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Abstract— Localization of mobile robots in industrial 
environments is key in an increasingly automated industry. 
Nowadays, the inspection and repair of heavy steel plates is 
performed by human workers. Repair work often requires long 
hours in uncomfortable postures that can cause problems for the 
worker. We propose a mobile robot placed on top of a steel plate 
that must move along the plate to inspect and repair it, without 
leaving the sheet. Robot localization on the plate is key to 
generate the inspection and repair trajectories.  
 
There are different methods of localization, the most widely 
used require the use of expensive laser sensors to create a map 
using information from the environment and localize from it. 
This paper proposes a less expensive localization system for a 
mobile robot based on the installation of ArUco markers in the 
environment and the use of a ring of 8 calibrated cameras 
mounted on the robot that allow a 360º vision. This ensures a 
correct localization regardless of the working area. It is 
necessary to map the markers with respect to a common 
coordinate system.  
 
We propose a method to create the map using the ring. We 
validate the proposal through experiments comparing the 
localization obtained with the proposed system and a 
localization using a state-of-the-art SLAM method employing 
laser sensors. 
 

Keywords— Mobile Robot, Computer Vision, Robot 
Localization, ArUco Markers, Ring of Cameras, ROS. 

I. INTRODUCTION  
Mobile robots are appearing in an increasingly automated 

industry in a growing range of applications. One example is 
the deployment of autonomous mobile robots for inspection 
of surface defects. Other applications seek to replace human 
workers in dangerous tasks, such as grinding. 

 In the production of heavy steel plates, both problems 
appear together. Currently, the inspection and repair are 
performed by human operators. The repair work usually 
involves long working days in uncomfortable positions that 
can lead to physical problems for the worker. 

This paper presents a localization method for a mobile 
robot performing sheet metal inspection and repair process 
without leaving the sheet. Therefore, the robot moves in a 
localized space, the width of the sheet metal varies from 1.4 
to 3.3 m and their length may change from 4 to 18 m. 
Normally, sheet metal inspections are performed in large 
indoor environments. So, there may not be enough references 
in the environment for certain types of localization systems. 

Localization problem has been discussed from multiple 
approaches, being common the use of different sensors that 
provide direct information about the location of the robot at 

each time, or about the changes that are produced in its 
environment. 

One of the most widely used alternatives in the 
localization of mobile robots is the use of Simultaneous 
Localization and Mapping (SLAM) techniques. These 
systems build a map of the environment that is used to localize 
the robot. Expensive laser scanners are generally used for the 
construction of the environment map. In addition, systems 
based on natural feature extraction and matching could be 
used but it can be problematic in certain scenarios if there are 
not enough natural landmarks. 

Sensor fusion is also common in robotics, usually using 
Kalman filters [1] or particle filters [2], [3], which allows 
combining estimates from different sources to achieve a more 
robust pose. In [4], information from inertial sensors is fused 
with a visual odometry method. 

GPS systems are another widely used method. However, 
systems based on satellite signals are not appropriate for this 
task because GPS signals are not available in indoor scenarios. 

Other strategy is by placing beacons at known positions in 
the environment to facilitate the localization of the robot. For 
example, visual beacons, such as luminous beacons of 
different geometries and colors or fiducial markers. 

Different fiducial marker systems can be found, composed 
by a set of defined markers and an algorithm that allows their 
detection and identification. These systems have been used in 
multiple vehicle localization applications. For example, 
researchers from the AVA group at the University of Cordoba 
developed different applications to localize mobile robots 
using ArUco markers with a single camera [5]. Other research 
using computer vision and artificial markers can be seen in 
[6], [7] and [8]. The paper in [9] proposes the localization of a 
mobile robot by a particle filter combining the information 
from an omnidirectional camera and a range sensor, using 
fiducial markers.  

Other strategy is using a robot tracking system. For that, 
fiducials are also used, as in [10], in which the mobile robot is 
tracked by arranging an artificial marker on top of it using a 
system of multiple cameras fixed in the environment. In [11] 
they use geometric features of the robot itself instead artificial 
markers.  

 In this paper, we propose a localization system using an 8-
camera ring fixed in the robot and a set of artificial markers 
placed in the environment, surrounding the plate being 
inspected by the robot. It is necessary to know the position of 
the markers with respect to a common coordinate system. 
Therefore, a way to locate them and create a map of the 
markers is proposed, so that the robot can move over the sheet 
as accurately as possible.  
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 Although we describe the localization for a mobile robot 
to inspect and repair heavy steel plates, the method is easily 
adaptable to any other task that require robot localization.  

