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Abstract: Recent trends in communication technologies and unmanned aerial
vehicles (UAVs) find its application in several areas such as healthcare, surveil-
lance, transportation, etc. Besides, the integration of Internet of things (IoT)
with cloud computing environment offers several benefits for the UAV com-
munication. At the same time, aerial scene classification is one of the major
research areas in UAV-enabled MEC systems. In UAV aerial imagery, efficient
image representation is crucial for the purpose of scene classification. The
existing scene classification techniques generate mid-level image features with
limited representation capabilities that often end up in producing average
results. Therefore, the current research work introduces a new DL-enabled
aerial scene classificationmodel forUAV-enabledMEC systems. The presented
model enables theUAVs to capture aerial images which are then transmitted to
MEC for further processing. Next, Capsule Network (CapsNet)-based feature
extraction technique is applied to derive a set of useful feature vectors from
the aerial image. It is important to have an appropriate hyperparameter tuning
strategy, since manual parameter tuning of DL model tend to produce several
configuration errors. In order to achieve this and to determine the hyperpa-
rameters of CapsNetmodel, Shuffled Shepherd Optimization (SSO) algorithm
is implemented. Finally, Backpropagation Neural Network (BPNN) classi-
fication model is applied to determine the appropriate class labels of aerial
images. The performance of SSO-CapsNet model was validated against two
openly-accessible datasets namely, UC Merced (UCM) Land Use dataset
and WHU-RS dataset. The proposed SSO-CapsNet model outperformed the
existing state-of-the-art methods and achieved maximum accuracy of 0.983,
precision of 0.985, recall of 0.982, and F-score of 0.983.
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1 Introduction

In recent days, Internet of Things (IoT) become a hot research topic and received huge
attention among researchers to offer enormous services and applications. At the same time,
the cloud computing (CC) technologies offer several benefits to support IoT applications and
offer several benefits such as low latency, location aware, scalability, etc. [1]. At the same time,
Unmanned Aerial Vehicle (UAV) technology has been significantly developed and used for many
applications. UAVs can provide fast, cost-effective, and safe deployments for many civil and
military applications [2]. Fig. 1 shows the architecture of Unmanned Aerial Vehicles (UAV).

Figure 1: General structure of UAV networks

The popularity of independent UAVs and its applications, involving search and rescue oper-
ations, surveillance, and infrastructure observance in the recent years, is tremendous. Though
land cover classification is an essential UAV application, it is complex to construct wholly-
independent methods. Object identification processes are extremely integrated due to which it is
difficult to reduce its cost demands. The movement of UAVs create multiple hindrances to the
generated images in terms of clarity i.e., blurred images, and noise since the onboard cameras
often generate low resolution images. In most of the UAV applications, it is difficult to perform
the identification process because of the need for realistic efficiency. Various researches have been
conducted on UAVs and its associated challenges such as tracking and detecting specific objects,
types of vehicles, landmarks, land sites, and persons (involving pedestrian motion). But only a
few studies considered multiple object identification [3] due to the fact that multiple targeted
object identification is essential for most of the UAV applications. The occurrence of a break in
application requirements and practical capability might be a result of two critical limitations: 1) it
is difficult to build and store numerous methods to target the objects; and 2) high computation
strength is required for technical object identification in case of individual objects.

When aerial image scenes are acquired, it undergoes aerial image classification. The images
are categorized into sub-regions by covering several grounded objects and a variety of lands
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covering different semantic classes. Thus, aerial image classification is an important process for
several real-world applications like computer cartography, urban planning, remote sensor, and
resource management [4]. Generally, some of the identical object classes or land cover varieties
are allocated in a pool of scenes. For example, commercial and residential are the two main
classes of scenes which may include roads, buildings, and trees. However, these two classes have
variances in spatial sharing and density of three class labels. Thus, in aerial scenes, classification
is performed depending on structural and spatial pattern complications which is a challenging
issue to overcome [5]. The common method is to construct a holistic scene demonstration for
scene classification. Among the remote sensing studies, Bag of Visual Words (BoVW) is a famil-
iar technique for scene classification. This technique was developed to investigate the text that
implements a document via frequency of words. In order to identify the image via occurrences
of ‘visual words’, local feature quantization is generated whereas BOW technique is utilized by
clustering method. BoVW method is a form of BoW technique used for image analysis whereas
all the images are determined as visual words from visual dictionary through the histogram of
the former [6].

