OIKOS

Physiology and acclimation potential are tuned with phenology in larvae of a prolonged breeder amphibian

Journal:	Oikos
Manuscript ID	OIK-08566.R1
Wiley - Manuscript type:	Research
Keywords:	metabolic scope, Alytes almogavarii, breeding phenology, developmental rate, growth, SMR
Abstract:	Due to the speed of climate changes, rapid buffering mechanisms such as phenotypic plasticity – which may depend on breeding phenology – could be key to avoid extinction. The links between phenology and plasticity, however, remain understudied. Here we explored the matching between phenology and the thermal sensitivity of standard (SMR) and routine metabolic rates (RMR), metabolic scope (i.e. the difference between RMR and SMR), survival and growth-development trajectories in larvae of a prolonged breeder amphibian (Alytes almogavarii) acclimated to 10 and 20°C, belonging to three cohorts: autumn pre-overwintering, autumn overwintering and spring tadpoles. At 20°C, survival of autumn pre-overwintering larvae was lower than for the rest. Although all cohorts showed acclimation potential, patterns for SMR and RMR differed, leading to differences in metabolic scope. Regardless of temperature, overwintering tadpoles arrested growth and development, while pre-overwintering and spring tadpoles showed higher growth and development at 20°C. At 10°C pre-overwintering tadpoles allocated more energy to development compared to spring tadpoles to advance development before winter. Overall, we demonstrate that the effects of temperature depend on phenology, consistent with future, expected thermal regimes. This suggests that extreme events can yield different vulnerability to climate change within populations (e.g., associated to discrete within-year cohorts), and not only between species or populations.

- 1 Physiology and acclimation potential are tuned with phenology in
- 2 larvae of a prolonged breeder amphibian
- 3

4 Abstract

5 Due to the speed of climate changes, rapid buffering mechanisms such as phenotypic 6 plasticity – which may depend on breeding phenology – could be key to avoid extinction. The 7 links between phenology and plasticity, however, remain understudied. Here we explored the 8 matching between phenology and the thermal sensitivity of standard (SMR) and routine 9 metabolic rates (RMR), metabolic scope (i.e. the difference between RMR and SMR), survival 10 and growth-development trajectories in larvae of a prolonged breeder amphibian (Alytes 11 almogavarii) acclimated to 10 and 20°C, belonging to three cohorts: autumn pre-12 overwintering, autumn overwintering and spring tadpoles. At 20°C, survival of autumn pre-13 overwintering larvae was lower than for the rest. Although all cohorts showed acclimation 14 potential, patterns for SMR and RMR differed, leading to differences in metabolic scope. 15 Regardless of temperature, overwintering tadpoles arrested growth and development, while 16 pre-overwintering and spring tadpoles showed higher growth and development at 20°C. At 17 10°C pre-overwintering tadpoles allocated more energy to development compared to spring 18 tadpoles to advance development before winter. Overall, we demonstrate that the effects of 19 temperature depend on phenology, consistent with future, expected thermal regimes. This 20 suggests that extreme events can yield different vulnerability to climate change within 21 populations (e.g., associated to discrete within-year cohorts), and not only between species or 22 populations.

23 Keywords: metabolic scope, Alytes almogavarii, breeding phenology, developmental

24 rate, growth, metabolic rate, RMR, SMR.

25 **1. Introduction**

26 The Earth's climate is rapidly changing and the same trend is forecasted for the next 27 decades (IPCC 2014, Seneviratne et al. 2014). Global temperature rises count among 28 the most evident consequences of climate change and most organisms have already 29 responded by shifting phenology (Beebee 1995, Both and Visser 2001, Menzel et al. 30 2006). Simultaneously, the frequency of extreme climatic events (e.g. droughts, 31 heatwaves, sudden temperature drops) and their duration are also increasing (Montori 32 et al. 2011, Morán-Ordóñez et al. 2018, Smale et al. 2019). Thus, phenological 33 adjustments may be insufficient to prevent organisms from experiencing stressful 34 environmental conditions. In order to avoid extinction, species could shift distribution 35 ranges, change their behaviour (e.g. thermoregulatory behaviour), adapt through 36 genetic evolution or adjust their phenotypes through phenotypic plasticity (Chevin et 37 al. 2010, Moritz and Agudo 2013, Pecl et al. 2017). Due to the velocity of climate 38 change, rapid response mechanisms such as phenotypic plasticity could be the most 39 effective means with which to buffer the impacts of extreme climatic events (DuBois et 40 al. 2020). However, we still need a deeper appreciation of whether (and how) 41 phenology and phenotypic plasticity in key traits interact.

42 Phenotypic plasticity stands for the ability of organisms to express different 43 phenotypes without changing their genotype (Pigliucci 2005) and contributes in 44 keeping biological functions relatively constant despite environmental variation. 45 Plasticity comprises a variety of phenomena that occur at different time-scales. 46 Within-generation plasticity (WGP) includes irreversible plastic changes that occur 47 during development (i.e. developmental plasticity; Beaman et al. 2016, Sgrò et al. 48 2016, but see Enriquez-Urzelai et al. 2019, Gunderson et al. 2020) and short-term 49 reversible plasticity, also known as acclimation (Rogers et al. 2004, Huey et al. 2012). 50 Besides, exposure to certain environmental conditions can also have delayed effects, 51 sometimes referred to as stress memory (Bigot et al. 2018, Byrne et al. 2020), 52 suggesting that previous experience can facilitate the response to later exposure. For 53 instance, animals exposed to warm temperatures over a short-period of time have 54 been shown to endure later heat-waves better than naïve animals (Loeschcke & 55 Hoffmann, 2007). In addition to the plasticity expressed within a generation, the

influence of the environment on phenotypes can be transmitted to future generations:
this is known as anticipatory parental effects (Uller et al. 2013) or transgenerational
plasticity (TGP), and may involve epigenetic mechanisms (Fox and Mousseau 1998,
Salinas and Munch 2012, Donelson et al. 2018). Although phenotypic plasticity is
theoretically beneficial, the degree of induced phenotypic changes might fail to reach
expected environmental changes (Gunderson and Stillman 2015, Gunderson et al.
2017, Enriquez-Urzelai et al. 2020).

63 Yet, plasticity in physiological traits, notably in metabolic rates, will be crucial for 64 organisms to persist in changing environments (Norin and Metcalfe 2019, Alton et al. 65 2020, Jutfelt 2020). In ectotherms, standard metabolic rates (SMR) represent the 66 minimum metabolic conversion of food into energy required to sustain life (Norin et al. 67 2016, Winterová and Gvoždík 2020). Routine metabolic rates (RMR), in turn, represent 68 the metabolic rate of undisturbed but spontaneously active individuals (Lindgren and 69 Laurila 2009, Nadler et al. 2020). The difference between these two rates reflects the 70 amount of energy available for routine activities (metabolic scope hereafter; Naya and 71 Bozinovic 2012, Naya et al. 2012, Bozinovic and Naya 2015), like spontaneous activity, 72 growth, development and reproduction (Fry 1947, Claireaux and Lefrançois 2007). 73 Because metabolic rates are temperature-dependent, climate change will impact upon 74 them (Pörtner and Knust 2007, Pörtner and Farrell 2008, Dillon et al. 2010). In the 75 absence of compensatory phenotypic plasticity (e.g. metabolic plasticity), this will very 76 likely curtail net energy gain, ultimately reducing activity periods, growth and 77 developmental rates, and fitness (Huey and Kingsolver 2019). However, because global 78 warming can result in a shortening of the effective winter (e.g., shorter snow cover 79 periods) and extended growing seasons, the opposite is expected at higher elevations 80 and latitudes (Chen et al. 2005, Prislan et al. 2019).

In species with prolonged breeding seasons (hereafter prolonged breeders),
offspring born early or late in the year encounter drastically different thermal
conditions, impacting on their metabolic performance (Uller and Olsson 2010). Thus,
to counteract this variation, breeding phenology could be coupled with physiological
and plasticity differences between cohorts (e.g. in metabolic rates; Orizaola et al. 2010,
2013, Richter-Boix et al. 2014, Sun et al. 2018). The presence, absence or combination

of these mechanisms may determine the ability to respond to unexpected extreme
events due to climate change: while short-term plasticity (i.e. acclimation) and stress
memory could enhance metabolic performance (e.g. increasing survival, growth and
development), TGP could turn out detrimental if parental pre-conditioning oppose the
direction of extreme events (i.e., phenological mismatches).

92 Here, we explored whether phenotypic plasticity is linked to breeding phenology 93 to enhance metabolic performance and key life-history traits in a prolonged breeder 94 amphibian, the Catalonian midwife toad (Alytes almogavarii). Midwife toads are good 95 candidates to tackle this question because, in addition to breeding throughout most of 96 the year, they often breed in small and thermally homogeneous waterbodies (García-97 París et al. 2004, Richter-Boix et al. 2006). This spatial uniformity in the thermal 98 conditions encountered by larvae, combined with high temporal variation, may 99 promote differences in physiology and/or potential for plasticity (Wu et al. 2007). We 100 analysed the effects of phenology and temperature on metabolic rates, survival, 101 growth and development by comparing larval A. almogavarii entering the aquatic 102 phase at different times; thus, these larvae expect distinct thermal conditions (Fig. S1). 103 Specifically, we compared three groups of larvae: autumn pre-overwintering (Ap), 104 autumn overwintering (Ao), and spring (S) tadpoles. Pre-overwintering and overwinter 105 tadpoles belonged to the same (autumn) cohort, but they were tested either as young, 106 small tadpoles (Ap), or by late winter as older, bigger larvae (Ao). We expect tadpoles 107 expecting low temperatures (Ap) to have lower SMR and higher RMR at low 108 temperatures -leading to a better performance in growth/development-, compared 109 to tadpoles expecting high temperatures (Ao and S). Further, we hypothesize that 110 overwintering animals should show stress memory of the plastic responses required to 111 overwinter: specifically, we expect stress memory in the form of enhanced potential 112 for future acclimation to low temperatures.

