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The prevailing magnetic spin coupling paradigm is based on a one-electron picture, thus being
orbital dependent and unsatisfactory from a physical point of view. We examine it under a truly
invariant real space perspective, focusing on the role of electron delocalization. We show that
this view, compatible with orbital thinking, overcomes its limitations. By examining simple model
systems we show that it is electron delocalization that drives any singlet-triplet gap, and that
delocalization and ionic mixing are two sides of the same reality. It is in the end delocalization,
fostered or hindered by the specific structure of a system, that lies behind its preferred magnetic
coupling mode. In the case of superexchange-mediated coupling through atomic bridges, we also
point out the non-essential role of the bridge’s electrons in setting up singlet-triplet preferences.
We show that the use of real space thinking allows for tuning singlet-triplet gaps using knobs that
are not easily grasped from the orbital standpoing, opening new avenues in the design and control
of molecular magnets.

1 Introduction
The fascination of humankind by magnets has accompanied our
species for millennia,1 although it took a considerable amount
of time and ingenuity until Faraday and Maxwell’s systematiza-
tions led to the electromagnetic field equations. The discovery of
the electron and its consecration at the International Congress of
Physics held in Paris in 1900 laid the grounds to solve the prob-
lem of the sources of the fields, but opened others. Langevin,
for instance, noted that paramagnetism required the existence
of atoms with permanent magnetic moment, but it was not un-
til Goudsmit and Uhlenbeck2 demonstrated the existence of an
intrinsic magnetic moment for the electron and Dirac combined
Einstein’s relativity with quantum mechanics,3 that the electron’s
spin was finally understood.

The rapid success of quantum theory in providing a success-
ful explanation of magnetic phenomena was impressive, and by
the early 1930’s two influential books on the subject had already
been written by van Vleck (1932)4 and Stoner (1934)5. Since
then, the theory of magnetic couplings has been intimately linked
to the concept of exchange,6 and to various phenomenological
models like those of Heisenberg, Dirac, and van Vleck,4,6,7 or
Ising.8 In the former, for instance, an effective spin Hamiltonian
H = −∑i j Ji jSSSi ·SSS j is written in terms of intercenter magnetic ex-
change coupling constants Ji j, from which collective behaviors
can be simulated and macroscopic susceptibilities computed. The
J’s have been traditionally fitted against experimental results, and
soon efforts were made to compute them ab initio. Historically
(an authorized account can be found in the book by Mattis1),
this problem was initially tackled with the Heitler-London (HL)
methodology, which coined much of the language still used today,
but the inherent difficulties of using non-orthogonal one-electron
functions in the incipient valence-bond (VB) theory led to catas-
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trophic simplifications in dealing with any but the simplest sys-
tems. This led Slater,9 among others, to advocate for using or-
thogonal (Wannier) functions and ultimately to the adoption of
the method of Mulliken and co-workers which resulted in molec-
ular orbital (MO) theory.

In the simplest case of the bare coupling between two spin
1/2 centers, a and b, the HL method predicts the correct singlet
ground state when using just two localized non-orthogonal func-
tions (ϕa,ϕb), and has provided chemists with a set of primary
tools with which to rationalize and control the magnetic inter-
actions in a wealth of transition metal or organic radical com-
pounds.10 In the weak overlap limit, the HL machinery leads
to the Kahn-Briat (KB) model,11 with a singlet-triplet splitting
∆ST = ES−ET ≈ 2Kab +4βSab, where Kab is the bare exchange in-
tegral between the a,b functions, β is the (negative) non-diagonal
one-electron hamiltonian matrix element 〈ϕa|h|ϕb〉, and Sab is the
overlap integral 〈ϕa|ϕb〉. The use of localized orthogonal orbitals
in the HL ansatz (the so-called Coulson-Fischer orbitals), gives
rise to an unbound singlet, and to a triplet ground state, with
∆ST = 2Kab. Slater himself9 showed that this catastrophic result
can be remedied by mixing the covalent and ionic HL wavefunc-
tions, introducing the idea that it is the larger variational flexibil-
ity of the singlet which stabilizes it below the triplet.

Meanwhile, the antiferromagnetic spin pattern revealed by
neutron diffraction in MnO12 led Anderson13 to explain the in-
conceivably large singlet coupling among the Mn2+ ions in terms
of a modified version of Kramers’14 mediated spin–coupling the-
ory. This superexchange mechanism is essentially a through-bond
(instead of a through-space) coupling which is more efficient for
singlets due to their larger variational space or, in more chemical
terms, due to the presence of exchange pathways in the singlet
that include ionic structures involving the bridging ligands, ab-
sent in the triplet. After several modifications, advanced by Good-
enough, Kanamori, Anderson, and many others15,16, Anderson’s
superexchange became the standard interpretive model of mag-
netic coupling through barriers for physicists.
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In the chemical literature, the MO equivalent to the Kahn-Briat
model appeared in 1975 in a seminal paper by Hay, Thibeault,
and Hoffmann17 (HTH). In its simplest version the pair of singly
occupied orbitals obtained for the triplet state (those involved in
the magnetic coupling), φ1,φ2, are subjected to a localizing uni-
tary rotation to give two orthogonal localized magnetic orbitals
(OLOs), φa,φb. The variational space of this effective two-orbital,
two-electron system contains two singlets and one triplet (being
thus larger for the singlet). Diagonalization in this 2× 2 space
followed by approximations equivalent to those of the Kahn-
Briat model leads to ∆EST = 2Kab− (ε1− ε2)

2/(Jaa− Jab), where
Kab is the bare exchange integral between the OLOs, ε1,ε2 the
orbital energies of the triplet state MOs, and Jaa,Jab the on-
site and inter–site Coulomb repulsions between the OLO’s. A
simple change of notation transforms the HTH expression into
∆EST = 2Kab − 4t2

ab/U , where tab = 〈φaφ̄b|H|φaφ̄a〉 is the transfer
integral and U Hubbard’s on-site repulsion. It is not difficult
to show with the help of quasi-degenerate perturbation theory18

that the presence of a closed-shell bridge (described by bridge lo-
calized orbitals) between the magnetic centers provides an equiv-
alent ∆EST expression with an enhanced effective, or dressed, te f f

ab
element. This provides the MO basis for superexchange path-
ways.

Over the years, these ideas have crystallized in computationally
efficient procedures that use large active spaces to capture the or-
bital quasi-degeneracies of the multi-electron states of transition
metal ions, and in specific perturbation techniques, like the very
successful difference dedicated configuration interaction method
(DDCI) of Malrieu and co-workers,19 to deal with the multitude
of exchange pathways and the subtleties of dynamic correlation.
State of the art calculations are now precise to the cm−1, repre-
senting accuracies of one part in 107,20 and DFT methods, using
broken symmetry approaches, have also been extremely success-
ful.21 In most cases, calculations are interpreted by mapping back
the results of the accurate computations onto HTH-like qualitative
valence-only models that allegedly capture the essential physics
of the problem.22,23

The simplicity and ability of the HTH or KB models to ratio-
nalize the magnetic behavior of simple systems has forged sev-
eral generations of chemists and physicists. The small, ever-
present ferromagnetic direct exchange contributions are usu-
ally outweighed by generally mediated antiferromagnetic terms,
which can be tuned by modulating the overlap integrals in the KB
model or the transfer and on-site terms in the HTH expression.
This has been also the basis for understanding magnetostructural
correlations. For instance, the vast literature on dinuclear 3d com-
plexes10 shows a subtle dependence of J with the bridging ligand
(L) and the M̂LM angle (M is the metal). The rather rare fer-
romagnetic ground states are found near the allowed crossings
of the ε1 and ε2 functions, i.e. when the KB overlap term 4βSab

is zero or negligible and the positive Kab prevails. When simple
atoms act as bridging species, it is easily seen that such a crossing
lies when the M̂BM angle is close to 90◦, in agreement with the
experimental evidence.10

Despite the success of this simple orbital paradigm, its roots
are conceptually unsatisfactory from several independent fronts,

even when taking the dihydrogen molecule as the simplet possi-
ble model system. On one hand, if a non-orthogonal, HL, descrip-
tions is used, the ground state is correctly assigned as a singlet
at all internuclear separations. Partitioning J into ferromagnetic
and antiferromagnetic contributions is here unjustified, for the
Kab integral is always smaller in magnitude than the other neg-
ative terms. On the other hand, if an orthogonal picture is as-
sumed, the HL functions built with Coulson-Fischer orbitals leads
to a catastrophic triplet unbound ground state. Finally, if a gen-
eral orthogonal MO framework is adopted, a minimal configura-
tion interaction mixing the two closed-shell singlet determinants
is needed. Interpreting the results now requires an orbital local-
ization step which provides the basic elements of the HTH ma-
chinery. Aside from cases where symmetry fixes the answer, the
localization can be performed in infinitely many ways, and differ-
ent values for the ferro- and antiferro- components of ∆ST will be
obtained thereafter.

In other words, since the prevailing magnetic spin coupling
paradigm is based on a one-electron picture, it is orbital depen-
dent. Any satisfactory explanation of the physics of magnetic cou-
pling should be orbital invariant, a requisite that can be fulfilled
by examining the problem in real space, as we advocate in the
present work. As a simple example, it has been written many
times that the HL unbound singlet built from Coulson-Fischer
orbitals becomes stabilized in dihydrogen thanks to the mixing
with ionic structures.24 This is also, as already noted, the basis
of the superexchange enhancement of J. However, the standard
non-orthogonal HL singlet is a rather accurate approximation to
the bound H2 ground state, while VB-oriented contemporary re-
searchers,25 would surely agree that it does not contain any ionic
mixing. If a real space perspective is adopted, then it is clear
that in all these cases a certain amount of ionic mixing exists,
since when the tail of an a localized orbital approaches the b nu-
cleus the probability of finding the two electrons in the b atom
(an ionic contribution) is not zero.26 Since the amount of ionic
structures is easily found to be smaller (vide infra) in the Coulson-
Fischer HL function, the argument of singlet stabilization by ionic
mixing does actually work. In fact, as we are showing, there is
no bonding and no singlet-triplet splitting without ionic mixing
whatsoever.

It is our aim in this manuscript to offer a consistent real space
story of magnetic spin coupling in the simplest possible model
systems. As it will be seen, we have selected them to show our
arguments with clarity, but our conclusions are of general valid-
ity. We will start by showing that electron delocalization is a nec-
essary requisite for binding to occur, and that without it there
can be no singlet-triplet splitting. When an orbital-free perspec-
tive is adopted, the Kab ferromagnetic direct exchange gives way
to antisymmetry based arguments that flow into the electron-
electron repulsion energy components. We also show that an-
gular dependent singlet-triplet switching occurs in the simplest
H-He-H chain, even with minimal basis sets, when the overlap
logic cannot simply work. This switching is present even when
the atomic bridge is substituted by a one-electron pseudopoten-
tial, a finding that casts doubts on the true necessity of the su-
perexchange mechanism. A real space perspective is then found
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to offer an orbital invariant view compatible with the basics of
the HTH scheme, but independent of it. To that end, we ap-
ply a battery of real space techniques, using a quantum the-
ory of atoms in molecules (QTAIM) atomic partition,27 the in-
teracting quantum atoms (IQA) energy decomposition,28,29 real
space resonance structures from the theory of electron distribu-
tion functions (EDFs),30,31 and an open systems compatible local
spin decomposition,32–35 among others. Altogether, these meth-
ods build a narrative in which antisymmetry requirements justify
the success of orbital models, but overcome their limitations. We
clearly show that singlets tend to be the electronic ground state
in bridged systems when they are able to exploit their variational
flexibility. This can be prevented, for instance, and triplets can
then become ground states, when the energetic cost of bending
the bridge does not compensate configuration mixing. In this sit-
uation, the one-particle density of the singlet is forced to resem-
ble considerably that of the triplet, much like in the case of the
Coulson-Fischer HL function in H2. Being now the one-particle
energy terms alike in both states, the larger mean interelectron
separation of the triplet makes itself felt, and its smaller electron
repulsion can make it fall below the singlet. We also find that
the local energy of the two magnetic atoms evolves as the total
energy of the system, supporting the non-essential energetic role
of the bridge in determining the ground spin state. The systems
are found to behave as rather localized diradicals, with relatively
small local spins on the bridge. Although not essential, exchange
pathways can also be sensed with our real space methodology,
and we clearly show that they are more important in singlets, as
expected.

We try to present our arguments as didactically as possible.
First we provide a succinct summary of the model systems and
model wavefunctions that we use, together with the real space
techniques chosen. Then we show that strict localization leads
to a necessarily unbound state in H2 with no singlet-triplet gap.
After this we study the H-He-H system and rationalize the singlet-
triplet switching through an orbital-based energetic window that
paves the way to the subsequent real space analysis.

2 Basic models and techniques
We consider the coupling of two S = 1/2 centers without and with
an atomic bridge. The first case will be exemplified by the H2 sys-
tem, and the second by the H-He-H chain. Since we are consider-
ing four electrons at most, full configuration interaction (FCI) cal-
culations provide appropriate solutions capturing the full physics
of the problem. Minimal basis sets (STO-6G) as well as extended
ones (6-311G(p)) will be used. All trends and qualitative results
obtained with the extended bases are reproduced with the mini-
mal sets, allowing an immediate fruitful chemical interpretation.

To perform real space analyses, a partition of space into chemi-
cally meaningful regions is in need. We choose the atomic par-
tition provided by the quantum theory of atoms in molecules
(QTAIM),27 which provides a physically rooted decomposition.
Only reduced density matrices (e.g. one- and two-particle densi-
ties) are used, so that the formalism is orbital invariant by con-
struction. We also evaluate (see the SI for a succinct presenta-
tion) the probability of finding an exact, integer number of elec-

trons in the different atomic regions, the so-called electron dis-
tribution functions (EDF),30,31 that provide the weights of real
space resonance structures, the expectation values of the squared
spin operator within an atomic region as well as that of the spin
coupling between two regions,32–35 and perform an exact energy
decomposition using the interacting quantum atoms methodol-
ogy.28,29 In the latter, the total energy of a system is partitioned
as a sum of local intra-atomic or self-energies, EA

sel f , that take into
account how much atoms deform when forming molecules, and
pairwise additive interatomic interaction energies, EAB

int , so that
E = ∑A EA

sel f +∑A>B EAB
int . The atomic self-energies are physically

composed of the kinetic energy of their electrons, their attraction
to the nucleus, and their mutual interelectron repulsion.

Let us label the magnetic centers as a and b. In the absence of
bridge, the traditional non-orthogonal Heitler-London solutions
for the singlet and triplet are

ψS,T = N± (ϕa(1)ϕb(2)±ϕb(1)ϕa(2))× fS,T , (1)

where fS,T = (α(1)β (2)∓β (1)α(2))/
√

2, ϕa,ϕb are 1s non-
orthogonal functions centered at the a,b sites, and N± =

1/
√

2(1±S2
ab). The covalent singlet HL ansatz provides a very

reasonable description of H2 binding, with De ≈ 96 kcal/mol.36

Mixing it with ionic structures leads to a covalent weight of about
0.76 and a much better De = 105 kcal/mol. The triplet is un-
bound, always above the singlet, and ∆ST adopts the Kahn-Briat
expression when Sab is small enough. With a minimal STO-6G
basis, Sab ≈ 0.68 at the equilibrium distance, so that the overlap
tails are all but negligible. The spatial part of the wavefunction is
symmetric/antisymmetric for the singlet/triplet, so that the sin-
glet is nodeless, but the triplet is not. This increases the mean
interelectron separation in the latter and leads to an electron den-
sity that, to first order in Sab equals ρ(rrr)S,T = |ϕa(rrr)|2 + |ϕb(rrr)|2±
2ϕa(rrr)ϕb(rrr)Sab.

Since modern electronic structure theory is MO based, the
equivalent orthogonal picture starts with symmetry adapted func-
tions φg,u = 1/

√
2(1±Sab)(ϕa±ϕb). In this variational space there

are two 1Σ+
g singlet determinants, |φgφ̄g| and |φuφ̄u|, and one 3Σ+

u
triplet, whose MS = 0 component is 1

√
2(|φgφ̄u| − |φuφ̄g|). The

variational space of the singlet is thus larger than that of the
triplet. At the mean-field level, |φgφ̄g| is the singlet ground state,
with a 50% ionic component that can be decreased by CI mix-
ing with |φuφ̄u|, leading to a solution indistinguishable from the
covalent plus ionic HL resonance. It is very important to notice
that the HL singlet built with ϕa and ϕb (ψS, Eq. 1) increases
its (ϕa(1)ϕa(2)+ϕb(1)ϕb(2)) ionic component upon mixing, while
the contrary is true when a CI(2,2) is performed on the Hartree-
Fock (HF) determinant, i.e. mixing the |φgφ̄g| and |φuφ̄u| determi-
nants. A full consideration of these states in real space has already
been presented.26

Localized (Coulson-Fischer) orthogonal orbitals can be imme-
diately built from the symmetry adapted gerade and ungerade
functions: φa,b = 1/

√
2(φg±φu) (notice the use of φ instead of ϕ

when using orthogonal functions). With these orbitals one can
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Fig. 1 Projection density plot for ψo
S,T (rrr1,rrr2) onto a plane contaning the nuclei in the H2 (left, right) molecule at an internuclear distance R = 2 au, as

computed with ϕ = π−1/2e−r 1s functions. The color code goes from dark blue to red, spanning the [−0.15,+0.15] au range. The zero isoline has been
highlighted, and white is used at saturation to avoid the nuclear cusps. The two electrons are constrained to move onto the internuclear z axis with
nuclei at (0.0,0.0,±1.0) au, the independent axes being the z1 and z2 coordinates.

build HL-like singlet and triplet functions,

ψ
o
S,T =

(φa(1)φb(2)±φb(1)φa(2))√
2

× fS,T =

(
|φaφ̄b|± |φbφ̄a|

)
√

2
. (2)

When restated in terms of the canonical orbitals, these are sim-
ply the 1/

√
2(|φgφ̄g| − |φuφ̄u|) function for the singlet and the

1/
√

2(|φgφ̄u| − |φuφ̄g|) one for the triplet. Obviously, the triplet’s
space is one-dimensional and remains fixed in the canonical or lo-
calized pictures. The orthogonal HL singlet does not. Straightfor-
ward application of the Slater-Condon rules leads to ∆o

S,T = 2Kab,
where the exchange integral is computed over the localized or-
thogonal φ ’s. The singlet is thus unbound and above the triplet,
which is said to fall below the former as a consequence of Hund’s
rules in the case of two degenerate φa,b functions. Noticing that
the two determinants differ in two spin-orbitals, the one-particle
density matrices ρ1(rrr1;rrr′1) of the two states ψo

S,T are equal, and
so are the natural orbitals (with occupation equal to one in the
singlet and the triplet), the electron densities, ρ, and the kinetic
and electron-nucleus energies. Only the pair densities are differ-
ent, with a ∆ρ2(rrr1,rrr2)S,T = 2φa(rrr1)φb(rrr1)φa(rrr2)φb(rrr2) value that
provides the 2Kab energy difference. This is a crystal clear ex-
ample of how a one-particle description (and thus the orbital
model) is insufficient to understand even the simplest problems.
Interestingly, given the orthogonality of φa and φb, the two or-
bitals are also orthogonal in any of the two equivalent atomic
regions (for instance, in those provided by the QTAIM), so that∫

a φa(rrr)φb(rrr)drrr =
∫

b φa(rrr)φb(rrr)drrr = 0. This implies (see the SI) that
the localization and delocalization indices, that measure the de-
gree of spatial electron delocalization, 37–39 are identical in both
states, i.e. that the ψo

S singlet is as (de)localized as the triplet ψo
T ,

and that the probability of finding two electrons (see also the SI)

in any of the atomic regions and none in the other, p(2,0), an or-
bital invariant descriptor of the ionic character of the wavefunc-
tion, is also equal in both states.26 For instance, p(2,0) = 0.058
when a 6-311G(p) basis set is used at R = 1.42 bohr. Let us re-
call that the HF singlet has p(2,0) = 0.25 (and so the ionic terms
weigh exactly 50%) and that the FCI one decreases this value to
p(2,0) ≈ 0.21. This provides a clear clue about the weirdness of
the ψo

S singlet. It displays the same density and the same number
of electron pairs in each atomic basin, differing only in their av-
erage separation, which is higher in the triplet as a result of the
antisymmetry of the same spin pair density, ρσσ

2 (rrr1,rrr1) = 0. As it
is clear from Fig. 1, the electrons try to stay away from each other
in both states, but the two negative peaks along the main diago-
nal in the singlet give rise to a larger electron-electron repulsion.
It is also interesting to understand how p(2,0), whose z projection
is obtained after integrating the density displayed in Fig. 1 in the
(z1 ≥ 0, z2 ≥ 0) or the (z1 ≤ 0, z2 ≤ 0) quadrants, can be equal
in both states. The singlet displays a wider nodal line than the
triplet, violating both the nodeless nature of the ground state, and
the Lieb-Mattis theorem40 for two electron systems. We stress that
it is this artificially localized state which is used in one way or
another to build magnetic coupling intuition in the orbital model.
Both the bare Kab values and the weights of the ionic mixing that
transforms the ψo

S singlet into the ground state are as pathologi-
cal as the ψo

S function itself. By preventing electron delocalization
through the use of OLOs we artificially force the triplet below the
singlet. And, as we show in the next section, not even in this case
we avoid ionic mixing.
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3 Electron delocalization and magnetic cou-
pling

We now show that fully localized electrons prevent binding and
any singlet-triplet splitting in our H2 model. The proof is simple.
Let us consider that each of the two electrons is spatially localized
in one of the two equivalent atomic domains, and let us use the
real space energetic stance provided by IQA (see the SI). The total
energy of the system is E = Ea

sel f +Eb
sel f +Eab

int . Since the electrons
are strictly localized, Esel f can be built from the one-particle den-
sity matrix only, for no intra-domain electron-electron repulsion
exists. It is thus the trace28 of the H atom one-particle Hamil-
tonian over a density which is not variational, being thus above
its in vacuo energy. Similarly, since one electron sits always in a
while the other sits in b, the pair density is just the product of
the densities for each electron, so that Eab

int is the classical electro-
static interaction of two point nuclear charges and two symmetric
extended electron densities. By Earnshaw’s theorem,41 this inter-
action energy is positive, so the final binding energy of the system
is destabilizing at any internuclear distance: localization prevents
binding.

