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1. INTRODUCTION 

 

Tourism can be understood as a trade in services that involves the temporal displacement of 

consumers across regions, whose comparative advantage is determined by natural endowments. 

It is nowadays a fast-growing industry and a driver of economic growth, both in developed and 

developing countries (Paci and Marrocu, 2014; Faber and Gaubert, 2019). Tourism inflows 

have been shown to also produce important increases in inter-industry employment at local 

economies (Kadiyali and Kosová, 2013), especially for regions that are rich in natural amenities 

(Naranpanawa et al., 2019). The tourism sector is particularly relevant in Spain, a country that 

annually receives around 80 million international arrivals. Specifically, the tourism industry 

accounts for 11.7% of GDP and constitutes 12.8% of total employment (INE, 2019).  

 

Despite the relevance of international tourism, the Spanish domestic travel market has increased 

its importance in the last decade. In the current pandemic context, domestic trips are expected 

to increase their contribution to regional GDP because under health risks people tend to travel 

within their country (Jeon and Yang, 2021). Among the different trip purposes, nature-based 

tourism is gaining increasing popularity and attention in the literature (Gosens and Rouwendal, 

2018; Naranpanawa et al., 2019). It is estimated to represent 15% of total tourism in the world 

(UNWTO, 2018). In Spain, total spending from nature-based tourists is estimated to be about 

9,000 million euros (SGAPC, 2017). Indeed, about 81% of nature-based travellers are residents. 

However, the economic modelling of domestic trips has been overlooked.  

 

This paper examines how regional attributes affect individual destination choices for nature-

based tourism within Spain. We devote special attention to the role of temperature relative to 

the place of residence and distance. Prior studies have shown that it is not only climate 

conditions at the destination that matter but climate differences between the origin and potential 

destinations (e.g. Rosselló-Nadal et al., 2011). Intuitively, individuals who are used to colder 

(warmer) climates may be looking to travel to warmer (colder) areas. Although there is a large 

body of literature on this for coastal destinations (Bujosa and Rosselló, 2013; Priego et al., 

2015), the preferences for warmer or cooler destinations have been less studied in the context 

of nature-based trips, being Chan and Wichman (2020) and Dundas and von Haefen (2020) 

some exceptions but focused on daily recreational demand. We consider the ratio between 

temperature at each destination relative to that at the origin to assess how individual preferences 

for warmer (cooler) locations depend on climate conditions at the origin.  

 

Similarly, there is inconclusive evidence on the effect of distance on tourist destination choice, 

since individuals exhibit heterogeneous preferences regarding travelling to nearby or distant 

destinations (Nicolau, 2008; 2010). Due to both travelling costs and the opportunity cost of 

time, ceteris paribus, distant locations are less preferred. However, in some settings, 

recreational travelling time might have a commodity value (e.g., Chavas et al., 1989). We 

explore whether the type of activities to engage in at the destination moderate or intensify the 

distance decay effect. This relates to previous evidence that links leisure trips to the satisfaction 

of needs (e.g., Dekker et al., 2014).  
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Unlike other studies that analyse aggregate flows between regions (de-la-Mata and Llano-

Verduras, 2012; Massidda and Etzo, 2012; Cafiso et al., 2016; Pompili et al., 2019; Alvarez-

Diaz et al., 2020; Panzera et al., 2021), we adopt a microeconomic perspective rooted in the 

product characteristics approach. We use microdata of monthly domestic trips by Spanish 

residents between February 2015 and September 2017. We focus on leisure trips for nature-

based purposes to the 17 Spanish regions. We combine this dataset with: i) monthly regional 

data on tourism prices, temperature, rainfall and ski track kilometres available for practising 

winter sports; ii) weighted bilateral distances between the origin and potential destinations that 

take into account the probability of residence location within the region; and iii) time-invariant 

regional-specific characteristics such as tourism spots, natural parks, the size of protected 

natural areas and the presence of coast.  

 

Our Random Parameter Multinomial Logit with Error Components model (Greene and 

Hensher, 2007) allows the random parameters to be a function of a mean parameter and several 

individual-specific characteristics such as age, income, party size and trip purpose, among 

others, plus a stochastic term varying across individuals. In this way, we explore the factors that 

shift the marginal utilities and explain the sources of preference heterogeneity. We allow the 

random parameters to be correlated to account for potential scale heterogeneity. Additionally, 

by including a set of error components, our model controls for similarity in preferences for 

destinations that share common unobserved features.  

 

A particular feature of our analysis is that we do not only examine the effect of distance and 

relative temperatures on choice probabilities independently, but we also address the relationship 

between them. We derive the conditional means of the individual-specific marginal utilities for 

these attributes and compute the marginal rates of substitution at the individual level. In doing 

so, we follow Hess and Hensher (2010). Accordingly, we assess how much distance individuals 

are willing to cover in exchange for warmer (cooler) temperatures, ceteris paribus. Next, based 

on the model estimates, we derive own and cross regional elasticities for prices and relative 

temperature, showing how probabilistic demand changes under marginal variations in these two 

dimensions.  

 

We contribute to the literature by examining how individual characteristics and travel 

motivations are related to marginal utilities for regional attributes. In particular, together with 

sociodemographics and time effects, we assess how trip purposes like mountaineering, 

practising winter or aquatic sports, or visiting natural areas moderate or intensify the disutility 

of distance and the preference for warmer destinations. Therefore, the paper extends the 

literature on regional tourism pull factors by adopting a microeconomic viewpoint to 

understand the determinants of domestic tourism consumption.  

 

The paper is structured as follows. Section 2 presents the theoretical framework. Section 3 

describes the database and the variables employed. Section 4 outlines the econometric 

modelling and the empirical strategy. The estimation results are presented and discussed in 

Section 5. Finally, Section 6 concludes with the main remarks.   
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2. THEORETICAL FRAMEWORK 

 

Our analysis is based on the Lancasterian product characteristics approach (Lancaster, 1966), 

which assumes it is the characteristics of the goods from which utility is derived. Consider J 

alternative destinations characterized by K observable characteristics (𝑋𝑘𝑗). Each destination j 

can be regarded as a source of systematic utility (𝑉𝑖𝑗) in the form: 

 

 𝑉𝑖𝑗 = ∑ 𝛽𝑖𝑘 𝑋𝑘𝑗
𝐾
𝑘=1       (1) 

 

where 𝛽𝑖𝑘 is the marginal utility of attribute k for individual i. Marginal utilities are allowed to 

vary in the population because consumers have different preferences over destination hedonic 

attributes. These preferences “are functions of their experience and personal characteristics, 

including both observed and unobserved components” (McFadden, 2001).  

 

In their most general form, the marginal utilities are composed of two parts: i) a structural 

component that is the same for the entire population (𝑏𝑘); and ii) an individual-specific 

component that adds stochastic variation to the marginal utilities. This latter component can be 

further partitioned into two elements: i) a vector of observable individual characteristics 𝑍𝑖, and 

ii) a composite factor νik for random preference heterogeneity. Individual-specific 

characteristics (𝑍𝑖) might include sociodemographic features, the available time for travelling, 

disposable income and situational factors, such as trip purpose or party size composition. 

Therefore, the marginal utilities can be expressed as: 

 

𝛽𝑖𝑘 = 𝑔(𝑏𝑘 , 𝑍𝑖 , 𝑣𝑖𝑘)     (2) 

 

Since the characteristics of the goods are objectively given, consumers make choices among 

bundles of characteristics. Under this framework, preference rankings over goods can be 

derived conditional on the individual-specific marginal utilities. Because individuals are subject 

to a budget constraint, optimal choice implies choosing the alternative that maximizes utility 

while minimizing costs. The systematic utility can be expanded to include the associated price 

for each destination j (𝑃𝑗) and the corresponding marginal (dis)utility 𝛾: 

 

𝑉𝑖𝑗 = ∑ 𝛽𝑖𝑘 𝑋𝑘𝑗
𝐾
𝑘=1 −  𝛾𝑃𝑗    (3) 

 

Conditional on the marginal utilities, Lancaster’s approach is deterministic because all the 

sources of utility are known by the individual. At the empirical level, however, not all the 

relevant attributes of the destinations are observed. Since the model is sensitive to measurement 

error, an additive source of residual utility in the form of an independent and identically 

distributed disturbance term (ε𝑖𝑗) is included. Therefore, the utility of destination j for 

individual i can be expressed as: 

 

𝑈𝑖𝑗 = ∑ 𝛽𝑖𝑘 𝑋𝑘𝑗
𝐾
𝑘=1 −  𝛾𝑃𝑗  + ε𝑖𝑗 = ∑ 𝑔(𝑏𝑘, 𝑍𝑖 , 𝑣𝑖𝑘) 𝑋𝑘𝑗

𝐾
𝑘=1 −  𝛾𝑃𝑗 +  ε𝑖𝑗   (4) 
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The utility in (4) can be further expanded with another additive term ξ𝑗 for unobserved (from 

the econometrician perspective) destination-specific characteristics (Berry and Pakes, 2007; 

Murdock, 2006). As a result, the utility is given by: 

 

𝑈𝑖𝑗 = ∑ 𝛽𝑖𝑘 𝑋𝑘𝑗
𝐾
𝑘=1 −  𝛾𝑃𝑗  + ξ𝑗 +  ε𝑖𝑗 = ∑ 𝑔(𝑏𝑘, 𝑍𝑖 , 𝑣𝑖𝑘) 𝑋𝑘𝑗

𝐾
𝑘=1 −  𝛾𝑃𝑗 +  ξ𝑗 +  ε𝑖𝑗  (5) 

 

The term ξ𝑗 is generically defined to be of dimension J, but it can also be defined for a lower 

dimension. Destinations that have similar observed features might also share the same 

unobserved characteristics.  

 

The characteristics-based demand model provides several advantages over the taste for 

products model, such as not imposing limits on the substitution patterns between alternative 

destinations or the setting of a utility bound as the number of alternatives increase (Berry and 

Pakes, 2007). It is important to highlight that the choice of destination is conditional on having 

decided to travel. We need to further impose that preferences for leisure activities are weakly 

separable (Deaton and Muellbauer, 1980) so that tourism demand is expressed independently 

of non-tour prices. As such, our model picks up at the second stage of budget decomposition, 

after income and time have been allocated for travelling. Furthermore, our analysis sets 

quantities (number of trips) to the unity. Therefore, we model probabilistic demand.  

 

3. DATA 

 

3.1. Database 

 

Our database is drawn from the Spanish Domestic Tourist Survey conducted on a monthly basis 

by the Spanish National Statistics Institute to a representative sample of the Spanish population. 

The sample is obtained by multistage sampling, stratified by conglomerations with proportional 

section of primary (cities) and secondary units (census sections). This survey gathers 

information about all kind of trips conducted by Spanish residents, such as main destination, 

party size, length of stay, expenditure and sociodemographic characteristics, among others. 

Participants are interviewed at their homes by telephone about trips that took place two months 

before.  

 

Our study covers the period February 2015-September 2017 (i.e. 32 months). The database does 

not have a panel structure but is a pool of monthly cross-sectional units. We only consider 

domestic trips whose main purpose is leisure, holidays or entertainment. International trips are 

not included. The sample is also restricted to those who declare nature and/or sport as their main 

travel purpose. After excluding some observations with missing values, we have valid data for 

6,661 tourists that take a nature-based domestic trip to any of the 17 Spanish regions (NUTS 

2). Trips to Ceuta and Melilla are excluded. 

 

Summary statistics of a selection of sample characteristics are provided in Table 1. Our sample 

of domestic nature-based tourists comprises slightly less females (46 percent) than males, with 
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a mean age of 43 years old. Respondents are relatively highly educated (60 percent) and mostly 

participating in the labour market (74 percent). About half of the sample is married, and the 

average number of travel companions is 2.2. Most respondents have middle incomes (56 

percent), and the mean length of stay at the destination is 3.3 nights. Half of the sample travels 

during weekends (51 percent), being in the third quarter of the year when most trips take place 

(37 percent). Regarding trip activities, mountaineering and trekking is the most declared trip 

activity (72 percent), followed closely by visiting natural areas (56 percent). Interestingly, a 

non-negligible share of respondents travels to perform adventure and risky sports (22 percent), 

whereas 16 percent opts to visit rural areas and villages. Finally, only 7 percent of the sample 

practises winter sports.  

 

 

Variable Description Mean SD Min Max 

age Age (in years) 43.23 12.45 15 85 

female Female 0.46 0.49 0 1 

primary Level of education: primary studies 0.02 0.14 0 1 

secondary Level of education: secondary studies 0.36 0.48 0 1 

tertiary Level of education: university studies 0.60 0.48 0 1 

employed Labor status: employed 0.74 0.43 0 1 

unemployed Labor status: unemployed 0.08 0.28 0 1 

retired Labor status: retired 0.07 0.25 0 1 

inactive Labor status: inactive 0.09 0.28 0 1 

married Respondent is married 0.51 0.49 0 1 

parsize Travel party size (number) 2.21 1.22 1 7 

inc1 Monthly income: < 1,500 euros  0.26 0.44 0 1 

inc2 Monthly income: 1,500-3,500 euros  0.57 0.49 0 1 

inc3 Monthly income: >3,500 euros 0.15 0.36 0 1 

LOS Length of the stay (days) 3.36 3.43 1 30 

weekend Travels during a weekend 0.51 0.49 0 1 

q1 First quarter 0.20 0.40 0 1 

q2 Second quarter 0.25 0.43 0 1 

q3 Third quarter 0.37 0.48 0 1 

q4 Fourth quarter 0.16 0.36 0 1 

winter_sports* Trip activity: winter sports practice (i.e. 

skiing, snowboarding) 
0.07 0.25 0 1 

mou_trek* Trip activity: trekking and mountaineering 0.72 0.44 0 1 

rural* Trip activity: visit to rural areas/villages 0.29 0.45 0 1 

nat_areas* Trip activity: visit to natural areas (i.e. 

mountains, parks, forests) 
0.56 0.49 0 1 

aquatic* Trip activity: aquatic sports practice (i.e. surf, 

diving, sailing, windsurf, fishing) 
0.16 0.36 0 1 

advent* Trip activity: adventure/risky sports practice 

(climbing, canyoning, canoeing, kayaking, 

rafting, bungee jumping, skydiving, paintball) 

0.22 0.41 0 1 

Table 1.- Descriptive statistics (N=6,661) 

*Note: these activities are not mutually exclusive 

 

Aragon is the region with the largest number of tourists (15.3 percent), followed by Catalonia 

(14.3 percent). Conversely, Murcia and La Rioja are the regions with the lowest number of 

visitors (1.1 and 1.5 percent, respectively).  
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3.2. Destination attributes 

 

Distance 

Although formally this is not a destination characteristic, from the viewpoint of a tourist any 

alternative destination is distant or nearby from her perspective. As such, distance can be 

considered as a destination feature that varies depending on the origin.  

