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Abstract—This paper proposes a method to estimate the
impedance of Lithium-Ion cells by using an excitation signal.
The injection signal is intended to be delivered to the battery
module by the power converter used for the interface of the
energy storage and using the current and voltage measurements
provided by the module battery management system. The es-
timation method is conducted in two steps. During the system
commissioning, the impedance is estimated by using a frequency-
domain method known as vector fitting. Despite its high accuracy,
it has an important computational burden that makes it difficult
to use in real-time applications running on the embedded systems
often used for battery and converter control. For that reason,
during the regular operation, a recursive least squares algorithm
is proposed, being the initial estimation given by the frequency-
domain method employed during the commissioning process.
The discussion includes not only the description and testing
of the method but also the effects due to the reduced digital-
domain resolution of the acquired data used for the estimation
(terminal current and cell voltage), as well as the discretization
method used for the digital implementation. The proposal is
validated by simulation and by experimental results using the
cell measurements provided by a BMS of a commercial module.

I. INTRODUCTION

Lithium-Ion batteries have become a competitive storage
technology in the market while their price keeps decreasing
[1]. One of the critical parts of the battery that has a clear
impact on its performance is the inner impedance. Power
management, state of charge (SoC), state of health (SoH) are
all affected by this impedance [1].

In the literature, different excitation inputs have been used
for impedance estimation [2]. DC current pulse injection is
the most common technique used for measuring the inner
resistance and evaluate the degradation, and the only one
accepted by standards for determining the power capability
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[3], [4]. It has to be remarked that the obtained impedance is
also sensitive to the amplitude and pulse width [5], which in
turn determines the frequency resolution [6]. The discussion
presented in this paper evaluates in detail how both properties
impact the estimation accuracy.

Regarding the digitalization process for the electrical vari-
ables used in the estimation, the sampling frequency, the
resolution of the analog to digital converters, and the dis-
cretization method can degrade the estimation [7]. Details
about the employed acquisition system and its effect on the
estimation accuracy are given later in this paper. About the
discretization, zero-order-hold (ZoH) transformation gives the
exact discrete approximation, however, it requires a high
computational burden when dealing with adaptive filters [8].
For that reason, backward Euler and Bilinear approximation,
which ensure a stable transformation, will be compared in this
paper.

Considering the equivalent electrical circuit for a Li-ion
battery [9], [10], the inner parameters depend on the battery
operation condition and aging condition [11]. Online estima-
tion techniques based on adaptive filtering methods have been
successfully implemented in the modeling of unknown systems
[12]. Within the variety of adaptive filter alternatives, Kalman
filter-based approaches are widely used for state estimation.
However, they require a high computational burden when the
system order is increased due to the matrix inverse calculation.
On top of that, simultaneous estimation of system state and
parameters is an endeavor task [7].

Recursive Least Squares (RLS) algorithm is an adaptive
filter extensively used for parameter identification [7], [13],
[14]. Different model identification methods which rely in
RLS filter are compared in Table I. VFF-RLS [14] uses
a variable forgetting factor and has a robust performance.
However, the random parameter initialization increases the
convergence time. In [13], it is included an inner-loop that
performs an estimation multiple times between updates. It uses
previously identified data and it is reported to improve the
accuracy and to achieve a fast convergence. DWRLS method
[7] was introduced to improve the estimation process and the
noise robustness by separating the contribution to the dynamic
response by the different parameters. The initialization process
is done using approximated parameter values and, as reported
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by the authors, very accurate results are shown. However, it
also requires offline training. All of the reviewed methods have
been tested only under laboratory conditions, although in [7],
the simulation includes noise magnitude close to the expected
levels when employing measurement systems typically used in
commercial battery management systems (BMS). Still, it does
not account for the finite digital resolution in the acquisition
system.

TABLE I
IDENTIFICATION METHODS BASED ON RLS FILTER.
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VFF-RLS [14] 4 Bilinear > 30 Random NMC Lab
Inner-loop [13] 5 Backward < 5 Matlab LFP Lab

DWRLS [7] 5 ZoH > 5 Approx. NCA Lab
Proposed 5 Bilinear < 5 VF LFP Commercial

As reported in the literature, the initialization process for
the parameters is of critical importance to achieve correct
results, otherwise the estimation might lead to high fluc-
tuations or unreasonable values [13]. The long-established
offline parametrization, based on least square (LS), is sensitive
to noise and has been reported not to be the best of its
class solution [7]. On the other hand, rational approximations
provide a better estimation for higher-order systems, where
particularly vector fitting (VF) [15] leads to more stable and
robust results with respect to similar rational approximations
schemes [16].