Deep Learning (DL) method [7] is highly beneficial in resolving conventional challenges such
as object recognition and detection, Natural Language Processing (NLP), speech identification,
and a number of such real-world applications. It is highly efficient than the usual processes and it
also gained much attention in academia and industries. This technique attempts to acquire general
hierarchical feature learning in terms of various abstract stages. UAV images are processed in
real-time environment through two distinct ways namely, onboard processing of images with a
GPU board and computation offloading through the transfer of DL algorithm processing from
UAV to MEC. But there are several issues observed in the design of UAV-enabled MEC system.

The current research work presents an efficient DL-enabled aerial scene classification model
for UAV-enabled MEC systems. The presented model allows the UAVs to capture aerial images
and then forward the images to MEC for further processing. In addition, Capsule Network
(CapsNet)-based feature extractor is applied to derive a set of useful feature vectors from the
aerial image. Moreover, for hyperparameter optimization of CapsNet model, Shuffled Shepherd
Optimization (SSO) algorithm is executed. Finally, Backpropagation Neural Network (BPNN)
classification model is applied in the determination of appropriate class labels of aerial images.
The presented SSO-CapsNet model was validated for its effectiveness against two openly accessible
datasets.

2 Literature Review

Deep Convolutional Neural Network (CNN) [8] is one of the Deep Learning techniques
which is familiar and gaining popularity in various identification and detection processes, since
it produces optimum outcomes for regular datasets. In image classification, CNN achieves the
highest accuracy and is the most preferred technique nowadays. For industrial usage, it is difficult
to adjust the traditional Deep CNN (DCNN) due to the complications involved in fine tuning
the hyperparameter manually and trade-off between computation cost and accurate classification.
Several studies have attempted to reduce the computation cost incurred in its execution [9].
When using UAV aerial scene classification, the complication involved in traditional CNN gets
reduced [10]. A particular type of CNN structure is chosen to decrease the search space and this
lesser search space is made with the knowledge of experts.

Zhang et al. [11] utilized a so-called standard NN sparse autoencoder (AE) to train a group
of chosen image patches and the model was tested by saliency degree to extract the local features.
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Coates et al. [12] improved the conventional Unsupervised Feature Learning (UFL) pipeline by
feature learning. The acquaintance of CNN seems to be beneficial in various applications. In
the study conducted by Lecun et al. [13], the CNN model was trained by backpropagation (BP)
method and the study obtained adequate efficiency in character identification. In recent times,
CNN is often utilized in computer vision research works. However, it is complicate to train deep
CNN due to the possession of numerous features that are frequently utilized in particular process
and the presence of low number of trained instances. The study was designed to extract the
intermittent feature from DCNN. This model undergoes training on sufficiently large scale datasets
such as ImageNet, that are utilized for a wider view of visible identification processes such as
scene classification, object recognition, and image recovery.

Cimpoi et al. [14] achieved an optimum outcome when investigating the texture by pooling
CNN features acquired from convolutional layer and fisher coding procedure. Research studies are
still being conducted using CNN in UAV scene classification. In the literature [15], a pretrained
CNN was employed and tuned completely on scene dataset demonstrating excellent classification
outcome. But the pretrained CNN method was transferred to scene dataset due to the lack of
trained models. In the study conducted earlier [16], the widespread possibility of CNN features,
acquired from fully connected layer, underwent testing. In this study, the aerial images were
categorized and the optimum outcomes were achieved over comparative techniques in open-source
scene datasets. Although various techniques have been proposed for UAV image classification in
the literature, there is a need exists to improve its class efficiency. Simultaneously, few techniques
have provided optimum outcomes on specific datasets and were never employed on large datasets.
Thus, the current research work develops a new advanced DL-based UAV image classifier.