 

We use the Euclidean distance between the individual’s place of residence and each possible 

destination, which is the most used measure (Marrocu and Paci, 2013; Cafiso et al., 2016; 

Gosens and Rouwendal, 2018; Pompili et al., 2019; Alvarez-Díaz et al., 2020; Panzera et al., 

2021). In the survey, respondents report the regional area where they stay at the NUTS 3 

regional disaggregation level (Spanish provinces, equal to 50). However, information on their 

place of residence is only provided at the NUTS 2 level (autonomous communities, equal to 

17). The latter hinders the calculation of distances between origin and destination because they 

are not defined at the same regional level. If we computed the Euclidean distance in kilometres 

between NUTS2 regional centroids, that would set to zero the distances for all the trips that 

take place within autonomous communities. Given the heterogeneity in size between Spanish 

regions, that would equally assume zero distance both for true intra-regional trips and for 

apparent intra-regional trips.1 In addition, that would reduce the variability in the distance 

variable. 

 

To alleviate this, for each tourist in the sample we compute a Euclidean weighted measure of 

distance that considers tourists’ place of origin probabilistically. We calculate the distance 

between the centroids of all Spanish provinces (NUTS 3) and we then compute bilateral 

distances between each province (p) and each autonomous community (c) in the following way: 

 

𝑑𝑐,𝑝 = ∑
𝑝𝑜𝑝𝑝

𝑝𝑜𝑝𝑐
𝑝 ∈𝑐  * 𝑑𝑝,𝑝′    (6) 

for 𝑝 = 1, … ,50 and 𝑐 = 1, … ,17.  

 

where 𝑑𝑐,𝑝 is the distance between each province destination and each autonomous community, 

𝑑𝑝,𝑝′ is the distance between pairs of provinces and 𝑝𝑜𝑝𝑝 and 𝑝𝑜𝑝𝑐 are the population in each 

province and autonomous community. In this way, distances between the origin and 

destinations consider the likelihood of the individuals living in each province based on 

population weights (adjusted biannually).  

 

Finally, since our analysis is performed at the NUTS 2 level, we take the weighted distance 

mean within autonomous communities so that 𝑑𝑐,𝑐′  = ∑  d𝑐,𝑝∀ 𝑝 ∈𝑐 ∗
1

𝑛
, where n indicates the 

number of provinces in each autonomous community. The resulting weighted distance (𝑑𝑐,𝑐′) 

 
1 In Spain, the regional NUTS 2 (autonomous communities) and NUTS 3 (provinces) definition is the 

same for Asturias, Cantabria, Navarre, La Rioja, the Balearic Islands, Murcia and Madrid. However, 

regions like Andalusia and Castile-and-Leon (NUTS 2) involve 8 and 9 provinces each, respectively. 
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is labelled DIST and is similar to the one implemented in Chandra et al. (2014) for modelling 

cross-border travelling. In spirit, it also shares some features with the circle-distance proposed 

by de-la-Mata and Llano-Verduras (2012). Although it cannot be considered the ‘actual 

distance’, it properly reflects the average distance connecting the actual spots of origin and 

destination.  

 

Consistent with the well-documented distance decay effect by which tourism demand decreases 

as distance increases (de-la-Mata and Llano-Verduras, 2012; Gosens and Rouwendal, 2018; 

Pompili et al., 2019; Alvarez-Díaz et al., 2020), we expect distance to exert a negative effect 

on utility. Notwithstanding, our empirical modelling will allow for heterogeneity in this effect.  

 

Climate 

Climate is another important attribute for travel purposes that involve outdoor activities. Trips 

are normally planned in advance so that the actual weather is difficult to forecast. Therefore, 

we consider the expected (average) temperatures and rainfalls at each region in each month. 

This means we consider expected climate conditions rather than actual weather. Average 

temperature and rainfall per month during the 2010-2015 period were obtained from the 

Spanish National Meteorology Institute. We define two different variables.  

 

First, we construct the variable r_TEMP as the ratio between the temperature at each possible 

destination and the temperature at the tourist’s place of residence.  

 

𝑟_𝑇𝐸𝑀𝑃𝑖𝑚𝑡  =  
𝑇𝑖𝑚𝑡

𝑇𝑖𝑗𝑡
     (7) 

 

where 𝑇𝑖𝑚𝑡 is the temperature for individual i at region m during period t and 𝑇𝑖𝑗𝑡 is the 

temperature at the origin. 

 

The higher (lower) the ratio, the warmer (colder) the destination relative to the origin. Apart 

from being consistent with the empirical literature that shows that the preferences for warmer 

or colder destinations depend on climate conditions at the origin (e.g. Eugenio-Martín and 

Campos-Soria, 2010; Rosselló-Nadal et al., 2011), this ratio captures the non-linearity in 

relative temperature differences2. Unlike alternative approaches such as temperature 

differences (Agiomirgianakis et al., 2017), the ratio captures that an absolute difference in 

temperature between the origin and the destination does not have the same effect depending on 

the level. However, if we fix the temperature at the origin, then marginal increases in the ratio 

correspond with marginal increases in temperature at the alternative destinations3. In line with 

 
2 To understand this, consider the following two situations. A one-degree difference in favour of the 

destination gives a different value of the ratio depending on whether it is a destination with a temperature 

of 11 degrees Celsius (ºC) relative to an origin with 10ºC (11/10=1.1) or a destination with 21ºC relative 

to an origin with 20ºC (1.05). 
3 For example, for 10ºC at the origin, a marginal change of one-degree in destination from 11 ºC to 12 

ºC leads to the same marginal change in the ratio (1.2-1.1=0.1) as a one-degree change from 21ºC to 

22ºC (2.2-2.1=0.1). 
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prior findings (e.g. Helbich et al., 2014), we expect this variable to positively influence utilities 

(i.e. tourists are assumed to prefer warmer destinations).  

 

Second, we define a dummy variable denoted by RAIN that takes value one if expected rainfalls 

at each possible destination at month t excess 60 litres per square meter (60 mm). This threshold 

was chosen for two reasons. First, it is the 75th percentile of the rainfall distribution during the 

study period, thereby reflecting destinations and periods with rainy climate. Second, 

Mieczkowski’s subindex of 3 (Mieczkowski, 1985) precisely equals less than 60 mm rainfalls 

per month, and this threshold was also used by Eugenio-Martín and Campos-Soria (2010). We 

expect this variable to exert a negative effect on utility.  

 

Prices 

Prices constitute a third major determinant of tourist destination choice. According to 

microeconomic theory, prices must exhibit a negative relationship with demand. Therefore, the 

more expensive a destination is, the lower the probability of being selected, ceteris paribus. In 

line with related applications (Nicolau and Más, 2006; Massidda and Etzo, 2013), we use the 

regional consumer price indexes as a proxy of prices. Specifically, in line with Faber and 

Gaubert (2019), we employ the price index for accommodation and tourism-related services at 

each month for each destination (denoted as TCPI).4 This data is drawn from the Spanish 

National Institute of Statistics. The year 2011 is the base period.5 

 

A large body of research concerned about tourism flows argues that tourists compare prices 

across possible destination with the prevailing prices at their place of residence (Chandra et al., 

2014; Alvarez-Díaz et al., 2020). Therefore, as an alternative measure, we define the ratio of 

TCPI between each possible destination j and the one at the place of origin k for individual i at 

month t so that: 

 

𝑟_𝑇𝐶𝑃𝐼𝑖𝑗𝑡 = 
𝑇𝐶𝑃𝐼𝑖𝑗𝑡

𝑇𝐶𝑃𝐼𝑖𝑘𝑡
     (8) 

 

We expect both TCPI and r_TCPI to be negatively related with choice probabilities, ceteris 

paribus.  

 

Tourism spots 

 
4 We acknowledge that the use of price indexes exhibits some shortcomings. One of them is that CPI 

captures price variations over time relative to the base period, but it is not able to control for differences 

in price levels across regions (Marrocu and Paci, 2013). Nevertheless, the use of the CPI for tourism-

related services is more specific and better captures the relevant prices for tourism than the generic CPI 

used in previous literature (Chandra et al., 2014; Alvarez-Diaz et al., 2020).  
5 Monthly regional prices cannot capture the within region and within month variability in prices. 

However, for modelling the choice of region j over any other, prospective tourists are assumed to 

compare mean price level differences across regions.   
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The use of aggregate zones (NUTS 2) instead of individual attractions requires controlling for 

the variability in utilities across individual alternatives that compose aggregate alternative j 

(Bekhor and Prashker, 2008). The number of tourism sightseeing spots per region 

(TOU_SPOTS) constitutes a relevant variable to measure the number of municipalities of 

interest in each region.6 This variable is similar to the one used by Pompili et al. (2019). We 

expect it to have a positive effect on the probability of a destination being chosen.  

 

Ski kilometers 

We computed the sum of monthly available kilometres for alpine, Nordic and indoor skiing at 

each region during the ski season (November-April). This variable thus takes value zero for the 

rest of the year and is denoted by SKI_KM. This information has been gathered from the 2015, 

2016 and 2017 Annual Reports of the Spanish Tourist Association for Ski and Mountain 

Resorts. This variable is expected to positively affect choice probabilities, especially for those 

who practice winter sports (Falk, 2010).  

 

National parks 

Because we are interested in the pull factors that attract nature-based tourists to destinations, 

we expect the number of national and natural parks to be positively valued by nature-based 

tourists. This information has been retrieved from the European Agency for the Environment. 

The variable is labelled as NAT_PARKS.  

 

 Size of protected natural areas  

Together with the number of natural and national parks, we also consider the size of protected 

natural areas (in km2). This variable is denoted as SIZE_NAT and gathers not only the surface 

of natural and national parks, but also other natural areas where people can recreate without 

holding such categorization. This data is drawn from the Ministry of Ecological Transition.  

 

Coast 

For those who seek to practise aquatic sports, coastal regions seem to be preferred. To control 

for this, we define a dummy variable denoted by COAST that takes value 1 if the region has a 

coastline.7 Please note this dummy is complimentary to the use of r_TEMP because the 

temperatures of coastal north and south regions in Spain are quite different (see de-la-Mata and 

Llanos-Verduras, 2012).  

 

Table 2 presents summary statistics of the attributes. Appendix A reports histograms for the 

time-varying attributes and kernel plots for the average temperatures per region and quarter.  

 
6 A municipality is considered by the Spanish National Institute of Statistics to be a tourism spot if it 

specifically concentrates tourism affluence. This definition is prior to our study period, thereby being 

an exogenous indicator. 
7 We favor the use of a binary indicator over the kilometres of coastline because Spanish regions are 

very heterogeneous in terms of the quality and recreational areas of their coastlines. 
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Table 2.- Summary statistics, notation, description and source for destination attributes 

*Note: this variable varies slighting over time due to the biannual change in the population weights used in the calculation (see eq. 6)

Attribute Description Mean 
Standard 

deviation 
Min Max Source 

Varies 

over 

time 

DIST 

Euclidean distance between tourist’s place 

of residence and each possible destination 

(in km) 

532.4 458.8 0 2,182.8 Calculated using Google Maps NO* 

r_TEMP 

Ratio of monthly average temperatures 

between each possible destination and the 

place of origin 

1.02 0.26 0.28 3.46 

Spanish National Statistics Institute (INE). 

Average values per month during the period 

2010-2015. 

YES 

RAIN 

Dummy variable that takes value one if 

monthly average rainfalls are higher than 

60 liters per square meter 

0.21 0.41 0 1 

Spanish National Statistics Institute (INE). 

Average values per month during the period 

2010-2015. 

YES 

TCPI 

Monthly Tourism Consumer Price Index 

(accommodation and restaurant services, 

base 2010) 

103.3 6.8 86.7 128.9 Spanish National Statistics Institute (INE) YES 

r_TCPI 

Ratio of monthly TCPI at each possible 

destination relative to the corresponding 

one at origin 

1.00 0.04 0.77 1.28  YES 

TOU_SPOTS Total number of tourism spots 6.1 5.6 1 24 Spanish National Statistics Institute (INE) NO 

NAT_PARKS Number of natural and national parks  6.05 5.06 0 15 European Agency for the Environment NO 

SIZE_NAT Size of protected natural areas (in km2) 4,332 6,009.5 621 26,083 Ministry for Ecological Transition NO 

SKI_KM 
Available kilometers for alpine ski, Nordic 

ski and indoor ski (in km) 
25.12 88.42 0 484 

Annual Reports from the Tourist 

Association for Ski and Mountain Resorts 
YES 

COAST 
Dummy variable for whether the region 

has coast 
0.5 0.44 0 1 Google Maps NO 
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4. EMPIRICAL MODEL 

 

4.1. Econometric Modelling  

 

Our destination choice model is based on the Random Utility Maximization Theory (RUM) 

developed by McFadden (1974). Under this framework, the latent utility of individual i for 

choosing alternative j (𝑈𝑖𝑗
∗ ) is the sum of a systematic and a random component as follows: 

 

𝑈𝑖𝑗
∗ =  𝑉𝑖𝑗 +  𝜀𝑖𝑗     (9) 

 

where i indexes individuals, j indexes destinations, 𝑉𝑖𝑗 is a deterministic function of observable 

characteristics and 𝜀𝑖𝑗  is a random error term which reflects unobserved factors. The systematic 

part of the utility function is an additively separable linear-in-parameters function of the K 

attributes of each alternative j (𝑋𝑘𝑗) so that: 

 

𝑉𝑖𝑗 =  𝑋𝑘𝑗’𝛽𝑘     (10) 

 

If the random terms are IID type I extreme value (Gumbel) distributed, we obtain the standard 

Multinomial Logit Model (henceforth MNL): 

 

𝑃𝑖𝑗 = 
exp(𝜆 𝑉𝑖𝑗)

∑ exp(𝜆 𝑉𝑖𝑗)
𝐽
𝑗=1

    (11) 

 

where 𝜆 is a positive scale parameter that is inversely proportional to the standard deviation of 

the Gumbel error terms. Since 𝜆 and β are not separably identified, 𝜆 is normalized to 1 for 

identification.  

 

The MNL presents certain shortcomings. First, it exhibits the well-known Independence of 

Irrelevant Alternatives (IIA) property (Debreu, 1960), by which the ratio of probabilities 

between two alternatives does not change if a third (irrelevant) one is included in the choice set. 

Second, it assumes taste homogeneity in respondents’ preferences. These limitations have 

motivated researchers to develop alternative models. Among them, the Random Parameter 

Logit (hereafter RPL) has become the most accepted one. The RPL extends the MNL by 

allowing the parameters to vary randomly in the population according to a certain distribution 

(Revelt and Train, 1998; Train, 1998). Furthermore, it also allows the means of the parameter 

distributions to be heterogeneous. Therefore, the parameters can be expressed as follows: 

 

𝛽𝑘𝑖 =  𝑏𝑘 +  𝛿′𝑍𝑖 + 𝜎𝑘𝜈𝑖𝑘    (12) 

 

where 𝑏𝑘 is the population mean, 𝑍𝑖 is a vector of choice invariant individual characteristics 

that shift the population mean parameter, 𝛿 is the associated vector of parameters to be 
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estimated, 𝜈𝑖𝑘 is the individual-specific heterogeneity that follows a probability distribution 

independent from 𝜀𝑖𝑗, and 𝜎𝑘 is the standard deviation of the distribution of 𝛽𝑘𝑖 around 𝑏𝑘.  

