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Abstract: Microplastics (MPs), and specifically microfibres (MPFs), are ubiquitous in water bodies,
including wastewater and drinking water. In this work, a thorough literature review on the occurrence
and removal of MPs, and specifically MPFs in WWTPs and DWTPs, has been carried out. When
the water is treated, an average microfiber removal efficiency over 70% is achieved in WWTPs and
DWTPs. These high percentages are still inefficient for avoiding the presence of a large number of
microfibres in treated wastewater and also in tap water. RSF, DAF, oxidation ditch and CAS processes
have been described as the most efficient treatments for eliminating MPFs from wastewater treatment.
It is remarkable the wide range of the data reported on this topic; for example, treated wastewater
contains between not detected and 347 MPFs/L, whereas tap water contains between not detected
and 168 MPFs/L. Microfibres constitute more than half of the MPs found in treated wastewater and
sewage sludge, whereas in DWTP effluents the percentage of MPFs is around 32%. Nevertheless, the
relative amount of MPFs reported in tap water is notably higher (71%). Microfibres from WWTPs
are discharged to the environment, being a source of MP pollution. Additionally, MPs released
by DWTPs directly enter the drinking water lines, which constitute a direct route for MP human
consumption, so that it has been estimated that an adult may ingest an average value of 7500 MPFs
per year only via tap water. Thus, this review provides an update on the performance of WWTPs
and DWTPs in removing MPs from water, which is an issue of great interest.

Keywords: microfibres; technologies; removal; WWTPs; DWTPs; tap water

1. Introduction

Nowadays, Microplastics (MPs) can be considered ubiquitous in the environment.
These microcontaminants can be originated from different sources. Certainly, these pol-
lutants can be emitted as ‘primary MPs’ (i.e., tiny particles designed for commercial use
intentionally included in cosmetics, personal care products, paints, shower gel, washing
textiles, etc.) or ‘secondary MPs’, which result from the breakdown of larger plastic items,
such as those coming from industrial and agricultural activities, fishing activities, tyre wear
or mismanagement of plastics [1–3]. Most of these MPs end up in water masses [4–7].

Microfibres can be found in different aquatic environments—namely, oceans [8,9],
lakes [10,11], wastewater [12,13], sea ice [14,15], the deep sea [16,17], rivers [18–20], drink-
ing water [21–23], surface water [24], bays [25] and marine sediments [26–28]. This ubiq-
uity notably contributes to the pollution of the environment, being a risk for fauna and
flora [29,30], and for even humans. Additionally, it is known that fibres are present in
everyday foods, such as common salt, sugar, honey, beer, bottled water, tap water, fish,
lobster, mussels and oysters, which favours human ingestion of MPs [31,32]. A recent
study reported that a person may ingest between 39,000–52,000 MPs per year via food and
beverages, values that depend on age and sex. In addition, this value could be increased
by another 90,000 MPs annually with the ingestion of bottled water and by 4000 MPs
if tap water is also consumed [33]. Additionally, MPs are not only potentially harmful
to humans via ingestion; the inhalation of airborne MPs (including fibres) and dermal
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contact also have to be considered [34]. Specifically, the presence of these microparticles
in the atmosphere increase their entry into the human body by 74,000–121,000 MPs per
year [33]. Moreover, it has been suggested that nanoplastics could cross the epidermal
barrier, although it is not the major entry route of these particles [35]. The potential risk of
MPs is enhanced by their hydrophobic character; thus, they have the capacity to adsorb
chemical additives and toxic pollutants, such as metals, PCBs, pesticides, etc., on their
surface [34,36–38].

In order to reduce the dispersion of microfibres and other MPs in the environment,
wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs)
should be considered as hotspots in which to tackle this environmental problem (Figure 1).

Figure 1. A possible route of entry of MPFs into living beings via WWTPs and DWTPs.

In this work, a review on the current status of the occurrence and removal of MPs in
WWTPs and DWTPs was carried out. The incidence of MPs, especially microfibres, and the
performance of treatment processes to reduce the presence of MPs in treated wastewater
and drinking water was analysed. For wastewater from WWTPs a total of 67 studies from
23 countries were reviewed (Table 1), whereas for sludge 41 studies from 19 countries
were evaluated (Table 2). In the case of DWTPs and tap water, a total of 9 studies from
6 countries and 11 studies from 20 countries, respectively, were considered (Tables 3 and 4).
The vast majority of studies were carried out in Europe (48%) and Asia (43%); in particular,
most of them were conducted in China (approximately 27% of the total studies reviewed).

2. Microplastics and Microfibres in WWTPs

MPs originated in industrial and urban activities can be driven into the sewage
system, arriving to wastewater treatment plants (WWTPs). Even though these facilities can
remove even more than 90% of MPs from wastewater, still millions of MPs are discharged
to the environment in treated water each day [12,39,40]. Although great variability of
data has been reported, the MP concentration usually ranges between 6.10 × 102 and
3.14 × 104 particles/L in influent and 0.01 and 2.97 × 102 particles/L in effluent [39,41].

At the household level, microfibres can be originated in items of clothing and furnish-
ing, whereas at the industrial level, microfibres come from the automotive sector and the
construction and clothing industries, amongst others [42]. It is remarkable that the clothing
industry generates around 42 million tonnes of microfibres annually [43]. Microfibres origi-
nated in laundry contributes 35% of the global release of primary MPs to the environment,
and the vast majority of these microparticles found in wastewater come from household
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chores [2]. For example, between 1.1 × 105 and 1.3 × 107 polyester and cotton fibres can
be emitted in only one wash [44,45]. Additionally, the use of garments also contributes
to the emission of microfibres to the atmosphere due to wear and tear [46,47]. Most of
these microfibres are introduced into the sewage system by means of surface runoff, and
they subsequently arrive at WWTPs [48]. For instance, in Paris it was reported that fallout
deposits an average value of 106.2 microfibres·m−2 per day [49,50].

In a conventional WWTP, wastewater treatment is carried out in different stages that
can be classified as follows: pretreatment, primary treatment, secondary treatment and
tertiary treatment. The pretreatment is a physical process that aims to remove large debris
and/or residues contained in the wastewater, such as oil, grease, sand and solid wastes, in
order to avoid clogging and other problems that would affect the correct performance of
the facility [40]. This stage includes screening systems and grit and grease removal systems.
Different works analysed the presence of MPs throughout WWTP operations. It has been
reported that 45% of MPs are removed during the pretreatment process [48,51]. After that,
a primary clarifier is commonly used to eliminate suspended solids [40]. Different parame-
ters, such as the structure of suspended solids, the concentration, the retention time and
shape of the settling tanks, affect the sedimentation capacity of the solid particles [40,52–55].
It has been found that primary treatment together with pretreatment could reduce the
concentration of MPs with respect to raw wastewater by 78–98% [40,56]. Primary treatment
can achieve different removal efficiencies with respect to pretreatment, depending on the
specific characteristics of the settling tank, varying from 22% to 99% [48,51,52,57]. Once
primary sludge is separated from the wastewater, the effluent from the primary treatment
undergoes a secondary treatment consisting of a biological treatment that usually takes
place under aerobic conditions [40]. Therefore, the aeration system used to supply the
necessary oxygen for the process may make some MPs pass into the atmosphere. After the
biological treatment, a settler is employed to separate the treated water from the secondary
sludge [40]. For example, a study developed in Spain reported a MP removal efficiency of
67% in secondary treatment relative to primary treatment [48], whereas there was a 28%
removal efficiency in a study from China [57]. Finally, a tertiary treatment is sometimes
employed. The processes carried out in this stage depend on different factors, such as legal
requirements, water reuse, etc. A coagulation–flocculation process followed by disinfection
by chlorination or UV irradiation are the most common processes [40,58]. It has been
reported that chlorination only reduces the MP concentration by 7%. However, other
tertiary treatments such as rapid sand filtration (RSF) allow removals between 45% and
97%. The best results are obtained with membrane systems that remove more than 99% of
the MP concentration [12,40]. In addition, photocatalytic degradation could be an effective
method for MP elimination in wastewater; however, further research should be carried out
in order to improve this technology’s performance [59,60].