113 **2. Materials and methods**

114 **2.1** Animals and experimental design

115 We collected three groups of 50 *A. almogavarii* tadpoles from the Garraf massif

116 (41.272º N, 1.877º E) at 26-28 Gosner developmental stage (Gosner 1960) and ~9 mm

(S and Ap) or ~12 mm (Ao) of SVL. To evaluate the effect of reproductive phenology (i.e., tadpole cohort) on physiological and developmental responses, we collected the first group by November 2012 (group 'Ap', freshly laid, pre-overwintering autumn cohort; all tadpoles in this cohort would overwinter in the field), and two more groups by March 2013 (group 'Ao', overwintered autumn cohort; and group 'S', freshly laid spring cohort). Ao and S tadpoles were unmistakable due to the evident difference in size.

124 Tadpoles were transported to The University of the Basque Country's facilities 125 and immediately placed at a constant temperature room (20°C) for approximately 1 126 week, allowing them to acclimate to laboratory conditions. Tadpoles were kept 127 individually in 150 ml crystal glasses filled with dechlorinated tap water and 128 submerged in a water bath. After the pre-acclimation, half the tadpoles from each 129 group were moved to a 10°C constant temperature room (low temperature treatment; 130 T10) and the other half was maintained at 20°C (high temperature treatment; T20); 131 these temperatures roughly match the average pond temperatures in autumn and 132 spring in the Garraf massif (see Supporting Information). This resulted in a set of six 133 combinations of temperature and tadpole cohort (Ap20, Ap10, Ao20, Ao10, S20, and 134 S10). Tadpoles were fed *ad libitum* with slightly boiled spinach and we changed the 135 water every second day. Photoperiod was set at 12L:12D throughout the experiment. 136 We photographed all tadpoles every week, and recorded their Gosner developmental 137 stage and size (snout-vent length, SVL; ± 10⁻⁸ mm) based on digital images using 138 SigmaScan Pro 5.0. In addition, we checked tadpoles and recorded mortality events 139 (day of death) every day.

140 **2.2** Estimation of metabolic rates (SMR, RMR and metabolic scope)

We estimated the metabolic rates of the experimental animals from the oxygen consumptions ($O_2 \mu l h^{-1}$) at the rearing temperature (10 and 20°C for tadpoles in T10 and T20 treatments, respectively). Tadpoles were individually placed in plastic tubes sealed with LDO oxygen probes connected to oxygen meters (HATCH HQ40d) and we observed the decrease in oxygen concentration over time (1-2 hours). We measured the oxygen consumption of eight tadpoles simultaneously in each trial. Two empty plastic tubes were used as controls in every trial to measure any potential bacterial

148 activity. To calculate tadpole metabolic rates, the (mean) oxygen consumption in the 149 control tubes during each measurement, when found to be significant, was subtracted 150 from tadpoles' consumption. All the set-up was kept submerged in a temperature-151

controlled water bath to prevent temperature oscillations.

152 We measured routine metabolic rates (RMR) as the energetic maintenance cost 153 plus any other energetic cost due to spontaneous activity and stress. Metabolic rates 154 were estimated just before splitting of T10 and T20 treatments (day 0), the day after 155 exposing animals to 10°C (day 1; measurements only at 10°C), at days 2, 7, and once 156 every week thereafter until no sign of metabolic acclimation was observed. In addition, 157 from day 2 onwards, after the measurement of RMR, half of the tadpoles in each 158 treatment were deprived of food until their metabolic rates reached an asymptote (3 159 and 4 days for the T10 and T20 treatments, respectively) to obtain an estimate of SMR 160 (the energetic maintenance costs in absence of substantial movement and digestive 161 and absorptive activity). We used consistently the same set of food-deprived animals 162 because starvation is known to affect the response in front of environmental factors 163 (Enriquez-Urzelai et al. 2013).

164 A separate group of 25 animals was reared for three weeks in order to determine 165 the allometric scaling component between metabolic rate (RMR) and tadpole size 166 (SVL). We fitted a standardized major axis regression with the estimated variance 167 matrix of measurement error in order to account for repeated measurements using 168 the *smatr* R-package (Warton et al. 2012). The resulting scaling component was *b* = 169 2.513 (R² = 0.413, F_{1.49} = 93.44, p < 0.0001; based on log-transformed values of RMR 170 and SVL). Accordingly, metabolic rates (SMR and RMR) were standardized to a 171 common size of 10 mm using the expression: $MR_{st} = MR_e \times (10/SVL)^{2.513}$, where MR_{st} 172 states for the standardized SMR or RMR, and MR_e represents the experimental SMR or 173 RMR. Using these standardized metabolic rates, we computed the metabolic scope 174 subtracting SMR values to RMR, and the thermal sensitivity (Q_{10}) of SMR (Q_{10-SMR}) 175 dividing SMR values of animals at 20 °C by SMR values of animals at 10 °C.

176 2.3 Statistical analyses

177 We analysed tadpoles' survival using the survival R-package (Therneau 2012) and non-178 parametric Cox proportional hazard (CoxPH) models. Hazard states for the 179 instantaneous potential of an event to occur (here death). CoxPH models assume that 180 hazards are proportional and that a baseline hazard exists. Then, the multiplicative 181 effect of covariates over that baseline are estimated. Prior to adjusting non-parametric 182 CoxPH models, we assessed the proportional hazard (PH) assumption for all the 183 individual variables (size, Gosner stage of development, animal cohort and 184 temperature treatment) fitting univariate CoxPH models. Temperature treatment did not meet the assumption of PH (ρ = 0.509, χ^2 = 7.14, p = 0.008) and, consequently, we 185 186 analysed the effects of size, developmental stage, and animal cohort in each 187 temperature treatment separately. We fitted a CoxPH model with all the variables 188 (survival ~ size + stage + cohort) within each temperature treatment, and then, we 189 reduced the model following a backward stepwise algorithm based on Akaike's 190 Information Criterion (AIC). All the models were constructed using the robust sandwich 191 variance estimator to account for repeated measures. These models estimate a hazard 192 ratio for each covariate. Hazard ratio values > 1 indicate that risk of death decrease 193 and values < 1 indicate that risk of death increases with a unit increase of the 194 corresponding covariate.

195 We assessed differences in standardized metabolic rates at the start (days 0, 1 196 and 2) and at the end of the experiment (day 42) with a factorial ANCOVA using 197 Gosner stage of development as a covariate and cohort and temperature treatment as 198 fixed factors. When ANCOVA indicated a significant effect of cohort, we used the 199 Tukey's HSD post-hoc test to evaluate which groups differed. Besides, we tested for 200 differences in RMR between days 1 and 2 in the T10 tadpoles using a factorial ANCOVA 201 with developmental stage as covariate, day and cohort as fixed factors, and individual 202 tadpoles (subjects) as random effect to avoid pseudoreplication. We used t-tests to 203 check whether the thermal sensitivity of SMR (Q_{10-SMR}) at days 2 and 42 was 204 significantly different from 2.5, which approximates the expected Q₁₀ value of non-205 acclimated – and even post-acclimation – individuals (Clarke and Johnston 1999, 206 Willmer et al. 2005, Jutfelt 2020). To report Q_{10-SMR} values for each group, we 207 computed mean SMR values at 20 and 10°C, and we divided the mean value at 20°C

by the mean value at 10°C. To perform *t*-tests, however, we divided SMR values of
tadpoles exposed to 20°C by the SMR of tadpoles at 10°C at a random fashion.

210 To evaluate acclimation responses in RMR, SMR and metabolic scope between 211 days 7 and 42, we used generalized additive mixed models (GAMM) as implemented in 212 the mgcv (Wood 2011) and nlme (Pinheiro et al. 2016) R-packages. We established 213 developmental stage as a covariate, cohort, temperature treatment, and their 214 interaction as fixed factors, and time (i.e. day) as the smooth term. To correct for 215 temporal autocorrelation and pseudoreplication, we added a temporal correlation 216 structure to the model (Zuur et al. 2009) and individual tadpoles (subjects) were 217 included as a random intercept (Schielzeth and Nakagawa 2013). Further, we used the 218 Varldent variance structure to control for different spreads between treatments (Zuur 219 et al. 2009). An important parameter estimated by this analysis is the "estimated 220 degrees of freedom" (edf) of the examined covariate. Edf equal to 1 implies a linear 221 effect and values greater than 1 indicate a nonlinear effect (Stenseth et al. 2006). Since 222 mortality could potentially be different for individuals with different metabolic rates 223 (e.g. higher mortality in tadpoles with higher metabolic rates), we repeated all 224 analyses regarding metabolic rates only including the animals that survived until the 225 end of the experiment. Results are identical to those obtained when including all 226 animals (see Tables S1–S3). Thus, we only present results with all tadpoles in the main 227 text.

228 To compare the patterns of development and growth between treatments, we 229 used the analysis of phenotypic trajectories (Adams and Collyer 2009), only including 230 constantly fed tadpoles. We constructed a matrix consisting of developmental stage 231 and size over time for all treatments and calculated their corresponding trajectories. 232 These trajectories are characterized by size (magnitude), orientation (direction) and 233 shape. Pairwise comparisons of size, orientation and shape ($MD_{i,i}$, $\theta_{i,i}$ and $D_{Shape:i,i}$ 234 respectively) were done using the residual randomization method with 10000 random 235 permutations. We performed the analysis of phenotypic trajectories using the 236 geomorph R-package (Adams et al. 2018).