3 The Proposed SSO-CapsNet Model

The working principle of the presented SSO-CapsNet model is illustrated in Fig. 2. As shown
in the figure, UAV captures the aerial images which are then processed in MEC. The captured
aerial images are then fed into CapsNet-based feature extractor to derive an effective set of feature
vectors. Followed by, hyperparameter tuning of the CapsNet model is performed using the SSO
algorithm. Finally, BPNN model is applied to allocate the class labels of the applied aerial test
images. The detailed operations of these sub-processes are explained in the succeeding sections.

Figure 2: Working principle of SSO-CapsNet method
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3.1 Capsule Network (Capsnet) Based Feature Extraction
CapsNets [17] is developed as an alternate model for CNNs. Being equivariant, the capsules

are composed of a network of neurons that fetch in and yield out the vectors in line with scalar
value of the CNNs. In CapsNet model, all the capsules are composed of a set of neurons with
its output demonstrating various properties of similar features. It gives the benefit of identifying
the entire set of entities through initial identification of their parts. Capsule outcome is made up
of probability in which the feature encoder exists by capsules and the group of vector values is
generally named after ‘instantiation parameters.’ It can be defined as the probability of existence
of capsule’s features to ensure network invariability. These instantiation parameters are utilized in
the representation of network equivariance based on its capability for recognizing pose, texture,
and deformation. Invariance is an asset of methods which makes the latter remain unchanged
though the input value changes. This is called ‘translational invariance’ which is a peculiar char-
acteristic of CNNs. For sample, when CNN detects the face, regardless of the position of eye,
it stands still until it identifies the face. But, equivariance makes sure that the spatial position of
features, proceeding to the face, is taken into account. Thus, in terms of outcome, equivariance
does not consider the occurrence of an eye in image, but considers its position only in the image.
Equivalences are the required properties for CapsNets.

The three commonly available operations for capsule execution are discussed here. They
are transformation of AE, vector capsule depending on dynamic routing, and matrix capsule
depending on Expectation-Maximization (EM) routing. Fig. 3 shows the structure of CapsNet
model.

Figure 3: The architecture of CapsNet

3.1.1 Transformation of Auto-Encoders
An initial CapsNet is published with the transformation of AEs. It is constructed to empha-

size the capability of network in recognizing the pose. The aim is not to identify an object from
the images, but to take the image and their pose as input and output respectively, to form a
similar image from original pose. An output vector of capsules, from this initial execution, is
composed of output values. Further, one of the signified outcomes lies in these probabilities in
which the feature exists through the rest of representative instantiating parameters. The capsules
are ordered in various levels: the lower level l is named after initial capsule whereas the upper level
l+ 1 is named after secondary capsule. Lower level capsule removes the ‘pose’ parameter in pixel
intensities, since it has the ability to initiate a part-whole hierarchy [18]. This part-whole hierarchy
is an advantage in CapsNets model since it identifies the parts and is developed to identify the
whole set of entities too. In order to realize this, this feature is signified by lower level capsule
which needs to have correct spatial connection. Previously, it activated higher-level capsules at
level, l+ 1. For instance, assume that eyes and mouth are signified by lower level capsule. Then,
each one can forecast to pose the higher-level capsules which signify a face in case of predictions
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being accepted. In order to describe the basis of initial-level capsule, ANN is learned to change
the pixel intensity for pose parameter. In a simple method, 2D images, capsule by x and y with
its positions, and its only pose output are utilized. Once the learning process is over, the network
takes an image and there is a need arise to shift �x and �y. Then the output of an image remains
the identified shift in pose. In order to prevent the influence of inactive capsule from affecting the
output of ‘generation unit,’ the capsule output is multiplied by probabilities, p.