2.1. Microfiber Occurrence in WWTPs

Table 1. shows an overview of the incidence of MPs, and specifically microfibres,
in the influent and the effluent of different WWTPs worldwide. A total of 67 studies on
WWTPs from 23 different countries were reviewed, and as far as we know, this is the first
review on microfiber incidence in WWTPs.
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Table 1. Overview of the incidence of MPs, and specifically microfibres, in the influent and the effluent of different WWTPs worldwide. “W” followed by a number refers to different
WWTP analysed in the cited reference.

Treated Water (m3/day)
Influent Effluent

MPF Removal (%)
Number of MPFs per Day

References
(MPs/L) % MPFs (MPFs/L) (MPs/L) % MPFs (MPFs/L) Influent Effluent

Australia

- - - - 1 - - - - - [61]

W1: 3.1 × 105

W2: 1.7 × 104

W3: 1.3 × 104

W2: 1.44
W3: 2.20 - -

W1: 1.5
W2: 0.48
W3: 0.28

W1: 80
W2: 50
W3: 86

W1: 1.2
W2: 0.24
W3: 0.24

- -
W1: 3.7 × 108

W2: 4.1 × 106

W3: 3.1 × 106
[62]

W1: 1.3 × 105

W2: 6.5 × 104

W3: 1.5 × 105

W1: 92
W2: 98
W3: 55

W1: 83.7
W2: 81.6
W3: 49.1

W1: 77
W2: 80
W3: 27

W1: 0.18
W2: 0.96
W3: 0.91

W1: 66.7
W2: 88.5
W3: 72.5

W1: 0.12
W2: 0.85
W3: 0.66

W1: 99.8
W2: 98.9
W3: 97.6

W1: 1.0 × 1010

W2: 5.2 × 109

W3: 4.1 × 109

W1: 1.6 × 107

W2: 5.5 × 107

W3: 9.9 × 107
[63]

4.8 × 104 11.80 35.6 4.20 2.76 57.8 1.60 61.9 2.0 × 108 7.7 × 107 [64]

Canada
4.9 × 105 31.1 69.1 21.5 0.5 60 0.3 98.6 1.5 × 1010 2.5 × 108 [65]

8 × 107 - - - 1.76 82 1.44 - - 1.2 × 108 [66]

China

2 × 104 79.9 40 31.96 28.4 45 12.78 60.0 6.4 × 108 2.6·108 [57]

1.2 × 105 0.28 79 0.22 A: 0.13
B: 0.05

A: 46
B: 50

A: 0.06
B: 0.03

A: 72.7
B: 86.4 2.6 × 107 5.1 × 106 [67]

W1: 5.5 × 105

W2: 2 × 105

W3: 1.2 × 106

W1: 4.2
W2: 0.5
W3: 1.4

W1: 42.8
W2: 60

W3: 42.9

W1: 1.80
W2: 0.3

W3: 0.60

W1: 2.7
W2: 0.3
W3: 0.6

W1: 100
W2: 100
W3: 66.7

W1: 2.7
W2: 0.3
W3: 0.4

W1: 0
W2: 0

W3: 33.3

W1: 9.9 × 108

W2: 6 × 107

W3: 7.2 × 108

W1: 1.5 × 109

W2: 6 × 107

W3: 4.8 × 108
[68]

1.2 × 105 6.55 17.7 1.16 0.59 30.4 0.18 84.5 1.4 × 108 2.2 × 107 [69]

1 × 106 12.03 86 10.35 0.59 86 0.51 95.1 1.0 × 1010 5.1 × 108 [70]

6.0 × 105 126 43 54.18 30.6 61 18.67 65.5 3.3 × 1010 1.1 × 1010 [71]

3.3 × 108 b - - - 1.72 39.5 0.68 - - 2.2 × 108 [72]

1.5 × 105 288.5 62 178.87 22.9 40 9.16 94.9 2.7 × 1010 1.4 × 109 [73]

3 × 105 16.0 57.2 9.15 2.9 93.1 2.70 70.5 2.8 × 109 8.1 × 108 [74]

W1: 7 × 104

W2: 3 × 105
W1: 23.3
W2: 80.5

W1: 62
W2: 60

W1: 13.98
W2: 48.30

W1: 7.9
W2: 30.3

W1: 65
W2: 75

W1: 5.14
W2: 22.73

W1: 63.2
W2: 52.9

W1: 9.8 × 108

W2: 1.5 × 1010
W1: 3.6 × 108

W2: 6.8 × 109 [75]

- W1: 129.3 b

W2: -
W1: 8
W2: -

W1: 10.34
W2: -

W1: 14.3
W2: 8.25

W1: 5
W2: 18

W1: 0.72
W2: 1.49 W1: 93.0 - - [76]

- W1: 10.30
W2: 22.05

W1: 15.5
W2: 17.7

W1: 1.60
W2: 3.90

W1: 0.24
W2: 0.34

W1: 25
W2: 96.3

W1: 0.06
W2: 0.33

W1: 96.3
W2: 91.5 - - [77]

W1: 1 × 105

W2: 1.5 × 104

W3: 3 × 104

W4: 9.5 × 104

W1: 1290 b

W2: 538.67
W3: 958
W4: 650

W1: 40
W2: 68
W3: 85
W4: 70

W1: 516
W2: 366.30
W3: 814.3
W4: 455

W1: 20.96
W2: 31.85
W3: 40.67
W4: 20.44

W1: 70
W2: 65
W3: 70
W4: 75

W1: 14.67
W2: 20.70
W3: 28.47
W4: 15.33

W1: 97.2
W2: 94.4
W3: 96.5
W4: 96.6

W1: 5.2 × 1010

W2: 5.5 × 109

W3: 2.4 × 1010

W4: 4.3 × 1010

W1: 1.5 × 109

W2: 3.1 × 108

W3: 8.5 × 108

W4: 1.5 × 109

[78]
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Table 1. Cont.

Treated Water (m3/day) Influent Effluent
MPF Removal (%)

Number of MPFs per Day
References

(MPs/L) % MPFs (MPFs/L) (MPs/L) % MPFs (MPFs/L) Influent Effluent

W1: 1 × 105

W2: 4.5 × 104

W3: 1 × 105

W4: 4 × 104

W1&W2: 8.72
W3: 1.70
W4: 0.70

W1&W2: 18
W3: 85
W4: 40

W1&W2:
1.57

W3: 1.45
W4: 0.28

W1: 0.78
W2: 0.62
W3: 0.10
W4: 0.07

W1: 45
W2: 46
W3: 80
W4: 100

W1: 0.35
W2: 0.29
W3: 0.08
W4: 0.07

W1: 77.7
W2: 81.5
W3: 94.5
W4: 75

W1&W2: 2.3 × 108

W3: 1.5 × 108

W4: 1.1 × 107

W1: 3.5 × 107

W2: 1.3 × 107

W3: 8.0 × 106

W4: 2.8 × 106

[79]

W1: 4
W2: 60
W3: 30
W4: 10
W5: 15

W1: 430
W2: 540

W3: 1150
W4: 2154
W5: 1692

W1: 0
W2: 0

W3: 17.2
W4: 28.6
W5: 27.3

W1: 0
W2: 0

W3: 197.8
W4: 616.0
W5: 461.9

W1: 0
W2: 0

W3: 400
W4: 750
W5: 300

W1: 0
W2: 0

W3: 36.9
W4: 46.2
W5: 66.7

W1: 0
W2: 0

W3: 147.6
W4: 346.5
W5: 200.1

W1: 0
W2: 0

W3: 25.4
W4: 43.8
W5: 56.7

W3: 5.9 × 106

W4: 6.2 × 106

W5: 6.9 × 106

W3: 4.4 × 106

W4: 3.5 × 106

W5: 3.0 × 106
[80]

