2102.11147v1 [cs.CY] 22 Feb 2021

arxXiv

Improving Concept Learning Through Specialized
Digital Fanzines

1% Jose Manuel Redondo
Computer Science Department
University of Oviedo
Oviedo, Spain
0000-0002-0939-0186

Abstract—Specialized digital fanzines were successfully used
to facilitate learning problematic concepts in an undergraduate
programming course, dynamically adapting to student needs. The
design of these fanzines favors creating and reading them quickly
by establishing a common graphical layout, rules, and focusing in
the most problematic parts of the concepts. This paper details the
agile fanzine creation procedure, the way problematic concepts
were identified and quickly handled, and how this approach was
implemented in an actual course, so it could be applied to other
courses with similar needs.

Index Terms—Undergraduate students, Computer Engineer-
ing, Programming Concepts, Learning, digital fanzine.

I. INTRODUCTION

The Programming Technology and Paradigms course in
a Software Engineering degree of a Spanish university [1]
was designed to cover competences about the most common
programming paradigms and its abstractions, including the
basis of concurrent and parallel programming. This course uses
a single programming language (C#) due to time restrictions
[2]. The course covers a large range of concepts and, over
the different course editions, multiple students declared that
several concepts frequently turned more difficult to understand
than expected. This causes frequent lack of synchronization
with the course progression, and difficulties “catching up”
with the current course lessons, due to the extra time used to
properly understand these problematic concepts. The results of
the course have been generally good, as most students could
overcome these difficulties at the end, but complaints about the
extra time spent in some parts were frequent. Thus, a way to
improve student learning on these concepts was needed to try
to put the expected average amount of self-study hours closer
to the estimated one, as students undertake multiple courses in
parallel and time should be adequately managed to optimize
their academic results.

There are several works [3]] [4] [5] that use comic-like
or fanzine-like approaches to teach concepts. Comics can
be very complex, and their length is usually not restricted
[3l. This way, they can be used to detail advanced concepts
using a very practical approach [6]. Fanzines are usually
much shorter and quickly produced [7]], and do not require a

This work has been partially funded by the Spanish Department of Science,
Innovation and Universities: project RTI2018-099235-B-100. It has been also
partially funded by the project GR-2011-0040 from the University of Oviedo.

complex or lengthy edit process. Typically, fanzines are used
in educational environments to make short introductions or
approaches to certain concepts, as a prelude or complement to
other materials.

The main contribution of this work is the design procedure
of a series of very specialized fanzines (abbreviated, zines)
that have been used to improve the learning of problematic
concepts identified by the students during an undergraduate
programming course. Each zine focuses on clarifying concrete
aspects of the problematic concepts rather than provide a
full explanation, so they complement the rest of the course
materials. The quick nature of fanzine creation is used to
produce them on-demand, depending on students’ questions or
requests. They are also thought to be read very quickly. This
turned fanzines a very dynamic learning tool with a student-
directed approach.

This application of fanzines proved successful, as a great
number of students declared that they helped to improve
concept learning. Several students requested fanzines about
specific concepts as the course progressed, giving them direct
control of the process. This paper describes fanzine design
rules and structure, how their topics were identified, its pub-
lication process, and user feedback and acceptance, so this
technique could be applied or reproduced in other courses.

The structure of this paper is the following: Section
describes the related work, while Section describes the
course design and the concepts students found problematic.
Section [[V] explains how fanzines were created using a three-
phase creation plan, detailing rules, graphical layout, and all
covered topics. Section [V| describes the results and feedback
obtained after using them and, finally, conclusions and future
work are detailed on Section

II. RELATED WORK

Teaching with comic-like approaches has been used in
all educational levels, from younger audiences [§|] [9] to
university-level courses. They are also not only applied in
Computer Science, but also in other types of studies [9],
such as Mathematics [10|]. Comics have also been used to
try to explain substantially complex technical concepts to the
general public, such as the inner workings of the Google
Chrome browser [[11]. A more modern example is [12]], a
comic book novel that uses a fictional but realistic history as a

central way to explain multiple security concepts and practical
applications.

Using a comic-like approach to explain Computer Science
concepts is not a new technique; there are examples from more
than 30 years ago: [5] explains the history of computing and
some Computer Science fundamentals, introducing concepts
in a way that may appeal to most reader types. Although in
our particular case we applied this research to programming,
comic-like approaches have also been applied to more topics.
For example, we have applications to explain computer net-
works [13] that also use comic strips with rich contents as
supplementary materials. Logic for Computer Science major
courses has also benefited from this approach, using a comic
book as the course textbook [3]]. Multiple Computer Science
topics are also covered in [14] [15] by using a series of comic
illustrations as complementary class handouts to reinforce
concept learning. As in our case, these illustrations are also
combined with concise explanations, although not with a
predefined fixed structure that accelerate their production like
our approach.

One of the closest works related with our research success-
fully uses comics applied to programming courses but using an
inverse approach [16]. In this research, a student control group
is instructed to produce comics that reflect their understanding
of certain selected course topics with the BitStrips authoring
tool. This way, students reinforce the understanding of the
concepts by trying to explain them through a comic, instead
of being the teacher the one that delivers explanations via
comics as in our approach.

Outside regulated courses, fanzines are also used as educa-
tional tools in different contexts. One of the closest works to
the one described in this paper is Wizard Zines from Julia
Evans [4]. These zines focus on introducing a variety of
different concepts on multiple fields of Computer Science,
rather than explaining specific conceptual problems identified
by a concrete audience. Julia has published books with compi-
lations of her fanzines grouped by topic, such as Git, and Linux
command-line tools and concepts. As in this research, these
zines follow a coherent visual style and divide their contents
in frames, although Wizard Zines use simpler visuals and are
much more focused on text-based explanations. The main
difference between Wizard Zines and the research described
in this paper is that this one is directed by the audience needs:
it focuses on the problems detected in a concrete course. New
material creation is driven by student needs or requests while
the course is taking place, rather than introducing computer
science concepts to a general audience with different skills
with no special time restriction.