3.1.2 Dynamic Routing Between Capsules
The next level of changes in CapsNets is determined by the capsules which are nothing but

a set of neurons with instantiation parameter. These changes are even signified by activity vector,
whereas the length of vector signifies the probability in which the feature exists. The enhancement
with a detailed prior execution exhibits that there is no need of information in the input [19].
The networks are composed of three layers namely, Convolutional (Conv) layer, Primary Capsule
(PC) layer, and Class capsule layer. PC layer is the initial capsule layer which is only next to
undetermined number of capsules’ layer. The final capsules’ layer is named after Class capsules
layer. Feature extraction process from an image is completed by Conv. layer and the output is fed
to PC layer. In all the capsules, i (where 1≤ i≤N) in layer l takes the activity vector ui ∈R into
account for encoding spatial data in the procedure of instantiation parameter. The output vector
ui of ith lower-level capsules are then fed to every capsule from next layer, l+ 1. The jth capsule
at layer l + 1 is obtained i.e., ui and their product is defined with equivalent weight matrix i.e.,
Wij. The resultant vector ûj|i is the capsule i at level l’s change of entities which is signified by
capsule j at level l+ 1. In the prediction vector of PC, ûj|i refers to PC whereas i corresponds to
the class capsule, j.

ûj|i =Wijui (1)

The product of prediction vectors and coupling coefficient, which together signifies the agree-
ment between the capsules, is performed to obtain a single PC i’s forecast for class capsule, j.
When the agreement is higher, both the capsules are related together. Thus, in the outcome, the
coupling coefficient is first increased which is then decreased. The weighted sum (sj) of every
individual PC forecasts to the class capsule, j is computed to achieve the candidates’ squashed
function, (vj).

sj =
N∑
i=1

cijûj|i (2)

vj =
‖sj‖2sj

1+‖sj‖2‖sj‖

cij =
exp (bij)∑
k exp(bik)

(3)

The squashed function makes sure that the length of output in capsules lies between 0 and
1 as probability. vj in one capsule layer is sent to next layer capsules and processed in a similar
manner. The coupling coefficient cij makes sure that the forecast of i in level l is connected to j
in layer l+ 1. In all the iterations, cij is upgraded by determining the dot product of ûj|i and vj.
To be specific, the vector values connected to all capsules are observed as mere segments of two
numbers; the probabilities signify the presence of feature which the capsules tend to encapsulate
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and a group of instantiation parameters that assist in the clarification of consistency among the
layers. Thus, a related path by agreement stems in detail that if lower-level capsule decides the
higher level layer capsules, it is ‘construct a part whole’ connection referring to the relevance of
path.

3.1.3 Matrix Capsules with EM Routing
On the contrary to utilization of vector outputs, the literature [20] presented the illustration

of input and output of capsule as matrices. It is essential to decrease the size of transformation
matrices between capsule and matrix. Further, it is developed by n elements rather than n2 when
utilizing vectors. Dynamic routing by agreement is exchanged with EM technique. This dynamic
routing is cosine between two pose vectors. Also, the probability of existence of entity, even
illustrated by capsule, is exchanged with a parameter a, rather than the length of vectors. In the
capsule i at level L and capsule j at level L+ 1, these values refer to the trainable transformation
weight matrix i.e., Wij. EM mechanism ensures that the shift matrix of capsule i is changed by
transformation weight matrix Wij to cast the vote to shift the matrix of capsule, j at level L+ 1.
Vote is an artefact of output matrix Mi and transformation matrix Wij [20].

Vij =MiWij (4)

The poses and activations of every L+ 1 level layer are established by entering Vij and ai as
non-linear EM routing techniques. During an iteration, EM upgrades the means, variances, and
activation probabilities of layer L+1 capsules with the assignment probability between lower and
higher level capsules.

3.2 Hyperparameter Optimization
In order to tune the hyperparameters involved in CapsNet model effectively, SSO algorithm

is applied and thereby the classification performance is enhanced. SSO algorithm offers several
benefits such as maximum accuracy, convergence rate, and reduced parameter dependency. It is
based on the herd performance of shepherds. Humans have to learn this phenomenon through
long-term observation so as to utilize animal capabilities and attain the objectives [21]. Shepherds
try to steer their herd in a right way. To resolve this, they generally set animals such as horse or
herding dog for the herd. These animals are utilized to manage the herd through their herding
behaviour. They further guard the herd animals from wild animals and theft. This performance is
the fundamental information to follow the SSO technique.

