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Early prediction of developing 
spontaneous activity in cultured 
neuronal networks
David Cabrera‑Garcia1,5*, Davide Warm1,4, Pablo de la Fuente1, 
M. Teresa Fernández‑Sánchez1, Antonello Novelli1,2* & Joaquín M. Villanueva‑Balsera3*

Synchronization and bursting activity are intrinsic electrophysiological properties of in vivo and 
in vitro neural networks. During early development, cortical cultures exhibit a wide repertoire of 
synchronous bursting dynamics whose characterization may help to understand the parameters 
governing the transition from immature to mature networks. Here we used machine learning 
techniques to characterize and predict the developing spontaneous activity in mouse cortical 
neurons on microelectrode arrays (MEAs) during the first three weeks in vitro. Network activity at 
three stages of early development was defined by 18 electrophysiological features of spikes, bursts, 
synchrony, and connectivity. The variability of neuronal network activity during early development 
was investigated by applying k‑means and self‑organizing map (SOM) clustering analysis to features 
of bursts and synchrony. These electrophysiological features were predicted at the third week in vitro 
with high accuracy from those at earlier times using three machine learning models: Multivariate 
Adaptive Regression Splines, Support Vector Machines, and Random Forest. Our results indicate 
that initial patterns of electrical activity during the first week in vitro may already predetermine the 
final development of the neuronal network activity. The methodological approach used here may 
be applied to explore the biological mechanisms underlying the complex dynamics of spontaneous 
activity in developing neuronal cultures.

Burst activity and synchronization are intrinsic features of neural network development in vivo and in vitro, 
important for both neuronal communication and information  processing1–3. Brain neuronal networks in new-
born mammals are immature and present similar electrophysiological  properties4, characterized by a combination 
of local synchronous  patterns5. Moreover, specific firing patterns of synchronization and desynchronization are 
correlated to cognitive processes and pathophysiological  conditions6. Understanding the relationship between 
network dynamics and development is crucial to identify the mechanisms underlying the maturation of neural 
 circuits7. Cortical neurons in vitro are an effective model to study these mechanisms because neuronal cultures 
retain some of these network dynamics that can be recorded with the use of microelectrode arrays (MEAs)8.

Dissociated neurons on MEAs display sparse spontaneous activity during the first week in vitro that shifts 
to synchronous firing and bursting activity between the second and third week in vitro9–12. This developmental 
pattern comprehends a complex range of spiking and bursting dynamics that vary between dishes and  cultures10. 
Although variability in burst activity and synchronization is partly explained by differences in experimental 
 conditions13 and cellular  density10,14, broad heterogeneity remains even in cortical cultures with standardized 
 conditions10,15.

Due to the intrinsic variability of neuronal cultures, standardized mean firing rate (MFR) is the most frequent 
feature reported for in vitro neuropharmacological  evaluation15,16. However, the complex behavior of neural 
networks in vitro is not completely characterized without considering the synchronization and burstiness of 
spontaneous events. Multiple tools are available for the analysis of these features of neuronal firing  activity17 and, 
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while gold-standard methods are lacking, some methods provide more robust results. For example, Maximum 
Interval or logISI are highly consistent burst detectors among different dynamics of spontaneous  activity18. 
Likewise, measures of correlation such as the Spike Time Tiling Coefficient (STTC) are efficient in detecting 
spike train synchrony independently of firing  rate19. Temporal correlations between the spike trains recorded by 
each electrode can be also analyzed using graph theory to infer connectivity features of the neural  network20,21. 
Thus, the analysis of functional connectivity provides a proxy of the topological formation and organization of 
neuronal networks on  MEAs21–23.

Integration of spiking, bursting, synchrony, and connectivity features creates a multidimensional profile of 
network activity which renders the analysis difficult to tackle with traditional statistical methods. To overcome 
these limitations, machine learning methods arise as an alternative approach for extracting information from 
large datasets of neural  recordings24, as well as for predicting  variables25. Although the use of machine learning 
algorithms is widely adopted in other fields of  neuroscience26, few studies have applied these techniques to the 
study of neural networks in vitro. Dimensionality reduction and classification methods have been applied to inte-
grate electrophysiological features and to identify developmental  stages27,28, and unsupervised machine learning 
methods have been used to cluster burst patterns in mature  networks29. However, to the best of our knowledge, 
machine learning has not been previously used to study the broad range of developing network activity in vitro.

While modern machine learning techniques like Deep Neural Networks are powerful methods for neural 
 decoding30,31, the use of simpler algorithms provides easier interpretation and fewer overfitting  problems32. 
Clustering techniques like Self-Organizing Map (SOM)33 have been successfully applied to visualize develop-
mental patterns in  organogenesis34. Furthermore, machine learning regression algorithms have proved to be 
effective for the prediction of biological data, including Multivariate Adaptive Regression Splines (MARS)35, 
Support Vector Machines (SVM)36, and Random  Forests37. The application and comparison of these methods to 
investigate whether the development of neuronal networks in vitro is determined by early patterns of electrical 
activity remains largely unexplored.

