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Abstract 

We report results of comprehensive experimental exploration (X‑ray photoemission, Raman and optical spectroscopy) 
of carbon nanofibers (CNFs) in combination with first‑principles modeling. Core‑level spectra demonstrate prevalence 
of sp2 hybridization of carbon atoms in CNF with a trace amount of carbon–oxygen bonds. The density functional 
theory (DFT)‑based calculations demonstrated no visible difference between mono‑ and bilayers because σ‑orbitals 
are related to in‑plane covalent bonds. The influence of the distortions on π‑peak is found to be significant only for 
bilayers as a result of π–π interlayer bonds formation. These results are supported by both experimental Raman and 
XPS valence band spectra. The combination of optical measurements with a theoretical modeling indicates the for‑
mation of optically active graphene quantum dots (GQDs) in the CNF matrix, with a radiative relaxation of the excited 
π* state. The calculated electronic structure of these GQDs is in quantitative agreement with the measured optical 
transitions and provides an explanation of the absence of visible contribution from these GQDs to the measured 
valence bands spectra.
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Introduction
Carbon nanofibers (CNFs) are nanofilaments (from 3 to 
100 nm in diameter) organized by stacked graphene lay-
ers with a certain orientation with respect to the fiber 
axis. CNFs have a great potential as promising materi-
als in photonic and electronic devices, optical sensors, 
electrode materials for batteries and supercapacitors, 
new reinforcing composites and other functional materi-
als due to high ratio of surface area to volume, nanoscale 
diameter of carbon particles and superior mechanical, 
electrical and chemical properties [1]. Due to their high 
electrical and thermal conductivities as well as their 
structural properties and surface state, which facilitates 
functionalization and other surface modification tech-
niques to incorporate the nanofibers to host polymers, 

CNFs have found applications as secondary/reinforcing 
phases in different matrices, ranging from ceramics [2, 3], 
metals [4] and polymers [5–7] to textiles [8]. As a con-
ductive filler, CNFs are found to be more effective than 
traditional carbon black [9], which results in nanofilled 
composite materials with high electrical conductivity at 
lower filler concentrations [10]. At room temperature, 
the intrinsic resistivity of highly graphitic vapor-grown 
carbon fibers is approximately 5 ×  10−5 Ω cm [11], which 
is comparable to the resistivity of graphite. Recent theo-
retical modelings propose two opposite models of CNF: 
as a flat graphene sheet [12, 13] or disordered sponge like 
carbon foam. [14, 15].

The surface studies are very important for materi-
als such as nanocarbon because their properties tend to 
dominate at the nanoscale due to the drastically increased 
the surface-to-volume ratio. The combination of X-ray 
photoemission spectroscopy (XPS) and density func-
tional theory (DFT)-based modeling is a powerful tool 
for decryption of atomic structure of nanosized carbons 
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[16]. Taking into account the promising photonic proper-
ties of nanostructured carbons [17–19] and the possible 
formation of graphene quantum dots (GQDs) [20–25] 
by transformation of the edges graphene layers [23, 24], 
the combination of additional optical measurements and 
theoretical modeling is essential for the comprehensive 
description of the structure and properties of any carbon 
materials. In this work, we report results of the combina-
tion of Raman, XPS, optical measurements of CNF with 
theoretical modeling of the possible atomic structure of 
considered materials.

Methods
Carbon nanofibers from Grupo Antolín Ingeniería 
(GANF) were produced on an industrial reactor using a 
Ni catalyst. Ni was solved and introduced continuously 
into the reactor. A sulfur compound was added to the liq-
uid solution for the production of GANF. Natural gas was 
used as carbon feedstock with  H2 as carrier gas at tem-
peratures above 1400  K. Both reactors were externally 
heated through electrical resistance [26]. The process was 
optimized to produce stacked-cup CNFs, commercially 
called GANF. GANF produced this way, with an aver-
age fiber diameter of 50 nm and fiber length up to 30 µm, 
were ball-milled in propanol for 1  h. The dried powder 
was uniaxially pressed at 30  MPa and compacted at a 
heating rate of 50  °C   min−1 in a spark plasma sintering 
device, model FCT-HP D25/1, under an applied pressure 
of 80 MPa and in vacuum  (10−1 mbar). The final compac-
tion temperature was 860 °C and the holding time 1 min.

Raman spectroscopy was performed on a Renishaw 
2000 Confocal Raman Microprobe (Renishaw Instru-
ments, England) using a 514.5-nm argon ion laser. The 
transmission electron microscope (TEM) photographs 
were obtained with a TEM (JEOL, 2000 FX), and the bulk 
CNFs sample was previously cut on a Reichert Ultracut E 
ultramicrotome.