We can now build an explicit solution for singlet and triplet
states by imagining general φa and φb OLOs which are different
from zero only in the a or b domains, respectively, i.e. φa(rrr) = 0
if rrr ∈ b, and viceversa. The complex squares of these orbitals pro-
vide the electron density in each region. Properly symmetrized
state functions for the singlet and triplet are immediately built as
in Eq. 2. From them we can easily find that the one-particle den-
sity matrix is ρ1(rrr;rrr′) = φa(rrr)φ∗a (rrr

′)+φb(rrr)φ∗b (rrr
′) and that the pair

density becomes ρ2(rrr1,rrr2) = |φa(rrr1)|2|φb(rrr2)|2+ |φb(rrr1)|2|φa(rrr2)|2,
regardless of whether the state is a singlet or a triplet, since
φa(rrr1)φb(rrr1)φa(rrr2)φb(rrr2) is permanently zero for any rrr1 and rrr2

values. Since no difference exists now in the pair densities,
∆ES,T = 0. Thus, a strict localization in real space prevents mag-
netic coupling.

In our opinion, this academic example shows the potential
problems of any orbital-based decomposition of ∆ES,T . The con-
ducting wire filling the gaps is the amount of electron delocaliza-
tion. If absent, no ionic structures are present, since the probabil-
ity that the two electrons be found in the same region vanishes,
p(2,0) = p(0,2) = 0, so p(1,1) = 1, and no spin-triplet splitting
arises. If present, both p(2,0) and p(0,2) are non-zero, and any
OLOs-based description will also lead to positive Kab and t2

ab/U
integrals which will conspire to offer the final orbital invariant J
value. An eye-catching summary of these ideas can be found in
Fig. 2. Separating artificially ferro and antiferromagnetic compo-
nents depends on choosing a given orbital picture. As we have
shown, allowing electrons to delocalize switches on both Kab and
ionic mixing, simultaneously. Considering them independent ac-
tors in the coupling game is not justified.

4 Coupling through an atomic bridge: the
H-He-H orbital image

We now turn to consider the possibly simplest model system that
displays a structural dependent switch of magnetic states: the
symmetric H-He-H aggregate. Aside from van der Waals stabi-

lized complexes, the ground state potential energy surface of this
system collapses over a free He atom and a H2 molecule, so we
simply use constrained geometries to show our arguments. It is
easily found that the system’s ground state is a singlet for linear
configurations and a triplet when the H-He-H α angle is close to
90◦. This order is maintained for a wide range of H-He R dis-
tances.

Being a four electron system, the H-He-H aggregate can be
solved at the FCI level effortlessly with large basis sets. Although
the quantitative energies and J splittings do obviously change
with the quality of the basis set, interestingly the singlet-triplet
state ordering is maintained even with minimal descriptions, so
that clear qualitative chemical pictures can be drawn easily. No-
tice that in a minimal description no functions with l > 0 are used
in the cases examined, so that both polarization effects as well as
participation of higher energy virtual pathways have to be aban-
doned as key actors in the coupling. We have performed STO-
6G (minimal) as well as 6-311G(p) (extended) FCI calculations
at linear (L) and bent (B) geometries that exemplify the singlet-
triplet switching. To understand the role of the atomic bridge, we
have also added calculations for the isolated H2 molecule at the
same H-H separations. Since ∆ES,T falls quickly with R, we report
data for R values which provide splittings in the usual magnetic
energy scale. We enforce D2h and C2v geometries for the L and
B geometries, but it will suffice us to label states as a1 or b1 in
C2v symmetry. Our main discussion will use RHeH = 1.2587 Å, and
α either 180◦ or 91.3◦, with RHH = 1.8000 Å in the latter case.
When analyzing triplets, we compute always the MS = 0 compo-
nent. To better understand the arguments below, Fig. 3 shows a
sketch of the STO-6G orbital picture for both the singlet and the
triplet states.

The extended calculations in H2 yield academic results. At
RHH = 2.5174 Å, ∆ES,T = −6.80 mEh, and the wavefunction is
dominated by two configurations, ψS ≈ 0.795|a1ā1|−0.571|b1b̄1|+
. . . , that lead to a1 and b1 natural orbitals with occupations equal
to 1.302 and 0.698, respectively. At RHH = 1.8000 Å, ∆ES,T =−49.0
mEh, and the wavefunction increases its single-determinant char-
acter, ψS ≈ 0.912|a1ā1|−0.363|b1b̄1|+ . . . , with natural orbital oc-
cupancies equal to 1.680 and 0.318, respectively. The triplets are
in both cases almost pure, with ψT ≈ 0.707|a1b̄1|−0.707|b1ā1|, as
it is well known. Let us recall that both geometries are well past
equilibrium, so that in the singlets the kinetic energy is lower
than at dissociation, while the contrary is true for the triplets,
which show smaller interelectron repulsion than that of their cor-
responding singlets thanks to their spatially antisymmetric wave-
functions. The singlets are in both cases rather far from the ψo

S
limit already discussed. It is an interesting exercise to construct
a pure ψo

S function from the triplet’s canonical orbitals (as done
in conventional MO theory). At RHH = 2.5174 Å, for instance, this
HL Coulson-Fischer singlet lies 2.00 mEh above the FCI triplet, a
quantity which is essentially equal to the 2.07 mEh increase in
interelectron repulsion suffered by the triplet on going to the ar-
tificial Coulson-Fischer state.

Introduction of the He atomic bridge yields singlet linear and
triplet bent ground states, and now ∆ES,T =−21.2 and +4.2 mEh

for the linear and bent configurations, respectively. The preferen-
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Fig. 2 Statistical sampling of the positions of the two electrons of a model H2 molecule with an internuclear distance of R = 2 bohr. In the left and right
panels we allow and forbid, respectively, electron delocalization between the two equivalent atomic regions. The distribution has been projected onto
a plane that contains the internuclear axis, with the nuclei at 0.0,0.0,±1.0 bohr, so that the atomic division becomes the y axis. The two electrons are
artificially labeled by color. Notice that when electrons delocalize, the probability that the two of them lie in, e.g., the left atom, as given by the p(2,0)
ionic probability described in the text, is non zero. In this case, binding as well as singlet-triplet splitting, occurs. On the contrary, when delocalization
is forbidden, the blue (red) electron remains always on the right (left) regions. Any state like this is unbound and its singlet-triplet gap vanishes.
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Fig. 3 STO-6G orbital diagram for the minimum energy singlet and triplet states of H-He-H in both the linear and bent geometries. The canonical
orbital energies ε have been drawn approximately on an energy scale in au. The magnetic orbitals of the two singlets and the two triplets show similar
ε ’s. Notice the ordering change in the 1b1 and 2a1 functions in the linear and bent triplet.

6 | 1–13



Table 1 6-311G(p) FCI data for the linear (L) and bent (B) H-He-H ge-
ometries described in the text. S stands for singlet and T for triplet, and
φ is the same a1 or b1 function as that written explicitly in the determinant
for the singlets, while it is the other one in the triplets. n are the occupa-
tion numbers of the 2a1 and 1b1 active natural orbitals. K, ne, ee are the
total kinetic, nucleus-electron, and electron repulsion energies, and ε the
canonical orbital energies. All data in au.

LS LT BS BT
E -3.8328 -3.8116 -3.8102 -3.8144
K 3.9700 4.0902 4.1079 4.0788
ne -12.3468 -12.4305 -12.6211 -12.5804
ee 2.6523 2.6369 2.7274 2.7116

c(|a1φ̄ |) -0.4983 0.7033 0.7360 0.7040
c(|b1φ̄ |) 0.8601 -0.7033 -0.6288 -0.7040

n(a1) 0.5044 0.9993 1.1700 0.9999
n(b1) 1.4942 0.9992 0.8282 0.9997
ε(a1) -0.0269 -0.0994 -0.0639 -0.1585
ε(b1) -0.3124 -0.1854 -0.2854 -0.1286

tially occupied canonical orbitals are a 1a1 function which is basi-
cally the 1s He orbital and two 2a1 and 1b1 functions in which the
symmetric and antisymmetric combination of the 1s H orbitals
dominate. We will call the latter the active a1 and b1 orbitals.
The occupancy of the 1a1 natural orbital is greater than 1.98 in
all cases, so that the orbital game basically involves the a1 and b1

functions, as expected.
Table 1 summarizes the extended FCI data. All wavefunctions

are dominated by two configurations, and the triplets are very
close to the open shell HF solution (or to the HL function) due
to their limited variational space. It is of utmost importance
that the linear singlet (LS) preferentially occupied determinant
is |b1b̄1|, while the |a1ā1| one dominates the bent one (BS), as in
dihydrogen. Considering a mean-field (restricted open shell for
the MS = 1 triplet) solution helps in the discussion. The single-
determinant LS, with configuration 1a2

11b2
1 and ES = −3.6749 au,

is way above the LT, with configuration 1a2
12a11b1 and ET =

−3.7746 au. Moreover, a 1a2
12a2

1 singlet built with the triplet’s
orbitals lies at E = −3.4788 au. The two nodal planes of the φa1

function give rise to a considerably higher kinetic energy, so that
electrons prefer occupying the one-node φb1 function if forced on
a single determinant. This gives rise to the linear triplet, with only
one a1 electron, falling below the singlet. The bridging atom thus
acts as a Pauli barrier to the pumping of electrons into the H-H
internuclear region, that now contains the He atom. In its ab-
sence, the H2 subsystem prefers occupying the φa1 function. In its
presence, this becomes a double node orbital, which is avoided.
As shown in Table 1, configuration mixing renders a linear singlet
ground state thanks to a sharp decrease in the kinetic energy.

Restriction to a minimal STO-6G basis, where no orbital po-
larization is allowed and the wavefunction structure is severely
constrained, changes the quantitative, but not the qualitative pic-
ture. As expected, energy differences are decreased by the much
lower orbital flexibility, but ∆ES,T =−15.1 and +1.8 mEh in the L
and B geometries.

Understanding the switch to a triplet ground state in the bent

configuration starts by noticing that it clearly fulfills the expecta-
tions from the HTH model. Using the triplet’s orbitals, the HTH
(εa1−εb1)

2 expression introduces a much larger antiferromagnetic
term in the linear than in the bent configuration. Notice that no
Kahn-Briat orthogonality arguments can be used here. From the
physical perspective, it is interesting to acknowledge how close
the energies of the BS, LT, and BT states are. This is particu-
larly striking, since the bent H-H distance is considerably shorter
than the linear one. Physically, it means that approaching the H
atoms in the triplets does not vary the energy substantially, so
that almost perfect nuclear shielding occurs that avoids the in-
creased nuclear repulsions. Since symmetry constrains the triplet
functions (just notice the very close to 1.0 occupation numbers
of the a1,b1 natural orbitals or their very close to ±1/

√
2 CI co-

efficients), an orbital localization leads to almost perfectly local-
ized H functions. Contrarily, the LS is much more delocalized
and, upon bending, it has to respond in order to shift electron
density into the H-H region to shield the enlarged proton-proton
repulsion. Since the b1 function has a nodal plane forbidding
this density accumulation, the response implies increasing the φa1

contribution, so that the coefficients of the |a1ā1| and |b1b̄1| de-
terminants approach those in the ψo

S model. With this, its kinetic
energy and electron repulsion increase substantially upon bend-
ing (Table 1), but the nucleus-electron attraction does its work
to counteract the +0.084 au increase in the nucleus-nucleus re-
pulsion. In this process, the LS wavefunction approaches the ψo

S
model, and the lower electron repulsion of the triplet does the
trick.

Summarizing, the atomic bridge’s Pauli barrier drives the two
electrons of the H2 subsystem to prefer a b2

1 configuration over a
a2

1 one in the LS. Configuration mixing leads to an inversion of
the magnitude of the CI coefficients with respect to the free H2
molecule, with an occupation number of the b1 natural orbital
larger than one and close to 1.5 (the b1 occupation in the bare di-
hydrogen at the same internuclear separation is 0.698). On bend-
ing, the need to pump charge in between the hydrogens changes
the bonding mode to a2

1, giving rise to a considerable electron
reorganization that approaches the singlet to the weird Coulson-
Fischer model. All triplets, on the contrary, are well localized at
any geometry, suffering much smaller energy changes. It is thus
possible to use orbital arguments to understand the singlet-triplet
switching without invoking the HTH paradigm. Now we turn to
show that a real space analysis provides a directly consistent nar-
rative of the above ideas.

5 Coupling through an atomic bridge: the
alternative real space picture

The analysis of wavefunctions in real space provides strong or-
bital invariant physical images. Local energies, electron localiza-
tion and delocalization descriptors, the probabilities of different
electron distributions, local spins, etc, are all available once an
initial partition of the space into chemically appealing regions is
available. As noted, we choose the QTAIM partition. A summary
of the real space artillery can be found in the SI.

We start again by summarizing the bare H2 results, which can
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Table 2 6-311G(p) FCI real space data for the H2 molecule at the linear
(L) and bent (B) H-He-H geometries. S stands for singlet and T for triplet.
All data in au. The self-energy of the H atom in vacuo is −0.49981 au.

LS LT BS BT
ρbcp 0.0065 0.0049 0.0289 0.0116

∇2ρbcp 0.0103 0.0137 0.0176 0.0453
EH

sel f -0.4956 -0.4954 -0.4866 -0.4826
Eint -0.0128 -0.0063 -0.0585 -0.0176
δ HH 0.0920 0.0427 0.3503 0.1042

p(2,0) 0.0230 0.0107 0.0876 0.0347
S2

H 0.7155 0.7340 0.6186 0.6979

Fig. 4 FCI/6-311-G(p) dominant electron distributions of the several
states of H-He-H, starting with the (1,2,1) one on the top-left panel.
Both the top-right and bottom-left arrangements are H-He one-electron
exchanges, but the bottom-right one, (2,2,0), implies either one direct
H-H or two coupled H-He one-electron exchanges.

be found in Table 2. At both geometries we are still in the closed-
shell regime, where the Laplacian at the internuclear midpoint
(the QTAIM bond critical point, bcp) is positive. As expected and
known, the larger φa1 occupation number of the singlet yields
larger bonding densities, and less positive Laplacians. Also to
be noticed are the larger deformation energies (defined as the
self-energy cost of passing from an in vacuo atom to the atom-
in-the-molecule situation, EA

de f = Esel f −EA,0
sel f ) of the H atoms in

the triplet as RHH decreases, as well as the considerably larger
electron delocalization indices found in the singlet. Yet, defor-
mations are small in the regime examined, peaking at about 11
kcal/mol in the BT case. The amount of ionic structures, given
by p(2,0) = p(0,2), shows that even the triplet state leads to a
measurable delocalization and non-vanishing probability to find
the two electrons in the same atomic region: the weight of ionic
structures is approximately 5, 2, 17, and 7% for the LS, LT, BS,
and BT states, respectively. The local spin analysis35 is compat-
ible with the small overall delocalization. All systems are clear
diradical species, coupled to singlet or triplet total spin states.
The diradical character is larger in the triplet, also as expected.

Examining the inclusion of the He bridge in real space allows
us to follow the change in all these properties smoothly. A sum-
mary of the data can be found in Table 3. Taking a look at just
plain density descriptors, it is clearly found that all interactions
are closed-shell like with positive Laplacians, and that the He-
H bcps display density values which correlate with the observed

Table 3 6-311G(p) FCI real space data for the H-He-H system at the lin-
ear (L) and bent (B) geometries. S stands for singlet and T for triplet. The
isolated FCI energies of the H and He atoms are −0.49981 and −2.89057
au, respectively. All data in au.

LS LT BS BT
ρbcp 0.0781 0.0685 0.0676 0.0705

∇2ρbcp 0.0917 0.1592 0.1750 0.1556
ρbcp∗ - - 0.0268 0.0260

∇2ρbcp∗ - - 0.1323 0.1373
QHe -0.0123 -0.0218 -0.0380 -0.0249
EHe

sel f -2.7712 -2.7832 -2.7872 -2.7813
EH

sel f -0.4685 -0.4659 -0.4603 -0.4626
EHH

sel f -0.9423 -0.9306 -0.9839 -0.9881
EHeH

int -0.0597 -0.0489 -0.0468 -0.0504
EHH

int -0.0052 0.0012 -0.0082 -0.0062
δ HeH 0.2442 0.2096 0.1967 0.2113
δ HH 0.0824 0.0138 0.0750 0.0619
δ 3 0.0107 0.0061 0.0130 0.0146

p(1,2,1) 0.7278 0.7919 0.7792 0.7714
p(0,3,1) 0.0571 0.0529 0.0537 0.0537
p(2,1,1) 0.0528 0.0439 0.0364 0.0432
p(2,2,0) 0.0228 0.0051 0.0192 0.0161

S2
He 0.198 0.181 0.154 0.183

S2
H 0.663 0.712 0.690 0.717

SSSHe ·SSSH -0.050 -0.030 -0.039 -0.017
SSSH ·SSSH -0.564 +0.209 -0.613 +0.200

ground state. This has been found to be general, so that the in-
teraction energy between the magnetic center and the bridge pre-
dicts the ground state. For the bent structures there is no H-H
bcp, but we have also added density descriptors at the H-H mid-
point (bcp* in the Table). Notice how the BS pumps density into
the bcp* region, as expected from orbital arguments. Topolog-
ical charges talk about a considerably electronegative He atom.
This electronegativity is maximal when the interaction energy be-
tween the magnetic centers and the bridge (EHeH

int ) is small, as in
the BS case, and decreases as the He-H interaction increases.

We turn now to the energetic realm. By comparing with the
bare results of Table 2, it is found that the H atoms deforma-
tion is around 20 kcal/mol larger in the bridged systems. This
is accompanied by sizable He deformation energies that reach 90
kcal/mol. The EHe

sel f values for the LT, BS, and BT systems are sim-
ilar, in agreement with their overall energies, and the larger He
deformation energy in LS points toward a more intense bonding.
This is corroborated by comparing the EHeH

int energies, which show
a larger HeH interaction in this system. Notice that this descriptor
does also correlate with the ground state, reinforcing the previous
paragraph. Notice also that the behaviour of EHe

sel f on going from
the singlet to the triplet differs in the L and B geometries. This
again reflects the different H-He bonding strengths.

An important insight is obtained from examining the energy of
the H2 subsystem in the triatomic. This is the EHH

sel f quantity, which
can be directly compared with the bare H2 energy. The linear ge-
ometries distort more intensely the H2 subsystem than the bent
ones, as expected, but, most importantly, the energetic ordering
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of the subsystem is again correlated with the total ground state.
This means that if the electronic structure of the dihydrogen sub-
system is appropriately modified by the bridge but the latter is
afterwards ignored, the sign of J is appropriately predicted. This
casts doubts on the necessity of the bridge to understand mag-
netic couplings, see below. Quantitatively speaking, at the linear
configuration ∆ES,T for the H2 subsystem is enhanced from -6.8
to -11.7 mEh on introducing the bridge, a value to be compared
to the total H-He-H ∆ES,T of -22.6 mEh. This shows that the pres-
ence of the He atom is not necessary to yield the correct ground
state, but that it clearly contributes to the singlet-triplet gap, as
expected from all the accumulated MO knowledge. Similarly, at
the bent geometry, we pass from -49.0 to +4.2 to +2.8 mEh, re-
spectively, and the He atom contributes stabilizing slightly the
singlet with respect to the triplet as a result of the smaller He
deformation in the singlet.

Regarding electron delocalization, electrons prefer to delocal-
ize with the He bridge, as evidenced by the much larger δ HeH than
δ HH values in all cases. The former does also correlate with the
preferred ground state, so that increased He-H interaction leads
to smaller energy. We stress that the smaller EHeH

int in the BS with
respect to the BT indicates that the electronic structure reorgani-
zation that is needed for the BS to minimize its energy and shield
the increased nucleus-nucleus repulsions upon bending hinders
direct HeH delocalization, in complete agreement with the pre-
vious orbital analysis. The HH delocalization index behavior is
also illuminating. In the linear geometries it is much larger in the
singlet, which displays a value similar to that found in the bare
dihydrogen molecule. Contrarily, the BS and BT show similar
δ HH values, which contrast with the bare H2 data of Table 2. The
three-center delocalization index, measuring simultaneous three-
body population fluctuations,42 is positive and small, correlating
again with the ground state preference.

Let us jump to consider the role of ionic structures. A rea-
sonable route to identify exchange pathways in real space is the
consideration of the probability of finding different electron ar-
rangements, as found in the fourth set of rows in Table 3 and
in Fig. 4. We consider the atoms in the H,He,H order, so that
p(1,2,1) refers to the probability of finding one electron in each
H atom and two in Helium. The neutral structure with one elec-
tron in each H atom and two in the He bridge dominates, being
a minimum in the LS, and a maximum in the LT. As expected
from the HTH rationale, the one-electron exchanges from H to
He, as given by p(0,3,1) and p(2,1,1), are maximum in the LS,
which corroborates the enhancing role of the bridge in stabilizing
the singlet in the linear geometry. The sum of both probabili-
ties correlates with the He-H interaction, and tells the traditional
story about how exchange with the bridge’s electrons is facilitated
in singlets but not in triplets. A relevant point here is that it is
p(2,1,1) which is considerably hindered in the BS, not p(0,3,1).
This has a very simple rationalization in terms of our basic shield-
ing argument. Too many electrons in the H regions do not help
in this case (they increase the electron repulsion between the two
Hs). Finally, p(2,2,0) is a measure of direct H-H delocalization.
Comparing it with p(2,0) in the bare H2 molecule gives rise to
the same narrative already commented when explaining the δ HH

Fig. 5 FCI/6311-G(p) local spin analysis for the H-He-H system. 〈S2
A〉

values in black, 〈SSSA ·SSSB〉 couplings in blue.

values. It is maximum and minimum for the LS and LT systems,
and the two bent systems provide similar small values.