Another very similar approach to Wizard Zines is the
BubbleSort Fanzines Kickstarter project of Amy Wibowo [17].
Her aim is to make a variety of computing tools, skills,
and concepts accessible to everyone. Fanzines are used here
to reframe concepts, so they could be found attractive by
audiences that initially did not consider studying them or
enroll in certain courses. Planned zine topics are very varied,
such as logic circuits, hardware hacking, cryptography, the

basis of Internet communication, and some programming
concepts such as recursion and sorting. Plans to develop zines
about advanced topics such as neural networks, Al, image
processing, and computer graphics also exist. This approach
also focuses on text frames coupled with hand-made images of
concepts, following a simple and clear style. Humorous titles
are used to introduce each zine topic.

Lin Clark also uses a comic-like approach to explain ad-
vanced concepts regarding networking, web servers, and web
technology concepts [18]]. Although the topics covered by
these comics are all focused on web technologies, they are
independent, not following a concrete creation plan or line.
This is the main difference with the research described in this
paper, that develops fanzines on demand following a course
syllabus. Regarding style, these comics are mostly composed
by sort paragraphs of text providing explanations followed by
an illustrative image (mostly simple line drawings, like Wizard
Zines). There is no apparent limit related to the amount of
text or number of comic frames, as some comics use a very
different number than others.

Xked [19] are very popular technology-related comics deal-
ing with a wide variety of topics: from technology-focused
ones to others not related with computing. These comics
emphasize the humoristic part to try to transmit a message to
the readers, even ignoring technical parts that may be involved
in the message, or not being rigorous explaining them. Comic
size is very varied, from just one comic frame to multiple
ones. Topics do not follow any structure, and comic frames
are mostly composed by line drawings plus small texts.

Little Bobby [20] is a long-running web comic strip series
(250+ released comics), released weekly, and based on the
comic book [21] of the same authors. The comic strip topics
are varied including, but not limited to, SCADA, the cloud, net
neutrality, hacking, and big data. It has a lighthearted nature,
focusing on making technical and often difficult topics more
accessible to a wider audience. It also uses humor and inside
jokes for the topic’s respective community to achieve their
goals. Comics usually are composed by full-color 3-4 frames,
using main recognizable characters and short texts within
speech bubbles between them as in the approach described
in this paper. Characters are represented in a wide variety of
situations and environments, and have widely different poses,
as they are drawn by a professional illustrator. Although this
kind of drawings makes each released comic substantially
different from the others, this kind of complexity cannot be
implemented in the context that will be described in this paper,
as the author lacks the necessary drawing skills to develop
them within the time constraints of the course.

These implementations of comics and fanzines as learning
tools prove that they can be used effectively to introduce a
great amount of different Computer Science topics (among
other disciplines), both basic and advanced, inside, or outside
regulated courses, at any educational level, and facilitating
their learning to a varied audience. However, the implementa-
tion described in this paper shows the benefits of following
a more focused approach, using zines to reinforce topics

complementing existing materials, and quickly developing
them on-demand. Another benefit of this research is to detail
a common development framework and rules to try to speed
up fanzine releases during a course, so this approach can be
reproduced in other contexts with the same goals.

III. COURSE DESIGN AND PROBLEMATIC CONCEPTS

The Programming Technologies and Paradigms course was
designed with five mandatory units [2] plus optional materials.
It follows the Programming Methodology course, fully taught
in Java. Our course also uses a single language due to
course time restrictions (6 ECTS credits), but Java was judged
unsuitable because its limitations in generics (due to its fype
erasure implementation [22]]), inability to provide functions
as first-class entities, and no support for certain key functional
programming concepts (continuations, lazy evaluation, pattern
matching, and comprehension lists).

Due to Java limitations C# was chosen instead, allowing
students to gain skills in another very popular language, both in
academic and professional contexts ([[23[] places C# as the 6th
most used language). C# has full support to basic and advanced
object-oriented features, implements functions as first-class en-
tities, lambda expressions, closures, comprehension lists, and a
form of continuations. Additionally, the Language Integrated
Query (Ling) library is a very popular data manipulation
framework that uses C# functional programming features.
Concurrency and parallelism are supported via asynchronous
message passing, explicit thread creation, and the more ad-
vanced Task abstraction. Data and task parallelization can be
simplified using the TPL (Task Parallel Library) and PLing
(Parallel Language Integrated Query) libraries [24]. Typi-
cal synchronization mechanisms such as lock, Mutex and
ReaderWriterLockSlim are also present. Additionally,
metaprogramming features (introspection, structural interces-
sion, and dynamic code evaluation) and dynamic typing (via
the dynamic type) are supported. The following subsections
detail what concepts were found problematic in each unit.

A. The object-oriented programming paradigm

This unit “links” with the previous course, also introduc-
ing new concepts like bounded generics and type inference.
Surprisingly, a considerable number of students needed more
time than expected to deal with concepts they should already
know. Part of this problem could be due to the 9-month
gap with the preceding course, as courses in-between in the
official curricula do not facilitate acquiring or reinforcing
programming skills (Computer Electronics Technology, Com-
puter Architecture, Computability), or deal with specialized
applications (Data Structures, Human-Computer Interaction).
Therefore, problematic concepts in this unit were a mix of
“old” and “new” ones.

o Parameter passing was weakly understood in general. The
concept of object reference was not used correctly by a
surprising number of students that treated basic and ref-
erence types the same, so the predicted outcome of some

examples was consistently guessed wrong. This worsened
when the ref and out keywords were explained.

e Multiple students had trouble differencing between
Equals and ==.

o There were considerable problems with type conversions
and usages of the as and is keywords.

o Multiple students could not properly differentiate accept-
able usages of exceptions and assertions, understanding
the consequences of using them. Therefore, design by
contract was also challenging.

e Given that C#, unlike Java, do not enable dynamic
binding by default, and a previous weak understanding of
this mechanism, practical applications of polymorphism
and dynamic binding were also a problem.

o Dealing with generics was also difficult for some stu-
dents, especially when bounded generics usage scenarios
were introduced. Students were used to the restrictions
imposed by the type erasure generics implementation
technique of Java [22]. C# does not use this approach,
so it does not have these restrictions, but students still
behaved as if they were enforced.

e The concept of iterator (implemented through
IEnumerable in C#) was poorly handled by most
students, as some even tried to use them as full-featured
data structures. Understanding iterators is key for the
next unit, so reinforcing this concept was extremely
important. Coordination with the Data Structures course
should also be improved to avoid this.

