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The prediction of the dynamics of the COVID-19 outbreak and the corresponding needs of the health care system (COVID-19
patients’ admissions, the number of critically ill patients, need for intensive care units, etc.) is based on the combination of a
limited growth model (Verhulst model) and a short-term predictive model that allows predictions to be made for the following
day. In both cases, the uncertainty analysis of the prediction is performed, i.e., the set of equivalent models that adjust the
historical data with the same accuracy. This set of models provides the posterior distribution of the parameters of the predictive
model that adjusts the historical series. It can be extrapolated to the same analyzed time series (e.g., the number of infected
individuals per day) or to another time series of interest to which it is correlated and used, e.g., to predict the number of patients
admitted to urgent care units, the number of critically ill patients, or the total number of admissions, which are directly related
to health needs. These models can be regionalized, that is, the predictions can be made at the local level if data are
disaggregated. We show that the Verhulst and the Gompertz models provide similar results and can be also used to monitor and
predict new outbreaks. However, the Verhulst model seems to be easier to interpret and to use.

1. Introduction

An epidemic is the appearance of a particular disease in a large
number of people at the same time and its corresponding
spreading from person to person in a place where the disease
is not permanently prevalent. When an epidemic has spread
across the continents over the entire world it becomes a
pandemic, a disease is called an endemic if it persists in a pop-
ulation. In the history of mankind, various pandemics have
happened, some of which appear recurrently and others such
as malaria, typhus, cholera, and sleeping sickness are endemic
to some parts of the world (Snow [1]; Budd [2]).

Epidemiological models are designed to follow the dynamic
of a disease transmission and study how it is spread and is
being controlled in groups of people. Classical epidemicmodel-
ing was built on ordinary differential equations, the so-called
population growth models. These models assume that the pop-

ulation is perfectlymixed, with peoplemoving from the suscep-
tible group, to the infected one, to the recovered (or dead) one.
Within these groups, everyone is identical.

The work of Bernoulli [3] concerning smallpox can be
considered the first model in mathematical epidemiology. It
was in the early 20th century, between 1900 and 1935, that
the foundations of epidemiology were laid based on compart-
mentalized models (Ross [4]; Hamer [5]; Kermack and
McKendrick [6]). Kermack andMcKendrick’s model consid-
ered a fixed population with three compartments, formed by
the group of people who were likely to be infected at time t,
SðtÞ, the group of people who were infected, IðtÞ, people
who were able to spread the disease, and, RðtÞ, the group of
people who were not in the previous two groups, either
because they had been immunized or because they had died
as a result of the epidemic. This model is typically known
under the acronym SIR. In its simplest formulation, it is
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applied to diseases with lifelong immunity, i.e., once recov-
ered patients cannot be susceptible again. In this model,
births and deaths are not taken into account because the
duration of the disease is too short compared to the life of
an individual, so that the total population, N , is considered
constant. Representing by SðtÞ, IðtÞ, and RðtÞ, the number
of susceptible, infected, and recovered individuals, we have
the following: N = SðtÞ + IðtÞ + RðtÞ, where N is the total
population.

The SIR model can be written as follows:

dS tð Þ
dt

= −
r S tð ÞI tð Þ

N ,

dI tð Þ
dt

= r S tð ÞI tð Þ
N − cI tð Þ,

dR tð Þ
dt

= cI tð Þ,

8>>>>>>><
>>>>>>>:

ð1Þ

where r is the infectious rate or the probability of trans-
mitting disease between a susceptible and an infectious indi-
vidual and c is the recovery rate determined by the average
duration of infection.

The values of parameters r and c should be estimated and
adjusted so that they can justify the excess of deaths.

A modification of the SIR model consists in conflict
considering births and deaths rates (μ and α, respectively):

dS tð Þ
dt

= N −
b S tð ÞI tð Þ

N − S tð Þ,
dI tð Þ
dt

= b S tð ÞI tð Þ
N − cI tð Þ − I tð Þ,

dR tð Þ
dt

= cI tð Þ − R tð Þ:

8>>>>>>><
>>>>>>>:

ð2Þ

A variant of the SIRmodel is the SEIR [7], which considers
an incubation period during which individuals have been
infected but are not yet infectious themselves, with EðtÞ being
the exposed group. The SEIS variant is like SEIR, but in the
end, the immunity is not acquired. If there is a passive immu-
nity and a latency period, we have the MSEIR model and if the
R-class immunity is temporary and individuals in this group
may become susceptible again, then we have the MSEIRS
model (see Brauer [8] for more details about models for pan-
demics). Many scientists have chosen to use the SIR model
(Bärwolff [9]; Weiss [10]) or one of its variants (Peng et al.
[11]; Tian et al. [12]; Tsay et al. [13]; Prem et al. [14]; Hethcote
[15]) and even have designed some improved variants applica-
ble to COVID-19 that take into account, among other things,
undetected infectious cases (Ivorra et al. [16]) or time-delay
(Shao et al. [17]).