We leave the local spin analysis35 for the end of this section.
A pictorial representation is found in Fig. 5. It is first notewor-
thy to notice that the He atom holds a residual, though non-
negligible squared spin. This is a result of H-He delocalization
and, in consequence, largest for LS, and smallest for BS. This
spin transfer leads to a partial quenching of the spin at the mag-
netic centers. It would be interesting to examine to what point
this affects the hypothesis leading to Heisenberg modeling in real
magnetic systems. Secondly, the local spins of the H atoms are
rather large in all cases, approaching the strictly localized values
of 3/4 = 0.75. In this sense, all the systems behave as rather lo-
calized diradical species. The worst localized LS system shows
the largest deviations of this limiting model. As the atomic spin
couplings are regarded, recall that negative/positive SSSi ·SSS j imply
anti/ferromagentic behaviour. The H-He values are all small, par-
ticularly in the triplets, favoring the local magnetic image, and
negative. This is important, since in the triplets each He,H pair
couples very weakly and antiferromagnetically, as it would be ex-
pected from standard weak chemical bonding.35 It also means
that all ferromagnetic coupling in the triplets lies between the H
atoms, again supporting a localized picture. Finally, we comment
on the SSSH · SSSH values. Admitting the Heisenberg picture, with
H = −JHHSSSH · SSSH, ∆ES,T would arise from −0.773J in the linear
and from −0.813J in the bent configurations. This is also worth-
while exploring in the future.

6 Are the bridge’s electrons needed at all?
The real space picture we have just detailed provides a physi-
cal explanation of the magnetic coupling phenomenology that is
dealt with, for instance, the HTH model. Moreover, real space
reasonings lack the problems associated to orbital arbitrariness,
although they are many times criticized for their lack of predic-
tivity. We now show that they can lead to truly new insights.

As it has been shown, the basic role of the atomic bridge is to
impose a Pauli barrier to the presence of electrons, leading to a b2

1
instead of a2

1 preferred configuration in linear geometries. Chem-
ical interaction with the barrier enhances the J values, but is not
essential in the singlet-triplet preference, i.e. in determining the
sign of J. It is thus strongly suggested by our findings that any
object that is able to divert electrons from invading it, will elicit
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Table 4 6-311G(p) FCI data for the linear (L) and bent (B) H-V-H ge-
ometries described in the text in the presence of an ECP modeling the
He atom, represented as V. S stands for singlet and T for triplet, and φ

is the same a1 or b1 function as that written explicitly in the determinant
for the singlets, while it is the other one in the triplets. n is the occupa-
tion number of the 2a1 and 1b1 active natural orbitals. K, ne, ee are the
total kinetic, nucleus-electron, and electron repulsion energies, and ε the
canonical orbital energies. ECP is the one-electron expectation value of
the effective core potential. All data in au.

LS LT BS BT
E -0.8928 -0.8687 -0.8669 -0.8712
K 1.1799 1.2416 1.2499 1.2360
ne -2.5467 -2.6226 -2.7784 -2.7614
ee 0.2178 0.2026 0.2734 0.2691

ECP 0.0461 0.0995 0.0945 0.0910
c(|a1φ̄ |) -0.5236 0.7071 0.7094 0.7070
c(|b1φ̄ |) 0.8517 -0.7071 -0.6467 -0.7070

n(a1) 0.5483 0.9999 1.0327 0.9997
n(b1) 1.4509 0.9999 0.9669 0.9997
ε(a1) -0.1654 -0.3925 -0.2499 -0.4609
ε(b1) -0.0078 -0.4826 -0.0022 -0.4336
ρbcp∗ - - 0.0141 0.0147

∇2ρbcp∗ - - 0.0536 0.0577
EH

sel f -0.4630 -0.4826 -0.4752 -0.4746
EHH

int -0.0129 -0.0031 -0.0108 -0.0131
δ HH 0.1455 0.0277 0.0722 0.0837

p(2,0) 0.0364 0.0070 0.0181 0.0209
S2

H 0.6954 0.7395 0.7228 0.7187

the observed behavior when it is put in between the two magnetic
centers. This hypothesis is easily verified if we use a pseudopoten-
tial or effective core potential (ECP) to simulate the bridge. In our
case it leads to a two-electron system, so that to circumvent the
Lieb-Mattis theorem,40 we must choose a non-local potential, for
instance one that includes non-local projection operators of the
|φ〉〈φ | form. We have chosen a standard He core ECP with p and
s− p components (see the SI for details) to simulate our systems
again. Both at the 6-311G(p) and STO-6G FCI levels we repro-
duce the singlet to triplet ground state switching as we bend the
system. We have found this to be also the case in other systems
examined, like in the Li-Be-Li moiety. Table 4 summarizes the
results. Notice that the ECP is absorbed as a one-electron contri-
bution. ∆ES,T =−24.1 and +4.3 mEh for the L and B geometries,
quite consistent with the global FCI values already presented.

As shown, the substitution of the He moiety by an effective
non-local potential does not alter the picture much, as expected
from the overall good performance of ECPs in modeling the elec-
tron structure of molecules. Grossly speaking, much as the main
job of standard ECPs is to avoid the variational collapse of va-
lence electrons over the cores by maintaining the nodal structure
of the former, here the He ECP avoids invasion of the He nuclear
region, reinforcing our points above. Since most of the descrip-
tors in Table 4 follow the same trends as those already discussed
in Tables 1-3, we will only comment on a few of them. On the
one hand, the majority of ECP orbital descriptors evolve as in the
full electron calculation, particularly the kinetic and electron re-

Fig. 6 FCI/6311-G(p) dominant probability distribution of the LT state of
H-He-H2+ at RHHe = 1.2587 Å.

pulsion energies, as well as the a1 and b1 natural occupations.
The large b2

1 contribution in the LS lies again behind its large δ HH

value. Similarly, as in the full electron calculation, the LT sys-
tem displays the lowest ionic contribution. On the other hand,
the total FCI energies excluding the ECP one-electron potential
contributions favor the triplet in both the linear and angular con-
figuration. The ECP row of Table 4 shows that the destabilizing
effect of the pseudopotential is about 0.05 au lower in the LS than
in any of the LT, BS, or BT geometries, in line with the stabilizing
singlet contributions of the HTH model.

Finally, it is noteworthy that in the absence of the perturbing
effect of the He electrons, the traditional correlation between sta-
biliy and density at the critical point is also found in the bent
configuration. The more stable triplet leads to the largest ρbcp∗.
This has been found quite general in several cases, see below.

7 Tuning the coupling in real space
Using the insights derived above regarding the physical role of the
bridge, it is illuminating to examine how the singlet-triplet gaps
evolve when the nature of the bridge is modified. This can be
done without leaving the toy models we have explored so far. We
briefly review the outcome of: a) substituting the He closed-shell
barrier by an absorbing He2+ potential; b) allowing for the elec-
trons of the barrier to significantly mix with the magnetic states
by changing He by a Be2+ core c) using a more realistic Li-Be-Li
triatomic system to show how the results resemble those of the
the H-He-H example. The full data can be found in the supple-
mentary information.

Removing the He core while maintaining the linear and bent
geometries already examined provides a very deep attractive po-
tential to the electrons residing in the magnetic centers, since the
orbital energy of the He 1s orbital is about −0.917 au. This means
that a huge electronegativity difference exists that forces the elec-
trons to invade the He region. Since the orbital energy of the 2a1

function is more negative than that of the 1b1 one in the LT and
BT states, both prefer a predominant 1a12a1 configuration that
maximizes the now allowed delocalization. As the LS and BS
states are regarded, they can be considered distorted He atoms,
with very small H atomic basins (hosting about 6 me). Their FCI
wavefunctions are fully dominated by the HF 1a2

1 configuration,
with coefficients larger than 0.995. In the linear configuration,
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∆ES,T =−402.5 kcal/mol at the FCI/6-311(p) level. Bending does
not alter the picture and the gap is now −369.7 kcal/mol. How-
ever, since ∆ES,T =−689.6 kcal/mol for the He atom at the current
FCI level, a considerable lowering of the triplet energy is obtained
by delocalizing into the H basins, which now host 0.451 e each in
the LT configuration. Its probability distribution of finding elec-
trons in the H, He, H basins, respectively is dominated by three
contributions: p(1,1,0) = p(0,1,1) = 0.421 and p(0,2,0) = 0.128,
with a considerable H-He delocalization index of 0.148, and a re-
markable H-H one rising to 0.354, see Fig. 6. This shows how
the pure He triplet is avoided. A local spin analysis (SI) shows
that the spin coupling between the two H regions is essentially
negligible (even slightly antiferromagnetic, 〈SSSH ·SSSH〉 ≈ −0.0009).
This example offers a global picture of atomic-like singlets and
delocalized triplets, very far from the isolated magnetic centers
already discussed. In real space, removing the Pauli barrier fos-
ters delocalization, and this is much more efficient in the singlets,
irrespective of the geometry.

The scenario changes completely if the Pauli barrier is substi-
tuted by available states that can mix strongly with the magnetic
centers. This is easily done by introducing a Be2+ bridge, with
ε2s,2p ≈ −0.665,−0.519 au, respectively, when a 6-311G(p) basis
is used. At the fixed linear and bent geometries examined, the FCI
∆S,T are +243 and−11724 cm−1, respectively, so now the triplet is
the ground state in the linear geometry. As in our main example,
this ordering is stable even at the STO-6G level. Fig. 7 shows the
qualitative orbital diagram for the two triplet states. The BS falls
well below the BT thanks to the polarizable nature of the Be states
(the presence of available 2p functions in orbital parlance). The
dominant 1a2

1 coefficient in the BS CI expansion is 0.922, show-
ing that the H-He-H constraints forcing the BS to resemble the
Coulson-Fischer singlet have now disappeared. Interestingly, it is
now the orbital energies of the 1a1,1b1 states in the LS that are
extremely close, −0.981,−0.974 au, respectively. This allows the
HTH expression to predict a possible triplet ground state. Now
the physical root of this behavior is the considerably larger ki-
netic energy of the φ1a1 with respect to φ1b1 , at variance with the
He barrier. Although the b1 function has a nodal plane, its He
contribution is 2p-like, with a considerably smaller kinetic energy
than the 2s one. This effect is now the driving force that gives rise
to a strong singlet mixing, ΨBS ≈ 0.722|1a11ā1| − 0.690|1b11b̄1|,
switching on the Coulson-Fischer behavior of the singlet. All real
space descriptors show that the triplet should be preferred. For
instance, δ HH = 0.0177,0.0180 and δ HHe = 0.186,0.188 for the LS
and LT states, respectively. Almost all of the linear singlet-triplet
gap of 0.69 kcal/mol (1.1 mEh) can be ascribed to a change in
the self-energy of the Be atom, which passes from −13.7574 to
−13.7588 au on going from the LS to the LT. The local spin analy-
sis (Fig. 8) shows very clearly that the localized magnetic centers
picture applies rather well in the LS (singlet diradical), LT, and BT
cases, and that clear signs of H-H bonding appear in the BS case,
since the H atom local spin is now considerably quenched, and
the H-H singlet coupling decreased, with respect to the LS state.
This is corroborated by examining the delocalization indices and
the distribution function probabilities. A polarizable (in contrast
to a rigid) atomic bridge with shallow available states provides a

triplet linear ground state with interesting real space branches.
To show that our real space arguments can be applied to sim-

ilar cases, we show the weak interacting behavior of the Li-Be-Li
system at RLiBe = 8.00 au as we change the α = ̂LiBeLi angle. In
the weak-coupling region a CAS[4,7]//6-311+G** wavefunction
is of sufficient quality. We only consider how the change in the
density at the Li-Be bond critical point evolves with the singlet-
triplet gap, shown in Fig. 9. Notice that we can again classify
the Be bridge as a Pauli barrier, so that we expect the same be-
havior as in H-He-H. The bridge clearly amplifies the gap, and
provides a triplet ground state at intermediate angles. ∆ρ at the
Li–Be bcp’s is a good predictor of ∆ES,T : the state that accumu-
lates more electron density in the Li–Be bonding region is the
most stable. The ∆ES,T versus ∆ρbcp curve has two branches: one
corresponding to the low angle regime, and another one to the
high angle one. The spatial antisymmetry of the triplet is again
important to explain the angular dependence of it energy. This
state must show a slight density depletion at the Li–Li midpoint,
which necessarily means a charge buildup out of the Li–Li axis.
For α angles smaller than about 120 degrees, such accumulation
lies well into the Li–Be bonding region, and the triplet falls below
the singlet. At smaller angles the Li–Li distance decreases, and
an incipient Li-Li bond forms so that density starts to accumulate
again in between the lithiums, and the Li–Li bcp takes over the
Li–Be bond, which ceases to determine the behavior of the sys-
tem (the lower branch of the inset). In this region, the singlet’s
energy falls quickly, approaching the curve of the bare Li2.

8 Conclusions
Physically understanding the roots of the coupling between mag-
netic centers in the simplest molecular systems is of utmost im-
portance. This knowledge is used to build the models with which
we describe the collective magnetic behavior of more complex
entities, that ultimately leads to the design and synthesis of novel
functional magnetic materials. The problem has been attacked
since the earliest days of quantum mechanics and, after the de-
velopment of modern computational techniques, it is now possi-
ble to predict, sometimes even quantitatively, magnetic coupling
constants in complex materials ab initio. When the simplest two
magnetic centers case is examined, molecular orbital theory led
to the Hay, Thilbeault, and Hoffmann (HTH) model, which relies
in the use of orthogonal localized magnetic orbitals. The HTH
model has become the qualitative paradigm used to interpret the
origins of singlet-triplet gaps, characterized by a direct ferromag-
netic contribution given by the exchange integral Kab between the
magnetic orbitals, and a counteracting antiferromagnetic term
rooted in the larger variational flexibility of the singlet state, that
implies a magnetic exchange mediated by ionic contributions. It
also provides the basic ingredients to rationalize the singlet-triplet
preference (an example of the so-called magnetostructural corre-
lations) in simple dinuclear metallic complexes.

Successful as it has been, the HTH (or its equivalent Kahn-Briat
variant) paradigm rests on a given choice of orthogonal one-
electron functions out of an infinitely many set of possibilities.
For instance, both the direct exchange as well as the ionic antifer-
romagnetic contributions can be manipulated, almost at will, by
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Fig. 7 STO-6G orbital diagram for the linear and bent triplet states of H-Be-H2+ in both the linear and bent geometries. The canonical orbital energies
have been drawn approximately on an energy scale in au, and the Be 1s core has been excluded.

Fig. 8 FCI/6311-G(p) local spin analysis for the H-Be-H2+ system. 〈S2
A〉

values in black, 〈SSSA ·SSSB〉 couplings in blue.
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Fig. 9 Singlet–Triplet splitting in Li2Be (dashed line). The bare Li2 be-
havior is also included for comparison (solid line). The inset shows the
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S,T correlation in the weak coupling regime (upper branch) and

in the Li2 molecule regime (lower branch). Energies in cm−1 and densi-
ties in µe.

performing unitary rotations of the orbital space. It is then very
relevant to examine the problem from an orbital invariant per-
spective, as that offered by real space analyses. We have concen-

trated on the very simplest two-center cases that can be imagined,
the dihydrogen molecule and the H-He-H system, which already
shows a singlet to triplet switch as we bend the H-He-H angle.

We have first shown that it is electron delocalization that drives
any singlet-triplet gap and any ionic mixing. It is shown that de-
localization and ionic mixing are two sides of the same coin, so
that if the HTH paradigm can be restated in an orbital invariant
framework, electron delocalization measures should play a ma-
jor role. By examining the behavior of the H-He-H system using
both orbital arguments and then real space ones, we demonstrate
that it is the Pauli barrier introduced by the atomic bridge that
crafts the electronic structure of the system. It does so by driv-
ing the system to choose the antisymmetric linear combination of
the H orbitals instead of the normal symmetric one, in an effort
to decrease the electron’s kinetic energy. In the linear structure,
configuration mixing allows the system to come to a beneficial
compromise. Bending leads to a new energetic balance that can
only be achieved by letting the singlet electron density resemble
that of the triplet. In doing this, its advantage is lost.

Second, we have demonstrated that delocalization, allowed or
prevented by the different symmetry of the wavefunctions of sin-
glets and triplets, lies behind the preferred coupling mode. In
this sense, a real space picture provides direct access to this con-
cept. The systems behave as diradial species, although a non-
negligible amount of spin is transferred to the bridging atom. As
noticed, local spin analyses might have an impact on how state-
of-the-art calculations can be used to obtain J coupling constants,
and deserve further consideration. Similarly, local energy tech-
niques demonstrate that although the bridge amplifies the stabi-
lization of the singlet in the linear geometry, as it is well known
from the HTH model, all the qualitative features including the
singlet-triplet preference lie within the subsystem formed by the
two magnetic atoms. The amplification of the singlet stabiliza-
tion induced by the bridge can be measured by the metal-bridge
interaction energy, which makes full chemical sense. A number of
bridge-magnetic center (He-H) real space interaction descriptors
(bond critical point densities, interaction energies, etc) correlate
with the singlet-triplet gap. We have also shown that exchange

12 | 1–13



pathways can be clearly sensed by studying the probabilities of
different electron distributions, all of them orbital invariant.

Finally, our findings have pointed toward the non-essential role
of the atomic bridge’s electrons in setting up the magnetic cou-
pling. To check this idea, we have substituted the bridge by an
effective core potential. Not unexpectedly, the absence of the
bridge’s electrons does not alter the singlet-triplet ordering, show-
ing that any object that mimics appropriately the Pauli barrier of
the bridge will induce the correct sign of the singlet-triplet gap. As
shown, the nature of the wavefunctions of the singlet and triplet
states, as analyzed in real space, follows closely the all-electron
results.

Tuning the singlet-triplet gap is also possible using real space
thinking. We have shown how this is modified examining three
simple cases where the bridge is transformed into an electron ab-
sorbing center at two different energies and when a more realistic
system, Li-Be-Li is examined.

Real space analyses thus question the accepted magnetic cou-
pling paradigm based on orbital thinking from several different
angles. We believe that new avenues can be opened by using
these orbital invariant techniques to understand magnetic behav-
ior that may be not obvious from other perspectives.
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1 Real Space Chemical bonding in a nutshell

Real space reasoning uses proper quantum mechanical observables to construct orbital invariant
descriptors with chemical meaning. Among them, all reduced densities and density matrices
(RDs, RDMs). An identification of spatial regions with chemical concepts is also necessary.
This is usually done through spatial partitionings, normally induced by the topology of a scalar
field. For instance, the topology of the electron density, ρ, induces an atomic partitioning: the
Quantum Theory of Atoms in Molecules (QTAIM) explored by R. F. W. Bader and coworkers.1

Similarly, the topology of Becke and Edgecombe’s2 electron localization function (ELF) provides
a partition into cores, lone pairs and bonding domains, etc.

Once atoms (or electron-pair domains) are available, chemical bonding descriptors are built.
Both the electron-counting perspective (leading to populations and bond orders) as well as the
energetic view that provides bond strengths are needed. These are offered by, for instance,
electron distribution functions (EDFs) and the interacting quantum atoms approach (IQA).

1.1 The energetic face of bonding: Interacting Quantum Atoms

Given an atomic spatial partitioning, the interacting quantum atoms (IQA) energy partition
considers the one- and two-domain division of the non-relativistic Born-Oppenheimer electronic
energy3 described in the following equation,

E =
∑

A

EA
self +

∑
A>B

EAB
int

=
∑

A

TA + V AA
ne + V AA

ee +
∑
A>B

V AB
nn + V AB

ne + V BA
ne + V AB

ee , (1)

wherein EA
self and EAB

int are the IQA self and interaction energies of atom A and pair AB, while
TA denotes the kinetic energy of atom A. Finally, the terms V AB

ne and V AB
ee stand for (i) the

attraction between the nucleus of domain A and the electrons of atom B and (ii) the repulsion
between the electrons in atom A with those in basin B, respectively. The self-energy of an
atom is the trace of its in vacuo Hamiltonian over the atomic region it occupies in a molecule.
In a process where the atoms of a system dissociate their self-energies tend to the free atomic
energies.

We can get further insight about the nature of the interaction between two atoms by sepa-
rating the electronic repulsion into its Coulombic and exchange-correlation components. This
splitting allows, in turn, the separation of the IQA interaction energy of a pair AB as3

EAB
int = V AB

cl + V AB
xc = EAB

ion + EAB
cov . (2)

Usually binding is measured relative to appropriate reference for the quantum fragments
A, with EA,0. Then EA

self − EA,0 = EA
def is called the atomic or fragment deformation energy,

which corresponds to a combination of the traditional promotion energy and other effects, like
spin-recoupling, true electronic deformation, etc.4 We have shown that the IQA interaction
energies behave as in situ bond energies. IQA thus provides an invariant decomposition of the
energy into group deformations and bond contributions in which covalent and ionic energies
acquire rather pure forms.
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1.2 The electron-counting face of bonding: Electron Distribution
Functions

Electron counting provides access to the more qualitative view of chemical bonding in which
the number of electrons engaged in sharing or in pure transfer between atoms gives rise to
bonding descriptors like bond orders. In real space we simply examine the distribution of the
electron population in the atomic regions in which we have divided the space.