The paper is organized as follows. Section II describe the 
algorithms used to compute the map of ArUcos and the robot 
localization. Section III shows results achieved with our 
prototype at the lab. Finally, section IV presents our 
conclusions. 

II. METHODS 

A. Hardware 
Fig. 1 (a) shows a view of the robot used to solve this 

problem. The base is an omnidirectional Summit XL Steel 
robot from Robotnik. On top of the robot, a ring of 8 cameras 
with the configuration shown in Fig. 1 (b) is installed. The 
cameras are the UI-1007XS-C model from IDS imaging. 
Cameras are previously calibrated, both intrinsically and 
extrinsically, referenced to the robot's reference system.  

  
(a) (b) 

Fig. 1.  (a) Mobile Robot used in experiments. (b) 8-Camera ring 
configuration. 

The robot is equipped with additional laser sensors to run 
another type of localization to compare the results obtained in 
the experiments. This localization is performed with a SLAM 
algorithm using the gmapping ROS package [12]. Markers 
used are ArUco markers [13] and are fixed in the environment 
in which the robot moves.  

B. Process Workflow 

 
Fig. 2. Process workflow. 

A schematic view of the overall process is shown in Fig. 
2.  

The problem starts with the robot placed on the plate 
without knowing its location in the environment. To localize 
it we use the markers placed in the surroundings. For this, it is 
key to know the poses of the markers relative to a common 
reference system, so we can refer the robot to a known system. 
It is also essential to have the 8-camera ring calibrated, both 

intrinsically and extrinsically, knowing their poses with 
respect to the robot. 

Once we have the markers map, we can localize the robot 
using the cameras information. Each camera gives an 
estimation of a robot pose using the markers within its field of 
view. Finally, pose estimations are fused and a final pose 
referred to the common reference system is obtained. 

C. ArUco markers system 
The ArUco marker system [13] consist in  a set of markers 

and an algorithm that allows their detection and identification. 
An ArUco marker, see Fig. 3, is a square synthetic marker 
composed of a black border and an internal binary matrix that 
defines an identifier. The size of the marker determines the 
size of the internal matrix. There are different ArUco 
dictionaries that group markers with different identifiers.  

 
Fig. 3. ArUco Markers. In blue, system of coordinates of ArUco markers. 

The detection of the markers in the images is performed 
by the aruco_detect package [2]. This package provides the 4 
corners and the identifier of each marker present in the image. 
Once the markers have been detected in the images, the pose 
of the markers with respect to the camera is computed. 

A pin-hole model is assumed to model the camera. To 
estimate the pose of the marker with respect to the camera that 
detects it, the Perspective-n-Point (PnP) problem is solved. 

Solving the Perspective-n-Point (PnP) problem is possible 
to estimate the pose of a calibrated camera given a series of 
3D points in the world and their corresponding 2D projections 
in the image. A single marker yields the four correspondences 
needed, from its corners, to solve the problem. The camera 
pose consists of 6 degrees of freedom, orientation (roll, pitch, 
yaw) and translation with respect to the world (X, Y, Z). 

After solving the PnP problem given the 3D positions of 
the corners in the marker system itself and their corresponding 
2D projections on the image, the calibrated camera pose with 
respect to the marker system is obtained.  

The coordinate system associated with each marker can be 
seen in Fig. 3, in which the Z axis will be perpendicular to the 
plane containing the marker and the origin located at the 
center of the marker. 

D. Aruco mapping 
To localize the robot using markers placed in the 

environment, it is necessary to know their poses relative to a 
common reference system. To map the markers, the robot will 
be placed in the environment in such a way that all markers 
are visible with any of the cameras in the ring. The map stores 
the poses of the ArUco markers referred to a common 
reference system, which will be called the world system, fixed 
to one of the markers. 

The developed mapping algorithm can be divided into 
different steps. First, markers will be detected in the images 



and one of them will be chosen to define the world coordinate 
system. Subsequently, the poses of the rest of the markers with 
respect to the reference system will be estimated.  

To ensure that the map is created with the smallest possible 
error, the marker that will define the position and orientation 
of the global coordinate system will be the one that is closer 
to the camera and whose Z-axis is as parallel as possible to the 
camera axis. Once the first marker is located and the world 
system is set, the poses of the rest of the markers will be 
referred to the global coordinate system.  