Denmark 2.1 × 106 7827 a,b

(2223–18,285) ~1.3 101.8 120.3 a

(19–447) ~1.3 1.56 98.5 2.1 × 1011 3.3 × 109 [81]

Finland

1 × 104 57.6 91.3 52.6 1.05 47.6 0.5 99.1 5.3 × 108 5 × 106 [51]

- 610 29.5 180 13.5 36.3 4.9 97.3 - - [82]

W1: 1 × 108

W2: 5 × 106

W3: 7 × 106

W4: 3.2 × 107

- - -

W1: 0.03
W2: 0.005

W3: 0.1
W4: 0.02

W1: 100
W2: 100
W3: 75

W4: 72.5

W1: 0.03
W2: 0.005
W3: 0.075
W4: 0.015

- -

W1: 3 × 109

W2: 2.5 × 107

W3: 5.3 × 108

W4: 4.8 × 108

[83]

2.7 × 105 567.1 78 442.2 6.84 30 2.04 99.5 1.2 × 1011 5.5 × 108 [84]

France
2.4 × 105 293 100 293 35 100 35 88.1 7.0 × 1010 8.4 × 109 [49]

8 × 104 244 25 61 2.84 40 1.14 98.1 4.9 × 109 9.1 × 107 [85]

Germany

5.0 × 103 b - - - 1.82 61 1.11 - - 5.5 × 106 [86]

1 × 104 - - - 5.9
3

25
23.3

1.48
1.00 - - 1.5 × 107

1 × 107 [87]

W1: 8 × 104

W2: 6.3 × 104 - - - W1: 7.0
W2: 14

W1: 0
W2: 21.4

W1: 0
W2: 3 - - W2: 1.9 × 108 [88]

Hong Kong
W1: 8.3 × 104

W2: 1.8 × 106
W1: 2.06
W2: 1.01

W1: 71
W2: 55

W1: 1.46
W2: 0.56

W1: 0.27
W2: 0.40

W1: 13
W2: 40

W1: 0.04
W2: 0.16

W1: 97.3
W2: 71.4

W1: 1.2 × 108

W2: 1.0 × 109
W1: 3.3 × 106

W2: 2.9 × 108 [89]

9.3 × 104 10.36 80.4 8.33 - - - - 7.8 × 108 - [90]

Iran

2.2 × 104 12.67 94.9 12.02 0.42 77.5 0.33 97.3 2.6 × 108 7.3 × 106 [91]

6.1 × 104 - - - W1: 1.91
W1: 2.11

W1: 50.7
W1: 57.3

W1: 0.97
W1: 1.21 - - 1.2 × 108 [92]

2.9 × 104 b 9.2 73.1 6.73 0.58 67.4 0.39 94.2 1.9 × 108 1.1 × 107 [93]

Israel 3 × 104 64.78
129.67

73.8
69.5

47.78
90.11

1.97
7.30

90.4
94

1.78
6.86

92.4
96.3

1.4 × 109

2.7 × 109
5.3 × 107

2.1 × 108 [94]
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Table 1. Cont.

Treated Water (m3/day) Influent Effluent
MPF Removal (%)

Number of MPFs per Day
References

(MPs/L) % MPFs (MPFs/L) (MPs/L) % MPFs (MPFs/L) Influent Effluent

Italy

4 × 105 2.5 20 0.5 0.4 25 0.1 80 2 × 108 4 × 107 [95]

1.8 × 104 3.64 50 1.82 0.52
0.2

45
100

0.23
0.2

87.4
89.0 3.3 × 107 4.1 × 106

3.6 × 106 [96]

Korea

W1: 3.5 × 104

W2: 1.1 × 105

W3: 1.3 × 105

W1: 29.85
W2: 16.45
W3: 13.87

W1: 50.1
W2: 59

W3: 78.9

W1: 14.95
W2: 9.7

W3: 10.95

W1: 0.44
W2: 0.14
W3: 0.28

W1: 59.1
W2: 64.3
W3: 42.9

W1: 0.26
W2: 0.09
W3: 0.12

W1: 98.3
W2: 99.1
W3: 98.9

W1: 5.2 × 108

W2: 1.1 × 109

W3: 1.4 × 109

W1: 9.1 × 106

W2: 9.9 × 106

W3: 1.6 × 107
[97]

2.6 × 105 a 98.28 a

(10–470) 31.8 31.25 0.11 a

(0.004–0.51) 17.7 0.02 99.9 8.1 × 109 5.2 × 106 [98]

Netherlands

W1: 2.2 × 105

W2: 7.2 × 105

W3: 3.6 × 104

W4: 9.2 × 103

W5: 3.6 × 104

W6: 3.3 × 105

W7: 7.2 × 104

W1: 910
W3: 73
W4: 238
W5: 91
W7: 68

W3: 92
W4: 100
W5: 100

W3: 67
W4: 238
W5: 91

W1: 39
W2: 61
W3: 65
W4: 81
W5: 56
W6: 55
W7: 55

W3: 50
W4: 100
W5: 100

W3: 65
W4: 81
W5: 56

W3: 25.4
W4: 66.0
W5: 38.5

W3: 2.4 × 109

W4: 2.2 × 109

W5: 3.3 × 109

W3: 1.8 × 109

W4: 7.5 × 108

W5: 2.0 × 109
[99]

Poland 1.5 × 104 195.78 a

(19.4–552.2) 71 139 0.34 a

(0.028–0.96) 52 0.18 99.9 2.0 × 109 2.6 × 106 [100]

Russia 9.6 × 105 3787 12.3 467 148 10.8 16 96.6 4.5 × 1011 1.5 × 1010 [101]

Scotland

2.6 × 105 15.7 ~18.5 2.90 0.25 ~18.5 0.05 98.3 7.6 × 108 1.3 × 107 [52]

1.7 × 105 a ~6 a

(3–10) ~63 3.78 ~1 a

(<1–3) ~63 0.63 83.3 6.3 × 108 1.1 × 108 [102]

South Korea

2.5 × 105 227 - - 49 - - - - - [103]

W1: 2.7 × 105 b

W2: 4.7 × 105

W3: 2.1 × 104

W1: 4200
W2: 31,400
W3: 5840

W1: 46.7
W2: 14.6
W3: 18.5

W1: 1960
W2: 4600
W3: 1080

W1: 33
W2: 297
W3: 66

W1: 12.1
W2: 5.7

W3: 22.7

W1: 4
W2: 17
W3: 15

W1: 99.8
W2: 99.6
W3: 98.6

W1: 5.2 × 1010

W2: 2.2 × 1012

W3: 2.3 × 1010

W1: 1.1 × 108

W2: 8.0 × 109

W3: 3.1 × 108
[104]

Spain

3.5 × 104 3.20 7 0.22 0.31 18 0.06 72.7 7.7 × 106 2.1 × 106 [48]

4 × 104 - - - 0.44 95 0.42 - - 1.7 × 107 [105]

1.2 × 104 4.40 48.1 2.12 0.92
1.08

96.7
90.8

0.89
0.98

53.8
58.0 2.5 × 107 1.1 × 107

1.2 × 107 [106]

4.5 × 104 - - - 12.8 20 2.56 - - 1.2 × 108 [107]

2.8 × 104 a,b 574.92 a

(274.7–1567.5) 34 195.5 41.77 a

(7.15–131.35) 40 16.7 91.5 5.5 × 109 4.7 × 108 [108]

W1: 5.2 × 104 b

W2: 82.2
W1: 645

W2: 1567
W1: 51.4
W2: 43.1

W1: 331.6
W2: 675.6

W1: 16.40
W2: 131.35

W1: 44.7
W2: 45.8

W1: 7.33
W2: 60.16

W1: 97.9
W2: 91.1

W1: 1.7 × 1010

W2: 5.6 × 107
W1: 3.8 × 108

W2: 5.0 × 106 [109]
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Table 1. Cont.