EDFs are defined as follow. Given an N–electron molecule and an exhaustive partition of
the real space (R3) into m arbitrary regions Ω1, Ω2, . . . , Ωm (Ω1∪Ω2∪· · ·∪Ωm = R3), an EDF
is the distribution function formed by all the probabilities p(n1, n2, . . . , nm) of finding exactly
n1 electrons in Ω1, n2 electrons in Ω2, . . . , and nm electrons in Ωm, {np} being integers (ni ∈ N )
satisfying n1 + n2 + · · ·+ nm = N . This view is in accord with considering subsystems as open
quantum systems in which number operators do not commute with the subsystem hamiltonian.
In this way, Ψ is not an eigenstate of the operator defining the number of electrons in domain
Ωi, N̂Ωi

. This means that the average number of electrons in Ωi is not an eigenvalue of N̂Ωi
,

so that measuring the number of electrons in the domain will render values nΩi
ranging from

0 to N , the total number of electrons, with a defined set of probabilities, p(nΩ1). This is the
one-fragment EDF for domain Ωi. To obtain these probabilities or, in general, the multivariate
electron distribution functions p(n1, n2, · · · , nm), one needs Ψ(1, . . . , N), Ψ being the complete
wave function,

p(n1, n2, . . . , nm) = N !Λ

∫
D

Ψ?Ψdx1 · · · dxN , (3)

where D is a multidimensional domain in which the first n1 electrons are integrated over
Ω1, the second n2 electrons over Ω2, · · · , and the last nm electrons over Ωm, and N !Λ =
N !/(n1!n2! · · ·nm!) is a combinatorial factor that accounts for electron indistinguishability. The
3D domains of these integrations can be arbitrary, but when using QTAIM atomic basins, a
partition of the N electrons of the molecule that assigns a given number of electrons (including
possibly 0) to each of these regions will was called a real space resonance structure (RSRS)5

and there are NS = (N + m − 1)!/[N !(m − 1)!] of these for a given N ,m pair. With the
notation S(n1, n2, . . . , nm) ≡ S({np}), or simply (n1, n2, . . . , nm) ≡ {np}, we label the reso-
nance structure having n1 electrons in Ω1, n2 electrons in Ω2, . . ., and nm electrons in Ωm.
If electrons are spin-seggregated, then we come to spin-resolved EDFs, and a set of proba-
bilities p(nα1 , n

β
1 , n

α
2 , n

β
2 , . . . , n

α
m, n

β
m) which gives extremely fine-grained information about how

electrons and their spins distribute.6

The computation of p(n1, n2, . . . , nm) for all the RSRSs provides all the statistical moments
of the electron populations, including the average number of electrons in a given region, or its
fluctuation. The average population is obviously given by

Ni = 〈ni〉 =
∑
{np}

ni × p({np}) =
∑
ni

nipi(ni). (4)

It is not difficult to show that the number of shared pairs between two regions may be obtained
directly by counting the number of intra- and interpairs.7 This has given rise to the so-called
localization and delocalization indices, (λii, δij), which determine the number of localized and
delocalized pairs. The latter, which is the covalent bond-order in real space can be obtained
from the p({np}) probabilities as
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δij = −2cov(i, j) = −2 [〈ninj〉 − 〈ni〉〈nj〉] = (5)

−2

∑
{np}

ninj × p({np})− 〈ni〉〈nj〉

 = (6)

−2
∑
ninj

(ni −Ni)(nj −Nj)p(ni, nj) = 2Nij (7)

where the −2 factor has been included to comply with the usual definition of δ in terms of the
exchange-correlation density and to ensure that the bond order for an ideal single bond is equal
to 1,

δij = −2

∫
Ωi

∫
Ωj

dx1 dc2ρxc(1, 2). (8)

The localization index is given by

λii = Ni − cov(i, i) = Ni − var(i) = Ni −
∑
ni

(ni −Ni)
2p(ni) = Nii (9)

From equations 5-9 it is clear that Nii = Ni if the variance is zero and that Nij = 0 if the
covariance is cero. This is the starting point for a complete theory of chemical bonding based
on the fluctuation of electron populations. There is chemical bonding between two regions if
their electron populations are not statistically independent. A sum rule, that classifies electrons
into localized and delocalized sets appears:

N =
∑
Ωi

Ni =
∑
Ωi

λii +
1

2

∑
Ωi 6=Ωj

δij. (10)

Suitable generalizations in the case of multi-center bonding exist.8

1.3 Ionic and covalent structures in 2c-2e bonds

The statistical link between the fluctuation of electron populations and the standard energetic
and bond order descriptors allows to map all coarse-grained (i.e. condensed at the atomic level)
possible (2c − 2e) bonds through simple models. In a two-center, two-electron system there
are only three RSRSs: (2, 0), (1, 1), (0, 2), where we label how many electrons lie in each of
the a, b domains. The central structure is obviously identified with the valence-bond covalent
structure, while the other two describe ionic distributions. The EDF space is two-dimensional,
since p(2, 0) + p(1, 1) + p(0, 2) = 1, and all bond indices become fully mapped in this 2D space.
A convenient coordinate system can be built with the probability that any of the electrons lie
in one of the basins, e.g. the left one, which we call p and provides a measure of heteropolarity,
and a correlation factor −1 ≤ f ≤ 1 that determines how the electronic motion is correlated.
f = 1 means that an electron is completely excluded from one domain if the other is already in
it (positive correlation) and f = −1 implies that the two electrons are always found together
within the same domain (negative correlation). The correlation factor here defined plays the
same role as that used in density matrix theory, where ρ2(r1, r2) = ρ(r1)ρ(r2)(1−f). The (p, f)
pair describes fully a 2c,2e link at this level: p(2, 0) = p2−p(1−p)f , p(1, 1) = 2p(1−p)(1 +f)
and p(0, 2) = (1− p)2 − p(1− p)f .9

If we use these p, f parameters, the covalent bond order becomes δ = 4p(1− p)(1− f). An
ionic bond order ι = −QaQb where Q is the net charge of a center has also been defined.10
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In standard weakly correlated bonds with positive f ∼ 0, the EDF is close to binomial, and δ
peaks at δ = 1 for a purely covalent homopolar link with p = 1/2. As electron correlation, f , or
polarity, p, increases δ decreases. Moreover, for non-correlated links with f = 0 ι = 1− δ so, in
agreement with standard wisdom, the ionic and covalent bond orders are inversely correlated.

When f deviates from zero, the model describes positively or negatively correlated bonds.
The latter case implies a bosonization of the link. Electrons try to delocalize together, giving
rise to very large fluctuations. The most extreme 2c,2e case with δ = 2 occurs when p(0, 2) =
p(2, 0) = 1/2 and p(1, 1) = 0, i.e. when there is a resonance between the two non-orthogonal
valence bond (NOVB) ionic structures. Thus, f < 0 serves to separate cleanly, in real space,
large fluctuations from the standard bonding regime.

Several rigorous bond-energy bond-order (BEBO)10 relations can be uncovered using these
real space descriptors. Under the IQA perspective a multipolar expansions shows that the first
order ionic and covalent energies are immediately related to their corresponding bond orders.
For an interaction between atoms A and B,

EAB
ion ∼ −

ιAB

Rij

EAB
cov ∼ −

1

2

δAB

RAB

. (11)

Notice that the arguments posed in Section 3 show that in the absence of ionic contributions
(delocalization) a system is unbound. This means, for instance, that the good behavior of the
conventional covalent Heitler-London function of H2 is due to the large overlap of the H 1s
functions, that introduce a considerable amount of real space ionic terms.

1.4 Local spin

Spin densities have been used for almost three quarters of a century to understand the distri-
bution of spin (and magnetism) in molecular systems. However, the spin density for a singlet
state is identically zero everywhere, so that a question remains on how to quantify and localize
spins in antiferromagnetic systems, or in singlet di- or polyradicals in molecules. This quest
leads to the concept of local spin.

The expectation value of the 〈Ŝ2〉 operator for an arbitrary N−electron molecular system
described by the wave function Ψ can be expressed as

〈Ŝ2〉 =
3

4

∫
ρ(r1)dr1

+

∫∫ [
−1

4
ρ2(r1, r2; r1, r2)− 1

2
ρ2(r1, r2; r2, r2)

]
dr1dr2, (12)

where ρ(r1) is the electron density at point r1 and ρ2(r1, r2; r1, r2) is the spinless diagonal
second-order density, normalized to N and N(N − 1), respectively. Considering the Dirac
representation Ŝ2 = −N(N−4)/4+Ô, where Ô =

∑
i<j p̂

σ
ij and p̂σij is the operator interchanging

the spin coordinates of electrons i and j, the first two terms in eq 12 add to −N(N − 4)/4 and
the second one is 〈Ψ|Ô|Ψ〉 = −1

2

∫
ρ2(r1, r2; r2, r2) dr1dr2.

The concept of local spin answers the question of how to distribute 〈Ŝ2〉 in atomic, 〈Ŝ2〉A,
and inter-atomic contributions, 〈Ŝ2〉AB, in such a way that

〈Ŝ2〉 =
∑
A

〈Ŝ2〉A +
∑
A 6=B

〈Ŝ2〉AB, (13)

where A and B run over all the atoms of the system or, in general, over the different groups of
atoms in which the molecule has been divided. This can generally be done by assigning atomic
projectors, as done by Clark and Davidson.11 We thus define atomic regions, in our case using
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the QTAIM, and define the one-electron projector for electron i as PA(i) = 1 if i ∈ ΩA and
PA(i) = 0 if i /∈ ΩA, where ΩA is the QTAIM atomic basin associated to atom A (that we will
simply call A from now on). With this definition,

〈Ŝ2
A〉 =

3

4

∫
A

ρ(r1)dr1 +

∫
A

∫
A

F (r1, r2)dr1dr2, (14)

〈ŜA · SB〉 =

∫
A

∫
B

F (r1, r2)dr1dr2, where (15)

F (r1, r2) = −1

4
ρ2(r1, r2; r1, r2)− 1

2
ρ2(r1, r2; r2, r2). (16)

This provides a fully consistent partition of the squared spin operator into atomic and
interatomic coupling terms. A fully isolated unpaired electron will offer a value for its local
spin equal to 3/4. As this delocalizes, the local spin will quench. In this sense, spin quenching
and electron delocalization are fruitfully coupled together.

For instance, in the case of a single determinant closed-shell wavefunction (SDW),

ρ2(r1, r2; r1r2) = ρ(r1; r1)ρ(r2; r2)− 1

2
ρ(r1; r2)ρ(r2; r1), and (17)

ρ2(r1, r2; r2r1) = ρ(r1; r2)ρ(r2; r1)− 1

2
ρ(r1; r1)ρ(r2; r2), (18)

so that

−1

4
ρ2(r1, r2; r1r2)− 1

2
ρ2(r1, r2; r2r1) = −3

8
ρ(r1, r2)ρ(r2, r1). (19)

Then,

〈S2〉 =
3

4

∫
ρ(r)dr − 3

8

∫ ∫
ρ(r1, r2)ρ(r2, r1)dr1r2. (20)

The localization index inside A is given by

λA =

∫
A

∫
A

ρxc(r1, r2)dr1dr2. (21)

where ρxc is the exchange-correlation density. Since, ρxc(r1; r2) = 1
2
ρ(r1; r2)ρ(r2; r1) in the case

of a closed-shell SDW, eq 14 becomes

〈S2
A〉 =

3

4
(NA − λA) , (22)

where NA =
∫
ρ(r)dr is the average number on electron in A. Similarly, the delocalization

index between A and B (δAB), a measure of the bond order between both atoms, is given by

δAB = 2

∫
A

∫
B

ρxc(r1, r2)dr1dr2, (23)

and, from eqs 15, 16, and 19, its value for a closed-shell SDW is related to 〈S2
AB〉 by

〈S2
AB〉 = −3

8
δAB. (24)

In the case of a 2c,2e pure single bond with δ = 1, this means that the local spin of each
center will be quenched from 3/4 to 3/8, and that the spin coupling will change from −3/4 to
−3/8. We have shown that there is an intimate relationship between local spins and electron
distributions.12 For instance in the symmetric 2c,2e case with p(2, 0) = p(0, 2) = 1/4, the local
spin of each center will be due to the resonance structure where each electron is located in a
center, since when the two ionic configurations will lead to null 〈S2

A〉. Since p(1, 1) = 1/2 the
local spin is 1/2 × 3/4 = 3/8. This EDF perspective is extremely fruitful. For two localized
isolated spins coupled to a triplet, 〈S2

A〉 = 3/4 and 〈S2
AB〉 = 1/4.
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2 The Coulson-Fischer state and its real space analysis

Let us consider a system with two equivalent centers (a,b) and two magnetic electrons. Two
localized functions φa, φb (or just a, b) with overlap 〈a|b〉 = S are used. As stated in the
manuscript, two 1Σ+

g singlets and one 3Σ+
u triplet come out from this basis. In the Heitler-

London or Valence Bond (VB) framework, they are

ΨS,cov =
1√

2(1 + S2)
(a(1)b(2) + b(1)a(2))

1√
2

(↑↓ + ↓↑),

ΨS,ion =
1√

2(1 + S2)
(a(1)a(2) + b(1)b(2))

1√
2

(↑↓ − ↓↑).

ΨT =
1√

2(1− S2)
(a(1)b(2)− b(1)a(2))

1√
2

(↑↓ + ↓↑). (25)

Similarly, the MO basis is formed from the gerade and ungerade combinations, φg, φu (or simply
g, u)

g =
1√

2(1 + S)
(a+ b), u =

1√
2(1− S)

(a− b), (26)

so that two independent 1Σ+
g singlets are:

Ψgg = ΨHF = |gḡ|, Ψuu = |uū|. (27)

while the 3Σ+
u triplet (MS = 0 component ) is given by

ΨT =
1

2
(|gū| − |uḡ|). (28)

The variational space of the singlets is two dimensional, so that the lowest energy singlet can
be written as

ΨS = cΨcov + iΨion = λΨgg + µΨuu. (29)

The λ2 + µ2 = 1 condition allows to map easily the full spectrum of the singlets. by using a
ω-angle polar representation such that λ = cos(ω/2), µ = − sin(ω/2), ω ∈ [−π, π].

Localized orthogonal Coulson-Fischer orbitals can be obtained from the localized a, b func-
tions as ϕa,b = (g ± u)/

√
2. With them, the Heitler-London-like Coulson-Fischer singlet state

is obtained as the covalent function in Eq. 26. In terms of the g, u functions,

Ψo
S =

1

2
(|gḡ| − |uū|). (30)

The triplet built with this localized orthogonal functions (OLOs) is equal to the the canonical
one.

Working in the orthogonal λ, µ representation provides direct easy access to all reduced
density matrices. For the singlets, the |gḡ| and |uū| determinants differ in two spinorbitals, so
only the 2RDM has coupling terms,

ρ(r; r′) = 2λ2g(r)g(r′) + 2µ2u(r)u(r′)

ρ2(r1, r2) = 2λ2g2(r1)g2(r2) + 2µ2u2(r1)u2(r2) + 4λµ gu(r1)gu(r2). (31)

Similarly, for the triplet

ρ(r; r′) = g(r)g(r′) + u(r)u(r′)

ρ2(r1, r2) = g2(r1)u2(r2) + u2(r1)g2(r2)− 2gu(r1)gu(r2). (32)
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Since in Ψo
S λ = −µ = 1/

√
2, the fisrt order density matrix of the Coulson-Fischer singlet

and triplet are equal, and the pair densities differ in

∆ρ2(r1, r2)S,T = (g2(r1)− u2(r1)(g2(r2)− u2(r2), (33)

which can be written as 2ϕa(r1)ϕb(r1)ϕa(r2)ϕb(r2). Notice that this difference integrates to
zero.

For a two electron system the probability of finding the two electrons in a given atomic
basin is given by

p(2, 0) =
1

2

∫
Ω

dr1

∫
Ω

dr2 ρ2(r1, r2), (34)

and given that the orthogonality of ϕa and ϕb also implies that
∫

Ω
ϕa(r)ϕb(r) = 0, then p(2, 0)

is equal for the Coulson-Fischer singlet and triplet, and so are p(1, 1) and the variances and
covariances (localization and delocalization indices).

The Coulson-Fischer singlet and triplet states can thus not be distinguished by any one-
electron property or even by the atomic condensed electron distribution functions. Only when
∆ρ2 is weighted with the inverse interelectron distance to form the ∆Vee operator we obtain an
overall energy difference. This points clearly to a different average separation of electrons in
both states, as shown in Fig. 1 of the ms.

3 Methodological details

All calculations in the H-X-Hn+ systems with X=He,Be and n = 0, 2 have been performed with
the STO-6G minimal and the extended 6-311G(p) Pople basis sets at the Hartree-Fock (HF)
and Full Configuration Interaction (FCI) levels with the GAMESS code.13 Calculations on the
Li-Be-Li system were also performed with GAMESS and the 6-311+G** basis set.

In H-He-H we also substituted the He atom by an effective core potential, written with the
following algebraic structure14:

Veff = VL(r) +
L−1∑
λ=0

λ∑
µ=−λ

|Yλµ〉Vλ−L(r)〈Yλµ|, (35)

Vλ−L(r) = Vλ(r)− VL(r). (36)

Here, L−1 is the maximum angular momentum of the excluded core electrons, and the l = λ−L
dependent V ’s impose orthogonality constraints that avoid the collapse of the valence orbitals
onto the bridge (core) states. The spherical harmonics and radial functions are centered at the
He nucleus, and the Vl(r) potentials are expressed as linear combinations of gaussians:

Vl(r) =
N∑
i=1

Bl
ir
nl
i exp

(
−αlir2

)
. (37)

Here we have decided to use L = 1, so the ECP is a sum of a P potential and a S-P one. The
Bi, ni, αi coefficients are:
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ni Bi ni αi
P
1 -0.11866700 2 0.80780000
2 -1.21779400 2 2.55000001
3 -1.37580501 1 7.25349998

S-P
1 24.33369899 2 0.79980000
2 -20.66639709 2 0.77410000
3 -1.14289200 1 1.19430000
4 2.99401900 0 2.19990000

All real space analyses have been performed with

our QTAIM in-house codes. IQA decompositions with PROMOLDEN, EDF probabilities with
EDF, and local spin partitions with NRDM. They are freely available from the authors upon
request, by writing to either ampendas@uniovi.es or evelio@uniovi.es. IQA integrations were
performed using β-spheres with a radius 90% as large as the smallest atomic QTAIM bonded
radius of each atom, with 434 and 5810 angular Lebedev points inside and outside the sphere,
respectively, maximum l expansions up to l = 10, 4 outside and inside, respectively, and 700
and 400 trapezoidal and Gauss-Chebychev radial points in the same order.

4 Raw Results

We offer here a list of results for the systems explored. We show the FCI 6-311G(p) data for
H-He-H. Atomic numbering is always 1 for He and 2,3 for H atoms except for EDFs, in which
the central He atom is atom 2. All data in atomic units. Geometries, canonical orbital energies
and natural orbital occupations, main coefficients (> 0.01) of the FCI determinant expansion
in the canonical basis with positive/negative labels tagging alpha and beta spin projections,
IQA descriptors, EDF and local spin decompositions are found in consecutive order.

4.1 H-He-H LS

ATOM ATOMIC COORDINATES (BOHR)

CHARGE X Y Z

HE 2.0 0.0000000000 0.0000000000 0.0000000000

H 1.0 0.0000000000 0.0000000000 -2.3786536587

H 1.0 0.0000000000 0.0000000000 2.3786536587

------------

EIGENVECTORS

------------

1 2 3 4 5

-1.0556 -0.3124 -0.0269 0.3836 0.3928

AG B1U AG AG B1U

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

1.9818 1.4942 0.5044 0.0066 0.0039

AG B1U AG AG B1U

TOTAL ENERGY = -3.8327720116

ELECTRON-ELECTRON POTENTIAL ENERGY = 2.6522763715

NUCLEUS-ELECTRON POTENTIAL ENERGY = -12.3468267482
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NUCLEUS-NUCLEUS POTENTIAL ENERGY = 1.8918264891

------------------

TOTAL POTENTIAL ENERGY = -7.8027238875

TOTAL KINETIC ENERGY = 3.9699518760

VIRIAL RATIO (V/T) = 1.9654454591

COEFFICIENT/ OCCUPIED ACTIVE SPIN ORBITALS

0.8600731486E+00 1 2 -1 -2

-0.4983389596E+00 1 3 -1 -3

-0.3999934103E-01 2 4 -2 -4

-0.2852488019E-01 2 6 -2 -6

-0.2852488019E-01 2 7 -2 -7

-0.2779527407E-01 2 3 -2 -4

-0.2779527407E-01 2 4 -2 -3

0.2267670752E-01 3 4 -3 -4

-0.2105905507E-01 2 5 -2 -5

-0.1999847491E-01 2 3 -2 -3

-0.1681461010E-01 1 5 -1 -5

0.1674848128E-01 3 7 -3 -7

0.1674848128E-01 3 6 -3 -6

0.1669365677E-01 1 8 -2 -3

0.1669365677E-01 2 3 -1 -8

-0.1549172969E-01 1 2 -3 -5

-0.1549172969E-01 3 5 -1 -2

0.1425802262E-01 3 5 -3 -5

0.1239230589E-01 1 3 -2 -8

0.1239230589E-01 2 8 -1 -3

0.1122241557E-01 1 9 -2 -5

0.1122241557E-01 2 5 -1 -9

-0.1070696621E-01 1 9 -1 -9

-0.1031310282E-01 1 8 -1 -8

Atomic Contributions for neq: 1

Atom number : 1

-------------------------------------------------------------------------------

kinetic energy = 2.90411770

potential energy = -5.73496917

electron repulsion = 1.05361204

---coulomb = 2.07270320

---exch+corr = -1.01909116

---self = 0.00000000

el-own-nuc attraction = -6.72888677

net energy = -2.77115703

interaction energy = -0.11938889

additive energy = -2.83085148

effective energy = -2.89054592

2T+V = 0.07326622

Int rho_2 = 2.28136968

Integ rho_2 J = 4.04937901

Integ rho_2 XC (F_AA) = 1.76800933

SUM-RULE-TEST = 2.01224996 AND SHOULD BE 2.01230689

=================== Interaction with atom: 2 =================================================

(NN,EN,NE,EE,Inter) 0.84081177 -0.83720355 -0.72925369 0.66595102 -0.05969444

EE wself : (coul,XC,self) 0.72837773 -0.06242671 0.00000000

EE woself: (coul,XC) 0.72837773 -0.06242671

Coul comp.: (longr, shortr) -0.342826E+03 0.343554E+03

Classical Int. (Long,Total) -0.343673E+03 0.273227E-02

RHO_2 Integ comp (TOT,J,XC) 1.87763990 1.99976022 0.12212032

F_AB (XC) 0.24424063
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=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.84081177 -0.83720355 -0.72925369 0.66595102 -0.05969444