Step 1: Initialization

SSO begins with an arbitrarily-created primary Member Of Community (MOC) for search
space as given herewith.

MOC0
ij =MOCmin + rand× (MOCmax−MOCmin);

i= 1, 2, . . . , m and j= 1, 2, . . . , n (5)

where rand refers to arbitrary vector by all components created between 0 and 1; Here, MOCmin
and MOCmax denote the lower and upper bounds of design variables; m implies the amount of
communities, and n defines the count of members going to all the communities. In this regard, it
is supposed that the entire number of communities is attained as [21] follows.

nMC =m× n (6)
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Step 2: Shuffling process

In this method, initial m refers to the members of communities which are chosen depending
on their objective function values. These are arbitrarily located values in the first column of
Multi-Community (MC) matrix (Eq. (7)) which are otherwise, the initial member of all the
communities. Then, to create the 2nd column of MC, next m members are selected alike the
preceding step which are arbitrarily located in the column. These procedures are carried out for
n times independently, until the MC matrix gets molded as given herewith.

MC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MOC1,1 MOC1,2 · · · MOC1,j · · · MOC1,n

MOC2,1 MOC2,2 · · · MOCi,j · · · MOC2,n

...
...

...
...

...
...

MOCi,1 MOCi,2 · · · MOCi,j · · · MOCi,n
...

...
...

...
...

...

MOCm,1 MOCm,2 · · · MOCm,j · · · MOCm,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

It is worth mentioning that all the rows of MC refer to the members of all the communities.
This phenomenon ensures that the members of initial column of MC are optimal members,
compared to all other communities. Moreover, the member’s place in final column is the bad agent
in all communities.

Step 3: Movement of Community Member

The unique step size of the movement in all the communities is calculated depending on
two vectors. Initial vector (i.e., stepsizeWorse

i,j ) showcases the capability to visit new regions of

search space (diversification approach). In contrast, the 2nd vector (i.e., stepsizeBetteri,j ) refers to the

ability of exploring those search space areas (intensification method) which are nearby and already
visited. The mathematical equation for step size is given herewith [21]:

stepsizei,j = stepsizeWorse
i,j + stepsizeBetteri,j

i= 1, 2, . . . , m and j= 1, 2, . . . , n (8)

where stepsizeWorse
i,j and stepsizeBetteri,j are determined as follows:

stepsizeWorse
i,j = α× rand1× (MOCi,w−MOCi,j) (9)

stepsizeBetteri,j = β × rand2× (MOCi,b−MOCi,j) (10)

where rand1 and rand2 represent the arbitrary vectors with all the even components created
between 0 and 1; MOCi,b(chosen horses) and MOCi,w(chosen sheep’s) are optimal and worst
members with respect to objective function value and is related to MOCi,j(shepherd). It is worth
to mention that the initial member of ith community (MOCi,1) mostly prefer itself rather than

considering other members. So, stepsizeBetteri,1 is equivalent to zero. Conversely, MOCi,n doesn’t take
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the member worst itself, since it has to ensure the final member of ith community i.e., stepsizeWorse
i,1

is equivalent to zero. Furthermore, α and β imply the factors which control exploration as well
as exploitation correspondingly. These aspects are determined as follows.

α = α0−α0× t; t= iteration
Max iteration

(11)

β = β0+ (βmax −β0)× t (12)

It is obvious that the iteration number t and β increase whereas α value decreases cor-
respondingly. Thus the outcome and exploration rate decreases whereas the exploitation rate
increases [22].

Step 4: Update the position of each community member

Based on the prior step, the new location of MOCi,j is computed utilizing Eq. (13). Next, the
location of MOCi,j is upgraded, when it could not find the worst old objective function value [22]:

newMOCi,j =MOCi,j+ stepsizei,j (13)

Step 5: Checking termination conditions

Later, the count of iterations is set as the end condition (Max-iteration), then the optimization
procedure is finished. Afterwards, it goes to step 2 for a new round of iteration.