As previously explained, from the images and the 
calibration parameters of the cameras, the transformation 
between the camera and the markers that appear in the images 
is obtained. By having all the cameras extrinsically calibrated, 
referred to the robot's reference system, the transformations 
between cameras are also known. From this data, the 
necessary transformations are applied to refer the poses of the 
markers to the common reference system. 

 
Fig. 4. Schematic mapping system transformations. Where {M0}, {M1}, 

{M8}, {M9} are the coordinate systems of the markers in 3D space and 
C1, C2 y C8 are the cameras that take the images of the markers. In this 
case, world reference frame is set on marker with id 0. 

An example is shown in Fig. 4. C1, C2 and C8 refer to the 
cameras that see the markers. First, the world reference frame 
{W} is set to the marker with id 0 {M0}. The calculation of 
the pose of markers 1, 8 and 9 is performed by applying the 
appropriate transformations. In the case of marker 1: 

 
𝑇𝑇𝑀𝑀1𝑊𝑊 =    𝑇𝑇𝑀𝑀0𝑊𝑊 · 𝑇𝑇𝐶𝐶1𝑀𝑀0 ·  𝑇𝑇𝐶𝐶2 ·  𝑇𝑇𝑀𝑀1𝐶𝐶2𝐶𝐶1   (1) 

All the transforms are known. 𝑇𝑇𝑀𝑀0𝑊𝑊  is the transform 
defined between the system of the desired world {W} and that 
of the selected marker {M0}. In this case, it only involves a 
rotation. 𝑇𝑇𝐶𝐶1𝑀𝑀0  and 𝑇𝑇𝑀𝑀1𝐶𝐶2  are obtained as explained in C and 
𝑇𝑇𝐶𝐶2𝐶𝐶1  are the transformation between cameras 1 and 2. The 

same process is repeated for all of the markers. In this 
example: 

 
𝑇𝑇𝑀𝑀8𝑊𝑊 =    𝑇𝑇𝑀𝑀0𝑊𝑊 · 𝑇𝑇𝐶𝐶1𝑀𝑀0 ·  𝑇𝑇𝐶𝐶8 ·  𝑇𝑇𝑀𝑀8𝐶𝐶8𝐶𝐶1   

𝑇𝑇𝑀𝑀9𝑊𝑊 =    𝑇𝑇𝑀𝑀0𝑊𝑊 · 𝑇𝑇𝐶𝐶1𝑀𝑀0 ·  𝑇𝑇𝐶𝐶8 ·  𝑇𝑇𝑀𝑀9𝐶𝐶8𝐶𝐶1  
(2) 

E. Robot localization 
We performed different steps to locate the robot, as can be 

seen in Algorithm 1. First, we estimate a pose of the robot 
according to the information provided by each of the cameras, 
resulting in eight different poses. Next step merges the eight 
pose estimations. Finally, a linear Kalman filter is applied to 
optimize the robot pose. 

First, the markers present in the images captured by the 
cameras at each instant are detected.  Then, a robot's pose is 
estimated from those markers present in each of the cameras. 

In this case, following the strategy explained in section C, 
the PnP problem is solved with the projections of the corners 
of the markers and the 3D positions of the corresponding 
markers with respect to the world system, obtained from the 
previously built map, see Fig. 5. 

Algorithm 1: Robot localization 
Step 1. Detect ArUco markers in the images of the cameras. 
Step 2. Estimate one possible robot pose from the markers seen by each 
camera 
Step 3. Fuse robot poses 
Step 4. Filter measurement according to the previous ones and the motion 
command executed by the robot. 
Step 5. Apply Linear Kalman Filter to optimize the final robot pose 

 

 
Fig. 5. Camera pose estimation from 3D marker corners (Pi) in the world 

system and their projections on the image (pi).  

After solving the problem, the transformation between the 
camera coordinate system and the world system is 
obtained, 𝑇𝑇𝑊𝑊𝐶𝐶 . In this way, the transformation matrix of the 
robot and the world system, 𝑇𝑇𝑅𝑅𝑊𝑊 , can be estimated directly as: 

 
𝑇𝑇𝑅𝑅𝑊𝑊 =    𝑇𝑇𝐶𝐶𝑊𝑊 · 𝑇𝑇𝑅𝑅𝐶𝐶    (3) 

Where 𝑇𝑇𝐶𝐶𝑊𝑊  is the inverse transformation of 𝑇𝑇𝑊𝑊𝐶𝐶 , and 
𝑇𝑇𝑅𝑅𝐶𝐶  is the transformation that relates the camera and the robot 

coordinate systems. For each of the cameras, an estimation of 
the robot pose is obtained based on the markers present in each 
camera. In order to choose the best location, an estimation of 
the accuracy of the measurement is made. It is based in the 
reprojection error, the distance of the marker from the camera 
and the relative rotation between them.  

