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Abstract—Visual inspection of manufactured products is a field
in constant expansion. In this work we present a method to create
a high resolution panorama (1mm/pixel) of a large rectangular
plate using a mobile robot with two RGB-D cameras. The
panorama is intended to analyze the surface in search of possible
defects and identify areas of interest that have been encircled
using a high contrast mark. Identifying which points belong to
the surface plane and estimating the amount of distortion caused
by the perspective correction we are able to form a panorama
of a 4400 by 2500 mm plate with errors lower than 2% and a
resolution of 1 mm/pixel.

Index Terms—visual inspection, image mosaicing, autonomous
robot.

I. INTRODUCTION

Surface inspection of steel products using computer vision
techniques is a well established practice nowadays. There have
been a huge effort to analyze different categories of steel prod-
ucts as they are manufactured [1]–[4]. Some defects occurring
in slabs or heavy plates may be repaired. Defects are removed
manually using an angle grinder. The worker that conducts
the operation usually needs to adopt awkward postures. As a
consequence, his exposition occupational hazards increases.

We are designing a mobile robot to automate heavy steel
plates reparation. To be successful, the robot must be able
to explore the plate surface to identify which parts have been
marked as defective, or even to look for defects. The thickness
of heavy steel plates ranges from 5 to 150 mm. Their width
varies from 1400 to 3300 mm and their length may change
from 4 to 18 m. To enforce robot and human safety, the robot
must complete the analysis moving exclusively within the
plate. To complete the taks, the robot must move on top of the
surface and take partial surface images. Before the inspection
starts, these images have to be stitched together to form a
single view called a panorama. This approach has been used
in many different applications [5]–[7].

Image registration and stitching is usually solved through
the pairing of image features. Those methods usually provide
very good results and are considered to be the state of the
art. Works by Szeliski [8] or Zitová and Flusser [9] are a
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good starting point to have an overview of the full process. A
common problem when these methods are applied at a large
scale is that concatenation of geometric transforms may cause
an increasing amount of image distortion [10]. Block matching
methods, although not so common, have been successfully
applied to register a sequence of images in industrial environ-
ments [6] or to determine the motion of glaciers or landslides
[11]. In this paper we describe a method to reconstruct the
surface of a large rectangular plate using an omnidirectional
mobile robot and RGB-D cameras. The method has been
developed to be used on heavy steel plates, although real tests
have been done using Oriented Strand Board (OSB) wooden
panels. This is because they can be easily handled inside
our lab and present a repetitive texture where key points are
difficult to detect. The areas to be repaired are expected to be
enclosed within a high contrast mark.

Our proposal is based on a classical block matching ap-
proach, although several new ideas are introduced to account
for image distortion and dynamic selection of the reference
block to be matched. The cameras are pointing 30◦ downward
with respect to a horizontal plane. We apply an homography
to remove the perspective effect. This introduces a distortion
in the re-projected image. We use the transformation Jacobian
to get an estimation of the distortion. This value is used to
reduce the search area within the block matching algorithm
and to control how images are merged to build the final
panorama. In addition, we classify pixels as surface/not surface
points according to their distance to the plane defined by the
inspected plate. This clustering is used to further restrict the
candidate positions of the template block. To build the full
panorama we use a hierarchical approach similar to the one
described by Xie et al. [13]. First, we register images from a
single camera to form a stripe. Neighboring stripes are stitched
together to build a unique panorama for each camera. We finish
by joining both partial panoramas into a single one.

II. METHODS

A. Algorithm description

Our algorithm, outlined in Fig. 1, follows a hierarchical
structure. First we compute the translation between two con-
secutive frames. The result is used to register the new image
within the current stripe panorama. Those stripe panoramas are



the result of stitching the images captured by the robot while
it moves forward or backwards in the longitudinal direction
of the plane. Each time a new stripe is completed, the result
is combined with the previous one in a similar way as the
frame to frame registration. The result is a partial panorama
associated with each camera. To complete the surface image,
the partial panoramas obtained for each camera are stitched
together in a similar way.