All these prediction models, although they have different
levels of complexity, follow the first phase of adjustment,
where an inverse problem to identify their critical parameters
is solved. In this phase, the values of the model parameters
that constitute the model are being adjusted to the historical
data with a minimum mismatch, that is, the epidemiological
model is able to reliably predict the past. Once these param-

eters have been obtained, the model is used to predict the
evolution of the disease in the future. One of the limitations
of these SIR-type models is having at disposal the population
RðtÞ to identify the parameters.

In SIR-type models, a fundamental parameter is the basic
reproduction number R₀ which measures the average number
of people infected by each sick person. As can be expected, this
number differs greatly and depends on the social behavior of
the given population, since living in isolation in rural areas is
completely different than living in large cities, where it is diffi-
cult to maintain the social distance. For that reason, some
authors have stated that the variation range for this parameter
is 2 to 2.6 (Ferguson et al. [18]; Massonnaud et al. [19]; Li et al.
[20]). Other authors estimate this interval to be between 1.5
and 3 (Massonnaud et al. [19]) or even greater than 5 (Sanche
et al. [21]), depending on the areas of study. As we will see in
this paper, this great variation might be related not only to the
epidemiological problem itself but also to the uncertainty
space of this parameter in the inverse problem. All these
models need a good quality data from the several compart-
ments into which the collected data is being divided.

A different and simpler approach tomodel pandemics con-
sists of treating the outbreak as a population growth model. In
this case, the model is applied to the infected people. Particu-
larly, the limited growth models, such as the logistic one pro-
posed by Verhulst [22], might be used to understand and
predict the pandemics. This population model takes into
account that competition between individuals for a limited
resource leads to a limited growth. The time before the popula-
tion reaches half of its limit value (or maximum capacity) is the
period of rapid growth. After, the growth rate decreases to
reach zero in a period of reduced growth to stabilize the total
number of individuals of the population to its maximum value.
The logistic model has been used to study the evolution of
COVID-19 by different authors (Dattoli et al. [23]; Zeng et al.
[24]; Cherniha and Davydovych [25]; Cakir and Savas [26]).

Another interesting model used in biology for the growth
analysis is the Gompertz model (Gompertz [27]), which has
been used to describe the growth of animals and plants and
also the volume of bacteria and cancer cells ([28]; Tjørve
and Tjørve [29]).

Although the underlying law is different from the
Verhulst model, the conclusions that might be achieved to
predict the evolution of a population might be similar if the
prediction is correctly performed. This paper is aimed to
show that the COVID-19 outbreak can be modeled via the
Verhulst population model to predict the evolution of the
disease with the aim of planning of the demand for the health
care resources and to minimize deaths by adopting the right
decisions. Besides, a short-term prediction of the medical
needs can be utilized to predict the hospital bed admissions
and the urgent care needs. The long-term forecasts could be
used to estimate when the peak of the pandemic will be
reached and to monitor the probability of a new outbreak.
To perform these tasks properly, the inverse problems of
the Verhulst forward model should be analyzed with its
corresponding uncertainty analysis.

The Verhulst model depends only on three parameters
that should be identified based on historical data: the initial
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population of the infected individuals, the rate of growth that
is constant and serves to explain globally the expansion of the
outbreak, and the maximum number of people who will be
infected. The uncertainty space of the Verhulst model is com-
posed of a set of three-dimensional parameters that fit the
historical data within the same error bounds. These models
are called equivalent and they are located on curvilinear val-
leys of the cost function topography map (Fernández Martí-
nez et al. [30]). The uncertainty in inverse problems is due to
the noise in data and due to modeling assumptions, that is,
the existing tradeoff among parameters. The sampling of this
set of equivalent models serves to quantify the uncertainty in
the past and to translate it to the future prediction by provid-
ing the percentile curves of the outbreak. These percentile
curves make the methodology of predicting the outbreak
more robust for public health purposes, since the observed
data of the outbreak fits to one percentile curve along with
the history. The median curve (or percentile 50) is the most
likely. Therefore, if the outbreak goes below the median
curve, it is under control. Conversely, if the outbreak goes
below the percentile 75-90, the outbreak is uncontrolled,
and a future growth of infections has to be expected. We
show the application to the outbreak prediction worldwide
and other examples. We have shown that the Verhulst and
the Gompertz models provide similar results and both can
be also used to monitor and predict new outbreaks, with
the Verhulst model being easier to interpret and to use. Addi-
tionally, we have performed the uncertainty analysis of the pre-
dictions, by constructing the set of equivalent models that
adjust the historical data with the same accuracy, and could
be extrapolated to predict the number of patients admitted to
urgent care units, the number of critically ill patients, or the
total number of admissions. Such predictions are extremely
important for medical authorities for prevention planning
during a pandemic.

