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Abstract. Tensile strength of brittle materials is usually obtained through Brazilian tests. It is 

accepted that failure is initiated at the centre of the sample and that it propagates through the 

material, creating a tensile failure plane along the vertical diameter or at the majority of it. Then, 

the tensile stress developed at the centre of the disc is considered as the tensile strength of the 

material tested. However, the stress state along the vertical diameter is always biaxial, even in 

the centre of the sample. This implies that the strength measured using such technique is not the 

uniaxial tensile strength. In this article, the expressions of the stress state supported by a tubular 

sample subjected to a novel device to determine the tensile strength of brittle materials are 

described. Besides, it is noticed that the failure plane contains points with the maximum uniaxial 

tensile strengths so the testing method is adequate to determine the uniaxial tensile strength of 

brittle materials. 

1.  Introduction 

Two of the problems in the calculation of the tensile strength of brittle materials with the universal 

tensile machine are: the very often breakage of the sample when it is fixed to the jaws of the machine 

and, the development of micro cracks inside the sample that, although imperceptible to the eyes, produce 

a deviation in the final value of the tensile strength. 

The Brazilian test avoids these problems since it does not need to fix the sample to the jaws because 

the material is engaged to the jaw at the same time that a stress state is induced in the sample. In addition, 

in this type of material, obtaining samples with cylindrical geometry is easy. Besides, it is possible to 

obtain other mechanical properties of the material such as Young's modulus or Poisson's ratio [1 - 3]. 

However, the results from the Brazilian test are valid when the breakage starts in the centre of the 

sample, that is to say, the breakage happens along the vertical diameter avoiding the appearance of 

wedges in the vicinity of the contact. In other case, it would be necessary to determine the exact point 

of the breakage, analyse the stress state in the point, and look for a point along the vertical diameter that 

presents uniaxial stress state [4]. But the biaxiality of the Brazilian test prevents obtaining the real value 

of the uniaxial tensile strength of the material, obtaining values lower than real one. 

This could be considered advantageous from a strength point of view, but it is a drawback to break 

brittle materials by excavation process. It produces an increase in the dimensioning of the machines and 
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mining extraction tools, as well as of all those mechanical systems used in civil engineering to break the 

rock mass. This poor sizing can cause the failure and even breakage of those elements and generate 

financial overheads or unwanted temporary delays. 

In this paper a new system for characterizing brittle materials is developed. It avoids fixing the 

sample of the material to the testing machine. Furthermore, it makes a stress state in which the breakage 

of the sample begins at points exclusively subjected to tensile stress, that is, to uniaxial stress state. 

The following section presents the test device developed by the Group of research DinRock of the 

University of Oviedo. Next, the analytical formulation for its use is developed and the results obtained 

in tests carried out with the novel device are analysed. The results allow to affirm that the device is 

suitable for determining the tensile strength in brittle materials 

2.  Novel tensile device 

The tensile device (figure 1) is made up of four steel pieces. Two edges (number 1 in figure 1) and two 

cylindrical pieces called couplers (number 2 in figure 1). Figure 2 shows a detailed perspective view of 

both components. 

The edges are composed by two geometric bodies:  

• A cylindrical base with a diameter of 52 mm and a height of 8.5 mm. Its objective is to provide 
stability to the device along the performance of the test. 

• An isosceles trapezoidal prism that transforms the displacement of the wedge along Z axis into 
displacement in the couplers along Y axis and whose dimensions are: 32 mm of greater base, 12 
mm of smaller base and an angle of 18 ° between the Z axis and its non-parallel sides. 

The couplers are formed by the juxtaposition of two cylinders of 55 and 32 mm in diameter and 

lengths of 3.5 and 59 mm respectively. They are cut along their longitudinal mid-plane where a groove 

with a thick of 8.4 mm and an inclination of 50º is machined. 

  

Figure 1. Tensile device. Figure 2. Elements of the device. 

The samples have tubular geometry (figure 3) and the tensile device is introduced inside the sample 

producing tensile stress without fixing the sample to jaws (figure 4). Furthermore, the contact between 

the outer border of the couplers and the inner border of the sample is considered to be perfect and 

uniform throughout all the generatrices. This contact allows to reduce the elastic problem of a three-

dimensional solid to a two-dimensional one and transform the analysis from a tube to a circular ring 

under the hypothesis of plane elasticity. 