 

The probability that individual i chooses destination j (𝑃𝑖𝑗) takes the form of a multidimensional 

integral over all possible values of 𝛽𝑖 of the logit formula weighted by the density of 𝛽𝑖: 

 

𝑃𝑖𝑗 = ∫ 𝑃𝑖𝑗|𝛽𝑖  𝑓(𝛽𝑖|Ω) 𝑑𝛽𝑖 = ∫
exp(𝑉𝑖𝑗 )

∑ exp(𝑉𝑖𝑗)
𝐽
𝑗=1

  𝑓(𝛽𝑖|Ω) 𝑑𝛽𝑖   (13) 

 

where 𝑃𝑖𝑗|𝛽𝑖 = 
exp(𝑉𝑖𝑗 )

∑ exp(𝑉𝑖𝑗)
𝐽
𝑗=1

 are the choice probabilities conditional on the vector of taste 

coefficients 𝛽𝑖, 𝑓(. ) is the density function of 𝛽𝑖, and 𝛺 denotes the hyper-parameters of this 

distribution in the population (mean b and covariance matrix W) so that 𝛺 = (𝑏, 𝑊). The above 

integral does not have a closed solution, so choice probabilities are estimated by simulation 

techniques, taking random draws from the underlying distribution assumed for 𝛽𝑖.  

 

RPL with correlated parameters 

 

Most empirical applications that estimate a RPL model impose the random parameters to be 

uncorrelated (i.e. the random coefficients to have a diagonal covariance matrix). However, this 

has some limitations. First, this imposes constraints on the model estimation. Second, the 

uncorrelated RPL implies that the scale is constant. However, it is highly likely that the weight 

of the random component differs in the population (scale heterogeneity). This issue has received 

growing attention in recent years (e.g. Greene and Hensher, 2010; Keane and Wasi, 2013). Hess 

and Train (2017) argue that the best way to control for scale heterogeneity is to allow for 

correlation between the random parameters. The estimated correlation will capture common 

features in the magnitude of coefficient estimates across individuals.  

 

Due to these reasons, we estimate a RPL with correlated parameters. The covariance matrix of 

the random coefficients is a lower triangular matrix with nonzero off diagonal elements 

(denoted by Г) to be estimated: 

 

𝛽𝑖 = 𝑏 +  Δ Zi + 𝛴 𝜈𝑖    (14) 

where 𝑉𝑎𝑟 (𝛽𝑖| 𝑋𝑗, 𝑍𝑖) = 𝛴 = ГГ𝑡     

 

RPL with error components (RPL-ECM) 

 

To control for residual utility, empirical modelling usually includes a full set of Alternative-

Specific Constants (hereafter ASCs). They capture the mean of the error term in the utility of 

each alternative and have been shown to improve overall fit (Klaiber and Von Haefen, 2019). 

The limitation of the ASCs is that they capture residual utility that is common to the entire 

sample. To relax this, one might consider allowing them to be randomly distributed in the same 

fashion as the attributes. However, in cross sectional data, specifying the ASCs to be random is 
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not advisable (Greene, 2012). Alternatively, we could extend the RPL with a set of Error 

Components (Greene and Hensher, 2007) so that the utility function is given by: 

 

𝑈𝑖𝑗 =  𝐴𝑆𝐶𝑗  +  𝑋𝑘𝑗’𝛽𝑘  + 𝜗𝑛𝐸𝑛  +  𝜀𝑖𝑗    (15) 

 

where 𝐴𝑆𝐶𝑗 are a set of alternative-specific constants, 𝐸𝑛 are random Error Components 

(henceforth ECs) that account for shared time-invariant correlation between choice alternatives 

not captured in the attributes contained in 𝑋𝑘𝑗, and 𝜀𝑖𝑗  are Type I Extreme Value distributed 

error terms. The ECs are standard normally distributed so that 𝐸𝑛 ~ 𝑁(0,1), with 𝜗𝑛 being the 

associated vector of parameters to be estimated (scale factors). Therefore, the random 

component of the utility is 𝜖𝑖𝑗 =  𝜗𝑛𝐸𝑛 + 𝜀𝑖𝑗 . 

 

The set of ASCs and the ECs are not separately identified when specified at the j-level. An 

interesting feature of the inclusion of ECs in the specification is the possibility of defining them 

at an upper level so that, conditional on the ASCs, they capture common unobserved 

heterogeneity to several destinations. Accordingly, the introduction of ECs causes utility to be 

correlated over alternatives because 𝐶𝑜𝑣(𝐸𝑛, 𝐸𝑙) = 𝐸[(ϑ𝑛𝐸𝑛 + ε𝑖𝑗)(ϑ𝑙𝐸𝑙 + ε𝑖𝑗)]) =

ϑ𝑛′𝑊 ϑ𝑙, where W is the covariance matrix of the ECs which is assumed to be diagonal. 

 

4.2. Model specification 

 

Our empirical model has the following form: 

 

𝑈𝑖𝑗  =  𝛼1 𝑅𝐸𝐺1𝑗  +  𝛼2 𝑅𝐸𝐺2𝑗 +  𝛼3 𝑅𝐸𝐺3𝑗 +  𝛼4 𝑅𝐸𝐺4𝑗  +  𝛼5 𝑅𝐸𝐺5𝑗 +  𝛼6 𝑅𝐸𝐺6𝑗  

+  𝛽1𝑖 𝐷𝐼𝑆𝑇𝑖𝑗  +  𝛽2𝑖 𝑟_𝑇𝐸𝑀𝑃𝑖𝑗  + 𝛽3 𝑅𝐴𝐼𝑁𝑗  +  𝛽4 𝑇𝐶𝑃𝐼𝑗  

+  𝛽5 𝑇𝑂𝑈_𝑆𝑃𝑂𝑇𝑆𝑗  +  𝛽6 𝑁𝐴𝑇_𝑃𝐴𝑅𝐾𝑆𝑗  +  𝛽7 𝑆𝐼𝑍𝐸_𝑁𝐴𝑇𝑗 +  𝛽8 𝑆𝐾𝐼_𝐾𝑀𝑗  

+  𝛽9 𝑆𝐾𝐼_𝐾𝑀𝑗 ∗ 𝑤𝑖𝑛𝑡𝑒𝑟_𝑠𝑝𝑜𝑟𝑡𝑠𝑖  +  𝛽10 𝐶𝑂𝐴𝑆𝑇𝑗  +  𝛽11 𝐶𝑂𝐴𝑆𝑇𝑗 ∗ 𝑎𝑞𝑢𝑎𝑡𝑖𝑐𝑖  

+  𝜗1𝐸1𝑖𝑗  + 𝜗2 𝐸2𝑖𝑗  +  𝜗3 𝐸3𝑖𝑗 +  𝜗4 𝐸4𝑖𝑗  +  𝜀𝑖𝑗 

(16) 

 

We specify the parameters for distance (𝛽1𝑖) and the ratio of temperatures (𝛽2𝑖) to be randomly 

distributed. We consider them to follow a normal distribution, which is the most used 

specification. The rest of the parameters (including TCPI) are treated as fixed. In this regard, 

one might wonder whether only considering two attributes as randomly distributed is 

contradictory with the issues raised about the necessity of allowing for free correlation between 

the attributes. We only allow DIST and r_TEMP to be random because the RPL model tends to 

be unstable when many coefficients are allowed to vary, especially when working with cross-

sectional data (Revelt and Train, 1998)8. 

 

 
8 Furthermore, Keane and Wasi (2013) tested several RPL specifications on ten datasets and indicate 

that the full covariance matrix is not needed to be estimated in all situations. Scale heterogeneity is 

addressed even when only a subset of the vector of parameters are allowed to be correlated. 



15 
 

We expect the number of kilometres for skiing (SKI_KM) and the presence of coast (COAST) 

to be more valued by those individuals whose main motivations is practising winter and aquatic 

sports, respectively. Therefore, the model includes two interaction terms between these two 

attributes and these two motivations (SKI_KM*winter_sports and COAST*aquatic). In the main 

analysis, we opt for using TCPI at each alternative destination j as our proxy for prices. 

Nonetheless, we repeat the baseline analysis replacing TCPI by r_TCPI (see subsection 5.1).  

 

For parsimony, the ASCs are defined at the NUTS1 level (7 regions) because the inclusion of 

a full set of ASCs along with time-invariant destination attributes (in our case TOU_SPOTS, 

NAT_PARKS, SIZE_NAT and COAST) produces an identification problem. Note that size 

effects are captured in the ASCs. This practise of defining group-specific constants is common 

in the recreational demand literature (e.g. Parsons and Hauber, 1998). Concerning the ECs, we 

define four random components based on geographic location. Specifically, the first EC relates 

to regions located in the North of Spain. The second EC refers to regions in the centre without 

coastline. The third EC gathers preference for regions in the South-East part of the country 

(Mediterranean regions). The fourth EC is defined for the Canary Islands. Table 3 illustrates 

the composition of the ASCs and the ECs.  

 

Regions ASC EC 

Galicia, Asturias and Cantabria REG1 

E1 (North) Basque Country, Navarre, La Rioja 

and Aragon 
REG2 

Community of Madrid REG3 

E2 (Centre) Castile and Leon, Castilla-La 

Mancha and Extremadura 
REG4 

Catalonia, Valencian Community 

and the Balearic Islands 
REG5 

E3 (South-East) 

Andalusia and Region of Murcia REG6 

The Canary Islands Reference category 
E4 (Canary 

Islands) 
 

Table 3.- ASC and error components (EC) 

As discussed before, we allow preferences for distance and temperatures to depend on a set of 

individual characteristics. These mean shifters are grouped into six blocks: i) age, ii) income, 

iii) party size, iv) time effects, v) origin climate conditions and vi) goals (trip purposes).  

 

• Age: the marginal utility for temperature and distance might vary according to the 

tourist’s life stage, since it has been shown that destination choice preferences vary with 

age (e.g. Bernini et al., 2017). Accordingly, we include tourist’s age in years (age).  

• Income: assuming that tourism is a normal good, the higher the level of income the 

lower the dissuasive effect of distance. Hence, high-income tourists are expected to be 

willing to travel further away (Nicolau, 2010). We include two dummy variables for 

medium and high household income (denoted by inc2 and inc3), leaving low income 

(inc1) as the reference category. 
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• Party size: trip party size is expected to exert a significant effect on the disutility of 

distance. Previous studies have shown that in deciding where to travel the composition 

of the travel group plays a relevant role (e.g. Morey and Krizberg, 2012). The variable 

parsize is defined as the number of individuals who participate in the trip.  

• Time effects: preferences for climate and distance might depend on time constraints. 

This relates to McConnell’s time allocation model for leisure demand (McConnell, 

1999). First, we consider a dummy variable for weekend trips (Saturday and Sunday) 

denoted by weekend. Second, to capture seasonal effects, we include three dummy 

variables for whether the trip takes place in the first, second or fourth quarter (q1, q2, 

and q4, respectively). The third quarter acts as the reference category.  

• Origin climate conditions: although in the utility function we consider the temperature 

at each possible destination relative to the origin, the effect of level conditions at the 

origin on the marginal utility for a gain in temperature may change depending on the 

season (quarter). To explore this, we define four dummy variables for above-mean 

temperatures per quarter as follows:   

 

𝑑_𝑤𝑎𝑟𝑚𝑜𝑟𝑖𝑔𝑖𝑛_𝑞𝑗𝑡 = {1     if T𝑗𝑡  >  ∑ ∑
𝑇𝑗𝑡

𝐽 ∗ 𝑇
 ∀ 𝑡 ∈ 𝑞, 𝑓𝑜𝑟 𝑞 = 1,2,3,4

𝑇

𝑡=1

𝐽

𝑗=1

0   otherwise                                                                             

 

(17) 

 

These four dummy variables capture the effect of origins that are warmer than the 

average per quarter.9  

• Trip purposes: recent evidence has shown that goal pursuit determines site choice 

probabilities (Swait et al., 2020). To explore this, we consider the following trip 

purposes as taste shifters: the practice of winter sports (winter_sports), mountaineering, 

trekking or visiting natural areas (mou_trek_nat), visiting rural areas or villages (rural), 

the practice of aquatic sports (aquatic) and the practice of adventure/risk activities 

(advent).  

 

Therefore, the random parameters for DIST (𝛽1𝑖) and r_TEMP (𝛽2𝑖) are specified as: 

 

𝛽1𝑖 =  𝑏1 + 𝛿1 𝐴𝑔𝑒𝑖 +  𝛿2 𝐼𝑛𝑐2𝑖 + 𝛿3 𝐼𝑛𝑐3𝑖 + 𝛿4 𝑃𝑎𝑟𝑠𝑖𝑧𝑒𝑖 + 𝛿5 𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑖 +  𝛿6 𝑄1𝑖 +

𝛿7 𝑄2𝑖 + 𝛿8 𝑄4𝑖 + 𝛿9 𝑑_𝑤𝑎𝑟𝑚𝑜𝑟𝑖𝑔𝑖𝑛_1𝑖 +  𝛿10 
𝑑_𝑤𝑎𝑟𝑚𝑜𝑟𝑖𝑔𝑖𝑛_2𝑖 +

 𝛿11 𝑑_𝑤𝑎𝑟𝑚𝑜𝑟𝑖𝑔𝑖𝑛_3𝑖 +  𝛿12 𝑑_𝑤𝑎𝑟𝑚𝑜𝑟𝑖𝑔𝑖𝑛_4𝑖 +  𝛿13 𝑤𝑖𝑛𝑡𝑒𝑟_𝑠𝑝𝑜𝑟𝑡𝑠𝑖 +

𝛿14 𝑚𝑜𝑢_𝑡𝑟𝑒𝑘_𝑛𝑎𝑡𝑖 + 𝛿15 𝑟𝑢𝑟𝑎𝑙𝑖+ 𝛿16 𝑎𝑞𝑢𝑎𝑡𝑖𝑐𝑖 +  𝛿17 𝑎𝑑𝑣𝑒𝑛𝑡𝑖 +  𝜎1𝜈𝑖1   

(18) 

 

𝛽2𝑖 =  𝑏2 +  𝜃1 𝐴𝑔𝑒𝑖 +  𝜃2 𝐼𝑛𝑐2𝑖 + 𝜃3 𝐼𝑛𝑐3𝑖 + 𝜃4 𝑃𝑎𝑟𝑠𝑖𝑧𝑒𝑖 + 𝜃5 𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑖 +  𝜃6 𝑄1𝑖 +

𝜃7 𝑄2𝑖 + 𝜃8 𝑄4𝑖 + 𝜃9 𝑑_𝑤𝑎𝑟𝑚𝑜𝑟𝑖𝑔𝑖𝑛_1𝑖 +  𝜃10 
𝑑_𝑤𝑎𝑟𝑚𝑜𝑟𝑖𝑔𝑖𝑛_2𝑖 +

 
9 The cut-off points (mean temperatures per quarter) are 9.5ºC for the first quarter, 17.4ºC for the second, 

23.7ºC for the third and 13.4ºC for the fourth. 
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 𝜃11 𝑑_𝑤𝑎𝑟𝑚𝑜𝑟𝑖𝑔𝑖𝑛_3𝑖 +  𝜃12 𝑑_𝑤𝑎𝑟𝑚𝑜𝑟𝑖𝑔𝑖𝑛_4𝑖 +  𝜃13 𝑤𝑖𝑛𝑡𝑒𝑟_𝑠𝑝𝑜𝑟𝑡𝑠𝑖 +

𝜃14 𝑚𝑜𝑢_𝑡𝑟𝑒𝑘_𝑛𝑎𝑡𝑖 + 𝜃15 𝑟𝑢𝑟𝑎𝑙𝑖+ 𝜃16 𝑎𝑞𝑢𝑎𝑡𝑖𝑐𝑖 +  𝜃17 𝑎𝑑𝑣𝑒𝑛𝑡𝑖 + 𝜎2𝜈𝑖2   

(19) 

 

One might consider some variables like income or party size to only shift the marginal utility 

for DIST, and others like d_warmorigin_q to only affect the marginal utility for r_TEMP. 