2. Methodology

2.1. Long-Term Forecasting via Verhulst Model. The Verhulst
model is a limited-growth population model, which assumes
that population growth is limited by population size, fertility,
and the amount of available resources. This causes that the pop-
ulation converges towards a stationary solution. The Verhulst
model is a modification of the Malthus model (1766-1834) that
predicted the exponential growth of the population. The Ver-
hulst model corresponds to the first-order differential equation:

dP
dt

= rP 1 − P
K

� �
,

P 0ð Þ = P0,
ð3Þ

where PðtÞ is the population size, which depends on time, r is
the growth rate (or decline), and K is the carrying capacity of
the medium and represents the maximum number of individ-
uals that the population can support. In our case, it is the max-
imumnumber of people that is going to be infected by the virus.

The growth rate gr ðtÞ is in this case:

gr tð Þ = dP tð Þ/dt
P tð Þ = r 1 − P tð Þ

K

� �
, ð4Þ

which is not constant but self-regulates according to the term
ð1 − PðtÞ/KÞ which takes into account the distance between
the size of the population at any given time PðtÞ and the max-
imum capacity ðKÞ. Besides, when PðtÞ approachesK , gr ðtÞ
goes to 0. This is the main difference to the well-known
Malthus model, where gr ðtÞ = r ∈ℝ: The general solution
of the Verhulst model is

P t ; Að Þ = K
1 + Ae−rt

, ð5Þ

where A is a real constant that has to fulfill the initial condi-
tion Pð0Þ = P0

P0 =
K

1 + A
: ð6Þ

Therefore, we have

P tð Þ = KP0e
rt

K + P0 ert − 1ð Þ : ð7Þ

The Verhulst model can adequately represent the spread
of an epidemic at the beginning, when the epidemic spreads
rapidly, as each infected person is susceptible to infect other
individuals. As the number of infected people grows, it is more
and more difficult to find a person who has not been previ-
ously in contact with the disease. This is the reason for the
limited growth, independently to the imposed lockdowns.

Equation (5) provides the total number of infected indi-
viduals in time t, while Equation (1) provides the number
of newly infected people per day, i.e., the speed of infection.
The PðtÞ curve is sigmoidal in shape and is called the logistic
curve, while the ðdPðtÞÞ/dt curve is bell-shaped and reaches
its maximum in time tmax :Pðtmax Þ = K/2, that is, when the
total number of infected people reaches the half of popula-
tion. The maximum of dPðtÞ/dt at tmax is

max dP tð Þ
dt

� �
t=tmax

= rK
4 : ð8Þ

At that point, the PðtÞ curve has a tipping point, so the
growth rate of the pandemic goes from increasing to decreas-
ing values. This model has the advantage of being simple,
robust, and easy to understand.

Equation (8) is very useful to determine the maximum
total number of people infected from the maximum daily
number of people infected, knowing the rate of growth r:

Also, it is very easy tomodel the effect of the vaccines, con-
sidering a factor α of immunity in the population. The effect is
similar to considering the growth rate being rð1 − αÞ after vac-
cination. This is obviously a model. For instance, if r = 0:15
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and α = 0:3 (30% of the population is immune), then, the rate
will decrease to rð1 − αÞ = 0:105.

2.2. The Gompertz Model. Another model that can be used to
fit the total number of infected persons is the Gompertz
model

dP
dt

= rP ln K
P

� �
,

P 0ð Þ = P0:

ð9Þ

Its general solution is

P tð Þ = Ke−Be
−rt , ð10Þ

where K describes the maximum infected population, B is a
real constant that establishes the movement of the curve
along the x-axis, and r is the growth rate. All these parame-
ters are positive. In this case, the growth rate gr ðtÞ is logarith-
mic:

gr tð Þ = dP tð Þ/dt
P tð Þ = r ln K

P

� �
: ð11Þ

Since Pð0Þ = Ke−B, K can be expressed as a function of
Pð0Þ; therefore, we have

P t ; P0, B, rð Þ = P0e
−B e−rt−1ð Þ, ð12Þ

that depends on three parameters, P0, B, and r. The number
of new infected is given by dPðtÞ/dt: However, we see in the
real practice that due to the existing trade-offs, parameters of
the Gompertz model are more difficult to identify.

