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Abstract  35 

Advances in high-throughput sequencing (HTS) are revolutionizing monitoring in marine environments by 36 

enabling rapid, accurate and holistic detection of species within complex biological samples. Research 37 

institutions worldwide increasingly employ HTS methods for biodiversity assessments. However, variance 38 

in laboratory procedures, analytical workflows and bioinformatic pipelines impede the transferability and 39 

comparability of results across research groups. An international experiment was conducted to assess the 40 

consistency of metabarcoding results derived from identical samples and primer sets using varying 41 

laboratory procedures. Homogenized biofouling samples collected from four coastal locations (Australia, 42 

Canada, New Zealand and the USA) were distributed to 12 independent laboratories. Participants were 43 

asked to follow one of two HTS library preparation workflows. While DNA extraction, primers and 44 

bioinformatic analyses were purposefully standardized to allow comparison, many other technical variables 45 

were allowed to vary among laboratories (e.g., amplification protocols, type of instrument used, etc.). 46 

Despite substantial variation observed in raw results, the primary signal in the data was consistent, with the 47 

samples grouping strongly by geographic origin for all datasets. Simple post-hoc data clean-up by removing 48 

low quality samples gave the best improvement in sample classification for nuclear 18S rRNA gene data, 49 

with an overall 92.81% correct group attribution. For mitochondrial COI gene data, the best classification 50 

result (95.58%) was achieved after correction for contamination errors. The identified critical 51 

methodological factors that introduced the greatest variability (preservation buffer, sample defrosting, 52 

template concentration, DNA polymerase, PCR enhancer) should be of great assistance in standardizing 53 

future comparative biodiversity studies using metabarcoding.  54 

   55 

Keywords: reproducibility, high-throughput sequencing, 18S ribosomal rRNA (18S rRNA), 56 
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Introduction 59 

Recent advances in high-throughput sequencing (HTS) are revolutionizing ecology, offering 60 

unprecedented opportunities for new species discovery, monitoring ecological trends, diet analysis and 61 

environmental impact assessment (Aylagas, Borja, & Rodrigues-Ezpeleta, 2014; L. J. Clarke, Trebilco, 62 

Walters, Polanowski, & Deagle, 2020; Dowle, Pochon, Banks, Shearer, & Wood, 2016; Keeley, Wood, & 63 

Pochon, 2018; Valentini et al., 2016; Zhan et al., 2013). Metabarcoding enables community-wide 64 

biodiversity to be characterized from environmental DNA (eDNA) samples. It is based on the mass-65 

sequencing of short, conserved DNA fragments (molecular markers or barcodes), which are then assigned 66 

taxonomy based on reference sequence databases, allowing the simultaneous characterization of a large 67 

range of taxa (Hajibabaei, Shokralla, Zhou, Singer, & Baird, 2011; Taberlet, Coissac, Hajibabaei, & 68 

Rieseberg, 2012). Despite known limitations (e.g., incomplete reference sequence databases, uncertainties 69 

around sensitivity, specificity and detection probabilities), this approach is increasingly being advocated 70 

as a rapid, cost-effective and sensitive tool for environmental monitoring and assessment (Cordier et al., 71 

2020; Lacoursière-Roussel et al., 2018; Wood et al., 2013). Metabarcoding can be used to detect all life-72 

stages, including morphologically indistinguishable larval forms and rare or sparsely distributed 73 

populations, often with less time-effort than conventional approaches (Brown, Chain, Zhan, MacIsaac, & 74 

Cristescu, 2016; Comtet, Sandionigi, Viard, & Casiraghi, 2015; Zaiko, Samuiloviene, Ardura, & Garcia-75 

Vazquez, 2015). In some situations, it offers greater potential for standardization than traditional 76 

morphological biodiversity assessment (Aylagas, Borja, Irigoien, & Rodríguez-Ezpeleta, 2016; Porter & 77 

Hajibabaei, 2018). However, metabarcoding is inherently complex, with many technical and analytical 78 

steps that inevitably vary among users, as well as multiple reputable but distinct metabarcoding 79 

workflows (Cristescu, 2014; Goldberg et al., 2016; Murray, Coghlan, & Bunce, 2015; Zaiko, Pochon, 80 

Garcia-Vazquez, Olenin, & Wood, 2018). Virtually all steps in the workflow vary among laboratories and 81 

individual studies, including sampling, preservation methods, DNA extraction, PCR amplification 82 

protocols, library preparation methods, sequencing platforms and bioinformatic pipelines (Bailet et al., 83 
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2020; Bowers et al., 2021). This creates a significant challenge for the standardization of protocols and 84 

the implementation of a unified, cross-calibrated approach. 85 

For sensitive applications such as biosecurity surveillance, a field devoted to monitoring 86 

environments for species with potentially harmful ecological and economic consequences (Molnar, 87 

Gamboa, Revenga, & Spalding, 2008; Simberloff et al., 2013), standards of quality assurance and control 88 

are of higher importance than in general biodiversity studies (Darling & Mahon, 2011; Lehtiniemi et al., 89 

2015). Reporting unverified biosecurity risks from HTS data may lead to inadequate management responses 90 

and even potential legal entanglements for researchers (Darling, Pochon, Abbott, Inglis, & Zaiko, 2020). 91 

Despite recent calls for improved consistency in HTS-based research outputs (Jeunen et al., 2019; van der 92 

Loos & Nijland, 2020), laboratories working in this field often follow different analytical workflows, 93 

develop and apply in-house reference sequence databases, use customized bioinformatic pipelines and often 94 

fail to report methodologically relevant metadata consistently (Goldberg et al., 2016; Nicholson et al., 95 

2020). This lack of harmonization may impede the reproducibility of research, transferability and 96 

comparability of results, and ultimately, the credibility of HTS-based biodiversity assessments (Zaiko et 97 

al., 2018). There are an increasing number of empirical studies addressing the effect of single components 98 

of the workflow, such as filtration, eDNA extraction methods, PCR thermocycling conditions, choice of 99 

polymerase or sequencing platform used (Aylagas et al., 2016; Braukmann et al., 2019; Djurhuus et al., 100 

2017; Jeunen et al., 2019; Nichols et al., 2018). However, what is still largely unknown is the degree to 101 

which variations in common metabarcoding protocols distort community composition data and the impact 102 

of these potential biases on interpreting of metabarcoding-derived biodiversity information. 103 

Acknowledging the need for a coordinated effort to accelerate the uptake of HTS-based tools for 104 

biodiversity surveys and conservation applications, an international cross-laboratory experiment was 105 

conducted to evaluate replicability of a metabarcoding protocol and explore how laboratory-based variance 106 

in sample handling and processing impacts biodiversity assessments. The overarching goal of the present 107 

study was to investigate the consistency and reproducibility of metabarcoding results when a set of identical 108 
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environmental samples are analyzed simultaneously by different laboratories (12 in this study) following a 109 

semi-standardized protocol and analytical workflow. The applied experimental design allowed us to 110 

identify discrepancies caused by laboratory-specific variation in technical steps and find the weakest links 111 

in the analytical pipelines that resulted in the greatest divergence in metabarcoding data. In our study we 112 

hypothesized that: (1) despite laboratory-to-laboratory variations (e.g., technical equipment, PCR 113 

conditions and reagents), consistent patterns of variability in biological community information would be 114 

derived for two markers (COI and 18S) when using a semi-standardized protocol; (2) the use of different 115 

HTS library build protocols (dual index primers versus fusion primers) would have no effect on the 116 

community composition data but might impact levels of contamination; (3) the greatest variability would 117 

be introduced in the PCR and clean-up steps, given that different reagents and equipment were used in each 118 

laboratory; and (4) if variability in community composition was observed between laboratories, this could 119 

be mitigated by applying post-hoc data correction. 120 

 121 

Methods 122 

An overview of the experimental set-up is presented in Figure 1, with additional details provided 123 

in the sections below. 124 

Collection and processing of biofouling samples  125 

Mature marine biofouling (~20 mL) was collected from upper 0.5-1 m depth at international 126 

locations adjacent to busy marine ports and marinas (Table 1). The samples were preserved with 127 

RNAlater™ (ThermoFisher Scientific, USA) or LifeGuard™ (Qiagen, Venlo, The Netherlands) by 128 

adding a volume of preservative solution equivalent to at least 150% of the biological sample volume 129 

(Table 1). 130 

All samples were delivered to the Cawthron Institute, New Zealand (transported in ambient 131 

temperature within 2 days) and processed uniformly to ensure the same starting material was used by all 132 
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laboratories. Samples were homogenized by bead beating (1,500 rpm, 5 min; 1600 MiniG Spex 133 

SamplePrep NJ, USA) and split into 4 × 0.5 mL aliquots per laboratory (192 aliquots in total, Figure 1). 134 

Twelve well-established molecular laboratories in six countries participated in this study: New Zealand 135 

(Cawthron Institute, National Institute of Water and Atmospheric Research Ltd, University of Auckland 136 

and University of Otago); Australia (Curtin University and Macquarie University); USA (Moss Landing 137 

Marine Laboratory); Canada (Department of Fisheries and Oceans, McGill University and University of 138 

Guelph); Spain (University of Oviedo) and Lithuania (Klaipeda University).  139 

Environmental DNA isolation and sequencing library preparation  140 

Variation at the DNA extraction step was minimized by providing participants from each of the 141 

12 laboratories with a MoBio/Qiagen PowerBiofilm DNA isolation kit (Qiagen, Venlo, The Netherlands) 142 

and a detailed manufacturer’s protocol for DNA isolation, that all participants were asked to follow.  143 

Participating laboratories were randomly allocated to a treatment group that followed one of two HTS 144 

library preparation workflows (dual index primers or fusion primers, see below) for amplification of both 145 

the 18S rRNA (Zhan et al. 2013; Uni18S: 5’-AGGGCAAKYCTGGTGCCAGC-3’, Uni18SR: 5’-146 

GRCGGTATCTRATCGYCTT-3’) and COI (Leray et al. 2013; Geller et al. 2013; mlCOIintF: 5’-147 

GGWACWGGWTGAACWGTWTAYCCYCC-3’, jgHCO2198: 5’-148 

TAIACYTCIGGRTGICCRAARAAYCA-3’) genes. For analytical objectivity, the laboratories within 149 

each group were randomly assigned a letter code – A to F for the dual index and G to L fusion groups, 150 

respectively. All results are hereafter reported under those codes to avoid attributing analytical outcomes 151 

to a particular laboratory. 152 

Protocols for PCRs and library preparation were also provided (Supporting Information, 153 

