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Abstract—The aim of the Social Network of machines (SOON) 

project is to investigate the impact of using of autonomous social 

agents to optimize manufacturing processes in the framework of 

Industry 4.0. In this article, we present the multi-agent SOON 

architecture and the built solutions           aiming at optimizing the 

scheduling of tasks. Two different scheduling approaches are 

proposed. The first approach is based on an ‘auction’ paradigm 

where the task assignment is decided according to the capability 

of a machine agent to bid for a task. The second approach is built 

on a heterarchical agents network where agents learn the 

acquisition of cooperative tasks. Both solutions are capable of 

managing and synchronizing the communication between agents 

while performing their tasks. To describe each approach, two 

industrial use cases are illustrated: wire rod mill manufacturing 

and mechanical part manufacturing. Finally, in the heterarchical 

network, agents are trained with reinforcement learning to 

maximize the cumulative reward and optimize the manufacturing 

scheduling. Results show that reinforcement learning allows 

learning the optimal behavior in multiple scenarios.  

Keywords— smart manufacturing, scheduling optimization, 

multi-agent architecture, auction paradigm, deep reinforcement 

learning  

I. INTRODUCTION 

The SOON project investigates the impact of using of 
autonomous social agents to optimize manufacturing processes 
in the framework of Industry 4.0. "Social" means that cyber-

physical entities will act autonomously in order to optimize an 
industrial process following behavior models inspired by 
human social networks. Currently, in Industry 4.0, smart 
entities do exist [1]. However, intelligence is localized and 
intelligent heterogeneous entities cannot communicate together 
even inside the same shop-floor. Our motivation comes from 
the observation that, if we want to create a real Internet of 
Everything that brings together processes, data, things, and 
people, all these entities have to be connected and follow a 
shared, easy to understand paradigm. 

The focus of the project SOON is to investigate how to 
deploy smart services on a social network of machines in order 
to deal with big data and optimize processes. In addition, SOON 
adds a crucial actor in this social network: The Human. In this 
sense, our work is closer to the concepts developed in [2] in 
which socio-technical networks composed of humans and 
things are investigated. 

In this article, we propose a solution to optimize the network 
of autonomous smart machines seen as agents collaborating 
toward targeted tasks. We deal with the problem using two 
different scheduling approaches. First, a rule-based multi-agent 
approach where an ‘auction’ paradigm is applied. In this case, 
the task assignment is decided according to the capability of a 
machine agent to bid for a task. A centralized Poll Management 
and Aggregation System broker is hence required. Second, a 
heterarchical agents network where agents learn to cooperate 



while performing their tasks. Deep reinforcement learning (RL) 
is applied so that agents learn in a supervised manner from 
previous attempts to take actions to maximize the cumulative 
return [3]. Both approaches are capable of managing and 
synchronizing the communication between agents while 
performing their tasks.  

This paper is organized as follows, Section II presents an 
overview of the SOON CHIST-ERA project and the related 
work in the domain of multi-agent architectures. Section III 
introduces the Auction paradigms illustrated with the use case 
of the wire rod mill manufacturing. Section IV describes the RL 
environment in the use case of the mechanical part 
manufacturing. Results achieved with the RL solution are 
presented in Section V. Section VI concludes the paper 
highlighting the future work.  

II. RELATED WORK 

A. SOON - Social Network of Machines 

Global supply chains, market fragmentation, mass 
customization and shorter product life cycles have scaled up 
competition among companies, which give rise to the need for 
introducing cognitive abilities through flexible and easily 
reconfigurable production systems. In this sense, there is 
unmined potential for the European manufacturing industry to 
be more innovative, productive and competitive whilst using 
fewer resources and reducing environmental impact. 

Industry 4.0 (I4.0) aims at addressing these points via the 
creation of network-centric production, new manufacturing 
techniques and Cyber-Physical Systems [4]. In modern 
Industrial Internet of Things (IIoT) solutions, data collection 
and processing can occur in the cloud or at device-side. Device-
side processing is referred to as Edge (or Fog) computing [5]. 
Such technology could enable single entities, such as industrial 
machines to become autonomous, contextual-aware agents and 
lay the foundations for a multi-agent system. In such systems, 
agents are designed to decide to execute or not a requested task 
by considering its goals, priorities and the situation [4].  