The time when the total number of infected individuals
reaches the half of the population occurs when 1/2 = e−Be

−rt
,

that is, tK/2 = −ln ðln ð2/BÞÞ/r. Besides, the maximum increase
occurs at tmax = ln ðBÞ/r, and the increase at tmax is

max dP tð Þ
dt

� �
t=tmax

= Kr
e

> Kr
4 , ð13Þ

which is higher than the one corresponding to the Verhulst
model ðKr/4Þ. Therefore, for the same values of K and r, the
maximum increase of the Gompertz curve is bigger than for
the Verhulst model.

In both cases, the inverse problem has three similar
parameters to be identified, namely, K , P0, and r.

In the case of the Gompertz model, the natural parameters
to be identified are B, P0 and r. The following relationship

ln K = ln P0 + B, ð14Þ

relates B and P0 with the maximum number of infected
people, K.

Besides, gr ðtÞ = rBe−rt . Therefore,

ln dP tð Þ/dt
P tð Þ

����
���� = ln rBð Þ − rt: ð15Þ

This last expression can be used to obtain a first approx-
imation of r and B by a linear regression. A different possibil-
ity consists in taking logarithms in Eq. (10)

ln P tð Þ = ln P0 − B e−rt − 1
� �

, ð16Þ

and solving Eq. (16) iteratively as follows:

(1) Considering an initial guess for r = 0:1
(2) Identifying P0 and B by solving the linear system

(Eq. (16)) by least-squares, by writing (16) for
different times tk

(3) Identifying r by solving -ln jðln ðP0/PðtÞÞ/BÞ + 1j = rt
by scalar least-squares, using the same approach
mentioned in step 2

(4) The iterative procedure stops when kP − P∗k2 is
smaller than a given bound

3. The Prediction Problem and the
Inverse Problem

The Verhulst model and the Gompertz model depend only
on three parameters to be identified:

(i) The initial population of infected persons ðP0Þ who
spread the virus. Its default value is 1, but it must
be correctly identified since it may not coincide with
the number of infected people detected on the first
day when the statistics were initiated

(ii) The intrinsic growth rate ðrÞ. This parameter pro-
vides a global overview of the outbreak

(iii) The maximum population or load capacity, K

Knowing (identifying) these three parameters, it is rela-
tively simple to simulate the growth of the outbreak.

In this case, the theoretical model considers that the daily
number of infected people at time t, dPðtÞ/dt, can be
described as a temporal stochastic process:

dP tð Þ
dt

= μ tð Þ + R tð Þ, ð17Þ

where μðtÞ is the deterministic trend and RðtÞ is the stochas-
tic unpredictable residual, which has no temporal correlation
structure. Besides, the trend μðtÞ is supposed to follow any of
the two models (Verhulst/Gompertz), which is dPðtÞ/dt ≈ μ
ðtÞ: Therefore, the Verhulst and the Gompertz models can
only explain the trend μðtÞ of dPðtÞ/dt, and the difference
between both are high-frequency increments that are due to
the local time behavior of the pandemic. It is important to
understand that the low-frequency part of model, μðtÞ, and
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the high-frequency content, RðtÞ, have different uncertainty
spaces. In fact, the Verhulst/Gompertz deterministic models
are only able to mimic μðtÞ, while the term RðtÞ has almost
no temporal correlation and should be modeled as white
noise. The white noise can be Gaussian white if the noise
values are mutually uncorrelated with zero mean and have
the same Gaussian probability distribution. In time series
analysis, there are often no explanatory variables other than
the past values of the variable being modeled. In this case,
the noise process can be modeled as a moving average
process, in which the current value of the dependent variable
depends on the current and past values of a sequential white
noise process.

Figure 1 shows the dynamics of the pandemic for three
different cases with maximum populations of 500 000, 800
000, and 1 million people and intrinsic growth rates of 0.1
and 0.2.

It can be observed that the peak of the curve of new infec-
tions has a maximum at the inflection point of the curve of
total infections, so its temporal location is very well deter-
mined. Besides, as it was detailed, it corresponds to the time
in which half of the maximum population is reached.
Another remarkable circumstance is that the support of the
curve of new infected varies in this case between 60 and 75
days, which would be the characteristic time necessary for it
to be controlled.