Appendices I and II); however, given that each laboratory uses different equipment and/or used their 154 

preferred reagents, some flexibility in equipment and reagents was allowed at the PCR and clean-up steps. 155 
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The participants recorded any deviations from the provided protocol, as well as specific details on sample 156 

handling and any issues encountered during the workflow (Table S1).  157 

High-throughput sequencing  158 

Libraries were sequenced on MiSeqTM Illumina instruments at two sequencing facilities: 159 

University of Guelph, Canada (libraries from laboratories A-F, dual index primers, n = 120) and Curtin 160 

University, Australia (libraries from laboratories G-L, fusion primers, n = 120). For the dual index library, 161 

18S rRNA gene and COI amplicons were pooled for each sample and indexed using Illumina’s Nextera 162 

XT v2 index adapters (FC-131-2001). Indexed samples were pooled and purified using AMPure XP 163 

magnetic bead kit (Beckman Coulter). The library concentration was quantified with Invitrogen 164 

PicoGreen dsDNA assay kit on a TBS-380 fluorometer (Turner Biosciences). Fragment length was 165 

assessed on an Agilent Bioanalyzer using Agilent’s DNA 7500 kit. The library was diluted to 4nM and 166 

sequenced on an Illumina MiSeq using a v3 chemistry kit (2 × 300). Each run had a 10% PhiX spike-in. 167 

Samples were sequenced over two runs: Run 1 contained groups A, D and F. Run 2 contained groups B, 168 

C, and E.  169 

For the fusion library, PCR products were quantified on arrival at the sequencing facility with 170 

Qubit (ThermoFisher Scientific, USA) and blended at equal molarity for three sequencing runs: Run 1 - 171 

18S rRNA gene and COI from laboratories G and L; Run 2 - 18S rRNA gene and COI from laboratories 172 

H and K; Run 3 - 18S rRNA gene and COI from laboratories I and J. Amplicons from the laboratory J 173 

contained traces of green dye from the Taq buffer and were further cleaned using a QiaQuick Purification 174 

Kit (QIAGEN, Carlsbad, USA), and eluted in 30 µL elution buffer before quantification and library 175 

pooling. Final libraries were quantified again using Qubit. Molarity was calculated and diluted to 2 nM, 176 

except for Run 1, which had concentration of 1.3 nM. Libraries were denatured and blended with 20 pM 177 

PhiX. Sequencing was performed on the MiSeq (Illumina) system with a v2 chemistry kit (2 × 250).  178 

Bioinformatics  179 
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Bioinformatics analysis of all the 18S rRNA and COI datasets was conducted at the 180 

Commonwealth Scientific and Industrial Research Organization (CSIRO, Australia), using the GHAP 181 

amplicon pipeline (https://doi.org/10.4225/08/59f98560eba25). This is a conventional amplicon clustering 182 

and classification pipeline built around tools from USearch (Edgar, Haas, Clemente, Quince, & Knight, 183 

2011), combined with in-house scripted tools for demultiplexing and generating OTU tables. The 184 

amplicon reads were demultiplexed, split and trimmed as needed and the read pairs were then merged and 185 

de-replicated. The merged reads were trimmed/size-selected and UNOISE3 (Edgar, 2016) used to group 186 

almost identical sequences to generate zOTUs (Zero-radius Operational Taxonomic Units). Each zOTU 187 

sequence was then classified by BLASTing against a curated set of reference sequences. The 18S rRNA 188 

gene zOTUs were matched against curated sequences derived from the SILVA v128 SSU reference set 189 

(Quast et al., 2013). The COI zOTUs were matched against a set of COI reference sequences downloaded 190 

from GenBank (on 24-9-2019). The pipeline then mapped the merged reads back onto the zOTU 191 

sequences to get accurate read counts for each zOTU/sample pair, and generated zOTU abundance tables 192 

in both text and .biom (v1) formats, complete with taxonomic classifications and species assignments. 193 

The zOTU abundance tables were then summarized at all resolved taxonomic levels, combining the 194 

counts for identified taxa across all OTUs. 195 

Both the dual index and fusion library sequencing was undertaken on pooled samples, so each 196 

data file contained both 18S rRNA gene and COI data. These files were split into 18S rRNA gene and 197 

COI files based on the primer sequences found at the start of each of the reads, and these primer regions 198 

were then trimmed from the reads. After splitting, there were found to be unequal numbers of 18S rRNA 199 

gene and COI reads in both datasets, with only 6-15% (fusion) and 30% (dual index) of the samples being 200 

assigned to the 18S rRNA gene. 201 

The fusion sequencing protocol also added 6 or 7 bp barcode to the start of each read, with these 202 

barcodes removed from the reads during demultiplexing. The MiSeq runs used for the fusion libraries 203 

produced 260 bp reads (including barcodes and primers), and demultiplexing/trimming these resulted in 204 

https://doi.org/10.4225/08/59f98560eba25
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reads of 226-228 bp (18S rRNA) and 232-234 bp (COI). The dual index MiSeq runs produced 301 bp 205 

reads, including primer sequences, and used standard Illumina out-of-read barcodes. The number of bases 206 

removed by this post-sequencing trimming step varied from sample to sample, with higher levels of 207 

trimming observed for 18S rRNA reads (median 10.5 bp) than for COI (median 0.7 bp) reads. Samples 208 

from Lab C were more heavily trimmed than other samples (average trim for 18S rRNA was 34.5 bp, and 209 

75.3 bp for COI). After splitting and primer-trimming, the reads going into the amplicon pipeline were 210 

15-282 bp long (mean 246-280 bp) for 18S rRNA gene, and 9-275 bp (mean 200-275 bp) for COI. The 211 

inter-primer region being sequenced was ~410 bp for 18S rRNA gene, and ~310 bp for COI. 212 

Consequently, both the dual index and fusion library reads were long enough to have sufficient overlap 213 

for satisfactory pair-merging. 214 

Statistical analyses 215 

For each zOTU table (18S rRNA gene and COI) resulting from the bioinformatics pipeline, a 216 

permutational multivariate analysis of variance (PERMANOVA, Anderson 2001, 2017) was used to test 217 

how variation in HTS-derived biodiversity was partitioned in response to ‘sample origin’, ‘library’ (dual 218 

index vs fusion; both fixed factors) and ‘laboratory’ (a random factor nested in ‘library’). Analysis was 219 

performed on Bray-Curtis similarity matrices of fourth root transformed datasets (zOTU reads data), 220 

applying 999 permutations of residuals under a reduced model with type III sum of squares applied. To 221 

assess the relative spread of data clouds in samples grouped by origin, a test for homogeneity of 222 

multivariate dispersions (PERMDISP) was applied for each dataset with 999 permutations. Individual 223 

sample distances to origin group centroids were retrieved for library type, 18S rRNA gene and COI 224 

separately. A distribution-free Wilcoxon signed-rank test was used to check whether 18S rRNA and COI 225 

OTU richness differ significantly between libraries, as well as whether distances to group centroids differ 226 

significantly between 18S rRNA and COI datasets. 227 

To infer which factors affected the consistency of biodiversity information during sample 228 

handling and processing, a multiple regression model with automated stepwise selection function was 229 
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implemented in R Stats package version 3.5.3 (R-project, 2014). In the model, distance of individual 230 

samples to centroids of the sample origin group was treated as response variable, and the following 231 

sample handling and processing parameters were considered as predictor variables: preservation buffer 232 

(RNAlater/LifeGuard), storage time before DNA extraction (months), multiple (more than two times) 233 

DNA defrosting cycles due to PCR troubleshooting (yes/no), library type (fusion/dual index), amount of 234 

template used in PCR (µL), dilution of DNA template (yes/no), DNA polymerase used, addition of 235 

Bovine Serum Albumin (BSA) or other enhancers (yes/no), number of PCR cycles, contamination 236 

detected in control samples (yes/no). For each gene and library type we also performed correlation 237 

analysis using cor.test function implemented in R to test for association (Pearson product-moment 238 

correlation coefficient) between sequence Phred quality score (averaged per sample) and distance to 239 

origin group centroids. 240 

For each dataset (18S rRNA gene and COI), a series of Canonical Analyses of Principal 241 

Coordinates (CAP) with ‘sample geographic origin’ as a grouping factor and 999 permutations were 242 

applied to assess the classification success (correct allocation of samples into a pre-defined group) on raw 243 

(uncorrected) HTS data and following post-hoc corrections: Corr1) samples with low sequence number 244 

(<1,000) excluded; Corr2) samples randomly rarefied to 10,000 sequence depth; Corr3) OTUs found in 245 

the negative controls removed from the corresponding subsets of data; Corr4) maximum read abundance 246 

of OTUs found in the negative controls subtracted from the corresponding subsets of data; Corr5) OTUs 247 

found in negative controls subtracted and samples with low sequence number (<1,000) excluded; Corr6) 248 

OTUs found in negative controls were subtracted and samples rarefied to 10,000 sequence depth. 249 

Clustering of samples according to their origin was visualized by CAP ordination plots for the raw dataset 250 

and corrected dataset with the best classification success. All multivariate statistical analyses were carried 251 

out using PRIMER 7 (v 7.0.13) with the PERMANOVA + add-on (K. R. Clarke & Gorley, 2015).  252 

Following dataset corrections which resulted in the best 18S rRNA and COI sample classification 253 

according to the origin, the laboratory and library-driven variability in biodiversity data were explored 254 
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using Principal Coordinates Analysis (PCoA). For each sample origin, 18S rRNA and COI datasets, a 255 

two-dimensional visualization was performed using plot_ordination function on Bray-Curtis similarity 256 

matrices in phyloseq R package (McMurdie & Holmes, 2013). 257 

Results 258 

General observations 259 

Although all 12 laboratories strictly adhered to the provided DNA extraction protocol, large 260 

variations in DNA concentration and quality were observed (Figure S1). However, different instruments 261 

were used to estimate DNA concentrations (Table S1) and some participants expressed concerns about 262 

accuracy of their measurements. The quantity and quality of extracted DNA is not a direct indication of 263 

how the targeted eukaryotic genes will amplify, as bulk samples are likely to comprise large proportions 264 

of bacterial DNA (not targeted in this study). Therefore, DNA concentration data were not used in 265 

subsequent statistical analyses. 266 

At the PCR and clean-up steps, all laboratories applied variations to the suggested protocols. 267 