Atzori et al. [6] introduced the concept of Social Internet of 
Things based on a “social network of intelligent objects” in 
which the things in the network are connected via a “social” 
relationship. For instance, these relationships can be modelled 
following relations typical of social networks (friend of, 
following, etc.). In recent years (e.g., [7]), the researchers 
focused on the technological challenges such as network 
creation, scalability and trustiness. The focus of SOON project 
is to investigate how to deploy smart services on a social 
network of machines to deal with big data and optimize 
processes. In addition, SOON will add a crucial actor in this 
social network: The Human. In this sense, our work is closer to 
the concepts developed in [2] in which socio-technical 
networks composed of humans and “things” are investigated. 

Adding the human component to a system that includes 
autonomous software agents is often considered necessary as 
well as desirable [8]. This paradigm is also called Human-
Agent Collective (HAC) [9]. HACs are novel socio-technical 
systems in which humans and intelligent agents engage in 
flexible relationships to reach both their individual and 
collective goals. Humans and machines relationships can vary 

dynamically according to the task to be achieved and the 
environmental conditions: sometimes humans take the lead, 
sometimes the computer [10]. 

Although multi-agent software solutions have existed since 
several years, real applications in the industry are very limited 
and are often not tested or deployed [11]. Most of the 
algorithms have been developed in lab environments not 
dealing with the complexity of concrete applications and often 
are not tested in real environments with noise, disturbance, 
changing conditions, etc. [12]. We believe that autonomous 
decision taking systems should encompass human operators 
and share the work spaces. Humans have to be part of the 
equation. SOON has the potential to overcome these limitations 
defining a unified framework including machines and humans. 
Real world limitations will be addressed via the strict 
collaboration with companies moving into the I4.0 revolution.  

 

B. Multi-agent approaches 

Well-known reference architectures for I4.0 such as 
Reference Architecture Model Industry 4.0 (RAMI 4.0) [13], 
American Industrial Internet Reference Architecture (IIRA) 
[14] and 5C [15] offer a general framework and provide a 
conceptual starting point for the realization of IIoT-based multi-
agent architectures. 

Software agents take advantage of their social ability to 
exhibit flexible coordination behaviors that make them able to 
both cooperate in the achievement of shared goals or to compete 
on the acquisition of resources and tasks. Agents have the 
ability of coordinating their behaviors into coherent global 
actions. The first insights on the social-network properties came 
from Milgram’s experiment [16], presenting a mail message 
routing task by communication with friends and local 
acquaintances (typically 5-6 in average). In the later work, the 
social-network of agents was researched mainly from the point 
of view of searching for the best acquaintances (e.g., in works 
[17] [18]). 

The use-case for collaborating the agents is based on Real-
time Bidding (RTB) [19] [20] where the agents (advertisers) bid 
for every individual impression in real-time when being 
generated. The goal is to find the best acquaintance among 
existing agents that is capable of efficiently performing the task 
in a given time. The agents usually keep the list of neighboring 
or acquaintance agents or may form agent communities which 
group the agents with similar features, i.e. location, domain 
type, task capabilities (Fig. 1). 

 
Fig. 1 Agent-based approach for Industry 4.0 use-case 



C. Reinforcement learning 

RL has become popular since the program AlphaGo defeated 
the human Go player champion Lee Sedol in 2016 [21] RL is a 
method of machine learning wherein the agent learns to 
perform certain actions in an environment which lead it to 
maximum reward. It does so by exploration and exploitation of 
knowledge it learns by repeated trials of maximizing the 
reward. Current methods to implement RL algorithms are 
value-based where long-expected returns of states are 
maximized; policy-based where a policy is created, such that 
the action performed at each state is optimal to gain maximum 
reward in the future; and model-based where the agent learns to 
perform in a specific virtual model environment [22]. When 
deep learning solutions (in contrast to ‘shallow’ learning) are 
combined with RL algorithms, the resulting approaches are 
often called “Deep reinforcement learning” [23]. Among RL 
algorithms, proximal policy optimization (PPO) is one of the 
most successful deep RL methods, achieving state-of-the-art 
performance across a wide range of challenging tasks. 

In RL, complex environments can require agents to explore 
multiple configurations before they can begin to optimally 
exploit the environment and maximize rewards. Due to sparse 
reward signals, poor state representation, or the presence of 
adversaries, random exploration will not be able to reliably 
reinforce the actions taken to receive a reward [23]. Curriculum 
learning solutions suggest that learning can be accelerated by 
first training on a simpler task, and transferring the knowledge 
acquired to improve learning on a subsequent target task [3]. 
Curriculum learning considers how exactly to select and order 
different source tasks, such that performance or learning speed 
is improved on the target task. 