However, to avoid imposing such restrictions, in our baseline analysis we use the same vector 

of moderators (𝑍𝑖) for the two random parameters.  

 

5. RESULTS 

 

Table 4 reports the estimates for the RPL model with correlated parameters (RPLc) and the 

correlated RPL with Error Components (RPLc-ECM). The two models have been estimated in 

NLOGIT 5 (ChoiceMetrics, 2012) using 1,000 Halton draws. To reduce the scale, the variables 

DIST and SIZE_NAT have been divided by 100 so that they refer to hundreds of kilometres and 

hundreds of square kilometres, respectively.  

 

All parameter estimates have the expected signs and are statistically significant. Both models 

exhibit a good model fit according to McFadden pseudo ρ2. The log-likelihood at convergence 

and the Akaike Information Criterion (AIC) indicate that the RPLc-ECM model provides a 

better fit. Accordingly, the discussion of results that follows is based on this model.  

 

As expected, DIST exerts (on average) a negative effect on tourists’ utility, in line with Lyons 

et al. (2009), Chandra et al. (2014), De Valck et al. (2017) and Gosens and Rouwendal (2018), 

Pompili et al., (2019) and Alvarez-Díaz et al. (2020), among others. The spread parameter 

(standard deviation of the random component) is statistically significant. This implies that 

although for most individuals distance acts as a dissuasive factor, for some others it could be a 

desirable feature. The latter could be explained by travelling time being perceived as a 

commodity value that increases utility for some people (Chavas et al., 1989; Mokhtarian, 2005), 

ceteris paribus. Similarly, the positive and statistical significance of the r_TEMP mean 

coefficient indicates that, on average, utility increases as the temperature at the destination rises 

(relative to that at the origin). This is consistent with Bigano et al. (2006) and Lyons et al. 

(2009). However, both the significance and magnitude of the standard deviation of the random 

component suggest that the marginal utility of the ratio of temperatures is heterogeneous (see 

below).  

 

Regarding the rest of the place-based attributes, the higher the prices at the destination, the less 

preferred the destination is. This is consistent with Massidda and Etzo (2012) and Alvarez-Díaz 

et al. (2020). The dummy variable for rainfalls (RAIN) is negative and significant, in line with 

prior expectations and the results of Lyons et al. (2009) and Alvarez-Díaz et al. (2020). 

Therefore, destinations with monthly average rainfalls over 60 litres per square metre are 

negatively valued. The number of tourism spots (TOU_SPOTS) is positively related with the 
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likelihood of individuals travelling to that region. Additionally, both the number of national and 

natural parks (NAT_PARKS) and the surface size of natural areas (SIZE_NAT) positively affect 

a destination being chosen, in line with Alvarez-Díaz et al. (2020). Similarly, the positive 

coefficient of the SKI_KM variable indicates that nature-based travellers attach high importance 

to the availability of kilometres for skiing. When we look at the interaction term with 

winter_sports, we confirm that this positive utility is higher for these individuals. Interestingly, 

regions with coast (COAST) are negatively valued, ceteris paribus. However, the marginal 

utility for those who practise aquatic sports (COAST*aquatic) turns to be positive and 

significant. That is, the availability of the coast for nature-based tourism appears to be only 

relevant for this segment.   

 

All ASCs are positive and statistically significant, except REG3 (Madrid) and REG6 (Andalusia 

and Murcia). This suggests that whereas there are no differences in utility between Madrid, 

Andalusia, Murcia and the Canary Islands conditional on the attributes, the rest of the regions 

have some residual features that increase their attractiveness. On the other hand, the standard 

deviations of the latent ECs are statistically significant for the Centre block of regions (EC2) 

and for the Canary Islands (EC4). Overall, it seems that unobserved features for the North and 

Mediterranean areas are better captured by the ASCs, while the corresponding ones for the 

Centre and the Canary Islands exhibit larger variation and are better accommodated through the 

ECs. Nonetheless, note that REG4 exhibits its own mean effect apart from that from EC2. 

 

Our estimates show that the negative marginal disutility of distance is moderated by age. This 

contradicts Lyons et al. (2009), who find that older people are averse to travelling farther away. 

Similarly, income also moderates the disutility of distance. This is in line with evidence that 

under economic constraints people travel to nearby regions (Cafiso et al., 2016). Conversely, 

travel party size increases the distaste for covering long distances. This might be explained by 

larger travel groups imposing higher transportation costs. Similarly, weekend trips are 

associated with tourists being more averse to long distances, possibly through time constraints. 

As for seasonal effects, it is only in the fourth quarter when the disutility of distance is higher. 

Interestingly, those from regions with above-mean temperatures exhibit higher disutilities for 

travelling to distant destinations in the second and third quarters. This suggests that when the 

place of origin is relatively warmer than the average, distance is a higher barrier.  

 

Regarding the role of the trip purpose, we find that those who seek mountaineering, trekking 

and visiting natural areas are more discouraged to travel farther away. Nonetheless, the practice 

of aquatic or adventure sport moderates the disutility of distance, especially in the former case. 

As such, these two trip purposes alleviate the distance decay effect. This is consistent with 

previous research that finds differences in sensitivity to distance depending on travel purposes 

(Nicolau and Más, 2006; Swait et al., 2020; Panzera et al., 2020).  

 

The marginal utility of r_TEMP is not related with age, income or party size. Conversely, those 

who travel during the weekend exhibit a reduced preference for warmer destinations (i.e. the 

positive effect of r_TEMP is moderated). Concerning seasonal differences, a climate gain is 

less valued in the first and fourth quarters (relative to the summer period). Accordingly, the 
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pursuit of a warmer destination has less relevance in autumn and winter, although warm regions 

are still preferred. Interestingly, individuals from regions with above-mean temperatures in the 

summer season show higher preference for relatively cooler destinations. In this regard, there 

is consensus in the literature that higher temperatures are preferred up to a threshold (Bigano et 

al., 2006; Bujosa and Rosselló, 2013). By contrast, above-mean temperatures at the origin in 

the first quarter are associated with a higher preference for warmer regions. Our results are in 

line with Lyons et al. (2009), who document that i) on average tourists prefer destinations with 

high temperatures, with this preference being higher in the second and third quarters, and ii) 

mild climates are preferred in the first and fourth quarters.  

 

 RPLc RPLc-ECM 

Variable Coef Std.error Coef Std.error 

𝑅𝐸𝐺1 3.019*** 0.4003 3.431*** 0.4167 

𝑅𝐸𝐺2 1.912*** 0.4189 2.118*** 0.4340 

𝑅𝐸𝐺3 1.046** 0.4211 –0.236 0.5237 

𝑅𝐸𝐺4 1.535*** 0.4141 1.773*** 0.4294 

𝑅𝐸𝐺5 1.177*** 0.3835 1.480*** 0.3913 

𝑅𝐸𝐺6 0.319 0.4151 0.594 0.4195 

𝐷𝐼𝑆𝑇 –0.496*** 0.0560 –0.519*** 0.0598 

𝑟_𝑇𝐸𝑀𝑃 1.818*** 0.7045 2.189*** 0.7573 

𝑅𝐴𝐼𝑁 –0.262*** 0.0652 –0.328*** 0.0725 

𝑇𝐶𝑃𝐼 –0.012** 0.0058 –0.012** 0.0061 

𝑇𝑂𝑈_𝑆𝑃𝑂𝑇𝑆 0.114*** 0.0093 0.122*** 0.0095 

𝑁𝐴𝑇_𝑃𝐴𝑅𝐾𝑆 0.052*** 0.0085 0.054*** 0.0089 

𝑆𝐼𝑍𝐸𝑁𝐴𝑇 0.002*** 0.0009 0.002** 0.0009 

𝑆𝐾𝐼_𝐾𝑀 0.001*** 0.0002 0.001*** 0.0002 

𝑆𝐾𝐼_𝐾𝑀 ∗ 𝑤𝑖𝑛𝑡𝑒𝑟_𝑠𝑝𝑜𝑟𝑡𝑠 0.009*** 0.0005 0.009*** 0.0005 

𝐶𝑂𝐴𝑆𝑇 –1.144*** 0.1648 –1.336*** 0.1870 

𝐶𝑂𝐴𝑆𝑇 ∗ 𝑎𝑞𝑢𝑎𝑡𝑖𝑐 2.736*** 0.1249 2.799*** 0.1274 

SD 𝐷𝐼𝑆𝑇 0.413*** 0.0154 0.440*** 0.0181 

SD 𝑟_𝑇𝐸𝑀𝑃 1.701*** 0.3361 1.923*** 0.3538 

Cov(𝐷𝐼𝑆𝑇, 𝑟_𝑇𝐸𝑀𝑃𝑇) 0.100 0.1253 0.080 0.1354 

𝜗1   0.196 0.5542 

𝜗2   1.024*** 0.1342 

𝜗3   0.011 2.3180 

𝜗4   2.321*** 0.2527 

𝐷𝐼𝑆𝑇 Mean shifters     

age 0.002*** 0.0008 0.002*** 0.0008 

inc2 0.071*** 0.0251 0.074*** 0.0262 

inc3 0.162*** 0.0351 0.169*** 0.0384 

parsize –0.088*** 0.0095 –0.094*** 0.0106 

weekend –0.543*** 0.0238 –0.578*** 0.0289 

q1 –0.019 0.0491 –0.014 0.0518 

q2 –0.011 0.0387 –0.008 0.0426 

q4 –0.192*** 0.0502 –0.207*** 0.0546 

d_warmorigin_1 –0.028 0.0510 –0.024 0.0538 

d_warmorigin_2 –0.134*** 0.0423 –0.142*** 0.0455 

d_warmorigin_3 –0.139*** 0.0350 –0.132*** 0.0382 

d_warmorigin_4 0.099 0.0582 0.114* 0.0646 
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Table 4.- Parameter estimates 

*** p<0.01, ** p<0.05, * p<0.1 

 

To facilitate interpretation, Table 5 presents how the marginal utility of r_TEMP differs by 

whether the origin exhibits below-mean or above-mean temperatures. Based on equations (16) 

and (19), the figures for the first quarter are obtained as follows: 

 

𝜕 𝑈𝑖𝑗𝑡

𝜕 𝑟_𝑇𝐸𝑀𝑃𝑖𝑗𝑡

𝜕 𝑟_𝑇𝐸𝑀𝑃𝑖𝑗𝑡

𝜕 𝑞1𝑖𝑡
= {

𝑏2+ 𝜃6                      𝑖𝑓 𝑑_𝑤𝑎𝑟𝑚𝑜𝑟𝑖𝑔𝑖𝑛_1 = 0 
𝑏2 + 𝜃6 +  𝜃9           𝑖𝑓 𝑑_𝑤𝑎𝑟𝑚𝑜𝑟𝑖𝑔𝑖𝑛_1 = 1

  (20) 

 

The marginal utilities for the remaining quarters are computed in the same way. Non-significant 

coefficients are treated as zeroes.  

 

 
Below-mean temperature 

at origin 

Above-mean temperature 

at origin 

q1 0.945 2.933 

q2 2.189 2.189 

q3 2.189 –0.836 

q4 0.798 0.798 

Table 5.- Estimated marginal utilities for r_TEMP per quarter 

 

winter_sports –0.089 0.0623 –0.081 0.0737 

mou_trek_nat –0.177*** 0.0250 –0.188*** 0.0285 

rural –0.035 0.0240 –0.041 0.0262 

aquatic 0.280*** 0.0262 0.295*** 0.0282 

advent 0.064** 0.0264 0.066** 0.0294 

𝑟_𝑇𝐸𝑀𝑃 Mean shifters     

age 0.011 0.0091 0.012 0.0093 

inc2 0.160 0.2673 0.205 0.2801 

inc3 0.319 0.3503 0.384 0.3580 

parsize –0.158 0.986 –0.160 0.1040 

weekend –0.711*** 0.2435 –0.700*** 0.2626 

q1 –0.960* 0.5015 –1.244** 0.5572 

q2 –0.605 0.5670 –0.687 0.6202 

q4 –1.161** 0.5093 –1.391** 0.5653 

d_warmorigin_1 1.773*** 0.4083 1.988*** 0.4304 

d_warmorigin_2 0.876 0.6010 1.022 0.6239 

d_warmorigin_3 –3.168*** 0.5677 –3.025*** 0.6227 

d_warmorigin_4 –0.410 0.5463 –0.320 0.5993 

winter_sports –0.570 0.4034 –0.616 0.4201 

mou_trek_nat –0.700*** 0.2611 –0.724*** 0.2785 

rural –0.791*** 0.2640 –0.815*** 0.2900 

aquatic 0.213 0.3768 0.306 0.4068 

advent 1.397*** 0.2892 1.481*** 0.3111 

Log L –11,194.7 –11,170.0 

AIC 22,497.6 22,456.0 

Pseudo-R2 0.406 0.408 

N 6,661 6,661 
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As seen, in the summer season (third quarter), it is only those from warmer than average origins 

who prefer cooler destinations. However, the marginal utility does not vary between warmer 

and cooler origins either in the second and the fourth quarter, being the magnitude of the former 

notably larger. Strikingly, in the first quarter the preference for warmer regions is higher among 

those who live in relatively warmer regions.  

 

Regarding trip purposes, trekking, mountaineering and visiting natural areas (mou_trek_nat) on 

the one hand, and visiting rural areas/villages (rural) on the other reduce the willingness to 

travel to warmer destinations. This suggests that for these purposes the value of a climate gain 

is of less relevance. Conversely, those who seek to practise adventure/risky sports (advent) 

show a higher preference for warmer locations. Finally, the marginal utility for r_TEMP is not 

related to winter_sports or to aquatic.  