3. Results

238 Our results showed that survival differed between cohorts at high but not low 239 temperatures. Mortality ranged from 0% (Ao10 and S10) to 59% (Ap20). At high 240 temperature (T20), the best-fit model for tadpole survival included all the terms (size, 241 developmental stage and cohort). Mortality risk decreased along with developmental 242 stage, but size did not have a significant effect (Table 1a). Taking S tadpoles as the 243 baseline hazard, at high temperatures mortality was ~9 times higher for Ap tadpoles. 244 We found no significant differences in the mortality between Ao and S tadpoles. The 245 best-fit model at low temperatures (T10) only included size and developmental stage 246 (Table 1b), but the model was not significant, indicating a failure to detect any pattern 247 in mortality risk.

248 At the start of the experiment we found differences in RMR and the acute 249 change of RMR, but not SMR between different cohorts. At day 0, tadpoles assigned to 250 different temperature treatments did not differ in RMR ($F_{1, 132} = 1.193$, p = 0.277). 251 However, we found a strong effect of animal cohort ($F_{2, 132}$ = 13.098, p < 0.0001). Ap 252 tadpoles showed higher RMR than the rest (Ap vs. Ao: p < 0.0001; Ap vs. S: p < 0.0001; 253 Ao vs. S: p = 0.958; Fig. 1). At low temperatures, tadpoles maintained constant 254 metabolic rates from day 1 to day 2 (T10: ANCOVA; $F_{1.71} = 0.712$, p = 0.402). However, 255 animal cohort had a significant effect on metabolic rate changes (i.e. different cohorts 256 differed in the degree of plasticity; $F_{2,71} = 4.961$, p = 0.010). The interaction between 257 cohort and temperature had a significant effect on RMR of day 2 (Table 2). 258 Consequently, we analysed the effect of cohort separately within each temperature 259 treatment. We found no significant effect of cohort at the low temperature treatment; 260 in the T20 treatment, however, cohort and developmental stage had significant effects 261 (Table 2; Fig. 1). In contrast, differences in SMR between cohorts were negligible ($F_{2,58}$ 262 = 0.393, p = 0.677), and only the effect of temperature was significant ($F_{1.58}$ = 126.208, 263 p < 0.0001). We recorded Q_{10-SMR} values of 1.91, 2.42 and 2.65 on pre-overwintering, 264 overwintering and spring cohort tadpoles, respectively. None of these Q₁₀ values were 265 significantly different from the expected 2.5 value (Ap: t_9 = -1.811, p = 0.104; Ao: t_{11} = 266 0.359, p = 0.727; S: $t_{11} = 0.920$, p = 0.377).

In addition to the direct effects on initial metabolic rates, different cohorts
 showed differences in their potential for plasticity (i.e. the interaction between cohort

269 and temperature), which influenced the acclimation processes of RMR and SMR, and 270 consequently the metabolic scope. Ao10 tadpoles showed an increase in RMR and a 271 decrease in SMR. In contrast, tadpoles in the rest of the groups showed a decrease in 272 both RMR and SMR (Table 3, Fig. S2-S3), with the exception of S10 tadpoles, which 273 showed no significant trend. We found a significant effect of cohort (F = 15.377, p < 15.377, 274 0.0001), temperature (F = 32.924, p < 0.0001), and their interaction (F = 25.433, p < 0.0001) 275 0.0001) on metabolic scope over time. The acclimation process affected metabolic 276 scope only in Ao10 (edf = 1.00, F = 19.802, p = 0.0001), Ap20 (edf = 1.00, F = 9.136, p = 277 0.003) and S20 (edf = 1.00, F = 50.328, p < 0.0001) groups. While Ao10 tadpoles 278 showed a significant increase, Ap20 and S20 tadpoles showed a significant decrease in 279 metabolic scope over time (Figs. 2, S4).

280 At the end of the experiment we found differences in RMR and SMR between 281 cohorts due to differences in plastic responses, but complete acclimation in SMR 282 regardless of the cohort. At day 42 the interaction between developmental stage and 283 cohort significantly affected RMR (Fig. S5). We also detected a significant effect of 284 temperature and developmental stage (Table 4; Fig. 1). As in the case of RMR, the 285 interaction between developmental stage and cohort affected SMR (Table 4; Fig. S5). 286 Remarkably, the effect of temperature on SMR was nonsignificant. The Q_{10-SMR} values 287 were 1.00, 1.38 and 1.41 for Ap, Ao and S tadpoles respectively. These values were 288 significantly different from 2.5 for Ao and S tadpoles (Ao: t_{10} = -5.075, p = 0.0004; S: t_{10} 289 = -3.477, p = 0.006), but not for Ap tadpoles ($t_5 = -2.007$, p = 0.101), likely due to the 290 low sample size derived from mortality.

291 The development-growth trajectories also differed between cohorts and 292 temperature treatments (i.e. in size and orientation). Regarding size, we identified two 293 sets of trajectories (Fig. 3): large (Ap20 and S20) and small (Ao20, Ao10, Ap10 and 294 S10). Tadpoles in different treatments could be assigned to four distinct orientations: 295 1) Ap10, 2) Ao20, 3) S10, S20 and Ap20, and 4) Ao10 (Table 5). At low temperatures, S 296 and Ap tadpoles showed different allocation strategies, with autumn tadpoles 297 allocating more energy to development than spring tadpoles (Ap10 had a steeper 298 slope than S10; Table 5; Fig. 3).

4. Discussion

300 As global temperatures rise and the frequency and duration of extreme events 301 increase, the ability of organisms to sustain metabolic performance and adjust life-302 history transitions (e.g. the timing of metamorphosis) will be key to avoid extinction 303 (Briscoe et al. 2012, Kielland et al. 2019, Alton et al. 2020). All these aspects may be 304 modulated by breeding phenology (Richter-Boix et al. 2014, Sun et al. 2018). Thus, to 305 understand the impacts of climate change on biodiversity, we need to establish the 306 links between phenology and metabolic and life-history flexibility. A primary finding of 307 our study was that different seasonal cohorts (autumn and spring) of a prolonged 308 breeder (A. almoqavarii) differ markedly in survival, physiological acclimation, and 309 developmental trajectories. The offspring of prolonged breeders recruited at different 310 times experience very different levels of environmental stress, thus generating marked 311 within-population variation both in reproductive success and offspring survival. In this 312 line, we demonstrate that breeding phenology is coupled with offspring anticipatory 313 responses: metabolic acclimation and the growth-development trajectories of discrete 314 seasonal cohorts were different and consistent with future, expected thermal regimes. 315 This suggests that extreme events can yield different vulnerability to climate change 316 within populations (e.g., associated to discrete within-year cohorts), and not only 317 between species or populations (Seebacher and Franklin 2012).

318 Short term WGP (e.g. acclimation) could also modify thermal physiology and 319 ameliorate the impacts of altered temperatures (Morley et al. 2019, Kielland et al. 320 2019). However, the potential for metabolic acclimation seems to vary between taxa 321 (Marshall and Grigg 1980, Sandblom et al. 2014, Markle and Kozak 2018). Our results 322 show that RMR differed among animal cohorts at the start of the experiment (days 0, 1 323 and 2, especially at high temperatures), and that the thermal sensitivity of SMR (Q_{10-} 324 _{SMR}) matched the expected value of ~2.5 (Willmer et al. 2005, Lardies et al. 2008). 325 Despite these initial differences in RMR, the acute response to exposure to 10°C was 326 similar among animal cohorts and all reached similar metabolic rates (Fig. 1). Further, 327 all the experimental groups (with the exception of S10) showed metabolic acclimation, 328 and post-acclimation Q_{10-SMR} approximated a value of 1, which indicates complete 329 acclimation (Sandblom et al. 2014, Kielland et al. 2019, Jutfelt 2020). Metabolic

330 acclimation, however, varied among groups: overwintering tadpoles at 10°C (Ao10) 331 increased their RMR, while the rest of the groups decreased RMR and SMR (Fig. 1, S1, 332 and S2). The observed differences in acclimation trends (both of RMR and SMR) 333 between tadpole groups (Fig. 1; Table 3) had a direct impact on metabolic scope 334 through time: while metabolic scope decreased in Ap20 and S20, it increased in Ao10 335 (Fig. 2 and S4). Thus, we show that in addition to differences between species (Markle 336 and Kozak 2018) and individuals within a population (Norin et al. 2016), discrete 337 cohorts within a population can also differ in the potential for metabolic acclimation. 338 Further, the increase in metabolic scope of overwintering tadpoles at low 339 temperatures suggests that undergoing overwintering increases the acclimation 340 potential to later exposure to low temperatures (i.e. stress memory), as reported for

341 other ectotherms (Angilletta 2009, Nyamukondiwa and Terblanche 2010).