III. AUCTION PARADIGM: USE CASE OF WIRE ROD MILL 

Poll Management and Aggregation System (PMAS) is used 
to place a new order into production and employs ontology 
description to identify the agents which are capable of putting 
production tasks into the agent’s internal schedule. 

At the beginning, the production parameters of the new 
order are put as values to the poll template using PMAS to 
create a poll instance. The poll instance is passed to the Auction 
Broker which initializes the auction process. Usually several 
agents are registered to the auction which match their 
capabilities for placing the order. At runtime the Auction 
Broker may ask PMAS for an actual list of polls and initialize 
these polls as auctions. The Auction Broker schedules the 
auctions with a deadline and notifies registered agents that the 
auction was started. In the case a new agent was included to the 
system at runtime, it may ask for an auction list. During the 
auction process, the agents calculate and publish the bidding 
value to the Auction Broker which updates the auction status 
accordingly.  

Auction Broker may update the auction status received from 
the PMAS (e.g., due to human interventions). When the auction 
reaches the deadline, the auction is closed by a finishing 
message and the results of the auction are sent to PMAS and to 
participating agents (Fig. 2). The winning agent will take over 
the auctioned task and put it into its own schedule. The 
auctioning system prototype was designed and developed with 

scalability and robustness in mind. The auction broker is 
implemented in Erlang and is using an EMQX broker. Erlang 
[erlang.org] is a programming language specifically built for 
massively scalable real-time systems. EMQX [emqx.io] is a 
scalable and reliable real-time MQTT message broker for IoT 
in the 5G Era. 

Overall the main KPI is the "orders/batches completion 
time" and "failed orders reduction". The machines need to 
distribute the work in an optimal way to fulfill orders in 
required times. 

Nevertheless each agent tries to optimize its own internal 
schedule taking into account possible outages. Therefore an 
agent's internal KPI can be different such as "maximizing own 
machine production resource utilization".  

One of the scenarios for the evaluation of the auction 
paradigm is the rolling process in steel manufacturing. 
Particularly, a system for assisting technicians in the selection 
of the rolls for a wire rod mill is being developed. During the 
wire rod mill operation, the raw material goes through rolls to 
achieve the required cross-section profile. In the wire rod mill, 
the determination of the set of rolls for a specific batch of orders 
is a task of great importance. This is particularly  
complex as the number of assembled rolls in this kind of mill is 
very high, more than one hundred, and each of the single 
sections of the rolling mill has its specific requirements which 
depend on the kind of product to be rolled. Rolls have different 
tracks to be used and must meet diameter restrictions among 
rolls assembled in the same and successive stands. 

The replacement of rolls is a regular task because when the 
rolls are worn, they must be disassembled and reconditioned so 
that they can be used again. This process reduces its diameter, 
and therefore, its lifetime. The wear the rolls suffer depends on 
several factors being the alloy of the roll, the tons of raw 
material rolled and the stiffness of the rolled material the most 
important. Each roll is an expensive asset because they are 
made with metal alloys prepared to work in hard conditions. 
Therefore, each roll life cycle is carefully managed until it is 

Fig. 2. Auctioning protocol sequence diagram 



finally disposed. The reduction of its diameter is measured and 
registered as it is one of the factors included for the computation 
of the production cost. 

Nowadays, the technicians perform the operation replacing 
the assembled rolls with predefined sets of alike rolls working 
together. This simplifies the problem; however, it is not an 
optimal approach and makes the rolls replacing process less 
flexible. A Multi-agent System (MAS) using an auction-based 
negotiation approach has been designed to tackle this problem. 
The goal is to find the most suitable combination of rolls that 
could be used for a replacement accomplishing with the basic 
requirements and that entails the minimum cost. The cost is 
computed as the depreciation of the roll after performing its 
work, and is calculated considering the purchase value, the 
residual value, the initial diameter and the end-of-life diameter. 

The auction negotiation approach is particularly useful for 
allocating scarce resources that are typically desired by more 
than one agent. In this scenario, the resources are the rolls. An 
auction mechanism is made up by a group of agents, where one 
agent has the role of auctioneer and the remaining agents are 
bidders. Each bidder agent codifies initially a stochastic 
solution for the replacement of rolls (a set of rolls that could be 
assembled in the rolling mill to perform the required job). The 
initialization process allocates rolls so that one roll can be 
included only in one solution. The solutions accomplish with 
the process and product constraints, so they are valid solutions 
but not efficient. Sets of rolls proposed by the technicians can 
also be included as other bidder agents. Hence, the algorithm 
considers n bidder agents that codify n possible feasible 
solutions. 