 

The estimated variance-covariance matrix of the random parameters in both the RPLc and the 

RPLc-ECM models along with the correlation between them is presented in Table 6. 𝜎11 and 

𝜎22 denote the diagonal elements in the Cholesky matrix whereas 𝜎12 refers to the below 

diagonal value.  

 

 RPLc RPLc-ECM 

σ11 0.413*** 0.440*** 

σ12 0.244 0.182 

σ22 1.683*** 1.914*** 

Corr(𝛽1𝑖, 𝛽2𝑖) 0.143 0.094 

Table 6.- Variance-covariance matrix estimates for RPLc and RPLc-ECM 

As shown, the covariance between the random parameters is not significant (i.e. the two 

marginal utilities are independent). However, these estimates are conditional on the vector of 

taste shifters 𝑍𝑖. We have re-estimated the RPLc-ECM model without them. Results are shown 

in Appendix B, Table A2. In this case, the covariance between the random parameters becomes 

significant (and positive), and the correlation amounts to 0.32. Accordingly, the marginal 

utilities for DIST and r_TEMP are unconditionally positively related. However, conditional on 

the taste shifters, the correlation vanishes. This clearly supports our modelling approach, which 

by means of introducing sources of preference heterogeneity captures the shared correlation 

between the marginal utilities of DIST and r_TEMP.   

 

5.1 Robustness checks  

 

Several alternative model specifications were examined. First, we tested whether results change 

depending on the distribution assumed for the random parameters. A triangular, a uniform, a 

truncated normal and a Weibull distribution were tested as alternatives. Our results are not 

driven by the distribution of unobserved heterogeneity (available upon request). Second, we 

replaced the TCPI at destination by the ratio of TCPI at destination relative to the one at the 

origin (r_TCPI). The estimates are reported in Appendix B, Table A3. The results are consistent 

with economic theory (utility is negatively related with destinations that are relatively more 

expensive) and remain largely unchanged. Third, both the RPL and the RPL-ECM were 
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estimated imposing the restriction that the parameters for the mean shifters that were non-

significant in Table 4 were zero. Results are displayed in Appendix B, Table A4. The magnitude 

and the direction of the effects are not affected. Fourth, to address concerns on the potential 

biases arising from the insularity of the Balearic and the Canary Islands, we estimated the model 

without considering these two regions. In doing so, trips to those regions and respondents 

travelling from there were excluded. Parameter estimates are reported in Appendix B, Table 

A5. Results remain consistent with the main analysis. Finally, we implemented the well-known 

travel cost method (Bujosa and Rosselló, 2013; Swait et al., 2020) to inspect the robustness of 

our modelling approach. The results obtained from this method are in line with our analysis. 

Details of its implementation and the parameter estimates are presented and discussed in 

Appendix C.   

 

5.2 Marginal Rates of Substitution 

 

There is a natural positive relationship between distance and the ratio of temperatures: regions 

with different climate conditions relative to the place of residence (either warmer or cooler) are 

located farther away. Since we have shown that, on average, individuals attach positive utility 

to warmer destinations and negative utility to distant regions, they seem to face a trade-off 

between these two features. 

 

To examine this, we compute the marginal rate of substitution of distance for a warmer 

temperature (MRS). That is, how individuals are willing to trade distance in exchange for a 

temperature gain. Under the linear specification, the MRS equals the ratio of the partial 

derivatives of the latent utility with respect to r_TEMP and DIST. It can be understood as a sort 

of ‘willingness to pay’ if we consider distance as a payment vehicle. This is similar to De Valck 

et al. (2017). Since individuals have different sensitivities, this estimate is individual-specific 

and obtained as follows:  

𝑀𝑅𝑆𝑟_𝑇𝐸𝑀𝑃,𝐷𝐼𝑆𝑇𝑖
=

𝑀𝑈𝑟_𝑇𝐸𝑀𝑃 

𝑀𝑈𝐷𝐼𝑆𝑇
=

𝜕 𝑈𝑖𝑗
∗

𝜕 𝑟_𝑇𝐸𝑀𝑃𝑖
 

𝜕 𝑈𝑖𝑗
∗

𝜕 𝐷𝐼𝑆𝑇𝑖

=
𝛽2,𝑖

𝛽1,𝑖
   (21) 

In equation (21) we use a conditional estimator of the marginal utilities rather than the structural 

parameters derived from the model estimates. As highlighted in Hensher et al. (2006), the 

derivation of the MRS as the ratio of individual-level parameters reduces the incidence of 

extreme values in comparison to drawing them from the unconditional population distributions. 

By applying Bayes’ theorem, we compute the conditional expectation of the individual-specific 

marginal utilities by conditioning on all available information about each individual. Technical 

details together with kernel density plots are shown in Appendix D.  

 

As it is widely known, the ratio of two normal distributions has a discontinuous distribution 

with a singularity problem when the denominator takes value zero. To avoid this, for the 

calculation of the MRS we have omitted those individuals who have a (statistically) zero 
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marginal utility for either of the two attributes.10 For this purpose, we follow the procedure 

outlined by Hess and Hensher (2010).11 This leaves the sample with 4,368 valid observations 

(65.5% of the original sample). Although only 0.7% display values of 𝐶𝑉𝐷𝐼𝑆𝑇,𝑖 larger than 2 (in 

absolute terms), this percentage rises to 33.6% for 𝐶𝑉𝑟_𝑇𝐸𝑀𝑃,𝑖. This suggests that the fraction of 

individuals that do not consider the ratio of temperatures is much larger than for the case of 

distance.  

 

Figure 1 plots the histogram of the MRS, which is distributed to both sides of zero.12 The 

discontinuity in the values around zero is a direct consequence of having dropped observations 

with estimated conditional marginal utilities in the neighbourhood of zero. Without altering the 

sign, negative values refer to the number of kilometres (in hundreds) that individuals are willing 

to travel to obtain a marginal increase in temperature relative to the origin (𝑟_𝑇𝐸𝑀𝑃 > 1) while 

positive values indicate the reversal: the number of kilometres (in hundreds) individuals are 

willing to travel to obtain a marginal decrease in temperature relative to the origin (𝑟_𝑇𝐸𝑀𝑃 <

1). The mean of the distribution of the MRS is –1.59. This means that, on average, tourists who 

pay attention to both attributes are willing to cover 159 kilometres to obtain a marginal increase 

in temperatures relative to the place of origin. About 70% of the sample exhibits a negative 

MRS (i.e. they trade distance for climate gains). By contrast, the remaining 30% is willing to 

cover distance in exchange for relatively cooler climate conditions. Overall, the MRS shows 

how the willingness to cover longer distances increases as individuals attach higher importance 

to a different climate at the destination (either warmer or cooler). 

 

 

 
10 This way to proceed is consistent with Daly et al. (2012). These authors provide mathematical proof 

showing that when the domain of the distribution of the denominator is restricted not to have support in 

an arbitrarily interval close to zero, inverse moments exist. Their theorem applies to independent 

parameters. For jointly normal variables, independence directly follows from a lack of correlation (i.e. 

𝐶𝑜𝑣(𝛽1𝑖, 𝛽2𝑖) = 0). In our data, conditional on Z, the MUs for distance and relative temperatures have 

been shown to be uncorrelated. 
11 These authors compute the coefficient of variation (CV) of the individual-specific conditional mean 

and standard deviation estimates for each attribute (𝑖. 𝑒. 𝐶𝑉𝑘𝑖 = 
𝜎𝑘𝑖

𝛽𝑘𝑖
). When this noise-to-signal ratio is 

higher than a given threshold, the individual-specific preference distribution is said to be over-dispersed. 

Hess and Hensher arbitrarily chose 2 as the threshold value because normal distributions tend to be over-

dispersed when 𝐶𝑉𝑘𝑖 > 2. This practise was followed by Scarpa et al. (2013).  
12 Since the obtained distribution has long tails, Figure 1 restricts the estimated MRS to lie on the interval 

(– 12.87, 9.69), which gathers 99.7 percent of the data (𝜇 ±  3𝜎).  
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Figure 1.- MRS r_TEMP for DIST 

 

5.3 Price and temperature elasticities 

 

Apart from considering taste heterogeneity, scale heterogeneity and cross-correlation between 

alternatives, another advantage of the RPLc-ECM model is that it does not exhibit the IIA 

property. This means that any marginal change in an attribute does not only affect own choice 

probabilities but also impacts the choice probabilities of all the remaining regions. From a 

policy perspective, it seems valuable to evaluate tourists’ reassignments under a shock in 

attribute k in a region j, ceteris paribus. Specifically, we aim to evaluate how changes in the 

price index for tourism services or the ratio of temperatures would impact the destination choice 

of nature-based tourists.  

 

The marginal effect of a change in attribute k in region j on any generic destination m is given 

by: 

𝜃𝑖𝑚(𝑘|𝑗) = 𝑃𝑖𝑚(1(𝑗 = 𝑚) − 𝑃𝑖𝑗) 𝛽𝑖𝑘    (22) 

where 𝑃𝑖𝑗 and 𝑃𝑖𝑚 are the choice probabilities as defined in Equation (13), 𝛽𝑖𝑘 are the MU of 

attribute k, and 1(𝑗 = 𝑚) is an indicator function of whether destination j equals destination m. 

Based on this formula, the own marginal effect when 𝑗 = 𝑚 is: 

 

𝜃𝑖𝑗(𝑘|𝑗) = 𝑃𝑖𝑗  (1 − 𝑃𝑖𝑗)𝛽𝑖𝑘    (23) 

and the cross marginal effect is: 

𝜃𝑖𝑚(𝑘|𝑗) = 𝑃𝑖𝑚(−𝑃𝑖𝑗) 𝛽𝑖𝑘   (24) 
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To facilitate the interpretation, we compute the elasticities (i.e. the percentage change in the 

probability that individual i chooses destination m if there is a one-percent increase in the value 

of attribute k in alternative j) as follows: 

 

η𝑖𝑚 (𝑘|𝑗)
𝜕 ln 𝑃𝑖𝑚

𝜕 ln 𝑋 (𝑘|𝑗)
= 

𝑋𝑘|𝑗

𝑃𝑖𝑚
𝜗𝑖𝑚(𝑘|𝑗) = 𝑋𝑘|𝑗(1(𝑗 = 𝑚) − 𝑃𝑖𝑗) 𝛽𝑖𝑘  (25) 

 

Tables 7 and 8 report the elasticities of r_TEMP and TCPI, respectively. They reflect the 

percentage change in choice probabilities of destination m (in columns) if there is a one-percent 

increase in either the relative temperature or the price index in destination j (in rows). The 

values on the diagonal refer to own elasticities (𝑗 = 𝑚), while the rest are cross elasticities (𝑗 ≠

𝑚). The matrix is not symmetric since the elasticity of a change in j on m is different from the 

reversal.  

 

Figures 2 and 3 depict the own elasticities with respect to r_TEMP and TCPI, respectively. 

Darker colours refer to higher values. All the regions exhibit positive own r_TEMP elasticities 

(i.e. a marginal increase in temperature relative to the origin increases the likelihood of that 

region being chosen). Interestingly, regions in the North-West area (Cantabria, Galicia and 

Asturias), North-West (La Rioja and Aragon), Andalusia and Madrid have elasticities higher 

than the unity. However, there is no clear spatial pattern in the own r_TEMP elasticities.  

 

Turning to the cross r_TEMP elasticities, we document large cross elasticities between the 

South area (Andalusia and Murcia) and the North-West one. Specifically, rises in temperatures 

in the South relative to the origin reduce North-Western regions’ choice probabilities in greater 

magnitude than the opposite. This implies that when the South becomes warmer in comparison 

to the origin, ceteris paribus, the percentage reduction in visitors to the North-West is larger 

than the reversal. Something similar applies to Aragon, whose choice probabilities are notably 

reduced when there is a marginal increase in temperatures in Andalusia and Murcia relative to 

tourists’ place of origin. This implies that the pursuit of different climate conditions takes place 

in favour of Southern regions.  

 

This finding is contrary to the ones by Bujosa and Rosselló (2013) and Priego et al. (2015), who 

document that under a climate change scenario with a rise in temperatures, Northern regions 

would increase their visitors while Eastern regions will reduce their market shares. 

Nevertheless, our results cannot be directly compared with theirs since they analysed coastal 

tourism. Moreover, they only consider the summer season and ten regions (those with coast). 

In our case, all the regions are analysed, and elasticities are average values over the whole year. 

In this regard, since we are analysing choice elasticities with reference to a ratio, the estimated 

values are affected by the level of the denominator (i.e. the temperature at the origin). Regions 

have different temperatures (see Table A1 and Figure A6 in Appendix A) and different shares 

of outbound tourists. Since the elasticities are average values over the sample, they are affected 

by i) how many tourists share the same origin, and ii) how much different regions are among 

them in terms of temperature.  
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 CAN AST GAL ARA BQC LRJ NAV MAD CMA CLE EXT BIS CAT VAL AND MUR CIS 

CAN 2.389 –0.012 –0.014 –0.015 –0.006 –0.011 –0.003 –0.008 –0.004 –0.004 –0.005 –0.006 –0.005 –0.006 –0.016 –0.007 –0.006 

AST –0.083 1.452 –0.066 –0.068 –0.039 –0.054 –0.014 –0.055 –0.022 –0.022 –0.024 –0.036 –0.028 –0.034 –0.081 –0.033 –0.028 

GAL –0.028 –0.014 1.796 –0.026 –0.012 –0.022 –0.006 –0.012 –0.009 –0.009 –0.008 –0.008 –0.010 –0.013 –0.019 –0.011 –0.011 

ARA –0.223 –0.135 –0.182 1.871 –0.084 –0.130 –0.038 –0.088 –0.061 –0.053 –0.067 –0.080 –0.069 –0.074 –0.182 –0.096 –0.075 

BQC –0.095 –0.073 –0.066 –0.077 0.770 –0.056 –0.001 –0.033 –0.016 –0.016 –0.017 –0.028 –0.026 –0.033 –0.083 –0.029 –0.028 

LRJ –0.266 –0.153 –0.237 –0.244 –0.092 1.161 –0.022 –0.135 –0.065 –0.047 –0.080 –0.097 –0.072 –0.076 –0.206 –0.115 –0.089 

NAV –0.092 –0.071 –0.063 –0.078 –0.033 –0.056 0.220 –0.015 0.002 0.003 0.006 –0.004 –0.013 –0.023 –0.076 –0.016 –0.026 

MAD –0.056 –0.054 –0.058 –0.038 –0.023 –0.032 –0.015 1.202 –0.021 –0.019 –0.032 –0.042 –0.015 –0.017 –0.079 –0.022 –0.025 

CMA –0.033 –0.025 –0.028 –0.034 –0.020 –0.028 –0.006 –0.012 0.520 –0.027 –0.025 –0.013 –0.021 –0.021 –0.027 –0.024 –0.020 

CLE –0.042 –0.031 –0.034 –0.041 –0.025 –0.036 –0.002 –0.015 –0.029 0.431 –0.022 –0.014 –0.023 –0.025 –0.033 –0.024 –0.023 

EXT –0.077 –0.070 –0.061 –0.072 –0.049 –0.057 –0.022 –0.039 –0.066 –0.063 0.534 –0.043 –0.044 –0.045 –0.072 –0.054 –0.047 

BIS –0.109 –0.112 –0.088 –0.098 –0.072 –0.079 –0.038 –0.058 –0.45 –0.043 –0.051 0.673 –0.062 –0.064 –0.116 –0.072 –0.066 

CAT –0.062 –0.049 –0.050 –0.053 –0.043 –0.055 –0.018 –0.014 –0.030 –0.030 –0.024 –0.029 0.600 –0.047 –0.050 –0.048 –0.038 

VAL 0.163 –0.109 0.128 –0.149 –0.051 –0.104 –0.028 –0.063 –0.033 –0.012 –0.043 –0.058 –0.039 0.678 –0.141 –0.076 –0.051 

AND –0.453 –0.320 –0.393 –0.371 –0.165 –0.274 –0.075 –0.415 –0.131 –0.115 –0.156 –0.229 –0.143 –0.162 1.598 –0.205 –0.141 

MUR –0.107 –0.085 –0.092 –0.113 –0.068 –0.087 –0.043 –0.029 –0.062 –0.054 –0.058 –0.064 –0.079 –0.072 –0.092 0.871 –0.066 

CIS –0.046 –0.036 –0.032 –0.040 –0.025 –0.029 –0.006 –0.018 –0.013 –0.013 –0.013 –0.018 –0.018 –0.021 –0.041 –0.020 0.734 

 
Table 7.- r_TEMP elasticities 

*The values indicate the percentage change in choice probabilities for regions in columns if there is a one-percent increase in r_TEMP in the regions in rows.  