Figure 2 shows the same simulations using the Gompertz
model with the same parameters as for the Verhulst model.
In this case, the disappearance of the pandemic is faster. This
fact indicates that the growth parameter for the Gompertz
model should be smaller to be compared to the results of
the Verhulst model.

Please note that both predictions shown in Figures 1 and
2 are smooth and do not contain high-frequency variabilities
observed in the real data.

The inverse problem can be written as follows: given a
time series of the total number of people infected till time tn
: fðt1, P1Þ, ðt2, P2Þ,⋯:,ðtn, PnÞg finding the set (or sets) of
parameters m = ðK , P0, rÞ such that the observed data dobs
= ðP1, P2,⋯, PnÞ ∈ℝn is fitted with an error smaller than a
given error bound: tol.

Calling FðmÞ to the forward prediction model (the Ver-
hulst/Gompertz growth model in this case), it is, to sample
the uncertainty space of this inverse three-dimensional prob-
lem:

Mtol = m = K , P0, rð Þ:
F mð Þ − dobs

��� ���
1

dobs
��� ���

1

≤ tol

8><
>:

9>=
>;: ð18Þ

Equation (8) holds for any norm to measure the relative
data misfit kFðmÞ − dobsk1/kdobsk1. In this case, the L1 norm
has been adapted because of its robustness to the presence of
outliers. The aim of this analysis is to identify the set of
models m = ðK , P0, rÞ that fits the historical data with a sim-
ilar precision. This procedure takes into account the topogra-
phy of the cost function in nonlinear inverse problems

(Fernández-Martínez et al. [30, 31]) and the effect of noise
on the observed data (Fernández-Martínez et al. [32, 33])
which deforms this topography and falsifies the identification
of the best model. Besides, it has been shown (Fernández-
Martínez et al. [30, 31]) that the so-called equivalent models
belong to flat curvilinear valleys of the objective function in
which the latter reaches similar values. These models can be
also located in different disconnected basins of the cost func-
tion landscape. In the case of linear inverse problems, this
uncertainty region is unique (bounded or not). The uncer-
tainty analysis consists of obtaining a representative sample
of these models through sampling or global optimization
techniques (Fernández-Martínez [34]). In that sense, the
technique consisting of finding the model with the maximum
plausibility (with the least fitting error of the historical data)
is inadequate since no different scenarios are contemplated.
In addition, the technique of providing prediction confidence
intervals is mostly based on the hypothesis of linearity (nor-
mality). This hypothesis is not needed in this approach since
the posterior distribution of the prediction is in this case
given. It should be noted that the prediction percentile curves
have a much more complex shape than that anticipated by a
single (most accurate) predictive model, regardless of its type
(SIR, Verhulst, etc.). The reason is that percentile curves
collect the contribution of different plausible scenarios, not
only the one with the smallest historical fitting error.

Other global optimization methods such as genetic algo-
rithms or simulated annealing could be used to solve this
low-dimensional inverse problem. Nevertheless, the most
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Figure 1: Simulation of the dynamics of a pandemic according to
the Verhulst model for different values of load capacity and
intrinsic growth rate.
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important feature is the capability of performing a good sam-
pling of the posterior distribution of the model parameters.
With PSO, the sampling during the optimization can be done
much faster than with other methods, as shown by Fernán-
dez Alvarez et al. [35] and Fernández Martínez et al. [36]
who compared these various algorithms.

Once this set of equivalent models have been sampled, it is
possible to extrapolate the pandemic curve ad-futurum by tak-
ing into account all these sampled models that fit the historical
data equally well and to determine the different percentiles of
the posterior distribution of the number of infected during the
outbreak (daily ones and cumulated). That way, the uncer-
tainty in the future prediction is implemented.

Numerical data can be sorted in increasing or decreasing
order by setting a rank order. A percentile is a value at a par-
ticular rank. The p-percentile of the ad-futurum prediction
on day t is the number of infected people left by the p% of
predictions below. The 10th, 25th, 50th, 75th, and 90th percen-
tiles are determined. The percentiles curves for Verhulst and
Gompertz models are generated by applying this concept to
the set of predictions in each time, that is, calling ðI∗1 , I∗2 ,⋯
, I∗q Þ ∈ℝq the set of predictions in time tk, the percentile p is
Ip: PðI∗k < IpÞ. This probability is inferred from the set of
equivalent predictions ðI∗1 , I∗2 ,⋯, I∗q Þ:

That way, the reality (the number of infected observed
cases) on that same day (once predicted before) is an addi-
tional curve of the model. The 50th percentile or median is
the most likely value of the predicted values, since it is the cen-
ter of the posterior distribution. If the evolution of the pan-
demic goes towards lower percentiles (below the median),

then the pandemic would be under control. Conversely, if
the pandemic evolves towards higher percentiles, then the
opposite can be concluded. This methodology is consistent
with the Bayesian approach to inverse problems (see for
instance Tarantola [37]) consisting in sampling the posterior
distribution of the model parameters in inverse problems to
adopt risk decisions. This methodology is commonly adopted
in many fields of the technology.