The algorithm runs an iterative process. The auctioneer 
agent auctions the leftover rolls (those ready to be used for the 
job to be performed but not assigned to any of the bidder 
agents). Each bidder agent checks if the roll being auctioned 
can replace some of those included in their internal codification 
of the solution and, if so, the cost of performing the work. The 
cost is calculated using a predictive model for forecasting the 
wear of the rolls as described in [24]. If the cost is reduced, the 
bidder agent bids for the roll that amount. Only one bid can be 
done for each agent. The highest bid is the winner. Because 
each bidder agent contains a complete and valid solution, the 
new roll will replace one that will be returned to the pool of 
available rolls and that will be auctioned later. The process is 
repeated for all the rolls in the pool while there are rolls that 
have not been auctioned. When empty, a round is completed. 
The process runs again a new round. If no progress is made (no 
cost reduction is gained), the process finishes and the agent 
which codifies the solution with less cost is the winner. The 
process is depicted in Fig. 3. 

IV. A HETERARCHICAL ORGANIZATION OF AGENTS: A 

REINFORCEMENT LEARNING SOLUTION 

This section describes a multi-agent architecture for the 
optimization of task scheduling compatible with state of the art 
multi-agent RL algorithms. Differently from the auction 
paradigm, in this solution the agents should be able to learn how 
to optimize a manufacturing process without an established 
protocol and with a heterarchical organization. In order to be 
compatible with an RL solution, a manufacturing process has 

been modeled as a discrete Markovian Decision Process, in 
which a step represents the smallest discrete time unit. At each 
time step, every unit will take decisions autonomously knowing 
the status of the other machines and the order to be completed 
to maximize the cumulative reward. 

A. Use Case: Manufacturing workshop 

The scenario for the evaluation of the RL paradigm is a 
generic manufacturing plant in which multiple machines 
(agents) work together to fulfill one or multiple orders. In the 
proposed models, machine agents are organized in a workshop. 
A workshop is a place which provides both the area and tools 
required for the manufacturing of goods. The scenario is 
inspired from a fleet of machine tools. 

 

The solution presented in this paper aims at finding the best 
succession of operations for each machine given a workshop 
layout and the order(s) to be completed. 

B. Workshop simulator 

RL algorithms need a large number of trial and errors before 
converging toward the optimal solutions. This means that a 
simulator is required to train the RL agents before their 
deployment into real machines. The proposed solution models 
a workshop as a combination of three components: machines, 
storages and links. A machine is characterized by the type of 
parts that can be processed and produced, the processing time 
to manufacture a part and the number of parts that can be 
worked in parallel (batch size). To switch from the production 
of a type of part to another a reconfiguration time is required (it 
represents the average time needed by an operator to 
reconfigure the machine to produce a different part type). In 
addition to machines, the workshop has a shared storage used 
to stock raw and processed materials. The last components are 
the links characterizing the time needed to move a batch of parts 
from/to a machine or the storage.  

Fig. 3.  Rolls replacement auctioning protocol sequence diagram. 



Finally, a workshop should be able to produce parts in 
response to input orders. Orders are characterized by a number 
of parts of different types to be produced before a time limit. 
The agents have knowledge of how to produce each part: for 
instance, agents know that to produce a part of type B4 they 
need one part of type A2 and one part of type A3; to produce A2 
and A3, raw material is required.  

Therefore, a workshop is a succession of many different 
machines that process (produce, work, clean, etc.) parts to 
fulfill one or multiple orders. For instance, to have a finished 
part, we need to create a piece (A), to heat it (B), then clean it 
(C). For simplification and generalization, this manuscript will 
only refer to the sequence of production, e.g., A1 → B1→ C1 
and not the detail of what the machine does. Fig. 4 illustrates a 
simple workshop layout with seven different machines linked 
to create final parts of type C1 and C2. 

 

Fig. 4. Example of a workshop layout. 

 

Fig. 5. Machine reconfiguration.  