B. The functional programming paradigm

At the end of this unit students must be able to design
and implement applications using suitable elements provided
by the functional paradigm, comparing functional and object-
oriented approaches. This paradigm is new for the students and
handling even the most basic concepts proved troublesome to
several of them.

o Multiple students struggled understanding that functions
are first-class types. Understanding how code can be
stored in data structures, passed as parameters, or re-
turned from functions, took substantially more time than
expected to use effectively.

o Creating and using code ad hoc via lambda functions
is a powerful mechanism, but students initially avoided
that as they failed to understand how to use it to their
advantage. The foundations of lambda calculus, taught to
explain the origin of the functional paradigm and lambda
functions, also proved troublesome when the students
were preparing the final course theory exam.

o Another problematic concept was lazy evaluation. Stu-
dents only had experience with languages implementing
eager evaluation. This increased the difficulty of applying
the limited implementation of this concept in C# (gener-
ators) correctly, and its related concept, continuations.

o Closures and partial application proved also challenging.
The first, due to improper handling of free variables, as
students generally did not understand that closures hold a

reference to them, not a copy. The second, because they
could not easily see the advantages of using currying to
obtain new code by applying part of the function param-
eters. This concept was especially difficult, as currying
functions to implement partial application must be done
manually in C#.

o The final part of this unit reviews a popular framework,
Ling, to show how functional programming concepts
are applied in a professional environment. Although
basic higher-order functions (Map, Filter, and Reduce;
Select, Where, and Aggregate in C#), were gen-
erally quite well understood, concatenating the output
of a function with the input of a following one was
rarely used at first. The lazy nature of these functions
also was troublesome, especially why code passed as
parameters did not execute unless elements are retrieved
from the results of Ling queries. Finally, more complex
Ling operations such as Join or GroupBy were also
poorly handled due to confusion with the SQL operations
with the same name, as the Databases course is taught
in parallel with this course.

C. Concurrent and parallel programming

Students must be able to know and apply the basic elements
of concurrent and parallel programming at the end of this
module. They demonstrated to have a good understanding
of threads (taught in Programming Methodology and used
in the parallel Operating Systems course), but demonstrated
difficulties when using mechanisms to handle critical sec-
tions (especially the 1ock keyword and the more complex
ReaderWriterLockSlim class). Effectively using typical
thread-based schemas (such as Master-Worker and Producer-
Consumer) proved also challenging to some students due to
poor understanding of the relationships between the classes
that compose them. Finally, several students also experienced
problems when parallelizing existing single threaded code
using the TPL or PLing libraries.

D. Meta-programming and dynamic typing

Dynamically typed programming languages have influenced
the development of software in the last years [25] and are a
very active research line in our Computer Science research
group [26]. This last unit identifies and discusses the distin-
guishing features they provide, such like multiple dispatch
[27], dynamic typing [28] or generative programming. This
unit is merely introductory, so the only important problem
students had was understanding how some concepts (dynamic
typing, dynamic code evaluation...) could be simulated in
C# to provide functionalities similar to those implemented by
typical dynamically typed languages, such as Python [29].

E. Optional materials

These public materials allow willing students to further
study the acquired concepts, even when the course is finished.
They are also used to promote course enrollments and to
provide updated materials to students that successfully took the

< Preconditions, postconditions and
Invarlants are the basis of Programming b
Contract ‘

< ‘They largely depend on the program ahd
tnethods purpose, so you MUST THINK

void ChangePassword(string userName,
string newHashedPassword) { @
if (userName == null)
throw new ArgumentException(‘The
user name cannot be null”);

... (Rest of the method code) ABOUT THEM CAREFULLY
} Executi < YOU are responsible to detect errors in
“jumps” heret! your code

try {
ChangePassword(null, null);
catch(ArgumentException e) {
/*Do something to solve the problem:
- Correct the arguments

< This way your programs will be more bullet-
Proof (as much as it is possible)

< Assertions should be removed on Release
mode (they automatically are if compiling

- Throw another exception in this mode in Visual Studio)

- ... (another solution)*/ < Released programs should have ho code

) errors ;)
©

Reset() IEnumerable class
g .

— Lo e

5
12D fo

Fig. 1. Different fanzine frame types

course in the past. They include how to apply the functional
features they learned in Java [16], and features of C# 6, 7.X,
and 8.X not explained during the course. The last 3 have ac-
cumulated 567, 115, and 163 reads respectively since January
2019 in ResearchGate. The only questions were related to
dynamic code generation through the Roslyn Compiler-as-a-
service feature and the usage of the .Net Speech APIs.

IV. FANZINE CREATION

Although the previous section described the complete list of
problematic concepts, each problem was not known outright,
but discovered as the course was being delivered. Fanzines
were used as answers to questions about these concepts as they
were known, to reinforce their understanding on-demand. To
do this, an action plan to produce fanzines before the course
started was created in a way it could be applied to other
courses if the approach proved successful. The action plan
was divided in three phases: design of the fanzine framework,
lecturer-directed fanzine development, and student-directed
fanzine development.

A. Design of the fanzine framework

In order to be able to answer student needs using fanzines
in an agile way, this initial phase established several rules to
accelerate fanzine creation. All fanzines were thought as very
short stories narrated by a main character.

1) All fanzines were created using a default installation of

Microsoft PowerPoint, with no third-party plugins.

2) Always use 6 comic frames (two rows of 3 frames) to
give an appropriate amount of information to the reader,
according to the findings of a classical work regarding
this [30], and to facilitate quick reading of their contents.

3) A main character narrates the explanations on each
comic frame. Widely known personalities related to
computer engineering were considered, such as Alan
Turing, Ada Lovelace, John Von Neumann, or Margaret
Hamilton. However, their importance and contribution
to computing was too important to relate them to a

“simple” programming technology course. Therefore, to
better relate fanzines with the course, a caricature of its
head teacher was used. This main character is a single
image (no different poses were created) to increase
creation speed. Main character explanations are provided
as speech bubbles with a common format.

4) Only three types of frames are used to explain contents
(see Figure [I): commented source code fragments (A),
text-only explanations in bullet lists (B), and draw-
ings/diagrams (optionally with source code snippets)
(C). This is to achieve a coherent explanation style
among the different fanzines.