Here, we report an integrated methodological approach for the study of developmental patterns of network 
activity in dissociated cortical neurons during the first three weeks in vitro. We used MEAs to characterize the 
spontaneous activity of cortical neurons in culture by measuring 18 electrophysiological features of spikes, 
bursts, synchrony, and connectivity. Clustering analysis allowed us to examine neuronal networks with similar 
development of bursting and synchronous activity. Then, we successfully used three machine learning models 
(MARS, SVM, and Random Forest) to predict the levels of electrophysiological features at the third week in vitro, 
suggesting that the development of network activity is determined by the early electrical activity of neuronal 
networks. The methodology presented here may help to identify the biological factors determining the matura-
tion of in vitro neural networks.

Methods
Primary cortical cultures. Primary cultures of mouse cortical neurons were obtained from the animal 
colonies hosted in the Bioterium of the University of Oviedo. The animal procedures used were in accord-
ance with the protocols approved by the Institutional Animal Care and Use Committee of the University of 
Oviedo. All procedures were also carried out in concordance with the European Communities Council Directive 
(2010/63/UE), Spanish legislation (RD 53/2013), and ARRIVE guidelines. Primary cultures of cortical neu-
rons were prepared from CD1 mice as previously  described38, adapting the protocol described for cerebellar 
 neurons39. Briefly, the brains from 0 to 2-day postnatal pups were sliced, the cortex was dissected from each slice 
and dissociated both enzymatically (0.125% papain solution) and mechanically (fire-polished Pasteur pipette) in 
the presence of DNase I. Cells were resuspended in Neurobasal A growth medium supplemented with 1% B27, 
2 mM l-glutamine, and 100 mg/ml gentamicin (NB-B27), and seeded in MEA wells (MultiChannel Systems) 
previously coated with Poly-l-Lysine (5 μg/ml) to achieve an initial density between 1750 and 3500 cells/mm2 
(generally described as dense cortical  cultures10). MEAs were incubated at 37 °C with 5%  CO2, and 25% of the 
media volume was substituted with fresh NB-B27 every 3 days after the first week.

MEA recordings. Extracellular recordings of neuronal spontaneous activity were obtained using stand-
ard 60 electrode MEA chips (60MEA200/30iR-Ti-gr), 30 µm electrode diameter spaced by a 200 µm distance, 
with a MEA1060-Inv-BC amplifier (Multi Channel Systems). Raw analog signals were amplified (bandwidth 
1 Hz–3 kHz) and sampled at 25 kHz before being filtered with a 200 Hz high-pass filter (Butterworth second-
order). Recordings were performed at 37  °C and MEAs were covered with a MEA-MEM Teflon membrane 
(ALA Scientific) to maintain  CO2 conditions outside the incubator. After a 3 min stabilization period, 5 min of 
spontaneous activity was recorded and spikes were extracted from the filtered electrophysiological signal using 
a threshold method with the MC_Rack software v.4.6 (Multi Channel Systems, https:// www. multi chann elsys 
tems. com/ softw are/ mc- rack). Spikes that crossed a negative threshold set to 5.5 times the SD of the baseline 
noise were detected and stored in “mcd” files (MC_Rack). Data files generated by MC_Rack 4.6 were converted 
into HDF5 file format using MultiChannel DataManager (Multi Channel Systems, https:// www. multi chann elsys 
tems. com/ softw are/ multi- chann el- datam anager) and imported to MATLAB 9.8 (The MathWorks Inc, https:// 
www. mathw orks. com) or Python 3.7 (https:// www. python. org/) through the relative toolboxes (https:// github. 
com/ multi chann elsys tems).

MEA data analysis. A dataset of 231 recordings between day in vitro (DIV) 6 and 18 was pre-processed 
to remove inconsistent and low-quality recordings. We included for analysis MEAs with one recording at DIV 
6–8 and at least one additional recording between DIV 9–18 with spiking activity (> 3 spikes/min) in 10 or more 
channels. MEAs containing more than 6 channels with noise (amplitude larger than 500 µV or non-characteris-

https://www.multichannelsystems.com/software/mc-rack
https://www.multichannelsystems.com/software/mc-rack
https://www.multichannelsystems.com/software/multi-channel-datamanager
https://www.multichannelsystems.com/software/multi-channel-datamanager
https://www.mathworks.com
https://www.mathworks.com
https://www.python.org/
https://github.com/multichannelsystems
https://github.com/multichannelsystems
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tic extracellular biphasic waveforms) and with a decrease of network spike activity bigger than 50% during the 
second week in vitro were discarded from analysis. With this acceptance criteria, 141 recordings of 47 independ-
ent MEA dishes from 12 cortical cultures were included for analysis.

Four main groups of electrophysiological features were analyzed to characterize the spontaneous activity of 
cortical neurons in vitro: spikes, bursts, synchrony, and connectivity. Mean values of the features were used for 
the analysis. See Table S1 for a description of the 18 electrophysiological features included in the analysis. We 
selected three developmental stages to study the changes occurring during the second week in vitro and, in order 
to balance our dataset, the 141 recordings were grouped in three DIV intervals: 6–8 (n = 50), 9–12 (n = 30), and 
13–18 (n = 61). Spike analysis was performed in Neuroexplorer 5 (Nex technologies, https:// plexon. com/ produ 
cts/ neuro explo rer/) for the number of channels with spikes (Ch. spikes), the mean firing rate (MFR), network 
spikes/s (Network spikes), and interspike interval (ISI). Bursts were analyzed using the maximum interval method 
in Neuroexplorer 5 (Nex technologies) to obtain the number of channels with bursts (Ch. bursts), mean bursting 
rate (MBR), Burst duration, network bursts/min (Network bursts), interburst interval (IBI), percentage of spikes 
in bursts (Burst % spikes), interspike interval in bursts (Burst ISI), peak frequency in bursts (Burst PeakFreq), and 
burst surprise detection (Burst surprise). We defined a burst by the following parameters: the maximum initial ISI 
to start the burst (0.1 s), the maximum ISI to define the burst end (0.2 s), the minimum interval between bursts 
(0.2 s), the minimum burst duration (0.003 s), and the minimum number of spikes in the burst (3).