The following scenarios are based on the hypothesis that a 
machine can elaborate and produce different types of parts. 
However, a reconfiguration step is needed to model the time 
required to reconfigure a machine to process another type of 
parts. For instance, a machine that creates screws (A1), needs to 
be reconfigured before creating nails (A2) - as depicted in Fig. 
5 (in regard to time, this is typically a very costly operation). 
Before reconfiguration, the first machine produces parts of type 
A1 and the second machine of type B1; after reconfiguration, 
the first machine starts producing A2 parts and the following 
machine B2 parts. 

To summarize, at each time step a machine has to 
autonomously decide which action to perform among a discrete 
set of actions: “do nothing”, “reconfigure to type X”, “get 
pieces from the storage”, and “produce a new part”.  

C. Implementation 

 Every machine in the workshop is implemented as an RL 
agent with different, configurable actions and observations.The 
agent has been implemented using PPO (Proximal policy 
optimization) algorithm [22]. Multiple training strategies have 
been evaluated. In particular, curriculum learning strategy has 

been developed in order to improve the training of the AI agents 
in progressively harder problems. 

V. RESULTS 

In order to evaluate the proposed architecture, a simple 
workshop configuration has been realized. Fig. 6 illustrates the 
process flow of the evaluated workshop configuration. The 
number on the arrows describes the number of time steps 
required to transfer a part from the storage to a machine and 
from a machine to another machine (1). The number inscribed 
in the circle details the time required to produce a part (e.g., 1 
time steps for a part of type A1, 10 time-steps for a part of time 
B1). Reconfiguration time, not depicted in the figure, is of 5 
time steps for each machine. A machine of type A can produce 
parts of type A1, A2 or A3; A1 and A2 parts are needed by a 
second machine (B) to produce parts of type B1 and B2. In this 
scenario, producing A3 or B2 parts would be a waste of 
resources (time and raw material) since they are not demanded 
by the orders. In fact, the objective for this scenario is to 
produce 50 parts of type B1 in an optimal manner. 

A ‘vanilla’ solution in which the RL agents have to learn the 
final optimal policy has been compared with a curriculum 
learning solution. The curriculum learning solution consists in 
progressively increasing the complexity of the environment in 
order to facilitate the agents' learning. In our scenario we start 
with an environment where the storage already contains enough 
A1 parts (50) to produce and fulfill the B1 order. Then, after a 
fixed number of time steps, we change the initial workshop with 
a slightly more complicated configuration, where only 40 A1 
parts are present. The next configuration only holds 20 A1 parts  

 

Fig. 6. The evaluated workshop configuration 

 
Fig 7. Average episode length with no configuration required.  

 
In the storage, and the final configuration starts without any 
parts except for the raw material. That means that the second 
agent (producing B1 parts) needs to totally rely on the first 
machine to get the required parts. Moreover, compared to the 



last configuration, the initial workshop doubles the maximum 
number of time steps before resetting the environment allowing 
the agents to try more configurations during each episode. 

Fig. 7 shows the mean number of steps required to complete (or 
fail) the orders. In orange is the vanilla solution, in blue the 
solution using curriculum learning. While both solutions 
converge to the global optimum, the curriculum learning 
solution is, on average, 1.5 times faster to converge. 

VI. CONCLUSION 

 
 In the design of the SOON architecture, we have faced 
diverse challenges. One of them consists in the fact that the 
integration of heterogeneous subsystems is difficult to handle, 
this emerged from the very different profile of the industrial 
partners. Based on the complexity of the industrial plants, an 
initial development is gradually transformed into a fully 
functional smart cyber-physical production system. Over time, 
additional services can be added to the system. Included 
services can span multiple layers of the initial system. This 
extension must be made in such a way as to not break the 
compatibility with the existing system. 
 
 The auctioning system presented in the paper is 
demonstrated in the factory with several parallel production 
lines that may take over the production batch from each other. 
Therefore the auction-based approach described in the paper is 
suitable mainly for settings where there are several similar 
machines capable of competing for batches or orders. However 
the auctioning can be set up to suit other manufacturing 
challenging setups. Auction system may provide the history of 
the past auctions so that the agents may check what the best 
possible solution was in the past - such data can be then indeed 
used to train the RL agent. 
 

In future, we are planning to test the proposed architecture 
with more complex and dynamic scenarios. As illustrated in 
Fig. 8, machine failures will be included in the simulator. (Left) 
The workshop is optimized and produces parts C1 and C2. 
(Center) The machine producing parts B2 fails and stops the 
production. (Right) A similar machine automatically decides to 
reconfigure itself to replace the missing machine. 

 
Fig. 8. Workshop reconfiguration in the case of failure 
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