5) All fanzines are created on a single page (default hori-
zontal PowerPoint slide) to facilitate quick reading and
sharing. This way, they can be easily distributed as
images or quickly viewed in any device. As their goal
is solving specific conceptual problems, contents are
always very direct, focusing only in solving problems
and trying not to give excessive details. This requires a
special effort to carefully choose what it is included,
as space is quite limited. Zines are thought as com-
plementary resources, not replacements of the rest of
the course materials that are responsible of explaining
concepts in a much broader perspective. They must be
read and understood quickly to be used as intended.

6) Fanzine frames follow the occidental reading order (left
to right, upper to lower row), as it is the one used by
all students.

7) Every fanzine has the same header, consisting in a
wooden stand with a folded banner, leaves, and two
decorative owl characters at each side (see Figure [2]
and Figure [3). They also have the same appearance:
a wooden bulletin board with six notes fixed with a
pushpin.

8) Regarding content, all fanzines share the same colors
and font features (typeface, size, line length, line spac-
ing, character and word spacing, indents...) for titles
and contents [31]], to be recognizable as part of a group.

9) Finally, as several of the related works described in
Section [l fanzines use light touches of humor to be
more approachable and to reinforce its comic nature.
These are mostly present in the fanzine title, to enable
us to focus on contents later.

Following these rules, a base visual template was created
to create each fanzine from. This way, new fanzines just need
to add a title in the provided space and fill the frames with
explanations following rule 4. Occasionally, sticky notes could
highlight very important things to remember. Fanzines are
published classified by course unit and identified by a short
text describing its contents (see Table[l), so they can be easily
located.

B. Lecturer-directed fanzine development

The goal of the second phase is to start fanzine development.
Although the experience of previous course editions could
be used to identify potential problematic concepts and start

creating fanzines, only feedback from the current course
edition was used. This allowed testing if this approach could
be successfully developed during a typical course, and to
dynamically adapt to the actual problems experienced by
students, that might differ from previous editions.

This way, a fanzine was created when several questions
related to the same concept began to appear in the different
communication channels the students have (email, private
course forums, office hours, or even social networks). Thanks
to the rules described in the previous section, zines were
developed very quickly, as more complex ones took up to two
hours to develop, always by a single lecturer. Once created,
zines were made available using the course private virtual
platform to handle course materials, so every student with the
same problems may benefit from them.

Finally, created fanzines were also made public each week.
This proved useful to students that already took the course
but wanted to refresh some contents (as several were using
them in their professional activities), to obtain feedback, and
to promote future course enrollments.

C. Student-directed fanzine development

The third stage of our action plan aimed to give students
some degree of direct control of the fanzine creation process,
once the second phase was active during the first course unit
(object-oriented programming). At the beginning of the func-
tional programming unit, students were informed that they can
directly request specific fanzines about any of the upcoming
or past course topics. When several requests related to the
same concepts were received, the corresponding fanzine was
developed following the described rules and publication pro-
cedure. Fanzines created during this phase cannot be visually
distinguished from those created in the previous one. Choosing
the second course unit as the starting point was motivated by
the possibility of students having more conceptual problems,
as most of the concepts in the course will be new for them
from there on. Phase 3 runs in parallel with phase 2, so both
can be used to determine the new fanzines to be created.

This third phase not only allows students to decide what
new fanzines are going to be created: they are also welcomed
to give feedback about any existing fanzine or ways to improve
the whole initiative. Apart from some minor errata, substantial
feedback and several interesting requests were received during
the course and, once considered, quickly incorporated to
already created fanzines thanks to their design rules.

The most surprising feedback was multiple requests for
Spanish translations. This course is delivered both in English
and Spanish, and students freely choose which group they want
to be in. It was assumed that the average English level of
the Spanish group students was good enough to be able to
read small pieces of text. Therefore, all fanzines were initially
created in English to reach a potentially greater audience.
However, several students of the Spanish group reported that
it was substantially more difficult to correctly understand the
explanations in English, which is contrary to the goals of

1 Goin’ all out with ref
,v . m— . — - - l

Person p = new Person();

References to objectsare just
Lookat the previ whenyou call n L variables that let me access (using.)

Parameter passingin C# or Javais usually not very complicated:
the standard policy is to COPY whateveris passed toa method

is a new variable in memory receiving a copy of the a value RAM towherean object s really stored
| void MyMethod(int n) { ! RAM The methodworkswiththe local P]
1 n=3 1 a 5 ‘ variable n, thatis destroyed
1 Yo - - when the method finishes
14 inta=5;) <

1
1 MyMethod(a); :
1

)) Thisway,a is unaltered, because 4
i ' | n 53 e e (Person R

! Console.Write(a); //Prints 5

However, people usually get instance) References use its own space n
confused with what this memory, different to the object
mean ® they refer to

S, - [P —— ————— [, A
| void MyMethod(Person n) { H RAM | void MyMethod(ref Personm) { | RAM i void MyMethod(out Personn) { ||~ RAM
: n.Name = “John";‘ : p I . : n.Name =."John'; . : : n = new Pe“rson(‘)l; I
| //)ust breaks n link H | //Now pisalso null!! :0 H 1 n.Name = “John”; |
1 n=null; | R 1 n=null; 1 « : } e 1: N
1} g===—m—mm-—- - - - Iy =======—m——m—mm— “ -4 .
131 Person p = new Person(): ' '(P elsol 111 Person p = new Person(): ' ‘(P Gl j ::’i:” :ld ' M (Person
! MyMethod(p); \ | instance) | . ! MyMethod(ref p); \| instance) 1 //{,ri::sgjm‘t"p). 1| instance)
1 //Prints “ John" ! 1 //NullRef ion!! 1 . ! > . '
! Console Write(pName); | ! ConsoleWrite(p.Name); ! L ConsoleWrite(p.Name),
"""""""" | TTTTTTTTTTTTTTT T] n]
p Pasmnf:prvfr:::?::“eans n I Thatis, unlessyouuseref | P» P! out works the same as ref, but does not P
@ - @ forceyou toinitialize the variableyou
pass (ref does!)

It was used to emulate returning multiple things from a 1
method (until tuples arrived...©) S~
The compiler forces you to provide a value for everyout 7,
variable before the method code ends!!

same memory location!