X-ray photoelectron spectra (XPS) were measured 
using a PHI 5000 Versa Probe XPS spectrometer (ULVAC 
Physical Electronics, USA) based on a classical X-ray 
optic scheme with a hemispherical quartz monochroma-
tor and an energy analyzer working in the range of bind-
ing energies from 0 to 1500 eV. Electrostatic focusing and 
magnetic screening were used to achieve an energy reso-
lution of ΔE ≤ 0.5 eV for the Al  Kα radiation (1486.6 eV). 
An ion pump was used to maintain the analytical cham-
ber at  10−7 Pa, and dual channel neutralization was used 
to compensate local surface charge generated during the 
measurements. The XPS spectra were recorded using 
Al  Kα X-ray emission—spot size was 200  µm, the X-ray 
power delivered at the sample was less than 50  W, and 
typical signal-to-noise ratios were greater than 10,000:3.

Optical reflectance spectroscopy was measured on a 
Lambda 35 spectrophotometer (PerkinElmer) using an 
integrating sphere. USRS-99-010 was applied as an exter-
nal standard. A deuterium lamp was used as a source 
of UV radiation. The spectra were recorded at room 
temperature.

The photoluminescence spectra were recorded on 
a Horiba Fluorolog 3 (Jobin Yvon) spectrofluorimeter 
equipped with a 450 W Xenon lamp and typical signal-
to-noise ratios were greater than 20,000:1. A Horiba Syn-
apse CCD camera was installed as a registration detector. 
The sample was fixed in an adequate holder. The spectra 
were recorded at room temperature.

For the modeling of the atomic and electronic struc-
ture of CNF, the density functional theory (DFT) imple-
mented in the pseudopotential code SIESTA was used, 
[27] as in our previous studies of similar graphene-based 
systems [16, 28, 29]. All calculations were performed 
using the generalized gradient approximation (GGA-
PBE) with spin-polarization [30] and implementation of 
the correction of van der Waals forces [31]. During the 
optimization, the ion cores were described by norm-
conserving non-relativistic pseudo-potentials [32] with 
cut-off radii 1.14 and the wave functions were expanded 
with localized orbitals and a double-ζ plus polarization 
basis set for other species. The atomic positions were 
fully optimized, and optimization of the force and total 
energy was performed with an accuracy of 0.04  eV/Å 
and 1 meV, respectively. All calculations were carried out 
with an energy mesh cut-off of 300 Ry and a k-point mesh 
of 6 × 6 × 2 and 9 × 9 × 4 in the Monkhorst–Pack scheme  
[33] for monolayers and bilayers, respectively.

Results and Discussion
The carbon nanofibers treated at 860 °C do not undergo 
any significant change and keep their original fiber struc-
ture. Figure  1 shows two images of studied fibers after 
the treatment at this temperature in vacuum. Some indi-
vidual fibers can be clearly observed. The diameter of the 
observed fibers is clearly below 50  nm, but this is just 
an effect arising from the magnification used: ×400  k 
for Fig.  1a and ×500  k for Fig.  1b. The larger fibers are 
often tangled with each other, and they are not easy to 
be discriminated at these magnifications. In other works, 
in which the processing temperature was significantly 
higher, the presence of the individual nanofibers was 
shown at lower magnifications [34]. The reason to follow 
this treatment is to allow a correct and easy handling of 
the nanofibers in the different experiments performed 
without modifying their structure. The conductivity of 
the SPSed fibers is  102 (Ω  cm)−1 as stated in previous 
works. [34].
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X‑Ray Photoelectron Spectroscopy
The surface composition of CNF determined from the 
XPS survey spectrum (see Fig. 2a and Table 1) demon-
strates the presence only small impurities of oxygen, 
nickel and sulfur impurities. The high-energy resolved 
XPS C 1  s (Fig.  2b) has a binding energy of 284.7  eV, 
which is typical for  sp2 carbon of graphene [35] and 
confirms that the main characteristic of nanofibers is 
the stacking of graphene sheets of varying shape [36], 
which is in agreement with TEM picture (Fig.  1). It 
exhibits the high-energy asymmetric tailing and a weak 
plasmon satellite 6–7  eV apart from the parent C ls-
line also showing the presence of carbon atoms with 

 sp2-like bonding symmetry [37]. The presence of Ni 
and S is due to use of Ni catalyst and  H2S-gas during 
the synthesis of the carbon nanofibers. The O/C ratio 
determined from XPS survey spectrum is 0.019, which 
explains the absence of any C–O functional groups and 
allows attributing CNFs to highly hydrophobic materi-
als. On the one hand, it restricts some adsorption appli-
cations and even the special methods are developed for 
their chemical activation [38] and, on the other hand, 
the hydrophobic property is very attractive and suitable 
for special applications of CNFs such as conducting fill-
ers of ceramic materials.

