combination with real-time approaches, as schedule builders
guided by priority rules. Hopefully, the local search procedures will be able to improve the
quality of the solutions obtained by priority rules. In addition, another interesting topic
for future research would be exploring the use of mathematical programming methods
for solving the (1, Cap(t)||∑ Ti) problem, as well as their combination with the algorithms
proposed in this paper.

Author Contributions: Conceptualization, R.M. and C.M.; methodology, R.M and C.M.; software,
R.M.; validation, R.M. and C.M; formal analysis, R.M. and C.M.; investigation, R.M. and C.M.;
writing—original draft preparation, R.M. and C.M.; writing—review and editing, R.M. and C.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Spanish Government under grant PID2019-106263RB-I00.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The problem instances used in the experimental study and de-
tailed results are available at https://github.com/raulmencia/One-Machine-Scheduling-with-Time-
Dependent-Capacity-via-Efficient-Memetic-Algorithms.git (accessed on 19 November 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pinedo, M.L. Planning and Scheduling in Manufacturing and Services; Springer: New York, NY, USA, 2009. [CrossRef]
2. Zhan, Z.H.; Liu, X.F.; Gong, Y.J.; Zhang, J.; Chung, H.S.H.; Li, Y. Cloud Computing Resource Scheduling and a Survey of Its

Evolutionary Approaches. ACM Comput. Surv. 2015, 47, 1–33. [CrossRef]
3. Garey, M.R.; Johnson, D.S. Computers and Intractability; A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York,

NY, USA, 1979.
4. Brucker, P. Scheduling Algorithms, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2004.
5. Ganian, R.; Hamm, T.; Mescoff, G. The Complexity Landscape of Resource-Constrained Scheduling. In Proceedings of the

Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, Yokohama, Japan, 7–15 January 2021; IJCAI:
Los Angeles, CA, USA, 2021; pp. 1741–1747. [CrossRef]

6. Knust, S.; Brucker, P. Complexity Results for Scheduling Problems. Available online: http://www.informatik.uni-osnabrueck.
de/knust/class/ (accessed on 19 November 2021).

7. Carlier, J. The one-machine sequencing problem. Eur. J. Oper. Res. 1982, 11, 42–47. [CrossRef]
8. Brucker, P.; Jurisch, B.; Sievers, B. A Branch and Bound Algorithm for the Job-Shop Scheduling Problem. Discret. Appl. Math.

1994, 49, 107–127. [CrossRef]
9. Laborie, P.; Rogerie, J.; Shaw, P.; Vilím, P. IBM ILOG CP optimizer for scheduling - 20+ years of scheduling with constraints at

IBM/ILOG. Constraints Int. J. 2018, 23, 210–250. [CrossRef]
10. Ku, W.; Beck, J.C. Mixed Integer Programming models for job shop scheduling: A computational analysis. Comput. Oper. Res.

2016, 73, 165–173. [CrossRef]
11. Mustu, S.; Eren, T. The single machine scheduling problem with sequence-dependent setup times and a learning effect on

processing times. Appl. Soft Comput. 2018, 71, 291–306. [CrossRef]
12. Soares, L.C.R.; Carvalho, M.A.M. Biased random-key genetic algorithm for scheduling identical parallel machines with tooling

constraints. Eur. J. Oper. Res. 2020, 285, 955–964. [CrossRef]
13. Gonçalves, J.F.; Resende, M.G.C. An extended Akers graphical method with a biased random-key genetic algorithm for job-shop

scheduling. Int. Trans. Oper. Res. 2014, 21, 215–246. [CrossRef]
14. Gonçalves, J.; Mendes, J.; Resende, M. A genetic algorithm for the resource constrained multi-project scheduling problem. Eur. J.

Oper. Res. 2008, 189, 1171–1190. [CrossRef]
15. Queiroga, E.; Pinheiro, R.G.S.; Christ, Q.; Subramanian, A.; Pessoa, A.A. Iterated local search for single machine total weighted

tardiness batch scheduling. J. Heuristics 2021, 27, 353–438. [CrossRef]
16. Nowicki, E.; Smutnicki, C. An Advanced Tabu Search Algorithm for the Job Shop Problem. J. Sched. 2005, 8, 145–159. [CrossRef]