EE wself : (coul,XC,self) 0.72837773 -0.06242671 0.00000000

EE woself: (coul,XC) 0.72837773 -0.06242671

Coul comp.: (longr, shortr) -0.342826E+03 0.343554E+03

Classical Int. (Long,Total) -0.343673E+03 0.273227E-02

RHO_2 Integ comp (TOT,J,XC) 1.87763990 1.99976022 0.12212032

F_AB (XC) 0.24424063

Atomic Contributions for neq: 2

Atom number : 2

-------------------------------------------------------------------------------

kinetic energy = 0.53283705

potential energy = -1.03382920

electron repulsion = 0.04462788

---coulomb = 0.33016294

---exch+corr = -0.28553507

---self = 0.00000000

el-own-nuc attraction = -1.04598508

net energy = -0.46852015

interaction energy = -0.06494400

additive energy = -0.50099215

effective energy = -0.53346415

2T+V = 0.03184490

Int rho_2 = 0.15718711

Integ rho_2 J = 0.98756894

Integ rho_2 XC (F_AA) = 0.83038183

SUM-RULE-TEST = 0.99371196 AND SHOULD BE 0.99376503

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.21020294 -0.19640851 -0.19640851 0.17736451 -0.00524956

EE wself : (coul,XC,self) 0.18442648 -0.00706197 0.00000000

EE woself: (coul,XC) 0.18442648 -0.00706197

Coul comp.: (longr, shortr) 0.185393E+00 -0.966655E-03

Classical Int. (Long,Total) 0.273221E-02 0.181241E-02

RHO_2 Integ comp (TOT,J,XC) 0.94635913 0.98756894 0.04120981

F_AB (XC) 0.08241962

# M-BASINS SPINLESS ELECTRON DISTRIBUTION FUNCTION

#------------------------------------------------------------------------

# NUMBER OF GROUPS = 3

# TOTAL NUMBER OF PROBABILITIES = 15

#------------------------------------------------------------------------

# Probability n1(H) n2(He) n3(H)

# 0.7278283855326309 1 2 1

# 0.0570771504525981 1 3 0

# 0.0570771504525981 0 3 1

# 0.0528440664176910 2 1 1

# 0.0528440664176910 1 1 2

# 0.0228116412268904 2 2 0

# 0.0228116412268904 0 2 2

# 0.0041089204834032 0 4 0

# 0.0014400237727642 2 0 2

# 0.0002728138540450 3 1 0

# 0.0002728138540450 0 1 3

# 0.0002237579192957 1 0 3

# 0.0002237579192957 3 0 1

# 0.0000003780052079 0 0 4

# 0.0000003780052079 4 0 0
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Average populations and localization indices

# <n( 1)> = 0.9936560505

# <n( 2)> = 2.0120356812

# <n( 3)> = 0.9936560505

# <n( 2) n( 1)> = 1.8774854281

# <n( 3) n( 1)> = 0.9463072938

# <n( 3) n( 2)> = 1.8774854281

# <n( 3) n( 2) n( 1)> = 1.6670330367

# delta_( 1 1) = 0.8301769172 % Localization = 83.5477

# delta_( 2 2) = 1.7671513951 % Localization = 87.8290

# delta_( 3 3) = 0.8301769172 % Localization = 83.5477

Delocalization indices

# delta_( 2 1) = 0.2442239808

# delta_( 3 1) = 0.0824120902

# delta_( 3 2) = 0.2442239808

# delta_( 3 2 1) = 0.0107594207

# Fragment A formed by atoms 1: He

# Fragment B formed by atoms 2 3: H, H

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.19782118, < S_AB^2 > = -0.19777624

# rho^1(r1;r1) part = 1.50923016, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.57034241, rho^2(r1,r2;r1,r2) part = -0.93881994

# rho^2(r1,r2;r2,r1) part = -0.74106657, rho^2(r1,r2;r2,r1) part = 0.74104370

# < S_B^2 > = 0.19785360

# rho^1(r1;r1) part = 1.49064754

# rho^2(r1,r2;r1,r2) part = -0.55177311

# rho^2(r1,r2;r2,r1) part = -0.74102083

# ------------------------------------------------------------------------------------

# Fragment A formed by atoms 2

# Fragment B formed by atoms 1 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.66278284, < S_AB^2 > = -0.66274417

# rho^1(r1;r1) part = 0.74532377, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.03929677, rho^2(r1,r2;r1,r2) part = -0.70599975

# rho^2(r1,r2;r2,r1) part = -0.04324415, rho^2(r1,r2;r2,r1) part = 0.04325559

# < S_B^2 > = 0.66282778

# rho^1(r1;r1) part = 2.25455393

# rho^2(r1,r2;r1,r2) part = -1.54845913

# rho^2(r1,r2;r2,r1) part = -0.04326702

# ------------------------------------------------------------------------------------

4.2 H-He-H LT

ATOM ATOMIC COORDINATES (BOHR)

CHARGE X Y Z

HE 2.0 0.0000000000 0.0000000000 0.0000000000

H 1.0 0.0000000000 0.0000000000 -2.3786536587

H 1.0 0.0000000000 0.0000000000 2.3786536587

------------

EIGENVECTORS

------------

1 2 3 4 5

-0.9513 -0.1854 -0.0994 0.2801 0.3266
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AG B1U AG AG B1U

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

1.9832 0.9993 0.9992 0.0067 0.0029

AG AG B1U AG B1U

TOTAL ENERGY = -3.8116308380

ELECTRON-ELECTRON POTENTIAL ENERGY = 2.6368800561

NUCLEUS-ELECTRON POTENTIAL ENERGY = -12.4305485252

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 1.8918264891

------------------

TOTAL POTENTIAL ENERGY = -7.9018419800

TOTAL KINETIC ENERGY = 4.0902111420

VIRIAL RATIO (V/T) = 1.9318909723

COEFFICIENT/ OCCUPIED ACTIVE SPIN ORBITALS

0.7033287160E+00 1 2 -1 -3

-0.7033287160E+00 1 3 -1 -2

-0.3242931340E-01 2 4 -3 -4

0.3242931340E-01 3 4 -2 -4

-0.2360802682E-01 2 6 -3 -6

0.2360802682E-01 3 6 -2 -6

-0.2360802682E-01 2 7 -3 -7

0.2360802682E-01 3 7 -2 -7

0.2054077032E-01 2 3 -2 -4

-0.2054077032E-01 2 4 -2 -3

-0.2039663467E-01 2 5 -3 -5

0.2039663467E-01 3 5 -2 -5

0.2025185335E-01 1 8 -2 -3

-0.2025185335E-01 2 3 -1 -8

0.1425105024E-01 1 4 -3 -4

-0.1425105024E-01 3 4 -1 -4

0.1273827264E-01 1 4 -2 -3

-0.1273827264E-01 2 3 -1 -4

0.1116495271E-01 1 3 -3 -9

-0.1116495271E-01 3 9 -1 -3

0.1015371523E-01 2 3 -3 -5

-0.1015371523E-01 3 5 -2 -3

Atomic Contributions for neq: 1

Atom number : 1

-------------------------------------------------------------------------------

kinetic energy = 3.01022302

potential energy = -5.84233420

electron repulsion = 1.07085502

---coulomb = 2.12538737

---exch+corr = -1.05453235

---self = 0.00000000

el-own-nuc attraction = -6.86426410

net energy = -2.78318607

interaction energy = -0.09785023

additive energy = -2.83211118

effective energy = -2.88103630

2T+V = 0.17811183

Int rho_2 = 2.27550726
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Integ rho_2 J = 4.08773618

Integ rho_2 XC (F_AA) = 1.81222892

SUM-RULE-TEST = 2.02179956 AND SHOULD BE 2.02181507

=================== Interaction with atom: 2 =================================================

(NN,EN,NE,EE,Inter) 0.84081177 -0.83941034 -0.71619004 0.66586349 -0.04892512

EE wself : (coul,XC,self) 0.71766594 -0.05180245 0.00000000

EE woself: (coul,XC) 0.71766594 -0.05180245

Coul comp.: (longr, shortr) -0.888970E+04 0.889042E+04

Classical Int. (Long,Total) -0.889066E+04 0.287734E-02

RHO_2 Integ comp (TOT,J,XC) 1.89495366 1.99973898 0.10478532

F_AB (XC) 0.20957064

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.84081177 -0.83941034 -0.71619004 0.66586349 -0.04892512

EE wself : (coul,XC,self) 0.71766594 -0.05180245 0.00000000

EE woself: (coul,XC) 0.71766594 -0.05180245

Coul comp.: (longr, shortr) -0.888970E+04 0.889042E+04

Classical Int. (Long,Total) -0.889066E+04 0.287734E-02

RHO_2 Integ comp (TOT,J,XC) 1.89495366 1.99973898 0.10478532

F_AB (XC) 0.20957064

Atomic Contributions for neq: 2

Atom number : 2

-------------------------------------------------------------------------------

kinetic energy = 0.53998101

potential energy = -1.02973254

electron repulsion = 0.02745815

---coulomb = 0.32369802

---exch+corr = -0.29623987

---self = 0.00000000

el-own-nuc attraction = -1.03332685

net energy = -0.46588769

interaction energy = -0.04772769

additive energy = -0.48975153

effective energy = -0.51361537

2T+V = 0.05022948

Int rho_2 = 0.10089691

Integ rho_2 J = 0.97828133

Integ rho_2 XC (F_AA) = 0.87738442

SUM-RULE-TEST = 0.98907743 AND SHOULD BE 0.98908106

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.21020294 -0.19418654 -0.19418654 0.17936756 0.00119743

EE wself : (coul,XC,self) 0.18046716 -0.00109960 0.00000000

EE woself: (coul,XC) 0.18046716 -0.00109960

Coul comp.: (longr, shortr) 0.187049E+00 -0.658172E-02

Classical Int. (Long,Total) 0.874036E-02 0.229702E-02

RHO_2 Integ comp (TOT,J,XC) 0.97137365 0.97828133 0.00690768

F_AB (XC) 0.01381536

# M-BASINS SPINLESS ELECTRON DISTRIBUTION FUNCTION

#------------------------------------------------------------------------

# NUMBER OF GROUPS = 3

# TOTAL NUMBER OF PROBABILITIES = 15

#------------------------------------------------------------------------

# Probability n1(H) n2(He) n3(H)

# Probability n1 n2 n3 ...

# 0.7918691748069808 1 2 1

# 0.0528771617903641 1 3 0

# 0.0528771617903641 0 3 1
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# 0.0439858313864634 2 1 1

# 0.0439858313864634 1 1 2

# 0.0051051647318951 2 2 0

# 0.0051051647318951 0 2 2

# 0.0030670864319878 0 4 0

# 0.0006005387579096 2 0 2

# 0.0001907003446540 3 0 1

# 0.0001907003446540 1 0 3

# 0.0000612673807049 3 1 0

# 0.0000612673807049 0 1 3

# 0.0000000781913864 4 0 0

# 0.0000000781913864 0 0 4

Average populations and localization indices

# <n( 1)> = 0.9890621540

# <n( 2)> = 2.0217845225

# <n( 3)> = 0.9890621540

# <n( 2) n( 1)> = 1.8949317902

# <n( 3) n( 1)> = 0.9713588575

# <n( 3) n( 2)> = 1.8949317902

# <n( 3) n( 2) n( 1)> = 1.7596816752

# delta_( 1 1) = 0.8773481301 % Localization = 88.7051

# delta_( 2 2) = 1.8121226684 % Localization = 89.6299

# delta_( 3 3) = 0.8773481301 % Localization = 88.7051

Delocalization indices

# delta_( 2 1) = 0.2095686836

# delta_( 3 1) = 0.0138147671

# delta_( 3 2) = 0.2095686836

# delta_( 3 2 1) = 0.0060694926

# Fragment A formed by atoms 1: He

# Fragment B formed by atoms 2 3: H, H

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.18069652, < S_AB^2 > = -0.01183974

# rho^1(r1;r1) part = 1.51636131, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.56887683, rho^2(r1,r2;r1,r2) part = -0.94747684

# rho^2(r1,r2;r2,r1) part = -0.76678796, rho^2(r1,r2;r2,r1) part = 0.93563710

# < S_B^2 > = 1.84298955

# rho^1(r1;r1) part = 1.48362159

# rho^2(r1,r2;r1,r2) part = -0.53613529

# rho^2(r1,r2;r2,r1) part = 0.89550326

# ------------------------------------------------------------------------------------

# Fragment A formed by atoms 2

# Fragment B formed by atoms 1 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.71233306, < S_AB^2 > = 0.20324185

# rho^1(r1;r1) part = 0.74181080, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.02522423, rho^2(r1,r2;r1,r2) part = -0.71658184

# rho^2(r1,r2;r2,r1) part = -0.00425351, rho^2(r1,r2;r2,r1) part = 0.91982369

# < S_B^2 > = 0.88118984

# rho^1(r1;r1) part = 2.25817211

# rho^2(r1,r2;r1,r2) part = -1.54157790

# rho^2(r1,r2;r2,r1) part = 0.16459563
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4.3 H-He-H BS

ATOM ATOMIC COORDINATES (BOHR)

CHARGE X Y Z

HE 2.0 0.0000000000 0.0000000000 1.6629588692

H 1.0 0.0000000000 -1.7007533889 0.0000000000

H 1.0 0.0000000000 1.7007533889 0.0000000000

------------

EIGENVECTORS

------------

1 2 3 4 5

-1.0754 -0.2854 -0.0639 0.3661 0.3980

A1 B2 A1 A1 B2

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

1.9837 1.1700 0.8282 0.0069 0.0028

A1 A1 B2 A1 B2

TOTAL ENERGY = -3.8102031609

ELECTRON-ELECTRON POTENTIAL ENERGY = 2.7273896090

NUCLEUS-ELECTRON POTENTIAL ENERGY = -12.6211262778

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 1.9756107487

------------------

TOTAL POTENTIAL ENERGY = -7.9181259201

TOTAL KINETIC ENERGY = 4.1079227592

COEFFICIENT/ OCCUPIED ACTIVE SPIN ORBITALS

0.7359975185E+00 1 3 -1 -3

-0.6288086818E+00 1 2 -1 -2

-0.1336656226E+00 1 3 -1 -4

-0.1336656226E+00 1 4 -1 -3

0.6975657511E-01 1 2 -1 -5

0.6975657511E-01 1 5 -1 -2

0.3673587766E-01 1 2 -2 -3

0.3673587766E-01 2 3 -1 -2

-0.2731375808E-01 3 6 -3 -6

0.2590922013E-01 2 6 -2 -6

-0.2479618149E-01 1 2 -1 -9

-0.2479618149E-01 1 9 -1 -2

-0.2038016853E-01 1 3 -1 -6

-0.2038016853E-01 1 6 -1 -3

0.1822969654E-01 1 4 -1 -4

-0.1756747238E-01 3 7 -3 -7

-0.1702480265E-01 1 5 -2 -3

-0.1702480265E-01 2 3 -1 -5

-0.1569720429E-01 3 9 -3 -9

0.1469947170E-01 2 7 -2 -7

-0.1412878076E-01 2 3 -2 -6

-0.1412878076E-01 2 6 -2 -3

-0.1410968807E-01 1 3 -1 -8

-0.1410968807E-01 1 8 -1 -3

0.1347012778E-01 2 9 -2 -9

-0.1308559822E-01 3 8 -3 -8

0.1288258920E-01 1 6 -3 -6

0.1288258920E-01 3 6 -1 -6

0.1248318944E-01 1 3 -1 -15

0.1248318944E-01 1 15 -1 -3
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0.1072337844E-01 2 8 -2 -8

-0.1055932944E-01 1 2 -1 -17

-0.1055932944E-01 1 17 -1 -2

-0.1043358411E-01 3 7 -3 -12

-0.1043358411E-01 3 12 -3 -7

0.1030524333E-01 1 3 -1 -16

0.1030524333E-01 1 16 -1 -3

-0.1007802751E-01 3 18 -3 -18

-0.1007698826E-01 1 3 -3 -6

-0.1007698826E-01 3 6 -1 -3

Atomic Contributions for neq: 1

Atom number : 1

-------------------------------------------------------------------------------

kinetic energy = 3.023375

potential energy = -5.857378

electron repulsion = 1.086185

---coulomb = 2.150206

---exch+corr = -1.064021

---self = 0.000000

el-own-nuc attraction = -6.896778

net energy = -2.787218

interaction energy = -0.093570

additive energy = -2.834003

effective energy = -2.880788

2T+V = 0.189372

Int rho_2 = 2.311886

Integ rho_2 J = 4.153317

Integ rho_2 XC (F_AA) = 1.841431

SUM-RULE-TEST = 2.038148 AND SHOULD BE 2.037969

=================== Interaction with atom: 2 =================================================

(NN,EN,NE,EE,Inter) 0.840812 -0.846554 -0.713477 0.672434 -0.046785

EE wself : (coul,XC,self) 0.720980 -0.048546 0.000000

EE woself: (coul,XC) 0.720980 -0.048546

Coul comp.: (longr, shortr) 0.346699E+04 -0.346627E+04

Classical Int. (Long,Total) 0.346614E+04 0.176086E-02

RHO_2 Integ comp (TOT,J,XC) 1.904443 2.002801 0.098358

F_AB (XC) 0.196717

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.840812 -0.846554 -0.713477 0.672434 -0.046785

EE wself : (coul,XC,self) 0.720980 -0.048546 0.000000

EE woself: (coul,XC) 0.720980 -0.048546

Coul comp.: (longr, shortr) 0.346699E+04 -0.346627E+04

Classical Int. (Long,Total) 0.346614E+04 0.176086E-02

RHO_2 Integ comp (TOT,J,XC) 1.904443 2.002801 0.098358

F_AB (XC) 0.196717

Atomic Contributions for neq: 2

Atom number : 2

-------------------------------------------------------------------------------

kinetic energy = 0.543184

potential energy = -1.031005

electron repulsion = 0.031910

---coulomb = 0.323982

---exch+corr = -0.292072

---self = 0.000000

el-own-nuc attraction = -1.035377

net energy = -0.460282

interaction energy = -0.055077
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additive energy = -0.487820

effective energy = -0.515359

2T+V = 0.055364

Int rho_2 = 0.117284

Integ rho_2 J = 0.965785

Integ rho_2 XC (F_AA) = 0.848501

SUM-RULE-TEST = 0.984384 AND SHOULD BE 0.982744

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.293987 -0.269114 -0.269114 0.235950 -0.008291

EE wself : (coul,XC,self) 0.249083 -0.013133 0.000000

EE woself: (coul,XC) 0.249083 -0.013133

Coul comp.: (longr, shortr) 0.219897E+01 -0.194989E+01

Classical Int. (Long,Total) 0.195125E+01 0.484184E-02

RHO_2 Integ comp (TOT,J,XC) 0.928261 0.965785 0.037524

F_AB (XC) 0.075049

# M-BASINS SPINLESS ELECTRON DISTRIBUTION FUNCTION

#------------------------------------------------------------------------

# NUMBER OF GROUPS = 3

# TOTAL NUMBER OF PROBABILITIES = 15

#------------------------------------------------------------------------

# Probability n1 n2 n3 ...

# 0.7791971178074078 1 2 1

# 0.0537289978792667 0 3 1

# 0.0537289978792667 1 3 0

# 0.0364381367233987 1 1 2

# 0.0364381367233987 2 1 1

# 0.0192109648824038 2 2 0

# 0.0192109648824038 0 2 2

# 0.0032618146468190 0 4 0

# 0.0006536988810710 3 1 0

# 0.0006536988810710 0 1 3

# 0.0006345519702162 2 0 2

# 0.0001498992468092 1 0 3

# 0.0001498992468092 3 0 1

# 0.0000021432112770 0 0 4

# 0.0000021432112770 4 0 0

Average populations and delocalization indices

# <n( 1)> = 0.9845008260

# <n( 2)> = 2.0448430122

# <n( 3)> = 0.9845008260

# <n( 2) n( 1)> = 1.9077005956

# <n( 3) n( 1)> = 0.9283872681

# <n( 3) n( 2)> = 1.9077005956

# <n( 3) n( 2) n( 1)> = 1.7041467825

# delta_( 1 1) = 0.8518272620 % Localization = 86.5238

# delta_( 2 2) = 1.8622550992 % Localization = 91.0708

# delta_( 3 3) = 0.8518272620 % Localization = 86.5238

# delta_( 2 1) = 0.1969623877

# delta_( 3 1) = 0.0749998026

# delta_( 3 2) = 0.1969623877

# delta_( 3 2 1) = 0.0130200950

# Fragment A formed by atoms 1

# Fragment B formed by atoms 2 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.15403963, < S_AB^2 > = -0.15426755

# rho^1(r1;r1) part = 1.52847654, rho^1(r1;r1) part = 0.00000000
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# rho^2(r1,r2;r1,r2) part = -0.57797140, rho^2(r1,r2;r1,r2) part = -0.95222136

# rho^2(r1,r2;r2,r1) part = -0.79646551, rho^2(r1,r2;r2,r1) part = 0.79795381

# < S_B^2 > = 0.15189605

# rho^1(r1;r1) part = 1.47411564

# rho^2(r1,r2;r1,r2) part = -0.52277271

# rho^2(r1,r2;r2,r1) part = -0.79944689

# ------------------------------------------------------------------------------------

# Fragment A formed by atoms 2

# Fragment B formed by atoms 1 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.69033136, < S_AB^2 > = -0.69151711

# rho^1(r1;r1) part = 0.73705782, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.02932109, rho^2(r1,r2;r1,r2) part = -0.70817594

# rho^2(r1,r2;r2,r1) part = -0.01740537, rho^2(r1,r2;r2,r1) part = 0.01665884

# < S_B^2 > = 0.69010344

# rho^1(r1;r1) part = 2.26553437

# rho^2(r1,r2;r1,r2) part = -1.55951386

# rho^2(r1,r2;r2,r1) part = -0.01591707

4.4 H-He-H BT

ATOM ATOMIC COORDINATES (BOHR)