The existing studies of chemical bonding and electronic 
structure of CNFs are mostly restricted by photoemission 
measurements and DFT calculations of oxidized materi-
als [38–41]. The XPS valence band of CNF (Fig. 2c) con-
sists of two main π- and σ-peaks located at 2.3 and 9.6 eV, 
respectively. We will discuss later the origin of these 
peaks based on our DFT calculations. For the moment, 
we will just mention that the intensity distribution near 

Fig. 1 TEM images of studied CNF samples. Arrows indicate the edges of the fibers

Fig. 2 XPS survey (a), C 1s b valence band and c spectra of CNF

Table 1 Surface composition (in at.%)

Sample C O Ni S

Carbon nanofiber 94.8 1.8 1.6 1.8
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the Fermi level certainly indicates that CNF is a conduct-
ing material.

Raman Measurements
Measured Raman spectra (Fig. 3) are found to be differ-
ent from that of single-layer graphene, graphite, carbon 
nanotubes [42] or graphene oxide [43, 44]. The presence 
of D + G and D peaks evidence near planar structure of 
studied materials in contrast to CNT where these peaks 
are not observed. The absence of G peak in Raman spec-
tra of graphite and the presence of distinct G peak in 
spectra of all studied samples demonstrate the absence 
of graphitization. In contrast to Raman spectra of gra-
phene oxide where 2D and D + G peaks are broad and 
sometimes undistinguished, the same peaks in Fig. 3 can 
be described as rather narrow. The key difference with 
Raman spectra of graphene is the presence of D + G peak 
and absence of high and sharp 2D peak. The combina-
tion of distinct D, G peaks with traces of D′ peak and less 
distinct 2D and D + G peaks makes these spectra similar 
to those observed in nanocrystalline carbon [43]. Signifi-
cant magnitude of D peak corresponds to distortions of 
graphenic sheets similarly to observed for wrinkled gra-
phene sheets exfoliated by different methods [45]. Thus, 
based on Raman spectra we can exclude oxidation of 
CNF even as formation of ordered layered structures 
such as graphene multilayers.

Theoretical Modeling
To unveil the atomic structure of the stacked-cup CNF, 
we performed the calculations of various carbon nano-
structures. Based on the results discussed above of TEM, 
Raman and XPS measurements, we exclude disordered 

kinds 3D carbons and carbon nanotubes and consid-
ered only flat and distorted graphene mono- and bilay-
ers. To create the distortions of various shapes and sizes, 
we compressed in-plane graphene membrane and shifted 
some atoms in the central part of the plane. The further 
relaxation provides the restoring carbon–carbon dis-
tances by the formation of visible out-of-plane distor-
tions (see Fig. 4). The size and shape of distortion depend 
on the magnitude of the initial compression. To imitate 
the bending (Fig.  4e), the initial compression was along 
one of the axis; in other cases, the initial compression 
was uniaxial.

The results of the calculation demonstrate that the dis-
tortion of both mono- and bilayers provides shift down of 
σ-peak at about 1 eV (see Fig. 5). The origin of this shift 
is the increasing localization of the electrons on these 
orbitals caused by distortions-induced changes in the 
crystal field. There is no visible difference between mono- 
and bilayers because these orbitals are related to in-plane 
covalent bonds. This result is in rather good agreement 
with experimental XPS valence band spectra (Fig.  2c). 
Since π-orbitals are oriented out of plane and create a 
π–π interlayer bond, the influence of the distortions on 
π-peak is quite significant only for bilayers (Fig. 4b). Even 
tiny distortions of the bilayer (such as shown in Fig. 4d) 
provide the broadening of the π-peak and merging of this 
distinct feature of the electronic structure the with upper 
edge of the σ-peak. The origin of these changes in the 
electronic structure is due to the formation of multiple 
π–π interlayer bonds in areas with different distortions. 
We can conclude that the studied CNFs are mainly com-
posed from various distorted graphene monolayers and 
the contribution from layered structures is insignificant 
because the experimental spectra (Fig. 2c) present a dis-
tinctive π-peak. Because the distortion of the graphenic 
sheets influences its catalytic properties [28], it should be 
taken into account in the theoretical modeling of cata-
lytic activity of CNF [12, 13].