https://github.com/raulmencia/One-Machine-Scheduling-with-Time-Dependent-Capacity-via-Efficient-Memetic-Algorithms.git
https://github.com/raulmencia/One-Machine-Scheduling-with-Time-Dependent-Capacity-via-Efficient-Memetic-Algorithms.git
http://dx.doi.org/10.1007/978-1-4419-0910-7
http://dx.doi.org/10.1145/2788397
http://dx.doi.org/10.24963/ijcai.2020/241
http://www.informatik.uni-osnabrueck.de/knust/class/
http://www.informatik.uni-osnabrueck.de/knust/class/
http://dx.doi.org/10.1016/S0377-2217(82)80007-6
http://dx.doi.org/10.1016/0166-218X(94)90204-6
http://dx.doi.org/10.1007/s10601-018-9281-x
http://dx.doi.org/10.1016/j.cor.2016.04.006
http://dx.doi.org/10.1016/j.asoc.2018.06.051
http://dx.doi.org/10.1016/j.ejor.2020.02.047
http://dx.doi.org/10.1111/itor.12044
http://dx.doi.org/10.1016/j.ejor.2006.06.074
http://dx.doi.org/10.1007/s10732-020-09461-x
http://dx.doi.org/10.1007/s10951-005-6364-5

Mathematics 2021, 9, 3030 23 of 24

17. Chen, Y.; Lu, J.; He, R.; Ou, J. An Efficient Local Search Heuristic for Earth Observation Satellite Integrated Scheduling. Appl. Sci.
2020, 10, 5616. [CrossRef]

18. França, P.M.; Mendes, A.; Moscato, P. A memetic algorithm for the total tardiness single machine scheduling problem. Eur. J.
Oper. Res. 2001, 132, 224–242. [CrossRef]

19. Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M.; Chakrabortty, R.K.; Ryan, M.J. A Simple and Effective Approach for Tackling
the Permutation Flow Shop Scheduling Problem. Mathematics 2021, 9, 270. [CrossRef]

20. Onwubolu, G.; Davendra, D. Scheduling flow shops using differential evolution algorithm. Eur. J. Oper. Res. 2006, 171, 674–692.
[CrossRef]

21. Merkle, D.; Middendorf, M.; Schmeck, H. Ant colony optimization for resource-constrained project scheduling. IEEE Trans. Evol.
Comput. 2002, 6, 333–346. [CrossRef]

22. Zhou, H.; Pang, J.; Chen, P.K.; Chou, F.D. A modified particle swarm optimization algorithm for a batch-processing machine
scheduling problem with arbitrary release times and non-identical job sizes. Comput. Ind. Eng. 2018, 123, 67–81. [CrossRef]

23. Malakar, S.; Ghosh, M.; Bhowmik, S.; Sarkar, R.; Nasipuri, M. A GA based hierarchical feature selection approach for handwritten
word recognition. Neural Comput. Appl. 2020, 32, 2533–2552. [CrossRef]

24. Bacanin, N.; Stoean, R.; Zivkovic, M.; Petrovic, A.; Rashid, T.A.; Bezdan, T. Performance of a Novel Chaotic Firefly Algorithm
with Enhanced Exploration for Tackling Global Optimization Problems: Application for Dropout Regularization. Mathematics
2021, 9, 2705. [CrossRef]

25. Hall, N.G.; Potts, C.N. Supply Chain Scheduling: Batching and Delivery. Oper. Res. 2003, 51, 566–584. [CrossRef]
26. Wang, X.; Ren, T.; Bai, D.; Ezeh, C.; Zhang, H.; Dong, Z. Minimizing the sum of makespan on multi-agent single-machine

scheduling with release dates. Swarm Evol. Comput. 2021, 100996. [CrossRef]
27. Jin, F.; Song, S.; Wu, C. A simulated annealing algorithm for single machine scheduling problems with family setups. Comput.

Oper. Res. 2009, 36, 2133–2138. [CrossRef]
28. Adams, J.; Balas, E.; Zawack, D. The Shifting Bottleneck Procedure for Job Shop Scheduling. Manag. Sci. 1988, 34, 391–401.

[CrossRef]
29. Hernández-Arauzo, A.; Puente, J.; Varela, R.; Sedano, J. Electric vehicle charging under power and balance constraints as dynamic

scheduling. Comput. Ind. Eng. 2015, 85, 306–315. [CrossRef]
30. Graham, R.; Lawler, E.; Lenstra, J.; Kan, A. Optimization and Approximation in Deterministic Sequencing and Scheduling: A

Survey. Ann. Discret. Math. 1979, 5, 287–326.
31. Mencía, C.; Sierra, M.R.; Mencía, R.; Varela, R. Genetic Algorithm for Scheduling Charging Times of Electric Vehicles Subject to

Time Dependent Power Availability. In International Work-Conference on the Interplay Between Natural and Artificial Computation;
Springer International Publishing: Cham, Switzerland, 2017; pp. 160–169.