Seven laboratories reported difficulties in amplifying one or both marker genes and had to troubleshoot 268 

by adjusting cycling conditions, trying different reagents and/or template concentrations (Table S1). A 269 

variety of positive controls were used in library preparation by different laboratories, including DNA 270 

from a single species, or mock communities derived from combined DNA of multiple species (see Table 271 

S1).  272 

The HTS from 240 amplicons (120 from the dual index and 120 from the fusion libraries) 273 

resulted in 15,104,359 and 41,241,053 pair-end sequence reads for dual index and fusion primers library, 274 

respectively. The total number of quality-filtered, de-noised (non-chimeric) sequences derived from 18S 275 

rRNA gene amplicons were 6,231,102 and 4,211,218 from dual index and fusion primers library, and 276 

7,776,009 and 27,540,509 for COI amplicons from dual index and fusion primers library, respectively. 277 

Two samples from the 18S rRNA gene dataset failed to produce any high-quality sequence reads and 278 
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were therefore excluded from downstream analyses. The average sequence read Phred quality was 279 

relatively consistent for 18S rRNA and COI gene amplicons, for both library types (Figure S2). However, 280 

the sequence quality of the COI fusion library samples was, overall, slightly higher for both forward and 281 

reverse reads. 282 

High variability in the number of filtered sequences and OTUs across samples and laboratories 283 

was observed (Figures 2 and 3). In the fusion library group, the number of good quality sequences yielded 284 

per sample varied from 1 to 50,101 for 18S rRNA gene amplicons and 347 to 556,775 for COI amplicons, 285 

respectively. In the dual index library, differences in sequence yields between genes were similar, with 286 

data from the18S rRNA gene ranging from 1 to 189,779 and COI from 6 to 219,694. The number of 287 

retrieved OTUs in the dual index library ranged from 1 to 465 and 4 to 1,622 for 18S rRNA gene and COI 288 

markers, respectively, and showed significant (p<0.001) moderate correlation with the number of 289 

sequence reads (r=0.52 and 0.68, 18S rRNA and COI samples, respectively). In the fusion library, OTU 290 

numbers correlated only with sequence reads for the 18S rRNA samples (0.46, p<0.001), ranging from 1 291 

to 436 OTUs per sample. COI samples were characterized by an overall higher number of OTUs (79 to 292 

2,363 per sample), and this did not correlate with the number of sequence reads (r=0.18, p=0.08). The 18S 293 

rRNA OTU richness did not differ significantly between libraries (W = 4975, p = 0.22), however overall 294 

higher COI OTU number was observed in the fusion library (W = 2338, p < 0.001). We observed no 295 

difference between the two markers (W = 19429, p-value = 0.2707) in relative mean spread of data clouds 296 

in samples grouped by origin between the two markers (average distance to group centroids were 53.89 ± 297 

SD 12.93 and 52.98 ± SD 15.14 for 18S rRNA and COI respectively). 298 

  299 
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Three laboratories reported contamination in their negative control samples, while sequencing 300 

data analysis revealed substantial contamination in DNA extraction blanks in six dual index datasets 301 

(Figure 4). Species used as positive controls were successfully retrieved from 17 out of 24 datasets (i.e. 302 

70.8%). Failed positive controls affected three dual index and four fusion samples (Figure 4). None or 303 

negligible contamination was detected in the negative (no template) PCR controls (except for laboratory 304 

D, where >10,000 sequences of the same OTU found in extraction blanks were detected). 305 

Biodiversity clustering according to sample origin – nuclear small subunit (18S rRNA gene) dataset 306 

All factors considered in the PERMANOVA design (sample origin, library type and laboratory), 307 

as well as their interactions, had a significant effect on the partitioning variation in 18S rRNA gene 308 

datasets (p<0.05, Table S2). A test of homogeneity for the within-group multivariate dispersion 309 

(PERMDISP) revealed significant differences in the average distances to centroids among samples 310 

grouped by sample origin (p = 0.001, F = 18.869, PERMDISP).  311 

The multiple linear regression followed by an automated stepwise selection of optimal model 312 

showed that ‘preservation buffer’ (p<0.001), type of DNA polymerase used in PCR reactions (p<0.001), 313 

addition of PCR enhancers (p<0.001) and ‘multiple defrosting of DNA samples’ (p<0.001) all had 314 

significant effects on the dispersion around the origin group centroid (Table S3). The best selected model 315 

explained 46% of variation in distance values. In dual index library samples, distances to group centroids 316 

showed weak (r = -0.35 and -0.34) but statistically significant (p<0.001) negative correlations with the 317 

sequence quality scores (forward and reverse reads respectively, Figure S3). No such correlations were 318 

detected in fusion library samples (p>0.5; r = 0.11 and -0.12, forward and reverse reads respectively, 319 

Figure S3). 320 

Canonical analysis of principal coordinates (CAP) models derived from either the raw 18S rRNA 321 

dataset or datasets with post-hoc corrections were all characterized by high and significant canonical 322 

correlations (Table 2, Figure 4), and correctly allocated 88% of samples by their origin in the uncorrected 323 
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data and up to 93% after applying post-hoc corrections. This is considerably better than the 25% success 324 

expected by chance if samples were randomly allocated into four groups. Overall, the correct 325 

classification of samples by their geographic origin was improved most by removing samples with 326 

extremely low number of sequences (<1,000, Corr1, Table 2, Figure 4). Other corrections applied to the 327 

dataset had variable success in improving classification. The AUS samples were classified most 328 

accurately after rarefying sequencing data to equal depth across all samples (Corr2 and Corr6, Table 2). 329 

The NZ samples showed the lowest classification success overall, not exceeding 87.5% correct allocation 330 

(Corr1 and Corr6, Table 2).  331 

Biodiversity clustering according to the geographic origin - mitochondrial Cytochrome c Oxidase subunit 332 

1 dataset 333 

All factors, including the interaction between origin and laboratory had significant effects 334 

(p<0.01, Table S4) on the partitioning variation in the COI datasets. Test of homogeneity for the within-335 

group multivariate dispersion (PERMDISP) revealed significant differences in distances to centroids 336 

among the samples grouped by origin (p = 0.01, F = 4.569, PERMDISP).  337 

Multiple linear regression followed by an automated stepwise selection of optimal models 338 

showed a significant effect of the amount of DNA template and the type of DNA polymerase used in PCR 339 

reactions (p<0.001), ‘preservation buffer’ (p<0.001), and addition of PCR enhancers (p<0.001) on the 340 

HTS data spread around group centroids (Table S5). The best selected model explained 58% of variation 341 

in distance values. Statistically significant (p<0.001) but moderate negative correlations between 342 

distances to group centroids and sequence quality scores were detected in dual index samples (r = -0.64 343 

and -0.68, forward and reverse reads respectively, Figure S4). No such correlations were detected in 344 

fusion library samples (p>0.5; r = 0.06 and -0.16, forward and reverse reads respectively, Figure S4). 345 

Canonical analysis of principal coordinates (CAP) analyses of COI datasets yielded high and significant 346 

canonical correlations (Table 3, Figure 5), and correctly allocated 88% of samples by their origin in the 347 



15 
 

raw datasets and up to 95% after applying post-hoc corrections (Table 3). The largest improvement in 348 

classification was after corrections for contamination effects (Corr3, Corr4 and Corr5, Table 3). New 349 

Zealand samples showed the lowest classification success, except for Corr3, when all OTUs found in 350 

negative controls were removed.  351 

Variability in community biodiversity of the corrected datasets within the sample geographic origin 352 

groups 353 

A more detailed exploration of biodiversity patterns following corrections that resulted in the 354 

most improved sample classification by origin (Corr1 and Corr3 for 18S rRNA and COI datasets, 355 

correspondingly) showed some variability within each location (Figures 6 and 7). It revealed variance 356 

between dual index and fusion library datasets, which was more apparent in 18S rRNA data. However, 357 

the first PCoA axis that separated the two library types explained only 19-24% and 10-24% of the total 358 

variance, in 18S rRNA and COI datasets, respectively. 359 

Most samples clustered reasonably well by laboratory, however this clustering differed across 360 

datasets indicating stochasticity between sample origin groups. Some samples (e.g., fusion library 361 

samples from laboratories H and I) formed rather consistent outlying groups, which affected dispersion 362 

between fusion and dual index groups. This was particularly evident in the 18S rRNA dataset. Samples 363 

from these laboratories were characterized by comparatively high average sequence read quality scores 364 

(Lab H: 30.88 ± SD 2.32 and 34.84 ± SD 2.40; Lab I: 33.95 ± SD 1.27 and 35.07 ± SD 1.79, for 18S 365 

rRNA and COI sequences respectively), good recovery of target taxa in the positive control samples 366 

(except for 18S rRNA Lab H sample) and they did not encounter any contamination issues (Figure 4). In 367 

terms of the sample processing workflows, the only distinct difference in Labs H and I from other 368 

laboratories following fusion library protocol, was the addition of bovine serum albumin (BSA) at the 369 

PCR step (see Table S1).  370 

 371 



16 
 

Discussion 372 

The increased use of environmental DNA (eDNA) metabarcoding across freshwater, marine, and 373 

terrestrial ecosystems is a result of advances in HTS technologies and their increasing affordability. 374 

Almost anyone and anywhere, including citizen scientists, can now collect a sample for DNA extraction 375 

and send it to a specialized laboratory to examine biodiversity in different biological matrices (Evans et 376 

al., 2016; Jeunen et al., 2019; Larson et al., 2020; Vandamme et al., 2016). This offers unprecedented 377 

opportunities for integrative analyses and comparisons of biodiversity patterns across wide temporal and 378 

spatial scales. However, as our findings clearly illustrate, there is a critical need for consistency and 379 

accuracy throughout the laboratory processing and data analysis workflows.  380 

Metabarcoding (like any other biodiversity assessment technique) is prone to taxon identification 381 

errors, biases and contaminations that can result in false negatives and positives, and these can occur at 382 

any point in the sample processing and analytical steps (Doi et al., 2019; Ficetola et al., 2015). Improving 383 

knowledge of potential confounding factors and sources of variation is critical for increasing the 384 

credibility and reproducibility of metabarcoding approaches and for enabling large scale comparative 385 

studies and long-term monitoring (Baker, 2016). In the absence of standardized sample and analysis 386 

processing protocols for HTS metabarcoding, it is often assumed by default that reproducible data can be 387 

generated by closely following a credible workflow if it has been published in a peer-reviewed article. 388 