Fig. 1. Outline of the algorithm.

We make the assumption that the surface to be reconstructed
lies on a plane and the robot moves on top of that plane and is
not allowed to move outside of the surface. An RGB-D camera
is placed at the front and another one at the back of the robot.
Both cameras have their optical axis parallel to the X-Z axis
of the robot, and tilted downwards to the surface. This allows
to capture the whole surface with a single boustrophedon type
path, as represented in Fig. 2. The overall size of the surface
is initially unknown, although it is assumed to be a rectangle.
The robot is able to detect the border to control its orientation
and the limits of its movements. Lateral displacements are
limited to a maximum that guaranties image superposition
while reducing the number of longitudinal segments in the
trajectory. The last one may be slightly smaller so that the
robot keeps within the surface.

Fig. 2. Trajectory followed by the robot for image acquisition. Using
an omnidirectional robot and two cameras allow to simplify the trajectory
required to cover the whole surface.

To correct the perspective effect we estimate the value of
an homography matrix using a standard checkered pattern and
applying RANSAC and SVD decomposition. The board has
8 rows and 11 columns to provide a reasonable number of
points. Each pattern square is 60 mm wide. The calibration
pattern covers almost all the transformed part of the image.

The relationship between an image point, pi = [u, v]
T , and

its position in the real surface plane, ps = [x, y]
T , is defined

by:
x = h11 u+h12 v+h13

h31 u+h32 v+h33

y = h21 u+h22 v+h23

h31 u+h32 v+h33

(1)

Where hij are the nine elements that define the homography
matrix up to a scale factor. As the cameras are fixed with
respect to the robot and it moves on top of the surface to be
reconstructed, these geometrical transformations remains con-
stant during robot operation. Therefore, they can be calibrated
off-line.

B. Template selection

In our proposal, image registration is based on a template
matching approach. To register two consecutive images, we
select a reference region in one frame and search for it on
the other one. The position and size of the reference region,
and the image selected to extract it, is chosen dynamically
depending on robot movement direction. When the robot
moves in the direction pointed by the camera (forward) image
points move towards image bottom, so the reference region is
extracted from the last video frame, close the last rows and
centered. Its width is chosen to be higher than its height. The
same area is expected to lay closer to the image center in
the previous video frame. As the robot moves aligned with
the surface edges, the displacement of the reference region
in the horizontal direction would be negligible. The height
of the reference region should be high enough as to enclose
sufficient texture and, at the same time, small enough to obtain
a sharp peak in the vertical direction. When the robot moves
backwards, the reference image is the previous one and the
pattern is searched for in the last one.

Similarly, when the robot moves opposite to the positive X
camera axis (left), the reference region is extracted from the
last image. As image points are expected to move to the right,
the reference region is taken from the bottom of the image,
close to the rightmost visible part of the image. It should be
taller than wide following the same reasoning as above. When
the robot moves to the right, the reference region is taken again
from the last image, but in this case it is located at the leftmost
visible part and at the bottom. Fig. 3 summarizes the rules to
select the reference region. Similar rules are followed to joint
different strips or to joint each camera partial panorama.

C. Mask Computation

The template obtained is searched for in the search image
using normalized cross-correlation. To reduce the number of
computations and to improve peak sharpness we carry out the
calculation only on points that fulfill two conditions:

1) Should present a small distortion after the perspective
effect is corrected.

2) Should belong to the plane defined by the surface we
want to reconstruct.



Fig. 3. The reference image (I1) and the template region is selected according
to the angle between the positive horizontal axis and the robot velocity. As
an example, when the robot moves forward, the reference image is the last
frame, template width is bigger than its height and is located close to be end
of the reference image. The template is searched in the search image (I0)
which, in this case is the previous frame.

1) Distortion: Jacobian estimation: The perspective effect
introduces a distortion in the image. We use the Jacobian
associated to the mapping defined by the homography to
estimate the amount of distortion at any pixel in the output
image. This value represents the expansion, or shrinkage if
the determinant is lower than one, that a pixel in the original
image will undergo when it is transformed to its position in
the surface. Fig. 4 shows the transformation suffered by the
original image and the determinant of the Jacobian for this
transform.