342 Anticipatory TGP has been shown to increase the survival probability of offspring 343 in a wide range of organisms, form invertebrate to vertebrate ectotherms (Rosa et al. 344 2012, Chirgwin et al. 2018, Diaz et al. 2020). Our results suggest that larvae of A. 345 almogavarii may also benefit from TGP, which might act as a link between the 346 environment experienced by parents and the expected thermal conditions of larvae to 347 increase survival. However, our experimental design does not allow to discriminate 348 between WGP and TGP. Yet, at high temperatures, survival was higher in larvae 349 expecting an increase in temperatures (Ao and S) compared to larvae expecting 350 decreasing temperatures through development (Ap). The higher mortality of pre-351 overwintering compared to overwintering tadpoles is not surprising because of the 352 size differences between them (Reinke et al. 2020). However, differences in mortality 353 between pre-overwintering (autumn) and spring tadpoles cannot be explained by size. 354 In nature, the embryo and larval stages of autumn and spring cohorts expect opposite 355 temperature trends: decreasing and increasing temperatures, in autumn and spring 356 respectively (Fig. S1). Since in our study animals were kept in identical conditions, 357 external cues such as photoperiod (Sanabria and Quiroga 2011) can be ruled out as 358 triggers of anticipatory mechanisms. Then, the observed difference in survival between 359 autumn (Ap) and spring (S) cohorts is compatible with a scenario of TGP (Fox and 360 Mousseau 1998, Richter-Boix et al. 2014, Yin et al. 2019), in which the breeding

phenology of parents precondition their offspring thermal physiology and, thus,
survival probability given their environment (Putnam and Gates 2015, Sun et al. 2018,
Diaz et al. 2020).

364 From the energy available for aerobic activities, a considerable proportion should 365 be allocated to growth and development at larval stages, since these may determine 366 survival to the adult stage (Kingsolver et al. 2012). Our results revealed distinct 367 allocation strategies between different cohorts (Fig. 3). Breeding phenology has been 368 shown to alter the energy investment to either growth or development in amphibian 369 tadpoles, due to the difference in length of favourable conditions between life-history 370 transitions (Orizaola et al. 2010, Dahl et al. 2012, Burraco et al. 2020). Surprisingly, 371 although metabolic scope decreased in spring and pre-overwintering tadpoles at high 372 temperature, they grew and developed faster than overwintering tadpoles, in which 373 metabolic scope did not change significantly. Taken together, these results suggest 374 that overwintering tadpoles arrested developmental and growth (as shown for other 375 amphibian tadpoles before the onset of winter; Walsh et al. 2008, 2016). On the 376 contrary, pre-overwintering and spring tadpoles – which invested a similar amount of 377 energy to growth and development – tried to exploit transient favourable conditions, 378 plausibly, at expenses of other functions (e.g. fighting disease; Kirschman et al. 2018). 379 However, at low temperatures spring and pre-overwintering tadpoles took different 380 allocation strategies. Pre-overwintering tadpoles allocated more energy to 381 development than spring cohort tadpoles, possibly to reach metamorphosis, or at least 382 an advanced developmental stage, before the onset of winter (Walsh et al. 2008, 383 2016). In contrast, spring cohort tadpoles do not expect limiting thermal or food 384 conditions. Thus, they might develop at a slower pace, leading to bigger sizes at 385 metamorphosis (Enriquez-Urzelai et al. 2013, Benard 2015, Burraco et al. 2020).

In the face of climate change, unravelling the mechanisms that will effectively protect biodiversity (e.g. metabolic acclimation), or those that could render them more susceptible to extinction has become a priority (Seebacher and Franklin 2012, Alton et al. 2020). Many factors including phenology, however, could modulate the effectiveness of this mechanisms. Our results demonstrate that offspring survival, metabolic acclimation, and energy allocation strategies are linked to phenology (i.e.

392 breeding date) in A. almogavarii. Apparently, the date at which embryos become free-393 living, swimming larvae influences their physiological and life-history responses to 394 thermal conditions. Newly hatched autumn and spring tadpoles show differential 395 survival and energy allocation strategies (i.e. energy invested in growth or 396 development) matching the thermal conditions they are likely to encounter. This is 397 supported by the higher mortality and faster developmental trajectories of pre-398 overwintering, autumn tadpoles compared to spring tadpoles at high temperatures. 399 Plausibly, this is mediated by a combination of TGP – e.g. parental influences on 400 offspring phenotype to increase survival chances – and WGP – which allows tadpoles 401 to adjust their phenotype to prevailing conditions –. However, our experimental design 402 only allowed us to unequivocally determine WGP differences between cohorts. 403 Further, we show that overwintered tadpoles were able to increase the energy 404 available for aerobic activities by increasing RMR, as opposed to pre-overwintering 405 tadpoles. Thus, previous thermal history might improve the response capacity to later 406 exposures, conforming to stress memory. It is noteworthy that different cohorts could 407 belong to separate genetic units, and that some of the reported variation in 408 metabolism and life-history have a genetic basis (Sinsch 1992; but see Jourdan-Pineau 409 et al., 2012). Since there is no data on the temporal structuring of midwife toad 410 populations, further studies should investigate this aspect. Altogether, our results 411 suggest that discrete cohorts across the breeding season could be sensitive to climate 412 change, not only due to a differential exposure, but also due to limitations imposed by 413 the temporal matching of phenology, larval physiology and energy allocation 414 strategies.

415 **5. References**

416 Adams, D. C. and Collyer, M. L. 2009. A general framework for the analysis of

- 417 phenotypic trajectories in evolutionary studies. Evolution 63: 1143–1154.
- 418 Adams, D. C. et al. 2018. Package 'geomorph: Geometric Morphometric Analyses
 419 of 2D/3D Landmark Data. R package version 3.0. 5. CRAN.
- Alton, L. A. et al. 2020. Developmental nutrition modulates metabolic responses to
 projected climate change. Functional Ecology in press. 34: 2488–2502.
 https://doi.org/10.1111/1365-2435.1366.
- 423 Angilletta, M. J. 2009. Thermal adaptation: A theoretical and empirical synthesis. 424 Oxford University Press.

425	Beaman, J. E. et al. 2016. Evolution of plasticity: Mechanistic link between
426	development and reversible acclimation Trends in Ecology and Evolution 31:
427	237–249.
428	Beebee, T. J. C. 1995. Amphibian breeding and climate Nature 374: 219–220.
429	Benard, M. F. 2015. Warmer winters reduce frog fecundity and shift breeding
430	phenology, which consequently alters larval development and metamorphic
431	timing Global Change Biology 21: 1058–1065.
432	Bigot, S. et al. 2018. Pivotal roles of environmental sensing and signaling mechanisms
433	in plant responses to climate change Global Change Biology 24: 5573–5589.
434	Both, C. and Visser, M. E. 2001. Adjustment to climate change is constrained by arrival
435	date in a long-distance migrant bird Nature 411: 296–298.
436	Bozinovic, F. and Naya, D. E. 2015. Linking physiology, climate, and species
437	distributional ranges In: Martin, L. B. et al. (eds), Integrative Organismal Biology.
438	John Wiley & Sons, Inc, pp. 277–290.
439	Briscoe, N. J. et al. 2012. Stage-dependent physiological responses in a butterfly cause
440	non-additive effects on phenology Oikos 121: 1464–1472.
441	Burraco, P. et al. 2020. Limits to compensatory responses to altered phenology in
442	amphibian larvae Oikos 130: 231–239.
443	Byrne, M. et al. 2020. Limitations of cross- and multigenerational plasticity for marine
444	invertebrates faced with global climate change Global Change Biology 26: 80–
445	102.
446	Chen, X. et al. 2005. Spatial and temporal variation of phenological growing season and
447	climate change impacts in temperate eastern China Global Change Biology 11:
448	1118–1130.
449	Chevin, L. M. et al. 2010. Adaptation, plasticity, and extinction in a changing
450	environment: Towards a predictive theory PLoS Biology 8: e1000357.
451	Chirgwin, E. et al. 2018. How does parental environment influence the potential for
452	adaptation to global change? - Proceedings of the Royal Society B: Biological
453	Sciences 285: 20181374.
454	Claireaux, G. and Lefrançois, C. 2007. Linking environmental variability and fish
455	performance: Integration through the concept of scope for activity
456	Philosophical Transactions of the Royal Society B: Biological Sciences 362: 2031–
457	2041.
458	Clarke, A. and Johnston, N. M. 1999. Scaling of metabolic rate with body mass and
459	temperature in teleost fish Journal of Animal Ecology 68: 893–905.
460	Dahl, E. et al. 2012. Time constraints and flexibility of growth strategies: Geographic
461	variation in catch-up growth responses in amphibian larvae Journal of Animal
462	Ecology 81: 1233–1243.
463	Diaz, F. et al. 2020. Environmental predictability drives adaptive within- and
464	transgenerational plasticity of heat tolerance across life stages and climatic
465 466	regions Functional Ecology 35: 153-166.
466 467	Dillon, M. E. et al. 2010. Global metabolic impacts of recent climate warming Nature
467 468	467: 704–706.
468 460	Donelson, J. M. et al. 2018. Transgenerational plasticity and climate change
469 470	experiments: Where do we go from here? - Global Change Biology 24: 13–34. DuBois, K. et al. 2020. Previous exposure mediates the response of eelgrass to future
470 471	warming via clonal transgenerational plasticity. – Ecology 101: e03169.
т/1	