However, as demonstrated in the recent review by Nicholson et al. (2020), many studies do not report 389 

sufficient details to allow replication and/or appropriate data comparison between studies. It is also not 390 

usual practice to report troubleshooting incidents or small adjustments made to the protocols, which are 391 

common and evident in the present study. The importance of such variation on the outcome, therefore, 392 

remains largely unknown and is likely underestimated.  393 

Our study revealed considerable variation in metabarcoding results from similar biodiversity 394 

analyses undertaken in different laboratories. However, the crucial questions addressed here were whether 395 

this methodological variation obscured the true biological signal, what factors introduced the greatest 396 
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variance, and whether the variance could be effectively reduced via appropriate data filtering. The raw 397 

data from all laboratories showed strong and consistent differentiation of biological samples from 398 

different geographical regions, for both the 18S rRNA and COI genes. We acknowledge, however, that 399 

the consistency in community composition clustering was assessed here at a broad geographical scale, 400 

and the effect of derived biases may be more significant when depicting more subtle (i.e. regional) 401 

biodiversity patterns. 402 

 403 

Patterns in variability of biological community information derived from both markers and both library 404 

types 405 

Our results showed no significant difference between 18S rRNA and COI data spread around 406 

geographic origin groups. This suggests that neither marker is more susceptible to differences in 407 

laboratory processing protocols and associated data biases. The 18S rRNA marker is more conserved than 408 

the COI, which typically results in comparatively lower species resolution and underestimation of species 409 

richness (Leray & Knowlton, 2016; Pearman et al., 2021; von Ammon et al., 2018). This may explain our 410 

observation of slightly stronger clustering of 18S rRNA data points according to the sample origin and 411 

substantial improvement of classification of 18S rRNA dataset following the removal of low-quality 412 

samples (i.e., those with only a small number of resulting sequence reads). This was in contrast to the 413 

COI data, which showed the best improvement in classification after removal of contaminating 414 

sequences. The reduced phylogenetic resolution in 18S rRNA data potentially makes it more resilient to 415 

contamination. 416 

Despite a significant effect of library type on variance partitioning in samples detected by 417 

PERMANOVA (contributed only 2 and 13% to variation in 18S rRNA and COI samples, respectively) 418 

neither regression nor CAP analyses showed significant differentiation of samples between fusion and 419 

dual index libraries. However, an interesting interaction between library type and marker gene was 420 

observed in the numbers of sequences: the 18S rRNA yielded more sequence reads using dual index 421 

compared with the fusion method, and there was an opposite trend in the COI data.  422 
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Unlike dual index libraries, where amplicons are tagged with short nucleotide sequences using 423 

commercial kits at the additional PCR step (Bourlat, Haenel, Finnman, & Leray, 2016), in the fusion 424 

primers approach a target DNA fragment is simultaneously amplified and tagged with a long nucleotide 425 

tail (Zizka, Elbrecht, Macher, & Leese, 2019).  The one-step tagging of amplicons from multiple samples 426 

with fusion primers was developed to improve cost- and time-efficiency of sample processing for 427 

metabarcoding (Elbrecht & Leese, 2015; Elbrecht & Steinke, 2018; Stat et al., 2017; Zizka et al., 2019). 428 

However, it may potentially introduce substantial biases into inferred biodiversity due to tag‐specific 429 

mismatches with the PCR template and subsequent variation in primer-binding efficiency between 430 

taxonomic groups (O’Donnell, Kelly, Lowell, & Port, 2016). The biases of fusion primers reported 431 

however, refer to variation in sequence abundance across replicates and not in the detection of taxa, which 432 

is comparable between methods (O’Donnell et al., 2016; Zizka et al., 2019). Interestingly, in our study we 433 

found a higher richness of OTUs for the COI gene when using the fusion approach over the two-step 434 

approach, which contrasts to what one would expect if PCR inefficiencies resulted from longer primers. 435 

Regardless, the two library building methods produced similar community profiles. However, the fact that 436 

no effect of the average Phred scores on data dispersal was observed for both markers in the fusion library 437 

(Figs. S3 and S4), suggests that stochastic biases not directly related to the quality of sequences may be in 438 

play when applying the one-step PCR approach. It is also presumed that the dual indexing protocol is less 439 

susceptible to inhibitors, resulting in improved amplification of complex samples, compared to the one-440 

step fusion approach (Zizka et al., 2019). While we did not expect varying levels of inhibiting substances 441 

between two markers (they were run on the same set of biofouling samples), longer (~410 bp) 18S rRNA 442 

amplicons might have been more prone to inhibition (McCord, Pionzio, & Thompson, 2014; Opel, 443 

Chung, & McCord, 2010). This likely explains overall lower number of sequences yielded for 18S rRNA 444 

with a higher number of sequences in the dual index library, as well as the best data consistency 445 

improvement following removal of 23 samples with extremely low sequence numbers (<1,000). The 446 

differential inhibition effect might also explain the outliers in the corrected 18S rRNA fusion dataset. 447 

These outliers came from samples where PCR was undertaken with addition of BSA, a protein known to 448 
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relieve amplification inhibition (Kreader, 1996). This observation suggests that the effect of BSA on 449 

metabarcoding results and especially obtaining true diversity needs further exploration, preferably in 450 

dedicated controlled experiments. 451 

In contrast, the overall number of COI sequences was consistently higher than 18S rRNA 452 

sequences under both dual index (~1.5 times higher on average) and, particularly, fusion (~25 times 453 

higher on average) approaches. Because the 18S rRNA and COI gene fragments were pooled and 454 

sequenced simultaneously, the most parsimonious explanation is that the shorter gene (~310 bp) COI 455 

amplicons were subjected to preferential selection on the Illumina flow cell (Engelbrektson et al., 2010). 456 

Future studies will be required to test this hypothesis further, as well as potential implications of gene 457 

multiplexing on the derived biodiversity information.  458 

Nevertheless, a clear advantage of the one‐step fusion library approach (besides its cost/time-459 

efficiency) is that it is less prone to cross‐contamination (Zizka et al., 2019). This was observed in our 460 

study results, where substantial laboratory contamination was detected in the dual-index library samples, 461 

with a significant effect on data clustering. This was especially evident in the COI dataset, where the best 462 

classification results were achieved following corrections for contamination effects. The lowest 463 

classification success was observed in the NZ COI dataset, and was also likely due to the dominance of 464 

contaminating OTUs in the NZ sample from laboratory F (76% of all sequences were removed from their 465 

dataset at the post-hoc correction step).  466 

In this study we considered the two sequence library preparation methods most employed by 467 

participating laboratories. Another common workflow not included here is the ‘tagged PCR’ approach, 468 

which includes PCR amplifications with relatively short metabarcoding primers carrying 5’ nucleotide 469 

tags and subsequent ligation of adaptors (Binladen et al., 2007; Carøe & Bohmann, 2020). This method 470 

has been recently touted as an effective alternative for metabarcoding library preparation, especially when 471 

tag-jump free protocols are implemented to prevent false sequence assignment to samples and mitigate 472 

chimera formation (Carøe & Bohmann, 2020). Additional comparative analysis is required to investigate 473 

the robustness of this approach in the context of laboratory-induced variations. 474 
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 475 

The effect of sample handling and processing factors on variability in metabarcoding data 476 

Analysis of the relative importance of considered random effects in introducing variability into 477 

the metabarcoding results showed that both 18S rRNA and COI datasets were most affected by the type 478 

of preservation buffer, type of DNA polymerase and the addition of PCR enhancers. Previous studies 479 

have shown that the choice of sample preservation method can have a substantial effect on the integrity of 480 

eDNA and may alter HTS-derived community structure to a greater or lesser degree (Gray, Pratte, & 481 

Kellogg, 2013; Lee, Adams, & Klassen, 2019; Tatangelo, Franzetti, Gandolfi, Bestetti, & Ambrosini, 482 

2014). Therefore, although not always practical, immediate processing or cold storage (ideally at -20°C or 483 

lower temperatures) remains the gold standard for retaining utmost quality of genetic material in samples 484 

and reducing risks of preservation-related biases in biodiversity assessment (Lee et al., 2019; Renshaw, 485 

Olds, Jerde, McVeigh, & Lodge, 2015). However, on-site freezing is not always possible, and the use of 486 

DNA/RNA isolation buffers remains a popular alternative for samples collected in remote locations or 487 

when samples are to be shipped internationally. In the present study, we chose two commonly used 488 

commercial solutions, the RNAlater™ and LifeGuard™ isolation buffers for stabilizing the biofouling 489 

samples. The main criteria for this choice were i) the compatibility with the DNA extraction protocol, ii) 490 

the effective DNA stabilization capacity over a range of temperatures, and iii) no restrictive chemicals in 491 

relation to shipping. Since a number of studies have previously shown no substantial differences in DNA 492 

preservation efficacy between the two buffers (Gomez-Silvan et al., 2018) and they are referred to as 493 

equivalent in standardized genetic and genomic protocols (Duran & Cravo-Laureau, 2017; Hampton-494 

Marcell, Frazier, Moormann, Owens, & Gilbert, 2017), we allowed sample providers to select either. The 495 

somewhat higher variance in metabarcoding data from the LifeGuard™ samples was largely determined 496 

by the presence of a few outliers. Taking into account the complexity of the sampled matrices (von 497 

Ammon et al., 2018), the observed effect of preservation solution could be related to sample-specific 498 

biases driven by the presence and concentration of inhibiting substances, or the prevalence of hard-shelled 499 

organisms reducing homogenization of the material. Therefore, we cannot confidently infer differential 500 
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performance of the two buffers for sample preservation based on the current results. These results 501 

highlight the need to ensure that variables such as preservation buffer type, temperature and storage time 502 

should be recorded and reported in the metabarcoding protocols and considered when analyzing data from 503 

multiple sample sets, from different laboratories or collected over different timeframes.  504 

DNA polymerases with proofreading activity (e.g., MyFi™ DNA Polymerase) may enhance the 505 

formation of chimeric sequences compared to Taq DNA polymerases (e.g., AmpliTaq Gold™ DNA 506 

Polymerase) due to the earlier occurrence of PCR saturation (Ahn, Kim, Song, & Weon, 2012; Judo, 507 