Treated Water (m3/day) Influent Effluent
MPF Removal (%)

Number of MPFs per Day
References

(MPs/L) % MPFs (MPFs/L) (MPs/L) % MPFs (MPFs/L) Influent Effluent

6.5 × 103 2.74 73.9 2.02 0.98 92.9 0.91 55.0 1.3 × 107 5.9 × 106 [110]

Sweden
3.7 × 105 b 533 - - 4 - - - - - [111]

5.2 × 103 15.1 70.9 10.7 0.008 50 0.004 99.9 5.5 × 107 2.1 × 104 [112]

Thailand 1.3 × 105 12.2 46.7 5.7 2.0 50 1.0 82.5 7.3 × 108 1.3 × 108 [113]

Turkey

W1: 183
W2: 87

W1: 26.56
W2: 23.44

W1: 54.8
W2: 87.7

W1: 14.55
W2: 20.56

W1: 7.00
W2: 4.11

W1: 44.4
W2: 86.5

W1: 3.11
W2: 3.56

W1: 78.6
W2: 82.7

W1: 2.7 × 106

W2: 1.8 × 106
W1: 5.7 × 105

W2: 3.1 × 105 [114]

W1: 1.5 × 105

W2: 4.3 × 104

W3: 1.2 × 104

W1: 2.8
W2: 3.1
W3: 1.5

W1: 66
W2: 95
W3: 94

W1: 1.85
W2: 2.95
W3: 1.41

W1: 1.6
W2: 0.7
W3: 0.6

W1: 41
W2: 51
W3: 58

W1: 0.66
W2: 0.36
W3: 0.35

W1: 64.3
W2: 87.8
W3: 77.2

W1: 2.8 × 108

W2: 1.3 × 108

W3: 1.7 × 107

W1: 9.9 × 107

W2: 1.6 × 107

W3: 4.2 × 106
[115]

UK 3.1 × 104 b 7011 a

(955–17,214) - - 15.7 a

(2–54) - - - - - [116]

USA

W1: 1.4 × 105 b

W2: 2.3 × 104

W3: 1.4 × 104

W1: 147
W2: 126
W3: 147

W1: 64.8
W2: 66.6
W3: 67.5

W1: 95.18
W2: 83.92
W3: 99.23

W1: 3.7
W2: 17.6
W3: 17.2

W1: 75.7
W2: 88.6
W3: 81.4

W1: 2.8
W2: 15.6
W3: 14

W1: 97.1
W2: 81.4
W3: 85.9

W1: 1.3 × 1010

W2: 1.9 × 109

W3: 1.4 × 109

W1: 3.8 × 108

W2: 3.5 × 108

W3: 2.0 × 108
[117]

1.2 × 105 a,b - - - 0.09 a

(0.047–0.19) 78.3 0.07 - - 8.2 × 106 [118]

1.2 × 105 a - - - 0.05 a

(0.004–0.195) 59 0.03 - - 3.6 × 106 [119]

W1: 2.5 × 106

W2: 1.7 × 103
W1: 133
W2: 83.3

W1: 62
W2: 54.5

W1: 82.46
W2: 45.40

W1: 5.9
W2: 2.6

W1: 61
W2: 84.7

W1: 3.60
W2: 2.20

W1: 95.6
W2: 95.2

W1: 2.1 × 1011

W2: 7.7 × 107
W1: 9 × 109

W2: 3.7 × 106 [120]

5 × 104 - - - 0.098 21 0.021 - - 1.1 × 106 [121]

1.1 × 106 1 - - 8.8·10−4 - - - - - [122]
a Data obtained from the average values of different WWTPs (W ≥ 6) analysed in the study. b Study included industrial wastewater treatment plants and/or facilities that treated industrial wastewater. (MPs/L)
and (MPFs/L) are shown as the mean value, whereas in parentheses the minimum and maximum values found are reported.
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Regarding the MP concentrations found in the influent of WWTPs, there is a wide
dispersion of data with reported concentrations between 0.28 and 31,400 MPs/L, with the
average value being 907 MPs/L. With respect to MPFs, notable amounts are usually found
in these influents, with an average value of 199 MPFs/L. The reported microfiber concen-
tration range between not detected and 4600 MPFs/L. Approximately more than half of
the MPs detected in the influent of WWTPs correspond to microfibres, in concordance with
different studies that indicate that fibres and fragments are the most predominant particle
in wastewater, with abundances of 56% and 34%, respectively [123]. As it happened,
in the influent, a broad range of MP concentrations was measured in WWTPs effluents,
ranging between not detected and 750 MPs/L. The average value of MP concentration in
the effluent is 29, a value that is 97% of the average influent value. The MPF abundance
with respect to the total MPs is similar in influents and effluents with percentages of 50–60.
Thus, MPF concentrations in the effluent range between not detected and 347 MPFs/L,
so high amounts of microfibres are discharged with the treated wastewater to the envi-
ronment. It has been estimated that an average value of 79% of microfibres are removed
from urban wastewater during treatment. These removed MPs are mainly retained in
the sludge [12,40]. So, MP concentrations of 400–7000 and 1500–170,000 MPs/kg have
been measured, respectively, in wet and dry mixed sludge [51,52,58,87,96,100,108,122,124].
Fibres are the most common MP found in the sewage sludge, followed by fragments, beads
and films [58,125,126]. In particular, Corradini et al. [127] reported that 90% of MPs found
in the sludge are microfibres.

Considering all the case studies reported in Table 1, a WWTP can receive between
5.9 × 106 and 2.2 × 1012 MPFs per day, whereas between 2.1 × 104 and 1.1 × 1010 MPFs/day
are emitted to the environment. In addition, the great abundance of these microparticles
and the difficulty in removing them during the water treatment processes is evident. Thus,
the large number of microfibres emitted to the environment indicate that WWTPs must
be considered as an important environmental source of MPFs [123]. The large number
of studies on the occurrence of MPs in WWTPs reported so far reflects the importance of
this issue. For this reason, research is necessary to improve the performance of WWTPs
regarding MP removal in general and the removal of MPF in particular.

2.2. Technologies for Microfiber Removal in WWTPs

Different processes (physical, chemical and biological) are employed in WWTPs to treat
wastewater [12]. Although these facilities are not specifically designed to remove MPs from
wastewater, high removal efficiencies are achieved (≥90%) [48,62,63,65,67,81,83,84,97,102,107].
However, this is still insufficient due to the large number of MPs that are emitted from
the WWTPs into the environment [41]. This may change in the coming years since the
European Parliament has recently submitted a proposal to regulate the environmental
problems associated with the presence of MPs in treated water and sewage sludge. In
this context, the foreseeable approval of this proposal by the European Commission (that
is being studied) would imply a regulation of the presence of these micropollutants in
WWTPs [128].

According to Table 1, 17% of the reviewed studies have a MPF removal efficiency lower
than 60%. In addition, 33%, 11% and 28% have reported a capacity of MPF elimination
in the ranges 60–90%, 90–95% and 95–99%, respectively. Removal efficiency higher than
99% is found in just 11% of the studies. To determine which technologies are the best
for removing MPFs from wastewater, all studies that have achieved at least 95% of MPF
removal will be discussed hereafter.