Synchronization between pairs of electrodes was analyzed with the spike time tiling coefficient (STTC) 
 method19 using a Python  repository40. Briefly, the STTC is calculated as STTC =

1

2

(

PA−TB
1−PATB

+
PB−TA
1−PBTA

)

 , where 
 PA is the proportion of spikes in channel A that occur within ∆t of a spike from channel B, and  TA is the propor-
tion of the total recording time in channel A that falls within ∆t of a spike from channel A.  PB and  TB are calcu-
lated similarly. We considered a predefined time window of 100 ms to quantify the correlation between pairs of 
spikes trains, and the mean value of STTC was calculated from the square matrix. Then, to identify clusters of 
synchronized neurons, we used the density-based spatial clustering of applications with noise (DBSCAN) 
 algorithm41 on STTC matrices (DBSCAN STTC) implemented in the Python library  Sklearn42, using eps = 0.2 
(eps is the maximum distance between two points to be considered as neighbors, i.e., highly synchronized pairs 
of electrodes with STTC > 0.8), and 3 as the minimum number of samples to be considered as a core point.

Connectivity parameters were computed and connectivity matrices were generated using the Brain Con-
nectivity  Toolbox43 in MATLAB 9.8 (The MathWorks Inc). First, spike time series were binned in 100 ms time 
windows for each electrode, and the spike count correlations were computed as the Pearson correlation coefficient 
for all pairs of electrodes. Only significant correlations (P < 0.05) were retained in the correlation matrices. Then, 
an absolute weight threshold of 0.3522 was applied to discard spurious connections and to obtain undirected 
connectivity matrices, in which nodes (electrodes) are linked by binary edges (connections), and the following 
network parameters were extracted: average node degree (Node degree), clustering coefficient (Clustering coeff), 
and global efficiency (Efficiency) (see Table S1 for definitions).

Machine learning. To examine the distribution of neuronal networks by developmental stage in a low-
dimensional projection, we performed principal component analysis (PCA) with the above 18 electrophysi-
ological features using the R package  FactoMineR44. Values were scaled to unit variance and the 18-dimensional 
feature vector was projected onto the first two principal components (PCs) to display data points corresponding 
to DIV intervals (Fig. 2) and clustering analysis (Fig. S3).

To identify developmental clusters of individual neuronal networks (MEA dishes), we applied the SOM 
 technique33 using the R package Kohonen as previously  described45. Briefly, SOM is a self-organizing neural 
network with an input and output layer, such that the output cells are activated as a function of the input data. 
For the 47 independent MEA dishes used in the study, the mean values of the electrophysiological features 
Ch. bursts and STTC at each DIV interval were taken as inputs to the SOM network. The network competes 
to activate a unique output cell by every input, which results in a learning model that categorizes similar cases 
by activating the same output cell. The output layer is visualized as a two-dimensional map of hexagonal cells, 
where each cell is associated with the centroid of the input cases that activate the cell. SOM clustering algorithm 
was applied to centered and scaled datasets using random initialization with 50 iterations and the total number 
of units in the competition layer was set to 25 (5 × 5). The size of the network topology was estimated using 
a heuristic function and 5 × 5 was assigned as the first level of abstraction. To cluster the neuronal networks 
(MEAs) with similar behaviors, the k-means clustering technique was applied to the results obtained with the 
SOM technique. The number of clusters with the best fit (k = 3) was adjusted with the Davies-Bouldin validity 
 index46. Mean, median, standard error of the mean (SEM), and interquartile range (IQR) were calculated for 
the 18 electrophysiological features in each cluster. Additionally, PCA was performed as described above on the 
data points at DIV 6–8 and DIV 13–18, and clusters defined by k-means and SOM analysis were displayed on 
the principal components projections.

Prediction of the continuous variables STTC, Ch. bursts, and MFR, was assessed using three robust and 
optimized machine learning techniques for regression:  MARS47,  SVM48, and Random  Forests49 through the 
R packages Earth, e1071, and randomForest, respectively. We selected these methods, with distinct learning 
approaches, to determine whether the prediction of the electrophysiological features was affected by the machine 
learning model. MARS is a flexible and fast nonparametric regression technique used to capture the non-linear 
relationships between the variables. MARS (R package Earth) was performed with 5 degrees of interaction and 
35 model terms. Random Forest combines multiple decision trees and averages the output, and it is considered 
to be a good model to control overfitting and select robust features for the model  applied49. Random Forest was 
performed with 100 trees, and 8 variables were randomly sampled as candidates at each split. SVM is a robust 
classifier that handles noisy data and identifies non-linear relationships  efficiently36. The SVM constructs a 