Wedel, & Wilson, 1998). Among the six distinct DNA polymerases used in the present study, MyFi was 508 

the only proofreading polymerase and it was used by five of the participating labs (C, G, H, K, and L). 509 

We did not find any clear evidence showing that the observed variability related to ‘polymerase’ effect 510 

was specifically linked to the use of a proofreading polymerase. Therefore, a more parsimonious 511 

explanation is that the random effect was driven by somewhat differential performance of the five Taq 512 

DNA polymerases used. 513 

The PCR enhancer Bovine Serum Albumin (BSA) was added by four laboratories (A, E, H and I) 514 

and appeared to have an impact on the derived metabarcoding outputs. As noted above, this is possibly 515 

due to its ability to bind to inhibitory substances during PCR reactions, preventing inhibitory interactions 516 

with DNA polymerase (Woide, Zink, & Thalhammer, 2010). Biofilms and biofouling material contain 517 

many known PCR inhibitors, such as glycogen, polysaccharides and slat (Schrader, Schielke, Ellerbroek, 518 

& Johne, 2012). Therefore, a certain level of inhibition was reasonably expected in our samples. The 519 

results from the analyses suggest that the addition of BSA might have substantial effect on both variance 520 

and composition of the detected communities (as evidenced by the outliers from corrected datasets of 521 

Labs H and I). Because this study was not designed to fully investigate the impact of BSA and only a few 522 

laboratories included enhancers, further in-depth studies are required to understand better the patterns of 523 

BSA effects on derived biodiversity.  524 

The 18S rRNA data also showed sensitivity to multiple freeze-thaw cycles of the samples. The 525 

available (mostly anecdotal) evidence of the effect of multiple defrosting on DNA integrity, suggests that 526 
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even one cycle of freeze-thawing can reduce eDNA signal (Bowers et al., 2021). However, it is rarely the 527 

case that metabarcoding library construction is achieved without repetition of the PCR step (and thus 528 

multiple freeze-thawing of DNA material) for at least some samples (e.g., troubleshooting and adjusting 529 

amplification conditions for problematic samples). This parameter is difficult to control for, and it is 530 

rarely (if at all) reported in metabarcoding protocols. It would be practical, however, to keep track of and 531 

report freeze-thaw cycles of DNA samples, reduce their number where possible and, most importantly, 532 

divide DNA into multiple aliquots upon extraction. 533 

The dispersion of the COI data from different laboratories was also affected by the amount of 534 

template DNA used in PCR (unlike 18S rRNA data). Low quantities of template DNA and stochasticity 535 

in early PCR cycles is known to affect reproducibility of metabarcoding results (Alberdi, Aizpurua, 536 

Gilbert, & Bohmann, 2018; Leray & Knowlton, 2017). This effect is particularly inherent for primers 537 

with reduced specificity (e.g., COI primers comprising a few degenerate bases to allow better matching 538 

the mutationally saturated target regions) applied to highly diverse environmental samples (e.g., marine 539 

samples), and can be reduced by performing multiple PCR technical replicates (Collins et al., 2019; 540 

Ficetola et al., 2015). Technical replication was advised in our suggested sample processing protocols, 541 

however, it was only followed by five laboratories: A, C (dual-index group) and G, H and L (fusion 542 

group). There is still lack of agreement in the literature whether technical replication is necessary for 543 

improved capture of “true” biodiversity (Marotz et al., 2019), especially considering the associated 544 

substantial increase in time and cost effort. Technical replication might be advised for studies where true 545 

(environmental) replication is restricted for some reasons, to mitigate the effect of within sample 546 

variability. 547 

 548 

Effect of the post-hoc data correction on the observed variability in community composition  549 

The datasets we dealt with in our analyses were somewhat atypical. We purposefully included all 550 

investigated sample sets, including those that amplified poorly, had low numbers of sequence reads, and 551 
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controls with some contamination, which would have usually been excluded in a typical study. These 552 

“problematic” samples most likely would have been dropped either at the library preparation or 553 

bioinformatic analysis step if standard quality control procedures were applied. In our study we aimed to 554 

evaluate the widest possible range of issues encountered during metabarcoding analysis and test the effect 555 

of different sources of variation (including extreme ones) on the final community data. The post-hoc 556 

corrections applied to the datasets represent the usual quality checkpoints during sample processing and 557 

initial data screening. For example, contaminated samples or those with low sequence yield would usually 558 

be removed, as well as samples with extremely low sequence number or OTU diversity. These simple 559 

corrections help to remove the noise from the dataset, introduced by the rare tail (i.e., singletons and 560 

doubletons, that are in most cases amplification, sequencing or contamination artefacts), while conserving 561 

and emphasizing the core patterns in the communities.   562 

 563 

Conclusions  564 

The results of this study suggest that, overall, community metabarcoding is relatively robust to 565 

the random effects of laboratory-based variation within established sample processing protocols and 566 

largely confirm our initial hypotheses: (1) Metabarcoding results from all laboratories provided consistent 567 

patterns of discrimination among four community samples for both DNA markers (COI and 18S rRNA), 568 

despite considerable variation; (2) The two different HTS library protocols (dual index primers versus 569 

fusion primers) did not significantly affect the community comparisons, even though they appeared to 570 

have some differential effects on numbers and quality of sequence reads from the two markers; (3) We 571 

identified several factors that introduced the greatest variability (preservation buffer, sample defrosting, 572 

template concentration, DNA polymerase, PCR enhancer [BSA]); (4) We confirmed that standard post-573 

hoc data filtering steps (e.g., excluding samples with low sequence number or eliminating contaminating 574 

sequences) were very effective at removing noise in the metabarcoding data introduced by laboratory 575 
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variation. The main findings and further considerations resulting from our study are summarized in the 576 

provisional guidelines shown below (Text box 1). 577 

Text box 1: Considerations for improved standardization and minimising effects of laboratory-based 
variation in metabarcoding community analyses. 
 
Primer choice 

18S rRNA: better detection of large-scale patterns, less sensitive to contamination 
COI: better species resolution, higher sequence yield, less sensitive to freeze-thaw cycles  
 

Library type 
Dual index: higher sequence yield for the 18S rRNA gene, less susceptible to inhibitors,  
Fusion: higher sequence yield for the COI gene, less prone to contamination 

 
Sample handling and processing factors substantially affecting metabarcoding data variability 

• Preservation buffer 
• Type of DNA polymerase 
• PCR enhancers 
 

General recommendations 
• Immediate processing or cold storage (ideally at -20°C or lower temperatures), whenever 

practical 
• Preservation buffer type, temperature and storage time should be recorded and reported in 

the metabarcoding protocols and considered as covariates, whenever relevant 
• Keep track of and report freeze-thaw cycles of DNA samples (avoid if possible) 
• Divide DNA into multiple aliquots upon extraction 
• Caution around using BSA and other PCR inhibitors, as these might affect variance and 

composition of investigated communities 
• Technical replication at the PCR step is recommended to mitigate effects of within sample 

variability 
• Consider appropriate data correction and de-noising for reducing effects from sequencing 

or contamination artefacts and better discerning core biological patterns 
• Keep track and report all data corrections 

 
Further considerations 

• The effect of slightly different workflows may be more significant when discriminating 
assemblages with moderate overlap but some turnover (β diversity) in species assemblages. 
Therefore, bias rate imposed by methodological variation deserves further investigation at 
fine-scale levels for species diversity estimates. 

• Due to large variation of sample types, primers, target taxa, differential laboratory access to 
reagents and many other factors, it is impractical to completely standardize PCR protocols 
across all metabarcoding studies. However, the maximum possible standardization is 
required in studies aimed at comparative biodiversity analyses.  

• It is critical to clearly articulate methods in publications to enable a better understanding of 
the underlining causes of biological deviations or lack of reproducibility between studies.  

• It is impossible to control the effects of all possible laboratory parameters in one study, 
therefore further comparative and cross-calibrations studies, at both large and small spatial 
scales, should be of great assistance for further identifying the key factors introducing 
biological variation and for improving standardization of metabarcoding protocols. 



25 
 

Acknowledgements 578 

The experiment was facilitated by in-kind support from two biotech companies (Qiagen and Illumina) 579 

who donated free extraction and sequencing kits. This work is a result of the Quadrilateral Scientific 580 

Collaboration in Marine Biosecurity, a partnership funded by the New Zealand Ministry of Business, 581 

Innovation and Employment (Contract C01X1527) to foster cooperation in marine biosecurity research 582 

among New Zealand, Australia, Canada and the USA. Contribution of the Cawthron institute team was 583 

also supported by New Zealand Ministry of Business, Innovation and Employment funding (CAWX1904 584 

– A toolbox to underpin and enable tomorrow’s marine biosecurity system). GJI and JS were supported 585 

by the NZ Government's Strategic Science Investment Fund (SSIF) through NIWA Coasts & Oceans 586 

Programme 6 - 2019/20 SCI. 587 

 588 

Author Contributions  589 

AZ, PG, CA, UvA, MB, MEC, JG, AAG, MH, GJI, SL, AS, TS, MS, JS, SAW and XP conceived the 590 

study. AZ, CA, UvA, JG, MS, SAW and XP defined the design and collected the field samples. AZ, CA, 591 

UvA, JB, MB, MEC, AC, ED, JG, AAG, MH, EH, SL, AS, TS, MS, SS, JS, VT, KW, MW and GZ 592 

performed sample processing and library preparation. MB, MH, TS, MS and MW run the sequencing. PG 593 

run bioinformatic analyses on the datasets. AZ performed statistical analyses and produced the first draft 594 

of the manuscript. AZ, PG, CA, MEC, AC, GJI, SL, TS, SAW and XP revised the early versions of the 595 

manuscript and contributed to writing. All authors contributed to revision of later versions and final 596 

proof-reading. 597 

 598 

 599 

  600 



26 
 

References 601 

Ahn, J. H., Kim, B. Y., Song, J., & Weon, H. Y. (2012). Effects of PCR cycle number and DNA polymerase 602 
type on the 16S rRNA gene pyrosequencing analysis of bacterial communities. J Microbiol, 50(6), 603 
1071-1074. doi:10.1007/s12275-012-2642-z 604 

Alberdi, A., Aizpurua, O., Gilbert, M. T. P., & Bohmann, K. (2018). Scrutinizing key steps for reliable 605 
metabarcoding of environmental samples. 9(1), 134-147. doi:10.1111/2041-210x.12849 606 