Fig. 4. Perspective correction: (a) shows the original image captured by
the camera (640x480). (b) Shows the zenithal view obtained after applying
the homography [1500x1000, 1mm/pixel]. (c) Represents the value of the
determinant of the Jacobian for every corrected point. Green dots represent
the points in the calibration pattern. The red line encircles the area with where
the determinant value is below a given threshold (12 in the example). The
horizontal magenta line marks the position with no distortion.

The Jacobian at a point [x, y]T of the surface is computed
by taking the partial derivatives of the point coordinates with
respect to its position in the image [u, v]

T . Equation 2 shows
the value of the Jacobian associated to the homography H at
a point [x, y]T on the surface:

JH =

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
=

[
h11σ3−h31σ1

σ2
3

h12σ3−h32σ1

σ2
3

h21σ3−h31σ2

σ2
3

h22σ3−h32σ2

σ2
3

]
(2)

With σi = [u, v, 1] [hi1, hi2, hi3]
T . As the determinant

of the Jacobian increases and is bigger than one, the original
image pixel will expand over a larger portion of the destination
image. This will cause a blurring effect in the transformed
image which is not desirable. Alternatively, when the value
falls below one, a bigger portion of the original image will be
mapped to the same output pixel.

2) Plane segmentation: Only points that belong to the plane
defined by the surface should be taken into account. During
the homography calibration process we compute the vector
that represents, in homogeneous coordinates, the plane defined
by the corners detected in the calibration pattern. Distance
information provided by the RGB-D camera allows to compute
the 3D position of these points with respect to the camera
reference system. All of them lay in the same plane. This
condition can be expressed as:

[
Xi Yi Zi 1

] 
a
b
c
d

 = 0 (3)

Where [Xi, Yi, Zi]
T is the 3D position of a corner point

in the calibration pattern and [a, b, c, d]
T is the vector that

describes the plane in homogeneous coordinates. Expressing
this condition for every corner point, we get an homogeneous
equation system that can be solved applying SVD decompo-
sition. Every time a new frame is acquired, (3) is used to
compute the distance of a point to the plane. If the value is
lower than a predefined threshold, the point belongs to the
plane, otherwise the point is out of the plane. The threshold is
proportional to the standard deviation of the distance computed
from the points used to adjust the plane. Fig. 5 shows the result
of applying this method to segment the surface plane.

Fig. 5. (a) Captured RGB image. (b) Zenithal view obtained after appling
the homographic correction. (c) Points identified as belonging to the surface
of interest.

D. Panorama construction

As mentioned before, we follow a hierarchical approach to
build the panorama that represents the whole surface. At a first



Fig. 6. Computed distance to the plane for the points in Fig. 5.(a). The red
line marks the threshold used to classify image points. The proportionality
value used is 15.

level, we compute the translation between two consecutive
images. This result is used to stitch the new image to the
previous one in the same longitudinal path to form a stripe.
When a new stripe is completed, we add it to the ones already
computed to obtain a panorama for one camera. When the
robot completes the scanning trajectory the frontal and rear
partial panoramas are stitched in order to get the full panorama
of the surface that we want to reconstruct. Throughout the
process we also compute a panorama with the values of the
determinant of the Jacobian and a mask indicating which
pixels belong to the sheet.

1) Stripe panorama: The relationship between the re-
projections of the images is always a translation because the
robot keeps its heading constant throughout its trajectory. To
estimate the translation between two consecutive images, we
look for the region in the search image that is more similar to
the template extracted from the reference image. We use zero-
mean normalized cross-correlation to measure the similarity
between two image regions. Only values corresponding to
regions completely included in the surface plane are taken
into account.

To stitch both images, the template center is moved on top
of the highest correlation peak and we select the pixels with
a lower Jacobian value to build the new image. Resulting
panorama minimizes the distortion induced by the perspective
effect. Fig. 7 shows how two consecutive images are stitched
together. The example corresponds with a forward motion of
the camera. The same transformation is applied to the Jacobian
and the plane mask. This is to ensure that it is possible to apply
the same process at a higher level.