The device-sample assembly is placed in the vertical press with its Z axis in the axis of the press 

(figure 4). In such a way that, as the press descends, the wedges advance over the groove of the couplers. 

The difference in inclination between the wedge and the groove produces that the coupler moves in a 

perpendicular direction to the sense of the movement and increases the load applied at the inner border 

of the sample. Taking into account the interaction of the components of the device and that this one is 

more rigid than the materials of the sample, the maximum displacement of the sample on the Y direction 

must be located, a priori, on the Y axis. Besides, for reasons of symmetry, the tangential displacements 

must be zero in both X and Y axes. 
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Figure 3. Sample with tubular geometry. Figure 4. Tensile device plus sample. 

A schematic representation of the transversal section of the tensile device as its mid-height with all its 

elements in perfect contact and the sample implemented is shown in figure 5, where the couplers are 

represented in orange, the wedges in green and the sample in white colour. X and Y axes have been 

interrupted on figure 5 at their intersections with the outer boundary to ease its graphical interpretation. 

 
Figure 5. Sample with tubular geometry. 

3.  Mathematical development 

Considering that the load transmitted from the device to the sample is uniformly distributed along 

the same generatrix, the problem is reduced to the application of plane elasticity in a circular ring [5] 

with inner radius Rin and outer radius Rout. The outer radius is also referred as R to simplify the notation. 

Henceforth, r defines the radial distance of the point considered and  defines the angle subtended by 

its radius and the X axis, as shown on figure 6. Points that are initially in contact between the testing 

device and the sample remain in contact along the test due to the higher stiffness of the first one. 

Consequently, as the maximum displacement in Y direction occurs on the Y axis and the smallest on the 

X axis for symmetry reasons, a stress distribution is imposed with a maximum in the Y axis and zero in 

the X axis. Therefore, the modulus of the stress distribution varies according to the law psin and its 

direction is collinear to the Y axis. Note that the outer border of the sample is fully discharged. These 

assumptions made on the stress distribution are reasonable as long as the stiffness of the testing device 

remains significantly higher than the one of the sample. In other case, a more detailed analyses of the 

distribution imposed along the inner boundary should be done. The value of p is obtained considering 

that the total horizontal load (Ph) applied to the sample on the Y direction satisfies the equation (1), 

where α is the ratio between the inner radius (Rin) and the outer radius of the sample (Rout) and L is the 

total length, or height, of the sample. 

 𝑃ℎ = ∫ 𝛼𝑅𝐿𝑝
𝜋

0
sin 𝜃 𝑑𝜃 = 2𝛼𝑅𝐿𝑝 (1) 



Mechanics and Rock Engineering, from Theory to Practice
IOP Conf. Series: Earth and Environmental Science 833 (2021) 012016

IOP Publishing
doi:10.1088/1755-1315/833/1/012016

4

 

 

 

 

 

 

Considering the equilibrium of forces on the wedge, it is possible to obtain the relation between the 

total horizontal load (Ph) and the total vertical load (Pv), applied along Z direction as shown in equation 

(2). In it,  is the angle of the wedge and μ the coefficient of friction between the wedges and the 

couplers. 

 𝑃ℎ =
𝑃𝑣(−𝜇 sin𝛽+cos𝛽)

2(sin𝛽+𝜇 cos𝛽)
 (2) 

It could be considered that total applied load is 2Ph. However, as the proposed formulation has been 

developed to a straightforward implementation in mechanics materials laboratories, the variable Ph 

relates to the total applied load recorded by the loading device in a similar form to the Brazilian test, 

where the total applied load is usually denoted by P. If the components of the tensional vector on the 

inner boundary are called Tx and Ty respectively, the tensional vector can be expressed as: 

 𝑇𝑥 + 𝑖𝑇𝑦 = 𝑖𝑝 sin𝜃 (3) 

With the end of determining the stress state inside the elastic solid, techniques of complex variables 

have been employed. The components of stress can then be written as a function of two potentials ϕ(z) 

and ψ(z): 

 𝜎𝑟 + 𝜎𝜃 = 4𝑅𝑒[𝜑′(𝑧)] (4) 

 𝜎𝜃 − 𝜎𝑟 + 2𝑖𝜏𝑟𝜃 = 2𝑒2𝑖𝜃[𝑧̅𝜑′′(𝑧) + 𝜓′(𝑧)] (5) 

To simplify the resolution of the problem, the domain considered is mapped to a circular ring defined 

in the plane ζ [6], with inner radius α and outer radius the unit (figure 6), according to the equation (6). 