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral 607 
Ecology, 26, 32-46.  608 

Anderson, M. J. (2017). Permutational Multivariate Analysis of Variance (PERMANOVA). In N. 609 
Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri, & J. L. Teugels (Eds.), Wiley StatsRef: 610 
Statistics Reference Online (pp. 1-15). 611 

Aylagas, E., Borja, Á., Irigoien, X., & Rodríguez-Ezpeleta, N. (2016). Benchmarking DNA Metabarcoding 612 
for Biodiversity-Based Monitoring and Assessment. Frontiers in Marine Science, 3, Article 96. 613 
doi:10.3389/fmars.2016.00096 614 

Aylagas, E., Borja, A., & Rodrigues-Ezpeleta, N. (2014). Environmental status assessment using DNA 615 
metabarcoding: towards a genetic based marine biotic index (gAMBI). PLoS One, 9(3), e90529. 616 
doi:90510.91371/journal.pone.0090529.  617 

Bailet, B., Apothéloz-Perret-Gentil, L., Baričević, A., Chonova, T., Franc, A., Frigerio, J.-M., . . . Kahlert, M. 618 
(2020). Diatom DNA metabarcoding for ecological assessment: Comparison among 619 
bioinformatics pipelines used in six European countries reveals the need for standardization. 620 
Science of The Total Environment, 745, 140948. 621 
doi:https://doi.org/10.1016/j.scitotenv.2020.140948 622 

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533, 452-454.  623 
Binladen, J., Gilbert, M. T., Bollback, J. P., Panitz, F., Bendixen, C., Nielsen, R., & Willerslev, E. (2007). The 624 

use of coded PCR primers enables high-throughput sequencing of multiple homolog 625 
amplification products by 454 parallel sequencing. PLoS One, 2(2), e197. 626 
doi:10.1371/journal.pone.0000197 627 

Bourlat, S. J., Haenel, Q., Finnman, J., & Leray, M. (2016). Preparation of Amplicon Libraries for 628 
Metabarcoding of Marine Eukaryotes Using Illumina MiSeq: The Dual-PCR Method. In S. J. 629 
Bourlat (Ed.), Marine Genomics: Methods and Protocols (pp. 197-207). New York, NY: Springer 630 
New York. 631 

Bowers, H., Pochon, X., von Ammon, U., Gemmell, N. J., Stanton, J.-A., Jeunen, G.-J., . . . Zaiko, A. (2021). 632 
Towards optimization of eDNA/eRNA sampling technologies for marine biosecurity surveillance. 633 
Water, 13(8), 1113.  634 

Braukmann, T. W. A., Ivanova, N. V., Prosser, S. W. J., Elbrecht, V., Steinke, D., Ratnasingham, S., . . . 635 
Hebert, P. D. N. (2019). Metabarcoding a diverse arthropod mock community. 19(3), 711-727. 636 
doi:10.1111/1755-0998.13008 637 

Brown, E. A., Chain, F. J. J., Zhan, A., MacIsaac, H. J., & Cristescu, M. E. (2016). Early detection of aquatic 638 
invaders using metabarcoding reveals a high number of non-indigenous species in Canadian 639 
ports. Diversity and Distributions, 22, 1045-1059.  640 

Carøe, C., & Bohmann, K. (2020). Tagsteady: A metabarcoding library preparation protocol to avoid false 641 
assignment of sequences to samples. 20(6), 1620-1631. doi:https://doi.org/10.1111/1755-642 
0998.13227 643 

Clarke, K. R., & Gorley, R. N. (2015). PRIMER v7: User Manual/Tutorial. PRIMER-E, Plymouth, UK. 644 
Clarke, L. J., Trebilco, R., Walters, A., Polanowski, A. M., & Deagle, B. E. (2020). DNA-based diet analysis 645 

of mesopelagic fish from the southern Kerguelen Axis. Deep Sea Research Part II: Topical Studies 646 
in Oceanography, 174. doi:https://doi.org/10.1016/j.dsr2.2018.09.001 647 

https://doi.org/10.1016/j.scitotenv.2020.140948
https://doi.org/10.1111/1755-0998.13227
https://doi.org/10.1111/1755-0998.13227
https://doi.org/10.1016/j.dsr2.2018.09.001


27 
 

Collins, R. A., Bakker, J., Wangensteen, O. S., Soto, A. Z., Corrigan, L., Sims, D. W., . . . Mariani, S. (2019). 648 
Non-specific amplification compromises environmental DNA metabarcoding with COI. 10(11), 649 
1985-2001. doi:10.1111/2041-210x.13276 650 

Comtet, T., Sandionigi, A., Viard, F., & Casiraghi, M. (2015). DNA (meta)barcoding of biological invasions: 651 
a powerful tool to elucidate invasion processes and help managing aliens. Biological Invasions, 652 
17, 905-822.  653 

Cordier, T., Alonso-Sáez, L., Apothéloz-Perret-Gentil, L., Aylagas, E., Bohan, D. A., Bouchez, A., . . . 654 
Lanzén, A. (2020). Ecosystems monitoring powered by environmental genomics: A review of 655 
current strategies with an implementation roadmap. doi:10.1111/mec.15472 656 

Cristescu, M. E. (2014). From barcoding single individuals metabarcoding biological communities: 657 
towards an integrative approach to the study of global biodiversity. Trends in Ecology & 658 
Evolution, 29(10), 566-571.  659 

Darling, J. A., & Mahon, A. R. (2011). From molecules to management: adopting DNA-based methods for 660 
monitoring biological invasions in aquatic environments. Environmental Research, 111, 978-988.  661 

Darling, J. A., Pochon, X., Abbott, C. L., Inglis, G. J., & Zaiko, A. (2020). The risks of using molecular 662 
biodiversity data for incidental detection of species of concern. Diversity and Distributions, in 663 
press.  664 

Djurhuus, A., Port, J., Closek, C. J., Yamahara, K. M., Romero-Maraccini, O., Walz, K. R., . . . Chavez, F. P. 665 
(2017). Evaluation of Filtration and DNA Extraction Methods for Environmental DNA Biodiversity 666 
Assessments across Multiple Trophic Levels. 4(314). doi:10.3389/fmars.2017.00314 667 

Doi, H., Fukaya, K., Oka, S.-i., Sato, K., Kondoh, M., & Miya, M. (2019). Evaluation of detection 668 
probabilities at the water-filtering and initial PCR steps in environmental DNA metabarcoding 669 
using a multispecies site occupancy model. Scientific Reports, 9(1), 3581. doi:10.1038/s41598-670 
019-40233-1 671 

Dowle, E., Pochon, X., Banks, J., Shearer, K., & Wood, S. A. (2016). Targeted gene enrichment and high 672 
throughput sequencing for environmental biomonitoring: a case study using freshwater 673 
macroinvertebrates. Molecular Ecology Resources, 16(5), 1240-1254.  674 

Duran, R., & Cravo-Laureau, C. (2017). Protocols for Mudflat and Algal Mat In Situ Analysis. In T. J. 675 
McGenity, K. N. Timmis, & B. Nogales (Eds.), Hydrocarbon and Lipid Microbiology Protocols: Field 676 
Studies (pp. 305-317). Berlin, Heidelberg: Springer Berlin Heidelberg. 677 

Edgar, R. C. (2016). UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. 678 
081257. doi:10.1101/081257 %J bioRxiv 679 

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and 680 
speed of chimera detection. Bioinformatics, 27, 2194-2200.  681 

Elbrecht, V., & Leese, F. (2015). Can DNA-based ecosystem assessments quantify species abundance? 682 
Testing primer bias and biomass - sequence relationships with an innovative metabarcoding 683 
protocol. PLoS One, 10(7), e0130324. doi:10.1371/journal.pone.0130324 684 

Elbrecht, V., & Steinke, D. (2018). Scaling up DNA metabarcoding for freshwater macrozoobenthos 685 
monitoring. Freshwater Biology, 64(2), 380-387.  686 

Engelbrektson, A., Kunin, V., Wrighton, K. C., Zvenigorodsky, N., Chen, F., Ochman, H., & Hugenholtz, P. 687 
(2010). Experimental factors affecting PCR-based estimates of microbial species richness and 688 
evenness. International Society for Microbial Ecology Journal, 4(5), 642-647.  689 

Evans, N. T., Olds, B. P., Renshaw, M. A., Turner, C. R., Li, Y., Jerde, C. L., . . . Lodge, D. M. (2016). 690 
Quantification of mesocosm fish and amphibian species diversity via environmental DNA 691 
metabarcoding. Molecular Ecology Resources, 16(1), 29-41.  692 

Ficetola, G. F., Pansu, J., Bonin, A., Coissac, E., Giguet-Covex, C., De Barba, M., . . . Taberlet, P. (2015). 693 
Replication levels, false presences and the estimation of the presence/absence from eDNA 694 
metabarcoding data. Molecular Ecology Resources, 15(3), 543-556.  695 



28 
 

Geller, J., Meyer, C., Parker, M., & Hawk, H. (2013). Redesign of PCR primers for mitochondrial 696 
cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic 697 
surveys. Molecular Ecology, 13(5), 851-861.  698 

Goldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thosmsen, F. P., Murhpy, M. A., . . . Taberlet, P. 699 
(2016). Critical considerations for the application of environmental DNA methods to detect 700 
aquatic species. Methods in Ecology and Evolution, 7, 1299-1307.  701 

Gomez-Silvan, C., Leung, M. H. Y., Grue, K. A., Kaur, R., Tong, X., Lee, P. K. H., & Andersen, G. L. (2018). A 702 
comparison of methods used to unveil the genetic and metabolic pool in the built environment. 703 
Microbiome, 6(1), 71. doi:10.1186/s40168-018-0453-0 704 

Gray, M. A., Pratte, Z. A., & Kellogg, C. A. (2013). Comparison of DNA preservation methods for 705 
environmental bacterial community samples. FEMS Microbiol Ecol, 83(2), 468-477. 706 
doi:10.1111/1574-6941.12008 707 

Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G. A., & Baird, D. J. (2011). Environmental barcoding: a 708 
next-generation sequencing approach for biomonitoring applications using river benthos. PLoS 709 
One, 6(4), e17497.  710 