CAN: Cantabria; AST: Principality of Asturias; GAL: Galicia; ARA: Aragon; BQC: The Basque Country; LRJ: La Rioja; NAV: Navarre; MAD: Community 

of Madrid; CMA: Castilla-LaMancha; CLE: Castile and Leon; EXT: Extremadura; BIS: The Balearic Islands; CAT: Catalonia; VAL: Valencian Community; 

AND: Andalusia; MUR: region of Murcia; CIS: The Canary Islands. 

 

 



27 
 

 

 CAN AST GAL ARA BQC LRJ NAV MAD CMA CLE EXT BIS CAT VAL AND MUR CIS 

CAN –1.227 0.008 0.010 0.013 0.010 0.008 0.006 0.003 0.005 0.006 0.005 0.004 0.006 0.008 0.010 0.006 0.007 

AST 0.042 –1.183 0.037 0.038 0.039 0.034 0.038 0.035 0.029 0.028 0.034 0.043 0.032 0.032 0.049 0.034 0.030 

GAL 0.014 0.008 –1.254 0.016 0.011 0.016 0.009 0.005 0.010 0.010 0.007 0.007 0.010 0.013 0.010 0.001 0.009 

ARA 0.129 0.083 0.114 –1.121 0.100 0.099 0.076 0.036 0.078 0.074 0.061 0.062 0.081 0.095 0.097 0.076 0.075 

BQC 0.084 0.087 0.072 0.081 –1.138 0.074 0.089 0.036 0.069 0.070 0.067 0.071 0.081 0.081 0.081 0.073 0.061 

LRJ 0.154 0.111 0.195 0.170 0.135 –1.044 0.119 0.070 0.130 0.138 0.104 0.101 0.141 0.161 0.118 0.131 0.116 

NAV 0.120 0.152 0.119 0.123 0.160 0.131 –1.043 0.082 0.132 0.134 0.140 0.163 0.155 0.147 0.127 0.148 0.109 

MAD 0.020 0.026 0.024 0.015 0.013 0.015 0.012 –0.805 0.013 0.012 0.021 0.027 0.009 0.010 0.032 0.012 0.014 

CMA 0.026 0.028 0.028 0.029 0.030 0.031 0.036 0.024 –1.166 0.069 0.067 0.034 0.040 0.034 0.026 0.042 0.027 

CLE 0.037 0.038 0.039 0.040 0.045 0.046 0.051 0.030 0.099 –1.137 0.087 0.043 0.057 0.052 0.035 0.053 0.039 

EXT 0.057 0.071 0.060 0.058 0.063 0.062 0.075 0.079 0.129 0.121 –1.105 0.091 0.071 0.064 0.064 0.083 0.056 

BIS 0.071 0.095 0.077 0.070 0.073 0.076 0.086 0.100 0.070 0.065 0.089 –1.117 0.079 0.074 0.088 0.094 0.064 

CAT 0.041 0.043 0.040 0.045 0.050 0.049 0.056 0.017 0.051 0.051 0.044 0.048 –1.169 0.057 0.039 0.061 0.042 

VAL 0.133 0.130 0.139 0.139 0.153 0.151 0.154 0.064 0.138 0.146 0.127 0.134 0.161 –1.069 0.128 0.147 0.125 

AND 0.206 0.209 0.182 0.180 0.163 0.153 0.142 0.182 0.126 0.122 0.140 0.177 0.137 0.143 –0.992 0.148 0.130 

MUR 0.054 0.059 0.056 0.059 0.059 0.062 0.069 0.030 0.065 0.059 0.064 0.073 0.077 0.066 0.055 –1.173 0.053 

CIS 0.030 0.032 0.025 0.029 0.035 0.026 0.033 0.015 0.027 0.027 0.027 0.028 0.032 0.030 0.030 0.029 –0.955 

 

Table 8.- TCPI elasticities 

*The values indicate the percentage change in choice probabilities for regions in columns if there is a one-percent increase in TCPI in the regions in rows.  

CAN: Cantabria; AST: Principality of Asturias; GAL: Galicia; ARA: Aragon; BQC: The Basque Country; LRJ: La Rioja; NAV: Navarre; MAD: Community 

of Madrid; CMA: Castilla-LaMancha; CLE: Castile and Leon; EXT: Extremadura; BIS: The Balearic Islands; CAT: Catalonia; VAL: Valencian Community; 

AND: Andalusia; MUR: region of Murcia; CIS: The Canary Islands. 
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Figure 2.- Own choice-r_TEMP elasticities 

 

 

Figure 3.- Own choice-TCPI elasticities 



Concerning the own TCPI elasticities (on-diagonal values in Table 8, depicted in Figure 3), all 

of them are negative, in line with economic theory. Except for Andalusia, the Canary Islands 

and Madrid, they are elastic (larger than one in absolute value). Since TCPI is a price index, the 

elasticities are interpreted as the percentage change in own choice probabilities if there is an 

inflation rate of one percent. The North-West regions are the most sensitive to price increases, 

closely followed by the Valencian Community, Murcia and Castilla-La Mancha.  

 

As for the cross TCPI elasticities, the percentage change in choice probabilities under a one-

percent inflation rate is larger for Andalusia, Navarre, La Rioja and the Valencian Community. 

In other words, tourism price inflation in these regions produces significant positive shifts in 

choice probabilities in the rest of regions. Among them, Andalusia and the Valencian 

Community are the two regions in which price increases lead to the largest reassignment of 

tourists. Most notably, cross elasticities are asymmetric. This is in line with Chandra et al. 

(2014), who find that Canadians are more sensitive to price changes in the USA than vice versa. 

Another interesting result is that the magnitude of the cross choice-price elasticities is larger for 

neighbouring regions, as it happens for Navarre-the Basque Country (0.160), Valencian 

Community-Murcia (0.147), Castilla-LaMancha-Castile and Leon (0.07), and Extremadura-

Castilla-LaMancha (0.129). This implies that these regions are close substitutes in their 

characteristics, so a one percent increase in their prices makes other regions’ choice 

probabilities to rise significantly. Additionally, we document a Northwest-South substitution 

pattern by which the cross choice-price elasticities between these areas are the largest in size. 

 

Before ending this subsection, some limitations need to be acknowledged. First, for the r_TEMP 

case, the elasticities assume percentage increases in temperature in the region being analysed 

keeping everything else constant. That is, both the temperature of the remaining regions and all 

the other attributes, including the dummy for high rainfall (RAIN), are assumed not to change. 

This ceteris paribus condition might be a strong assumption. Second, since the model only 

considers domestic nature-based tourism, no transfers between domestic and international 

tourism are allowed.  

 
 

6. CONCLUSIONS 

 

This paper analyses the destination attributes that drive domestic trips for nature-based purposes 

in Spain. We match monthly microdata with both time-varying and time-invariant regional 

characteristics. We pay attention to the effect of distance and relative temperatures in site choice 

probabilities, while controlling for other destination-specific amenities. In doing so, we provide 

new evidence on the drivers of heterogeneity in marginal utilities.  

 

We estimate a correlated Random Parameter Logit with Error Components model that controls 

for unobserved preference heterogeneity for the attributes and the destinations. Our results point 

to substantial preference heterogeneity for distance and temperature differentials between 

origin and destination. Whereas on average distance is a dissuasive factor, this distaste for 
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distant regions is moderated by age and income. Conversely, travel party size, travelling on 

weekends and in the fourth quarter reinforce the negative effect of distance. Interestingly, trips 

with the aim of practising aquatic or adventure sports make individuals more prone to travelling 

farther away, whereas trekking and mountaineering are associated with a higher distaste for 

distance.  

 

As for the temperature at the destination relative to the origin, tourists prefer warmer regions, 

especially in the third quarter. Remarkably, we show that individuals from origins with above 

mean temperatures are deterred from travelling to warmer locations in the summer period. This 

highlights the existence of relevant non-linearities in the preference for higher temperature. 

Concerning trip purposes, the preference for warmer destinations is larger for those who seek 

to practise adventure sports, but moderated by the purpose of trekking and mountaineering and 

visiting rural areas. Additionally, site choice probabilities are negatively related to high rainfall.  

 

Our results also indicate that the number of available kilometres for skiing (especially for winter 

sport tourists), the number of tourism spots, the number of national parks and the size of 

protected natural areas are positively valued by individuals when choosing where to travel. As 

predicted by economic theory, choice probabilities are negatively influenced by tourism prices. 

Interestingly, whereas inland regions are on average preferred for nature-based trips, coastal 

destinations are best suited for those who like to practise aquatic sports.   

 

Based on the model estimates, we document that distance and the relative temperature of the 

destination with respect to the origin are not statistically significant for 0.7% and 34% of the 

sample, respectively. For those for whom both attributes are relevant, we find they are willing 

to travel about 160 kilometres for a marginal increase in relative temperatures. Interestingly, 

about 70% of the sample trade distance for temperature gains. However, the remaining 30% are 

found to cover long distances to reach cooler locations. Furthermore, the own price elasticities 

indicate that all destinations are highly price-elastic. The largest cross price elasticities are 

found among cross-bordering regions. We also document a Northwest-South substitution 

pattern by which price increases in one area positively impact choice probabilities in the other. 

Most importantly, cross-price elasticities are asymmetric. 

 

This paper contributes to the literature on regional and tourism economics in different ways. 

First, given the mixed evidence on the (dis)taste for distance and temperatures encountered in 

the literature, the proposed model specification deepens into this by allowing the marginal 

utilities for these two dimensions to be heterogeneous. We link the distribution of preferences 

in the sample with a set of sociodemographic, temporal and trip-related variables. Therefore, 

we do not only model taste heterogeneity but also identify the factors that shift sensitivities.  

 

Second, unlike most applications that only use temperatures at the destination, our model 

specification acknowledges that temperature rises may be differently valued depending on the 

level at the origin. To the authors’ knowledge, this is the first empirical application that 

considers relative temperatures for modelling individual choices. Moreover, among the set of 
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taste shifters, we consider indicators of quarterly above mean temperatures at the origin. 

Therefore, we provide new evidence on the non-linearities of the preference for temperature.  

 

Third, our analysis deals with unobserved heterogeneity, allowing for shared correlation 

between the taste for temperatures and distance. We show that the marginal utilities for DIST 

and r_TEMP are unconditionally positively related. However, conditional on the taste shifters, 

the correlation vanishes. This suggests that modelling the sources of preference heterogeneity 

allows us to capture the shared correlation between the marginal utilities of DIST and r_TEMP. 

From the model estimates, we compute the marginal rates of substitution of distance for 

temperature gains and provide some intuition about the trade-offs between these two 

dimensions.  

 

Our results have some implications. Given the growing importance of the tourism domestic 

market for the economic development of some regions, our findings could be valuable for 

regional authorities in charge of tourism planning and destination management. Our results 

might enhance their understanding of the factors that attract prospective tourists to their regions, 

highlighting the pull effect of the regional natural resources for outdoor recreation. In the 

pandemic context, nature-based trips are expected to become even more popular. Prompting 

nature-based tourism could also alleviate the intrinsic seasonality of tourism revenues. All 

Spanish regions choice probabilities are highly price-elastic, with Murcia, Asturias, Cantabria 

and Galicia exhibiting the largest choice sensitivities. The high cross-price elasticities between 

Northwest and South regions point to a reallocation of tourists from the North to the South and 

vice versa after an increase in tourism prices. Policymakers need to be aware of this in the 

development of public policy interventions that involve tourism taxes. From the viewpoint of 

practitioners, our modelling approach offers an improved theoretically consistent way of 

analysing domestic leisure trips that can be extended to other types of tourism trips. 

Nonetheless, the generalization of our findings to other tourist segments or countries should be 

made with caution, since our results could be specific of the Spanish domestic travel market.  
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APPENDIX A 

Here we provide further information on some of the attributes considered in the analysis. 

Figures A1-A5 show the histograms of the variables DIST, TCPI, RAINFALL (continuous), 

TEMPERATURE and r_TEMP, respectively. Table A1 presents the yearly mean temperature 

per region. Figure A6 depicts the monthly average temperature by region. Figure A7 shows a 

smooth kernel density plot for temperature per quarter.  