This paper presents a novel fusion method that initializes
the parameter values of the RLS filter during the commis-
sioning process with a frequency-domain method VF [15].
The initialization allows for a speed up in the convergence
time and increased robustness [13]. To decouple the higher-
order dynamics and make the method more robust under
noise measurements, a sequential approach is proposed during
the real-time estimation. The two networks are independently
estimated by using an adaptive pulsed-injection signal, in
which the period is changed according to the time constant
being estimated.

The research of this paper contributes to the implementation
of the identification method in a commercial system rather than
relying on high accuracy laboratory equipment. Considering
the target energy storage usage to be stationary applications,
a two-level control system architecture is considered. At the
battery module-level, a BMS for the cell-level monitoring,
responsible of measuring the cell voltages and temperatures
is considered. For higher-level variables and control needs,
including system-level SoC, SoH and equalization, the BMS
measured values are sent to a control system (EMS), either
at string or system-level at much reduced sampling rates.
The EMS typically incorporates the total current and voltage
measurements.

Under that scenario, the most remarkable contributions of
the present work include: 1) the effects of discretization
approximations in the estimation when considering measure-
ments limitations and 2) the validation of the proposed param-

eter identification approach using a commercial module and
its BMS/EMS measurements instead of more common works
based on a laboratory test-bench. The additional difficulties in-
clude a larger measurement noise as well as reduced resolution
(1 mV for the voltage and 0.3 A for the current measurements)
and the real-time implementation feasibility due to the use of
CAN bus communication protocol between the BMS and the
EMS, where the proposed method is implemented.

The research in this paper was first presented in a pre-
liminary work in [17]. The results presented there have been
extended in the following directions: 1) the implementation of
the real-time discrete equations for the estimation process; 2)
an enhanced method for increasing the system sensitivity to the
independent parameter variation; 3) validation of the proposed
approach using a commercial module and the internal BMS
measurements at cell level.

The present paper is organized as follows: In Section II the
continuous-domain model proposed for the battery impedance
and the discretization process are introduced. In Section III,
the parameter estimation methods, and the effects of the input
signal parameters, pulse width, and frequency, are analyzed.
In Section IV, the simulation and experimental results are
exposed. To summarize, the conclusions obtained are gathered
at the end of the paper.

II. SYSTEM MODELING

The chemical reactions that take place in Lithium-Ion bat-
teries can be modeled by the equivalent circuit shown in Fig. 1
[9], [10]. Rs represents the cabling connections and the inner
resistance of the battery and it grows with aging [18]. The
capacitive effects in the surface of the electrode are captured
by the first RC branch, while the second RC branch represents
the diffusion processes of the electrolyte [10]. The fast branch
has a time constant (τ1) of a few seconds, whereas the slow
one (τ2) is in the range of hundreds of seconds [9]. These two
very different dynamics are explored in this paper for easing
the estimation process.
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Fig. 1. Battery cell equivalent circuit.

The continuous domain transfer function for the impedance
follows the relation in (1) with the coefficients of (2). To
conduct the estimation in a digital system, a discrete approx-
imation for the continuous-domain representation is needed.
As before mentioned, the ZoH discretization that provides the
exact value has a high computational burden. Thus, Backward
Euler and Bilinear transformation (Table II) are proposed for
the implementation. For the proposed equivalent circuit, the
transfer function in the continuous-domain, the corresponding
coefficients, and the discrete approximation are shown in (1)-
(3) [19]. This approach is only valid for linear time-invariant
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TABLE II
DISCRETE EQUIVALENTS BY NUMERICAL INTEGRATION.

Backward Euler [13] Bilinear [14], [19]

s ≈
z − 1

zTs
s ≈

2

Ts

(z − 1)

(z + 1)