" Bothcan be used to modify the object content, but changing
the value of one just breaksits link with the object

% - Sonowwe havetworeferences | 0E mocopyatalk ~
referring to the same object! & < ing ref Py and
[. T the passed variable are just like two names attached to the

in in the caller!

Fig. 2. C# parameter passing strategies fanzine

- [l Functional programming (in a nutshell || -
P ——— e R

“’!‘ e

|+ Wait...what?? “piec'es of code”
(ethods) working as types?? YES!
<« And, how do] write the type of a
Variable that stores “code”??
Using its parameters and return types
(sighature) with the Func type!!!

| void Method() { void Method() {
i int number;

o . R But, what if, instead of a

] Normally, we do thiskind {...} code; type, we use “pieces of
number = 4; of stuff with typical types code = {<code>}); code”?
Console. WnteLlne(number) Console.WriteLine(code);

10 AN ot of code — mew £ 30T
intf] numbers = i {101 {...}{} lots_of_code = new {...}{10};

numbers[0] = number; lots_of_code[0] = code;
CalulateSomething(number); CalulateSomething(code);

Func<(type of param],..., type of param N,
return type>

| }
| void CalulateSomething(int number){<...>} void CaIuIateSomething((...) code){<...>}

Butl dOh t want tO use existlng £ @ -
methods...] want to Write “pieces of void Method() { 50,you can use and store

Func<double, double> code; lambda functionsinany
code”!,.. CAN! 3 ;
YOU N code = number => number/2; place of the code

| < Lambda functions allow you to insert Console.WriteLine(code);

void Method() {
Func<double> code;
code = getRand
Console.WriteLine(code);

Sonow, Func<..> types can
storeany compatible
method..and y

Func<double>[] lots_of_code = new “pieces of code” in any place you like Func<double, double, double>[] lots_of_ ccde = new
Func<d a & Titen tnashoads s alsh albasiae ouiaag Func<doubl ubl :
& T LINT [ITLIIVUDy DUL WILT ITNPITT d71IvaAs
lots_of_code[0] = co N . lots_of_code[0] = (x,y) =
CalulateSomethlng(code), < TFor example, instead of: return a;};
double Half(double number) { CalulateSomething(()=>Math.PI*2);
void CalulateS: hing(Func<double> code){<...> return number / 2;
} void CalulateSomething(Func<double> code)

2
<&

You write: number => number / 2
Lambda functions cah have multiple
lines between {} (then, they must use
return) and multiple parameters
(between ()) too!!

And this changes the way you
program forever ©
Wantto know more? Enroll TPP!:D

getRandomNum (without (), we
arenot callingit!!)isa method
with no parameters returninga
double. We can storeit (and any
likeit)in a Func<double>!!

o
o

‘ %\rst@\ass

Fig. 3. Basic functional programming principles fanzine

this research. Fortunately, the nature of fanzines also facili-
tated their fast translation. These translations include source
code (variable and method names, strings...) and certain
expressions. When translation was a clear student priority, all
subsequent zines were directly produced in both languages and
published in separate sections.

Format problems were also reported. The Kristen ITC
font was used to emphasize the comic appearance. However,
several students complained that it made source code more
difficult to read due to the font variable size and closeness
of the text paragraphs. To solve this, an extra separation was
introduced between text paragraphs, and a more console-like
font with no variable font height was used for source code
snippets (Selawik), both in existing fanzines and in the base
template for new ones. Additionally, some students indicated
that the usage of the red color to emphasize key concepts
inside explanations was excessive in some of the fanzines, so
its usage was minimized. Figures in this paper incorporate
these format changes.

Finally, several students complained about clearness and
resolution problems when viewing zines in portable devices.
This happened because they were initially provided as .png
images with sub-HD resolution to minimize their size and thus
facilitate sharing them. However, zooming over its contents
leave indeed a poor result, so they were released again
individually in high resolution PDF format.

D. Distribution of created fanzines

29 fanzines were developed to address all the problems
described in the previous section (26 during the 2018 course
year and 3 more in the following year). Table [[] shows their
information classified by course unit, showing its topic and
types of frames used (see Figure [I). This table also specifies
(Ph column) if a fanzine was created during phase 2 (lecturer-
directed) or phase 3 (student-directed).

Figure 2] and Figure [3] show two fanzine examples. Fanzine
in Figure [2] explains the parameter passing (ref and out)
concept belonging to the object-oriented programming unit,
addressing the problems outlined in the previous section.
Likewise, Figure E] does the same with the basics of functional
programming of the functional programming paradigm unit.
Both belong to the fanzine list contained on Table

Table [I| shows that 9 fanzines were developed to reinforce
the new and known concepts of the object-oriented paradigm;
10 were dedicated to reinforcing functional programming con-
cepts, and 7 were created to reinforce concurrency and paral-
lelism concepts. Finally, 3 more were created to understand ap-
plications of the final metaprogramming unit and optional ma-
terials. Additionally, 13 zines were developed by direct student
request (phase 3) and 16 developed from the students most
frequent questions (phase 2). Fanzines requested by students
concentrate at the end, as students seemed more engaged with
this initiative as the course progressed. A final compilation of
all zines was also made available in a public site at the end
of the course [32] as a high-resolution PDF file (one for each
language). Additionally, a table with a detailed description of

TABLE I
FANZINES PER COURSE UNIT

Contents Frame types Ph

Object-Oriented Programming Unit

Different behavior of dynamic binding in C# and A, B, C 2
Java

Object.Equals, equality redefinition and == A, B 3
operator

Type conversions, is and as A, B 3
By value and by reference parameter passing, re f A, C 2
and out

Exceptions and preconditions A, B 2
Asserts and postconditions A, B 2
C# generics, type variables A, B 2
C# generics vs Java generics A, B 3
How IEnumerable works B, C 2

Functional Programming Unit

Functions as first-class objects A, B 2
Using predefined delegates A 2
From method to lambda expression A 2
Basics of Ling and IEnumerable manipulation A, B, C 2
Generators and yield return B, C 2
Lazy policy of Ling functions A 2
Alpha-conversions and beta-reductions in lambda C 3
calculus

How Ling Join function works A, C 3
How Ling GroupBy function works A, C 3
Currying a function to achieve partial application A, B 3