 

 

 

 

 

 

 

 

 

 

 
Figure A1.- Histogram of DIST (in kilometres) 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure A2.- Histogram of TCPI 
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Figure A3.- Histogram of RAINFALL (liters per month) 

 

 

 

 

 

 

 

 

 

 

 
Figure A4.- Histogram of TEMPERATURE (degree Celsius) 
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Figure A5.- Histogram of r_TEMP 
 
 
 
 

Region Yearly Average 

Temperature (ºC) 

AND 18.47 

ARA 14.66 

AST 13.51 

BIS 17.94 

CIS 18.08 

CAN 14.99 

CLE 12.06 

CMA 15.03 

CAT 16.60 

VAL 18.51 

EXT 17.04 

GAL 14.04 

MAD 15.66 

MUR 19.44 

NAV 13.44 

BQC 13.67 

LRJ 14.31 

 

Table A1- Yearly average temperature per region 

 
 
 
 



 
 

Figure A6.- Monthly average temperature by region 

 
CAN: Cantabria; AST: Principality of Asturias; GAL: Galicia; ARA: Aragon; BQC: The Basque Country; LRJ: La Rioja; NAV: Navarre; MAD: Community of Madrid; CMA: Castilla-LaMancha; CLE: 

Castille and Leon; EXT: Extremadura; BIS: The Balearic Islands; CAT: Catalonia; VAL: Valencian Community; AND: Andalusia; MUR: region of Murcia; CIS: The Canary Islands. 
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Figure A7.- Smooth kernel density plot for temperature per quarter
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APPENDIX B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A2.- Parameter estimates for RPLc-ECM without taste shifters 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 RPLc-ECM 

Variable Coef St.Error 

𝑅𝐸𝐺1 4.066*** 0.4193 

𝑅𝐸𝐺2 2.617*** 0.4379 

𝑅𝐸𝐺3 0.413 0.5373 

𝑅𝐸𝐺4 2.266*** 0.4347 

𝑅𝐸𝐺5 2.128*** 0.3985 

𝑅𝐸𝐺6 1.417*** 0.4275 

𝐷𝐼𝑆𝑇 –1.002*** 0.0229 

𝑟_𝑇𝐸𝑀𝑃 0.804*** 0.1778 

𝑅𝐴𝐼𝑁 –0.310*** 0.0684 

𝑇𝐶𝑃𝐼 –0.006 5.9e-03 

𝑇𝑂𝑈_𝑆𝑃𝑂𝑇𝑆 0.124*** 9.3e03 

𝑁𝐴𝑇_𝑃𝐴𝑅𝐾𝑆 0.064*** 8.6e-03 

𝑆𝐼𝑍𝐸𝑁𝐴𝑇 0.001 9.0e-04 

𝑆𝐾𝐼_𝐾𝑀 0.001*** 2.3e-04 

𝑆𝐾𝐼_𝐾𝑀 ∗ 𝑤𝑖𝑛𝑡𝑒𝑟_𝑠𝑝𝑜𝑟𝑡 0.009*** 5.0e-04 

𝐶𝑂𝐴𝑆𝑇 –1.544*** 0.1817 

𝐶𝑂𝐴𝑆𝑇 ∗ 𝑎𝑞𝑢𝑎𝑡𝑖𝑐 3.067*** 0.1229 

SD 𝐷𝐼𝑆𝑇 0.572*** 0.019 

SD 𝑟_𝑇𝐸𝑀𝑃 1.758*** 0.3822 

Cov(𝐷𝐼𝑆𝑇, 𝑟_𝑇𝐸𝑀𝑃𝑇) 0.329** 0.1549 

𝜗1 0.338 0.3411 

𝜗2 1.045*** 0.1267 

𝜗3 0.073 0.6617 

𝜗4 2.225*** 0.2732 

Log L -12,134.37 

AIC 24,316.7 

Pseudo-R2 0.378 

N 6,661 
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 RPLc-ECM 

Variable Coef St.Error 

𝑅𝐸𝐺1 3.429*** 0.4165 

𝑅𝐸𝐺2 2.116*** 0.4339 

𝑅𝐸𝐺3 –0.240 0.5237 

𝑅𝐸𝐺4 1.769*** 0.4292 

𝑅𝐸𝐺5 1.476*** 0.3911 

𝑅𝐸𝐺6 0.592 0.4193 

𝐷𝐼𝑆𝑇 –0.519*** 0.0598 

𝑟_𝑇𝐸𝑀𝑃 2.194*** 0.7567 

𝑅𝐴𝐼𝑁 –0.329*** 0.0725 

𝑇𝐶𝑃𝐼 –1.291** 0.6471 

𝑇𝑂𝑈_𝑆𝑃𝑂𝑇𝑆 0.122*** 0.0095 

𝑁𝐴𝑇_𝑃𝐴𝑅𝐾𝑆 0.054*** 0.0089 

𝑆𝐼𝑍𝐸_𝑁𝐴𝑇 0.002** 9.4e-04 

𝑆𝐾𝐼_𝐾𝑀 0.001*** 2.3e-04 

𝑆𝐾𝐼_𝐾𝑀 ∗ 𝑤𝑖𝑛𝑡𝑒𝑟_𝑠𝑝𝑜𝑟𝑡𝑠 0.009*** 5.5e-04 

𝐶𝑂𝐴𝑆𝑇 –1.338*** 0.1868 

𝐶𝑂𝐴𝑆𝑇 ∗ 𝑎𝑞𝑢𝑎𝑡𝑖𝑐 2.799*** 0.1274 

SD 𝐷𝐼𝑆𝑇 0.439*** 0.0181 

SD 𝑟_𝑇𝐸𝑀𝑃 1.918*** 0.3542 

Cov(𝐷𝐼𝑆𝑇, 𝑟_𝑇𝐸𝑀𝑃) 0.081 0.1353 

𝜗1 0.197 0.5507 

𝜗2 1.025*** 0.1341 

𝜗3 0.011 2.3169 

𝜗4 2.322*** 0.2527 

𝐷𝐼𝑆𝑇 Mean shifters 

age 0.002*** 8.6e-04 

inc2 0.074*** 0.0261 

inc3 0.169*** 0.0384 

parsize –0.094*** 0.0106 

weekend –0.578*** 0.0289 

q1 –0.014 0.0518 

q2 –0.008 0.0426 

q4 –0.208*** 0.0546 

d_warmorigin1 –0.024 0.0538 

d_warmorigin2 –0.142*** 0.0455 

d_warmorigin3 –0.132*** 0.0382 

d_warmorigin4 0.114* 0.0646 

winert_sports –0.081 0.0737 

mou_trek_nat –0.188*** 0.0285 

rural –0.041 0.0262 

aquatic 0.295*** 0.0282 

advent 0.066** 0.0294 

𝑟_𝑇𝐸𝑀𝑃 Mean shifters 

age 0.012 0.0093 

inc2 0.205 0.2800 

inc3 0.384 0.3579 

parsize –0.160 0.1039 

weekend –0.699*** 0.2625 

q1 –1.250** 0.5566 
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Table A3.- Parameter estimates for RPLc-ECM replacing 𝑇𝐶𝑃𝐼 by 𝑟_𝑇𝐶𝑃𝐼 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

q2 –0.689 0.6200 

q4 –1.397** 0.5647 

d_warmorigin1 1.988*** 0.4302 

d_warmorigin2 1.022 0.6238 

d_warmorigin3 –3.029*** 0.6229 

d_warmorigin4 –0.318 0.5990 

winter_sports –0.617 0.4200 

mou_trek_nat –0.723*** 0.2784 

rural –0.814*** 0.2899 

aquatic 0.305 0.4067 

advent 1.481*** 0.3110 

Log L –11,170.0 

AIC 22,456.0 

Pseudo-R2 0.408 

N 6,661 



43 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A4- Parameter estimates for RPLc-ECM imposing restrictions on some taste shifters 

*** p<0.01, ** p<0.05, * p<0.1 

 RPLc-ECM 

Variable Coef St.Error 

𝑅𝐸𝐺1 3.250*** 0.3778 

𝑅𝐸𝐺2 1.949*** 0.3982 

𝑅𝐸𝐺3 0.018 0.4694 

𝑅𝐸𝐺4 1.610*** 0.3959 

𝑅𝐸𝐺5 1.313*** 0.3542 

𝑅𝐸𝐺6 0.489 0.3851 

𝐷𝐼𝑆𝑇 –0.520*** 0.0516 

𝑟_𝑇𝐸𝑀𝑃 2.313*** 0.4144 

𝑅𝐴𝐼𝑁 –0.324*** 0.0698 

𝑇𝐶𝑃𝐼 –0.010* 0.0060 

𝑇𝑂𝑈_𝑆𝑃𝑂𝑇𝑆 0.122*** 0.0094 

𝑁𝐴𝑇_𝑃𝐴𝑅𝐾𝑆 0.056*** 0.0087 

𝑆𝐼𝑍𝐸_𝑁𝐴𝑇 0.002** 9.2e-04 

𝑆𝐾𝐼_𝐾𝑀 0.001*** 2.3e-04 

𝑆𝐾𝐼_𝐾𝑀 ∗ 𝑤𝑖𝑛𝑡𝑒𝑟_𝑠𝑝𝑜𝑟𝑡𝑠 0.009*** 5.1e-04 

𝐶𝑂𝐴𝑆𝑇 –1.356*** 0.1834 

𝐶𝑂𝐴𝑆𝑇 ∗ 𝑎𝑞𝑢𝑎𝑡𝑖𝑐 2.787*** 0.1255 

SD 𝐷𝐼𝑆𝑇 0.434*** 0.0168 

SD 𝑟_𝑇𝐸𝑀𝑃 1.753*** 0.3452 

Cov(𝐷𝐼𝑆𝑇, 𝑟_𝑇𝐸𝑀𝑃) 0.106 0.1254 

𝜗1 0.061 0.6334 

𝜗2 0.964*** 0.1369 

𝜗3 0.184 0.3782 

𝜗4 1.954*** 0.2333 

𝐷𝐼𝑆𝑇 Mean shifters 

age 0.002*** 8.2e-04 

inc2 0.059** 0.0250 

inc3 0.159*** 0.0355 

parsize –0.093*** 0.0101 

weekend –0.568*** 0.0273 

q4 –0.186*** 0.0456 

d_warmorigin2 –0.135*** 0.0353 

d_warmorigin3 –0.127*** 0.0302 

d_warmorigin4 0.108* 0.0616 

mou_trek_nat –0.188*** 0.0269 

aquatic 0.295*** 0.0266 

advent 0.073** 0.0285 

𝑟_𝑇𝐸𝑀𝑃 Mean shifters 

weekend –0.691*** 0.2520 

q1 –1.239*** 0.3629 

q4 –1.357*** 0.3667 

d_warmorigin1 2.067*** 0.4116 

d_warmorigin3 –2.984*** 0.5116 

mou_trek_nat –0.592** 0.2590 

rural –0.720*** 0.2790 

advent 1.469*** 0.2847 

Log L –11,189.1 

AIC 22,466.4 

Pseudo-R2 0.407 

N 6,661 
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 RPLc-ECM 

Variable Coef St.Error 

𝑅𝐸𝐺1  2.774*** 0.1835 

𝑅𝐸𝐺2 1.503*** 0.2529 

𝑅𝐸𝐺3 0.618** 0.2558 

𝑅𝐸𝐺4 0.990*** 0.2492 

𝑅𝐸𝐺5 0.717*** 0.1550 

𝐷𝐼𝑆𝑇 –0.544*** 0.0596 

𝑟_𝑇𝐸𝑀𝑃 2.481*** 0.7433 

𝑅𝐴𝐼𝑁 –0.222*** 0.0721 

𝑇𝐶𝑃𝐼 –0.003 0.0065 

𝑇𝑂𝑈_𝑆𝑃𝑂𝑇𝑆 0.104*** 0.0097 

𝑁𝐴𝑇_𝑃𝐴𝑅𝐾𝑆 0.081*** 0.0109 

𝑆𝐼𝑍𝐸_𝑁𝐴𝑇 0.002*** 9.3e-04 

𝑆𝐾𝐼_𝐾𝑀 0.001*** 2.4e-04 

𝑆𝐾𝐼_𝐾𝑀 ∗ 𝑤𝑖𝑛𝑡𝑒𝑟_𝑠𝑝𝑜𝑟𝑡𝑠 0.009*** 5.7e-04 

𝐶𝑂𝐴𝑆𝑇 –1.380*** 0.1837 

𝐶𝑂𝐴𝑆𝑇 ∗ 𝑎𝑞𝑢𝑎𝑡𝑖𝑐 2.575*** 0.1272 

SD 𝐷𝐼𝑆𝑇 0.293*** 0.0248 

SD 𝑟_𝑇𝐸𝑀𝑃 1.779*** 0.3501 

Cov(𝐷𝐼𝑆𝑇, 𝑟_𝑇𝐸𝑀𝑃) 0.012 0.1118 

𝜗1 0.500** 0.2316 

𝜗2 0.370 0.2662 

𝜗3 0.031 1.3255 

𝐷𝐼𝑆𝑇 Mean shifters 

age 0.002*** 8.5e-04 

inc2 0.117*** 0.0263 

inc3 0.207*** 0.0380 

parsize –0.077*** 0.0098 

weekend –0.501*** 0.0265 

q1 –0.072 0.0511 

q2 –0.029 0.0437 

q4 –0.210*** 0.0537 

d_warmorigin1 –0.021 0.0546 

d_warmorigin2 –0.106** 0.0463 

d_warmorigin3 –0.126*** 0.0389 

d_warmorigin4 0.132** 0.0629 

winter_sports –0.071 0.0733 

mou_trek_nat –0.194*** 0.0272 

rural –0.043* 0.0255 

aquatic 0.257*** 0.0291 

advent 0.084*** 0.0279 

𝑟_𝑇𝐸𝑀𝑃 Mean shifters 

age 0.008 0.0090 

inc2 0.270 0.2707 

inc3 0.389 0.3440 

parsize –0.118 0.0994 

weekend –0.597** 0.2503 

q1 –1.500*** 0.5453 

q2 –0.657 0.6063 

q4 –1.671*** 0.5517 
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Table A5.- Parameter estimates for RPLc-ECM without the Balearic and the Canary Islands 

*** p<0.01, ** p<0.05, * p<0.1 

d_warmorigin1 1.747*** 0.4222 

d_warmorigin2 1.178* 0.6045 

d_warmorigin3 –2.956*** 0.6194 

d_warmorigin4 –0.111 0.5972 

winter_sports –0.602 0.4097 

mou_trek_nat –0.833*** 0.2701 

rural –0.693** 0.2787 

aquatic –0.141 0.3903 

advent 1.336*** 0.2994 

Log L –10,273.2 

AIC 20,658.5 

Pseudo-R2 0.388 

N 6,207 
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APPENDIX C 

 

The travel cost method has a long tradition in recreational demand studies as a way to compute 

the costs associated with travelling to a particular place. Typically, it consists of multiplying 

the geographic distance by some monetary indicator that considers both transportation costs 

and the value of travel time. When modelling same-day recreational demand, most people travel 

by car so that each kilometre between the place of residence and the destination is usually 

multiplied by €0.19 (Bujosa and Rosselló, 2013). Indeed, this corresponds to the official per 

diem allowance of transportation costs per kilometre in Spain. The opportunity cost of one hour 

of travelling time is generally defined as one third of the wage rate (Cesario, 1976; Hanauer 

and Reid, 2017; Swait et al., 2020), although there is some controversy about whether such 

fraction is appropriate (Amoako-Tuffour and Martínez-Espiñeira, 2012; Czajkowski et al., 

2019).  

 

However, when working with trips that involve long distances, we face the problem that we 

need to define distinct unitary cost per kilometre depending on the chosen mode of transport. 