A conventional activated sludge system (CAS) is a process commonly applied in
WWTPs. This system includes an aeration tank, which is used for biological degradation
of organic matter, and a secondary clarifier (sedimentation tank), where the sludge is sepa-
rated from the treated wastewater [129]. There are different studies where this technology
is analysed to remove MPs, and specially microfibres, reporting removal efficiencies of
MPFs between 95% and 99.9% [63,81,89,100,101,109,112,117,120]. Some WWTPs applied
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CAS together with advanced processes, such as biological active filter (BAF) [82,84] or
trickling filter, followed by granular sand filter [120]. The simultaneous operation of CAS
and BAF reaches MPF removal efficiencies of 97–99.5% [82,84], whereas 95% is obtained
using CAS combined with a trickling filter and granular sand filter [120].

Well-established and common biological nutrient removal processes, such as anaer-
obic/oxic (A/O) and anaerobic/anoxic/aerobic (A2O) processes can be found in several
WWTPs. In the anaerobic tanks, the phosphorus is released, while in the anoxic tank
a denitrification takes place, and the organic matter is removed in the aerobic tank, with
high cost-effectiveness and efficiency [130–133]. A microfiber removal efficiency of 96.5%
can be achieve using the A/O (anaerobic/oxic) process [78]. On the other hand, higher
MPF removal efficiencies could be achieved using A2O technologies in WWTPs, such as
98.3% [97] or almost 100% [99]. The simultaneous combination of several processes should
increase the removal efficiency, although Yuan et al. [77] reported that the implementation
of A2O together with advanced denitrification, ultrafiltration (UF) and ozone technolo-
gies achieved values of 95.1%, whereas 96.3% was obtained together with membrane
bioreactor (MBR).

Oxidation ditch is a modified activated sludge biological treatment process that
uses long solids retention times to remove biodegradable matter. Typically, this system
consists of a ring, oval or horseshoe-shaped basin through which the wastewater flows.
Flow to the oxidation ditch is aerated and mixed with return sludge from a secondary
clarifier [134]. A WWTP that uses this process removes around 97–98% of MPFs using the
oxidation ditch alone or together with an A2O system [52,78,91]. If the process consists of
an anaerobic, anoxic and aerobic basin that use filled carrier, an MPF elimination of 99%
can be achieved [97].

Sequencing batch reactors (SBR) are also a modified type of activated sludge process
for wastewater treatment. Oxygen is bubbled through the mixture of wastewater and
biomass. The aeration and mixing is discontinued after the biological reactions are complete,
the biomass settles (sludge) and the treated supernatant is removed [135]. After that,
the reactor is filled again, and the process is repeated. Lee and Kim [97] reported 99%
of microfiber removal by SBR systems, whereas 98% was described for this process by
Kazour et al. [85].

Coagulation–flocculation is a typical chemical treatment which is followed by a phys-
ical separation, usually a sedimentation. Coagulation consists of the destabilisation of
colloidal particles, whereas flocculation implies the agglomeration of the destabilised
particles in floccules by the addition of chemical reagents—namely, coagulants and floc-
culants [136,137]. This process is frequently employed in drinking water treatment plants
(DWTPs), although it is also used in WWTPs. For example, in a tertiary treatment consist-
ing of a coagulation–flocculation process and rapid sand filtration (RSF), 98.6% of MPF
removal can be reached [104]. The implementation of this technology with advanced
processes, such as ozone and membrane disc-filter, would increase the removal efficiency
of microfibres in treated water to above 99.6% [104].

RSF is a widely used low-cost technology applied to wastewater treatment due to its
rapid and efficient removal of contaminants [12]. Their main disadvantage regarding MP
removal is the possible fragmentation of these micropollutants into smaller particles [56].
RSF has reported removal rates of MPFs that can reach 96% [94].

In general, according to the reviewed literature, the most effective technique for
removing MPs in WWTPs is a membrane bioreactor (MBR), achieving efficiencies near to
100% [51,67,84]. However, depending on the characteristics of wastewater and operating
conditions, efficiencies lower than 80% [106] and even of 25% have been reported [99].
MBR consists of a biological reactor with suspended solids removal by a perm-selective
membrane, e.g., microfiltration or ultrafiltration [12]. Only the smallest particles can pass
through the membranes, so high effluent quality can be achieved [138]. In comparison with
other processes developed for wastewater treatment, MBR presents as main disadvantages
high membrane costs, high energy demand, low flux and maintenance issues [139]. For
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microfibres, a high removal efficiency of 99% has been described for this system [51],
although values lower than 90% [67,96] and even as low as 54% [106] have also been found.

Therefore, to eliminate MPFs from wastewater, the different processes or technolo-
gies cited above can be employed with different MPF removal efficiencies—for example,
MBR (54–99%), RSF (58–96%), oxidation ditch (96.6–97.2%), SBR (98–99%), coagulation-
flocculation (98.6–99.8%), CAS (95–99.9%) and A2O (95–99.9%), with the last three being
the techniques that show better performance regarding MPF removal.

From an economics point of view and according to the literature [40], the technologies
mentioned above can be classified based on their installation and maintenance cost as
follows: low-cost (RSF, DAF, oxidation ditch and CAS), low–medium cost (SBR and A2O),
medium cost (discfilter) and high cost (DM and MBR). Thus, considering the low and
low–medium cost, the technologies with the best performance in removing MPs and
microfibres are conventional activated sludge (CAS), oxidation ditch and sequencing batch
reactor (SBR).

Optimising these technologies and/or complementing them with other processes
is still a challenge for avoiding the release of large quantities of MPs, and especially
microfibres, from WWTPs to the environment.

2.3. Microfibres Retained in Sludge

Sludge is a waste generated from different physical, biological and chemical processes
employed for wastewater treatment. Certainly, sewage sludge is the main residue origi-
nated in the WWTPs. Sludge is principally generated during primary treatment (primary
clarifier) and secondary treatment (secondary clarifier), and it is called “primary sludge”
and “secondary sludge” [140]. Sometimes, when advanced wastewater treatment processes
are employed, tertiary sludge can also be generated during tertiary treatment. For sludge
management, primary and secondary sludge (and also tertiary sludge in cases in which it
has been generated) are combined, obtaining a so called “mixed sludge”. The mixed sludge
can be managed in different ways (anaerobic digestion, dewatering, incineration, etc.),
depending on its final fate [140,141]. Depending on the sludge origin, its characteristics
are different with respect to its composition and physical properties. The composition of
the sludge is a key parameter for the management of this residue. During wastewater
treatment processes, many pollutants, such as heavy metals and organic contaminants,
are retained in the sludge [140,141]. Specifically, it is well known that most of the MPs
removed during wastewater treatment are entrapped in the sludge [12,40]. Again, fibres
are the most common MPs found in sewage sludge, mainly coming from textile handling
and the washing of clothes [141].

The different processes used in the sludge line can alter the amount and characteristics
of the MPs entrapped in it. For example, Mahon et al. [58] analysed the occurrence of
MPs after sludge treatment by means of anaerobic digestion, thermal drying and lime
stabilisation. These authors found that after lime stabilisation MPs were smaller compared
with the previous two stages due to the combination of basic pH, high temperature and
mechanical mixing that produce the fragmentation of MPs. It was reported that fibres are
more resistant to fragmentation and degradation in sludge treatment processes than other
MP forms [125].

Different devices (belt filter press, plate and frame filter press, decanter centrifuge, etc.)
can be employed for sludge dewatering. Li et al. [142] analysed the effect of dewatering
processes on the MPs entrapped in sludge. These authors reported that low-density
MPs tend to remain in the aqueous phase during centrifugation, whereas the inorganic
conditioners added during filtration are notably difficult to remove based on their MP
analysis. In both cases, it was found that the number of MPs was underestimated due to
methodological issues.