 𝑧 = 𝜔(𝜁) = 𝑅𝜁 (6) 

 
Figure 6. Graphical summary of variables for mapping from ζ plane to z plane. 

By this simplification, the potentials ϕ(z) and ψ(z) can be written in terms of the variable ζ. 

Furthermore, as they are analytical functions within the domain considered, they can be expressed as 

Laurent series: 

 𝜑(𝜁) = ∑ 𝑎𝑘𝜁
𝑘 +∞

𝑘=1 ∑ 𝑏𝑘𝜁
−𝑘∞

𝑘=1  (7) 

 𝜓(𝜁) = 𝑐0 + ∑ 𝑐𝑘𝜁
𝑘 +∞

𝑘=1 ∑ 𝑑𝑘𝜁
−𝑘∞

𝑘=1  (8) 

Therefore, the boundary conditions at the outer and inner borders are given as follows [7-9]: 

 𝐹𝑜𝑢𝑡(𝜉) = 𝜑(𝜉) +
𝜔(𝜉)

𝜔′(𝜉)̅̅ ̅̅ ̅̅ ̅̅ 𝜑
′(𝜉)̅̅ ̅̅ ̅̅ ̅ + 𝜓(𝜉)̅̅ ̅̅ ̅̅  (9) 

 𝐹𝑖𝑛(𝛼𝜉) + 𝐶 = 𝜑(𝛼𝜉) +
𝜔(𝛼𝜉)

𝜔′(𝛼𝜉)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜑
′(𝛼𝜉)̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜓(𝛼𝜉)̅̅ ̅̅ ̅̅ ̅̅  (10) 
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However, on the outer border there are no applied loads, therefore 𝐹𝑜𝑢𝑡(𝜉) = 0, and expressing the 

boundary conditions on the inner border, as function of  𝐹𝑖𝑛(𝛼𝜉)  is calculated according to: 

 𝐹𝑖𝑛(𝜃) = 𝑖 ∫ (𝑇𝑥 + 𝑖𝑇𝑦)𝑑𝑠𝛾
= 𝑖 ∫ −𝑖𝑝 sin𝜃𝛼𝑅𝑑𝜃

𝜃

0
= −𝑝𝛼𝑅 cos 𝜃 (11) 

On the other hand, the function 𝐹𝑖𝑛 can be expressed as Fourier series according to equation (12), in 

which the term cos  has been rewritten in exponential form, taking to account that 𝜉 = cos 𝜃 + 𝑖 sin 𝜃. 

 −
𝑝𝛼𝑅

2
(𝜉 + 𝜉−1) = ∑ 𝐵𝑘𝜉

𝑘∞
𝑘=−∞  (12) 

Substituting the equations (6), (7), (8) and (12) in the equations (9) and (10) it is possible to obtain 

the expression of the potentials ϕ(z) and ψ(z) identifying powers of the same order [7, 8]. The expression 

of the components of the stress state in cylindrical coordinates are obtained from equations (4), and (5) 

and shown in equations (13), (14) and (15). 

 𝜎𝑟 = −
𝑝𝛼2(𝑅2−𝑟2)

2𝑟4(𝛼2−1)3
{−𝑟2(𝛼2 − 1)2 + cos2𝜃 [4𝑟2 + (𝛼2 + 1)(−3𝑅2𝛼2 + 𝛼2𝑟2)]} (13) 

 𝜎𝜃 = −
𝑝𝛼2

2𝑅2(𝛼2−1)3
{
3𝑅6𝛼2(𝛼2+1)cos2𝜃+𝑟2𝑅4(𝛼2−1)

2

𝑟4
+ 𝑅2(𝛼2 − 1)2 + cos2𝜃 (4𝑅2 + 𝑅2𝛼2 + 𝑅2𝛼4 −

12𝑟2)} (14) 

 𝜏𝑟𝜃 =
𝑝𝛼2(𝑅2−𝑟2) sin2𝜃

2𝑅2𝑟4(𝛼2−1)3
[𝑅2𝛼2(𝛼2 + 1)(3𝑅2 + 𝑟2) − 2𝑅2𝑟2 − 6𝑟4] (15) 

4.  Results of the tests with the novel device 

The stress and strain states are analysed employing different samples. Along the tests, the applied 

total load, the length of the sample and the inner radius of it are kept constant. The analysis of the 

influence of the thickness of the sample in the results is carried out using values of α equal to 0.2 and 

0.4. In order to facilitate the interpretation of the results, the figures are modified by keeping the outer 

radius constant and varying the inner radius, and the comparison of the results is carried out after 

normalizing the values. Tensile stresses are considered positive whereas compression ones are 

considered negative. 