All the frames that correspond to the same longitudinal
section of the trajectory followed by the robot are joined
together to build a stripe panorama. The initial image in this
panorama is the one that corresponds to a change in the
motion direction from left (or right) to a foward (or backguard)
one. While new frames are stitched together with a constant
movement direction, the translation computed in the frame-to-
frame step is used to add the new image to the panorama. Fig.

Fig. 7. Two consecutive images taken while the robot moves forward. (a)
was taken at time T-1 and is the search image. (b) was taken at time T and is
the reference. Dashed yellow rectangle is the bounding box of the mask. Red
rectangles show the template (dashed) and its position on the search image
(continuous). (c) shows both images stitched. The white outline shows seam
line. (d) shows the values of the normalized cross-correlation. Only a single
strong peak appears.

8 shows an example of a stripe.
2) Camera and Surface panoramas: New stripes from the

same camera are stitched together to build the panorama
associated to a single camera. The procedure is similar to the
one described in the previous section. Fig. 9 exemplifies the
process. The main difference is that movements between two
neighboring stripes always correspond to a left or right camera
movement.

Fig. 8. Example of a stripe panorama. The RGB images are stitched together
to form the zenithal view (a). Using the same information, the surface/not
surface segmentation masks (b) and the Jacobian values associated to each
pixel (c) are stitched together.

Fig. 9.(a) shows the partial camera panorama. Every time a
new stripe is completed (Fig. 9.(b)), it is added to the partial
camera panorama. In this example, images correspond to the
rear camera and the robot was moving to the left. Therefore,
the rear camera was moving to the right. As the movement is
the horizontal direction, the template height is bigger than its
width.

Once the panoramas corresponding to both cameras have
been completed, the same procedure is used to stitch them into
a single panorama depicting the whole surface to be inspected.
Fig. 10 shows one example of the result.



Fig. 9. Neighboring stripes are stitched together to form the panorama of
one camera. Initial panorama (a) showing in green the reference region. (b)
shows the new stripe and the region paired with the reference one (in red).
(c) shows the correlation values. (d) shows the expanded panorama.

III. EXPERIMENTS AND RESULTS

To test the algorithm we have used an omnidirectional
Summit XL Steel robot from Robotnik. Two fixed Intel
RealSense D435 RGB-D cameras provide the information to
reconstruct the surface. Both are oriented 30º to the ground.
One is placed at the front of the robot and the other is at
the back. The scanned surface is a rectangle of 4400 by 2500
mm formed by seven OSB (Oriented Strand Board) wooden
panels. Each panel measures 625 by 2500 mm and is 25 mm
thick. Defective areas were marked using white tape.

The algorithms have been developed using MATLAB 2020a
and then have been ported to ROS-Kinetic running on a
Ubuntu 16.04 LTS operating system. We used the open source
OpenCV library to process the images.

(a) (b)

(c)
Fig. 10. (a) Rear camera panorama. (b) Front camera panorama. Red
rectangles shows the reference region in the front camera and its corresponding
one in the rear camera. Both images have been rotated to simplify the
representation. In this case, we have considered that the robot is moving
backwards. (c) Full surface panorama.

The robot starts at the lower right corner of the surface
and align its X axis with detected surface edge using the
RGB-D cameras. The length and number of longitudinal runs

is not fixed. End points are detected automatically from the
information provided by the frontal and rear cameras. The
robot moves until its wheels are at a predefined distance from
the edge, although the edge may be out of sight. This is to
ensure that the camera opposite to the edge maximizes the
covered surface while keeping within the surface for security
reasons.

To ensure that the robot may cover the whole surface it is
compulsory that surface length is big enough. To be sure that
the panoramas from each camera overlaps, surface length must
be bigger than twice the distance between the fields of view
of both cameras. With our robot and camera configuration, the
minimum length must be 3000mm. It is possible to reduce this
dimension using only one camera, although a more complex
scanning trajectory is be needed.