3.3 BPNN Based Image Classification
At the final stage, the extracted feature vectors from hyperparameter-tuned CapsNet are fed

into BPNN model to perform the classification. BPNN is a multi-layer network which has a set
of input, hidden, and output layers. All the layers contain a number of neurons. To adjust the
weight and bias in neurons, BPNN uses error BP function. It is beneficial in a gradient-descent
feature and this technique is developed as an efficient function estimate technique [23]. Classical
BPNN has a number of m inputs and n outputs.

In feedforward network, all the neurons from the next layer act as input in every neuron for
the outputs from final layer. Afterwards, the output is fed as input for the next neuron layer. In
one neuron j, assume n refers to the number of neurons in final layer; oi refers to the output of
ith neuron; wi represents the equivalent weight for oi and θj implies the bias of neurons j. Then,
the neurons j compute the input for sigmoid function, Ij utilizing the equation [23].

Ij =
∑
n

wioi+ θj (14)

Assume oj indicates the output of neuron, j which is expressed as follows

oj = 1

(1+ e−Ij)
(15)
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When the neuron j implies the output layer, BPNN begins the BP level. Assume tj refers to
encoder target output. This technique calculates the output error Errj to neuron j in the output
layer with the help of following equation.

Errj = oj(1− oj)(tj − oj) (16)

Assume k signifies the amount of neurons in next layer; wp refers to weight; and Errp defines
the neuron error, p in next layer. The error Errj of jth neurons is expressed as follows

Errj = oj(1− oj)
∑
k

Errpwp (17)

Assume η indicates the rate of learning. Neuron j tunes its weight wj and bias θj with the
help of [23].

Δwj = ηErrjoj,

Δθj = ηErrj, (18)

wj =wj+Δwj,

θj = θj +Δθj.

If BPNN finishes tuning the network by one trained sample, it begins with a second trained
sample with the output of first trained sample as an input to train the second sample. For
executing the classifier, BPNN requires only the execution of the feedforward network. The
outputs at the output layer are the final classifier outcome.

4 Experimental Validation

The proposed SSO-CapsNet model was simulated using Python 3.6.5 tool. It was validated
using two datasets namely, UCM and WHU-RS datasets. UCM dataset is composed of a large-
sized aerial image under 21 classes. Every class holds a total of 100 images with an identical
size of 256*256 pixels. WHU-RS dataset includes a total of 950 images with an identical size of
600*600 pixels. These images undergo uniform distribution under a set of 19 classes. Few sample
test images are shown in Fig. 4.

Tab. 1 and Fig. 5 show the results of accuracy analysis attained by SSO-CapsNet model
against different CNN models. The table values report that the PlacesNet model obtained the least
accuracy of 0.914. Simultaneously, the VGG-VD19 technique exhibited a slightly higher accuracy
of 0.932, whereas the VGG-VD16 model achieved an improved accuracy of 0.941. Concurrently,
AlexNet, CaffeNet, and VGG-F methods accomplished a reasonable and same accuracy of 0.944.
In line with these, VGG-M model demonstrated improvement over the earlier models and achieved
an accuracy of 0.945. Meanwhile, the VGG-S model showcased a reasonable accuracy of 0.946.
However, the presented SSO-CapsNet model surpassed other methods and attained a maximum
accuracy of 0.983.