b0z (R1T
2
s + R2T

2
s + RsT

2
s +

C1R1R2Ts+C2R1R2Ts+

C1R1RsTs+C2R2RsTs+

C1C2R1R2Rs)/den
∗
bk

(R1T
2
s + R2T

2
s + RsT

2
s +

2C1R1R2Ts + 2C2R1R2Ts +

2C1R1RsTs + 2C2R2RsTs +

4C1C2R1R2Rs) /den∗∗
bi

b1z blue −((C1R1R2 +

C2R1R2 + C1R1Rs +

C2R2Rs)Ts +

2C1C2R1R2Rs)/den
∗
bk

(2R1T
2
s + 2 ∗R2T

2
s + 2RsT

2
s −

8C1C2R1R2Rs) /den∗∗
bi

b2z (C1C2R1R2Rs)/den
∗
bk (R1T

2
s + R2T

2
s + RsT

2
s −

2C1R1R2Ts − 2C2R1R2Ts −
2C1R1RsTs − 2C2R2RsTs +

4C1C2R1R2Rs) /den∗∗
bi

a1z −(C1R1(Ts + C2R2) +

C2R2(Ts +C1R1))/den
∗
bk

(2R1T
2
s + 2R2T

2
s + 2RsT

2
s −

8C1C2R1R2Rs) /den∗∗
bi

a2z C1C2R1R2/den
∗
bk (R1T

2
s + R2T

2
s + RsT

2
s −

2C1R1R2Ts − 2C2R1R2Ts −
2C1R1RsTs − 2C2R2RsTs +

4C1C2R1R2Rs) /den∗∗
bi

b0z rc (R1Ts)/(R1Ts + Ts) (R1Ts)/(Ts + 2C1R1)

b1z rc 0 (R1Ts)/(Ts + 2C1R1)

a1z rc (Ts − 2R1C1)/(2R1C1 +

Ts)

(Ts − 2C1R1)/(Ts + 2C1R1)

b0z rcrs(R1Ts + RsTs +

C1R1Rs)/(Ts + C1R1)

(R1Ts + RsTs +

2C1R1Rs)/(Ts + 2C1R1)

b1z rcrs−(C1R1Rs)/(Ts +C1R1) (R1Ts + RsTs −
2C1R1Rs)/(Ts + 2C1R1)

a1z rcrs−(C1R1)/(Ts + C1R1) (Ts − 2C1R1)/(Ts + 2C1R1)
∗denbk = (Ts + C1R1)(Ts + C2R2)

∗∗denbi = (Ts + 2C1R1)(Ts + 2C2R2)

systems [20]. Both transformations are compared in the next
section. The corresponding coefficients of (4) [19] for each of
the approximations are gathered in Table II. The coefficients
of the difference equation for one RC branch (5) [19], and
one branch in series with the series resistor (6) [19] are also
included in Table II for later discussion.

(1)Z(s) =
b0ss

2 + b1ss+ b2s
a0ss2 + a1ss+ a2s

(2)

b0s = RsR1C1R2C2;

b1s = Rs(R1C1 +R2C2) +R2R1(C1 + C2);

b2s = Rs +R1 +R2;

a0s = R1C1R2C2;

a1s = R1C1 +R2C2;

a2s = 1;

(3)Zcell(z) = q
VZcell

(z)

I(z)
=
b0zz

2 + b1zz + b2z
z2 + a1zz + a2z

(4)VZcell,k = b0zIcell,k + b1zIcell,k−1 + b2zIcell,k−2

− (a1zVZcell,k−1 + a2zVZcell,k−2)

(5)VC,k = b0z rcIcell,k + b1z rcIcell,k−1 − a1z rcVZcell,k−1

VCRs,k = b0z rcrsIcell,k + b1z rcrsIcell,k−1− a1z rcrsVZcell,k−1

(6)

TABLE III
LITHIUM-ION MODULE PARAMETERS

Rs [mΩ] R1 [mΩ] C1 [F] τ1[s] R2 [mΩ] C2 [F] τ2[s]

24 0.6 5630 3.3 8.2 54277 445

III. PARAMETER ESTIMATION

A. Power Converter Implementation

This work is intended for batteries connected to a dc/dc
power converter capable of controlling the battery current
using current regulation. This current-control capability allows
for delivering current pulses to stimulate the battery impedance
for identification purposes, as shown in Fig. 2. The battery
impedance has to be sensitive to the excitation signal, thus the
parameters can be identified in frequency and time domain.
The dynamics of the system ought to be estimated are far
from the current bandwidth of a dc/dc converter, typically in
the range of hundreds of Hertz’s, so these bandwidth effects
are omitted. As a first approach, the parameters obtained for
a Lithium-Ion battery module of 100 Ah following the same
equivalent circuit model [21] collected in Table III are used
to evaluate the estimation performance by simulation.

Fig. 2. Scheme for the connection of the converter to the battery terminals.

B. Estimation

1) Vector fitting: VF method seeks to conduct the estima-
tion in the frequency domain by using the frequency spectrum
of the impedance response [22]–[24], which is obtained from
the cell battery voltage (Vcell) and current (Icell). This current
coincides with the total one (I) due to the series connection.
From the impedance frequency spectrum, the method finds
the coefficients of the transfer function in (7), where s is
the Laplace variable and an the system poles, which closest
matches the impedance calculation from the measurements.
According to the proposed battery impedance model shown in
(1), this impedance consists of two poles and the E component
in (7) is 0, resulting in the transfer function in (8). The
coefficients in (8) are related to the battery equivalent circuit
parameters as stated in (9)-(13).