32. Mencía, C.; Sierra, M.R.; Mencía, R.; Varela, R. Evolutionary one-machine scheduling in the context of electric vehicles charging.
Integr. Comput. Aided Eng. 2019, 26, 49–63. [CrossRef]

33. Vepsalainen, A.P.J.; Morton, T.E. Priority Rules for Job Shops with Weighted Tardiness Costs. Manag. Sci. 1987, 33, 1035–1047.
[CrossRef]

34. Gil-Gala, F.J.; Mencía, C.; Sierra, M.R.; Varela, R. Evolving priority rules for on-line scheduling of jobs on a single machine with
variable capacity over time. Appl. Soft Comput. 2019, 85, 105782. [CrossRef]

35. Gil-Gala, F.J.; Sierra, M.R.; Mencía, C.; Varela, R. Combining hyper-heuristics to evolve ensembles of priority rules for on-line
scheduling. Nat. Comput. 2020. [CrossRef]

36. Koulamas, C. The total tardiness problem: Review and extensions. Oper. Res. 1994, 42, 1025–1041. [CrossRef]
37. Giffler, B.; Thompson, G.L. Algorithms for Solving Production Scheduling Problems. Oper. Res. 1960, 8, 487–503. [CrossRef]
38. Kolisch, R. Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. Eur. J. Oper.

Res. 1996, 90, 320–333. [CrossRef]
39. Artigues, C.; Lopez, P.; Ayache, P. Schedule Generation Schemes for the Job Shop Problem with Sequence-Dependent Setup

Times: Dominance Properties and Computational Analysis. Ann. Oper. Res. 2005, 138, 21–52. [CrossRef]
40. Palacios, J.J.; Vela, C.R.; Rodríguez, I.G.; Puente, J. Schedule Generation Schemes for Job Shop Problems with Fuzziness. In

Proceedings of the 21st European Conference On Artificial Intelligence, Prague, Czech Republic, 18–22 August 2014; pp. 687–692.
41. Sierra, M.R.; Mencía, C.; Varela, R. New schedule generation schemes for the job-shop problem with operators. J. Intell. Manuf.

2015, 26, 511–525. [CrossRef]
42. Mencía, R.; Sierra, M.R.; Mencía, C.; Varela, R. Schedule Generation Schemes and Genetic Algorithm for the Scheduling Problem

with Skilled Operators and Arbitrary Precedence Relations. In Proceedings of the Twenty-Fifth International Conference on
Automated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, 7–11 June 2015; AAAI Press: Palo Alto, CA, USA, 2015;
pp. 165–173.

43. Sprecher, A.; Kolisch, R.; Drexl, A. Semi-active, active, and non-delay schedules for the resource-constrained project scheduling
problem. Eur. J. Oper. Res. 1995, 80, 94–102. [CrossRef]

44. Holland, J. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.
45. Guo, W.; Xu, P.; Zhao, Z.; Wang, L.; Zhu, L. Scheduling for airport baggage transport vehicles based on diversity enhancement

genetic algorithm. Nat. Comput. 2020, 19, 663–672. [CrossRef]

http://dx.doi.org/10.3390/app10165616
http://dx.doi.org/10.1016/S0377-2217(00)00140-5
http://dx.doi.org/10.3390/math9030270
http://dx.doi.org/10.1016/j.ejor.2004.08.043
http://dx.doi.org/10.1109/TEVC.2002.802450
http://dx.doi.org/10.1016/j.cie.2018.06.018
http://dx.doi.org/10.1007/s00521-018-3937-8
http://dx.doi.org/10.3390/math9212705
http://dx.doi.org/10.1287/opre.51.4.566.16106
http://dx.doi.org/10.1016/j.swevo.2021.100996
http://dx.doi.org/10.1016/j.cor.2008.08.001
http://dx.doi.org/10.1287/mnsc.34.3.391
http://dx.doi.org/10.1016/j.cie.2015.04.002
http://dx.doi.org/10.3233/ICA-180582
http://dx.doi.org/10.1287/mnsc.33.8.1035
http://dx.doi.org/10.1016/j.asoc.2019.105782
http://dx.doi.org/10.1007/s11047-020-09793-4
http://dx.doi.org/10.1287/opre.42.6.1025
http://dx.doi.org/10.1287/opre.8.4.487
http://dx.doi.org/10.1016/0377-2217(95)00357-6
http://dx.doi.org/10.1007/s10479-005-2443-4
http://dx.doi.org/10.1007/s10845-013-0810-6
http://dx.doi.org/10.1016/0377-2217(93)E0294-8
http://dx.doi.org/10.1007/s11047-018-9703-0