Concurrency and Parallelism Unit

lock and critical sections; thread-safe data struc- A 2
tures

Closures on threads, critical section problems A 3
lock usage for critical section protection A, C 3
Using ReaderWriterLockSlim A 3
Master-Worker schema A, B, C 2
Producer-Consumer schema A, B, C 3
TPL and PLing to parallelize code A 2

Metaprogramming and optional units

Emulation of runtime intercession A, B 2
Roslyn to enable dynamic code generation A, B, C 3
Text to speech conversions A 3

each zine contents and the specific problems they try to ad-
dress is available in https://www.researchgate.net/publication/
348662668_Detailed_description_of_each_zine_contents. All
fanzines were developed as a consequence of the problems
highlighted in Section

V. RESULTS AND DISCUSSION

The goal of fanzines was not to try to improve the overall
course results (see Section I, as they are already adequate (see
Table , but to decrease the time students use to understand
the most problematic concepts. Zines might even have a
negative impact in the course results if they are used as its main
study materials. This is because they were not designed to
explain full concepts, just to reinforce their most problematic

https://www.researchgate.net/publication/348662668_Detailed_description_of_each_zine_contents
https://www.researchgate.net/publication/348662668_Detailed_description_of_each_zine_contents

TABLE 11
COURSE RESULTS

15-16 16-17 17-18 18-19
Number of students 153 185 147 140
Average mark 5,16 6,39 6,95 6,83
Standard deviation 2,4 1,97 1,67 1,76
Minimum score 0,38 0 2.5 1,57
Maximum score 9,53 9,85 10 10
% pass rate 56,9% 63,8% 755% 75,7%

parts. Using them as the only reference material to study
concepts may lead to understanding them incompletely. To
check if this effect is produced, four course editions were
analyzed, only the last using zines. Table|ll|shows that fanzines
did not have a negative impact on course results, being roughly
the same as in the previous edition.

Unfortunately, systematically evaluating the time saved un-
derstanding concepts by using fanzines was considered im-
practical, as no experiment could be thought to accurately
measure it in this context. The time students spend understand-
ing different concepts depends on their individual abilities,
previous knowledge, and environment (available help from
other sources). Also, this research is also created to be applied
on-demand during a course, so typical systematic evaluation
techniques, like creating control groups or applying use case
studies [33]], could not be designed without disrupting the
normal course flow, forcing students to use extra time to fulfill
these tasks, which is contrary to the goals of this research.
Thus, the evaluation approach is based on student personal
opinions about the perceived usefulness of fanzines on their
own case. This approach might introduce some threats to the
validity of the results, but it is the only one that could be
applied in this context without causing problems.

Therefore, to evaluate the usefulness of zines perceived by
their users, feedback from different user types was collected
once the first 8 were released. Feedback recollection was
designed to be quick, optional, and not disruptive with the
course flow. The first feedback collection process targeted to
any potential user, no matter if it is a student of the current
course edition or not. The head teacher private Twitter account
was used to create polls. This account had a restricted set
of 370 followers, mostly composed by old course students,
computer engineers from other universities, or computer pro-
fessionals of different fields, manually chosen from follow
requests to avoid robots, fake accounts, and people with no
verifiable background. As Twitter polls are anonymous and
very restricted, only two questions were made:

1) “Do you think that, in general, fanzines help understand-
ing concepts?”: 46 answers were given, 93% positive.

2) “Do you want a compilation of all fanzines available to
the public?”: 111 answers were given, 96% positive.

Results show that zines are perceived as useful for their
intended purpose by most users, and that there are a substantial
number of persons interested in obtaining a compilation of

them. This is the main reason why the zine compilation [32]]
was released at the end of the course (see Section [[V-D).

Obtaining feedback from current course students was the
next step in the feedback collection process. To do that, the
private online course site was used to create a more complex
anonymous poll. This poll had 5 questions with multiple
answers (see Table [II)), and a final free text one (see Table
. For questions with N > 2 answers, scores from 1 to N
were assigned, and the arithmetic mean was calculated. 62
answers were collected (44.3% of the enrolled students). Free
text answers also carried a lot of feedback. Table [[V] classifies
the contents of free text answers into categories to try to extract
useful information, considering that one answer may contain
information falling into several categories. These free-text
answers were also used to determine new zines to be created
during phase 3. Additionally, a parallel poll was also created
through Google Forms to obtain the same feedback from any
zine user, using the same questions except the second. 44 users
answered this poll. In both cases users can only answer once.

Table [[1I| shows that most students (96%) and users (97,7%)
found zines useful or partially useful to learn concepts.
However, the selection of created fanzines had room of im-
provement, as 21% of the students were looking for fanzines
about topics not already covered. This percentage started in
roughly 30%, but lowered as more fanzines were released,
indicating that on-demand fanzine creation had a positive
effect during the course. It is reasonable to assume that most
students answering Yes in this question also used the free-
text question to ask for the concrete fanzines they wanted
(see Table [IV). Fanzine content design is considered very
satisfactory: no student declared problems with their length
(only 7% of general users do), and 95% agree with the way
they cover concepts, so the quick reading objective was met.
11.6% of the general users consider that they contain too much
information, opposite to only 3% of the students, indicating
that their contents are viewed as specialized complements of
the existing materials.

Finally, most students and users (93%) consider that this
approach could be successfully used in other courses. On
the other hand, Table shows that a substantial number of
students, and more than 50% of other users, do not give any
comment. 42.6% of the students explicitly declare that they
liked the idea (23.81% in case of the users). New specific
zine requests, or an explicit request to use them in other
courses, was given by 21.3% of the students (14.29% in case
of the general users). Concrete format and content changes
were requested by few people, and Spanish translation was
only requested by students.

Finally, our university uses anonymous polls over each
course and lecturer to collect general student feedback. These
mention zines in some of the comments, stating that they
have been considered a great improvement of the lecturer’s
support to student problems. The author of the paper was also
evaluated with an overall 9.8/10 average score in the teaching,
attitude, and satisfaction with the work poll categories.