472	Enriquez-Urzelai, U. et al. 2013. Food availability determines the response to pond
473	desiccation in anuran tadpoles Oecologia 173: 117–127.
474	Enriquez-Urzelai, U. et al. 2019. Ontogenetic reduction in thermal tolerance is not
475	alleviated by earlier developmental acclimation in Rana temporaria Oecologia
476	189: 385–394.
477	Enriquez-Urzelai, U. et al. 2020. The roles of acclimation and behaviour in buffering
478	climate change impacts along elevational gradients Journal of Animal Ecology
479	89: 1722–1734.
480	Fox, C. and Mousseau, T. 1998. Maternal effects as adaptations for transgenerational
481	phenotypic plasticity in insects Maternal effects as adaptions 159: 159–177.
482	Fry, F. E. J. 1947. Effect of the environment on animal activity University of Toronto
483	Press.
484	García-París, M. et al. 2004. Amphibia: Lissamphibia In: Fauna Ibérica. Museo
485	Nacional de Ciencias Naturales. CSIC.
486	Gosner, K. 1960. A simplified table for staging anuran embryos and larvae with notes
487	on identification Herpetologica 16: 183–190.
488	Gunderson, A. R. and Stillman, J. H. 2015. Plasticity in thermal tolerance has limited
489	potential to buffer ectotherms from global warming Proceedings of the Royal
490	Society B: Biological Sciences 282: 20150401.
491	Gunderson, A. R. et al. 2017. Estimating the benefits of plasticity in ectotherm heat
492	tolerance under natural thermal variability Functional Ecology 31: 1529–1539.
493	Gunderson, A. R. et al. 2020. Egg incubation temperature does not influence adult heat
494	tolerance in the lizard Anolis sagrei Biology Letters 16: 20190716.
495	Huey, R. B. and Kingsolver, J. G. 2019. Climate warming, resource availability, and the
496	metabolic meltdown of ectotherms American Naturalist 194: E140–E150.
497	Huey, R. B. et al. 2012. Predicting organismal vulnerability to climate warming: Roles of
498	behaviour, physiology and adaptation Philosophical Transactions of the Royal
499	Society B: Biological Sciences 367: 1665–1679.
500	IPCC 2014. IPCC — Fifth Assessment Report (AR5) WGII AR5.
501	Jourdan-Pineau, H. et al. (2012). Phenotypic plasticity allows the Mediterranean
502	parsley frog <i>Pelodytes punctatus</i> to exploit two temporal niches under continuous
503	gene flow Molecular Ecology 21: 876–886.
504	Jutfelt, F. 2020. Metabolic adaptation to warm water in fish Functional Ecology 34:
505	1138–1141.
506	Kielland, \emptyset . N. et al. 2019. Warm and out of breath: Thermal phenotypic plasticity in
507	oxygen supply Functional Ecology 33: 2142–2149.
508	Kingsolver, J. G. et al. 2012. Direct and indirect phenotypic selection on developmental
509	trajectories in <i>Manduca sexta</i> Functional Ecology 26: 598–607.
510	Kirschman, L. J. et al. 2018. Critical disease windows shaped by stress exposure alter
511	allocation trade-offs between development and immunity Journal of Animal
512	Ecology 87: 235–246.
513	Lardies, M. A. et al. 2008. The cost of living slowly: Metabolism, Q10 and repeatability
514	in a South American harvestman Physiological Entomology 33: 193–199.
515	Lee, W. S. et al. 2020. Thermal transgenerational effects remain after two generations.
516	- Ecology and Evolution 10: 11296–11303.

517	Lindgren, B. and Laurila, A. 2009. Physiological variation along a geographical gradient:
518	Is growth rate correlated with routine metabolic rate in Rana temporaria
519	tadpoles? - Biological Journal of the Linnean Society 98: 217–224.
520	Markle, T. M. and Kozak, K. H. 2018. Low acclimation capacity of narrow-ranging
521	thermal specialists exposes susceptibility to global climate change Ecology and
522	Evolution 8: 4644–4656.
523	Marshall, E. and Grigg, G. C. 1980. Lack of metabolic acclimation to different thermal
524	histories by tadpoles of <i>Limnodynastes peroni</i> (Anura: Leptodactylidae)
525	Physiological Zoology 53: 1–7.
526	Menzel, A. et al. 2006. European phenological response to climate change matches the
520 527	warming pattern Global Change Biology 12: 1969–1976.
528	Montori, A. et al. 2011. Descenso brusco de temperaturas y nevadas tardías como
528 529	causasde mortalidad de anfibios durante el período reproductor Bol. Asoc.
530	Herpetol. Esp 22: 72–74.
531	Morán-Ordóñez, A. et al. 2018. Modelling species responses to extreme weather
532	provides new insights into constraints on range and likely climate change impacts
533	for Australian mammals Ecography 41: 308–320.
534	Moritz, C. and Agudo, R. 2013. The future of species under climate change: Resilience
535	or decline? - Science 341: 504–508.
536	Morley, S. A. et al. 2019. Physiological acclimation and persistence of ectothermic
537	species under extreme heat events Global Ecology and Biogeography 28: 1018–
538	1037.
539	Nadler, L. E. et al. 2020. A brain-infecting parasite impacts host metabolism both
540	during exposure and after infection is established Functional Ecology 35: 105-
541	116. https://doi.org/10.1111/1365-2435.13695.
542	Naya, D. E. and Bozinovic, F. 2012. Metabolic scope of fish species increases with
543	distributional range Evolutionary Ecology Research 14: 769–777.
544	Naya, D. E. et al. 2012. Latitudinal patterns in rodent metabolic flexibility American
545	Naturalist 179: E172–E179.
546	Norin, T. and Metcalfe, N. B. 2019. Ecological and evolutionary consequences of
547	metabolic rate plasticity in response to environmental change Philosophical
548	Transactions of the Royal Society B: Biological Sciences 374: 20180180.
549	Norin, T. et al. 2016. Differential plasticity of metabolic rate phenotypes in a tropical
550	fish facing environmental change Functional Ecology 30: 369–378.
551	Nyamukondiwa, C. and Terblanche, J. S. 2010. Within-generation variation of critical
552	thermal limits in adult Mediterranean and Natal fruit flies <i>Ceratitis capitata</i> and
553	<i>Ceratitis rosa</i> : Thermal history affects short-term responses to temperature
554	Physiological Entomology 35: 255–264.
555	Orizaola, G. et al. 2010. Compensating for delayed hatching across consecutive life-
556	history stages in an amphibian Oikos 119: 980–987.
557	Orizaola, G. et al. 2013. Larval life history and anti-predator strategies are affected by
558	breeding phenology in an amphibian Oecologia 171: 873–881.
559 560	Pecl, G. T. et al. 2017. Biodiversity redistribution under climate change: Impacts on
560	ecosystems and human well-being Science 355, no. 6332.
561 562	Pigliucci, M. 2005. Evolution of phenotypic plasticity: Where are we going now? -
562	Trends in Ecology and Evolution 20: 481–486.

563	Pinheiro, J. et al. 2016. NLME: Linear and nonlinear mixed effects models. (Version 3.1-
564	128). CRAN.
565	Pörtner, H. O. and Knust, R. 2007. Climate change affects marine fishes through the
566	oxygen limitation of thermal tolerance Science 315: 95–97.
567	Pörtner, H. O. and Farrell, A. P. 2008. Physiology and climate change Science 322:
568	690–692.
569	Prislan, P. et al. 2019. Growing season and radial growth predicted for Fagus sylvatica
570	under climate change Climatic Change 153: 181–197.
571	Putnam, H. M. and Gates, R. D. 2015. Preconditioning in the reef-building coral
572	Pocillopora damicornis and the potential for trans-generational acclimatization in
573	coral larvae under future climate change conditions Journal of Experimental
574	Biology 218: 2365–2372.
575	Reinke, B. A. et al. 2020. Joint estimation of growth and survival from mark–recapture
576	data to improve estimates of senescence in wild populations Ecology 101:
577	e02877.
578	Richter-Boix, A. et al. 2006. Breeding phenology of an amphibian community in a
579	Mediterranean area Amphibia Reptilia 27: 549–559.
580	Richter-Boix, A. et al. 2014. Transgenerational phenotypic plasticity links breeding
581	phenology with offspring life-history Ecology 95: 2715–2722.
582	Rogers, K. D. et al. 2004. Biochemical acclimation of metabolic enzymes in response to
583	lowered temperature in tadpoles of Limnodynastes peronii Comparative
584	Biochemistry and Physiology - A Molecular and Integrative Physiology 137: 731–
585	738.
586	Rosa, R. et al. 2012. Ocean warming enhances malformations, premature hatching,
587	metabolic suppression and oxidative stress in the early life stages of a keystone
588	squid PLoS ONE 7: e38282.
589	Salinas, S. and Munch, S. B. 2012. Thermal legacies: Transgenerational effects of
590	temperature on growth in a vertebrate Ecology Letters 15: 159–163.
591	Sanabria, E. A. and Quiroga, L. B. 2011. Change in the thermal biology of tadpoles of
592	Odontophrynus occidentalis from the Monte desert, Argentina: Responses to
593	photoperiod Journal of Thermal Biology 36: 288–291.
594	Sánchez-Tójar, A. et al. 2020. The jury is still out regarding the generality of adaptive
595	'transgenerational' effects Ecology Letters 23: 1715–1718.
596	Sandblom, E. et al. 2014. Temperature acclimation rate of aerobic scope and feeding
597	metabolism in fishes: Implications in a thermally extreme future Proceedings of
598	the Royal Society B: Biological Sciences 281: 20141490.
599	Schielzeth, H. and Nakagawa, S. 2013. Nested by design: Model fitting and
600	interpretation in a mixed model era Methods in Ecology and Evolution 4: 14–24.
601	Seebacher, F. and Franklin, C. E. 2012. Determining environmental causes of biological
602	effects: The need for a mechanistic physiological dimension in conservation
603	biology Philosophical Transactions of the Royal Society B: Biological Sciences
604	367: 1607–1614.
605	Seneviratne, S. I. et al. 2014. No pause in the increase of hot temperature extremes
606	Nature Climate Change 4: 161–163.
607	Sgrò, C. M. et al. 2016. What can plasticity contribute to insect responses to climate
608	change? - Annual Review of Entomology 61: 433–451.