https://plexon.com/products/neuroexplorer/
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hyperplane and creates boundaries to classify values in this high-dimensional space. SVM was implemented 
using a radial basis function kernel sigma = 0.125 and C = 6. In all cases, 75% of the dataset was used as a train-
ing set and 25% as a test set. Regression models were evaluated by the  R2 coefficient (accuracy) and the root 
squared mean error (RMSE). For visualization purposes, Regression Error Characteristic (REC)  curves50 were 
estimated as the relation between the standardized error on the x-axis and the accuracy of the prediction method 
on the y-axis. Then, we used the SVM model to quantify the relative importance of the features for the predic-
tive machine learning model. We balanced each group of electrophysiological features using two features per 
group: spikes (Ch. spikes, MFR), bursts (Ch. bursts, MBR), synchrony (STTC, STTC DBSCAN), and connectiv-
ity (Clustering coeff, Efficiency). We designed a “leave-one-in” strategy, in which only one group of variables 
was left and the results achieved by the model calculated, and, conversely, a “leave-one-out” which consisted of 
removing only one group of variables. To ensure the robustness of the training and test datasets, we applied an 
oversampling method to the dataset based on the Synthetic Minority Oversampling Technique (SMOTE)51 using 
the R package smotefamily. Briefly, SMOTE finds the k nearest neighbors (k = 20), selects a random neighbor, 
and creates a new synthetic instance between the feature space (in this step the minority class is not separated, 
and all samples were processed). This technique was applied with a ratio of 2 as desired synthetic instances over 
the original instances and then we evaluated the performance of the SVM model using fourfold cross-validation 
with 10 iteration cycles to minimize overfitting. Mean R squared  (R2) of the out-fold (not selected for training) 
was used as the indicator of test fit goodness and error bars were computed using the SEM. All R packages are 
available at the CRAN repository (https:// cran.r- proje ct. org).

Statistical analysis. Statistical analyses were performed using Prism 8.0 (GraphPad Software, Inc, https:// 
www. graph pad. com) and R 4.03 (The R Project for Statistical Computing, https:// www.r- proje ct. org/). Sum-
mary data and graphs were presented as mean ± SEM, median and Interquartile range (IQR), or Tukey box plots. 
Significance levels were defined at P < 0.05. Additional detailed statistical information is provided in the figure 
legends.

Results
Synchronized network activity emerges during early development of cortical neurons 
in vitro. The spontaneous activity of cortical neurons in culture was recorded with MEAs (Fig. 1a, b) during 
the first three weeks in vitro. The extracellular electrical signals (spikes) crossing a negative voltage threshold 
were recorded (Fig. 1c) and 18 features of spikes, bursts, synchrony, and connectivity (see Table S1) were ana-
lyzed post hoc to characterize the network activity (Fig. 1d).

The values of the 18 electrophysiological features analyzed from MEA recordings were grouped in three DIV 
intervals (6–8, 9–12, and 13–18) which captured the changes occurring from the first to the third week in vitro 
(Fig. 2a, Table S2). During the first three weeks in vitro, spiking activity increased from a median MFR of 0.5 
[IQR 0.3–0.9] spikes/s at DIV 6–8 to 1.3 [IQR 0.8–2.6] spikes/s at DIV 13–18 while the ISI decreased accord-
ingly (Fig. 2a). The increase in spiking activity was also reflected in a higher number of channels registering 
spikes at DIV 13–18 (Fig. 2a). Bursts, i.e., intermittent groups of high-frequency spikes, are a key feature of 
network activity in vitro and were analyzed with the maximum interval method which has a high performance 
in detecting different types of  bursts18. A maximum interval of 100 ms was defined to start a burst for consist-
ency with the rest of the measures and within the range of previous  studies18,52,53. Analysis of bursts showed that 
the median network burst activity had a sixfold median increase (30 to 180 network bursts/min) from the first 

Figure 1.  Electrophysiological characterization of cortical neuron cultures on MEAs. (a) Photograph of a 60 
electrode MEA device used in the study. (b) Phase-contrast image of cortical neurons in culture at DIV 14. 
The distance between electrodes is 200 µm. Each black dot corresponds to one of the recording electrodes. (c) 
Sample traces of spontaneous electrical activity recorded by three channels. Electrical events, spikes and bursts, 
that crossed a threshold (horizontal black line) were recorded. (d) Spontaneous activity of cortical neurons was 
analyzed according to electrophysiological features of spikes, bursts, synchrony, and connectivity. The figure 
was created using MC_Rack 4.6 (https:// www. multi chann elsys tems. com/ softw are/ mc- rack) (c) and Microsoft 
PowerPoint 365 (https:// www. micro soft. com/ power point) (d).

https://cran.r-project.org
https://www.graphpad.com
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Figure 2.  Development of spontaneous activity of cortical neurons in culture during the first three weeks in vitro. (a) Analysis of 18 
electrophysiological features of neuronal network activity at DIV intervals: 6–8 (n = 50), 9–12 (n = 30), and 13–18 (n = 61). The box 
plots show the median and the interquartile range with Tukey whiskers. Description of features is provided in Table S1 and p-values 
for (a) are reported in Table S2. (b) Raster plots show the spontaneous activity recorded by 6 electrodes from a representative neuronal 
network at DIV 8, 12, and 15 with an archetypical increase of spontaneous activity and synchrony with days in culture. Vertical lines 
correspond to spikes. Horizontal scale bar, 20 s. (c) Maps of functional connectivity of the same neuronal network and period as in 
(b). The color of the connections (edges) between electrodes (nodes) represents Pearson’s correlation and shows a general increase in 
connectivity during early development. The figure was created using Graphpad 8.0 (https:// www. graph pad. com) (a), Neuroexplorer 5 
(https:// plexon. com/ produ cts/ neuro explo rer/) (b), and Matlab 9.8 (https:// www. mathw orks. com/ produ cts/ matlab. html) (c).