CHARGE X Y Z

HE 2.0 0.0000000000 0.0000000000 1.6629588692

H 1.0 0.0000000000 -1.7007533889 0.0000000000

H 1.0 0.0000000000 1.7007533889 0.0000000000

------------

EIGENVECTORS

------------

1 2 3 4 5

-0.9526 -0.1585 -0.1286 0.2929 0.3222

A1 A1 B2 A1 B2

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

1.9830 0.9993 0.9989 0.0071 0.0028

A1 A1 B2 A1 A1

TOTAL ENERGY = -3.8143631935

ELECTRON-ELECTRON POTENTIAL ENERGY = 2.7116381747

NUCLEUS-ELECTRON POTENTIAL ENERGY = -12.5804293330

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 1.9756107487

------------------

TOTAL POTENTIAL ENERGY = -7.8931804096

TOTAL KINETIC ENERGY = 4.0788172161

VIRIAL RATIO (V/T) = 1.9351640418

COEFFICIENT/ OCCUPIED ACTIVE SPIN ORBITALS

0.7031431599E+00 1 2 -1 -3

-0.7031431599E+00 1 3 -1 -2

-0.2764695850E-01 2 6 -3 -6

0.2764695850E-01 3 6 -2 -6

0.1659919446E-01 2 3 -2 -6

-0.1659919446E-01 2 6 -2 -3

-0.1495770357E-01 1 4 -2 -3
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0.1495770357E-01 2 3 -1 -4

-0.1417148789E-01 2 9 -3 -9

0.1417148789E-01 3 9 -2 -9

-0.1367153292E-01 2 8 -3 -8

0.1367153292E-01 3 8 -2 -8

-0.1348775998E-01 1 2 -2 -3

0.1348775998E-01 2 3 -1 -2

0.1127877017E-01 2 13 -3 -8

-0.1127877017E-01 3 8 -2 -13

0.1126510053E-01 2 8 -3 -13

-0.1126510053E-01 3 13 -2 -8

-0.1113156367E-01 2 7 -3 -7

0.1113156367E-01 3 7 -2 -7

-0.1092395670E-01 2 13 -3 -13

0.1092395670E-01 3 13 -2 -13

0.1073820145E-01 2 3 -2 -7

-0.1073820145E-01 2 7 -2 -3

0.1017998312E-01 1 7 -2 -3

-0.1017998312E-01 2 3 -1 -7

0.1016883214E-01 1 6 -3 -6

-0.1016883214E-01 3 6 -1 -6

Atomic Contributions for neq: 1

Atom number : 1

-------------------------------------------------------------------------------

kinetic energy = 2.983151

potential energy = -5.814969

electron repulsion = 1.066818

---coulomb = 2.114995

---exch+corr = -1.048177

---self = 0.000000

el-own-nuc attraction = -6.831300

net energy = -2.781331

interaction energy = -0.100974

additive energy = -2.831817

effective energy = -2.882304

2T+V = 0.151334

Int rho_2 = 2.286201

Integ rho_2 J = 4.100018

Integ rho_2 XC (F_AA) = 1.813817

SUM-RULE-TEST = 2.025150 AND SHOULD BE 2.024850

=================== Interaction with atom: 2 =================================================

(NN,EN,NE,EE,Inter) 0.840812 -0.842270 -0.720139 0.671110 -0.050487

EE wself : (coul,XC,self) 0.723792 -0.052682 0.000000

EE woself: (coul,XC) 0.723792 -0.052682

Coul comp.: (longr, shortr) 0.208813E+04 -0.208741E+04

Classical Int. (Long,Total) 0.208727E+04 0.219483E-02

RHO_2 Integ comp (TOT,J,XC) 1.897011 2.002677 0.105666

F_AB (XC) 0.211332

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.840812 -0.842270 -0.720139 0.671110 -0.050487

EE wself : (coul,XC,self) 0.723792 -0.052682 0.000000

EE woself: (coul,XC) 0.723792 -0.052682

Coul comp.: (longr, shortr) 0.208813E+04 -0.208741E+04

Classical Int. (Long,Total) 0.208727E+04 0.219483E-02

RHO_2 Integ comp (TOT,J,XC) 1.897011 2.002677 0.105666

F_AB (XC) 0.211332

Atomic Contributions for neq: 2
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Atom number : 2

-------------------------------------------------------------------------------

kinetic energy = 0.548753

potential energy = -1.039705

electron repulsion = 0.033061

---coulomb = 0.328917

---exch+corr = -0.295856

---self = 0.000000

el-own-nuc attraction = -1.044443

net energy = -0.462630

interaction energy = -0.056645

additive energy = -0.490952

effective energy = -0.519275

2T+V = 0.057800

Int rho_2 = 0.124451

Integ rho_2 J = 0.978219

Integ rho_2 XC (F_AA) = 0.853768

SUM-RULE-TEST = 0.990378 AND SHOULD BE 0.989049

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.293987 -0.269720 -0.269720 0.239295 -0.006158

EE wself : (coul,XC,self) 0.250043 -0.010748 0.000000

EE woself: (coul,XC) 0.250043 -0.010748

Coul comp.: (longr, shortr) 0.159259E+01 -0.134255E+01

Classical Int. (Long,Total) 0.134420E+01 0.458975E-02

RHO_2 Integ comp (TOT,J,XC) 0.947275 0.978219 0.030944

F_AB (XC) 0.061888

# M-BASINS SPINLESS ELECTRON DISTRIBUTION FUNCTION

#------------------------------------------------------------------------

# NUMBER OF GROUPS = 3

# TOTAL NUMBER OF PROBABILITIES = 15

#------------------------------------------------------------------------

# Probability n1 n2 n3 ...

# 0.7713682927334732 1 2 1

# 0.0536763809816437 0 3 1

# 0.0536763809816437 1 3 0

# 0.0432743923083669 1 1 2

# 0.0432743923083669 2 1 1

# 0.0160798162434760 0 2 2

# 0.0160798162434760 2 2 0

# 0.0034020001643794 0 4 0

# 0.0006255404391828 0 1 3

# 0.0006255404391828 3 1 0

# 0.0004993336137804 2 0 2

# 0.0001814183507976 3 0 1

# 0.0001814183507976 1 0 3

# 0.0000022621629189 0 0 4

# 0.0000022621629189 4 0 0

#------------------------------------------------------------------------

# 1.0029492474844048 <-- SUM, 15 PROBABILITIES > 0.0000000000E+00

# 1.0029492474844048 <--- TOTAL SUM

#------------------------------------------------------------------------

Average populations and delocalization indices

# <n( 1)> = 0.9906374937

# <n( 2)> = 2.0305220025

# <n( 3)> = 0.9906374937

# <n( 2) n( 1)> = 1.8997847916
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# <n( 3) n( 1)> = 0.9475517065

# <n( 3) n( 2)> = 1.8997847916

# <n( 3) n( 2) n( 1)> = 1.7158341547

# delta_( 1 1) = 0.8567866610 % Localization = 86.4884

# delta_( 2 2) = 1.8310231784 % Localization = 90.1750

# delta_( 3 3) = 0.8567866610 % Localization = 86.4884

# delta_( 2 1) = 0.2115879829

# delta_( 3 1) = 0.0618333123

# delta_( 3 2) = 0.2115879829

# delta_( 3 2 1) = 0.0145869141

# Fragment A formed by atoms 1

# Fragment B formed by atoms 2 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.18287681, < S_AB^2 > = -0.00693111

# rho^1(r1;r1) part = 1.51863753, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.57155013, rho^2(r1,r2;r1,r2) part = -0.94850533

# rho^2(r1,r2;r2,r1) part = -0.76421059, rho^2(r1,r2;r2,r1) part = 0.94157423

# < S_B^2 > = 1.83431331

# rho^1(r1;r1) part = 1.48357421

# rho^2(r1,r2;r1,r2) part = -0.53586282

# rho^2(r1,r2;r2,r1) part = 0.88660192

# ------------------------------------------------------------------------------------

# Fragment A formed by atoms 2

# Fragment B formed by atoms 1 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.71698130, < S_AB^2 > = 0.19670980

# rho^1(r1;r1) part = 0.74178711, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.03111267, rho^2(r1,r2;r1,r2) part = -0.71107140

# rho^2(r1,r2;r2,r1) part = 0.00630686, rho^2(r1,r2;r2,r1) part = 0.90778121

# < S_B^2 > = 0.89292700

# rho^1(r1;r1) part = 2.26042464

# rho^2(r1,r2;r1,r2) part = -1.55116813

# rho^2(r1,r2;r2,r1) part = 0.18367050

4.5 ECP H-He-H LS

Geometries as in the non-ECP calculations. With only two electrons, the EDF and its statistics is immediately
found from the delocalization index (F AB) as follows: p(2, 0) = p(0, 2) = (1 − p(1, 1))/2 = 4δAB . Similarly,
the local spin is given by 〈S2

A〉 = 3/4p(1, 1).

------------

EIGENVECTORS

------------

1 2 3 4 5

-0.1654 -0.0778 0.4185 0.4500 1.5480

A1 B2 B2 A1 B1

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

1.4510 0.5483 0.0004 0.0001 0.0001

B2 A1 B2 A2 B2

TOTAL ENERGY = -0.8928014429

ELECTRON-ELECTRON POTENTIAL ENERGY = 0.2177511601

NUCLEUS-ELECTRON POTENTIAL ENERGY = -2.5006221754

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 0.2102029432
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------------------

TOTAL POTENTIAL ENERGY = -2.0726680720

TOTAL KINETIC ENERGY = 1.1798666291

VIRIAL RATIO (V/T) = 1.7566969189

COEFFICIENT/ OCCUPIED ACTIVE SPIN ORBITALS

0.8517493642E+00 1 -1

-0.5236001813E+00 2 -2

-0.1362173454E-01 3 -3

Atomic Contributions for neq: 1

Atom number : 1

-------------------------------------------------------------------------------

kinetic energy = 0.58992811

potential energy = -1.05939246

electron repulsion = 0.01699221

---coulomb = 0.33826471

---exch+corr = -0.32127251

---self = 0.00000000

el-own-nuc attraction = -1.06995214

net energy = -0.46303182

interaction energy = -0.01286505

additive energy = -0.46946435

effective energy = -0.47589687

2T+V = 0.12046377

Int rho_2 = 0.07274313

Integ rho_2 J = 0.99999470

Integ rho_2 XC (F_AA) = 0.92725157

SUM-RULE-TEST = 0.99999472 AND SHOULD BE 0.99999735

=================== Interaction with atom: 2 =================================================

(NN,EN,NE,EE,Inter) 0.21020294 -0.20341748 -0.20341748 0.18376697 -0.01286505

EE wself : (coul,XC,self) 0.19711680 -0.01334983 0.00000000

EE woself: (coul,XC) 0.19711680 -0.01334983

Coul comp.: (longr, shortr) 0.197121E+00 -0.456006E-05

Classical Int. (Long,Total) 0.482538E-03 0.484783E-03

RHO_2 Integ comp (TOT,J,XC) 0.92725156 0.99999470 0.07274315

F_AB (XC) 0.14548629

4.6 ECP H-He-H LT

------------

EIGENVECTORS

------------

1 2 3 4 5

-0.4836 -0.3925 0.3699 0.4175 1.5099

B2 A1 B2 A1 A1

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

1.0000 1.0000 0.0000 0.0000 0.0000

A1 B2 A1 B2 A1

-----------------

ENERGY COMPONENTS

-----------------
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WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -1.2815485671

TWO ELECTRON ENERGY = 0.2026393777

NUCLEAR REPULSION ENERGY = 0.2102029432

------------------

TOTAL ENERGY = -0.8687062461

ELECTRON-ELECTRON POTENTIAL ENERGY = 0.2026393777

NUCLEUS-ELECTRON POTENTIAL ENERGY = -2.5231354914

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 0.2102029432

------------------

TOTAL POTENTIAL ENERGY = -2.1102931704

TOTAL KINETIC ENERGY = 1.2415869243

VIRIAL RATIO (V/T) = 1.6996741260

COEFFICIENT/ OCCUPIED ACTIVE SPIN ORBITALS

0.7070999672E+00 2 -1

-0.7070999672E+00 1 -2

Atomic Contributions for neq: 1

Atom number : 1

-------------------------------------------------------------------------------

kinetic energy = 0.62078857

potential energy = -1.10487732

electron repulsion = 0.00264444

---coulomb = 0.35071604

---exch+corr = -0.34807160

---self = 0.00000000

el-own-nuc attraction = -1.10598972

net energy = -0.48255670

interaction energy = -0.00306407

additive energy = -0.48408874

effective energy = -0.48562078

2T+V = 0.13669983

Int rho_2 = 0.01386589

Integ rho_2 J = 0.99999117

Integ rho_2 XC (F_AA) = 0.98612528

SUM-RULE-TEST = 0.99999118 AND SHOULD BE 0.99999559

=================== Interaction with atom: 2 =================================================

(NN,EN,NE,EE,Inter) 0.21020294 -0.20530843 -0.20530843 0.19734985 -0.00306407

EE wself : (coul,XC,self) 0.20067145 -0.00332160 0.00000000

EE woself: (coul,XC) 0.20067145 -0.00332160

Coul comp.: (longr, shortr) 0.200695E+00 -0.230803E-04

Classical Int. (Long,Total) 0.274087E-03 0.257525E-03

RHO_2 Integ comp (TOT,J,XC) 0.98612527 0.99999117 0.01386590

F_AB (XC) 0.02773180

4.7 ECP H-He-H BS

------------

EIGENVECTORS

------------

1 2 3 4 5

-0.2499 -0.0022 0.4281 0.4345 1.3896

A1 B2 A1 B2 A1
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NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

1.0327 0.9669 0.0002 0.0001 0.0000

A1 B2 A1 B2 A1

-----------------

ENERGY COMPONENTS

-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -1.4340876090

TWO ELECTRON ENERGY = 0.2734222305

NUCLEAR REPULSION ENERGY = 0.2939873607

------------------

TOTAL ENERGY = -0.8666780178

ELECTRON-ELECTRON POTENTIAL ENERGY = 0.2734222305

NUCLEUS-ELECTRON POTENTIAL ENERGY = -2.6839433550

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 0.2939873607

------------------

TOTAL POTENTIAL ENERGY = -2.1165337637

TOTAL KINETIC ENERGY = 1.2498557459

VIRIAL RATIO (V/T) = 1.6934224374

Atomic Contributions for neq: 1

Atom number : 1

-------------------------------------------------------------------------------

kinetic energy = 0.624923

potential energy = -1.105488

electron repulsion = 0.008944

---coulomb = 0.352979

---exch+corr = -0.344035

---self = 0.000000

el-own-nuc attraction = -1.109037

net energy = -0.475170

interaction energy = -0.010791

additive energy = -0.480565

effective energy = -0.485960

2T+V = 0.144358

Int rho_2 = 0.036110

Integ rho_2 J = 0.999986

Integ rho_2 XC (F_AA) = 0.963875

SUM-RULE-TEST = 0.999986 AND SHOULD BE 0.999993

=================== Interaction with atom: 2 =================================================

(NN,EN,NE,EE,Inter) 0.293987 -0.280166 -0.280166 0.255554 -0.010791

EE wself : (coul,XC,self) 0.267904 -0.012350 0.000000

EE woself: (coul,XC) 0.267904 -0.012350

Coul comp.: (longr, shortr) 0.285827E+00 -0.179230E-01

Classical Int. (Long,Total) 0.190804E-01 0.155964E-02

RHO_2 Integ comp (TOT,J,XC) 0.963875 0.999986 0.036110

F_AB (XC) 0.072221

4.8 ECP H-He-H BT

------------
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EIGENVECTORS

------------

1 2 3 4 5

-0.4609 -0.4336 0.3670 0.3947 1.3248

A1 B2 B2 A1 A1

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

0.9997 0.9997 0.0002 0.0002 0.0000

B2 A1 A1 B2 B2

-----------------

ENERGY COMPONENTS

-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -1.4342355455

TWO ELECTRON ENERGY = 0.2690934408

NUCLEAR REPULSION ENERGY = 0.2939873607

------------------

TOTAL ENERGY = -0.8711547440

ELECTRON-ELECTRON POTENTIAL ENERGY = 0.2690934408

NUCLEUS-ELECTRON POTENTIAL ENERGY = -2.6702806335

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 0.2939873607

------------------

TOTAL POTENTIAL ENERGY = -2.1071998319

TOTAL KINETIC ENERGY = 1.2360450880

VIRIAL RATIO (V/T) = 1.7047920439

Atomic Contributions for neq: 1

Atom number : 1

-------------------------------------------------------------------------------

kinetic energy = 0.61801769

potential energy = -1.09913696

electron repulsion = 0.00854069

---coulomb = 0.35005433

---exch+corr = -0.34151364

---self = 0.00000000

el-own-nuc attraction = -1.10112054

net energy = -0.47456216

interaction energy = -0.01311422

additive energy = -0.48111927

effective energy = -0.48767638

2T+V = 0.13689841

Int rho_2 = 0.04186221

Integ rho_2 J = 0.99998558

Integ rho_2 XC (F_AA) = 0.95812338

SUM-RULE-TEST = 0.99998558 AND SHOULD BE 0.99999279

=================== Interaction with atom: 2 =================================================

(NN,EN,NE,EE,Inter) 0.29398736 -0.27955661 -0.27955661 0.25201165 -0.01311422

EE wself : (coul,XC,self) 0.26675464 -0.01474299 0.00000000

EE woself: (coul,XC) 0.26675464 -0.01474299

Coul comp.: (longr, shortr) 0.267090E+00 -0.335654E-03

Classical Int. (Long,Total) 0.184414E-02 0.162877E-02
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RHO_2 Integ comp (TOT,J,XC) 0.95812337 0.99998558 0.04186221

F_AB (XC) 0.08372441

4.9 H-Be-H2+ LS

Geometries and numbering as in the H-He-H calculations.

------------

EIGENVECTORS

------------

1 2 3 4 5

-5.4896 -1.1090 -0.8619 -0.4743 -0.4743

AG B1U AG B3U B2U

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

1.9983 1.0447 0.9535 0.0013 0.0007

AG AG B1U AG B3U

-----------------

ENERGY COMPONENTS

-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -22.7109881842

TWO ELECTRON ENERGY = 4.4845840301

NUCLEAR REPULSION ENERGY = 3.5734500350

------------------

TOTAL ENERGY = -14.6529541190

ELECTRON-ELECTRON POTENTIAL ENERGY = 4.4845840301

NUCLEUS-ELECTRON POTENTIAL ENERGY = -37.8530165005

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 3.5734500350

------------------

TOTAL POTENTIAL ENERGY = -29.7949824353

TOTAL KINETIC ENERGY = 15.1420283163

VIRIAL RATIO (V/T) = 1.9677008795

Atomic Contributions for neq: 1

Atom number : 1

-------------------------------------------------------------------------------

kinetic energy = 14.01091799

potential energy = -27.78808508

electron repulsion = 2.62242813

---coulomb = 4.95642945

---exch+corr = -2.33400132

---self = 0.00000000

el-own-nuc attraction = -30.39070938

net energy = -13.75736326

interaction energy = -0.03960765

additive energy = -13.77716708

effective energy = -13.79697091

2T+V = 0.23375091

Int rho_2 = 2.80234226

Integ rho_2 J = 4.80917236

Integ rho_2 XC (F_AA) = 2.00683010

SUM-RULE-TEST = 2.19298556 AND SHOULD BE 2.19298253

=================== Interaction with atom: 2 =================================================

(NN,EN,NE,EE,Inter) 1.68162354 -0.91900066 -1.61576395 0.83333723 -0.01980382
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EE wself : (coul,XC,self) 0.88318239 -0.04984516 0.00000000

EE woself: (coul,XC) 0.88318239 -0.04984516

Coul comp.: (longr, shortr) 0.581699E+00 0.301483E+00

Classical Int. (Long,Total) -0.288440E+00 0.300413E-01

RHO_2 Integ comp (TOT,J,XC) 1.88834987 1.98142760 0.09307773

F_AB (XC) 0.18615546

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 1.68162354 -0.91900066 -1.61576395 0.83333723 -0.01980382

EE wself : (coul,XC,self) 0.88318239 -0.04984516 0.00000000

EE woself: (coul,XC) 0.88318239 -0.04984516

Coul comp.: (longr, shortr) 0.581699E+00 0.301483E+00

Classical Int. (Long,Total) -0.288440E+00 0.300413E-01

RHO_2 Integ comp (TOT,J,XC) 1.88834987 1.98142760 0.09307773

F_AB (XC) 0.18615546

Atomic Contributions for neq: 2

Atom number : 2

-------------------------------------------------------------------------------

kinetic energy = 0.56556243

potential energy = -1.00342083

electron repulsion = 0.00381273

---coulomb = 0.30132833

---exch+corr = -0.29751560

---self = 0.00000000

el-own-nuc attraction = -0.99651542

net energy = -0.42714026

interaction energy = -0.02143628

additive energy = -0.43785840

effective energy = -0.44857654

2T+V = 0.12770403

Int rho_2 = 0.01472889

Integ rho_2 J = 0.81636819

Integ rho_2 XC (F_AA) = 0.80163931

SUM-RULE-TEST = 0.90355168 AND SHOULD BE 0.90353096

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.21020294 -0.19995566 -0.19995566 0.18807593 -0.00163245

EE wself : (coul,XC,self) 0.19052262 -0.00244669 0.00000000

EE woself: (coul,XC) 0.19052262 -0.00244669

Coul comp.: (longr, shortr) 0.190526E+00 -0.341065E-05

Classical Int. (Long,Total) 0.797824E-03 0.814242E-03

RHO_2 Integ comp (TOT,J,XC) 0.80753355 0.81636819 0.00883464

F_AB (XC) 0.01766929

COEFFICIENT/ OCCUPIED ACTIVE SPIN ORBITALS

0.7224233093E+00 1 2 -1 -2

-0.6901499037E+00 1 3 -1 -3

-0.1730925646E-01 2 4 -2 -4

-0.1729894884E-01 1 6 -1 -6

-0.1729894884E-01 1 5 -1 -5

0.1660246313E-01 3 4 -3 -4

0.1297446546E-01 1 7 -1 -7

# M-BASINS SPINLESS ELECTRON DISTRIBUTION FUNCTION

#------------------------------------------------------------------------

# NUMBER OF GROUPS = 3

# TOTAL NUMBER OF PROBABILITIES = 15

#------------------------------------------------------------------------

# Probability n1 n2 n3 ...

29



# 0.7955322188862616 2 1 1

# 0.0903557769930355 3 0 1

# 0.0903557769930355 3 1 0

# 0.0091551200670438 4 0 0

# 0.0043139690496871 2 0 2

# 0.0043139690496871 2 2 0

# 0.0029850245554108 1 1 2

# 0.0029850245554108 1 2 1

# 0.0000157444703766 1 0 3

# 0.0000157444703766 1 3 0

# 0.0000117368815215 0 2 2

# 0.0000021636222075 0 1 3

# 0.0000021636222075 0 3 1

# 0.0000000119755672 0 0 4

# 0.0000000119755672 0 4 0

#------------------------------------------------------------------------

# 1.0000444571673964 <-- SUM, 15 PROBABILITIES > 0.0000000000E+00

# 1.0000444571673964 <--- TOTAL SUM

#------------------------------------------------------------------------

Average populations and localization indices

# <n( 1)> = 2.1930769942

# <n( 2)> = 0.9035504172

# <n( 3)> = 0.9035504172

# <n( 2) n( 1)> = 1.8883899520

# <n( 3) n( 1)> = 1.8883899520

# <n( 3) n( 2)> = 0.8075322464

# <n( 3) n( 2) n( 1)> = 1.6030045360

# delta_( 1 1) = 2.0071356240 % Localization = 91.5214

# delta_( 2 2) = 0.8016743032 % Localization = 88.7249

# delta_( 3 3) = 0.8016743032 % Localization = 88.7249

Delocalization indices, Eq. (28) J. Chem. Phys. 126, 094102 (2007)

# delta_( 2 1) = 0.1861551735

# delta_( 3 1) = 0.1861551735

# delta_( 3 2) = 0.0176696302

# delta_( 3 2 1) = 0.0006086535

# Fragment A formed by atoms 1

# Fragment B formed by atoms 2 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.14218712, < S_AB^2 > = -0.14218912

# rho^1(r1;r1) part = 1.64473690, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.70058557, rho^2(r1,r2;r1,r2) part = -0.94417494

# rho^2(r1,r2;r2,r1) part = -0.80196420, rho^2(r1,r2;r2,r1) part = 0.80198583

# < S_B^2 > = 0.14215777

# rho^1(r1;r1) part = 1.35529645

# rho^2(r1,r2;r1,r2) part = -0.41113123

# rho^2(r1,r2;r2,r1) part = -0.80200745

# ------------------------------------------------------------------------------------

# Fragment A formed by atoms 2

# Fragment B formed by atoms 1 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.67101785, < S_AB^2 > = -0.67103352

# rho^1(r1;r1) part = 0.67764822, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.00368222, rho^2(r1,r2;r1,r2) part = -0.67397086

# rho^2(r1,r2;r2,r1) part = -0.00294815, rho^2(r1,r2;r2,r1) part = 0.00293734

# < S_B^2 > = 0.67101586
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# rho^1(r1;r1) part = 2.32238512

# rho^2(r1,r2;r1,r2) part = -1.64844274

# rho^2(r1,r2;r2,r1) part = -0.00292653

4.10 H-Be-H2+ LT

Geometries as in the H-He-H calculations.