(7)f(s) '
N∑

n=1

cn
s− an

+D + sE

(8)
f(s) = C · (sI −A)−1 ·B +D + sE

=
b2s

2 + b1s+ b0
(s− a1)(s− a2)

+D
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(9)Rs = D (10)R1 = b0 −R2 (11)C1 = − 1

R1a1

(12)R2 =
b1 +

1
a2

b0
−1
a1

+ 1
a2

(13)C2 = − 1

R2a2

The digital implementation of the VF aims to get the
impedance at the cell level, following the scheme in Fig. 3
and Alg. 1. The same scheme could be used at a module
level if the global measurements are used, but the contribution
of electrical connections will be more relevant in the final
impedance. First (Step 1), the cell voltage (Vcell) and cell
current (Icell) measurements coming from the BMS/EMS are
allocated in two memory buffers. The battery is considered to
be at rest state at the beginning of the test, which corresponds
to 2 h of no operation. The DC voltage component, Voc, is
compensated before the excitation signal starts, in order to
isolate the impedance response of a cell, VZcell

, to the applied
pulse.

Following step 2 in Fig. 3, the frequency-domain impedance
is calculated from the compensated cell voltage (VZcell

) and
current (Icell). Step 2 of Alg. 1 (line 2) describes how the
impedance module (Zmod) and phase (Zph) is obtained at
the frequency vector (Zf ) from the discrete Fourier transform
(DFT).

Step 3 of Alg. 1 (line 10) and Fig. 3 gather the VF
implementation. As mentioned before, the VF algorithm is
launched using the implementation published in [22]. The
algorithm requires the system order (no) and the number of
iterations (Niter). It is also defined the option of number of
zeros, where, following the transfer function shown in (8), the
matching with the proposed model corresponds to D 6= 0 and
E = 0. The resulting state space system is obtained in the SER
variable after the call to the VF function. The coefficients are
matched to the given transfer function (9)-(13) to obtain the
needed parameters.

To obtain a crisp resolution in the frequency domain, the
different natural frequencies for the system dynamics have
to be captured. According to the definition of frequency
resolution in discrete systems, fres = 1

NTs
, where N is the

number of samples and Ts the sample time, this resolution
should be low enough to identify the large time constants of
the two RC branches. The following section will present a
discussion for the fres constrains.

Vk cell

Ik cell Rs R1 R2, , ,
C1 C2,

Vcell

cellI mod

f

ph

Fig. 3. Vector fitting implementation.

2) Recursive Least squares: The RLS algorithm is an adap-
tive filter that combines the least square estimation method
plus the matrix inversion lemma [25]. As depicted in Fig.
4, this algorithm seeks to minimize a cost function (14) by
recursively finding the coefficients w (15) of the n0 order
system from the measurements (16) using a forgetting factor
λ and a weighted covariance matrix P . A white noise esti-
mation (êk−1) is also considered to improve the results [26]

Algorithm 1: VF IMPLEMENTATION.
Input: Icell, Vcell, Ts
Output: R̂s,0,R̂1,0,R̂2,0,Ĉ1,0,Ĉ2,0

1 VZ cell = Vcell − Voc;
// Step 2: DFT of Zcell

2 VDFT =DFT(VZ cell);
3 IDFT =DFT(Icell);
4 N=length(VDFT); fres=1/(N · Ts); fN=1/2/Ts;
5 Zph=angle(VDFT)−angle(IDFT);// rad
6 VDFT 0=VDFT 0/2; IDFT 0=IDFT 0/2;

Vmod=abs(VDFT)/(N /2);Imod=abs(IDFT)/(N /2);
7 Zmod=Vmod./Imod;
8 Zmod=Zmod(1 : fN − fres); Zph=Zph(1 : fN − fres);
9 Zf=0 : fres : fN − fres;
// Step 3: Init VF

10 Z=Zmod. · ejZph ;
11 no = 2; // number of poles
12 Niter=5; // number of iterations
13 opts.stable=1; // Enforce stable poles

opts.asymp=2; // Fitting:D 6= 0, E = 0
14 Ns=length(Z);
15 Zw=Zf · 2π;
16 weigth=ONES(Ns,1);
17 s=j. · Zw;
18 poles =linespace(Zw,1, Zw,end, no);
19 for N=1:Niter do
20 [SER, poles, err, datafit]=

vecfit3(Z,s,poles,weight,opts)
21 end
22 [A,B,C,D]=[SER.A,SER.B,SER.C,SER.D];
23 φ=1/(s*linespace (length(A))-A);
24 f(s)=C·φ· B +D; // Eq.(8)
25 [R̂1,0,R̂2,0,Ĉ1,0,Ĉ2,0]=f(b0,b1,a1,a2)// Eqs.(9)-(13)

and its coefficient c1 is initialized to 0. The RLS function
implementation is collected in Alg. 2 and it allows to initialize
the function with the previous n0 measurement vectors (uk0,
yk0), the coefficients (w0) and the covariance matrix P0. The
updated coefficients wk and estimated output ŷk are updated
every sampling time, from the current input (uk) and output
(yk) measurements.