This choice is likely to be endogenous with the choice of destination, since for instance the 

Balearic and the Canary Islands cannot be accessed by car, bus or train. Moreover, individuals 

might use several modes of transport to reach faraway destinations (see Voltaire et al., 2017 for 

a discussion). That is the reason why we opted for using geographical distance in the main 

analysis. Nevertheless, here we inspect whether our findings would change if we used the travel 

cost method.  

 

Given the joint determination of the mode of transport and the destination, we follow Bujosa 

and Rosselló (2013) and Voltaire et al. (2017) restrict the sample only to tourists travelling to 

destinations that can be accessed by road-based transport modes. Therefore, the Balearic and 

the Canary Islands are excluded, both as destinations and potential origins. The resulting sample 

size is 6,207 individuals.  

 

We do not have information on respondents’ hourly wage. We only know households’ income 

(in intervals). To have a continuous indicator, we first run an interval regression in which 

household income is regressed on standard sociodemographic characteristics including gender, 

age, education, household size, labour status, nationality, civil status, the size of the 

municipality of residence and regional fixed effects. The parameter estimates are available upon 

request. The fitted values are then divided by the number of household members to get a 

(continuous) estimation of individual monthly income. Then, for those who declare to be 

employed, this imputed individual income is divided by 150 under the assumption individuals 

work 37.5 hours per week (standard full-time workday in Spain). Therefore, the resulting value 

is an estimate of the hourly wage (in €). This way of deriving hourly wages from aggregated 

monthly or annual income is common in the travel cost literature in the absence of wage 

information (Hanauer and Reid, 2017; Swait et al., 2020). Next, assuming individuals travel on 

average at 90 kilometres per kilometre, estimated travel time to each destination would be given 
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by 𝐷𝐼𝑆𝑇𝑖𝑗/90. Altogether, the travel cost to reach region j for each individual i is defined as 

follows: 

 

𝐶𝑂𝑆𝑇𝑖𝑗 = €0.19 ∗  𝐷𝐼𝑆𝑇𝑖𝑗  +  
1

3
 ∗  𝐼𝑛𝑐𝑜𝑚𝑒̂

𝑖 ∗
1

ℎ𝑜𝑢𝑠𝑒𝑠𝑖𝑧𝑒𝑖
∗

1

150
∗

𝐷𝐼𝑆𝑇𝑖𝑗

90
 𝑖𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 = 1 

𝐶𝑂𝑆𝑇𝑖𝑗 = €0.19 ∗  𝐷𝐼𝑆𝑇𝑖𝑗  𝑖𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 = 0 

(1) 

 

where 𝐼𝑛𝑐𝑜𝑚𝑒̂  is the continuous estimation of household income.  

 

Figure A8 presents a kernel density plot of the imputed (net) hourly wage in the sample (𝑤𝑖 =

𝐼𝑛𝑐𝑜𝑚𝑒̂ 𝑖 ∗
1

ℎ𝑜𝑢𝑠𝑒𝑠𝑖𝑧𝑒𝑖
∗

1

150
). The mean estimate is €8.71, with is not far from the gross mean hourly 

wage in Spain that is equal to €11.9 (INE, 2021).  

 

 

Figure A8.- Kernel density plot for imputed hourly wage (𝑤𝑖) 

 

We recognize this cost imputation is subject to the underlying assumptions, but studies using 

the travel cost method also make similar suppositions. Figure A9 depicts kernel density plots 

of DIST and COST. As shown there, given aside scale differences, the distribution of both 

variables in the sample is quite similar. The pairwise correlation between the two is 0.979. This 

is an expected result because of the following: the conversion of geographical distance to 

transportation costs is a simple scale adjustment. The second component (opportunity cost of 

time) adds little variation to the first one, especially as geographic distance to the origin grows 

relative to the hourly wage. As a result, the travel cost method allows for capturing individual-

specific travel costs through the opportunity cost of time when the travel distances are reduced. 

In the context of long-distance trips, this method adds little to the use of geographic distance. 
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That might be the reason why the travel cost method is preferred in the recreational demand 

literature while origin-destination distances are used in studies concerned about tourism flows.  

 

 

Figure A9.- Kernel density plots for DIST and COST 

 

The variable 𝐷𝐼𝑆𝑇𝑖𝑗 is replaced in the model by 𝐶𝑂𝑆𝑇𝑖𝑗, with everything else kept unchanged. 

Table A6 presents the corresponding parameter estimates. Note that since we are working with 

a subsample that excludes the Balearic and the Canary Islands, the estimates can be compared 

with those presented in Table A5 above. By comparing the estimation results from Tables A5 

(with geographic distance, DIST) and A6 (with travel costs, COST), we document that the 

travel cost method produces consistent results.  
 

 

 RPLc-ECM 

Variable Coef St.Error 

𝑅𝐸𝐺1  2.749*** 0.1828 

𝑅𝐸𝐺2 1.475*** 0.2523 

𝑅𝐸𝐺3 0.563** 0.2558 

𝑅𝐸𝐺4 0.968*** 0.2489 

𝑅𝐸𝐺5 0.701*** 0.1553 

𝐶𝑂𝑆𝑇 –0.022*** 0.0028 

𝑟_𝑇𝐸𝑀𝑃 2.374*** 0.7431 

𝑅𝐴𝐼𝑁 –0.220*** 0.0724 

𝑇𝐶𝑃𝐼 –0.003 0.0065 

𝑇𝑂𝑈_𝑆𝑃𝑂𝑇𝑆 0.104*** 0.0098 

𝑁𝐴𝑇_𝑃𝐴𝑅𝐾𝑆 0.081*** 0.0109 

𝑆𝐼𝑍𝐸_𝑁𝐴𝑇 0.002*** 9.4e-04 

𝑆𝐾𝐼_𝐾𝑀 0.001*** 2.4e-04 

𝑆𝐾𝐼_𝐾𝑀 ∗ 𝑤𝑖𝑛𝑡𝑒𝑟_𝑠𝑝𝑜𝑟𝑡𝑠 0.009*** 5.7e-04 

𝐶𝑂𝐴𝑆𝑇 –1.385*** 0.1841 

𝐶𝑂𝐴𝑆𝑇 ∗ 𝑎𝑞𝑢𝑎𝑡𝑖𝑐 2.577*** 0.1270 
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Table A6.- Parameter estimates for RPLc-ECM without the Balearic and the Canary Islands and 

replacing DIST by travel costs (COST) 

*** p<0.01, ** p<0.05, * p<0. 

 

SD 𝐶𝑂𝑆𝑇 0.014*** 0.0011 

SD 𝑟_𝑇𝐸𝑀𝑃 1.787*** 0.3472 

Cov(𝐶𝑂𝑆𝑇, 𝑟_𝑇𝐸𝑀𝑃) -5.3e-04 0.0052 

𝜗1 0.521** 0.2284 

𝜗2 0.357 0.2778 

𝜗3 0.085 0.7649 

𝐶𝑂𝑆𝑇 Mean shifters 

age 1.0e-04*** 4.1e-03 

inc2 0.006*** 0.0012 

inc3 0.011*** 0.0018 

parsize –0.005*** 0.0004 

weekend –0.022*** 0.0012 

q1 –0.004* 0.0024 

q2 –0.016 0.0020 

q4 –0.009*** 0.0024 

d_warmorigin1 –0.001 0.0025 

d_warmorigin2 –0.004** 0.0021 

d_warmorigin3 –0.006*** 0.0018 

d_warmorigin4 0.005** 0.0028 

winter_sports –0.071 0.0733 

mou_trek_nat –0.008*** 0.0012 

rural –0.001 0.0012 

aquatic 0.011*** 0.0013 

advent 0.004*** 0.0013 

𝑟_𝑇𝐸𝑀𝑃 Mean shifters 

age 0.010 0.0090 

inc2 0.244 0.2703 

inc3 0.340 0.3437 

parsize –0.107 0.0990 

weekend –0.563** 0.2512 

q1 –1.447*** 0.5463 

q2 –0.592 0.6075 

q4 –1.597*** 0.5527 

d_warmorigin1 1.750*** 0.4231 

d_warmorigin2 1.219** 0.6054 

d_warmorigin3 –2.824*** 0.6197 

d_warmorigin4 –0.068 0.5943 

winter_sports –0.618 0.4088 

mou_trek_nat –0.827*** 0.2699 

rural –0.707** 0.2785 

aquatic –0.191 0.3899 

advent 1.351*** 0.2989 

Log L –10,304.6 

AIC 20,721.2 

Pseudo-R2 0.387 

N 6,207 
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APPENDIX D 
 

The estimates of the structural parameters in our Random Utility Model might provide an 

incomplete picture of individual’s marginal utilities. The ‘unconditional’ mean of 𝛽𝑘𝑖 (only 

conditioning on Z) is simply: 

 

𝐸[𝛽𝑘𝑖|𝑍𝑖] =  𝑏𝑘 + 𝛿𝑘′𝑍𝑖    (2) 

 

According to Greene (2004), the ‘unconditional’ mean estimator in (2) is an ambiguous 

estimator of the marginal sensitivities. A proper characterization of the MUs needs to also take 

into account the actual choices made by the individual, the existing correlation between the 

attributes assumed to be random (if any) and the correlation between similar destinations in the 

form of the error-components included in the model. In other words, we look for an estimator 

of the MUs that considers all available information about individual i.  

 

Let 𝑓(𝛽|𝛺) be the distribution of the individual-specific parameters in the population, 𝑃𝑖𝑗(𝑦𝑗|𝛽) 

the probability that respondent i chooses destination j conditional on 𝛽, and ℎ(𝛽|𝑦𝑗 , 𝛺) the 

distribution of the individual-specific parameters for those who make the choices 𝑦𝑗. By 

applying Bayes Theorem, the conditional on choices in-sample marginal distribution ℎ(𝛽|𝑦𝑗 , 𝛺) 

for the RPL model can be derived as follows: 

 

ℎ(𝛽|𝑦𝑗 , 𝛺) =  
𝑃𝑖𝑗(𝑦𝑗|𝛽)𝑓(𝛽|𝛺) 

𝑃𝑖𝑗(𝑦𝑗|𝛺) 
 =

exp(𝑉𝑖𝑗 )

∑ exp(𝑉𝑖𝑗)
𝐽
𝑗=1

 𝑓(𝛽𝑖|Ω)

∫
exp(𝑉𝑖𝑗 )

∑ exp(𝑉𝑖𝑗)
𝐽
𝑗=1

  𝑓(𝛽𝑖|Ω) 𝑑𝛽𝑖 
  (3) 

 

Since the denominator in (B.2) is the integral of the numerator and is a constant, the conditional 

marginal distribution ℎ(𝛽|𝑦𝑗, 𝛺) is proportional to the numerator. The expression in (3) 

becomes more complex when the model incorporates error-components. Since in the RPLc-

ECM model 𝑉𝑖𝑗 =  𝐴𝑆𝐶𝑗  +  𝑋𝑘𝑗’𝛽𝑘  +  𝜗𝑛𝐸𝑛𝑖𝑗 , the conditional distribution of the choices 

(𝑃𝑖𝑗(𝑦𝑗|𝛽)) needs to firstly eliminate the error components from the expression by integrating 

over its standard normal distribution.  

 

The conditional expectation of the individual-specific marginal utilities is given by: 

 

𝐸(𝛽𝑖|𝑦𝑖𝑗, 𝑋𝑘𝑗, 𝑍𝑖) =
∫ ∫ 𝛽𝑖 𝑃𝑖𝑗(𝑦𝑗|𝛽, 𝑋𝑘𝑗, 𝐸𝑖) 𝑓(𝛽𝑖,𝐸𝑖 |𝑍𝑖)𝑑𝐸𝑖 𝑑 𝛽𝑖𝐸𝑖𝛽𝑖

∫ ∫ 𝑃𝑖𝑗(𝑦𝑗|𝛽, 𝑋𝑘𝑗, 𝐸𝑖) 𝑓(𝛽𝑖,𝐸𝑖 |𝑍𝑖)𝑑𝐸𝑖 𝑑 𝛽𝑖𝐸𝑖𝛽𝑖

   (4) 

 

where 𝑓(𝛽𝑖,𝐸𝑖 |𝑍𝑖) is the joint marginal density of 𝛽𝑖  and 𝐸𝑖 . Since 𝛽𝑖  and 𝐸𝑖  are independent, 

the joint density equals the product of their separate marginal distributions. Therefore, for each 
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individual i, the MUs are estimated as the mean of their conditional distribution13. Note that 

𝐸(𝛽𝑖|𝑦𝑖𝑗, 𝑋𝑘𝑗, 𝑍𝑖) conditions on all available information about individual i whereas 𝐸[𝛽𝑖|𝑍𝑖] 

only conditions on the vector of taste shifters. This is why we have referred to the latter as the 

‘unconditional’ distribution of the MUs. A detailed derivation of these conditional mean 

estimates can be found in Greene (2004; 2012, pp. 144-147), Greene et al. (2006), Train (2009, 

p. 262-264), and Hess (2010). Since the integral in (4) does not have a closed form solution, the 

conditional means of the parameters are approximated by Simulated Maximum Likelihood14.  

 

Figures A10 and A11 show a kernel plot of the estimated individual-specific parameter 

estimates for 𝐷𝐼𝑆𝑇 and 𝑟_𝑇𝐸𝑀𝑃15.  

 

As is evident from these Figures, the conditional mean estimates of the marginal utilities of 

𝐷𝐼𝑆𝑇 and 𝑟_𝑇𝐸𝑀𝑃 are heterogeneous. Regarding distance, although a small share attaches 

positive utility, in general it can be regarded as a dissuasive factor rather than a desirable feature. 

Interestingly, although the structural parameter of 𝑟_𝑇𝐸𝑀𝑃 (b2) is positive, a non-negligible 

share of the sample has a negative conditional marginal utility. It is important to highlight here 

that although the two distributions appear to be bimodal, these conditional mean estimates are 

not necessarily normally distributed (Greene, 2004). 

 

 

 

 

 

 
13 Greene (2012) warns that these estimates are conditioned on the observable information for individual 

i. Put another way, the 𝛽𝑖̂ would be the same for two individuals with exactly the same observable 

characteristics and observed choices, since the estimates are mean values for the subpopulation that have 

the same observables and made the same choice. In any case, these individual-specific parameter 

estimates are efficient estimates of 𝛽𝑖. 
14 Alternatively, the estimation could be performed under a hierarchical Bayes framework. Huber and 

Train (2001) provide a discussion on the Bayesian and the classical approaches to derive the individual 

estimates. They conclude that both procedures are virtually identical.  
15 These estimates have been computed for the RPLc-ECM model. We use a kernel density estimator 

instead of a histogram because the underlying distributions are continuous rather than discrete.  
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Figure A10.- Kernel density of conditional MU mean estimates for DIST 

 

 

 

 

 

 

 

 

 

 

 

Figure A11.- Kernel density of conditional MU mean estimates for r_TEMP 
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