Tab. 2 and Fig. 6 examine the performance of SSO-CapsNet model against the existing mod-
els in terms of different measures. When analyzing the results in terms of F-score, the table values
show that the VGGNet model obtained the least F-score of 0.785. Likewise, the VGG-RBFNN
model exhibited a slightly increased F-score of 0.788 whereas the CA-VGG-LSTM model
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accomplished a certain improvement in F-score i.e., 0.796. Followed by, ResNet-50 model depicted
a manageable outcome with an F-score of 0.797 while the CA-VGG-BiLSTM model resulted in an
F-score of 0.798. Simultaneously, ResNet-RBFNN model achieved a reasonable F-score of 0.806.
Concurrently, GNet model accomplished an F-score of 0.807, whereas an even higher F-score
of 0.814 was offered by CA-ResNet-LSTM model. In line with this, GoogLeNet-RBFNN model
demonstrated an improvement in the results over earlier models with an F-score of 0.815 and the
CA-ResNet-BiLSTM model provided an F-score of 0.815. Meanwhile, CA-GNet-LSTM model
attempted to showcase a reasonable F-score of 0.818, whereas CA-GNet-BiLSTM model accom-
plished a competitive F-score of 0.818. However, the presented SSO-CapsNet model surpassed all
other methods and achieved a high F-score of 0.983.

Figure 4: Sample images

When investigating the outcomes with respect to precision and recall, the table values por-
tray that the CA-ResNet-BiLSTM model obtained the least precision and recall values such
as 0.779 and 0.890 respectively. At the same time, VGG-RBFNN approach exhibited slightly
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higher precision and recall values i.e., 0.782 and 0.839 respectively, whereas the CA-GNet-LSTM
model reached superior precision and recall values such as 0.785 and 0.886 respectively. Followed
by, VGGNet model depicted a manageable outcome while its precision and recall values were
0.791 and 0.823 respectively. Further, CA-VGG-BiLSTM yielded the following precision and recall
values i.e., 0.793 and 0.840 respectively. Simultaneously, the ResNet-RBFNN model achieved a
reasonable precision and recall of 0.799 and 0.846 correspondingly. Concurrently, CA-ResNet-
LSTM model accomplished a precision and recall of 0.799 and 0.861 correspondingly. A further
increase was observed in precision and recall values such as 0.799 and 0.871 by CA-GNet-
BiLSTM model. Followed by, the GoogLeNet-RBFNN model demonstrated an improved outcome
over earlier models with a precision and recall of 0.800 and 0.868 correspondingly. The GNet
method attained 0.805 precision and 0.843 recall value. Meanwhile, the CA-VGG-LSTM model
demonstrated reasonable precision and recall values such as 0.806 and 0.825 respectively. Further,
ResNet-50 method resulted in competitive precision and recall values i.e., 0.809 and 0.820 respec-
tively. However, the proposed SSO-CapsNet technique surpassed all other methods and offered
the highest precision and recall values such as 0.985 and 0.982.

Table 1: Accuracy analysis of SSO-CapsNet with various CNN models

Methods Accuracy (%)

SSO-CapsNet 0.983
AlexNet 0.944
CaffeNet 0.944
VGG-F 0.944
VGG-M 0.945
VGG-S 0.946
VGG-VD16 0.941
VGG-VD19 0.932
PlacesNet 0.914

Figure 5: Accuracy analysis of SSO-CapsNet model with distinct CNN models
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Table 2: Performance analysis of SSO-CapsNet against various models in terms of precision,
recall and F-score

Model F-score Precision Recall

VGGNet 0.785 0.791 0.823
VGG-RBFNN 0.788 0.782 0.839
CA-VGG-LSTM 0.796 0.806 0.825
CA-VGG-BiLSTM 0.798 0.793 0.840
GNet 0.807 0.805 0.843
GoogLeNet-RBFNN 0.815 0.800 0.868
CA-GNet-LSTM 0.818 0.785 0.886
CA-GNet-BiLSTM 0.818 0.799 0.871
ResNet-50 0.797 0.809 0.820
ResNet-RBFNN 0.806 0.799 0.846
CA-ResNet-LSTM 0.814 0.799 0.861
CA-ResNet-BiLSTM 0.815 0.779 0.890
SSO-CapsNet 0.983 0.985 0.982