The reprojection error is used to discard the estimation if 
it is higher than a chosen value. Then, the distance and 
orientation of the marker to the camera are weighted according 
to experimentally defined thresholds in the laboratory. Finally, 
the overall accuracy (𝐴𝐴𝐴𝐴𝑖𝑖 ) is the mean of these two. For 
example, the distance from the marker to the camera, at a 
distance greater than a threshold of 5 meters (𝑇𝑇𝐻𝐻𝑑𝑑)  it is given 
a weight of 0. At a closer distance, is done as in (4). The same 
is done for relative orientation between camera and marker Z-
axes with a 𝑇𝑇𝐻𝐻𝑜𝑜𝑜𝑜  of 60º. The orientations on the other axis are 
not considered because we placed the markers in such a way 
that they are not rotated on these axes. 

 
𝐴𝐴𝐴𝐴𝑑𝑑 =   

𝑇𝑇𝐻𝐻𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝐻𝐻𝑑𝑑

   (4) 



𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜 =   
𝑇𝑇𝐻𝐻𝑜𝑜𝑜𝑜 − 𝑎𝑎𝑎𝑎𝑎𝑎

𝑇𝑇𝐻𝐻𝑜𝑜𝑜𝑜
 

𝐴𝐴𝐴𝐴𝑖𝑖 =   
𝐴𝐴𝐴𝐴𝑑𝑑 + 𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜
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Thus, the estimates associated with the smallest error 
among the eight cameras at each instant is selected. If there 
are multiple pose estimations with a small error and the 
Euclidean distance between them is less than a specified gap, 
the final position of the robot will be the weighted average 
based on the estimate of the accuracy of the position 
estimation, see (5). 

 

𝑃𝑃 =    �𝑃𝑃𝑖𝑖 ·
𝐴𝐴𝐴𝐴𝑖𝑖

∑ 𝐴𝐴𝐴𝐴𝑗𝑗𝑛𝑛
𝑗𝑗=0

𝑛𝑛

𝑖𝑖=0

  (5) 

Then, the given pose is filtered to eliminate outliers. This 
allows to discard a measurement if it differs significantly from 
the previous ones or has a value that is not consistent with the 
motion command executed by the robot. After passing this 
first outlier elimination step, the estimate is incorporated into 
a Linear Kalman Filter to make the final localization more 
robust. 

1) Linear Kalman Filter 
The Kalman filter [14] is a recursive prediction filter that 

uses state space techniques to estimate the state of a dynamic 
system. In this paper, we use a linear Kalman filter to discard 
bad estimations and achieve a more reliable localization. The 
Kalman filter is divided into two main stages, prediction and 
correction. In the first step, the dynamic model predicts the 
state of the system. In the second step, the prediction is 
corrected with the observation model. This procedure is 
repeated for each time interval.  

The successive states 𝑑𝑑𝑡𝑡  𝜖𝜖 𝑅𝑅𝑛𝑛 of a controlled process are 
related to a dynamic model describing the transform of the 
state vector in time, shown in (6). 

 
𝑑𝑑𝑡𝑡 = 𝐴𝐴𝑑𝑑𝑡𝑡−1 + 𝑤𝑤𝑡𝑡 (6) 

Where 𝐴𝐴 is the state matrix and 𝑤𝑤𝑡𝑡  is the process noise. 
The state vector composing the matrix will be defined with a 
total of 9 states (equation (7)): The position (x,y), with its first 
and second derivatives, i.e., velocity and acceleration. The 
rotation information in the axis Z (ϕ), with their first and 
second derivatives, corresponding to angular velocity and 
acceleration. We only consider the localization on the (x,y), 
since it is a mobile robot moving on the XY plane. Also, only 
the rotation on the Z-axis of the robot is considered.  