Hampton-Marcell, J. T., Frazier, A., Moormann, S. M., Owens, S. M., & Gilbert, J. A. (2017). Preparation 711 
and Analysis of Metatranscriptomic Libraries in Petroleum Hydrocarbon Microbe Systems. In T. 712 
J. McGenity, K. N. Timmis, & B. Nogales (Eds.), Hydrocarbon and Lipid Microbiology Protocols: 713 
Genetic, Genomic and System Analyses of Communities (pp. 51-67). Berlin, Heidelberg: Springer 714 
Berlin Heidelberg. 715 

Jeunen, G.-J., Knapp, M., Spencer, H. G., Taylor, H. R., Lamare, M. D., Stat, M., . . . Gemmell, N. J. (2019). 716 
Species-level biodiversity assessment using marine environmental DNA metabarcoding requires 717 
protocol optimization and standardization. 9(3), 1323-1335. doi:10.1002/ece3.4843 718 

Judo, M. S., Wedel, A. B., & Wilson, C. (1998). Stimulation and suppression of PCR-mediated 719 
recombination. Nucleic Acids Research, 26(7), 1819-1825. doi:10.1093/nar/26.7.1819 720 

Keeley, N. B., Wood, S. A., & Pochon, X. (2018). Development and preliminary validation of a multi-721 
trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecological 722 
Indicators, 85, 1044-1057.  723 

Kreader, C. A. (1996). Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 724 
protein. 62(3), 1102-1106.  725 

Lacoursière-Roussel, A., Howland, K., Normandeau, E., Grey, E. K., Archambault, P., Deiner, K., . . . 726 
Bernatchez, L. (2018). eDNA metabarcoding as a new surveillance approach for coastal Arctic 727 
biodiversity. 8(16), 7763-7777. doi:10.1002/ece3.4213 728 

Larson, E. R., Graham, B. M., Achury, R., Coon, J. J., Daniels, M. K., Gambrell, D. K., . . . Suarez, A. V. 729 
(2020). From eDNA to citizen science: emerging tools for the early detection of invasive species. 730 
18(4), 194-202. doi:10.1002/fee.2162 731 

Lee, K. M., Adams, M., & Klassen, J. L. (2019). Evaluation of DESS as a storage medium for microbial 732 
community analysis. PeerJ, 7, e6414. doi:10.7717/peerj.6414 733 

Lehtiniemi, M., Ojaveer, H., David, M., Galil, B., Gollasch, S., McKenzie, C., . . . Pederson, J. (2015). Dose 734 
of truth - Monitoring marine non-indigenous species to serve legislative requirements. Marine 735 
Policy, 54, 26-35.  736 

Leray, M., & Knowlton, N. (2016). Censusing marine eukaryotic diversity in the twenty-first century. 737 
Philos Trans R Soc Lond B Biol Sci, 371(1702), 20150331. doi:doi:10.1098/rstb.2015.0331 738 

Leray, M., & Knowlton, N. (2017). Random sampling causes the low reproducibility of rare eukaryotic 739 
OTUs in Illumina COI metabarcoding. PeerJ, 5(e3006).  740 

Leray, M., Yang, J. Y., Meyer, C. P., Mills, S. C., Agudelo, N., Ranwez, V., . . . Machida, R. J. (2013). A new 741 
versatile primer set targeting a short fragment of the mitochondrial COI region for 742 



29 
 

metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. 743 
Frontiers in Zoology, 10(1), 34. doi:10.1186/1742-9994-10-34 744 

Marotz, C., Sharma, A., Humphrey, G., Gottel, N., Daum, C., Gilbert, J. A., . . . Knight, R. (2019). Triplicate 745 
PCR reactions for 16S rRNA gene amplicon sequencing are unnecessary. 67(1), 29-32. 746 
doi:10.2144/btn-2018-0192 747 

McCord, B., Pionzio, A., & Thompson, R. (2014). Analysis of the effect of a variety of PCR inhibitors on the 748 
amplification of DNA using real time PCR, melt curves and STR analysis. Retrieved from 749 
https://nij.ojp.gov/library/publications/analysis-effect-variety-pcr-inhibitors-amplification-dna-750 
using-real-time-pcr 751 

McMurdie, P. J., & Holmes, S. (2013). Phyloseq: an R package for reproducibleinteractive analysis and 752 
graphics of microbiome census data. PLoS One, 8, e61217.  753 

Molnar, J. L., Gamboa, R. L., Revenga, C., & Spalding, M. D. (2008). Assessing the global threat of invasive 754 
species to marine biodiversity. Frontiers in Ecology and the Environment, 6(9), 485-492.  755 

Murray, D. C., Coghlan, M. L., & Bunce, M. (2015). From Benchtop to Desktop: Important Considerations 756 
when Designing Amplicon Sequencing Workflows. PLoS One, 10(4), e0124671. 757 
doi:10.1371/journal.pone.0124671 758 

Nichols, R. V., Vollmers, C., Newsom, L. A., Wang, Y., Heintzman, P. D., Leighton, M., . . . Shapiro, B. 759 
(2018). Minimizing polymerase biases in metabarcoding. 18(5), 927-939. doi:10.1111/1755-760 
0998.12895 761 

Nicholson, A., McIsaac, D., MacDonald, C., Gec, P., Mason, B. E., Rein, W., . . . Hanner, R. H. (2020). An 762 
analysis of metadata reporting in freshwater environmental DNA research calls for the 763 
development of best practice guidelines. 2(3), 343-349. doi:10.1002/edn3.81 764 

O’Donnell, J. L., Kelly, R. P., Lowell, N. C., & Port, J. A. (2016). Indexed PCR Primers Induce Template-765 
Specific Bias in Large-Scale DNA Sequencing Studies. PLoS One, 11(3), e0148698. 766 
doi:10.1371/journal.pone.0148698 767 

Opel, K. L., Chung, D., & McCord, B. R. (2010). A study of PCR inhibition mechanisms using real time PCR. 768 
J Forensic Sci, 55(1), 25-33. doi:10.1111/j.1556-4029.2009.01245.x 769 

Pearman, J. K., von Ammon, U., Laroche, O., Zaiko, A., Wood, S. A., Zubia, M., . . . Pochon, X. (2021). 770 
Metabarcoding as a tool to enhance marine surveillance of nonindigenous species in tropical 771 
harbors: A case study in Tahiti. 3(1), 173-189. doi:https://doi.org/10.1002/edn3.154 772 

Porter, T. M., & Hajibabaei, M. (2018). Scaling up: A guide to high-throughput genomic approaches for 773 
biodiversity analysis. Mol Ecol, 27(2), 313-338. doi:10.1111/mec.14478 774 

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., . . . Glockner, F. O. (2013). The SILVA 775 
ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic 776 
Acids Res, 41(Database issue), D590-596. doi:10.1093/nar/gks1219 777 

R-project. (2014). R: A language and environment for statistical computing. Retrieved from 778 
http://www.R-project.org 779 

Renshaw, M. A., Olds, B. P., Jerde, C. L., McVeigh, M. M., & Lodge, D. M. (2015). The room temperature 780 
preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-781 
isoamyl alcohol DNA extraction. Mol Ecol Resour, 15(1), 168-176. doi:10.1111/1755-0998.12281 782 

Schrader, C., Schielke, A., Ellerbroek, L., & Johne, R. (2012). PCR inhibitors – occurrence, properties and 783 
removal. 113(5), 1014-1026. doi:https://doi.org/10.1111/j.1365-2672.2012.05384.x 784 

Simberloff, D., Martin, J.-L., Genovesi, P., Maris, V., Wardle, D., Aronson, J., . . . Vilà, M. (2013). Impacts 785 
of biological invasions: what's what and the way forward. Trends in Ecology & Evolution, 28(1), 786 
58-66. doi:10.1016/j.tree.2012.07.013 787 

Stat, M., Huggett, M. J., Bernasconi, R., DiBattista, J. D., Berry, T. E., Newman, S. J., . . . Bunce, M. (2017). 788 
Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine 789 
environment. Scientific Reports, 7, 12240.  790 

https://nij.ojp.gov/library/publications/analysis-effect-variety-pcr-inhibitors-amplification-dna-using-real-time-pcr
https://nij.ojp.gov/library/publications/analysis-effect-variety-pcr-inhibitors-amplification-dna-using-real-time-pcr
https://doi.org/10.1002/edn3.154
http://www.r-project.org/
https://doi.org/10.1111/j.1365-2672.2012.05384.x


30 
 

Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L. H. (2012). Environmental DNA: a special issue on 791 
DNA metabarcoding. Molecular Ecology, 21, 1789-1793.  792 

Tatangelo, V., Franzetti, A., Gandolfi, I., Bestetti, G., & Ambrosini, R. (2014). Effect of preservation 793 
method on the assessment of bacterial community structure in soil and water samples. FEMS 794 
Microbiol Lett, 356(1), 32-38. doi:10.1111/1574-6968.12475 795 

Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P. F., . . . Dejean, T. (2016). Next-796 
generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol 797 
Ecol, 25(4), 929-942. doi:10.1111/mec.13428 798 

van der Loos, L. M., & Nijland, R. (2020). Biases in bulk: DNA metabarcoding of marine communities and 799 
the methodology involved. Molecular Ecology. doi:10.1111/mec.15592 800 

Vandamme, S. G., Griffiths, A. M., Taylor, S. A., Di Muri, C., Hankard, E. A., Towne, J. A., . . . Mariani, S. 801 
(2016). Sushi barcoding in the UK: another kettle of fish. PeerJ, 4, e1891. doi:10.7717/peerj.1891 802 

von Ammon, U., Wood, S. A., Laroche, O., Zaiko, A., Tait, L., Lavery, S., . . . Pochon, X. (2018). Combining 803 
morpho-taxonomy and metabarcoding enhances the detection of non-indigenous marine pests 804 
in biofouling communities. Scientific Reports, 8, 16290.  805 

Woide, D., Zink, A., & Thalhammer, S. (2010). Technical Note: PCR Analysis of Minimum Target Amount 806 
of Ancient DNA. American Journal of Physical Anthropology, 142(2), 321-327.  807 

Wood, S. A., Smith, K. F., Banks, J. C., Tremblay, L. A., Rhodes, L., Mountfort, D., . . . Pochon, X. (2013). 808 
Molecular genetic tools for environmental monitoring of New Zealand's aquatic habitats, past, 809 
present and the future. New Zealand Journal of Marine and Freshwater Research, 47(1), 90-119.  810 