Full panoramas are formed from 100 images and have a
resolution of 1mm/pixel. Seven stripes are needed to recon-
struct the full width of the surface. The average size of the
reconstructed surface is 4339 by 2514 mm. The error in the
longitudinal direction is −1.4 ± 1.2%, while the error in the
transversal direction is 0.6± 2.1%.

The marks enclosing the areas of interest are correctly
reconstructed an positioned on the surface. As these marks
present a high contrast, they clearly affect the output of the
correlation as shown in Fig. 11. Although in both cases the
peak is higher than 0.95, The peak is not so sharp in the
direction of the mark. This may cause small localization errors,
especially when the mark is aligned with the motion direction.

(a) (c)

(b) (d)
Fig. 11. (a) Rear camera panorama. (b) Front camera panorama. Red
rectangles shows the reference region in the front camera and its corresponding
one in the rear camera. Both images have been rotated to simplify the
representation. In this case, we have considered that the robot is moving
backwards. (c) Full surface panorama.

In our experiments, 97.4% of peak values in the frame-to-
frame matching are above 0.8, and 70.8% are higher than 0.9.
Only 1.3% of peaks values fall below 0.6. In addition, in more
than 60% of the frames there is only one peak bigger than 0.5.

Those values fall to a range between 0.4 and 0.7 in the case
of stripe stitching. Anyway, a single sharp peak appears in the



correlation values matrix, providing a reliable estimation of
camera translation. Correlation peaks between front and rear
panoramas drop again and range from 0.25 to 0.4.

IV. ANALYSIS AND CONCLUSIONS

In this paper we have solved the problem of scanning a big
surface for later analysis using a mobile robot equipped with
two RGB-D cameras. We assume that the surface has enough
texture, although it is not possible to identify reliable image
features at the scale provided by each individual image.

Our solution is based on zero-mean normalized cross cor-
relation, a very well known area based registration technique.
To improve our results we follow a hierarchical approach
based induced by the boustrophedon type path followed by the
robot while scanning the surface. At a first stage we compute
the translation between to consecutive images as the robot
moves forward or backward. Individual images corresponding
to the same longitudinal segment of the boustrophedon path
are stitched together using the computed translation to form a
stripe partial panorama. Neighboring stripes are joined to form
a panoramic view of the scanned surface taken by one camera.
Front and rear panoramas are finally registered together to
form the full surface panorama. Each stripe comprises 11
images on average (ranging from 10 to 12). To cover the full
width of our test surface, seven stripes are formed. This yields
an average number of 77 images per camera and therefore,
144 images must be stitched together to form a complete
panorama.

To reduce ambiguity, we restrict the correlation process
to those pixels that lay on the surface. The classification
process is based on the depth information provided by the
cameras. Using the 3D position of each pixel, we compute the
distance to the ground plane. Only those pixels within a small
threshold are classified as surface points. The parameters of
the ground plane are estimated during the calibration process,
using the 3D position of the same points used to solve for the
homography that maps the image to the surface plane. This
method has proved to be very robust and allow to distinguish
the surface of interest from the ground, even though its
thickness is only 25mm. Under some circumstances, some
ground points are classified erroneously as surface points as
can be seen in Fig. 10.(c). We think that this problem appears
due to direct sun illumination which may cause problems in
the correct identification of the infrared pattern used by the
camera to compute depth.

Our method also introduces the use of the determinant of
the Jacobian of the homographic mapping. These value is used
as an estimation of the amount of distortion suffered by a
pixel when is reprojected from the image to a zenithal view.
Values close to one minimize the distortion, while bigger ones
produce a blurring effect, as a single pixel is mapped to a big
area in the zenithal view. When the value is too small we
may loose information because a bigger portion of the input
image is mapped to a single pixel after its transformation. In
the overlapping areas of the images, the point with a lower
Jacobian value survives. The final result is a high resolution

surface image with reduced distortion. Estimated mean recon-
struction error in the longitudinal direction is −1.4% of the
overall length and only 0.6% in the transversal direction.
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