TABLE III
ZINE FEEDBACK POLLS RESULTS

Question Result (Students) Results (General
Users)
Did fanzines help you 85% Yes 93% Yes
to learn concepts? 11% Partially 4,7% Partially
3% No 2,3% No
Mean: 2,8 / 3 Mean: 29/ 3
Did you miss fanzines 21% Yes -
about concepts that 79%No
you found complex?
Do fanzines highlight 95% Yes 86% Yes

the correct parts of the 3% Too much data 11,6% Too much data

concepts? 2% Missed key parts 0% Missed key parts

0% No 2,4% No

Mean: 39/ 4 Mean: 3,8/ 4
Do you think that 100% Yes 93% Yes
fanzines have an ade- 0% No 7% No
quate length?
Do you think that 93% Yes 93% Yes
fanzines like this 7% Programming 4,7% Programming
could be useful in only only
other courses? 0% No 2,3% No

Mean: 29/ 3 Mean: 29/ 3

TABLE IV
FREE TEXT POLL FEEDBACK

Feedback category Students General
No comments 31,5% 58,14%
Explicitly like the zine approach 42,6% 23,81%
More zines or apply them in other courses 21,3% 14,29%
Request format changes 13,11% 4,76%
Request content changes 6,56% 4,76%
Request translation 11,48% 0%

VI. CONCLUSIONS AND FUTURE WORK

This paper describes how specialized fanzines have been
successfully introduced to reinforce the learning of prob-
lematic concepts in an undergraduate programming course.
The main contribution is the fanzine design procedure and
application, based on explaining very concrete concepts, a
common base template to fill with contents, and a static set
of rules. This allows to respond quickly and dynamically to
student needs, creating fanzines that adapt to the necessities of
each course edition and that can be read quickly. Application
of this technique have been received very positively both by
students and other potential users, explicitly indicating that
they reached their intended objective. Users also consider that
this approach could be applicable to other courses, even not
related to programing.

The zine compilation released to the public was published
in May 2019 [32] and has accumulated 1,585 reads and 6
recommendations (English version only, the Spanish transla-
tion has 325 reads and 2 recommendations) so far, gaining
a substantial acceptance. This initiative has been also high-
lighted by the Principality of Asturias Science advisor [34] and
in the Spanish Association for Science Advance (AEAC) blog
[35]]. Additionally, a description of this initiative has also been

published in the online divulgation journal CompartiMOSS,
describing it from the student interaction point of view [36].

Future work will integrate this approach to reinforce prob-
lematic concepts in other courses related to computer secu-
rity and administration [37]]. These will complement other
independent initiatives we plan to use, aimed to enhance
learning from different points of view [38]], or with learning-
focused tools [39]]. Fanzines will also be used to improve the
understanding of the most problematic theory and laboratory
concepts of these courses identified by the student feedback,
so the application of the rest of the initiatives could be more
successful. Finally, we are also studying the feasibility of using
an authoring tool (like in [[16]]) as an alternative to improve
fanzine creation times.

DATA AVAILABILITY

Zines described in this paper are available to the general
public in [32]. Ongoing future zine-related projects, related to
cybersecurity, are also available in [40].

ACKNOWLEDGMENT

The author of the paper wishes to thank researcher Daniel
Gayo Avello (ORCID: 0000-0002-4705-6891) for the valuable
feedback given to improve this paper.

REFERENCES

[1]1 E. de Ingenieria Informética, “Web oficial de la Escuela de Ingenieria
Informética de la Universidad de Oviedo,” ingenieriainformatica.uniovi.
es/, 2020, (Oct 15, 2020).

[2] F. Ortin, J. M. Redondo, and J.Quiroga, “Design and evaluation of an al-
ternative programming paradigms course,” Telematics. and Informatics,
vol. 34, no. 6, pp. 813-823, 2017.

[3] L. Cervesato, “Discovering logic through comics,” in Proceedings of
the 16th Annual Joint Conference on Innovation and Technology in
Computer Science Education, ser. ITICSE "11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 103-107. [Online].
Available: https://doi.org/10.1145/1999747.1999778

[4] J. Evans, “Wizard zines,” http://wizardzines.com, 2020, (Apr 29, 2020).

[51 L. Gonick, Cartoon Guide to Computer Science. Harper and Row,
1984, vol. 1.

[6] W. Eisner, Comics and Sequential Art: Principles and Practices from
the Legendary Cartoonist. Poorhouse Press, 1985.

[7] J. Sanders, Science Fiction Fandom: (Contributions to the Study of
Science Fiction and Fantasy). Greenwood Press, 1994, vol. 1.

[8] A. Spiegel, J. Mcquillan, P. F. Halpin, C. Matuk, and J. Diamond,
“Engaging teenagers with science through comics,” Research in Science
Education, vol. 43, pp. 2309-2326, 2013.

[91 H. yu, The Other Kind of Funnies: Comics in Technical Communication.

Routledge, 2015, vol. 1.

E. M. Reilly, “Supermath: A creative way to engage talented math

students,” in Proceedings of the 9th Mathematical Creativity and Gifted-

ness International Conference, 2015, pp. 194-204. [Online]. Available:
http://www.mcg-9.net/pdfuri/MCG-9-Conference- proceedings.pdf

S. McCloud, “The google chrome comic,” http://www.scottmccloud.

com/googlechrome/, 2008, (Oct 15, 2020).

A. Ramos and R. Yepes, Hacker prico. 0xWO0rd, 2018, vol. 1.

L. Ganesh, “The effect of comic strips as a supplementary material to

teach computer networks,” 2013 IEEE Fifth International Conference

on Technology for Education (t4e 2013), pp. 184-191, 2013.

K. Yim, “Computer science illustrated,” University of California at

Berkeley, Tech. Rep. UCB/EECS-2009-79, 2009.

K. Yim, D. D. Garcia, and S. Ahn, “Computer science illustrated:

Engaging visual aids for computer science education,” in Proceedings

of the 41st ACM Technical Symposium on Computer Science

Education, ser. SIGCSE ’10. New York, NY, USA: Association

for Computing Machinery, 2010, p. 465-469. [Online]. Available:

https://doi.org/10.1145/1734263.1734418

[10]

(1]
[12]
[13]
[14]

[15]

ingenieriainformatica.uniovi.es/
ingenieriainformatica.uniovi.es/
https://doi.org/10.1145/1999747.1999778
 http://wizardzines.com
http://www.mcg-9.net/pdfuri/MCG-9-Conference-proceedings.pdf
http://www.scottmccloud.com/googlechrome/
http://www.scottmccloud.com/googlechrome/
https://doi.org/10.1145/1734263.1734418

[16]

(17]
[18]

[19]
[20]

[21]
[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

S. B. Zaibon, F. N. Azman, and N. Shiratuddin, “Enhancing performance
of student in web programming using digital educational comics,”
Journal of Telecommunication, Electronic and Computer Engineering,
vol. 10, pp. 161-165, 2018.