Zaiko, A., Pochon, X., Garcia-Vazquez, E., Olenin, S., & Wood, S. A. (2018). Advantages and limitations of 811 
environmental DNA/RNA tools for marine biosecurity: management and surveillance of non-812 
indigenous species. Frontiers in Marine Science, 5(322).  813 

Zaiko, A., Samuiloviene, A., Ardura, A., & Garcia-Vazquez, E. (2015). Metabarcoding approach for 814 
nonindigenous species surveillance in marine coastal waters. Marine Pollution Bulletin, 100(1), 815 
53-59.  816 

Zhan, A., Hulak, M., Sylvester, F., Huang, X., Adebayo, A. A., Abbott, C., . . . MacIsaac, H. J. (2013). High 817 
sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods 818 
in Ecology and Evolution, 4(6), 558-565.  819 

Zizka, V. M. A., Elbrecht, V., Macher, J.-N., & Leese, F. (2019). Assessing the influence of sample tagging 820 
and library preparation on DNA metabarcoding. 19(4), 893-899. 821 
doi:https://doi.org/10.1111/1755-0998.13018 822 

 823 

Data accessibility statement 824 

The HTS data supporting the results presented in this manuscript were uploaded into CSIRO Data Access 825 

Portal and is accessible online at https://doi.org/10.25919/5j5x-0711. 826 

 827 

 828 

 829 

 830 

https://doi.org/10.1111/1755-0998.13018
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.25919%2F5j5x-0711&data=04%7C01%7CAnastasija.Zaiko%40cawthron.org.nz%7C5c7f0c330cea4f289d6c08d905384383%7C0ed55d7825dd4776947a20158de7657d%7C0%7C0%7C637546561487985840%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=3vR5nvM1oQYd61zvuYFKtMnGZq4RinkPt5o%2Bmj95Auo%3D&reserved=0


31 
 

 831 

 832 

 833 

 834 

 835 

Figure 1. Conceptual scheme of the experimental workflow (created with BioRender.com). Countries from 836 
where the samples were sourced: AUS = Australia, USA = United States of America, CAN = Canada, NZ 837 
= New Zealand. 18S = 18S ribosomal rRNA gene, COI = mitochondrial Cytochrome c Oxidase subunit 1. 838 
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 841 

 842 

 843 

 844 

Figure 2. Number of filtered 18S rRNA gene (a, c) and Cytochrome c Oxidase subunit 1 (b, d) sequences 845 
obtained using the dual index (a, b) and fusion (c, d) methods. Each box plot represents the upper and 846 
lower quartiles (edges), median (horizontal line), the maximum value of the data that is within 1.5 times 847 
the interquartile range over the 75th percentile (the upper whisker), the minimum value of the data that is 848 
within 1.5 times the interquartile range under the 25th percentile (the lower whisker) and the outliers 849 
(black dots). The different colors represent the origin of the biofouling sample analyzed (AUS = 850 
Australia, USA = United States of America, CAN = Canada, NZ = New Zealand). Note the difference in 851 
the scale of y axis between markers.  852 
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 853 

Figure 3. Number of Operational Taxonomic Units (OTUs) obtained for each 18S rRNA gene (a, c) and 854 
Cytochrome c Oxidase subunit 1 (b, d) amplicons using the dual index (a, b) and fusion (c, d) methods. 855 
Each box plot represents the upper and lower quartiles (edges), median (horizontal line), the maximum 856 
value of the data that is within 1.5 times the interquartile range over the 75th percentile (the upper 857 
whisker), the minimum value of the data that is within 1.5 times the interquartile range under the 25th 858 
percentile (the lower whisker) and the outliers (black dots). The different colors represent the origin of the 859 
biofouling sample analyzed (AUS = Australia, USA = United States of America, CAN = Canada, NZ = 860 
New Zealand). Note the difference in the scale of y axis between markers.  861 
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 863 

 864 

Figure 4. Number of filtered sequence reads recovered from the DNA extraction blanks (blank), negative 865 
PCR controls (-) and positive PCR controls (+). Red bars indicate samples with considerable 866 
contamination in the DNA extraction blanks; red crosses above red bars indicate positive PCR controls 867 
that failed to recover the target taxa. 18S = 18S rRNA gene, COI = Cytochrome c Oxidase subunit 1. 868 

  869 
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 870 

Figure 4. Canonical analysis of principal coordinates (CAP) plots based on Bray-Curtis dissimilarities of 871 
fourth root transformed 18S rRNA gene read abundance data using sample origin as a grouping factor: a) 872 
raw, uncorrected data; b) Corr1 data (samples with low sequence number (<1,000) excluded).  873 
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 875 

 876 

Figure 5. Canonical analysis of principal coordinates (CAP) plots based on Bray-Curtis dissimilarities of 877 
fourth root transformed mitochondrial Cytochrome c Oxidase subunit 1 (COI) read abundance data using 878 
sample origin as a grouping factor: a) raw, uncorrected data; b) Corr3 data (OTUs found in the negative 879 
controls removed from the corresponding subset of data). Triangles represent samples from dual index 880 
sequencing library, circles – samples from fusion sequencing library. 881 
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 883 

Figure 6. Two-dimensional Principal Coordinates Analysis (PCoA) visualizations of 18S rRNA 884 
Operational Taxonomic Unit (OTU) diversity derived in the corrected datasets (Corr1) by different 885 
laboratories (laboratory labels noted for each datapoint) for samples originating from Australia (AUS), 886 
United States of America (USA), Canada (CAN) and New Zealand (NZ) samples.   887 
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 889 

Figure 7. Two-dimensional Principal Coordinates Analysis (PCoA) visualizations of mitochondrial 890 
Cytochrome c Oxidase subunit 1 (COI) operational taxonomic unit (OTU) diversity derived in the 891 
corrected datasets (Corr3) by different laboratories (laboratory labels noted for each datapoint) for 892 
samples originating from Australia (AUS), United States of America (USA), Canada (CAN) and New 893 
Zealand (NZ) samples.   894 
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Table 1. Summary information on the samples of marine biofouling (starting material). 896 

Sample origin Sample code Date Source Preservation 

Hillarys Boat Harbour, 
Perth, Australia 

 

AUS 8 February 2017 Settlement plate (scraped 
biomass, homogenized and 
frozen before preservation) 

RNAlater™ 

Monterey Bay 
Harbour, California, 
USA 

USA 1 May 2017 Settlement plate biomass 
(scraped biomass) 

RNAlater™ 

Victoria Harbour, 
British Columbia, 
Canada  

CAN 9 May 2017 Marina ropes (scraped 
biomass) 

LifeGuard™ 

 

Waitematā Harbour, 
Auckland, North 
Island, New Zealand 

NZ 20 April 2017 Marina pontoon (scraped 
biomass) 

LifeGuard™ 

 

 897 

  898 
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Table 2. Summary of sample classification with raw and corrected 18S rRNA data from all laboratories. 899 
Canonical analysis of principal coordinates (CAP) analyses were carried out on fourth root transformed 900 
18S rRNA gene environmental DNA read abundance data obtained from 12 laboratories: Raw – not 901 
corrected; Corr1 – samples with low sequence number (<1,000) excluded; Corr2 – samples randomly 902 
rarefied to 10,000 sequence depth; Corr3 – Operational Taxonomic Units (OTUs) found in the negative 903 
controls removed from the corresponding subset of data; Corr4 – maximum read abundance of OTUs 904 
found in the negative controls subtracted from the corresponding subset of data; Corr5 – OTUs found in 905 
negative controls subtracted and samples with low sequence number (<1,000) excluded; Corr6 – OTUs 906 
found in negative controls subtracted and samples rarefied to 10,000 sequence depth. Shading indicates 907 
the best classification result of samples by origin.  908 

18S rRNA gene  Raw Corr1 Corr2 Corr3 Corr4 Corr5 Corr6 

No. of samples 190 167 105 190 190 166 101 

No. of OTUs 2,701 2,700 2,463 2,646 2,654 2,648 2,409 

No. of sequences 4,860,418 4,855,461 1,050,000 2,956,370 4,548,860 4,543,847 1,010,000 

Canonical correlation 0.961 0.997 0.998 0.981 0.953 0.974 0.997 

P value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Correct classification % 88.42 92.81 91.43 87.89 87.89 90.36 91.09 

AUS 89.36 90.91 100 87.23 91.49 90.7 96.43 

USA 91.67 97.67 92.86 93.75 89.58 95.35 92.86 

CAN 93.75 95 85.71 87.5 89.58 92.5 85.71 

NZ 78.72 87.5 84 82.98 80.58 82.5 87.5 

 909 

 910 

 911 

 912 

 913 

 914 

 915 
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Table 3. Summary of sample classification with raw and corrected mitochondrial Cytochrome c Oxidase 916 
subunit 1 (COI) data from all laboratories. Canonical analysis of principal coordinates (CAP) analyses 917 
were carried out on fourth root transformed mitochondrial COI eDNA read abundance data obtained from 918 
12 laboratories: Raw – not corrected; Corr1 – samples with low sequence number (<1,000) excluded; 919 
Corr2 – samples randomly rarefied to 10,000 sequence depth; Corr3 – Operational Taxonomic Units 920 
(OTUs) found in the negative controls removed from the corresponding subset of data; Corr4 – maximum 921 
read abundance of OTUs found in the negative controls subtracted from the corresponding subset of data; 922 
Corr5 – OTUs found in negative controls subtracted and samples with low sequence number (<1,000) 923 
excluded; Corr6 – OTUs found in negative controls subtracted and samples rarefied to 10,000 sequence 924 
depth. Shading indicates the best classification result of samples by origin.  925 

COI Datasets Raw Corr1 Corr2 Corr3 Corr4 Corr5 Corr6 

No. of samples 192 170 154 192 192 168 150 

No. of OTUs 8,549 8,547 7,370 8,198 8,473 8,469 7,288 

No. of sequences 27,866,837 27,865,889 1,540,000 13,049,76

4 

27,286,419 27,284,006 1,500,000 

Canonical correlation 0.98 0.993 0.994 0.999 0.996 0.997 0.993 

p 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Correct classification % 88.02 94.71 92.86 95.58 94.35 95.24 92.67 

AUS 93.75 97.73 97.3 97.78 100 97.62 97.06 

USA 91.67 97.67 92.5 93.48 95.46 97.67 95 

CAN 83.33 92.68 89.74 91.3 93.18 95.12 92.11 

NZ 83.33 90.48 92.11 100 88.64 90.48 86.84 
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