The impedance is considered time-invariant during each
testing period. For the problem being, this only assumes
that the impedance variation takes longer than the required
estimation time. Otherwise, it is required to use the extended
version of the filter [27]. As in the frequency case, the battery
is considered to be at rest state at the beginning of the test
and the initial DC voltage component (Voc) is subtracted, so
the remaining voltage corresponds to the voltage drop in the
estimated impedance (VZcell

).

(14)e = yk1 − x′RLS · wRLS

(15)wRLS = [b0z b1z a1zc1]

xRLS =
[
uk1, ...uk1−no

, −yk1−1, ...− yk1−1−(no−1), êk−1
]

(16)
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Fig. 4. Adaptive RLS algorithm.

The implementation of the proposed online estimation
method is summarized in Fig. 5. The estimation avoids the
direct use of (4) as the cost function to minimize the mea-
surement noise over the estimation results. Instead, since the
overall impedance has two-time constants at very different
time orders, the system is split into two first-order systems
(no = 1). This provides better access to the states (capacity
voltages), which are easily decoupled from Rs. The impedance
parameters obtained from the VF method are used to initialize
the estimation. Firstly, the first (fastest) branch is estimated
and after 5 times τ1 (tch) [9], the estimation process switch to
the second branch. Rs is estimated in both stages. During the
estimation of the first branch parameters, the ones from the
second branch are held constant at the last known (initially
determined by the VF method) values and its voltage drop is
subtracted to the measured voltage VZcell

. This difference is
used as the voltage measurement in the RLS filter, so Rs and
the first branch parameters are estimated using (6) as the cost
function and following the relation in Table IV.

When the first branch estimation is concluded at tch, the
R̂sm, R̂1m, Ĉ1m mean values for the last τ1 period are
obtained. From there, the coefficients from Table II are used to
compute the first branch voltage (5), initialize the coefficient
w from the second branch voltage, and its initial voltage.
After tch, the second branch parameters plus Rs follows the
estimation steps of the first branch estimation. Each sampling
time the estimated parameters are updated.

Algorithm 2: RLS FUNCTION.

1 [ŷk,wout]=RLS(λ,P0,w0,no,uk1,yk1,uk0,yk0)
persistent〈w1k P1k uk yk nk〉;

2 if isempty(wk 1) then
3 w1k = w0; P1k = P0; uk = zeros(1, no + 1);

yk = zeros(1, no + 1); nk = zeros(1, no + 1);
uk(2 : end) = uk0; yk(2 : end) = yk0;

4 uk(1) = uk1; yk(1) = yk1;
5 xk = [uk,−yk(2 : end))];
6 ek = yk(1)− w1kxk;// Cost function
7 gk = P1kxk[λ+ xTk P1kxk];// gain update
8 Pk = λ−1P1k − gkxTk λ−1P1k;// cov. update
9 wk = w1k + ekgk;// Coeff. est.

10 êk = yk(1)− wkxk;// Est. error
11 w1k = wk;P1k = Pk;
12 uk(2 : end) = uk(1 : end− 1); yk(2 : end) =

yk(1 : end− 1); nk(2 : end) = nk(1 : end− 1);
13 ŷk = wkxk; wout = wk[1 : 3];
14 return wout, ŷk;

,a

a

a

,a

,a
a

a

(ADC values)

ADC

ADC

k-1+=

Fig. 5. RLS flowchart for the digital implementation.
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TABLE IV
PARAMETER ESTIMATION FROM DIFFERENCE EQUATION COEFFICIENTS.

Backward Euler Bilinear

Rs b1z rcrs/a1z rcrs − b0z rcrs−b1z rcrs
(a1z rcrs−1)

R1 − b1z rcrs−a1z rcrs b0z rcrs
a1z rcrs (a1z rcrs+1)

− 2(b1z rcrs−a1z rcrs b0z rcrs )

a2
1z rcrs

−1

C1
Tsa

2
1z rcrs

b1z rcrs−a1z rcrs b0z rcrs

(Ts(a1z rcrs−1)2

4b1z rcrs−4a1z rcrs b0z rcrs

0 T 2T 3T
0

Tpw amp

Pu
ls

e

0 1/T 2/T 3/T 4/T ...
f

10-4Tpw amp

10-2Tpw amp

Tpw amp

Pu
ls

e df
t m

od
 n

or
m

Tpw=T

Tpw=2T

(a)

(b)

t

Fig. 6. Pulse relation with Tpw in a) time and b) frequency domain for two
different Tpw .