https://www.graphpad.com
https://plexon.com/products/neuroexplorer/
https://www.mathworks.com/products/matlab.html
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to the third week in vitro (Fig. 2a). The percentage of spikes in bursts also increased across development and, 
consequently, a decrease in ISI in bursts, burst peak frequency, and burst surprise was observed during the same 
period (Fig. 2a). Whereas the variability and median length of IBI decreased approximately by half during the 
second week in vitro (25.6 [14.3–33.3] s at DIV 6–8 vs 12.8 [9–17.2] s at DIV 13–18), only a slight decrease in 
the median burst duration was observed (0.34 s at DIV 6–8 vs 0.30 s at DIV 13–18) (Fig. 2a). 

STTC  index19 was used to analyze the level of synchronization of spontaneous activity. The average synchrony 
obtained with 100 ms bin showed a strong correlation with the percentage of spikes in bursts and within the range 
of average burst duration (Fig. S1a,b). We observed that levels of STTC and synchronized firing patterns increased 
from DIV 6–8 to 13–18 (Fig. 2a, b), as well as the number of highly synchronized groups of neurons revealed by 
applying DBSCAN clustering algorithm to STTC (STTC DBSCAN) results (Fig. 2a). Functional connectivity of 
neuronal networks on MEAs was analyzed using graph  theory21, and cross-correlation matrices were calculated 
over 100 ms bins with an absolute threshold of 0.35 to capture a relevant range of network integration (Fig. S1c), 
in concordance with previous  studies22. During the first week in vitro, there was high variability in the levels 
of Clustering coeff and Efficiency, indicators of network’s levels of segregation and  integration43, respectively 
(Fig. 2a). The levels of Node degree increased during the second week in vitro (Fig. 2a, c), and high median 
levels of Clustering coeff (0.88) and Efficiency (0.86) were representative of neuronal networks at DIV 13–18.

Dimensionality reduction analysis for integrating electrophysiological features of neuronal 
network activity. To explore how the 18 electrophysiological features defined the network activity of corti-
cal neurons in each DIV interval, we conducted a PCA as a method to capture the greatest variance in a low-
dimensional projection. The lower-dimensional space defined by the first two PC dimensions accounted for 
74.32% of the variance (Fig. 3a). The electrophysiological features that better characterized the variance in the 
first two PCs were related to network features such as Network bursts, Efficiency, and STTC (Fig. 3b). Despite 

Figure 3.  Principal Component Analysis (PCA) of electrophysiological features of neuronal network activity 
in vitro. (a) The graph shows the percentage of variance explained by each principal component (PC) (bars) and 
the cumulative percentage of variance (dots) by the number of PCs. (b) Bar plot displays the contribution (%) 
of each of the 18 electrophysiological features to the PC1 and PC2. The dotted line represents the significant 
contribution value (5.55%) for the first two PCs. (c) Scatter plot of MEA recordings grouped by DIV intervals in 
the 2-dimensional PCA based on the 18 electrophysiological features. PC 1 (x-axis) and PC2 (y-axis) captured 
74.3% of the total variance and each dot represents a time point recording within each DIV interval: 6–8 
(green), 9–12 (gray), and 13–18 (purple) DIV. A gradient from young (DIV 6–8) to mature neuronal networks 
(DIV 13–18) is captured by the PCA projection: 38.3% of DIV 13–18 recordings are in the positive plane of 
PC1 and PC2 dimensions while no DIV 6–8 recordings are in the same PC area. The figure was created using 
Graphpad 8.0 (https:// www. graph pad. com) (a,b), and R 4.03 (https:// www.r- proje ct. org/) (c).

https://www.graphpad.com
https://www.r-project.org/
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the lack of clear segmentation between DIV intervals due to the variability within each developmental stage, 
the first dimension of the PCA captured a left to right gradient from DIV 6–8 to DIV 13–18 (Fig. 3c). A similar 
distribution of MEA recordings by DIV intervals persisted when the PCA was applied to each cortical culture 
(Fig. S2a). Moreover, the variability between and within cultures did not seem to depend upon the range of cell 
densities used in our study (Fig. S2a–c).

Clustering analysis to explore developmental patterns in neuronal networks in vitro. We used 
clustering techniques to explore whether it was possible to characterize individual neuronal networks with simi-
lar developing network activity within the range of activity levels found in our dataset. To do this, we applied 
k-means clustering at the centroids of the  SOM33 on two representative network features of synchrony and 
bursting activity: STTC and Ch. bursts, respectively. For the 47 MEA dishes used in this study, the matrix of the 
SOM algorithm showed 25 nodes in a hexagonal grid, in which each node represented neuronal networks with 
similar network activity development (Fig. S3a, b). Then, the k-means analysis of the SOM revealed 3 clusters of 
neuronal networks with different patterns of development for the parameters of Ch. bursts (Fig. 4a) and STTC 
(Fig. 4d). We then quantified the 18 electrophysiological features at DIV 6–8 and DIV 13–18 in the neuronal 
networks included in each cluster (see Table S3).