One of the questions that is always discussed is to which
degree the pandemic (number of infections) could be extrap-
olated in time. For that purpose, we can use the correlogram
which takes into account the memory of the temporal series.
Figure 3 shows the absolute variogram and the stationary
covariance of the daily infected in Spain. It can be observed
that the variogram reaches a plateau between 40 and 60 days,
and the covariance cancels out in 138 days. Therefore, the
correlation memory is at least longer than one month. Thus,
it is completely licit to perform ad-futurum predictions of the
trend that long.

Although not shown in the paper, the correlation of the
term RðtÞ after filtering out the trend is lower than 2 days,
which coincides with the observed delay in the data variabil-
ity provided by the Spanish authorities. This fact means that
RðtÞ could be modeled as a white noise.

4. RR-PSO Sampling

The sampling of the equivalent model parameters in (8) that
fit the historical data is done via global optimization. The
sampling is performed with the Regressive-Regressive Parti-
cle Swarm Optimization (RR-PSO) algorithm (Fernández
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growth rate.
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Martínez and García-Gonzalo [38]) which is a member of the
Particle Swarm Optimization (PSO) family. The PSO algo-
rithm (Kennedy and Eberhart [39]) is a global optimization
algorithm that was initially bioinspired by the bee swarms
foraging for food. The bees, when foraging for pollen, explore
the region where there is the highest density of flowers so that
the probability of finding pollen is higher. PSO uses a swarm
of models m (called particles) to explore an n-dimensional
space of plausible solutions in order to optimize the data pre-
diction error. Initially, a swarm of model parameters is ran-
domly initialized within the search space. These are the
only constraints or piece of prior information that it is
needed for the PSO algorithm to work. As PSO progresses,
the positions of the model parameters in the search space
are updated as follows:

vk+1i = ωvki +∅1 gk − xki
� 	

+∅2 lki − xki
� 	

,

xk+1i = xki + vk+1i :

ð19Þ

Here, xki is the ith model in the kth iteration, and vki its
velocity, that is, the model perturbations needed to minimize
the cost function. The velocity update depends on lki which is
the ith particle’s best position, and on gk , which is the global
best position among all lki positions. Mathematically is a dou-
ble stochastic gradient algorithm in the model space. The
PSO parameters, ∅1 = r1ag and ∅2 = r2al,are the random

global and local accelerations, and ω is a real constant called
inertia weight, while r1 and r2 are uniform random variables
in the interval ½0, 1�, used to weight the global and local accel-
eration constants ag and al. These are three PSO tuning
parameters needed to achieve stability of the PSO particle
trajectories (Fernández Martínez and García Gonzalo [40])
and to explore of the cost function landscape.

From the physical point of view, PSO can be interpreted
as a double stochastic gradient algorithm in the model space
and is the particular case of the generalized PSO (GPSO)
algorithm (Fernández Martínez and García Gonzalo [41])
for t = k and a unit time-step (Δt = 1):

vi t+Δtð Þ = vi tð Þ 1 − 1 − ωð ÞΔt½ � +∅1Δt g tð Þ − xi tð Þ½ � +∅2Δt li tð Þ − xi tð Þ½ �,
xi t+Δtð Þ = xi tð Þ + vi tð Þ t+Δtð ÞΔt:

ð20Þ

This and other models of the PSO family were obtained
from the PSO continuous model (Fernández Martínez and
García Gonzalo [41]) which is a stochastic damped mass-
spring system. In this paper, we have used the Regressive-
Regressive PSO (RR-PSO) which is a member of the PSO
family that was obtained from the PSO continuous model
by adopting regressive discretization in acceleration and in
velocity (Fernández Martínez and García-Gonzalo [38]).
RR-PSO can be written as follows:
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Figure 3: Absolute variogram and stationary covariance for the Spanish COVID-19 outbreak.
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vi t+Δtð Þ = vi tð Þ +∅1Δt g tð Þ − xi tð Þ½ � +∅2Δt li tð Þ − xi tð Þ½ �
1 + 1 − ωð ÞΔt+∅Δt2