A. Wibowo, “Bubblesort: Computer science fanzines,” https://shop.
bubblesort.io/, 2020, (Apr 29, 2020).

L. Clark, “Moz://Ma hacks,” |https://hacks.mozilla.org/author/
Iclarkmozilla-com/, 2020, (Apr 29, 2020).

L. Munroe, “Xkcd,” https://xkcd.com/, 2020, (Apr 29, 2020).

R. M. Lee and J. Haas, “Little Bobby,” https://www.littlebobbycomic.
com/archive/, 2020, (Apr 29, 2020).

——, Scada and Me. IT-Harvest Press, 2013, vol. 1.

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler, “Making the
future safe for the past: adding genericity to the java programming
language,” in Proceedings of the 13th OOPSLA, 1998.

TIOBE, “Tiobe index of the most popular programming languages,”
www.tiobe.com/tiobe-index, 2020, (Apr 29, 2020).

R. Terrell, Concurrency in .NET: Modern patterns of concurrent and
parallel programming. Manning Publications, 2018, vol. 1.

F. Ortin, M. Labrador, and J. Redondo, “A hybrid class- and prototype-
based object model to support language-neutral structural intercession,”
Information and Software Technology, vol. 44, no. 1, pp. 199-219, 2014.
F. Ortin, J. M. Redondo, and J. B. G. Perez-Schofield, “Efficient virtual
machine support of runtime structural reflection,” Science of Computer
Programming, vol. 74, no. 10, pp. 836-860, 2009.

F. Ortin, J. Quiroga, J. Redondo, and M. Garcia, “Attaining multiple
dispatch in widespread object-oriented languages,” Dyna, vol. 81, no.
186, pp. 242-250, 2014.

I. Lagartos, J. Redondo, and F. Ortin, “Efficient runtime metaprogram-
ming services for Java,” Journal of Systems and Software, vol. 153,
no. 6, pp. 220-237, 2019.

J. M. Redondo and F. Ortin, “A comprehensive evaluation of common
Python implementations,” IEEE Software, vol. 32, no. 4, pp. 76-84,
July-Aug. 2015.

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

G. Miller, “The magical number seven, plus or minus two: Some limits
on our capacity for processing information,” Psychological Review, vol.
101, no. 2, pp. 343-352, 1956.

M. Itkonen, “Typography and readability,” https://pdfs.semanticscholar.
org/4b67/cd16136d476821547619¢705e2151d2b98df.pdf, 2020, (Apr
29, 2020).

J. M. Redondo, “FanCines: Understand C Sharp concepts the easy
way,” https://www.researchgate.net/publication/333104441_FanCines_
Understand_C_Sharp_concepts_the_easy_way, 2020, (Apr 29, 2020).
C. Wohlin, P. Runeson, M. Hést, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer
Science and Business Media, 2012, vol. 1.

B. Sanchez, “Diario de un consejero de ciencia. semana 3,” https://aeac.
science/consejeria3/, 2019, (Apr 29, 2020).

A. E. para el Avance de la Ciencia, “Zines como herramienta para ex-
plicar conceptos cientificos y tecnoldgicos,” https://aeac.science/zines/,
2020, (Apr 29, 2020).

J. Redondo, “El cémic como medio de enseflanza de conceptos de
programacién en C# en dmbitos universitarios,” CompartiMOSS: Revista
especializada en tecnologias Microsoft, no. 44, 2020.

J. M. Redondo, “Improving student assessment of a server administration
course promoting flexibility and competitiveness,” IEEE Transactions on
Education, vol. 62, no. 1, pp. 19-26, 2 2019.

J. M. Redondo and L. Varela, “Filesync and Era Literaria: Realistic open
source webs to develop web security skills,” Journal of Web Engineering,
vol. 17, no. 5, pp. 1-22, 2018.

J. M. Redondo and D. Cuesta, “Towards improving productivity in nmap
security audits,” Journal of Web Engineering, vol. 18, no. 7, pp. 1-38,
2019.

J. M. Redondo, “Hack-zines: Understanding hacking concepts the easy
way,” |https://www.researchgate.net/publication/344693274_Hack-zines_
Understanding_hacking_concepts_the_easy_way, 2021, (Jan 21, 2021).

https://shop.bubblesort.io/
https://shop.bubblesort.io/
https://hacks.mozilla.org/author/lclarkmozilla-com/
https://hacks.mozilla.org/author/lclarkmozilla-com/
https://xkcd.com/
https://www.littlebobbycomic.com/archive/
https://www.littlebobbycomic.com/archive/
www.tiobe.com/tiobe-index
https://pdfs.semanticscholar.org/4b67/cd16136d47682f547619e705e2151d2b98df.pdf
https://pdfs.semanticscholar.org/4b67/cd16136d47682f547619e705e2151d2b98df.pdf
https://www.researchgate.net/publication/333104441_FanCines_Understand_C_Sharp_concepts_the_easy_way
https://www.researchgate.net/publication/333104441_FanCines_Understand_C_Sharp_concepts_the_easy_way
https://aeac.science/consejeria3/
https://aeac.science/consejeria3/
https://aeac.science/zines/
https://www.researchgate.net/publication/344693274_Hack-zines_Understanding_hacking_concepts_the_easy_way
https://www.researchgate.net/publication/344693274_Hack-zines_Understanding_hacking_concepts_the_easy_way

	I Introduction
	II Related Work
	III Course Design and Problematic Concepts
	III-A The object-oriented programming paradigm
	III-B The functional programming paradigm
	III-C Concurrent and parallel programming
	III-D Meta-programming and dynamic typing
	III-E Optional materials

	IV Fanzine Creation
	IV-A Design of the fanzine framework
	IV-B Lecturer-directed fanzine development
	IV-C Student-directed fanzine development
	IV-D Distribution of created fanzines

	V Results and Discussion
	VI Conclusions and Future Work
	References