Clusters 1 to 3 of Ch. bursts showed neuronal networks with developmental patterns from high to low number 
of channels with burst activity (Fig. 4a) that highly correlated with the changes shown in representative network 
features of spikes, bursts, synchrony, and connectivity from DIV 6–8 to DIV 13–18 (Fig. 4c). MEAs included in 
cluster 1 of Ch. bursts were characterized by higher levels of STTC and connectivity at DIV 6–8 as well as the 
highest increase of network spikes and bursts from DIV 6–8 to DIV 13–18 (Fig. 4c). Conversely, networks with 
a low number of channels with bursts at DIV 6–8 (cluster 3) evolved into poorly synchronized and integrated 
networks (Fig. 4b, c).

Clustering based on the synchrony feature STTC included neuronal networks that kept either high (cluster 
1) or low (cluster 3) levels of STTC during the three developmental stages, and a group of neuronal networks 
(cluster 2) with a high increase of synchrony from DIV 6–8 to DIV 13–18 (Fig. 4d). Whereas the changes from 
DIV 6–8 to DIV 13–18 in the electrophysiological features of neuronal networks included in clusters 1 or 3 of 
STTC were relatively similar to the equivalent clusters of Ch. bursts (Fig. 4c), neuronal networks included in 
cluster 2 of STTC were characterized by drastic increases in the levels of STTC and Efficiency from DIV 6–8 to 
DIV 13–18 (Fig. 4e, f).

The maximum congruence between clustering methods occurred in neuronal networks included in cluster 3 
of STTC and Ch. burst; clusters 1 and 2 of Ch. bursts had a good correlation with cluster 1 of STTC (high levels of 
STTC at DIV 13–18), but 50% of neuronal networks included in cluster 2 of STTC were also included in cluster 
3 of Ch. bursts (Fig. S3c). Additionally, PCA analysis performed on the 18 electrophysiological features of MEA 
recordings at DIV 6–8 and DIV 13–18 showed that the correlation between electrophysiological features was 
different at each DIV interval (Fig. S3d), and separation of neuronal networks included in clusters of Ch. bursts 
(Fig. S3e) and STTC was less clear in the PCA projection (Fig. S3f).

Altogether, these results suggest that clustering methods were effective in characterizing neuronal networks 
with similar changes in spontaneous activity during early development.

Prediction of levels of synchrony and bursting activity in cultured cortical neurons using 
machine learning. To further investigate the importance of early network activity suggested by the cluster-
ing results, we used machine learning techniques to predict the levels of Ch. bursts and STTC at the third week 
in vitro. These two parameters were compared with the prediction of MFR, one of the most commonly used 
parameters in MEA  studies15. The dataset with the 18 electrophysiological features from MEA recordings at DIV 
6–8 and DIV 13–18 was divided into training and testing datasets. After training each machine learning model, 
the performance of the models was evaluated based on the accuracy prediction  (R2) of the features at DIV 13–18 
in the test dataset (Fig. 5a).

We used three machine learning methods with different learning algorithms: MARS, SVM, and Random For-
est. The three models yielded predictive accuracies higher than 0.9 during testing for the features of Ch. bursts 
and STTC, and higher than 0.8 for MFR (Table S4, and Fig. S4 for the SVM model). Additionally, comparison 
of model performance with REC curves showed that MARS and SVM models performed slightly better than 
Random Forest for Ch. bursts and STTC, and similarly for MFR (Fig. 5b–d). In all machine learning models, Ch. 
spikes and ISI appeared to be the most important electrophysiological features for the prediction of Ch. bursts 
and MFR, respectively, while the rest of the features had relative importance depending on the model (Table S5). 
Also, features of functional connectivity had the highest relative importance for the prediction of STTC values 
in all machine learning models (Table S5). These results show the consistency for the prediction of electrophysi-
ological properties of cortical neurons in culture across machine learning models.

To further identify which electrophysiological features were most informative for the prediction of Ch. bursts, 
STTC, and MFR, we tested the predictive accuracy of the features in the SVM model using cross-validation 
leave-one-out and leave-one-in strategies. To balance the number of features, we tested these strategies with 2 
parameters in each of the four groups of electrophysiological features: spikes, bursts, synchrony, and connectivity 
(Fig. 5e–j). In the leave-one-out strategy, one group of features was removed each time, and in the leave-one-in, 
only one group of variables was left each time. Predictive accuracy with SVM for Ch. bursts was higher than 0.8 
when the number of electrophysiological features was reduced from 18 to 8 (Fig. 5e), while accuracy dropped to 
0.6 or lower for MFR and STTC, respectively (Fig. 5f, g). Evaluation of feature importance showed that when leav-
ing out only one group of two features, prediction performance for the 3 variables slightly decreased (Fig. 5e–g), 
suggesting that the rest of the electrophysiological features still retain predictive information. However, when 
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Figure 4.  Patterns of developing spontaneous activity in neuronal networks using clustering analysis. (a,d) 
Graphs display three developmental patterns for the features of Ch. bursts (a) and STTC identified by k-means 
clustering of the SOM. The lines represent the means of the observations, labelled by k-means, and the shaded 
areas represent the 95% confidence intervals. (b,e) Examples of raster plots (left panels) and connectivity maps 
(right panels) of neuronal networks included in either cluster 3 of Ch. bursts (b) or cluster 2 of STTC (e). 
Horizontal scale bar in raster plots, 20 s. Color of the edges between nodes in connectivity maps represents 
Pearson’s correlation. (c,f) Changes in Ch. bursts, STTC, Network spikes, Network bursts, and Efficiency 
between DIV 6–8 and 13–18 in each cluster of Ch. bursts (c) and STTC (f). The box plots show the median and 
the interquartile range with Tukey whiskers. Clusters are indicated on top of the graphs. The figure was created 
using Graphpad 8.0 (https:// www. graph pad. com) (c,f), Neuroexplorer 5 (https:// plexon. com/ produ cts/ neuro 
explo rer/), Matlab 9.8 (https:// www. mathw orks. com/ produ cts/ matlab. html) (b,e), and R 4.03 (https:// www.r- 
proje ct. org/) (a, d).