 
𝑋𝑋 = (𝑥𝑥,𝑦𝑦, 𝑥𝑥  ̇,𝑦𝑦 ̇, 𝑥𝑥 ̈,𝑦𝑦 ̈,𝜙𝜙, (𝜙𝜙, ) ̇𝜙𝜙 ̈) (7) 

The measurement of the robot position at each instant is 
related to the state 𝑑𝑑𝑡𝑡  by the linear observation model of 
equation (8), where 𝑣𝑣𝑡𝑡 represents the measurement noise and 
𝐶𝐶 the observation matrix. 

 
𝑧𝑧𝑡𝑡 = 𝐶𝐶𝑑𝑑𝑡𝑡 + 𝑣𝑣𝑡𝑡  (8) 

The measurement vector consists of 3 measurements, 
corresponding to the position (x,y) and orientation, in Z axis 
(ϕ), of the robot. 

As previously mentioned, the first stage of the Kalman 
filter is the prediction. At each time a first estimation of the 
current state is performed, called a priori state 𝑑𝑑𝑡𝑡− calculated 
by ignoring the dynamic noise and solving the equations 
describing the dynamic model, equation (9). Its covariance 
matrix 𝑆𝑆𝑡𝑡− is calculated during this stage according to equation 
(10), where 𝑆𝑆𝑡𝑡−1 is the covariance of the a posteriori 
estimation error at the previous instant and Λ𝑤𝑤  is the 
covariance of the process noise that measures the quality of 
the motion model with respect to reality. 

 
𝑑𝑑𝑡𝑡− = 𝐴𝐴𝑑𝑑𝑡𝑡−1 (9) 

 
𝑆𝑆𝑡𝑡− = 𝐴𝐴𝑆𝑆𝑡𝑡−1𝐴𝐴𝑇𝑇 + 𝛬𝛬𝑤𝑤 (10) 

Subsequently, occurs the correction stage. In this stage, the 
prediction 𝑑𝑑𝑡𝑡− is improved with the observations made at 
instant t, (𝑧𝑧𝑡𝑡), obtaining the a posteriori estimate 𝑑𝑑𝑡𝑡 according 
to equation (11). Where the difference (𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑡𝑡−) is the 
residual measurement that reflects the difference between the 
predicted measurement 𝑧𝑧𝑡𝑡− = 𝐶𝐶𝑑𝑑𝑡𝑡− and the actual mean 𝑧𝑧𝑡𝑡. 

In this equation, the estimated state and measurements are 
weighted to calculate the corrected state according to 𝐺𝐺𝑡𝑡, the 
filter gain matrix. 𝐺𝐺𝑡𝑡 is calculated according to equation (13), 
where Λ𝑣𝑣  is the covariance matrix of the measurements. 

Its covariance matrix 𝑆𝑆𝑡𝑡  is calculated according to the 
error propagation law, equation (12). 

 
𝑑𝑑𝑡𝑡 = 𝑑𝑑𝑡𝑡− + 𝐺𝐺𝑡𝑡(𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑡𝑡−) (11) 

 
𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡− − 𝐺𝐺𝑡𝑡𝐶𝐶𝑆𝑆𝑡𝑡− (12) 

 
𝐺𝐺𝑡𝑡 = 𝑆𝑆𝑡𝑡−𝐶𝐶𝑇𝑇(𝐶𝐶𝑆𝑆𝑡𝑡−𝐶𝐶𝑇𝑇 + 𝛬𝛬𝑣𝑣)−1 (13) 

III. EXPERIMENTS AND RESULTS 
The robot described in section II.A has been used to test 

our algorithms. The experiments were performed in a 
laboratory of approximately 11x9m, with 10 ArUco markers 
placed in the environment, see Fig. 6.  

 The software has been developed for ROS-Kinetic running 
on a Ubuntu 16.04 LTS operating system. We used the open 
source OpenCV library to process the images and the 
aruco_detect package for the markers detection. Also, the 
gmapping package was used, which applies a SLAM 
algorithm to know the location of the robot in the environment 
using laser sensors attached to the robot. In order to estimate 
the performance of the localization obtained by the proposed 
system based on the ring of cameras and ArUco markers. 



  

Fig. 6. Laboratory where the experiments were performed. ArUco markers 
are fixed in the environment. 

A. Aruco mapping 
First, it is necessary to make a map of the markers placed 

in the environment. The results obtained in the generation of 
the map can be seen in Fig. 7. We can assume that the map 
has been generated correctly by comparing the real 
environment with its visualization in RViz. 