The large amount of sewage sludge produced globally makes necessary the proper
management of this organic waste. Sludge management methods can substantially differ
in each region of the world. In the European Union, the annual production of sewage
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sludge is around 10 million tons (expressed as dry solids) [143]. Sludge management in the
EU is regulated and, as happens in all cases of waste management, prevention and reuse
are the most preferred options [144]. The most common use of sludge is in agricultural
soils as fertiliser, since sludge is rich in organic matter and nutrients (nitrogen, phosphorus
and potassium). However, as was commented above, organic and inorganic pollutants
can be accumulated in sludge, which entails potential risks when sludge is applied to
soils [145,146]. It has been estimated that 44,000–300,000 (Europe) and 63,000–430,000
(North America) MP tons are scattered on agricultural soils each year by sewage sludge
application [147,148]. Specifically, microfibres are the most abundant MP particle (≥50%),
so a large amount of MPFs are being added to the soil, which entails potential harmful
effects on fauna and flora [39,149].

Sludge can also be incinerated to generate energy; in this case, MPs entrapped are
degraded, but it is important to consider that this management option contributes to
greenhouse gases (GHG) emission [150].

An overview of the incidence of MPs, and specifically microfibres, in sewage sludge
worldwide is shown in Table 2.

Table 2. Overview of the incidence of MPs, and specifically microfibres, in sewage sludge worldwide. “W” followed by a
number refers to different WWTP analysed in the cited reference.

Dry Sludge Generated
per Day (kg)

Dry Sludge Number of MPFs per
Day Retained in Sludge

References
(MPs/g) % MPFs (MPFs/g)

Australia

W1: 9 × 104

W2: 7.1 × 104

W3: 1 × 105

W1: 56.5
W2: 51.2
W3: 48.5

W1: 86.5
W2: 98

W3: 82.7

W1: 48.9
W2: 50.2
W3: 40.1

W1: 4.4 × 109

W2: 3.6 × 109

W3: 4.0 × 109
[63]

1.5 × 106 b 7.91 b 30.5 2.41 b 3.7 × 106 [64]

Canada 1.4 × 106 19.3 68.9 13.3 1.9 × 1010 [65]

China

- 240.3 17.5 42.05 - [57]

Part A: 9.2 × 103

Part B: 28.8
Part A: 0.72

Part B: 4
Part A: 50
Part B: 0

Part A: 0.36
Part B: 0 3.3 × 106 [67]

1.3 × 106 46.3 35 16.21 2.1 × 1010 [71]

- 22.4 21 4.70 - [73]

1.1 × 105 2.92 65 1.90 2.1 × 108 [74]

- W1: 13.4
W2: 63.4

W1: 60
W2: 75

W1: 8.0
W2: 47.6 - [75]

-

W1: 14
W2: 12.1
W3: 5.02
W4: 9.36

W1: 80
W2: 70
W3: 40
W4: 77

W1: 11.2
W2: 8.5
W3: 2.01
W4: 7.21

- [78]

-
W1&W2: 6908.3

W3: 2190.4
W4: 234.7

W1&W2: 17
W3: 83
W4: 35

W1&W2: 1174.4
W3: 1818.0
W4: 82.2

- [79]

2.0 × 108 22.7 63 14.3 2.9 × 1012 [142]

1 × 106 4.04 18.7 0.76 7.6 × 108 [151]

- 220 7.3 16.06 - [152]

- 5.55–13.46 75.8–88.8 4.21–11.95 - [153]

- W1: 960.9
W2: 550.8

W1: 31
W2: 40

W1: 297.9
W2: 220.3 - [154]

6.5 × 104
W1: 5.16
W2: 2.19
W3: 0.25

W1: 15
W2: 85
W3: 35

W1: 0.77
W2: 1.86
W3: 0.09

1.8 × 108 [155]

Finland
9.6 × 104 170.9 94.2 161 1.6 × 107 [51]

6 × 107 186.7 - - - [84]

France 6.4 × 104 16.13 77.2 12.46 8.0 × 108 [85]
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Table 2. Cont.

Dry Sludge Generated
per Day (kg)

Dry Sludge Number of MPFs per
Day Retained in Sludge

References
(MPs/g) % MPFs (MPFs/g)

Germany

1.2 × 103 12.5 - - - [86]

2.9 × 1011 495 46 227.7 6.7 × 1013 [156]

3.5 × 107 b 0.20 b 19.9 0.04 b 7 × 106 [157]

Iran
- W1: 6.57

W2: 5.57
W1: 55.1
W2: 44.2

W1: 3.62
W2: 2.46 - [92]

1.4 × 104 129 87.5 112.9 1.6 × 109 [158]

Ireland - 8.51 a

(4.20–15.39) 75.8 6.45 - [58]

Italy
3 × 104 112.8 47.25 53.3 1.6 × 109 [95]

3.4 × 103 4.74 20 0.95 3.3 × 106 [96]

Korea
W1: 2.0 × 104

W2: 6.1 × 104

W3: 5.6 × 104

W1: 14.90
W2: 9.66
W3: 13.20

W1: 24.2
W2: 47.2
W3: 45.8

W1: 3.61
W2: 4.56
W3: 6.04

W1: 7.3 × 107

W2: 2.8 × 108

W3: 3.4 × 108
[97]

Netherlands -
W1: 0.66
W2: 0.51
W7: 0.76

- - - [99]

Norway 3.47 × 104

(3.5 × 103–1.05 × 105)
6.08 a

(1.70–19.84) 28.9 1.76 6.1 × 107 [124]

Poland - 31.3 a

(6.7–62.6) 85 26.59 - [100]

Scotland - 2 - - - [52]

Spain

- 112 94 105.6 - [105]

1.9 × 104 165 84 138.6 2.6 × 109 [107]

- 50.1 15 7.52 - [159]

Sweden
8.0 × 103 1401 - - - [111]

- 16.7 72.5 12.1 - [112]

Thailand - 103.4 32.2 33.3 - [113]

UK 3.06 × 106 3408 a

(301–10,380) - - - [116]

USA 1.09 × 106 1 - - - [122]
a Data obtained from the average values of different WWTPs (W ≥ 6) analysed in the study. (MPs/g) and (MPFs/g) are shown as the
mean value, whereas in parentheses the minimum and maximum values found are reported. b Values are expressed in L−1. Parts A and B
correspond to two parallel treatment systems within the same WWTP.

As can be seen in Table 2, MP concentration in dry sludge ranges between 0.51 and
6908 MPs/g, with and average value of 320 MPs/g. In general, approximately 53% of
these MPs correspond to microfibres, so this is the form most detected in sludge, although
fragments, films and pellets can also be found [39]. Additionally, the number of microfibres
reported in sewage sludge notably varies (between not detected and 1808 MPFs/g), with
the mean being a value of 101 MPFs/g. Considering all of the case studies reported, it is
estimated that between 3.3 × 106 and 6.7 × 1013 MPFs are found in the total daily sludge
generated by a WWTP. The search for new technologies for the removal of pollutants,
and specifically MPs, from sludge is a key aspect in the foreseeable future to achieve the
requirements of regulations and to improve the valorisation of this waste.