C. Excitation signal selection criteria

1) Frequency domain: As explained before, the VF method
runs in the frequency domain. In the literature, three excitation
signals are commonly used: chirp, train of pulses or a single
pulse [4]. The chirp signal has a constant magnitude over the
frequency range it covers. The train of pulses will only cover
the odd harmonics starting from the main frequency of the
signal. This paper is focused on the low-frequency range, thus,
the pulse response will be enough for obtaining the response
at that range. This is also consistent with the online implemen-
tation and the delivery of the injection signal from the power
converter, which makes the pulse-based implementation much
simpler. This type of signal is used by standards to evaluate
the cell inner resistance [3], where here it is also pretended
to be used to further obtain the low-frequency dynamics. As
mentioned before, to examine only the impedance, the initial
voltage Voc is subtracted from the overall Vcell.

Fig. 6 shows the module of the normalized DFT response
for two pulse signals with same amplitude (Tpw amp) and
two different (double) widths (Tpw). The lobes are related
to Tpw following the relationships gathered in (17), where
their module vanishes to zero at 1/Tpw and its harmonics and
each lobe amplitude (Lbi amp) is doubled with Tpw. Since the
impedance estimation requires to divide the voltage frequency
domain values by the corresponding current, frequencies at
zero-crossing points have to be removed from the estimation. It
is determined that values below 10% of the maximum current
main amplitude will not be considered to tackle this issue.

(17)Lbwidth =
1

Tpw
; Lbi amp =

Lbi amp 1T

Tpw
;

The VF method has been tested for the battery impedance
in Table III at different fres and Tpw and the parameter errors

obtained are collected in Fig. 7. The results are represented
normalized by the respective RC branches time constants at the
x-axis. The denormalized fres tested correspond to different
tend of 6 to 50 minutes, which is equivalent to a fres from
2.8 to 0.3 mHz. The selected pulse magnitude corresponds to
a current rate (Cr) of 0.3C.

Fig. 7a-e presents the parameter estimation error when
considering no measurement error and infinite resolution in
the acquired signals. A lower fres leads to a better estimation
in the RC branches, where the slow branch becomes the most
sensitive to this factor and increasing the relation fresτ2 above
0.3 results in an error above 5%. In Fig. 7f-j, a finite resolution
of 1 mV and 0.3 A is assumed in the measurements. This
corresponds to typical resolutions in state-of-the-art BMS.
The error given at low Tpw derives from the resolution of
the voltage measurement mainly and it is combined with the
error due to fres mentioned before. On the other hand, Rs is
perfectly estimated in any case and it is neither affected by
Tpw and fres.

Further considerations for establishing the test conditions
in both variables are: 1) with regard to Tpw, it is desired to
have the shortest possible duration, so the variation of SoC is
minimized. 2) a higher fres value will reduce the required test
time. Based on the results, as a trade-off between the effect
of both parameters, Tpw = 15 s and fres = 0.7 mHz. This
selection gives an overall estimation error below 5%.
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2) Time domain: For the RLS implementation, the shape of
the input signal current has to be selected so the output voltage
is sensible to the parameters sought to be estimated. For the
signal excitation, a train of pulses is selected for this case since
it allows a simple real-time digital-domain implementation and
it has a good sensitivity at the output voltage for the parameter
variation. Different simulations are performed following the
pulse train scheme in Fig. 8a-b, with different test lengths
(tend) and Tpw. For branches with time constants that differ
more than one decade, they do not interfere with each other,
as can be seen in Fig. 8c-d, where the effects in the phase of
both time constants are decoupled.

The equivalent circuit components are solved using Back-
ward Euler and Bilinear transformations following the relation
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in Table IV. In this initial case, the noise is not accounted
for to better understand the effect of the selected signal and
the impact of the discrete transformation approach. The series
resistance is perfectly estimated in both cases and it is not
affected by the discretization, tend and Tpw. Fig. 9a-h presents
the resulting relative error of the dynamic branches estimation
at the end of the simulation. As expected, the Bilinear approx-
imation gives the best results due to the minimization of the
signal shift. Fig. 9i-l presents the parametrization error when
the limited resolution is applied as in the VF method, and it
is found that there is a minimum pulse width required for the
dynamic branches so the measurements are sensitive to the
parameters. In this case, the series resistance is also perfectly
estimated and not included in the figure.
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IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation results

The simulation results are presented herein. Both methods
are evaluated considering the parameters of Table III.