4.1.  Stress state 

4.1.1.  Normalised radial component of stress r/max. The stress imposed by the couplers on the inner 

border of the sample tries to separate the sample into two halves. Therefore, tensile stress appears in the 

X axis and compressive stress in the Y axis (figure 7). Furthermore, the radial stress is cancelled along 

the outer border and at the points z = ± αR. On the other hand, an increase in the value of α produces an 

increase in the area with stress close to the maximum and an increase in the normalized distance with 

respect to the inner border at which the maximum or minimum stress happens. 
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Figure 7. Normalised radial component of stress. Values of α=0.2 (a) and α=0.4 (b). 

4.1.2.  Normalised tangential component of stress /max. Separating the sample into two symmetrical 

halves implies that in the X axis the tangential stress reaches the highest tensile values (figure 8) and in 

the Y axis the highest compressive values. In addition, both tensile and compressive values are in the 

points near the border of the sample. This is because the external fibers tend to stretch due to the stress 

produced inside the sample. The maximum tangential stress happens at points on the inner border of the 

sample, and they vary with the thickness of the sample in such a way that a decrease in thickness 

produces a greater normalized tangential stress. 

 

 

Figure 8. Normalised tangential component of stress. Values of α=0.2 (a) and α=0.4 (b). 

4.1.3.  Normalised shear component of stress r/max. Due to the symmetry in the load distribution 

imposed on the inner border, both X and Y axes are main directions and therefore there are no shear 

stress in them. In any other diameter, and when advancing on the same radius, the stress changes its sign 

to get the value zero in the outer border (figure 9). The absolute value of the tension is equal in the four 

quadrants although its sign changes being positive in the first and third quadrant and negative in the 

second and fourth quadrant. 
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Figure 9. Normalised shear component of stress. Values of α=0.2 (a) and α=0.4 (b). 

4.2.  Strain state 

The strain state of a sample depends on the external stress applied on it and on the mechanical properties 

of the material that defines the sample. For this reason, the strain state has been determined, considering 

conditions of plane stress on a slate sample. Table 1 shows the mechanical properties of the slate. 

 

Table 1. Slate mechanical properties [4]. 

 Definition Slate 

𝑬 (GPa) Young's modulus 47.55 

𝝂 Poisson's ratio 0.24 

𝑮 (GPa) Transverse modulus of elasticity 19.17 

4.2.1.  Normalised radial component of strain εr/εmax. The minimum value of the radial strain is always 

in the intersection point between the inner border and X axis, while the maximum moves towards the 

outer border as the stiffness of the material increases (figure 10).  

 

 

Figure 10. Normalised radial component of strain in slate. Values of α=0.2 (a) and α=0.4 (b). 

4.2.2.  Normalised tangential component of strain /max. The tangential strains present negative values 

at those points simultaneously close to the X axis and the outer border of the sample, with higher values 

in less rigid materials. However, when the value of α increases from 0.2 to 0.4 (figure 11), the tangential 

strains can be considered qualitatively equivalent for the different materials analysed. 
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Figure 11. Normalised tangential component of strain in slate. Values of α=0.2 (a) and α=0.4 (b). 

4.2.3.  Normalised shear component of strain r/max. The shear strains, due to the symmetry of the 

stress distribution imposed, are null in both X and Y axes. Qualitatively they are equivalent for different 

materials, but for one sample and different values of α, the shear strains present significant variations 

(figure 12). 

 

Figure 12. Normalised shear strain in slate. Values of α=0.2 (a) and α=0.4 (b). 

5.  Conclusions 

From the results it is possible to say that: 

• The implementation of the tensile device in any materials mechanics laboratory is 
straightforward. For its use, it is only necessary a load cell, a displacement sensor and, 
depending on the desired test arrangement, strain gauges. 

• The stress state generated inside the sample, employing the tensile device, is similar to a 
composed tensile, where the X axis presents, at the same time, normal stress and bending 
moment. 

• The tensile device allows to test samples under plane stress and plane strain conditions and the 
uniaxial tensile strength of the material without clamping the sample to the jaws of the 
traditional uniaxial tensile test.  
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