Optical Properties of CNFs
Additional measurements of the reflectance spectra of 
the studied samples (Fig.  6a) demonstrate weak reflec-
tions in the visible and IR ranges and a weak adsorption 
in UV region at 260  nm (4.75  eV). The observed weak 
reflection can be interpreted as combination of two fac-
tors. The first is deviation of conductance from Drude 
model and therefore unsuitability of Hagen–Rubens 
relation for description of the reflectance of these com-
pounds [46]. The second is macroscopic disorder of gra-
phenic sheets that provides light trapping by multiple 
reflections as it was discussed for CNT forests [47, 48]. 
The presence of the peculiarity in the UV part of spec-
tra is related to the presence in the composite of some 

Fig. 3 Raman spectra taken in 5 different places of carbon fiber 
sample
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amount of materials with an energy gap. Such a mate-
rial with an energy gap can most likely be represented 
by a low-dimensional carbon phase. Amongst the pos-
sible candidates, in our case, the most suitable are gra-
phene quantum dots, whose characteristic property is 
the presence of photoluminescence [24]. In this regard, 
we additionally performed measurements of the pho-
toluminescence characteristics of the samples under 
study. Measurements of the photoluminescence spectra 
(Fig. 6b) reveal the presence of the peak at 420 nm (3 eV). 
A narrow UV band with a maximum at 270 nm (4.5 eV) 
was found in the spectra of excitation (PLE) related to 
this peak. Because similar values of optical transitions 
were obtained for GQDs [24, 49], we can exclude oxide 
contaminants as a source of the optical activity of CNFs. 
In contrast to chemically synthesized GQDs [29], the 
selective σ – π* transition at 4.36 eV is absent in the stud-
ied CNFs samples. The possible explanation of this fact 
is the broadening of the band corresponding with π – π* 
transition and the intensive adsorption in the spectra 
of diffusive reflectance at 240 nm caused by the overlap 
between σ and π bands.

In order to explain the combination of the presence 
of the contribution from GQDs in optical spectra and 
graphene like valence bands and Raman spectra (see 

2.1–2.3), we have performed an additional set of theo-
retical modeling. Because XPS spectra (Fig.  2b) evi-
dence the absence of oxidation and sp3 hybridization, 
we used for this purpose only flat nanographenes with 
edges passivated by hydrogen atoms (Fig.  7a–c). Note 
that all carbon atoms in these nanographenes are in 
sp2 hybridization. For all these systems, we performed 
optimization of the atomic positions with further cal-
culations of the electronic structure (Fig.  7d). The 
absence of dangling bonds on the edges was checked by 
including of spin-polarization and Mulliken population 
analysis. Calculated deviations of carbon–carbon dis-
tances from the values in distorted graphene sheets are 
less than 0.01 Å. Results of the calculations evidence 
the presence of the bandgap in nanographenes of sizes 
above 1 nm  (C54H18 and  C192H34). The difference of the 
shape and size of nanographenes influence only the 
value of the bandgap. The electronic structure of the 
valence bands and position of the π* peak in conductive 
bands is similar to distorted graphene (see Fig. 5a). This 
result explains the absence of a visible contribution 
from GQDs in VB spectra (Fig. 2b). Note that the elec-
tronic structure of GQDs demonstrates a larger overlap 
between σ and π bands that is in qualitative agreement 
with the results of optical measurements.

Fig. 4 Optimized atomic structures of different graphene monolayers (a–c) and bilayers (d–f) with distortions of different shapes and sizes
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Conclusions
Complementary DFT, XPS and optical spectra studies 
have shown that stacked-cup CNFs are mainly composed 
of various distorted graphene monolayers. The contribu-
tion in electronic structure from layered structures and 

some amount of nanographenes is insignificant. Delo-
calized π-electrons are oriented out of plane and create 
π–π interlayer bonds, and the influence of the distortions 
on π-peak is quite significant only for bilayers. These 
delocalized π-electrons can freely move throughout the 
structure providing a good electrical conductivity, which 
is of great importance for multiple applications from 

Fig. 5 Density of states for flat and distorted monolayers (a) and 
bilayers (b) shown in Fig. 3. Fermi level set as zero

Fig. 6 Reflectance (a) and photoluminescence (b) spectra of CNF. 
The arrows indicate the contribution of ground π and exited π* states 
of GQDs in excitation–relaxation process

Fig. 7 Optimized atomic structure (a–c) and total densities of states (d) for selected nanographenes. Carbon and hydrogen atoms on panels a–c 
are shown in dark grey and cyan colors, respectively. Fermi level on panel d set as zero
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electronics to composites. The presence of nanogra-
phenes leads to the appearance of the optical transitions 
in UV spectra. The combination of outstanding electrical 
properties and optical transitions makes the CNFs prom-
ising materials with possible prospects for controlling the 
electronic properties of composites ranging from con-
ductors to materials with an energy gap.
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