https://www.graphpad.com
https://plexon.com/products/neuroexplorer/
https://plexon.com/products/neuroexplorer/
https://www.mathworks.com/products/matlab.html
https://www.r-project.org/
https://www.r-project.org/


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20407  | https://doi.org/10.1038/s41598-021-99538-9

www.nature.com/scientificreports/

Figure 5.  Machine learning for the prediction of features of bursts, synchrony, and spikes. (a) Schematics of the machine learning 
workflow. The 18 electrophysiological features were analyzed from MEA recordings at DIV 6–8 and DIV 13–18 and these features 
were used to train (gray segment) machine learning (ML) models. Then, accuracy prediction  (R2) at DIV 13–18 was evaluated in the 
test dataset (blue segment) for electrophysiological features (e.g., Ch. bursts). Figure created with Microsoft PowerPoint 365 (https:// 
www. micro soft. com/ power point). (b–d). REC curves for control and MARS, SVM, and Random Forest (RF) machine learning models 
for the prediction of STTC (b), Ch. bursts (c), and MFR (d). REC curves represent the cumulative error obtained by the machine 
learning models. (e-j) SVM prediction of Ch. bursts (e–h), STTC (f–i), and MFR (g–j) using leave-one-out (e–g) and leave-one-in 
(h–j) strategies. We performed fourfold cross-validation (10 iterations) to calculate the mean accuracy of the SVM prediction using 8 
electrophysiological features (2 features per group): MFR and Ch. spikes (spikes), MBR and Ch. bursts (bursts), STTC and DBSCAN 
STTC (synchrony), and Efficiency and Clustering coeff (connectivity). Feature importance was evaluated by removing (leave-one-out) 
or leaving (leave-one-in) one group of features. Baseline accuracy of cross-validation was calculated using the 18 features. Error bars 
represent the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs accuracy obtained with 8 features (one-way ANOVA, 
followed by Dunnett’s post hoc multiple comparison test). The figure was created using Microsoft PowerPoint 365 (https:// www. micro 
soft. com/ power point) (a), R 4.03 (https:// www.r- proje ct. org/) (b), and Graphpad 8.0 (https:// www. graph pad. com) (e–j).

https://www.microsoft.com/powerpoint
https://www.microsoft.com/powerpoint
https://www.microsoft.com/powerpoint
https://www.microsoft.com/powerpoint
https://www.r-project.org/
https://www.graphpad.com


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20407  | https://doi.org/10.1038/s41598-021-99538-9

www.nature.com/scientificreports/

SVM was run on each group of variables individually, only features of spikes (MFR and Ch. spikes) got an accu-
racy over 0.6 for the prediction of Ch. bursts (Fig. 5h). Synchrony and connectivity features kept similar predic-
tive information for STTC (Fig. 5i), whereas prediction of MFR was not accurately performed (accuracy < 0.4) 
for any group of features (Fig. 5j). Altogether, the cross-validation analysis confirmed that electrophysiological 
features at DIV 6–8 were highly correlated with the levels of burst and synchronization at the third week in vitro.

Discussion
Cortical neurons in vitro exhibit along development a wide variety of firing patterns whose descriptive classifi-
cation and characterization are  challenging10,54. In this study, we show that the development of neural network 
activity in cortical neuron cultures recorded by MEAs can be characterized by combining features of spikes, 
bursts, synchrony, and connectivity. The use of machine learning techniques allowed us to identify clusters of 
neuronal networks with similar developing spontaneous activity within the range of synchronized and bursting 
activity in cultured neurons during early development. Indeed, the levels of Ch. bursts, STTC, and MFR at DIV 
13–18 could be successfully predicted based on the activity at DIV 6–8 using three different machine learning 
models, confirming the correlation between the activity in early developmental stages and features of activity 
in mature neuronal networks.

Our findings are consistent with the average increase in synchronized spiking and bursting activity during 
the first 3 weeks in vitro reported in previous  studies9–12. Increases in peak frequency in bursts, probability of 
burst events (Burst surprise), and percentage of spikes in bursts from DIV 6–8 to DIV 13–18 are consistent 
with developmental changes toward a network activity dominated by burst activity. Synchronization (STTC) 
and highly synchronized hubs of neurons (STTC DBSCAN) progressively appeared during the second week 
in vitro and this type of changes have been previously shown to be strongly correlated with the strengthening of 
 synapses9,55, both glutamatergic and  GABAergic56. The maturation and consequent rate of spontaneous activity 
in vitro depends also upon the neuronal density of  cultures10,12,14. The cortical cultures used in this study can be 
classified as dense cultures (1750–3500 cells/mm2) in which bursting activity can be usually observed after only 
one week in vitro10. Therefore, caution should be taken to extrapolate our results to sparse cortical cultures with 
different network dynamics during early development.