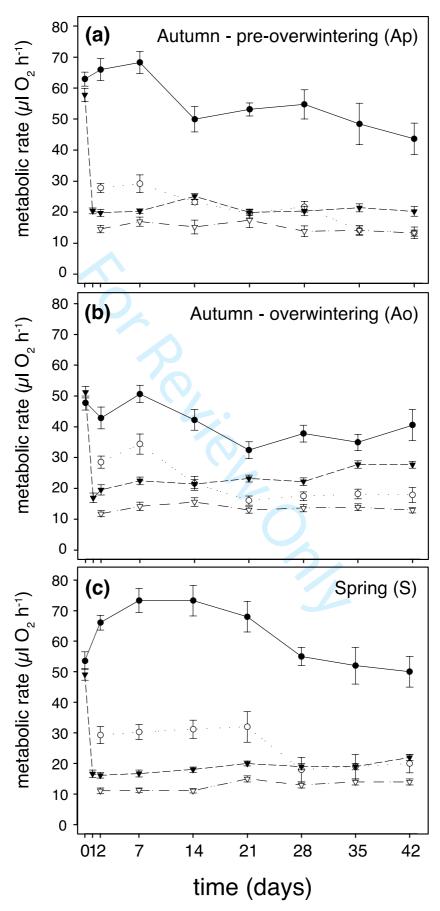

609	Sinsch, U. 1992. Structure and dynamic of a natterjack toad metapopulation (Bufo
610	calamita) Oecologia 90: 489–499.
611	Smale, D. A. et al. 2019. Marine heatwaves threaten global biodiversity and the
612	provision of ecosystem services Nature Climate Change 9: 306–312.
613	Stenseth, N. C. et al. 2006. Seasonal plankton dynamics along a cross-shelf gradient
614	Proceedings of the Royal Society B: Biological Sciences 273: 2831–2838.
615	Sun, B. J. et al. 2018. Phenology and the physiological niche are co-adapted in a desert-
616	dwelling lizard Functional Ecology 32: 2520–2530.
617	Therneau, T. 2012. A Package for Survival Analysis in S. R package version CRAN.
618	Uller, T. and Olsson, M. 2010. Offspring size and timing of hatching determine survival
619	and reproductive output in a lizard Oecologia 162: 663–671.
620	Uller, T. et al. 2013. Weak evidence for anticipatory parental effects in plants and
621	animals Journal of Evolutionary Biology 26: 2161–2170.
622	Walsh, P. T. et al. 2008. Larval over-wintering: Plasticity in the timing of life-history
623	events in the common frog Journal of Zoology 276: 394–401.
624	Walsh, P. T. et al. 2016. Factors affecting the overwintering of tadpoles in a temperate
625	amphibian Journal of Zoology 298: 183–190.
626	Warton, D. I. et al. 2012. smatr 3- an R package for estimation and inference about
627	allometric lines Methods in Ecology and Evolution 3: 257–259.
628	Willmer, P. et al. 2005. Environmental Physiology of Animals, Second Edition. Wiley-
629	Blackwell.
630	Winterová, B. and Gvoždík, L. 2020. Individual variation in seasonal acclimation by
631	sympatric amphibians: a climate change perspective Functional Ecology 35:
632	117–126.
633	Wood, S. N. 2011. Fast stable restricted maximum likelihood and marginal likelihood
634	estimation of semiparametric generalized linear models Journal of the Royal
635	Statistical Society. Series B: Statistical Methodology 73: 3–36.
636	Wu, H. J. et al. 2007. Metabolic compensation and behavioral thermoregulation of
637	subtropical rhacophorid (Polypedates megacephalus) tadpoles in container
638	habitats Comparative Biochemistry and Physiology - B Biochemistry and
639	Molecular Biology 146: 101–106.
640	Yin, J. et al. 2019. Transgenerational effects benefit offspring across diverse
641	environments: a meta-analysis in plants and animals Ecology Letters 22: 1976–
642	1986.
643	Zuur, A. F. et al. 2009. Mixed effects models and extensions in ecology with R
644	Springer New York.

Figure 1: Change in standardized metabolic rates through time in **(a)** preoverwintering (Ap), **(b)** overwintering (Ao) and **(c)** spring (S) cohort tadpoles. *Filled* symbols correspond to RMR and *empty* symbols SMR. *Circles* correspond to animals at high temperature and *triangles* animals reared at low temperature.

Figure 2: Change in metabolic scope (RMR - SMR) through time at **(a)** high and **(b)** low temperatures. *Circles* represent pre-overwintering (Ap), *triangles* overwintering (Ao) and *squares* spring (S) cohort tadpoles.

Figure 3: Bivariate trajectories of development (Gosner developmental stage; y axis) and growth (body size; x axis) for the experimental groups. These trajectories are characterized by size (magnitude), orientation (direction) and shape, which capture the amount of net energy allocated to growth/development (magnitude), the difference in allocation to growth and development (direction), and temporal changes in allocation (shape). *Circles* represent pre-overwintering (Ap), *triangles* overwintering (Ao) and *squares* spring (S) cohort tadpoles. *Filled* symbols correspond to high temperature and *empty* symbols to low temperature treatments.

Figure 1

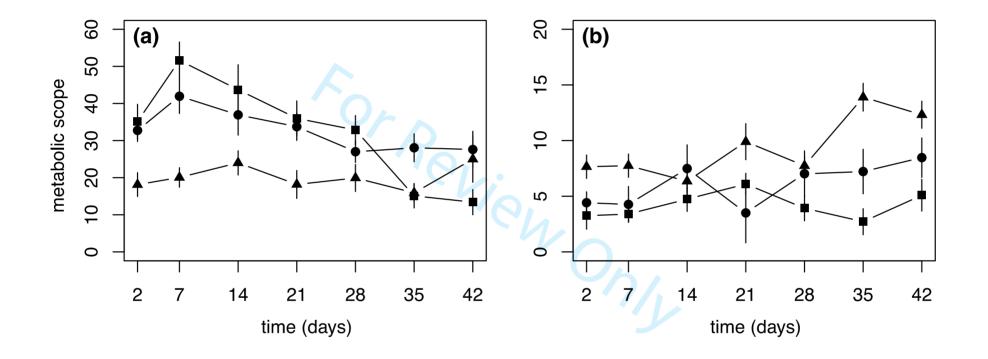
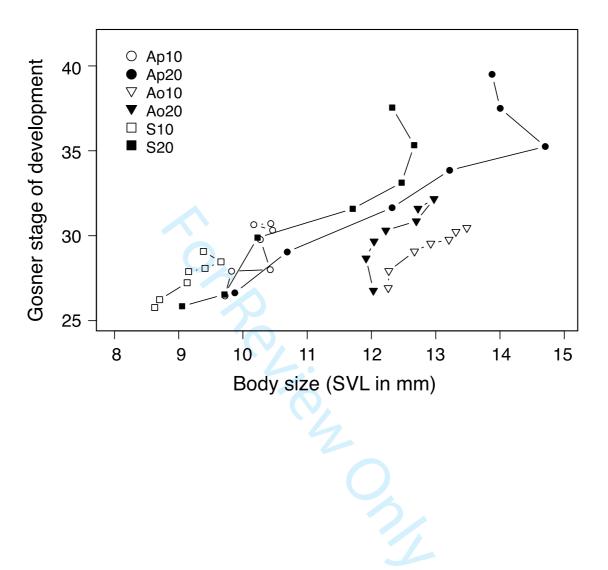



Figure 2

Figure 3

Table 1: Results of survival analyses using CoxPH models after model selection based on AIC at (a) high temperatures (20°C) and (b) low temperatures (10°C). We present estimated β coefficients (β), its associated standard (SE) and robust standard error (Robust SE), the exponentiated coefficient (also known as hazard ratio), lower and upper 95% confidence interals for the exponentiated coefficients, Wald statistic value (z), and its associated *P*-value. In addition, we report the *Robust* score value and the *P*-value for the whole model.

	β	SE (β)	Robust SE	Exp (β)	Lower 0.95	Upper 0.95	Ζ	P-value	Robust	P-value
(a) T20 treatment			-	10,					19.35	< 0.0001
Size	0.333	0.211	0.224	1.395	0.900	2.163	1.489	0.136		
Gosner	-0.498	0.153	0.165	0.608	0.440	0.845	-3.011	0.003		
Cohort: Ap	2.198	0.658	0.602	9.010	2.769	29.314	3.652	< 0.001		
Cohort: Ao	0.828	0.797	0.670	2.288	0.616	8.497	1.236	0.216		
(b) T10 treatment									3.95	0.139
Size	-1.280	0.671	0.373	0.278	0.134	0.578	-3.429	< 0.001		
Gosner	1.382	0.542	0.533	3.983	1.401	11.323	2.593	0.010		

Table 2: Analysis of covariance for routine metabolic rates (RMR) at day 2 of the experiment, including Gosner developmental stage (covariate; G), cohort (C), temperature (T) and their interactions for **(a)** all animal groups and **(b)** 20°C and **(c)** 10 °C temperature treatments separately. 'df': degrees of freedom; 'SS': sum of squares.