 

(a) 

 

(b) 

Fig. 7. Environment with the mapped markers, the camera ring and the plate 
on which the robot moves. (a) Zenithal representation (b) Rviz view. 

B. Robot localization 
To evaluate the proposed localization method, 15 different 

positions were marked in the environment. We compare the 
robot localization obtained with the proposed method and the 
localization provided by the gmapping package. 

The results do not consider the localization on the Z-axis, 
since it is a mobile robot moving on the XY plane. Also, only 
the rotation on the Z-axis of the robot is considered.  

Fig. 8 shows the positioning results. To verify the accuracy 
of the localization, the robot is moved to certain points on the 
sheet. In this case, 15 positions have been considered. The 
localization calculated by the SLAM package and the 
localization obtained according to the implemented method 
are compared. 

TABLE I.  shows the absolute error between the location 
of the SLAM and that of the implemented method. Both in the 
X and Y coordinates as well as the Euclidean error. Maximum 

Euclidean error reached was 17.27 centimeters. However, the 
usual errors are much lower, with a median error of 3.10 cm. 

 
Fig. 8. Locations according to the SLAM method of gmapping, the 

proposed method based on a ring of cameras and ArUco markers and 
the manually measured positions. Black rectangle represents the plate 
on which the robot moves, with dimensions 3.67x2.51m. 

TABLE I.  ERRORS IN POSITION: GMAPPING AGAINST PROPOSED 
SYSTEM 

 

Fig. 9 shows a comparative between the final position of 
the robot after fusing the intermediate estimates given by each 
of the cameras. We can see that the final estimate is correct 
even though some of the cameras give estimates with a high 
error. The ring of cameras makes it possible to locate the robot 
accurately, as it allows a good view of the markers at all times, 
even if it is in different cameras each time. 

 

 

Fig. 9. Comparison between the final position of the robot and the 
intermediate estimates of the 8 cameras. Data from 3 of the previously 
fixed positions for the robot that can be seen in Fig. 8. 



An experiment was also performed to test the localization 
of the robot's orientation. As it is a robot that moves along the 
plane XY, we are only interested in the rotation about the Z 
axis of the robot. For this purpose, the robot was positioned at 
a fixed point and 8 different orientations were evaluated. In 
the same way as the position, the estimated orientation has 
been checked against the orientation of the gmapping SLAM 
algorithm.  

Fig. 10 shows the different orientations the robot is placed, 
rotating around itself. Also, TABLE II. shows the errors 
between the orientation estimated using the method proposed 
in this paper and the orientation provided by gmapping 
package. Mean error is 1.901º and the maximum error is 
4.501º. 

 

Fig. 10. 8 different orientations of the robot rotating about its Z axis. In blue, 
the orientation provided by gmapping. In red, the one estimated by the 
proposed system. 

TABLE II.  ERRORS IN ORIENTATION: GMAPPING AGAINST PROPOSED 
SYSTEM 

 

IV. CONCLUSION 
We have proposed a system for mobile robot localization 

using an 8-camera ring and ArUco markers fixed in the 
environment. Also, we develop a mapping algorithm for 
localization the markers with respect to a common reference 
system. The experiments show very satisfactory results that 
validate the proposed algorithms. 

In this paper we prove that the proposed localization 
system gives equally good results as a slam algorithm using 
expensive sensors. Moreover, the environment in which the 
experiments were conducted is a laser-friendly environment, 
as it is a rather enclosed space with many saliency points. The 
proposed fiducial-based method works in any environment. 
For example, in big industrial spaces as is the case in our final 
application.  

Localization by fiducials has certain limitations. Accuracy 
is highly dependent on the size of the markers and their 
position and orientation relative to the camera. By having a 
ring of cameras, we have a complete 360º view of the 
environment. This allows the robot to be located accurately, 
as we ensure that we have a good view of some markers at all 
times. 

An accurate marker map is also key to the robot's 
localization. To this end, we are working on optimizing it by 
applying a bundle adjustment. We are also looking to add 
constraints on the relative positions between the ring cameras, 

on the one hand, and the four corners of each marker, on the 
other. 

In the future, we will study the fusion of fiducial 
localization with information from other sources, such as an 
inertial measurement unit (IMU) or movement commands 
from the navigation system. For example, using an extended 
Kalman filter, which allows the fusion of information from 
different sources in order to estimate the pose of the robot with 
a lower error. 
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