Our results indicate that the analysis of features of spikes, bursts, synchrony, and connectivity may help to 
characterize the developmental stage of neuronal network activity during the first three weeks in culture. By 
applying the PCA dimensionality reduction technique to these electrophysiological features, we show that a broad 
separation of neuronal networks at the first and the third week in vitro could be better accomplished by proper-
ties of network activity (e.g., number of active channels or connectivity properties) rather than single features 
of spikes or bursts. Indeed, the PCA analysis suggested that there may be some redundancy in the information 
encoded by the 18 electrophysiological features since the two first PC dimensions accounted for approx. 75% 
of the variance and some network features such as Network spikes and bursts seemed to be strongly correlated.

Our findings also indicated that the variability of activity levels observed in neuronal networks within the 
same developmental stage, also reported in previous  studies10,12,15, can be efficiently examined when using clus-
tering analysis across developmental stages. The clusters of neuronal networks defined by the k-means analysis 
of the SOM based on Ch. bursts (i.e., spatial distribution of burst activity) highly correlated with changes in the 
four groups of electrophysiological features, whereas STTC clustering was less efficient in characterizing neuronal 
networks with low-intermediate levels of synchronization and divergent development. This might indicate that 
neuronal networks with highly isolated burst activity at DIV 6–8 may not always develop strong synchronized 
burst activity. Thus, Ch. bursts may be used as a predictive marker of network development, considering also 
that bursts are commonly the consequence of cooperative network  activity57.

Results obtained in the analysis of functional connectivity suggests that the neuronal networks included in the 
clusters of high Ch. burst and STTC levels (cluster 1 in both clustering methods) already had properties of small-
world topology (high levels of segregation and integration) at 7 DIV, whereas other neuronal networks kept their 
initial random-like topology at the third week in vitro. Previous studies using 60 electrode MEAs have shown 
that topology may evolve either from random  structure22 or from hubs densely  interconnected23. However, these 
divergent results may be related to differences in culture  densities21. It also remains unclear whether synchronized 
bursts may be triggered by highly active  neurons58, or bursts may be instead the result of zones with intermediate 
activity near the network’s boundary as suggested by studies using large-scale  MEAs59. According to our results, 
levels of segregation and integration were in general tightly correlated across development. However, as the 60 
electrode MEAs cover a partial window of the entire network, the presence of other topologies cannot be totally 
excluded. Application of clustering techniques to the connectivity analysis of cultured neuronal networks with 
different cellular densities on high-density electrode arrays may help to elucidate how the emergence of network 
topology is affected during early development.

Spontaneous activity at early postnatal stages seems to play an essential role in the correct maturation of 
mammalian cortical  networks5,60 and machine learning techniques allowed us to further explore the correlation 
between the activity of immature and mature cortical neuronal networks in vitro. Overall, all three machine 
learning models (MARS, SVM, and Random Forest) used in this study, efficiently captured the nonlinear changes 
of network activity that occurred during the second week in vitro and were able to predict with high accuracy 
the values of Ch. bursts, STTC, and MFR. These results suggest that machine learning techniques might be 
successfully used as internal control for long-term experiments with developing neuronal networks. Analysis 
of the importance of the different electrophysiological features in the machine learning models showed that 
the number of channels with bursts can be predicted with good accuracy even with only two features of spikes 
(Ch. spikes and MFR) whereas prediction of MFR itself had much lower accuracy, suggesting that the fluctua-
tions in firing rate during development might require a continuous dataset for better prediction. Similarly, the 
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prediction of STTC was less accurate when a lower number of features was used in the SVM model, suggesting 
that synchronization may require additional features of bursts and connectivity for better characterization. A 
complementary explanation could be that low and intermediate levels of synchronous activity at DIV 7 may not 
reflect how synchronization will emerge later in development, as a consequence of recurrent bursting  activity61–63. 
In summary, we may argue that, in dense cortical cultures, random spike activity largely distributed across the 
neuronal network precedes the development of burst activity which may need to reach a certain threshold to 
become synchronized across the network. Altogether, our clustering and machine learning results suggest that 
the initial network activity of in vitro neuronal networks may predetermine the consequent developmental trend 
of network activity.

Due to the somewhat limited dataset and the dependence of network activity on experimental conditions, 
the interpretation of the results requires caution. Although internal validation of the machine learning models 
reduces biases and overfitting, further external validation with datasets of similar experimental conditions would 
reinforce the machine learning  results26. Moreover, it will be interesting also to explore the influence of param-
eters such as neuronal survival during the second week in vitro, the balance between excitation and  inhibition64, 
or neurite  outgrowth65 on different developmental patterns of network activity. Nevertheless, the methodological 
approach presented here for the characterization and early prediction of network activity in cultured neurons 
may be a useful tool to elucidate the biological causes of variability in network dynamics as well as to optimize 
the use of cortical cultures in models of health and disease.

Data availability
Any supplementary information, code, and source data are available from the corresponding authors (A.N., 
D.C.-G., and J.V.B.) upon reasonable request.
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