------------

EIGENVECTORS

------------

1 2 3 4 5

-5.4849 -0.9843 -0.9736 -0.5385 -0.5385

AG AG B1U B3U B2U

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

1.9983 0.9997 0.9997 0.0013 0.0003

AG B1U AG AG B1U

-----------------

ENERGY COMPONENTS

-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -22.7170911725

TWO ELECTRON ENERGY = 4.4895756697

NUCLEAR REPULSION ENERGY = 3.5734500350

------------------

TOTAL ENERGY = -14.6540654677

ELECTRON-ELECTRON POTENTIAL ENERGY = 4.4895756697

NUCLEUS-ELECTRON POTENTIAL ENERGY = -37.8553860093

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 3.5734500350

------------------

TOTAL POTENTIAL ENERGY = -29.7923603045

TOTAL KINETIC ENERGY = 15.1382948368

VIRIAL RATIO (V/T) = 1.9680129516

COEFFICIENT/ OCCUPIED ACTIVE SPIN ORBITALS

0.7066912286E+00 1 2 -1 -3

-0.7066912286E+00 1 3 -1 -2

-0.1692623274E-01 2 4 -3 -4

0.1692623274E-01 3 4 -2 -4

Atomic Contributions for neq: 1

Atom number : 1

-------------------------------------------------------------------------------

kinetic energy = 14.00707764

potential energy = -27.78596302

electron repulsion = 2.62855557

---coulomb = 4.96249742

---exch+corr = -2.33394185

---self = 0.00000000

el-own-nuc attraction = -30.39445338

net energy = -13.75882017
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interaction energy = -0.04013043

additive energy = -13.77888539

effective energy = -13.79895060

2T+V = 0.22819225

Int rho_2 = 2.81470614

Integ rho_2 J = 4.82213729

Integ rho_2 XC (F_AA) = 2.00743115

SUM-RULE-TEST = 2.19595438 AND SHOULD BE 2.19593654

=================== Interaction with atom: 2 =================================================

(NN,EN,NE,EE,Inter) 1.68162354 -0.92055270 -1.61424579 0.83310973 -0.02006521

EE wself : (coul,XC,self) 0.88382587 -0.05071614 0.00000000

EE woself: (coul,XC) 0.88382587 -0.05071614

Coul comp.: (longr, shortr) 0.653805E+00 0.230021E+00

Classical Int. (Long,Total) -0.217374E+00 0.306509E-01

RHO_2 Integ comp (TOT,J,XC) 1.88666867 1.98093029 0.09426162

F_AB (XC) 0.18852323

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 1.68162354 -0.92055270 -1.61424579 0.83310973 -0.02006521

EE wself : (coul,XC,self) 0.88382587 -0.05071614 0.00000000

EE woself: (coul,XC) 0.88382587 -0.05071614

Coul comp.: (longr, shortr) 0.653805E+00 0.230021E+00

Classical Int. (Long,Total) -0.217374E+00 0.306509E-01

RHO_2 Integ comp (TOT,J,XC) 1.88666867 1.98093029 0.09426162

F_AB (XC) 0.18852323

Atomic Contributions for neq: 2

Atom number : 2

-------------------------------------------------------------------------------

kinetic energy = 0.56565557

potential energy = -1.00323696

electron repulsion = 0.00376560

---coulomb = 0.30100904

---exch+corr = -0.29724343

---self = 0.00000000

el-own-nuc attraction = -0.99622292

net energy = -0.42680174

interaction energy = -0.02155930

additive energy = -0.43758139

effective energy = -0.44836104

2T+V = 0.12807418

Int rho_2 = 0.01486399

Integ rho_2 J = 0.81376464

Integ rho_2 XC (F_AA) = 0.79890064

SUM-RULE-TEST = 0.90213743 AND SHOULD BE 0.90208904

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.21020294 -0.19966195 -0.19966195 0.18762688 -0.00149408

EE wself : (coul,XC,self) 0.18996233 -0.00233544 0.00000000

EE woself: (coul,XC) 0.18996233 -0.00233544

Coul comp.: (longr, shortr) 0.189970E+00 -0.776940E-05

Classical Int. (Long,Total) 0.828316E-03 0.841360E-03

RHO_2 Integ comp (TOT,J,XC) 0.80478946 0.81376464 0.00897517

F_AB (XC) 0.01795034

# M-BASINS SPINLESS ELECTRON DISTRIBUTION FUNCTION

#------------------------------------------------------------------------

# NUMBER OF GROUPS = 3

# TOTAL NUMBER OF PROBABILITIES = 15
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#------------------------------------------------------------------------

# Probability n1 n2 n3 ...

# 0.7930079828771008 2 1 1

# 0.0913888664880521 3 1 0

# 0.0913888664880521 3 0 1

# 0.0095446035644586 4 0 0

# 0.0044370254155184 2 2 0

# 0.0044370254155184 2 0 2

# 0.0029322865466683 1 1 2

# 0.0029322865466683 1 2 1

# 0.0000150630514328 1 0 3

# 0.0000150630514328 1 3 0

# 0.0000112338045561 0 2 2

# 0.0000021489736564 0 1 3

# 0.0000021489736564 0 3 1

# 0.0000000111619125 0 0 4

# 0.0000000111619125 0 4 0

#------------------------------------------------------------------------

# 1.0001146235205965 <-- SUM, 15 PROBABILITIES > 0.0000000000E+00

# 1.0001146235205965 <--- TOTAL SUM

#------------------------------------------------------------------------

Average populations and localization indices

# <n( 1)> = 2.1961703798

# <n( 2)> = 0.9021440571

# <n( 3)> = 0.9021440571

# <n( 2) n( 1)> = 1.8867727157

# <n( 3) n( 1)> = 1.8867727157

# <n( 3) n( 2)> = 0.8047949581

# <n( 3) n( 2) n( 1)> = 1.5977451119

# delta_( 1 1) = 2.0081986291 % Localization = 91.4409

# delta_( 2 2) = 0.7989994022 % Localization = 88.5667

# delta_( 3 3) = 0.7989994022 % Localization = 88.5667

Delocalization indices, Eq. (28) J. Chem. Phys. 126, 094102 (2007)

# delta_( 2 1) = 0.1885244834

# delta_( 3 1) = 0.1885244834

# delta_( 3 2) = 0.0179513075

# delta_( 3 2 1) = 0.0011187633

# Fragment A formed by atoms 1

# Fragment B formed by atoms 2 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.16315830, < S_AB^2 > = 0.04118535

# rho^1(r1;r1) part = 1.64695240, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.70367652, rho^2(r1,r2;r1,r2) part = -0.94333434

# rho^2(r1,r2;r2,r1) part = -0.78011758, rho^2(r1,r2;r2,r1) part = 0.98451969

# < S_B^2 > = 1.75459940

# rho^1(r1;r1) part = 1.35313357

# rho^2(r1,r2;r1,r2) part = -0.40982674

# rho^2(r1,r2;r2,r1) part = 0.81129257

# ------------------------------------------------------------------------------------

# Fragment A formed by atoms 2

# Fragment B formed by atoms 1 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.67795043, < S_AB^2 > = 0.21994195

# rho^1(r1;r1) part = 0.67656678, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.00371600, rho^2(r1,r2;r1,r2) part = -0.67286454
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# rho^2(r1,r2;r2,r1) part = 0.00509964, rho^2(r1,r2;r2,r1) part = 0.89280649

# < S_B^2 > = 0.88229408

# rho^1(r1;r1) part = 2.32351918

# rho^2(r1,r2;r1,r2) part = -1.65072686

# rho^2(r1,r2;r2,r1) part = 0.20950175

4.11 H-Be-H2+ BS

Geometries as in the H-He-H calculations.

------------

EIGENVECTORS

------------

1 2 3 4 5

-5.4906 -1.2159 -0.7481 -0.5348 -0.4865

A1 A1 B2 A1 B1

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

1.9983 1.7001 0.2954 0.0020 0.0017

A1 A1 B2 B1 A1

-----------------

ENERGY COMPONENTS

-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -22.9715887345

TWO ELECTRON ENERGY = 4.6272204239

NUCLEAR REPULSION ENERGY = 3.6572341367

------------------

TOTAL ENERGY = -14.6871341739

ELECTRON-ELECTRON POTENTIAL ENERGY = 4.6272204239

NUCLEUS-ELECTRON POTENTIAL ENERGY = -38.0696391062

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 3.6572341367

------------------

TOTAL POTENTIAL ENERGY = -29.7851845456

TOTAL KINETIC ENERGY = 15.0980503717

VIRIAL RATIO (V/T) = 1.9727834927

COEFFICIENT/ OCCUPIED ACTIVE SPIN ORBITALS

0.9215763307E+00 1 2 -1 -2

-0.3841070727E+00 1 3 -1 -3

-0.3096198864E-01 1 4 -1 -4

-0.2041054912E-01 1 5 -1 -5

-0.1478431488E-01 1 7 -1 -7

-0.1233077409E-01 2 6 -2 -6

-0.1158437744E-01 2 5 -2 -5

-0.1058556548E-01 1 6 -1 -6

-0.1001886360E-01 1 5 -1 -6

-0.1001886360E-01 1 6 -1 -5

Atomic Contributions for neq: 1

Atom number : 1
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-------------------------------------------------------------------------------

kinetic energy = 14.06220559

potential energy = -27.85133360

electron repulsion = 2.63512042

---coulomb = 4.97549250

---exch+corr = -2.34037208

---self = 0.00000000

el-own-nuc attraction = -30.46295166

net energy = -13.76562565

interaction energy = -0.04700472

additive energy = -13.78912801

effective energy = -13.81263037

2T+V = 0.27307759

Int rho_2 = 2.83965784

Integ rho_2 J = 4.85039168

Integ rho_2 XC (F_AA) = 2.01073384

SUM-RULE-TEST = 2.20251729 AND SHOULD BE 2.20236048

(NN,EN,NE,EE,Inter) 1.68162339 -0.92980600 -1.62017844 0.84485870 -0.02350236

EE wself : (coul,XC,self) 0.89651292 -0.05165422 0.00000000

EE woself: (coul,XC) 0.89651292 -0.05165422

Coul comp.: (longr, shortr) 0.244425E+01 -0.154774E+01

Classical Int. (Long,Total) 0.154307E+01 0.281519E-01

RHO_2 Integ comp (TOT,J,XC) 1.88556114 1.98145287 0.09589172

F_AB (XC) 0.19178345

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 1.68162339 -0.92980600 -1.62017844 0.84485870 -0.02350236

EE wself : (coul,XC,self) 0.89651292 -0.05165422 0.00000000

EE woself: (coul,XC) 0.89651292 -0.05165422

Coul comp.: (longr, shortr) 0.244425E+01 -0.154774E+01

Classical Int. (Long,Total) 0.154307E+01 0.281519E-01

RHO_2 Integ comp (TOT,J,XC) 1.88556114 1.98145287 0.09589172

F_AB (XC) 0.19178345

# M-BASINS SPINLESS ELECTRON DISTRIBUTION FUNCTION

#------------------------------------------------------------------------

# NUMBER OF GROUPS = 3

# TOTAL NUMBER OF PROBABILITIES = 15

#------------------------------------------------------------------------

# Probability n1 n2 n3 ...

# 0.6618412845069302 2 1 1

# 0.0940507148089871 3 0 1

# 0.0940507148089871 3 1 0

# 0.0683590981039454 2 0 2

# 0.0683590981039454 2 2 0

# 0.0098524964105640 4 0 0

# 0.0024258232090498 1 1 2

# 0.0024258232090498 1 2 1

# 0.0001879386233923 1 0 3

# 0.0001879386233923 1 3 0

# 0.0000063142801025 0 2 2

# 0.0000019637524668 0 1 3

# 0.0000019637524668 0 3 1

# 0.0000001240440137 0 4 0

# 0.0000001240440137 0 0 4

#------------------------------------------------------------------------

# 1.0017514202813068 <-- SUM, 15 PROBABILITIES > 0.0000000000E+00

# 1.0017514202813068 <--- TOTAL SUM
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#------------------------------------------------------------------------

Average populations and localization indices

# <n( 1)> = 2.2060607596

# <n( 2)> = 0.9004724608

# <n( 3)> = 0.9004724608

# <n( 2) n( 1)> = 1.8871123914

# <n( 3) n( 1)> = 1.8871123914

# <n( 3) n( 2)> = 0.6715816170

# <n( 3) n( 2) n( 1)> = 1.3333858619

# delta_( 1 1) = 2.0227465789 % Localization = 91.6904

# delta_( 2 2) = 0.6681272786 % Localization = 74.1974

# delta_( 3 3) = 0.6681272786 % Localization = 74.1974

Delocalization indices, Eq. (28) J. Chem. Phys. 126, 094102 (2007)

# delta_( 2 1) = 0.1918107567

# delta_( 3 1) = 0.1918107567

# delta_( 3 2) = 0.2756977907

# delta_( 3 2 1) = 0.0553784593

# Fragment A formed by atoms 1

# Fragment B formed by atoms 2 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.14677591, < S_AB^2 > = -0.14692277

# rho^1(r1;r1) part = 1.65177036, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.70991446, rho^2(r1,r2;r1,r2) part = -0.94278057

# rho^2(r1,r2;r2,r1) part = -0.79507999, rho^2(r1,r2;r2,r1) part = 0.79585780

# < S_B^2 > = 0.14575543

# rho^1(r1;r1) part = 1.34954261

# rho^2(r1,r2;r1,r2) part = -0.40715073

# rho^2(r1,r2;r2,r1) part = -0.79663644

# ------------------------------------------------------------------------------------

# Fragment A formed by atoms 2

# Fragment B formed by atoms 1 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.57196324, < S_AB^2 > = -0.57254691

# rho^1(r1;r1) part = 0.67477130, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.03567993, rho^2(r1,r2;r1,r2) part = -0.63928572

# rho^2(r1,r2;r2,r1) part = -0.06712813, rho^2(r1,r2;r2,r1) part = 0.06673881

# < S_B^2 > = 0.57181639

# rho^1(r1;r1) part = 2.32654166

# rho^2(r1,r2;r1,r2) part = -1.68837496

# rho^2(r1,r2;r2,r1) part = -0.06635032

4.12 H-Be-H2+ BT

Geometries as in the H-He-H calculations.

------------

EIGENVECTORS

------------

1 2 3 4 5

-5.4983 -1.0475 -0.8903 -0.5589 -0.5336

A1 A1 B2 A1 B1
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NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

1.9983 0.9994 0.9994 0.0013 0.0004

A1 A1 B2 A1 B2

-----------------

ENERGY COMPONENTS

-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -22.8297106617

TWO ELECTRON ENERGY = 4.5387604490

NUCLEAR REPULSION ENERGY = 3.6572341367

------------------

TOTAL ENERGY = -14.6337160761

ELECTRON-ELECTRON POTENTIAL ENERGY = 4.5387604490

NUCLEUS-ELECTRON POTENTIAL ENERGY = -37.9724297646

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 3.6572341367

------------------

TOTAL POTENTIAL ENERGY = -29.7764351789

TOTAL KINETIC ENERGY = 15.1427191029

VIRIAL RATIO (V/T) = 1.9663862862

COEFFICIENT/ OCCUPIED ACTIVE SPIN ORBITALS

0.7065885946E+00 1 2 -1 -3

-0.7065885946E+00 1 3 -1 -2

-0.1722482824E-01 2 4 -3 -4

0.1722482824E-01 3 4 -2 -4

Atomic Contributions for neq: 1

Atom number : 1

-------------------------------------------------------------------------------

kinetic energy = 13.96006762

potential energy = -27.72758991

electron repulsion = 2.61175523

---coulomb = 4.94133023

---exch+corr = -2.32957500

---self = 0.00000000

el-own-nuc attraction = -30.32014048

net energy = -13.74831763

interaction energy = -0.03840932

additive energy = -13.76752229

effective energy = -13.78672695

2T+V = 0.19254533

Int rho_2 = 2.78843946

Integ rho_2 J = 4.79597920

Integ rho_2 XC (F_AA) = 2.00753974

=================== Interaction with atom: 2 =================================================

(NN,EN,NE,EE,Inter) 1.68162339 -0.92092286 -1.61501369 0.83510850 -0.01920466

EE wself : (coul,XC,self) 0.88454053 -0.04943203 0.00000000

EE woself: (coul,XC) 0.88454053 -0.04943203

EE woself: (coul,XC) 0.88454053 -0.04943203

Coul comp.: (longr, shortr) 0.950356E+00 -0.658157E-01

Classical Int. (Long,Total) 0.881476E-01 0.302274E-01

RHO_2 Integ comp (TOT,J,XC) 1.89432768 1.98570402 0.09137634
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F_AB (XC) 0.18275268

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 1.68162339 -0.92092286 -1.61501369 0.83510850 -0.01920466

EE wself : (coul,XC,self) 0.88454053 -0.04943203 0.00000000

EE woself: (coul,XC) 0.88454053 -0.04943203

Coul comp.: (longr, shortr) 0.950356E+00 -0.658157E-01

Classical Int. (Long,Total) 0.881476E-01 0.302274E-01

RHO_2 Integ comp (TOT,J,XC) 1.89432768 1.98570402 0.09137634

F_AB (XC) 0.18275268

Atomic Contributions for neq: 2

Atom number : 2

-------------------------------------------------------------------------------

kinetic energy = 0.59296626

potential energy = -1.02666973

electron repulsion = 0.01285129

---coulomb = 0.31180457

---exch+corr = -0.29895328

---self = 0.00000000

el-own-nuc attraction = -1.02162004

net energy = -0.41580250

interaction energy = -0.03580195

additive energy = -0.43370347

effective energy = -0.45160445

2T+V = 0.15926278

Int rho_2 = 0.04964437

Integ rho_2 J = 0.82215128

Integ rho_2 XC (F_AA) = 0.77250691

SUM-RULE-TEST = 0.90828317 AND SHOULD BE 0.90672558

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.29398736 -0.27305366 -0.27305366 0.23552266 -0.01659729

EE wself : (coul,XC,self) 0.25439166 -0.01886900 0.00000000

EE woself: (coul,XC) 0.25439166 -0.01886900

Coul comp.: (longr, shortr) 0.256641E+00 -0.224982E-02

Classical Int. (Long,Total) 0.473125E-02 0.227170E-02

RHO_2 Integ comp (TOT,J,XC) 0.77775136 0.82215128 0.04439992

F_AB (XC) 0.08879984

# M-BASINS SPINLESS ELECTRON DISTRIBUTION FUNCTION

#------------------------------------------------------------------------

# NUMBER OF GROUPS = 3

# TOTAL NUMBER OF PROBABILITIES = 15

#------------------------------------------------------------------------

# Probability n1 n2 n3 ...

# 0.7668810911996232 2 1 1

# 0.0892404850501431 3 1 0

# 0.0892404850501431 3 0 1

# 0.0218915610479210 2 2 0

# 0.0218915610479210 2 0 2

# 0.0087034315047237 4 0 0

# 0.0027118786230455 1 1 2

# 0.0027118786230455 1 2 1

# 0.0000706274467966 1 0 3

# 0.0000706274467966 1 3 0

# 0.0000062743332825 0 2 2

# 0.0000018256101396 0 1 3

# 0.0000018256101396 0 3 1
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# 0.0000000444991800 0 0 4

# 0.0000000444991800 0 4 0

#------------------------------------------------------------------------

# 1.0034236415920808 <-- SUM, 15 PROBABILITIES > 0.0000000000E+00

# 1.0034236415920808 <--- TOTAL SUM

#------------------------------------------------------------------------

Average populations and localization indices

# <n( 1)> = 2.1971500751

# <n( 2)> = 0.9082722457

# <n( 3)> = 0.9082722457

# <n( 2) n( 1)> = 1.8973974000

# <n( 3) n( 1)> = 1.8973974000

# <n( 3) n( 2)> = 0.7777646567

# <n( 3) n( 2) n( 1)> = 1.5446096969

# delta_( 1 1) = 2.0308130270 % Localization = 92.4294

# delta_( 2 2) = 0.7753037919 % Localization = 85.3603

# delta_( 3 3) = 0.7753037919 % Localization = 85.3603

Delocalization indices, Eq. (28) J. Chem. Phys. 126, 094102 (2007)

# delta_( 2 1) = 0.1827615558

# delta_( 3 1) = 0.1827615558

# delta_( 3 2) = 0.0887389068

# delta_( 3 2 1) = 0.0158936385

# Fragment A formed by atoms 1

# Fragment B formed by atoms 2 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.16391254, < S_AB^2 > = 0.04096640

# rho^1(r1;r1) part = 1.64711697, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.70438422, rho^2(r1,r2;r1,r2) part = -0.94279131

# rho^2(r1,r2;r2,r1) part = -0.77882021, rho^2(r1,r2;r2,r1) part = 0.98375771

# < S_B^2 > = 1.75428327

# rho^1(r1;r1) part = 1.35296901

# rho^2(r1,r2;r1,r2) part = -0.41020514

# rho^2(r1,r2;r2,r1) part = 0.81151940

# ------------------------------------------------------------------------------------

# Fragment A formed by atoms 2

# Fragment B formed by atoms 1 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.67783229, < S_AB^2 > = 0.21981969

# rho^1(r1;r1) part = 0.67648450, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.00379558, rho^2(r1,r2;r1,r2) part = -0.67270264

# rho^2(r1,r2;r2,r1) part = 0.00514337, rho^2(r1,r2;r2,r1) part = 0.89252232

# < S_B^2 > = 0.88265695

# rho^1(r1;r1) part = 2.32360148

# rho^2(r1,r2;r1,r2) part = -1.65097112

# rho^2(r1,r2;r2,r1) part = 0.21002658

4.13 H-He-H2+ LS

Geometries as in the H-He-H calculations.