,

xi t+Δtð Þ = xi tð Þ + vi t+Δtð ÞΔt,
xi 0ð Þ = x0,
vi 0ð Þ = v0,

8>>>>>>><
>>>>>>>:

ð21Þ

where ðt,ΔtÞ ∈ℝ.
RR-PSO was chosen among the different members of the

PSO family due to its optimum balance between the explora-
tion and exploitation capabilities. This feature is very impor-
tant for sampling the region of equivalent models. Besides,
the tuning of the RR-PSO parameters is very simple since they
are aligned in a straight line (Fernández Martínez and García-
Gonzalo [38]). This type of global algorithms does not need
prior information or regularization term to perform the opti-
mization. They only need the design of the search space, which
is a prism in this particular case in three dimensions.

In our case, the bees are the parameters of the Ver-
hulst/Gompertz models, m = ðK , P0, rÞ, and the density of
pollen is related to the value of the misfit obtained in fitting
the historical data. In the case of the Verhulst model, the
search space is automatically designed by solving the dis-
crete difference equation:

P t + 1ð Þ − 1 + rð ÞP tð Þ + r
K
P2 tð Þ = 0,

P 0ð Þ = P0:
ð22Þ

This differential equation can be written as

P k + 1ð Þ − P kð Þ = aP kð Þ + bP2 kð Þ, k = 1,⋯, s − 1, ð23Þ

where s is the number of data observed in the history of the
outbreak.

It is straightforward to identify through the least-squares
the parameters a, b. Based on these values, it is straightfor-
ward to design the low and the upper search limits for r
and K . In the case of P0, it is simpler since this parameter is
usually better constrained. Given a set of particles m = ðK ,
P0, rÞ in the search space, the cost function to be optimized
is the distance in the L1 norm between the observed infected
data and the data predicted with this model:

C mð Þ = Pobs − P∗ mð Þ�� ��
1

Pobs�� ��
1

100 + C1 mð Þ: ð24Þ

Besides, in (24), a term including the fitting of the velocity
is included, C1ðmÞ, to improve the fitting of the daily curve as
well:
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Figure 4: Daily number of infected individuals during the Spanish COVID-19 pandemic confirmed by PCR and its trend. The figure shows
the reported data (magenta line) and its trend (green line).
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C1 mð Þ = α
dPobs − dP∗ mð Þ

��� ���
1

dPobs
��� ���

1

100, ð25Þ

where dPobs, dP∗ðmÞ are the observed and predicted daily
increments, and α a real parameter used to specify the weight
of the term C1ðmÞ.

As specified in Eq. (18), in the posterior analysis, we
will only choose the parameters that guarantee that the
prediction error is lower than the admitted tolerance
(error bound) that is tuned to take into account the
high-frequency content of the outbreak, such as sudden
infections in retirement homes or in social meetings that
do not respect social distancing and the corresponding
health protection measures.

The flowchart followed in this paper is as follows:

(i) Inverse modeling and the uncertainty analysis of the
COVID-19 outbreak via the Verhulst/Gompertz
models

(ii) Ad-futurum prediction of the outbreak

(iii) Cross-correlation of the number of infected tempo-
ral series with other time series (health needs)

(iv) Ad-futurum prediction of the cross-correlated time
series

5. Results

In this section, we show the application of this methodology
to the COVID-19 outbreak in Spain. Figure 4 shows the daily
number of infected individuals in Spain from the beginning
of the outbreak. It can be observed that the first wave of the
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pandemic begins around March 2020, and its intensity is
lower due to the confinement. Also, the number of positive
cases was undersampled because the tests were mostly per-

formed only during hospital admissions. Then, we observe
the second wave of the pandemic that begins in July and ends
in December 2020. The third wave begins after Christmas
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2020 due to the preholiday relaxing of the lockdown restric-
tions because of the social and economic pressures. The
abovementioned population models can interpret every wave
individually by shifting the time origin.

For instance, Figure 5 shows the analysis of the third
wave in Spain. This figure shows the posteriori distribution
of the predicted daily number of infected people computed
on February 2, 2021. The beginning of the third wave was
set on December 12, 2020. This figure shows the observed
data, its temporal trend, and different percentiles curves
(P10, P25, P50, P60, P75 P90, and P95) of the prediction.
The percentiles curves were generated using the methodol-
ogy that was previously explained, that is, performing the
sampling of the equivalent models that fit the historical data
and extrapolating these predictions ad-futurum. We also
provide the trend that is calculated via the spectral filtering
of the data series.