2.4. Analytical Methods Used to Analyse MPs from Wastewater and Sludge Samples

Different factors, such as the sampling method, pretreatment process and detection
techniques, can affect the analysis and quantification of MPs and microfibres from wastew-
ater and sludge samples.
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The most common way of sampling wastewater is by storing the sample in a container
and filtering it through sieves of different mesh sizes. This method of sampling is represented in
51% of the studies reported in Table 1 [48,51,52,57,61,64,65,70,71,76,78,80,81,89,90,93,95,97–110].
Additionally, other methods used imply the direct filtration of samples during sampling
(12%) [66,67,73–75,118,121,122], automatic collection of single or composite samples dur-
ing a time interval (15%) [49,68,83,84,91,94,96,114,116,117] or use of a device for pumping
and filtration of the samples (22%) [62,63,69,72,79,82–88,98,111,116,119]. Such a device
allows the processing of large quantities of aqueous samples, which means that the sample
taken is more representative. In addition, authors reported the use of sieves with differ-
ent mesh sizes, affecting the size range of MPs [62,67,69,70,72,74,78–80,91,107]. Samples
are pretreated before MPs detection in order to remove from MPs the organic and inorganic
impurities. The most common way to purify samples implies an oxidation using the reagent
of Fenton [51,64,66,94,97,100,109,114], although some authors reported the use of enzymatic
digestion [76,81,86,111,116] or only hydrogen peroxide as oxidizing agent [72,73,75,78,89–91,98].
After this digestion step, a subsequent separation using a brine solution is frequently carried
out. Some authors mentioned omitting the oxidation process and directly using the brine so-
lution [48,85,99,106]. In all cases, samples are filtered after being treated with the brine solution.
Finally, a visual sorting of MPs is conducted using an optical microscope [89,100,104,108–110,115]
or stereomicroscope [92,95,96,98,107,117], although some authors reported the use of a fluores-
cence microscope to differentiate MPs from impurities [75,91,93,94,103]. To complete the study,
FTIR [45,48,51,61–68,72,73,77–79,82–84,86,87,89,90,92,95–99,102,103,105–117], Raman spectros-
copy [57,69,71,74–76,80,81,85,88,91,94] or a combination of both techniques are often used
to determine the chemical composition of MPs [51,66,103,121].

Regarding dewatered or wet sludge samples, they are stored in containers. A pretreat-
ment is necessary to purify MPs, and the most common alternative is using an oxidizer-like
reagent of Fenton or hydrogen peroxide (references in Table 2). After that, a brine solution
is used to isolate MPs from inorganic impurities. Finally, the detection techniques are the
same as those employed for water samples.

3. Microplastics and Microfibres in DWTPs

Drinking water sources are subject to pollution and require appropriate treatment to
assure the accomplishment of chemicals standards and the absence of pathogenic agents.
Drinking water treatment plants (DWTPs) employ several different water treatment pro-
cesses to provide safe drinking water for consumers through tap water systems. The most
common processes used in these facilities include coagulation–flocculation, followed by
sedimentation, filtration and disinfection [160,161].

The coagulation–flocculation process consists of the addition of chemicals that favour the
aggregation of particles that subsequently settle in a clarifier (sedimentation process) [12,161–163].
After that, the purification of water continues by means of a filtration process. Pore size
and filter material (sand, activated carbon, gravel, etc.) vary depending on the treatment
process. Microorganism removal and turbidity reduction occurs during the filtration
step [161–163]. Finally, a disinfection process has to be carried out in order to ensure the
absence of pathogenic agents in the drinking water. The disinfecting techniques most
frequently employed are chlorination, ozonation and ultraviolet irradiation [164,165].

MP occurrence in DWTPs has not received as much attention as MPs in WWTPs [164,165].
However, this is a topic of increasing interest since MPs contained in drinking water could
be potentially risky for human health [161,164–166]. For example, Cox et al. [33] reported
that an American citizen could ingest around 4000 MPs per year by consumption of
tap water.

Table 3 summarises the incidence of MPs, and particularly microfibres, in DWTPs.
As can be observed, there is a wide variety in the concentration MPs, with values that go
from absence to 6614 MPs/L in the influent and from absence to 930 MPs/L in the effluent,
with an average value of 739 MPFs/L and 236 MPFs/L, respectively. MP concentrations
found in influents and effluents of DWTPs are similar or even higher than those reported
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for WWTPs. It must be considered that water for human consumption is exposed to the
possible entry of more MPs through several routes, such as environmental degradation
of plastics and physical wear of plastic items, industrial discharges, deposition from
airborne MPs, etc. [164]. It is remarkable that the abundance of microfibres in most cases
is much lower in the influents of DWTPs than those obtained in the influents of WWTPs.
This is probably due to the origin of the water—i.e., in DWTPs the influent is obtained
from different water sources (aquifers, reservoirs, etc.), whereas in WWTPs the influents
correspond to wastewater (mainly of urban origin) coming from the sewage system.

The percentage of MPFs with respect to the total MPs is similar in the DWTP influents
and effluents (between 6% and 67%); MPF abundance in DWTP influents is between 0.03
and 176 MPFs/L, with an average value of 110 MPFs/L, whereas in WWTP effluents this
average value is 13 MPFs/L. Considering the available data, the removal efficiency of
MPFs during the treatment of drinking water is between 25% and 90%.

The DWTPs analysed in this work (Table 3) received between 7.8× 106 and 5.2 × 1014 MPFs
per day, whereas between 1 × 108 and 7.4 × 1013 MPFs/day are emitted to the environment
by DWTP effluent.

In general, DWTPs are less efficient in removing MPs and microfibres than WWTPS as
a consequence of the usually simpler treatment carried out in the DWTPs [167–174]. In fact,
some WWTPs achieve removal efficiencies above 99%, whereas the highest MPF removal
efficiency found in literature for a DWTP was 90.4%, and it was achieved in a DWTP that
included coagulation–sedimentation, deep-bed filtration, ozonation and granular activated
carbon [171]. Thus, improving MP removal in DWTP is a mandatory issue for the future
since this would notably reduce the ingestion of potentially hazardous MPs by humans.

As was noted in samples from WWTPs, different factors can affect the analysis and
quantification of MPs and microfibres from DWTPs. The most common way of sam-
pling is by storing the samples in containers and then filtering them through sieves of
different mesh size [21,167–170,173] or sampling by direct filtration [171,172,174]. In or-
der to isolate MPs from impurities, an oxidation of the sample (using only hydrogen
peroxide or reagent of Fenton) is conducted, followed by a separation using a NaCl or
ZnCl2 solution [171,172,174]. Finally, a visual sorting of MPs is carried out by employ-
ing a stereomicroscope [168,171,173]; however, Sarkar et al. (2021) used a fluorescence
microscope to differentiate MPs from impurities [172]. As in the case of wastewater and
sludge samples, FTIR and Raman spectroscopy are employed as classical techniques for
determining the chemical composition of MPs [21,167–174].
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Table 3. Overview of the incidence of MPs and microfibres in DWTPs. “D” followed by a number refers to different DWTPs analysed in the cited reference.

Treated Water (m3/day)
Influent Effluent

MPF Removal (%)
Number of MPFs per Day

References
(MPs/L) % MPFs (MPFs/L) (MPs/L) % MPFs (MPFs/L) Influent Effluent

China

- - - - 440 a 16 70.4 - - - [21]

1.2 × 108 6614 64.9 4295 930 66.7 620 85.6 5.2 × 1014 7.4 × 1013 [167]

1 × 105 2753 22 605.7 351.9 50 176 70.9 6.1 × 1010 1.8 × 1010 [168]

Czech Republic

D1: 3.2 × 105

D2: 8.6 × 103

D3: 7.8 × 103

D1: 1473
D2: 1812
D3: 3605

D1: 11.4
D2: 6.1

D3: 36.8

D1: 168
D2: 111

D3: 1325

D1: 443
D2: 338
D3: 628

D1: 28.4
D2: 3.6
D3: 46.8

D1: 126
D2: 12

D3: 294

D1: 25
D2: 89.2
D3: 77.8

D1: 5.4 × 1010

D2: 9.6 × 108

D3: 1.0 × 1010

D1: 4.0 × 1010

D2: 1.0 × 108

D3: 2.3 × 109
[169]