Mathematics 2021, 9, 3030 24 of 24

46. Mencía, R.; Mencía, C.; Varela, R. Efficient repairs of infeasible job shop problems by evolutionary algorithms. Eng. Appl. Artif.
Intell. 2021, 104, 104368. [CrossRef]

47. Davis, L. Applying Adaptive Algorithms to Epistatic Domains. In Proceedings of the 9th International Joint Conference on
Artificial Intelligence, Los Angeles, CA, USA, 18–23 August 1985; pp. 162–164.

48. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef]
49. Glover, F.W.; Laguna, M. Tabu Search; Kluwer: Alphen aan den Rijn, The Netherlands, 1997. [CrossRef]
50. Idzikowski, R.; Rudy, J.; Gnatowski, A. Solving Non-Permutation Flow Shop Scheduling Problem with Time Couplings. Appl.

Sci. 2021, 11, 4425. [CrossRef]
51. Du, J.; Leung, J.Y.T. Minimizing Total Tardiness on One Machine Is NP-Hard. Math. Oper. Res. 1990, 15, 483–495. [CrossRef]
52. Talbi, E. Metaheuristics—From Design to Implementation; Wiley: Hoboken, NJ, USA, 2009.
53. Gao, L.; Zhang, G.; Zhang, L.; Li, X. An efficient memetic algorithm for solving the job shop scheduling problem. Comput. Ind.

Eng. 2011, 60, 699–705. [CrossRef]
54. Mencía, R.; Mencía, C.; Varela, R. A memetic algorithm for restoring feasibility in scheduling with limited makespan. Nat.

Comput. 2020. [CrossRef]
55. Machado-Domínguez, L.F.; Paternina-Arboleda, C.D.; Vélez, J.I.; Sarmiento, A.B. A memetic algorithm to address the multi-node

resource-constrained project scheduling problem. J. Sched. 2021, 24, 413–429. [CrossRef]
56. Williams, J.W.J. Algorithm 232 - Heapsort. Commun. ACM 1964, 7, 347–348. [CrossRef]
57. Vilím, P.; Laborie, P.; Shaw, P. Failure-Directed Search for Constraint-Based Scheduling. In Proceedings of the International

Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research; CPAIOR 2015, Barcelona,
Spain, 18–22 May 2015; Springer: Cham, Switzerland, 2015; pp. 437–453. [CrossRef]

58. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]

59. Gallardo, J.E.; Cotta, C. A GRASP-based memetic algorithm with path relinking for the far from most string problem. Eng. Appl.
Artif. Intell. 2015, 41, 183–194. [CrossRef]

http://dx.doi.org/10.1016/j.engappai.2021.104368
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/978-1-4615-6089-0
http://dx.doi.org/10.3390/app11104425
http://dx.doi.org/10.1287/moor.15.3.483
http://dx.doi.org/10.1016/j.cie.2011.01.003
http://dx.doi.org/10.1007/s11047-020-09796-1
http://dx.doi.org/10.1007/s10951-021-00696-5
http://dx.doi.org/10.1145/512274.512284
http://dx.doi.org/10.1007/978-3-319-18008-3_30
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.engappai.2015.01.020

	Introduction
	Definition of the Problem
	Preliminaries
	Schedule Builder
	Genetic Algorithm
	Local Search Procedure
	Memetic Algorithm

	New Local Search Procedures
	Enhancements to Single C-Path Local Search
	Slack-Aware Improvement Condition
	Hill Climbing on a Single C-Path

	Cover-Based Local Search
	Interchanging Jobs between C-Paths
	Hybrid Approach

	New Memetic Algorithms
	Results
	Analyzing the Slack-Aware Improvement Condition
	Analyzing MASCP+, MACB, MAICP and MAHYB
	Final Comparison

	Conclusions
	References