1) VF results: The VF method is evaluated by analyzing
the voltage and current response (Fig. 10a,c), after a current
pulse. The current and voltage measurements have a resolution
of 1 mV and 0.3 A respectively, which corresponds to the
experimental setup presented in the next section. In Fig. 10b,d,
the module of the current and voltage frequency response
is shown. The impedance is calculated from their division,
avoiding values below 0.1Imax for the estimation.

The resulting impedance used for VF is depicted in Fig. 10e,
where it can be seen that at low-frequency values, the response
used with the proposed fres can capture the slow dynamics.
The parameter values obtained are gathered in Table V. The
overall error is below 5%, being slightly higher for the slow
branch parameters, as it was expected from Fig. 7.
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TABLE V
SIMULATION RESULTS

Rs[mΩ] R1[mΩ] C1[F] R2[mΩ] C2[F]

VF 24 0.61 5834 7.9 56942
error[%] 0.01 2.25 3.62 4.06 4.90

RLS 24 0.6 5769 8.3 60716
error[%] 0.01 0.8 2.48 1.70 11.86

2) RLS results: From the VF results, the initial parameters
for the RLS implementation are obtained. For the RLS imple-
mentation, the sampling frequency is 10 Hz, the forgetting
factor λ has been set to 0.991 and, the initial covariance
diagonal terms Pk−1 to 1010. Two consecutive sequences of
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current train pulses are used as the input signal. The first one
has a period Tpw of τ1 and it last up to tch. The period
for the second sequence is Tpw = 5τ1, which allows for a
decoupling of the first branch dynamics without requiring a
long time for the estimation to converge. The dual-sequence
current-injection pulses aim to energize closer harmonics to
the branch being estimated.

Different cases are exposed in Fig. 11 to evaluate the
influence of disturbance factors in the estimation. Case 1
depicts the results when the parameters are initialized with
VF results and the resolution is infinite, so there is no error
in the estimation (considering as no error the difference to
the VF estimation). Case 2 shows the estimation results when
the initial values to be estimated by the first RLS sequence
are 20% lower. Finally, Case 3 includes the influence of
finite resolution, which is set to 0.1 mV and 0.3 A for
the cell-voltage and current respectively. This factor lets the
first branch parameters reach convergence. However, it has
a higher impact in the second branch, requiring a longer
convergence time. Conclusions from this simple study are that
the estimation is robust to the initial estimation errors but it can
be noticeably affected by lower resolution in the measurement
system, which is typically the case for commercial modules
compared to the instrumentation used in laboratory conditions.

Fig. 12a-b presents the input current and voltage response.
The measured voltage is compared to the simulated one with
the final estimated parameters, which are obtained at the
end of the test, as gathered in Table V. It can be seen in
Fig. 12b that the estimated voltage tracks the real one when
considering a linear-time invariant (LTI) system and using the
final parameters of Table V, even when 1 mV and 0.3 A
resolution is considered. The voltage error (Fig. 12c) has a
negative trend and keeps below 1% when the pulse current is
applied.

B. Experimental results

For the experimental setup, a commercial battery module of
Cegasa Energı́a has been used (Fig. 13). The module consists
of 15 LFP cells in series, where their properties are collected
in table VI. To generate the injected current pulse, the module
is connected to a bidirectional source DELTA SM 70-CP-
450. The module is connected to a control unit (EMS) where
the total current and bus voltage are measured. Each control
unit can handle up to 8 modules connected in series. The
module BMS communicates with the control unit via CAN-
Open protocol and allows to get the main variables of the
connected battery modules. The BMS samples the cell voltages
at 27 kHz and they are filtered by two low-pass filters: the
first one has a cutoff frequency of 7 kHz and the second one
of 26 Hz. The control unit captures the current and voltage
measurements instantaneously with a sampling time of 0.1 ms.
Using the communications link, it only monitors in real-time
the minimum and maximum cell voltage and temperature of
each module, the ambient temperature, and the total current.
The impedance estimation is carried out at cell level since
it is not proportional the performance from cell to module
level due to the heterogeneous operation of the cells [28]. The
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conducted experiments use the monitored cells at the lowest
and highest voltage, which are the ones that reach faster the
cutoff voltages, and are conducted with a 50% battery module
SoC.