D1: 1.6 × 104

D2: 3.5 × 104
D1: 23

D2: 1296
D1: 21.7
D2: 9.7

D1: 5
D2: 126

D1: 14
D2: 151

D1: 21.4
D2: 7.9

D1: 3
D2: 12

D1: 40
D2: 90.4

D1: 7.8 × 107

D2: 4.4 × 109
D1: 4.7 × 107

D2: 4.2 × 108 [170]

Germany 2.0 × 105 0–0.007 - - 0–0.001 - - - - - [171]

India 3.8 × 105 17.88 57 10.2 2.75 54.5 1.5 85.3 3.9 × 109 5.7 × 108 [172]

Spain - 0.96 59 0.56 0.06 56 0.03 - - - [173]

Thailand - D1: 0.94
D2: 0.55 - - D1: 0.68

D2: 0.62
D1: 6.4
D2: 22.5

D1: 0.04
D2: 0.14 - - - [174]

a Data obtained from the average values of different DWTPs (D ≥ 6) analysed in the study. (MPs/L) and (MPFs/L) are shown as the mean value, whereas in parentheses the minimum and maximum values
found are reported.
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4. Microfiber Incidence in Tap Water

As the global population grows and the environment becomes further affected by
climate change, the problem of water scarcity will accelerate and access to fresh drinking
water will dwindle. Addressing the crisis of water scarcity is one of the major challenges of
the current world [162,175]. Access to safe water is clearly essential for human health and
well-being and, as commented before, safe drinking water is obtained by the purification
of water from freshwater bodies in DWTPs [175]. During this process, the elimination of
water pollutants that are potentially harmful to human health is essential, and MPs are one
of these pollutants [175].

The analysis of MPs in tap water was carried out in several countries and reported data
are summarised in Table 4. DWTPs can achieve notable MP removal efficiency (Table 3),
but MPs are still present in DWTP effluents. In addition, household pipes can be made
of durable plastic (PVC, PE and fittings of PA), which could deteriorate over time and
contribute to the increase in MPs in tap water [21,171]. However, this contribution from
pipes to MP concentration is not always significant and, for example, Shen et al. [168] did
not find a difference between MP concentration in the effluent of DWTP and tap water.

Table 4. Overview of the incidence of MPs and MPFs in drinking water. “P” followed by a number refers to samples of tap
water taken at different points analysed in the cited reference.

(MPs/L) % MPFs (MPFs/L) References

Brazil P1: 194
P2: 438 - - [176]

China

440 a (0–1257) 74.03 5.44 [21]

P1: 1.6
P2: 0.9
P3: 0.3

99.2
P1: 1.59
P2: 0.89
P3: 0.30

[177]

343.5 49 168.30 [168]

Cuba 7.17 98.3 7.05 [22]

Denmark 0.30 a (0.18–0.6) 82 0.25 [178]

Ecuador 4.02 98.3 3.95 [22]

Finland 47 1 0.47 [23]

France
1.82 98.3 1.79 [22]

97 8 7.76 [23]

Germany

0.0007 - - [171]

53 9 4.77 [23]

0 0 0 [179]

0.91 98.3 0.89 [22]

India 6.24 98.3 6.13 [22]

Indonesia 3.23 98.3 3.18 [22]

Ireland 1.83 98.3 1.80 [22]

Japan 27 a (7–65) 17 4.59 [23]

Lebanon 6.64 98.3 6.53 [22]

Norway 1 - - [180]

Saudi Arabia P1: 1.9
P2: 4.67 - - [181]

Slovakia 3.83 98.3 3.76 [22]

Switzerland 2.74 98.3 2.69 [22]

Uganda 3.92 98.3 3.85 [22]
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Table 4. Cont.

(MPs/L) % MPFs (MPFs/L) References

UK 7.73 98.3 7.60 [22]

USA
9.24 98.3 9.08 [22]

46 13 5.98 [23]
a Data obtained from the average values of samples of tap water taken at different points (p ≥ 6) analysed in the study. (MPs/L) is shown
as the mean value, whereas in parentheses the minimum and maximum values are reported.

As can be seen in Table 4, the MP concentration in tap water varies between not
detected and 1257 MPs/L, with percentages of microfibres that vary from 1% to 99%, so
MPF concentrations are between not detected and 168 MPFs/L, with and average value of
10 MPFs/L. It is noteworthy that, in general, MPFs are the MP form most commonly found
in tap water.

Regarding MPs analysis in tap water, the procedure is similar to that described for
WWTP and DWTP. The most common way to obtain the samples involves a storage
container [21–23,172–177,181] and subsequent filtration or a direct filtration through sieves
with different mesh size [171,178–180]. In general, samples are oxidized, with H2O2 being
the oxidizer agent most frequently used [23]. Nevertheless, some authors employ acids
(for example HCl) to degrade organic impurities of the samples [21,171,179]. Finally,
a visual sorting using the same techniques employed for wastewater samples is carried
out [21,22]. The World Health Organization (WHO) recommended that an adult person
should drink 2 L of water per day [182]. According to this recommendation and Table 4
data, it can be estimated that an approximate average of 154 MPs per day could be ingested
by a person, i.e., 56,210 MPs per year, which is a value much higher than the value estimated
by Cox et al. [33] for an American citizen (4000 MPs per year). Additionally, microfiber
intake would be 20 MPFs per day (7519 MPFs per year). Thus, a large amount of MPs and
microfibres (4.5 × 106 MPs and 6.0 × 105 MPFs, respectively) can be ingested only from tap
water over a person’s lifetime, considering a life expectancy of 80 years. According to the
European Commission’s Science Advice for Policy organ (SAPEA) and WHO-published
reports, there is no evidence of the harmful effects of MPs on humans [183]. Certainly, as
far as we know, there is not any published study that has directly examined the effects
of these micropollutants on people. The only available studies that have been carried
out have exposed cells or human tissues to MPs or have used animals such as mice or
rats [184,185]. In these works, it has been reported that mice fed large quantities of MPs
showed inflammation in their small intestines. In addition, mice exposed to MPs had a
lowered sperm count and fewer, smaller pups, compared with control groups. Moreover,
some of the in vitro studies on human cells or tissues also suggest toxicity [184,185]. Hence,
a precautionary approach is warranted to limit human exposure to plastic particles since
the risk is uncertain but potentially serious.

5. Future Prospects

MPs have been detected everywhere researchers have looked: in deep oceans, in
Arctic snow and Antarctic ice, in shellfish, in table salt, in honey, in drinking water, etc.,
and they are ubiquitous in aquatic environments. There is no evidence reported in the
literature about the hazardous effects of MPs on human health, but “no data” does not
imply “no risk”, so further research should be carried out to address this troublesome
knowledge gap.

Data found in the literature show a wide range of values regarding MP and MPF
concentrations in all cases (WWTPs, sludge, DWTPs and tap water), which implies high
variability worldwide. It is evident that WWTPs and DWTPs are hotspots in which to face
MP, and specifically MPF, pollution. Existing technologies in WWTPs, such as CAS, oxida-
tion ditch and MBR, show high microfiber removal efficiency in general (≥99%). However,
it is not enough, and it seems necessary to dig deeper into these treatment processes so that
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practically total removal of microfibres from wastewater can be achieved. Additionally,
technologies applied in DWTPs must be improved in the future to achieve better MP
removal efficiencies since, currently, these values are between 28% and 94%, with removal
efficiencies of MPFs below 90%. Thus, improving the performance of existing processes
and searching for new ones for reducing the presence of MPs in treated wastewater and
drinking water should be a priority, not only from an environmental point of view but also
to accomplish compliance with future regulations on MPs. Finally, MPs removed during
wastewater treatment processes are mostly accumulated in sludge, so new alternatives for
sewage sludge management have to be investigated in order to enhance sludge valorisation
options without being a risk for the environment.
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BAF Biological active filter
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DWTP Drinking water treatment plant
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