------------

EIGENVECTORS

------------
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1 2 3 4 5

-1.7745 -0.7108 -0.6074 -0.1802 -0.1331

AG B1U AG AG B1U

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

1.9828 0.0094 0.0033 0.0021 0.0021

AG AG B1U B2U B3U

-----------------

ENERGY COMPONENTS

-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -5.5261499415

TWO ELECTRON ENERGY = 0.9372315207

NUCLEAR REPULSION ENERGY = 1.8918264891

------------------

TOTAL ENERGY = -2.6970919316

ELECTRON-ELECTRON POTENTIAL ENERGY = 0.9372315207

NUCLEUS-ELECTRON POTENTIAL ENERGY = -8.3627712371

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 1.8918264891

------------------

TOTAL POTENTIAL ENERGY = -5.5337132273

TOTAL KINETIC ENERGY = 2.8366212956

VIRIAL RATIO (V/T) = 1.9508114234

COEFFICIENT/ OCCUPIED ACTIVE SPIN ORBITALS

0.9956866879E+00 1 -1

-0.6861742770E-01 2 -2

-0.4090585122E-01 3 -3

-0.3236571173E-01 5 -5

-0.3236571173E-01 4 -4

Atomic Contributions for neq: 1

Atom number : 1

-------------------------------------------------------------------------------

kinetic energy = 2.82044902

potential energy = -5.69635042

electron repulsion = 0.93252948

---coulomb = 1.98669781

---exch+corr = -1.05416833

---self = 0.00000000

el-own-nuc attraction = -6.61613244

net energy = -2.86315394

interaction energy = -0.02549493

additive energy = -2.87590140

effective energy = -2.88864887

2T+V = -0.05545238

Int rho_2 = 1.97415018

Integ rho_2 J = 3.94842689

Integ rho_2 XC (F_AA) = 1.97427670

SUM-RULE-TEST = 1.98697446 AND SHOULD BE 1.98706489

=================== Interaction with atom: 2 =================================================

(NN,EN,NE,EE,Inter) 0.84081177 -0.85111097 -0.00478240 0.00233413 -0.01274747

EE wself : (coul,XC,self) 0.00483462 -0.00250048 0.00000000
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EE woself: (coul,XC) 0.00483462 -0.00250048

Coul comp.: (longr, shortr) 0.506580E-02 -0.231179E-03

Classical Int. (Long,Total) -0.143732E-02 -0.102470E-01

RHO_2 Integ comp (TOT,J,XC) 0.00641177 0.01276065 0.00634888

F_AB (XC) 0.01269775

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.84081177 -0.85111097 -0.00478240 0.00233413 -0.01274747

EE wself : (coul,XC,self) 0.00483462 -0.00250048 0.00000000

EE woself: (coul,XC) 0.00483462 -0.00250048

Coul comp.: (longr, shortr) 0.506580E-02 -0.231179E-03

Classical Int. (Long,Total) -0.143732E-02 -0.102470E-01

RHO_2 Integ comp (TOT,J,XC) 0.00641177 0.01276065 0.00634888

F_AB (XC) 0.01269775

Atomic Contributions for neq: 2

Atom number : 2

-------------------------------------------------------------------------------

kinetic energy = 0.00805362

potential energy = 0.08143451

electron repulsion = 0.00000117

---coulomb = 0.00003568

---exch+corr = -0.00003451

---self = 0.00000000

el-own-nuc attraction = -0.01602764

net energy = -0.00797284

interaction energy = 0.19492196

additive energy = 0.08948813

effective energy = 0.18694911

2T+V = 0.09754176

Int rho_2 = 0.00000148

Integ rho_2 J = 0.00004124

Integ rho_2 XC (F_AA) = 0.00003976

SUM-RULE-TEST = 0.00642137 AND SHOULD BE 0.00642186

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.21020294 -0.00126760 -0.00126760 0.00000168 0.20766942

EE wself : (coul,XC,self) 0.00000811 -0.00000643 0.00000000

EE woself: (coul,XC) 0.00000811 -0.00000643

Coul comp.: (longr, shortr) 0.767233E-05 0.441363E-06

Classical Int. (Long,Total) 0.207675E+00 0.207676E+00

RHO_2 Integ comp (TOT,J,XC) 0.00000851 0.00004124 0.00003273

F_AB (XC) 0.00006546

# M-BASINS SPINLESS ELECTRON DISTRIBUTION FUNCTION

#------------------------------------------------------------------------

# NUMBER OF GROUPS = 3

# TOTAL NUMBER OF PROBABILITIES = 6

#------------------------------------------------------------------------

# Probability n1 n2 n3 ...

# 0.9870750784660277 2 0 0

# 0.0064117693231979 1 0 1

# 0.0064117693231979 1 1 0

# 0.0000085081111099 0 1 1

# 0.0000007393358618 0 0 2

# 0.0000007393358618 0 2 0

#------------------------------------------------------------------------

# 0.9999086038952571 <-- SUM, 6 PROBABILITIES > 0.0000000000E+00

# 0.9999086038952571 <--- TOTAL SUM
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#------------------------------------------------------------------------

Average populations and localization indices

# <n( 1)> = 1.9869736956

# <n( 2)> = 0.0064217561

# <n( 3)> = 0.0064217561

# <n( 2) n( 1)> = 0.0064117693

# <n( 3) n( 1)> = 0.0064117693

# <n( 3) n( 2)> = 0.0000085081

# <n( 3) n( 2) n( 1)> = 0.0000000000

# delta_( 1 1) = 1.9739143100 % Localization = 99.3427

# delta_( 2 2) = 0.0000397603 % Localization = 0.6191

# delta_( 3 3) = 0.0000397603 % Localization = 0.6191

Delocalization indices, Eq. (28) J. Chem. Phys. 126, 094102 (2007)

# delta_( 2 1) = 0.0126985147

# delta_( 3 1) = 0.0126985147

# delta_( 3 2) = 0.0000654692

# delta_( 3 2 1) = 0.0001292678

# Fragment A formed by atoms 1

# Fragment B formed by atoms 2 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.00968605, < S_AB^2 > = -0.00961765

# rho^1(r1;r1) part = 1.49029866, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.49353754, rho^2(r1,r2;r1,r2) part = -0.00320588

# rho^2(r1,r2;r2,r1) part = -0.98707508, rho^2(r1,r2;r2,r1) part = -0.00641177

# < S_B^2 > = 0.00961780

# rho^1(r1;r1) part = 0.00963278

# rho^2(r1,r2;r1,r2) part = -0.00000499

# rho^2(r1,r2;r2,r1) part = -0.00000999

# ------------------------------------------------------------------------------------

# Fragment A formed by atoms 2

# Fragment B formed by atoms 1 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.00481528, < S_AB^2 > = -0.00481521

# rho^1(r1;r1) part = 0.00481639, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.00000037, rho^2(r1,r2;r1,r2) part = -0.00160507

# rho^2(r1,r2;r2,r1) part = -0.00000074, rho^2(r1,r2;r2,r1) part = -0.00321014

# < S_B^2 > = 0.00488368

# rho^1(r1;r1) part = 1.49511506

# rho^2(r1,r2;r1,r2) part = -0.49674379

# rho^2(r1,r2;r2,r1) part = -0.99348759

4.14 H-He-H2+ LT

Geometries as in the H-He-H calculations.

------------

EIGENVECTORS

------------

1 2 3 4 5

-2.4415 -1.0292 -0.8944 -0.2216 -0.1515

AG AG B1U AG B1U

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------
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1 2 3 4 5

0.9987 0.9987 0.0012 0.0012 0.0000

AG B1U AG B1U B2G

-----------------

ENERGY COMPONENTS

-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -4.3879612485

TWO ELECTRON ENERGY = 0.4199226032

NUCLEAR REPULSION ENERGY = 1.8918264891

------------------

TOTAL ENERGY = -2.0762121561

ELECTRON-ELECTRON POTENTIAL ENERGY = 0.4199226032

NUCLEUS-ELECTRON POTENTIAL ENERGY = -6.9931707086

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 1.8918264891

------------------

TOTAL POTENTIAL ENERGY = -4.6814216163

TOTAL KINETIC ENERGY = 2.6052094601

VIRIAL RATIO (V/T) = 1.7969463446

COEFFICIENT/ OCCUPIED ACTIVE SPIN ORBITALS

0.7068995307E+00 2 -1

-0.7068995307E+00 1 -2

0.1461272377E-01 4 -3

-0.1461272377E-01 3 -4

Atomic Contributions for neq: 1

Atom number : 1

-------------------------------------------------------------------------------

kinetic energy = 2.02298375

potential energy = -3.81546521

electron repulsion = 0.08586120

---coulomb = 0.69100727

---exch+corr = -0.60514607

---self = 0.00000000

el-own-nuc attraction = -4.07405369

net energy = -1.96520874

interaction energy = 0.34545456

additive energy = -1.79248146

effective energy = -1.61975418

2T+V = 0.23050229

Int rho_2 = 0.25528785

Integ rho_2 J = 1.20456856

Integ rho_2 XC (F_AA) = 0.94928072

SUM-RULE-TEST = 1.09753585 AND SHOULD BE 1.09752839

=================== Interaction with atom: 2 =================================================

(NN,EN,NE,EE,Inter) 0.84081177 -0.46314307 -0.36776002 0.16281860 0.17272728

EE wself : (coul,XC,self) 0.20254683 -0.03972823 0.00000000

EE woself: (coul,XC) 0.20254683 -0.03972823

Coul comp.: (longr, shortr) 0.203861E+00 -0.131452E-02

Classical Int. (Long,Total) 0.214843E+00 0.212456E+00

RHO_2 Integ comp (TOT,J,XC) 0.42112625 0.49525381 0.07412756

F_AB (XC) 0.14825513
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=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.84081177 -0.46314307 -0.36776002 0.16281860 0.17272728

EE wself : (coul,XC,self) 0.20254683 -0.03972823 0.00000000

EE woself: (coul,XC) 0.20254683 -0.03972823

Coul comp.: (longr, shortr) 0.203861E+00 -0.131452E-02

Classical Int. (Long,Total) 0.214843E+00 0.212456E+00

RHO_2 Integ comp (TOT,J,XC) 0.42112625 0.49525381 0.07412756

F_AB (XC) 0.14825513

Atomic Contributions for neq: 2

Atom number : 2

-------------------------------------------------------------------------------

kinetic energy = 0.29111868

potential energy = -0.43298300

electron repulsion = 0.00103877

---coulomb = 0.07956495

---exch+corr = -0.07852617

---self = 0.00000000

el-own-nuc attraction = -0.53453332

net energy = -0.24237587

interaction energy = 0.20102310

additive energy = -0.14186432

effective energy = -0.04135277

2T+V = 0.14925436

Int rho_2 = 0.00367789

Integ rho_2 J = 0.20362173

Integ rho_2 XC (F_AA) = 0.19994384

SUM-RULE-TEST = 0.45124976 AND SHOULD BE 0.45124465

=================== Interaction with atom: 3 =================================================

(NN,EN,NE,EE,Inter) 0.21020294 -0.09414148 -0.09414148 0.00637585 0.02829582

EE wself : (coul,XC,self) 0.04217498 -0.03579913 0.00000000

EE woself: (coul,XC) 0.04217498 -0.03579913

Coul comp.: (longr, shortr) 0.421759E-01 -0.921499E-06

Classical Int. (Long,Total) 0.640969E-01 0.640950E-01

RHO_2 Integ comp (TOT,J,XC) 0.02644338 0.20362173 0.17717835

F_AB (XC) 0.35435670

# M-BASINS SPINLESS ELECTRON DISTRIBUTION FUNCTION

#------------------------------------------------------------------------

# NUMBER OF GROUPS = 3

# TOTAL NUMBER OF PROBABILITIES = 6

#------------------------------------------------------------------------

# Probability n1 n2 n3 ...

# 0.4199694019923466 1 0 1

# 0.4199693321705545 1 1 0

# 0.1288679040128165 2 0 0

# 0.0269573471735215 0 1 1

# 0.0021268319614029 0 2 0

# 0.0021268310847750 0 0 2

#------------------------------------------------------------------------

# 1.0000176483954170 <-- SUM, 6 PROBABILITIES > 0.0000000000E+00

# 1.0000176483954170 <--- TOTAL SUM

#------------------------------------------------------------------------

Average populations and localization indices

# <n( 1)> = 1.0976745422

# <n( 2)> = 0.4511803433

# <n( 3)> = 0.4511804113

# <n( 2) n( 1)> = 0.4199693322
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# <n( 3) n( 1)> = 0.4199694020

# <n( 3) n( 2)> = 0.0269573472

# <n( 3) n( 2) n( 1)> = 0.0000000000

# delta_( 1 1) = 0.9471535925 % Localization = 86.2873

# delta_( 2 2) = 0.1993100382 % Localization = 44.1752

# delta_( 3 3) = 0.1993101014 % Localization = 44.1753

Delocalization indices, Eq. (28) J. Chem. Phys. 126, 094102 (2007)

# delta_( 2 1) = 0.1505422084

# delta_( 3 1) = 0.1505422182

# delta_( 3 2) = 0.3532055862

# delta_( 3 2 1) = 0.0766704847

# ALLSPINS command has been read in from the input file

#

# Fragment A formed by atoms 1

# Fragment B formed by atoms 2 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.88696825, < S_AB^2 > = 0.21056312

# rho^1(r1;r1) part = 0.82314629, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.06382196, rho^2(r1,r2;r1,r2) part = -0.21056312

# rho^2(r1,r2;r2,r1) part = 0.12764392, rho^2(r1,r2;r2,r1) part = 0.42112625

# < S_B^2 > = 0.69192761

# rho^1(r1;r1) part = 0.67686697

# rho^2(r1,r2;r1,r2) part = -0.01506064

# rho^2(r1,r2;r2,r1) part = 0.03012127

# ------------------------------------------------------------------------------------

# Fragment A formed by atoms 2

# Fragment B formed by atoms 1 3

# ------------------------------------------------------------------------------------

# < S_A^2 > = 0.33935296, < S_AB^2 > = 0.11189241

# rho^1(r1;r1) part = 0.33843349, rho^1(r1;r1) part = 0.00000000

# rho^2(r1,r2;r1,r2) part = -0.00091947, rho^2(r1,r2;r1,r2) part = -0.11189241

# rho^2(r1,r2;r2,r1) part = 0.00183895, rho^2(r1,r2;r2,r1) part = 0.22378481

# < S_B^2 > = 1.43688433

# rho^1(r1;r1) part = 1.16157977

# rho^2(r1,r2;r1,r2) part = -0.27530455

# rho^2(r1,r2;r2,r1) part = 0.55060911

4.15 H-He-H2+ BS

Geometries as in the H-He-H calculations. Real space calculations unnecessary.

------------

EIGENVECTORS

------------

1 2 3 4 5

-1.7988 -0.7232 -0.7040 -0.2183 -0.1574

A1 A1 B2 A1 B2

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

1.9796 0.0135 0.0028 0.0020 0.0019

A1 A1 B2 B1 A1

-----------------

ENERGY COMPONENTS
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-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -5.5327048134

TWO ELECTRON ENERGY = 0.9123610411

NUCLEAR REPULSION ENERGY = 1.9756107487

------------------

TOTAL ENERGY = -2.6447330237

ELECTRON-ELECTRON POTENTIAL ENERGY = 0.9123610411

NUCLEUS-ELECTRON POTENTIAL ENERGY = -8.3154471191

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 1.9756107487

------------------

TOTAL POTENTIAL ENERGY = -5.4274753293

TOTAL KINETIC ENERGY = 2.7827423057

VIRIAL RATIO (V/T) = 1.9504052956

4.16 H-He-H2+ BT

Geometries as in the H-He-H calculations. Real space calculations unnecessary.

------------

EIGENVECTORS

------------

1 2 3 4 5

-2.4260 -1.1824 -0.8148 -0.2464 -0.1601

A1 A1 B2 A1 B2

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS

----------------------------------------

1 2 3 4 5

0.9994 0.9994 0.0004 0.0004 0.0001

A1 A1 B2 B2 A1

-----------------

ENERGY COMPONENTS

-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -4.4494737458

TWO ELECTRON ENERGY = 0.4182439289

NUCLEAR REPULSION ENERGY = 1.9756107487

------------------

TOTAL ENERGY = -2.0556190683

ELECTRON-ELECTRON POTENTIAL ENERGY = 0.4182439289

NUCLEUS-ELECTRON POTENTIAL ENERGY = -7.2201679507

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 1.9756107487

------------------

TOTAL POTENTIAL ENERGY = -4.8263132731

TOTAL KINETIC ENERGY = 2.7706942048

VIRIAL RATIO (V/T) = 1.7419148114
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4.17 Li-Be-Li

CAS[7,4]//6-311+G** calculations. RLiBe = 8.00 au. All energies in au and angles in degrees.

1. Singlet, triplet energies in Li2

Angle ESINGLET ETRIPLET

#-------------------------------------

180 -14.8640162915 -14.8640089201

170 -14.8640166654 -14.8640088186

160 -14.8640179265 -14.8640084736

150 -14.8640205861 -14.8640077380

140 -14.8640258553 -14.8640062613

130 -14.8640365022 -14.8640032417

120 -14.8640590040 -14.8639968285

115 -14.8640789469 -14.8639911628

110 -14.8641090079 -14.8639826924

100 -14.8642253790 -14.8639507350

95 -14.8643348534 -14.8639216702

90 -14.8645056749 -14.8638777391

85 -14.8647728338 -14.8638115238

80 -14.8651897879 -14.8637122200

75 -14.8658351782 -14.8635641753

70 -14.8668172157 -14.8633442042

65 -14.8682675873 -14.8630154128

60 -14.8703092363 -14.8625118139

50 -14.8760687111 -14.8603078125

40 -14.8800768745 -14.8528858297

30 -14.8632556745 -14.8247078821

20 -14.7693660110 -14.7275683186

10 -14.2257515608 -14.1595838563

2. Singlet, triplet energies in Li-Be-Li

Angle ESINGLET ETRIPLET

#-------------------------------------

180 -29.4355480285 -29.4350697655

170 -29.4355376664 -29.4350712209

160 -29.4355066397 -29.4350759487

150 -29.4354550889 -29.4350850004

140 -29.4353831903 -29.4351000235

130 -29.4352913819 -29.4351230707

120 -29.4351816115 -29.4351561443

115 -29.4351219943 -29.4351767859

110 -29.4350619088 -29.4351999971

105 -29.4350053140 -29.4352252089

100 -29.4349593395 -29.4352512476

95 -29.4349363814 -29.4352760258

90 -29.4349575404 -29.4352961360

85 -29.4350578987 -29.4353063276

80 -29.4352940327 -29.4352987915

75 -29.4357532099 -29.4352619843

70 -29.4365608029 -29.4351782397

60 -29.4398572061 -29.4347285476

3. Densities at the bond critical point ρbcp in the singlet and triplet Li-Be-Li

Angle rhob s rhob t

#-------------------------------------

180 0.238910258E-02 0.230549032E-02
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170 0.238719165E-02 0.230530755E-02

160 0.238149998E-02 0.230487429E-02

150 0.237233652E-02 0.230450644E-02

140 0.236008275E-02 0.230462035E-02

130 0.234524516E-02 0.230563773E-02

120 0.232834751E-02 0.230784711E-02

115 0.231930863E-02 0.230944821E-02

110 0.231011185E-02 0.231138336E-02

105 0.230100513E-02 0.231365771E-02

100 0.229237808E-02 0.231626382E-02

95 0.228492857E-02 0.231920130E-02

90 0.227973264E-02 0.232244225E-02

85 0.227857929E-02 0.232593967E-02

80 0.228437179E-02 0.232960161E-02

75 0.230181108E-02 0.233329603E-02

70 0.233864717E-02 0.233692547E-02

60 0.252963063E-02 0.234534634E-02
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