TABLE VI
CELL CHARACTERISTICS

Type
Qnom

[Ah]
Vn
[V ]

Z1000Hz

[mΩ]
Vmin-Vmax

[V ]
Cr

dis/ch

LFP 180 3.2 0.6 2.5 - 3.65 1.2/1

Fig. 13. Setup used for the experimental results. The battery module consists
of 15 LPF cells in series.

1) VF estimation: The same input signal as in the simula-
tion analysis is used, as shown in Fig. 14a. The response of a
battery cell is gathered in Fig. 14c,e for cells having maximum
and minimum voltage. It can be observed that the voltage
resolution (1 mV) becomes noticeable. The pulse signal has
a Tpw of 15 s and a fres of 0.7 mHz, which corresponds to
a test length of 1430 s. The DFT of the current and voltage
signals are obtained as presented in Fig. 14b,d,f, and from
their division, the DFT of the impedance is obtained (Fig.
15a-b). As the current lobes draw towards zero, there is a
distortion induced in the module of the impedance, which
corresponds to lobes amplitude below 10% of the maximum
current lobe. Values under this range are discarded and only
the values presented in black dots in Fig. 14b,d,f are used for
the estimation. The resulting parameters obtained following
the scheme of VF implementation (Alg. 1) are collected in
Table VII.

Figs. 15c-d show the error between the experimental and the
module of the resulting Bode with the estimated parameters.
The approach of the 2RC model results in an error below 0.1%
for the frequency range tested.

2) RLS estimation: The real-time estimation is presented
herein. For the test, the sequence of current-pulse trains
presented in Fig 16a is used. The covariance matrix and λ
maintain the same simulation values. The parameters of the
VF estimation are used to initialize the method.
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The estimated parameters in real-time are gathered in Fig.
17, where it can be seen that Rs (Fig. 17a-b) keeps similar
to the initial guess of VF. However, the dynamics converge
to different values from the initials and the second branch
require around 80 s following the real-time estimation (Fig.
17c-j). Table VII gathers the average value of the parameters
during the last τ1 period of the test. It has to be noted that the
initial VF guess does not represent the real parameter values,
but only an approximation of those and that the typical use of
the real-time impedance measurement is to track impedance
changes due, mainly, to aging, temperature, and SoC factors.
Considering that, the estimation is considered in a very good
agreement.

In Fig. 16b,e, the resulting voltage with the estimated
parameters of both methods (Table VII) and the measured
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voltage for both cells are depicted. As has been mentioned,
the initial guess of the parameters with the VF method does
not meet the current situation of the battery. The reason for
these discrepancies might come due to the non-linearities of
the battery, which are not modeled here. However, for the
test window considered, this linear approach of the 2 RC
equivalent-circuit model achieves an error below 0.1%, as
shown in Fig. 16c,f for the cell with the highest and lowest
voltage respectively.
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TABLE VII
PARAMETERS ESTIMATED IN THE EXPERIMENTAL TEST

case Rs[mΩ] R1[mΩ] C1[F] R2[mΩ] C2[F]

VF Vcellmin 0.43 0.15 16439 0.45 94412
Vcellmax 0.59 0.14 15895 0.49 86167

RLS Vcellmin 0.48 0.22 5835 0.97 67289
Vcellmax 0.60 0.22 4599 1 50548
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V. CONCLUSION

This paper has exposed a comprehensive analysis to esti-
mate the low-frequency impedance of Li-Ion battery cells via a
variable-length current pulse-injection scheme delivered from
the power converter. The two RC branches equivalent circuit
model is taken as a reference of the impedance behavior for
the frequency range tested. For the initial commissioning, the
parameters are initialized through a frequency method (VF).
For the real-time estimation, it is proposed a method that
estimates the parameters using a RLS filter. The effects of the
discretization approach and the excitation signal are analyzed
in the frequency and time domain, where Bilinear approxima-
tion results in a lower error. The effects of the excitation signal
are also evaluated, where the limited resolution of commercial
modules reflects the higher impact on the results. For the
frequency domain, the input signal requires a fres capable of
capturing the low frequencies of the system, and a Tpw large
enough to avoid errors due to the limited resolution. For the
RLS, the estimation is split in two stages for the different
time constants, and a two-period pulse signal is proposed to
energize the branch which is being estimated. The resolution
is still the factor that more affects the estimation, especially
for the slow branch.

Based on these previous considerations, the response of a
known impedance battery has been firstly simulated to check
the performance of the method. The method is validated in a
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commercial battery module where the cells having the mini-
mum and maximum cell voltages are used for the estimation.
The final estimated voltage response of the LTI equivalent
circuit has an error below 0.1% compared to the measured
voltage.
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