Oikos

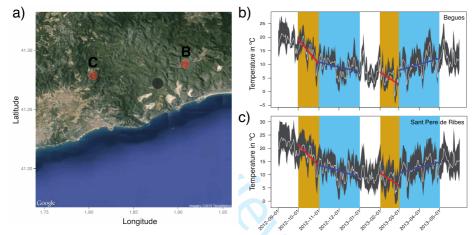
	df	SS	F-value	P-value
(a) Whole model				
Gosner (G)	1	140.4	1.959	0.167
Cohort (C)	2	1694.2	11.821	< 0.0001
Temperature (T)		28215.0	393.737	< 0.0001
G × C	2	117.6	0.821	0.445
G×T	1	590.5	8.240	0.006
C × T	2	2040.8	14.239	< 0.0001
G × C × T	2	131.8	0.920	0.404
Residuals	61	4371.2		
(b) 20ºC treatment		2		
Gosner (G)	1	797.6	6.479	0.016
Cohort (C)	2	3657.7	14.856	< 0.0001
G × C	2	254.7	1.035	0.368
Residuals	30	3693.2		
(c) 10ºC treatment				
Gosner (G)	1	19.9	0.912	0.347
Cohort (C)	2	81.3	1.858	0.173
G × C	2	7.5	0.172	0.843
Residuals	31	678.0		

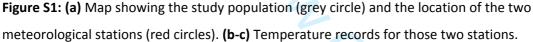
Table 3: Results of generalized additive mixed models (GAMM) for RMR and SMR, including Gosner developmental stage (covariate; G), cohort (C), temperature (T) and their interactions. We used time (i.e. day) as the smooth term and we added a temporal correlation and individual tadpoles as a factor to account for temporal autocorrelation and repeated measurements (i.e. pseudoreplication). 'df': degrees of freedom; 'edf': estimated degrees of freedom.

	RMR				SMR			
	df	F-v	F-value		df	F	value	P-value
Gosner (G)	1	17	.261	<0.0001	1	6	.745	0.010
Cohort (C)	2	49	.815	< 0.0001	2	5	.478	0.005
Temperature (T)	1	63	.775	< 0.0001	1	8	.388	0.004
C×T	2	51	.875	< 0.0001	2	4	.527	0.011
Time effect	RMR		7		SMR			
	edf	F-value	P-value	Trend	edf	F-value	P-value	Trend
Ao10	2.45	13.144	< 0.0001	Increase	1.00	6.634	0.010	Decrease
Ao20	2.42	11.550	< 0.0001	Decrease	3.29	34.419	< 0.0001	Decrease
Ap10	1.00	6.185	0.013	Decrease	1.00	8.659	0.003	Decrease
Ap20	2.44	10.645	<0.0001	Decrease	1.00	61.022	< 0.0001	Decrease
S10	1.00	2.506	0.114	-	1.00	1.546	0.214	-
S20	1.00	45.665	< 0.0001	Decrease	1.00	29.383	< 0.0001	Decrease

Table 4: Analysis of covariance for **(a)** routine metabolic rates (RMR) and **(b)** standard metabolic rates (SMR) at day 42 of the experiment, including Gosner developmental stage (covariate; G), cohort (C), temperature (T) and their interactions. 'df': degrees of freedom; 'SS': sum of squares.

	df	SS	F-value	P-value
(a) RMR				
Gosner (G)	1	14362.0	96.491	< 0.0001
Cohort (C)	2	1959.6	6.583	0.002
Temperature (T)	1	2852.1	19.162	< 0.0001
G×C	2	2428.0	8.156	<0.0001
G×T	1	23.1	0.155	0.695
C×T	2	252.5	0.848	0.431
G × C × T	2	302.2	1.015	0.366
Residuals	103	15330.8		
(b) SMR		D.		
Gosner (G)	1	313.7	10.521	0.002
Cohort (C)	2	391.0	6.557	0.003
Temperature (T)	1	1.18	0.040	0.843
G × C	2	254.2	4.262	0.019
G×T	1	15.2	0.511	0.478
C×T	2	6.5	0.109	0.897
G × C × T	2	186.2	3.122	0.052
Residuals	52	1550.7		


Table 5: Statistical assessment of differences in development-growth trajectory size (up the diagonal; $MD_{i,j}$) and orientation (down the diagonal; $\theta_{i,j}$) between experimental treatment pairs. Between parentheses the observed significance levels (*p*-values) empirically generated from 10,000 random permutations.


	Ao20	Ao10	Ap20	Ap10	S20	S10
Ao20		2.386	8.137	1.119	6.510	2.598
A020	-	(0.311)	(0.006)	(0.628)	(0.015)	(0.271)
Ao10	9.306		10.523	1.267	8.896	0.213
AUIU	(0.047)		(0.001)	(0.501)	(0.0001)	(0.900)
۸n20	9.149	0.157	_	9.256	1.627	10.735
Ap20	(0.090)	(0.974)	-	(0.002)	(0.512)	(0.001)
۸ n 10	3.467	12.773	12.616	_	7.629	1.479
Ap10	(0.478)	(0.005)	(0.017)	-	(0.0003)	(0.436)
S20	6.690	2.616	2.459	10.157	_	9.108
520	(0.153)	(0.528)	(0.614)	(0.023)	-	(0.0001)
S10	5.398	3.907	3.751	8.866	1.291	_
510	(0.253)	(0.333)	(0.450)	(0.043)	(0.761)	-

Supplementary Information for: Physiology and acclimation potential are tuned with phenology in larvae of a prolonged breeder amphibian

We obtained temperature data from two meteorological stations at 3.15 km (Begues) and 6.08 km (Sant Pere de Ribes) from the sampling pond (Fig. S1a) from September 2012 to May 2013. We chose this temporal window because we could analyse the temperatures experienced by their parents before spawning (brown area in Fig. S1b and c) and their expected temperature trend at the aquatic stage (blue area in Fig. S1b and c).

We compared mean, maximum and minimum temperatures of October (terrestrial phase for Ao and Ap groups) and February (terrestrial phase temperatures for S) using t-tests. Mean (Sant Pere de Ribes: $t_{56.39} = 11.370$, p < 0.0001; Begues: $t_{56.54} = 11.525$, p < 0.0001), maximum (Sant Pere de Ribes: $t_{56.5} = 11.709$, p < 0.0001; Begues: $t_{56.73} = 10.303$, p < 0.0001), and minimum temperatures (Sant Pere de Ribes: $t_{55.64} = 9.846$, p < 0.0001; Begues: $t_{55.85} = 10.101$, p < 0.0001) differed between October and February. We also compared the expected temperatures at the aquatic phase of Ao and Ap (November and December) and S (March and April) groups. We found differences for mean ($t_{120} = -2.491$, p = 0.014) and maximum temperatures at Begues ($t_{111.6} = -2.504$, p = 0.014). Further, the temperature trend during the aquatic phase of autumn and spring cohorts differed (blue regression lines in Fig. S1b and c).

Table <u>S12</u>: Analysis of covariance <u>for routine metabolic rates (RMR; excluding animals that</u> <u>died during the course of the experiment</u>) for routine metabolic rates (RMR) at day 2 of the experiment, including Gosner developmental stage (covariate; G), cohort (C), temperature (T) and their interactions for (a) all animal groups and (b) 20°C and (c) 10 °C temperature treatments separately. 'df': degrees of freedom; 'SS': sum of squares.

	df	SS	F-value	P-value
(a) Whole model				
Gosner (G)	1	<u>482.0</u> 140.4	<u>6.9725</u> 1.959	<u>0.0114894</u> 0.167
Cohort (C)	2	<u>1081.2</u> 1694.2	<u>7.819311.821</u>	<-0.00 <mark>0</mark> 1
Temperature (T)	1	<u>23039.9</u> 28215.0	<u>333.2596</u> 393.737	< 0.0001
G×C	2	<u>125.3</u> 117.6	<u>0.9060</u> 0.821	<u>0.4117270</u> 0.445
G × T	1	<u>192.4</u> 590.5	<u>2.7826</u> 8.240	<u>0.1025615</u> 0.006
C×T	2	<u>1161.5</u> 2040.8	<u>8.4005</u> 14.239	< 0.00 <mark>0</mark> 1
G × C × T	2	<u>448.2</u> 131.8	<u>3.2413</u> 0.920	<u>0.0488481</u> 0.404
Residuals	<u>4361</u>	<u>2972.8</u> 4 371.2		
(b) 20ºC treatment				
Gosner (G)	1	<u>221.66</u> 797.6	<u>1.3517</u> 6.479	<u>0.26442</u> 0.016
Cohort (C)	2	<u>1501.02</u> 3657.7	<u>4.5765</u> 14.856	<u>0.02956</u> < 0.0001
G×C	2	<u>528.81</u> 254.7	<u>1.6123</u> 1.035	<u>0.23435</u> 0.368
Residuals	<u>14</u> 30	<u>2295.91</u> 3693.2		
(c) 10ºC treatment				
Gosner (G)	1	<u>22.18</u> 19.9	<u>0.9501</u> 0.912	<u>0.3378</u> 0.347
Cohort (C)	2	<u>73.80</u> 81.3	<u>1.5808</u> 1.858	<u>0.2230</u> 0.173
G × C	2	<u>8.26</u> 7.5	<u>0.1770</u> 0.172	<u>0.8387</u> 0.843
Residuals	<u>29</u> 31	<u>676.90</u> 678.0		