Our interpretation is that the outbreak achieved its
maximum around January 21, 2021, when the daily infection
maximum was located on the P90 curve. This situation also
happened one week before, but the outbreak continued to
increase after a brief period of decrease. This is interpreted
as noise in data, mainly introduced by the weekends or some
delays in the data analysis transfer. According to our
prediction from the model, the third wave will be under
control by the end of March 2021. The maximum number
of the infected people seems to approach 2 million as seen
in the P75 curve of the lower plot displaying the total number
of infections.

The percentile curves serve to detect the risk of new
resurgence and monitoring new outbreaks. Assigning a risk
of regrowth from the percentile curves is automatic:

(i) If the number of newly infected cases is less than
P10: very low risk

(ii) Between P10 and P25: low risk

(iii) Between P25 and P50: low to medium risk

(iv) Between P50 and P75: medium to high risk

(v) Between P75 and P90: high risk

(vi) Above P90: very high risk—out of control

Figure 6 shows the histograms of K and r parameters
identified by RR-PSO in predicting the number of infected
people. The maximum number of infected individuals was
1.5 million people. The intrinsic growth rate of the infection
is between 0.08 and 0.10. Obviously, this value depends on
the type of society, its mobility, density of population, and
the health conditions.

Also, one of the major questions in the modeling is to
decide if the outbreak has achieved its maximum. The deriv-
ative of the number of daily infected cases is a very interesting
tool to elucidate this question. The lower plot in Figure 7
shows the second derivative of PðtÞ, that is calculated by
numerical differentiation of the trend (μðtÞ) of dPðtÞ/dt.
The fact that the second derivative is close to zero indicates
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that we are close to a peak, but unfortunately, it is possible to
have a local reversal in the trend.

5.1. Short-Term Prediction. Long-term forecasting can be
complemented by short-term (next day) forecasting using a
time series analysis method. Figure 8 shows the application
of such a method for the next-day prediction of the number
of infected cases, the most likely value being the median.
The interquartile range can also be determined, as well as
the minimum and maximum percentiles that provide the
one-day limits on the evolution of the pandemic. As it was
already explained, above the 90th percentile provides a very
high probability of a new out of control outbreak. This
method of short-time prediction can also be used to predict
health care needs (admissions, ICUs, critical care patients,
deaths), by correlating the corresponding time series with
the series numbers of infected people, and by transmitting
the uncertainty of the prediction of new COVID-19 infec-
tions to these predictions. The method works as follows:

(i) Performing a linear regression between the health
care needs (H) and the daily infected

H Ið Þ = a1I + a0:, ð26Þ

(ii) Given a set of equivalent predictions of I, construct-
ing the percentiles for H, taking into account (26).

This allows for a much more effective control of the
effects of the pandemic and an intelligent and automated
forecast of hospital needs.

5.2. Prediction via the Gompertz Model. Finally, the same
methodology could be employed with the Gompertz model.
Figure 9 shows the modeling of the third outbreak in Spain
via the Gompertz model. Both the Verhulst and the Gom-
pertz models provide similar answers. Nevertheless, the
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Figure 9: The Gompertz model prediction for the third wave of COVID-19 pandemic in Spain.
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Gompertz model is more sensible to the initial population
(due to Eq. (14)) than the Verhulst model whose parameters
are simpler to tune.

6. Conclusions

This paper presents the Verhulst and the Gompertz models
for predicting the effects of the COVID-19 outbreak and
helping on decision-making, both in terms of health care
needs and public health outcomes. These models depend
only on three parameters (the initial number of infected indi-
viduals, the maximum number of infected people, and the
infection growth rate), which can be identified by fitting the
historical data. The uncertainty analysis of these prediction
models serves to determine the posterior distribution of the
predictions for the daily infections and to translate the effect
of this uncertainty to the future, via the percentile curves.
These models serve to perform long-term and short-term
predictions that can be used to anticipate future health care
needs and the arrival of a next wave of the pandemic. We
show several examples for the COVID-19 prediction in
Spain. Interestingly, the intrinsic growth rate of the infection
is between 8% and 10%, which indicates that the SARS-CoV-
2 virus effects on average 8 to 10 people for every 100 suscep-
tible cases. It is expected that this number will decrease in the
future due to the effect of mass vaccination. We also have
shown that the Verhulst and the Gompertz models provide
similar results; however, the parameters in the Verhulst
model are easier to tune. In view of these circumstances,
the use of the Verhulst model seems more appropriate and
more intuitive than that of Gompertz.
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