Figure 6: Result of SSO-CapsNet Model under distinct measures

Tab. 3 and Fig. 7 portray the results of accuracy analysis conducted upon SSO-CapsNet
model against the existing models. The table values infer that the SCK model achieved a
minimum accuracy of 0.725. At the same time, SPM model exhibited a slightly increase in
accuracy up to 0.740, whereas SPCK++ model accomplished a higher accuracy of 0.774. Followed
by, SC+Pooling model depicted a manageable outcome with an accuracy of 0.817. Likewise,
SG+UFL and CCM-BOVW models accomplished similar results i.e., accuracy of 0.866. Simul-
taneously, PSR model achieved a reasonable accuracy of 0.891. Concurrently, UFL-SC model
accomplished an accuracy of 0.903, whereas an enhanced accuracy of 0.909 was attained by
OverFeat model.

In line this these, MSIFT and COPD models exhibited higher outcomes over earlier models
and its accuracy values were 0.910 and 0.913 respectively. The Dirichlet model provided mod-
erate results with an accuracy of 0.928. Meanwhile, VLAT and GoogLeNet+Finetune models
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showcased reasonable accuracy values such as 0.943 and 0.971 correspondingly. The CCP-Net and
MOPSO-SC methodologies provided competitive accuracies such as 0.975 and 0.979 respectively.
However, the presented SSO-CapsNet model surpassed all other models and accomplished a
superior accuracy of 0.983.

Table 3: Accuracy analysis of SSO-CapsNet against various state-of-the-art methods

Methods Accuracy

SPM 0.740
SCK 0.725
SPCK++ 0.774
SC + Pooling 0.817
SG + UFL 0.866
CCM-BOVW 0.866
PSR 0.891
UFL-SC 0.903
MSIFT 0.910
COPD 0.913
Dirichlet 0.928
VLAT 0.943
OverFeat 0.909
GoogLeNet + Finetune 0.971
CCP-Net 0.975
MOPSO-SC 0.979
SSO-CapsNet 0.983

Figure 7: Accuracy analysis of SSO-CapsNet model against existing techniques

Tab. 4 illustrate the results for running time analysis of SSO-CapsNet model against other
CNN models [5,24–26]. The results portray that both VGG-16 and VGG-19 models demonstrated
the worst performance and achieved high running time of 423 and 496 s respectively. In line
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with these, VGG-M and VGG-S models demonstrated slightly enhanced results with respective
running times being 124 and 135 s. Followed by, CaffeNet and AlexNet models reported moderate
running time of 85 and 86 s respectively. Moreover, PlacesNet and VGG-F models showcased
somewhat reasonable and same running time of 82 s. But the SSO-CapsNet model displayed
superior performance and accomplished the task at a running time of 73 s.

Table 4: Running time (s) analysis of SSO-CapsNet method against various CNN models

Methods Running time (s)

SSO-CapsNet 73.00
AlexNet 86.00
CaffeNet 85.00
VGG-F 82.00
VGG-M 124.00
VGG-S 135.00
VGG-VD16 423.00
VGG-VD19 496.00
PlacesNet 82.00

5 Conclusion

The current study developed a new DL-enabled aerial scene classification model for UAV-
enabled MEC systems i.e., SSO-CapsNet model. The presented model allows the UAVs to capture
aerial images and send it to MEC for further processing. At MEC, the captured aerial images are
fed into CapsNet-based feature extractor to derive an effective set of feature vectors. Followed by,
SSO algorithm is used to fine tune the hyperparameters of CapsNet model. The application of
SSO algorithm helps in effectively tuning the hyperparameters. Thus, the accuracy of overall aerial
image scene classification is enhanced. Finally, BPNN model is applied to allocate the class labels
of the applied aerial test images. The simulation results of the proposed SSO-CapsNet model
were validated against the benchmark UCM and WHU-RS datasets. The obtained experimental
values inferred that the SSO-CapsNet model outperformed other classifiers and accomplished the
maximum accuracy of 0.983, precision of 0.985, recall of 0.982, and F-score of 0.983. In future,
SSO-CapsNet model can be implemented in handling various input sizes with multiple scaling.
Further, the model can be assessed on big datasets such as NWPU-resic45 for its performance.
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