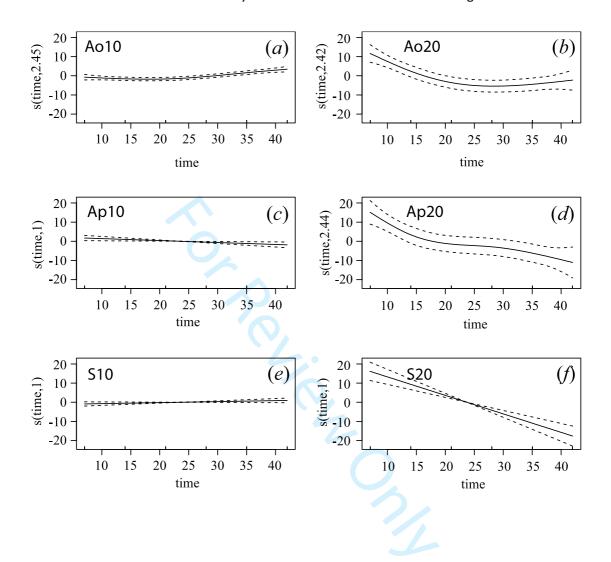
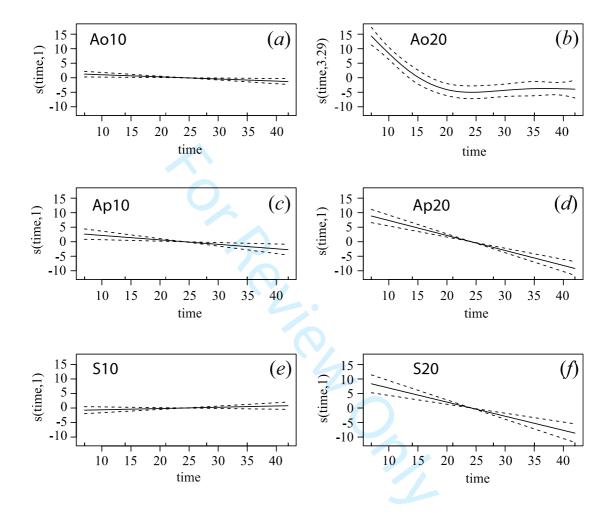
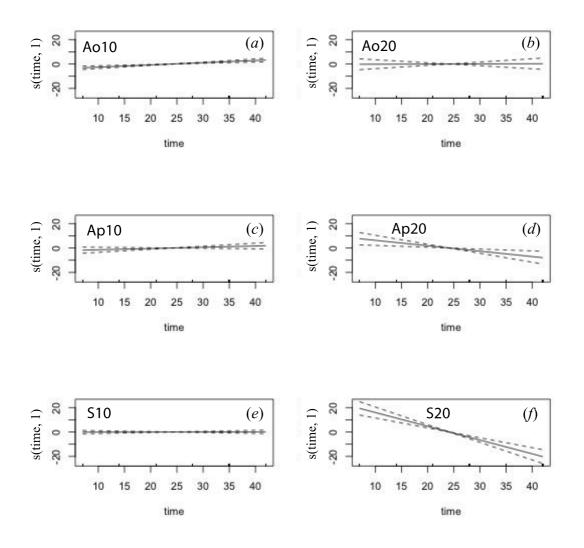
Table <u>S23</u>: Results of generalized additive mixed models (GAMM; excluding animals that died during the course of the experiment) for RMR and SMR, including Gosner developmental stage (covariate; G), cohort (C), temperature (T) and their interactions. We used time (i.e. day) as the smooth term and we added a temporal correlation and individual tadpoles as a factor to account for temporal autocorrelation and repeated measurements (i.e. pseudoreplication). 'df': degrees of freedom; 'edf': estimated degrees of freedom.

	RMR				SMR			
	df	F-v	alue	P-value	df	F-	value	P-value
Gosner (G)	1	<u>19.</u>	<u>29</u> 17.261	<0.0001	1	<u>8.</u>	<u>2516.745</u>	<u>0.004</u> 0.010
Cohort (C)	2	<u>48.</u>	<u>88</u> 49.815	< 0.0001	2	<u>4.</u>	<u>918</u> 5.478	<u>0.008</u> 0.005
Temperature (T)	1	<u>50.31</u> 63.775		< 0.0001	1	<u>8.</u>	<u>463</u> 8.388	0.00 <u>4</u> 4
С×Т	2	<u>50.</u>	<u>30</u> 51.875	< 0.0001	2	<u>3.</u>	<u>778</u> 4.527	0.0 <mark>24</mark> 11
Time effect	RMR				SMR			
	edf	F-value	P-value	Trend	edf	F-value	P-value	Trend
Ao10	<u>2.326</u>	<u>13.276</u> 1	< 0.0001	Increase	1.00	<u>7.4056.6</u>	0.0 <mark>1</mark> 0 <u>6</u>	Decrease
	2.45	3.14 4	< 0.0001		1.00	3 4		
Ao20	<u>2.407</u>	<u>12.720</u> 1	< 0.0001	Decrease	<u>2.844</u>	<u>36.719</u> 34	< 0.0001	Decrease
	2.42	1.550	< 0.0001		3.29	.419		
Ap10	1.00	6.0616.1 0.014070. 85 013	<u>0.01407</u> 0.	Decrease	1.00	<u>9.362</u> 8.6	0.00 <mark>23</mark>	Decrease
	1.00		1.00	59	0.0023	Decrease		
Ap20	<u>1.000</u>	<u>8.902</u> 10.	<0.00 <mark>301</mark>	Decrease	1.00	<u>35.92661</u>	< 0.0001	Decrease
	2.44	645	\$0.00 <u>5</u> 01		1.00	.022		
S10	1.00	<u>1.7852.5</u>	<u>0.18201</u> 0.	-	1.00	<u>1.139</u> 1.5	0.2 <mark>87</mark> 14	-
	1.00	06	114		1.00	46		
S20	1.00	<u>55.956</u> 4	< 0.0001	Decrease	1.00	<u>30.777</u> 29	< 0.0001	Decrease
		5.665	\$ 0.0001		1.00	.383		

Table <u>S34</u>: Analysis of covariance <u>excluding animals that died during the course of the</u><u>experiment</u> for (a) routine metabolic rates (RMR) and (b) standard metabolic rates (SMR) atday 42 of the experiment, including Gosner developmental stage (covariate; G), cohort (C),temperature (T) and their interactions. 'df': degrees of freedom; 'SS': sum of squares.

	df	SS	<i>F</i> -value	P-value
(a) RMR				
Gosner (G)	1	<u>14171.5</u> 14362.0	<u>94.6091</u> 96.491	< 0.0001
Cohort (C)	2	<u>2158.4</u> 1959.6	<u>7.2048</u> 6.583	0.00 <u>1</u> 2
Temperature (T)	1	<u>2655.2</u> 2852.1	<u>17.7261</u> 19.162	< 0.0001
G × C	2	<u>2436.5</u> 2428.0	<u>8.1330</u> 8.156	<0.00 0 1
G × T	1	<u>17.7</u> 23.1	<u>0.1184</u> 0.155	<u>0.7315325</u> 0.69
C×T	2	<u>186.2</u> 252.5	<u>0.6215</u> 0.848	<u>0.5391605</u> 0.43
G × C × T	2	<u>297.3</u> 302.2	<u>0.9923</u> 1.015	<u>0.3742886</u> 0.36
Residuals	<u>102</u> 103	<u>15278.6</u> 15330.8		
(b) SMR				
Gosner (G)	1	<u>324.62</u> 313.7	<u>10.6919</u> 10.521	0.002
Cohort (C)	2	<u>381.80</u> 391.0	<u>6.28776.557</u>	0.003
Temperature (T)	1	<u>1.63</u> 1.18	<u>0.0538</u> 0.040	<u>0.817427</u> 0.843
G × C	2	<u>252.94</u> 254.2	<u>4.1655</u> 4 .262	<u>0.021104</u> 0.019
G × T	1	<u>14.28</u> 15.2	<u>0.4702</u> 0.511	<u>0.495979</u> 0.478
C×T	2	<u>6.61</u> 6.5	<u>0.1089</u> 0.109	<u>0.897029</u> 0.897
G × C × T	2	<u>187.58</u> 186.2	<u>3.0891</u> 3.122	<u>0.054157</u> 0.052
Residuals	5 <u>1</u> 2	<u>1548.41</u> 1550.7		

Figure S2: Change in routine metabolic rate (RMR) over time of (a) Autumn overwintering tadpoles at 10°C, (b) Autumn overwintering at 20°C, (c) Autumn pre-overwintering at 10°C,
(d) Autumn pre-overwintering at 20°C, (e) Spring tadpoles at 10°C and (f) Spring tadpoles at 20°C. Note that the number in the 'y-axis' label denotes the estimated degrees of freedom.

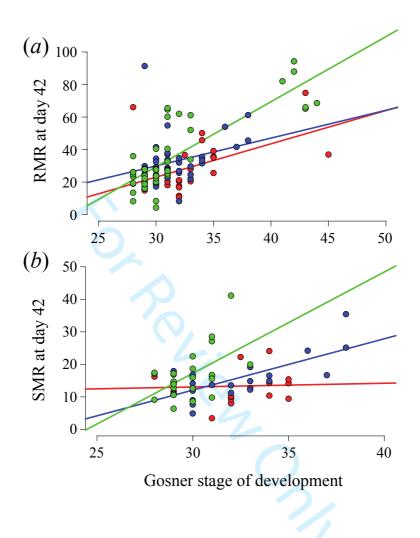

Figure S3: Change in standard metabolic rate (SMR) over time of (a) Autumn overwintering tadpoles at 10°C, (b) Autumn overwintering at 20°C, (c) Autumn pre-overwintering at 10°C, (d) Autumn pre-overwintering at 20°C, (e) Spring tadpoles at 10°C and (f) Spring tadpoles at 20°C. Note that the number in the 'y-axis' label denotes the estimated degrees of freedom.

Figure S4: Change in aerobic scope for routine activity (ASRA) over time of **(a)** Autumn overwintering tadpoles at 10°C, **(b)** Autumn overwintering at 20°C, **(c)** Autumn pre-overwintering at 20°C, **(e)** Spring tadpoles at 10°C and **(f)** Spring tadpoles at 20°C. Note that the number in the 'y-axis' label denotes the estimated degrees of freedom.

Figure S5: Relationship between developmental stage and (a) RMR or (b) SMR in overwintering (*blue*), pre-overwintering (*red*) and spring cohort (*green*) tadpoles, at the end of the experiment (day 42).

